Polynomials

Release 10.4

The Sage Development Team

Jul 23, 2024
CONTENTS

1 Polynomial Rings ... 1
2 Univariate Polynomials 15
3 Multivariate Polynomials 457
4 Rational Functions .. 913
5 Laurent Polynomials 945
6 Infinite Polynomial Rings 989
7 Boolean Polynomials 1047
8 Indices and Tables ... 1049
Python Module Index ... 1051
Index .. 1053
1.1 Constructors for polynomial rings

This module provides the function `PolynomialRing()`, which constructs rings of univariate and multivariate polynomials, and implements caching to prevent the same ring being created in memory multiple times (which is wasteful and breaks the general assumption in Sage that parents are unique).

There is also a function `BooleanPolynomialRing_constructor()`, used for constructing Boolean polynomial rings, which are not technically polynomial rings but rather quotients of them (see module `sage.rings.polynomial.pbori` for more details).

Construct a boolean polynomial ring with the following parameters:

INPUT:

- n – number of variables (an integer > 1)
- names – names of ring variables, may be a string or list/tuple of strings
- order – term order (default: 'lex')

EXAMPLES:

```python
sage: # needs sage.rings.polynomial.pbori
sage: R.<x, y, z> = BooleanPolynomialRing(); R  # indirect doctest
Boolean PolynomialRing in x, y, z
sage: p = x*y + x*z + y*z
sage: x*p
x*y*z + x*y + x*z
sage: R.term_order()
Lexicographic term order
```

```python
sage: R = BooleanPolynomialRing(5, x, order=deglex(3),deglex(2))  # continues on next page
```
Polynomials, Release 10.4

(continued from previous page)

\[\text{sage: } R = \text{BooleanPolynomialRing}(\text{names='x', 'y', 'z'}) \]
\[\text{# indirect doctest} \]
\[\text{Boolean PolynomialRing in x, y, z} \]

\[\text{sage: } R = \text{BooleanPolynomialRing}(\text{names=('x', 'y')}) \]
\[\text{Boolean PolynomialRing in x, y} \]

\[\text{from sage.all import *} \]
\[\text{R = BooleanPolynomialRing(names=('x', 'y'))} \]
\[\text{# indirect doctest} \]
\[\text{Boolean PolynomialRing in x, y} \]

\[\text{sage: } \text{BooleanPolynomialRing}(\text{names='x', 'y'}) \]
\[\text{Boolean PolynomialRing in x, y} \]

sage.rings.polynomial.polynomial_ring_constructor.PolynomialRing(base_ring, *args, **kwds)

Return the globally unique univariate or multivariate polynomial ring with given properties and variable name or names.

There are many ways to specify the variables for the polynomial ring:

1. PolynomialRing(base_ring, name, ...)
2. PolynomialRing(base_ring, names, ...)
3. PolynomialRing(base_ring, n, names, ...)
4. PolynomialRing(base_ring, n, ..., var_array=var_array, ...)

The ... at the end of these commands stands for additional keywords, like sparse or order.

INPUT:
• base_ring – a ring
• n – an integer
• name – a string
• names – a list or tuple of names (strings), or a comma separated string
• var_array – a list or tuple of names, or a comma separated string
• sparse – bool: whether or not elements are sparse. The default is a dense representation (sparse=False) for univariate rings and a sparse representation (sparse=True) for multivariate rings.
• order – string or TermOrder object, e.g.,
 – 'degrevlex' (default) – degree reverse lexicographic
 – 'lex' – lexicographic
 – 'deglex' – degree lexicographic
 – TermOrder('deglex',3) + TermOrder('deglex',3) – block ordering
• implementation – string or None; selects an implementation in cases where Sage includes multiple choices (currently \(\mathbb{Z}[x] \) can be implemented with 'NTL' or 'FLINT'; default is 'FLINT'). For many base rings, the "singular" implementation is available. One can always specify implementation="generic" for a generic Sage implementation which does not use any specialized library.

Note: If the given implementation does not exist for rings with the given number of generators and the given sparsity, then an error results.

OUTPUT:
PolynomialRing(base_ring, name, sparse=False) returns a univariate polynomial ring; also, PolynomialRing(base_ring, names, sparse=False) yields a univariate polynomial ring, if names is a list or tuple providing exactly one name. All other input formats return a multivariate polynomial ring.

UNIQUENESS and IMMUTABILITY: In Sage there is exactly one single-variate polynomial ring over each base ring in each choice of variable, sparseness, and implementation. There is also exactly one multivariate polynomial ring over each base ring for each choice of names of variables and term order. The names of the generators can only be temporarily changed after the ring has been created. Do this using the localvars() context.

EXAMPLES:
1. PolynomialRing(base_ring, name, ...)

\[
\begin{align*}
\text{sage: } & \quad \text{PolynomialRing}(\mathbb{Q}, 'w') \\
& \quad \text{Univariate Polynomial Ring in } w \text{ over Rational Field} \\
\text{sage: } & \quad \text{PolynomialRing}(\mathbb{Q}, \text{name=}'w') \\
& \quad \text{Univariate Polynomial Ring in } w \text{ over Rational Field} \\
\text{>>> from sage.all import *} & \\
\text{>>> PolynomialRing}(\mathbb{Q}, 'w') \\
& \quad \text{Univariate Polynomial Ring in } w \text{ over Rational Field} \\
\text{>>> PolynomialRing}(\mathbb{Q}, \text{name=}'w') \\
& \quad \text{Univariate Polynomial Ring in } w \text{ over Rational Field}
\end{align*}
\]
Use the diamond brackets notation to make the variable ready for use after you define the ring:

\[
\begin{align*}
\text{sage: } & R.<w> = \text{PolynomialRing}(\mathbb{Q}) \\
\text{sage: } & (1 + w)^3 \\
& w^3 + 3w^2 + 3w + 1
\end{align*}
\]

\[
\begin{align*}
>>> & \text{from sage.all import } * \\
>>> & R = \text{PolynomialRing}(\mathbb{Q}, \text{name}=('w',)); (w,) = R._\text{first}_\text{ngens}(1) \\
>>> & (\text{Integer}(1) + w)^{\text{Integer}(3)} \\
& w^3 + 3w^2 + 3w + 1
\end{align*}
\]

You must specify a name:

\[
\begin{align*}
\text{sage: } & \text{PolynomialRing}(\mathbb{Q}) \\
& \text{Traceback (most recent call last):} \\
& \quad \text{TypeError: you must specify the names of the variables}
\end{align*}
\]

\[
\begin{align*}
\text{sage: } & R.<abc> = \text{PolynomialRing}(\mathbb{Q}, \text{spars}e=\text{True}); R \\
& \text{Sparse Univariate Polynomial Ring in abc over Rational Field}
\end{align*}
\]

\[
\begin{align*}
\text{sage: } & R.<w> = \text{PolynomialRing}(\text{PolynomialRing}(\mathbb{F}(7),'k')); R \\
& \text{Univariate Polynomial Ring in w over} \\
& \quad \text{Univariate Polynomial Ring in k over Finite Field of size 7}
\end{align*}
\]

\[
\begin{align*}
>>> & \text{from sage.all import } * \\
>>> & \text{PolynomialRing}(\mathbb{Q}) \\
& \text{Traceback (most recent call last):} \\
& \quad \text{TypeError: you must specify the names of the variables}
\end{align*}
\]

\[
\begin{align*}
>>> & R = \text{PolynomialRing}(\mathbb{Q}, \text{spars}e=\text{True}, \text{name}=('abc',)); (abc,) = R._\text{first}_\text{ngens}(1); R \\
& \text{Sparse Univariate Polynomial Ring in abc over Rational Field}
\end{align*}
\]

\[
\begin{align*}
>>> & R = \text{PolynomialRing}(\text{PolynomialRing}(\mathbb{F}(\text{Integer}(7)), 'k'), \text{name}=('w',)); (w,) = R._\text{first}_\text{ngens}(1); R \\
& \text{Univariate Polynomial Ring in w over} \\
& \quad \text{Univariate Polynomial Ring in k over Finite Field of size 7}
\end{align*}
\]

The square bracket notation:

\[
\begin{align*}
\text{sage: } & R.<y> = \mathbb{Q}[y]; R \\
& \text{Univariate Polynomial Ring in y over Rational Field} \\
\text{sage: } & y^2 + y \\
& y^2 + y
\end{align*}
\]

\[
\begin{align*}
>>> & \text{from sage.all import } * \\
>>> & R = \mathbb{Q}['y']; (y,) = R._\text{first}_\text{ngens}(1); R \\
& \text{Univariate Polynomial Ring in y over Rational Field} \\
>>> & y^{\text{Integer}(2)} + y \\
& y^2 + y
\end{align*}
\]

In fact, since the diamond brackets on the left determine the variable name, you can omit the variable from the square brackets:
Polynomials, Release 10.4

```sage
sage: R.<zz> = QQ[]; R
Univariate Polynomial Ring in zz over Rational Field
sage: (zz + 1)^2
zz^2 + 2*zz + 1
```

```python
>>> from sage.all import *
>>> R = QQ['zz']; (zz,) = R._first_ngens(1); R
Univariate Polynomial Ring in zz over Rational Field
>>> (zz + Integer(1))**Integer(2)
zz^2 + 2*zz + 1
```

This is exactly the same ring as what PolynomialRing returns:

```sage
sage: R is PolynomialRing(QQ, 'zz')
True
```

However, rings with different variables are different:

```sage
sage: QQ['x'] == QQ['y']
False
```

Sage has two implementations of univariate polynomials over the integers, one based on NTL and one based on FLINT. The default is FLINT. Note that FLINT uses a “more dense” representation for its polynomials than NTL, so in particular, creating a polynomial like $2^{1000000} \times x^{1000000}$ in FLINT may be unwise.

```sage
sage: ZxNTL = PolynomialRing(ZZ, 'x', implementation='NTL'); ZxNTL
Univariate Polynomial Ring in x over Integer Ring (using NTL)
sage: ZxFLINT = PolynomialRing(ZZ, 'x', implementation='FLINT'); ZxFLINT
Univariate Polynomial Ring in x over Integer Ring
sage: ZxFLINT is ZZ['x']
True
sage: ZxFLINT is PolynomialRing(ZZ, 'x')
True
```

1.1. Constructors for polynomial rings
There is a coercion from the non-default to the default implementation, so the values can be mixed in a single expression:

```python
sage: (xNTL + xFLINT^2)
```

The result of such an expression will use the default, i.e., the FLINT implementation:

```python
sage: (xNTL + xFLINT^2).parent()
```

The generic implementation uses neither NTL nor FLINT:

```python
sage: Zx = PolynomialRing(ZZ, 'x', implementation='generic'); Zx
```

(continues on next page)
Univariate Polynomial Ring in x over Integer Ring
>>> Zx.element_class
<... 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>

2. PolynomialRing(base_ring, names, ...)

 sage: R = PolynomialRing(QQ, 'a,b,c'); R
 Multivariate Polynomial Ring in a, b, c over Rational Field

 sage: S = PolynomialRing(QQ, ['a','b','c']); S
 Multivariate Polynomial Ring in a, b, c over Rational Field

 sage: T = PolynomialRing(QQ, ('a','b','c')); T
 Multivariate Polynomial Ring in a, b, c over Rational Field

 >>> from sage.all import *
 >>>
 >>> R = PolynomialRing(QQ, a,b,c); R
 Multivariate Polynomial Ring in a, b, c over Rational Field

 >>> S = PolynomialRing(QQ, ['a','b','c']); S
 Multivariate Polynomial Ring in a, b, c over Rational Field

 >>> T = PolynomialRing(QQ, ('a','b','c')); T
 Multivariate Polynomial Ring in a, b, c over Rational Field

 All three rings are identical:

 sage: R is S
 True
 sage: S is T
 True

 >>> from sage.all import *
 >>>
 >>> R is S
 True
 >>> S is T
 True

 There is a unique polynomial ring with each term order:

 sage: R = PolynomialRing(QQ, 'x,y,z', order='degrevlex'); R
 Multivariate Polynomial Ring in x, y, z over Rational Field
 sage: S = PolynomialRing(QQ, 'x,y,z', order='invlex'); S
 Multivariate Polynomial Ring in x, y, z over Rational Field
 sage: S is PolynomialRing(QQ, 'x,y,z', order='invlex')
 True
 sage: R == S
 False

 >>> from sage.all import *
 >>>
 >>> R = PolynomialRing(QQ, 'x,y,z', order='degrevlex'); R
 Multivariate Polynomial Ring in x, y, z over Rational Field
 >>> S = PolynomialRing(QQ, 'x,y,z', order='invlex'); S
 Multivariate Polynomial Ring in x, y, z over Rational Field
 >>> S is PolynomialRing(QQ, 'x,y,z', order='invlex')

(continues on next page)
True
>>> R == S
False

Note that a univariate polynomial ring is returned, if the list of names is of length one. If it is of length zero, a multivariate polynomial ring with no variables is returned.

```
sage: PolynomialRing(QQ, ["x"])  
Univariate Polynomial Ring in x over Rational Field
sage: PolynomialRing(QQ, [])  
Multivariate Polynomial Ring in no variables over Rational Field
```

```
>>> from sage.all import *
>>> PolynomialRing(QQ, ["x"])  
Univariate Polynomial Ring in x over Rational Field
>>> PolynomialRing(QQ, [])  
Multivariate Polynomial Ring in no variables over Rational Field
```

The Singular implementation always returns a multivariate ring, even for 1 variable:

```
sage: PolynomialRing(QQ, "x", implementation="singular")  
Multivariate Polynomial Ring in x over Rational Field
sage: P.<x> = PolynomialRing(QQ, implementation="singular"); P  
Multivariate Polynomial Ring in x over Rational Field
```
```
>>> from sage.all import *
>>> PolynomialRing(QQ, "x", implementation="singular")  
Multivariate Polynomial Ring in x over Rational Field
>>> P = PolynomialRing(QQ, implementation="singular", names=('x',)); (x,) = P._  
Multivariate Polynomial Ring in x over Rational Field
```

3. **PolynomialRing**(base_ring, n, names, …) (where the arguments n and names may be reversed)

If you specify a single name as a string and a number of variables, then variables labeled with numbers are created.

```
sage: PolynomialRing(QQ, 'x', 10)  
Multivariate Polynomial Ring in x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 over Rational Field
sage: PolynomialRing(QQ, 'x', 2, [\alpha0])  
Multivariate Polynomial Ring in x, \alpha0 over Rational Field
sage: PolynomialRing(GF(7), 'y', 5)  
Multivariate Polynomial Ring in y0, y1, y2, y3, y4 over Finite Field of size 7
sage: PolynomialRing(QQ, 'y', 3, sparse=True)  
Multivariate Polynomial Ring in y0, y1, y2 over Rational Field
```
```
>>> from sage.all import *
>>> PolynomialRing(QQ, 'x', Integer(10))  
Multivariate Polynomial Ring in x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 over Rational Field
```

(continues on next page)
Note that a multivariate polynomial ring is returned when an explicit number is given.

```
sage: PolynomialRing(QQ, "x", 1)
Multivariate Polynomial Ring in x over Rational Field
sage: PolynomialRing(QQ, "x", 0)
Multivariate Polynomial Ring in no variables over Rational Field
```

It is easy in Python to create fairly arbitrary variable names. For example, here is a ring with generators labeled by the primes less than 100:

```
sage: R = PolynomialRing(ZZ, ['x%s*p for p in primes(100)']); R
 Multivariate Polynomial Ring in x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, x31, x37, x41, x43, x47, x53, x59, x61, x67, x71, x73, x79, x83, x89, x97 over Integer Ring
```

By calling the `inject_variables()` method, all those variable names are available for interactive use:

```
sage: R.inject_variables()
Defining x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, x31, x37, x41, x43, x47, x53, x59, x61, x67, x71, x73, x79, x83, x89, x97
```

(continues on next page)
4. PolynomialRing(base_ring, n, ..., var_array=var_array, ...)

This creates an array of variables where each variables begins with an entry in var_array and is indexed from 0 to n - 1.

```python
sage: PolynomialRing(ZZ, 3, var_array=['x', 'y'])
Multivariate Polynomial Ring in x0, y0, x1, y1, x2, y2 over Integer Ring
sage: PolynomialRing(ZZ, 3, var_array=['a', 'b'])
Multivariate Polynomial Ring in a0, b0, a1, b1, a2, b2 over Integer Ring

>>> from sage.all import *

>>> PolynomialRing(ZZ, Integer(3), var_array=['x', 'y'])
Multivariate Polynomial Ring in x0, y0, x1, y1, x2, y2 over Integer Ring
>>> PolynomialRing(ZZ, Integer(3), var_array=['a', 'b'])
Multivariate Polynomial Ring in a0, b0, a1, b1, a2, b2 over Integer Ring

It is possible to create higher-dimensional arrays:

```python
sage: PolynomialRing(ZZ, 2, 3, var_array=('p', 'q'))
Multivariate Polynomial Ring
in p00, q00, p01, q01, p02, q02, p10, q10, p11, q11, p12, q12
over Integer Ring
sage: PolynomialRing(ZZ, 2, 3, 4, var_array='m')
Multivariate Polynomial Ring in m000, m001, m002, m003, m010, m011,
m012, m013, m020, m021, m022, m023, m100, m101, m102, m103, m110,
m111, m112, m113, m120, m121, m122, m123 over Integer Ring

>>> from sage.all import *

>>> PolynomialRing(ZZ, Integer(2), Integer(3), var_array=('p', 'q'))
Multivariate Polynomial Ring
in p00, q00, p01, q01, p02, q02, p10, q10, p11, q11, p12, q12
over Integer Ring
>>> PolynomialRing(ZZ, Integer(2), Integer(3), Integer(4), var_array='m')
Multivariate Polynomial Ring in m000, m001, m002, m003, m010, m011, m012, m013, m020, m021, m022, m023, m100, m101, m102, m103, m110, m111, m112, m113, m120, m121, m122, m123 over Integer Ring

The array is always at least 2-dimensional. So, if var_array is a single string and only a single number n is given, this creates an n x n array of variables:

```python
sage: PolynomialRing(ZZ, 2, var_array='m')
Multivariate Polynomial Ring in m00, m01, m10, m11 over Integer Ring

>>> from sage.all import *

>>> PolynomialRing(ZZ, Integer(2), var_array='m')
Multivariate Polynomial Ring in m00, m01, m10, m11 over Integer Ring

Square brackets notation

You can alternatively create a polynomial ring over a ring \( R \) with square brackets:

```python
sage: # needs sage.rings.real_mpfr
sage: RR["x"]
```
Univariate Polynomial Ring in x over Real Field with 53 bits of precision

\texttt{sage}: RR("x,y")

Multivariate Polynomial Ring in x, y over Real Field with 53 bits of precision

\texttt{sage}: P.<x,y> = RR[]; P

Multivariate Polynomial Ring in x, y over Real Field with 53 bits of precision

\begin{verbatim}
>>> from sage.all import *

# needs sage.rings.real_mpfr

>>> RR["x"]

Univariate Polynomial Ring in x over Real Field with 53 bits of precision

>>> RR["x,y"]

Multivariate Polynomial Ring in x, y over Real Field with 53 bits of precision

>>> P = RR['x, y']; (x, y,) = P._first_ngens(2); P

Multivariate Polynomial Ring in x, y over Real Field with 53 bits of precision
\end{verbatim}

This notation does not allow to set any of the optional arguments.

**Changing variable names**

Consider

\begin{verbatim}
\texttt{sage}: R.<x,y> = PolynomialRing(QQ, 2); R

Multivariate Polynomial Ring in x, y over Rational Field

\texttt{sage}: \( f = x^2 - 2*y^2 \)
\end{verbatim}

You can't just globally change the names of those variables. This is because objects all over Sage could have pointers to that polynomial ring.

\begin{verbatim}
\texttt{sage}: R._assign_names([z,w])

Traceback (most recent call last):
...

ValueError: variable names cannot be changed after object creation.
\end{verbatim}

However, you can very easily change the names within a \texttt{with} block:

\begin{verbatim}
\texttt{sage}: with localvars(R, ['z','w']):
....  print(f)
  \( z^2 - 2*w^2 \)
\end{verbatim}

\begin{verbatim}
\texttt{>>> from sage.all import *}

\texttt{>>> with localvars(R, ['z','w']):}
...  print(f)
  \( z^2 - 2*w^2 \)
\end{verbatim}
After the `with` block the names revert to what they were before:

```python
sage: print(f)
x^2 - 2*y^2
```

```python
>>> from sage.all import *
>>> print(f)
x^2 - 2*y^2
```

Choose an appropriate category for a polynomial ring.

It is assumed that the corresponding base ring is nonzero.

**INPUT:**
- `base_ring_category` – The category of ring over which the polynomial ring shall be defined
- `n_variables` – number of variables

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polynomial_ring_constructor import polynomial_default_category
sage: polynomial_default_category(Rings(),1) is Algebras(Rings()).Infinite()
```

True

```python
sage: polynomial_default_category(Rings().Commutative(),1) is Algebras(Rings().Commutative()).Infinite()
```

True

```python
sage: polynomial_default_category(Fields(),1) is EuclideanDomains() &~\rightarrow CommutativeAlgebras(Fields()).Infinite()
```

True

```python
sage: QQ['t'].category() is EuclideanDomains() &~\rightarrow Category.with_base_and_category().Infinite()
```

True

```python
sage: QQ['s','t'].category() is UniqueFactorizationDomains() &~\rightarrow CommutativeAlgebras(QQ.category()).Infinite()
```

True

```python
sage: QQ['s']['t'].category() is UniqueFactorizationDomains() &~\rightarrow CommutativeAlgebras(QQ['s'].category()).Infinite()
```

True

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polynomial_ring_constructor import polynomial_default_category
>>> polynomial_default_category(Rings(),Integer(1)) is Algebras(Rings()).Infinite()
```

True

```python
>>> polynomial_default_category(Rings().Commutative(),Integer(1)) is Algebras(Rings().Commutative()).Infinite()
```

True

```python
>>> polynomial_default_category(Fields(),Integer(1)) is EuclideanDomains() &~\rightarrow Algebras(Fields()).Infinite()
```

True

(continues on next page)
True
>>> polynomial_default_category(Fields(),Integer(2)) is UniqueFactorizationDomains() & CommutativeAlgebras(Fields()).Infinite()
True

>>> QQ['t'].category() is EuclideanDomains() & CommutativeAlgebras(QQ.category()).Infinite()
True

>>> QQ['s','t'].category() is UniqueFactorizationDomains() & CommutativeAlgebras(QQ.category()).Infinite()
True

>>> QQ['s']['t'].category() is UniqueFactorizationDomains() & CommutativeAlgebras(QQ['s'].category()).Infinite()
True

sage.rings.polynomial.polynomial_ring_constructor.unpickle_PolynomialRing(base_ring, arg1=None, arg2=None, sparse=False)

Custom unpickling function for polynomial rings.

This has the same positional arguments as the old PolynomialRing constructor before Issue #23338.
CHAPTER
TWO

UNIVARIATE POLYNOMIALS

2.1 Univariate Polynomials and Polynomial Rings

Sage's architecture for polynomials 'under the hood' is complex, interfacing to a variety of C/C++ libraries for polynomials over specific rings. In practice, the user rarely has to worry about which backend is being used.

The hierarchy of class inheritance is somewhat confusing, since most of the polynomial element classes are implemented as Cython extension types rather than pure Python classes and thus can only inherit from a single base class, whereas others have multiple bases.

2.1.1 Univariate Polynomial Rings

Sage implements sparse and dense polynomials over commutative and non-commutative rings. In the non-commutative case, the polynomial variable commutes with the elements of the base ring.

AUTHOR:
• William Stein
• Kiran Kedlaya (2006-02-13): added macaulay2 option
• Martin Albrecht (2006-08-25): removed it again as it isn't needed anymore
• Simon King (2011-05): Dense and sparse polynomial rings must not be equal.
• Simon King (2011-10): Choice of categories for polynomial rings.

EXAMPLES:

```python
sage: z = QQ['z'].0
sage: (z^3 + z - 1)^3
z^9 + 3*z^7 - 3*z^6 + 3*z^5 - 6*z^4 + 4*z^3 - 3*z^2 + 3*z - 1
```

```python
>>> from sage.all import *
>>> z = QQ['z'].gen(0)
>>> (z**Integer(3) + z - Integer(1))**Integer(3)
z^9 + 3*z^7 - 3*z^6 + 3*z^5 - 6*z^4 + 4*z^3 - 3*z^2 + 3*z - 1
```

Saving and loading of polynomial rings works:

```python
sage: loads(dumps(QQ['x'])) == QQ['x']
True
sage: k = PolynomialRing(QQ['x','y']); loads(dumps(k)) == k
True
```

(continues on next page)
Polynomials, Release 10.4

sage: k = PolynomialRing(ZZ, 'y'); loads(dumps(k)) == k
True
sage: k = PolynomialRing(ZZ, 'y', sparse=True); loads(dumps(k))
Sparse Univariate Polynomial Ring in y over Integer Ring

Rings with different variable names are not equal; in fact, by Issue #9944, polynomial rings are equal if and only if they are identical (which should be the case for all parent structures in Sage):

sage: QQ['y'] != QQ['x']
True
sage: QQ['y'] != QQ['z']
True

We create a polynomial ring over a quaternion algebra:

sage: # needs sage.combinat sage.modules
sage: A.<i,j,k> = QuaternionAlgebra(QQ, -1,-1)
sage: R.<w> = PolynomialRing(A, sparse=True)
sage: f = w^3 + (i+j)*w + 1
sage: f
w^3 + (i + j)*w + 1
sage: f^2
w^6 + (2*i + 2*j)*w^4 + 2*w^3 - 2*w^2 + (2*i + 2*j)*w + 1
sage: f = w + i; g = w + j
sage: f * g
w^2 + (i + j)*w + k
sage: g * f
w^2 + (i + j)*w - k

(continues on next page)
Issue #9944 introduced some changes related with coercion. Previously, a dense and a sparse polynomial ring with the same variable name over the same base ring evaluated equal, but of course they were not identical. Coercion maps are cached - but if a coercion to a dense ring is requested and a coercion to a sparse ring is returned instead (since the cache keys are equal!), all hell breaks loose.

Therefore, the coercion between rings of sparse and dense polynomials works as follows:

```python
sage: R.<x> = PolynomialRing(QQ, sparse=True)
sage: S.<x> = QQ[]
sage: S == R
False
sage: S.has_coerce_map_from(R)
True
sage: R.has_coerce_map_from(S)
False
sage: (R.0 + S.0).parent()
Univariate Polynomial Ring in x over Rational Field
sage: (S.0 + R.0).parent()
Univariate Polynomial Ring in x over Rational Field
```

```python
>>> from sage.all import *

>>> R = PolynomialRing(QQ, sparse=True, names=('x',)); (x,) = R._first_ngens(1)
>>> S = QQ['x']; (x,) = S._first_ngens(1)
>>> S == R
False
>>> R.has_coerce_map_from(S)
True
>>> S.has_coerce_map_from(R)
False
>>> (R.gen(0) + S.gen(0)).parent()
Univariate Polynomial Ring in x over Rational Field
>>> (S.gen(0) + R.gen(0)).parent()
Univariate Polynomial Ring in x over Rational Field
```

It may be that one has rings of dense or sparse polynomials over different base rings. In that situation, coercion works by means of the `pushout()` formalism:

```python
sage: R.<x> = PolynomialRing(GF(5), sparse=True)
sage: S.<x> = PolynomialRing(ZZ)
sage: R.has_coerce_map_from(S)
False
sage: S.has_coerce_map_from(R)
False
sage: (R.gen(0) + S.gen(0)).parent()
Univariate Polynomial Ring in x over Finite Field of size 5
sage: (S.gen(0) + R.gen(0)).parent().is_sparse()
False
```
Similarly, there is a coercion from the (non-default) NTL implementation for univariate polynomials over the integers to the default FLINT implementation, but not vice versa:

```
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL') # needs sage.libs.ntl
sage: S.<x> = PolynomialRing(ZZ, implementation='FLINT') # needs sage.libs.flint sage.libs.ntl
sage: (S.0 + R.0).parent() is S
True
sage: (R.0 + S.0).parent() is S
True
```
A class for polynomial ring over complete discrete valuation rings

```python
class sage.rings.polynomial.polynomial_ring.PolynomialRing_commutative(base_ring,
 name=None,
 sparse=False,
 implementation=None,
 element_class=None,
 category=None)
```

**Bases:** `PolynomialRing_general`

Univariate polynomial ring over a commutative ring.

**quotient_by_principal_ideal** `(f, names=None, **kwds)`

Return the quotient of this polynomial ring by the principal ideal (generated by) `f`.

**INPUT:**

- `f` – either a polynomial in `self`, or a principal ideal of `self`.
- further named arguments that are passed to the quotient constructor.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: I = (x^2 - 1) * R
sage: R.quotient_by_principal_ideal(I) # needs sage.libs.pari
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 - 1
```

```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> I = (x**Integer(2) - Integer(1)) * R
>>> R.quotient_by_principal_ideal(I) # needs sage.libs.pari
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 - 1
```

The same example, using the polynomial instead of the ideal, and customizing the variable name:

```python
sage: R.<x> = QQ[]
sage: R.quotient_by_principal_ideal(x^2 - 1, names=('foo',)) # needs sage.libs.pari
Univariate Quotient Polynomial Ring in foo over Rational Field with modulus x^2 - 1
```

```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> R.quotient_by_principal_ideal(x**Integer(2) - Integer(1), names=('foo',))
needs sage.libs.pari
Univariate Quotient Polynomial Ring in foo over Rational Field with modulus x^2 - 1
```
weyl_algebra()

Return the Weyl algebra generated from self.

EXAMPLES:

```python
sage: R = QQ['x']
sage: W = R.weyl_algebra(); W
needs sage.modules
Differential Weyl algebra of polynomials in x over Rational Field
sage: W.polynomial_ring() == R
needs sage.modules
True
```

```
>>> from sage.all import *
>>> R = QQ['x']
>>> W = R.weyl_algebra(); W
needs sage.modules
Differential Weyl algebra of polynomials in x over Rational Field
>>> W.polynomial_ring() == R
needs sage.modules
True
```

class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense Finite_field

Bases: PolynomialRing_field

Univariate polynomial ring over a finite field.

EXAMPLES:

```python
sage: R = PolynomialRing(GF(27, 'a'), 'x')
needs sage.rings.finite_rings
sage: type(R)
needs sage.rings.finite_rings
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_dense Finite_field_with_category'>
```

```
>>> from sage.all import *
>>> R = PolynomialRing(GF(Integer(27), 'a'), 'x')
needs sage.rings.finite_rings
>>> type(R)
needs sage.rings.finite_rings
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_dense Finite_field_with_category'>
```

irreducible_element (n, algorithm=None)

Construct a monic irreducible polynomial of degree n.

INPUT:
• $n$ – integer: degree of the polynomial to construct

• algorithm – string: algorithm to use, or None
  – 'random' or None: try random polynomials until an irreducible one is found.
  – 'first_lexicographic': try polynomials in lexicographic order until an irreducible one is found.

OUTPUT:
A monic irreducible polynomial of degree $n$ in self.

EXAMPLES:

```
sage: # needs sage.modules sage.rings.finite_rings
sage: f = GF(5^3, 'a')['x'].irreducible_element(2)
sage: f.degree()
2
sage: f.is_irreducible()
True
sage: R = GF(19)['x']
sage: R.irreducible_element(21, algorithm='first_lexicographic')
x^21 + x + 5
sage: R = GF(5**2, 'a')['x']
sage: R.irreducible_element(17, algorithm='first_lexicographic')
x^17 + a*x + 4*a + 3
```

```
>>> from sage.all import *

>>> # needs sage.modules sage.rings.finite_rings
>>> f = GF(Integer(5)**Integer(3), 'a')['x'].irreducible_element(Integer(2))
>>> f.degree()
2
>>> f.is_irreducible()
True
>>> R = GF(Integer(19))['x']
>>> R.irreducible_element(Integer(21), algorithm='first_lexicographic')
x^21 + x + 5
>>> R = GF(Integer(5)**Integer(2), 'a')['x']
>>> R.irreducible_element(Integer(17), algorithm='first_lexicographic')
x^17 + a*x + 4*a + 3
```

AUTHORS:

• Peter Bruin (June 2013)

• Jean-Pierre Flori (May 2014)
modulus()

EXAMPLES:

```python
sage: R.<x> = Zmod(15)[x]
sage: R.modulus()
15
```

```python
>>> from sage.all import *
>>> R = Zmod(Integer(15))['x']; (x,) = R._first_ngens(1)
>>> R.modulus()
15
```

residue_field(ideal, names=None)

Return the residue finite field at the given ideal.

EXAMPLES:

```python
sage: # needs sage.libsntl
sage: R.<t> = GF(2)[]
sage: k.<a> = R.residue_field(t^3 + t + 1); k
Residue field in a of Principal ideal (t^3 + t + 1) of Univariate Polynomial Ring in t over Finite Field of size 2 (using GF2X)
sage: k.list()
[0, a, a^2, a + 1, a^2 + a, a^2 + a + 1, a^2 + 1, 1]
sage: R.residue_field(t)
Residue field of Principal ideal (t) of Univariate Polynomial Ring in t over Finite Field of size 2 (using GF2X)
```

```python
P = R.irreducible_element(8) * R
sage: P
Principal ideal (t^8 + t^4 + t^3 + t^2 + 1) of Univariate Polynomial Ring in t over Finite Field of size 2 (using GF2X)
```

```python
sage: k.<a> = R.residue_field(P); (a,) = k._first_ngens(1); k
Residue field in a of Principal ideal (t^8 + t^4 + t^3 + t^2 + 1) of Univariate Polynomial Ring in t over Finite Field of size 2 (using GF2X)
```

```python
sage: k.cardinality()
256
```

```python
from sage.all import *
```

```python
```
```
```
```
```
Non-maximal ideals are not accepted:

```python
sage: # needs sage.libsntl
sage: R.residue_field(t^2 + 1)
Traceback (most recent call last):
 ... ArithmeticError: ideal is not maximal
sage: R.residue_field(0)
Traceback (most recent call last):
 ... ArithmeticError: ideal is not maximal
sage: R.residue_field(1)
Traceback (most recent call last):
 ... ArithmeticError: ideal is not maximal
```

```python
>>> from sage.all import *

>>> R.residue_field(t**Integer(2) + Integer(1))
Traceback (most recent call last):
 ... ArithmeticError: ideal is not maximal

>>> R.residue_field(Integer(0))
Traceback (most recent call last):
 ... ArithmeticError: ideal is not maximal

>>> R.residue_field(Integer(1))
Traceback (most recent call last):
 ... ArithmeticError: ideal is not maximal
```

```

class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_p(base_ring, name='x', implementation=None, element_class=None, category=None)

Bases: PolynomialRing_dense_finite_field, PolynomialRing_dense_mod_n, PolynomialRing_singular_repr

fraction_field()
 Return the fraction field of self.

EXAMPLES:
```
sage: R.<t> = GF(5)[]

sage: R.fraction_field()
Fraction Field of Univariate Polynomial Ring in t
over Finite Field of size 5

from sage.all import *
R = GF(Integer(5))['t']
(t,) = R._first_ngens(1)

R.fraction_field()
Fraction Field of Univariate Polynomial Ring in t
over Finite Field of size 5

irreducible_element (n, algorithm=None)
Construct a monic irreducible polynomial of degree n.

INPUT:

• n – integer: the degree of the polynomial to construct

• algorithm – string: algorithm to use, or None. Currently available options are:

  - 'adleman-lenstra': a variant of the Adleman–Lenstra algorithm as implemented in PARI.
  - 'conway': look up the Conway polynomial of degree n over the field of p elements in the database; raise a RuntimeError if it is not found.
  - 'ffprimroot': use the pari:ffprimroot function from PARI.
  - 'first_lexicographic': return the lexicographically smallest irreducible polynomial of degree n.
  - 'minimal_weight': return an irreducible polynomial of degree n with minimal number of non-zero coefficients. Only implemented for p = 2.
  - 'primitive': return a polynomial f such that a root of f generates the multiplicative group of the finite field extension defined by f. This uses the Conway polynomial if possible, otherwise it uses 'ffprimroot'.
  - 'random': try random polynomials until an irreducible one is found.

If algorithm is None, use x − 1 in degree 1. In degree > 1, the Conway polynomial is used if it is found in the database. Otherwise, the algorithm minimal_weight is used if p = 2, and the algorithm 'adleman-lenstra' if p > 2.

OUTPUT:
A monic irreducible polynomial of degree n in self.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: GF(5)['x'].irreducible_element(2)
x^2 + 4*x + 2
sage: GF(5)['x'].irreducible_element(2, algorithm="adleman-lenstra")
x^2 + x + 1
sage: GF(5)['x'].irreducible_element(2, algorithm="primitive")
x^2 + 4*x + 2
sage: GF(5)['x'].irreducible_element(32, algorithm="first_lexicographic")
x^32 + 2
sage: GF(5)['x'].irreducible_element(32, algorithm="conway")

Traceback (most recent call last):
...
RuntimeError: requested Conway polynomial not in database.
sage: GF(5)['x'].irreducible_element(32, algorithm="primitive")
x^32 + ...

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> GF(Integer(5))['x'].irreducible_element(Integer(2))
x^2 + 4*x + 2
>>> GF(Integer(5))['x'].irreducible_element(Integer(2), algorithm="adleman-lenstra")
x^2 + x + 1
>>> GF(Integer(5))['x'].irreducible_element(Integer(2), algorithm="primitive")
x^2 + 4*x + 2
>>> GF(Integer(5))['x'].irreducible_element(Integer(32), algorithm="first_lexicographic")
x^32 + 2
>>> GF(Integer(5))['x'].irreducible_element(Integer(32), algorithm="conway")
Traceback (most recent call last):
...RuntimeError: requested Conway polynomial not in database.
>>> GF(Integer(5))['x'].irreducible_element(Integer(32), algorithm="primitive")
x^32 + ...

In characteristic 2:

sage: GF(2)['x'].irreducible_element(33)  # needs sage.rings.finite_rings
x^33 + x^13 + x^12 + x^11 + x^10 + x^8 + x^6 + x^3 + 1
sage: GF(2)['x'].irreducible_element(33, algorithm="minimal_weight")  # needs sage.rings.finite_rings
x^33 + x^10 + 1

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> GF(Integer(2))['x'].irreducible_element(Integer(33))
x^33 + x^13 + x^12 + x^11 + x^10 + x^8 + x^6 + x^3 + 1
>>> GF(Integer(2))['x'].irreducible_element(Integer(33), algorithm="minimal_weight")  # needs sage.rings.finite_rings
x^33 + x^10 + 1

In degree 1:

sage: GF(97)['x'].irreducible_element(1)  # needs sage.rings.finite_rings
x + 96
sage: GF(97)['x'].irreducible_element(1, algorithm="conway")  # needs sage.rings.finite_rings
x + 92
sage: GF(97)['x'].irreducible_element(1, algorithm="adleman-lenstra")  # needs sage.rings.finite_rings
x

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> GF(Integer(97))['x'].irreducible_element(Integer(1))
AUTHORS:

- Peter Bruin (June 2013)
- Jeroen Demeyer (September 2014): add “ffprimroot” algorithm, see Issue #8373.

class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_field_capped_relative

Bases: PolynomialRing_dense_padic_field_generic

class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_field_generic

Bases: PolynomialRing_cdvf

A class for dense polynomial ring over p-adic fields
class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_capped_absolute

Bases: PolynomialRing_dense_padic_ring_generic

class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_capped_relative

Bases: PolynomialRing_dense_padic_ring_generic

class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_fixed_mod

Bases: PolynomialRing_dense_padic_ring_generic

2.1. Univariate Polynomials and Polynomial Rings
class sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_padic_ring_generic(base_ring, name=None, implementation=None, element_class=None, category=None)

Bases: PolynomialRing_cdvr

A class for dense polynomial ring over p-adic rings

class sage.rings.polynomial.polynomial_ring.PolynomialRing_field(base_ring, name='x', sparse=False, implementation=None, element_class=None, category=None)

Bases: PolynomialRing_integral_domain, PrincipalIdealDomain

divided_difference(points, full_table=False)

Return the Newton divided-difference coefficients of the Lagrange interpolation polynomial through points.

INPUT:

• points - a list of pairs \((x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)\) of elements of the base ring of self, where \(x_i - x_j\) is invertible for \(i \neq j\). This method converts the \(x_i\) and \(y_i\) into the base ring of self.

• full_table - boolean (default: False): If True, return the full divided-difference table. If False, only return entries along the main diagonal; these are the Newton divided-difference coefficients \(F_{i,i}\).

OUTPUT:

The Newton divided-difference coefficients of the \(n\)-th Lagrange interpolation polynomial \(P_n(x)\) that passes through the points in points (see lagrange_polynomial()). These are the coefficients \(F_{0,0}, F_{1,1}, \ldots, F_{n,n}\) in the base ring of self such that

\[
P_n(x) = \sum_{i=0}^{n} F_{i,i} \prod_{j=0}^{i-1} (x - x_j)
\]

EXAMPLES:

Only return the divided-difference coefficients \(F_{i,i}\). This example is taken from Example 1, page 121 of [BF2005]:

```sage
needs sage.rings.real_mpfr
sage: points = [(1.0, 0.7651977), (1.3, 0.6200860), (1.6, 0.4554022),
 (1.9, 0.2818186), (2.2, 0.1103623)]
sage: R = PolynomialRing(RR, "x")
(continues on next page)```
Polynomials, Release 10.4

(continued from previous page)

\[
\begin{align*}
\texttt{sage: } & \quad \texttt{R.divided_difference(points)} \\
& \quad \begin{bmatrix}
0.765197700000000, \\
-0.483705666666666, \\
-0.108733888888889, \\
0.0658783950617283, \\
0.00182510288066044
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\texttt{>>> from sage.all import } & \quad \texttt{*} \\
\texttt{>>> # needs sage.rings.real_mpfr} \\
\texttt{>>> points = [(RealNumber('1.0'), RealNumber('0.7651977'))}, (RealNumber('1.6'), RealNumber('0.4554022')), \\
\texttt{...} & \quad \begin{bmatrix}
\texttt{(RealNumber('1.1'), RealNumber('0.2818186'))}, (RealNumber('2.2') \\
\texttt{\rightarrow'), RealNumber('0.1103623'))]} \\
\texttt{>>> R = PolynomialRing(RR, "x")} \\
\texttt{>>> R.divided_difference(points)} \\
& \quad \begin{bmatrix}
0.765197700000000, \\
-0.483705666666666, \\
-0.108733888888889, \\
0.0658783950617283, \\
0.00182510288066044
\end{bmatrix}
\end{align*}
\]

Now return the full divided-difference table:

\[
\begin{align*}
\texttt{sage: } & \quad \texttt{# needs sage.rings.real_mpfr} \\
\texttt{sage: } & \quad \texttt{points = [(1.0, 0.7651977), (1.3, 0.6200860), (1.6, 0.4554022),} \\
\texttt{...} & \quad \begin{bmatrix}
\texttt{(1.9, 0.2818186), (2.2, 0.1103623)]} \\
\texttt{sage: } & \quad \texttt{R = PolynomialRing(RR, "x")} \\
\texttt{sage: } & \quad \texttt{R.divided_difference(points, full_table=True)} \\
& \quad \begin{bmatrix}
[0.765197700000000, \\
0.620086000000000, -0.483705666666666, \\
0.455402200000000, -0.548946000000000, -0.108733888888889, \\
0.281818600000000, -0.578612000000000, -0.049443333333339, 0.0658783950617283, \\
0.110362300000000, -0.571520999999999, 0.011813333333349, \\
0.0680685185185209, 0.00182510288066044]
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\texttt{>>> from sage.all import } & \quad \texttt{*} \\
\texttt{>>> # needs sage.rings.real_mpfr} \\
\texttt{>>> points = [(RealNumber('1.0'), RealNumber('0.7651977'))}, (RealNumber('1.6'), RealNumber('0.4554022')), \\
\texttt{...} & \quad \begin{bmatrix}
\texttt{(RealNumber('1.1'), RealNumber('0.2818186'))}, (RealNumber('2.2') \\
\texttt{\rightarrow'), RealNumber('0.1103623'))]} \\
\texttt{>>> R = PolynomialRing(RR, "x")} \\
\texttt{>>> R.divided_difference(points, full_table=True)} \\
& \quad \begin{bmatrix}
[0.765197700000000, \\
0.620086000000000, -0.483705666666666, \\
0.455402200000000, -0.548946000000000, -0.108733888888889, \\
0.281818600000000, -0.578612000000000, -0.049443333333339, 0.0658783950617283, \\
0.110362300000000, -0.571520999999999, 0.011813333333349, \\
0.0680685185185209, 0.00182510288066044]
\end{bmatrix}
\end{align*}
\]

The following example is taken from Example 4.12, page 225 of [MF1999]:

\[
\begin{align*}
\texttt{sage: } & \quad \texttt{points = [(1, -3), (2, 0), (3, 15), (4, 48), (5, 105), (6, 192)]} \\
\texttt{sage: } & \quad \texttt{R = PolynomialRing(QQ, "x")}
\end{align*}
\]

(continues on next page)
\begin{itemize}
 \item points -- a list of pairs \((x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)\) of elements of the base ring of \texttt{self}, where \(x_i - x_j\) is invertible for \(i \neq j\). This method converts the \(x_i\) and \(y_i\) into the base ring of \texttt{self}.
 \item algorithm -- (default: 'divided_difference'): one of the following:
 \begin{itemize}
 \item 'divided_difference': use the method of divided differences.
 \item 'neville': adapt Neville's method as described on page 144 of [BF2005] to recursively generate the Lagrange interpolation polynomial. Neville's method generates a table of approximating polynomials, where the last row of that table contains the \(n\)-th Lagrange interpolation polynomial. The adaptation implemented by this method is to only generate the last row of this table, instead of the full table itself. Generating the full table can be memory inefficient.
 \end{itemize}
\end{itemize}
• `previous_row` - (default: None): This option is only relevant if used with `algorithm='neville'`. If provided, this should be the last row of the table resulting from a previous use of Neville's method. If such a row is passed, then `points` should consist of both previous and new interpolating points. Neville's method will then use that last row and the interpolating points to generate a new row containing an interpolation polynomial for the new points.

OUTPUT:

The Lagrange interpolation polynomial through the points \((x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)\). This is the unique polynomial \(P_n\) of degree at most \(n\) in \(self\) satisfying \(P_n(x_i) = y_i\) for \(0 \leq i \leq n\).

EXAMPLES:

By default, we use the method of divided differences:

```python
sage: R = PolynomialRing(QQ, 'x')
sage: f = R.lagrange_polynomial([(0,1), (2,2), (3,-2), (-4,9)]); f
-23/84*x^3 - 11/84*x^2 + 13/7*x + 1
sage: f(0)
1
sage: f(2)
2
sage: f(3)
-2
sage: f(-4)
9
```

```python
sage: # needs sage.rings.finite_rings
sage: R = PolynomialRing(GF(2**3, a), 'x')
sage: a = R.base_ring().gen()
sage: f = R.lagrange_polynomial([(a^2+a, a), (a, 1), (a^2, a^2+a+1)]); f
a^2*x^2 + a^2*x + a^2
sage: f(a^2 + a)
a
sage: f(a)
1
sage: f(a^2)
a^2 + a + 1
```

```python
>>> from sage.all import *

>>> R = PolynomialRing(QQ, 'x')

>>> f = R.lagrange_polynomial([(Integer(0),Integer(1)), (Integer(2), Integer(2)), (Integer(3),-Integer(2)), (-Integer(4),Integer(9))]); f
-23/84*x^3 - 11/84*x^2 + 13/7*x + 1

>>> f(Integer(0))
1

>>> f(Integer(2))
2

>>> f(Integer(3))
-2

>>> f(-Integer(4))
9
```

```python
>>> # needs sage.rings.finite_rings

>>> R = PolynomialRing(GF(Integer(2)**Integer(3), a), 'x')

>>> a = R.base_ring().gen()

>>> f = R.lagrange_polynomial([(a**Integer(2)+a, a), (a, Integer(1)), (a**Integer(2)+a+Integer(1))]); f
a^2*x^2 + a^2*x + a^2
```

(continues on next page)
Now use a memory efficient version of Neville's method:

```python
sage: R = PolynomialRing(QQ, 'x')
sage: R.lagrange_polynomial([[0,1], [2,2], [3,-2], [-4,9]],
   ...: algorithm="neville")
[9,
 -1/7*x + 19/7,
 -17/42*x^2 - 83/42*x + 53/7,
 -23/84*x^3 - 11/84*x^2 + 13/7*x + 1]
```

```python
sage: # needs sage.rings.finite_rings
sage: R = PolynomialRing(GF(2**3, 'a'), 'x')
sage: a = R.base_ring().gen()
sage: R.lagrange_polynomial([[a^2+a, a], [a, 1], [a^2, a^2+a+1]],
   ...: algorithm="neville")
[a^2 + a + 1, x + a + 1, a^2*x^2 + a^2*x + a^2]
```

Repeated use of Neville's method to get better Lagrange interpolation polynomials:

```python
sage: R = PolynomialRing(QQ, 'x')
sage: p = R.lagrange_polynomial([[0,1], [2,2]], algorithm="neville")
sage: R.lagrange_polynomial([[0,1], [2,2], [3,-2], [-4,9]],
   ...: algorithm="neville", previous_row=p)[-1]
-23/84*x^3 - 11/84*x^2 + 13/7*x + 1
```

```python
sage: # needs sage.rings.finite_rings
sage: R = PolynomialRing(GF(2**3, 'a'), 'x')
sage: a = R.base_ring().gen()
sage: p = R.lagrange_polynomial([[a^2+a, a], [a, 1]], algorithm="neville")
sage: R.lagrange_polynomial([[a^2+a, a], [a, 1], [a^2, a^2+a+1]],
   ...: algorithm="neville", previous_row=p)[-1]
a^2*x^2 + a^2*x + a^2
```
```python
from sage.all import *
R = PolynomialRing(QQ, 'x')
p = R.lagrange_polynomial([(0,1), (2,2)], algorithm='neville')
R.lagrange_polynomial([(0,1), (2,2), (-3,-2), (4,9)], algorithm='neville', previous_row=p)[-1]
-23/84*x^3 - 11/84*x^2 + 13/7*x + 1
# needs sage.rings.finite_rings
R = PolynomialRing(GF(2^3, 'a'), 'x')
a = R.base_ring().gen()
p = R.lagrange_polynomial([(a^2+a, a), (a, 1)], algorithm='neville')
R.lagrange_polynomial([(a^2+a, a), (a, 1), (a^2, a^2+a+1)], algorithm='neville', previous_row=p)[-1]
a^2*x^2 + a^2*x + a^2

class sage.rings.polynomial.polynomial_ring.PolynomialRing_general(base_ring, name=None, sparse=False, implementation=None, element_class=None, category=None):
    Bases: Ring

    Univariate polynomial ring over a ring.

    base_extend(R)
    Return the base extension of this polynomial ring to R.

    EXAMPLES:

    sage: # needs sage.rings.real_mpfr
    sage: R.<x> = RR[]
    sage: R
    Univariate Polynomial Ring in x over Real Field with 53 bits of precision
    sage: R.base_extend(CC)
    Univariate Polynomial Ring in x over Complex Field with 53 bits of precision
    sage: R.base_extend(QQ)
    Traceback (most recent call last):
    ...TypeError: no such base extension
    sage: R.change_ring(QQ)
    Univariate Polynomial Ring in x over Rational Field
```

(continues on next page)
Type Error: no such base extension

```python
>>> R.change_ring(QQ)
Univariate Polynomial Ring in x over Rational Field
```

change_ring(R)

Return the polynomial ring in the same variable as `self` over `R`.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings sage.rings.real_interval_field
sage: R.<ZZZ> = RealIntervalField(); R
Univariate Polynomial Ring in ZZZ over Real Interval Field with 53 bits of precision
sage: R.change_ring(GF(19^2, 'b'))
Univariate Polynomial Ring in ZZZ over Finite Field in b of size 19^2
```

```python
>>> from sage.all import *
```

```python
>>> R = RealIntervalField()[ZZZ]; (ZZZ,) = R._first_ngens(1); R
Univariate Polynomial Ring in ZZZ over Real Interval Field with 53 bits of precision
>>> R.change_ring(GF(Integer(19)**Integer(2), 'b'))
Univariate Polynomial Ring in ZZZ over Finite Field in b of size 19^2
```

change_var(var)

Return the polynomial ring in variable `var` over the same base ring.

EXAMPLES:

```python
sage: R.<x> = ZZ[]; R
Univariate Polynomial Ring in x over Integer Ring
sage: R.change_var('y')
Univariate Polynomial Ring in y over Integer Ring
```

```python
>>> from sage.all import *
```

```python
>>> R = ZZ['x']; (x,) = R._first_ngens(1); R
Univariate Polynomial Ring in x over Integer Ring
>>> R.change_var('y')
Univariate Polynomial Ring in y over Integer Ring
```

characteristic()

Return the characteristic of this polynomial ring, which is the same as that of its base ring.

EXAMPLES:

```python
sage: # needs sage.rings.real_interval_field
sage: R.<ZZZ> = RealIntervalField(); R
Univariate Polynomial Ring in ZZZ over Real Interval Field with 53 bits of precision
sage: R.characteristic()
0
sage: S = R.change_ring(GF(19^2, 'b')); S  # needs sage.rings.finite_rings
Univariate Polynomial Ring in ZZZ over Finite Field in b of size 19^2
sage: S.characteristic()  # needs sage.rings.finite_rings
```
Polynomials, Release 10.4

needs sage.rings.finite_rings

>>> from sage.all import *
>>> # needs sage.rings.real_interval_field
>>> R = RealIntervalField(['ZZZ']); (ZZZ,) = R._first_ngens(1); R
Univariate Polynomial Ring in ZZZ over Real Interval Field with 53 bits of
→precision
>>> R.characteristic()
0
>>> S = R.change_ring(GF(Integer(19)**Integer(2), 'b')); S
Univariate Polynomial Ring in ZZZ over Finite Field in b of size 19^2
>>> S.characteristic() "needs sage.rings.finite_rings" 19

completion (p=None, prec=20, extras=None)

Return the completion of self with respect to the irreducible polynomial p.

Currently only implemented for p=self.gen() (the default), i.e. you can only complete \(R[x] \) with respect to \(x \), the result being a ring of power series in \(x \). The prec variable controls the precision used in the power series ring. If prec is \(\infty \), then this returns a LazyPowerSeriesRing.

EXAMPLES:

sage: P.<x> = PolynomialRing(QQ)
sage: P
Univariate Polynomial Ring in x over Rational Field
sage: PP = P.completion(x)
sage: PP
Power Series Ring in x over Rational Field
sage: f = 1 - x
sage: PP(f)
1 - x
sage: 1 / f
-1/(x - 1)

1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11
+ x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + O(x^20)

sage: g = 1 / PP(f); g
1 - x + O(x^20)

sage: # needs sage.combinat
sage: PP = P.completion(x, prec=oo); PP
Lazy Taylor Series Ring in x over Rational Field
sage: g = 1 / PP(f); g
1 + x + x^2 + O(x^3)

1 + x + x^2 + O(x^3)

sage: 1 / g == f
True

>>> from sage.all import *
>>> P = PolynomialRing(QQ, names=('x',)); (x,) = P._first_ngens(1)
>>> P
Univariate Polynomial Ring in x over Rational Field
>>> PP = P.completion(x)
Polynomials, Release 10.4

>>> PP
Power Series Ring in x over Rational Field
>>> f = Integer(1) - x
>>> PP(f)
1 - x
>>> Integer(1) / f
-1/(x - 1)
>>> g = Integer(1) / PP(f); g
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + O(x^20)
>>> Integer(1) / g
1 - x + O(x^20)

needs sage.combinat
>>> PP = P.completion(x, prec=oo); PP
Lazy Taylor Series Ring in x over Rational Field
>>> g = Integer(1) / PP(f); g
1 + x + x^2 + O(x^3)
>>> Integer(1) / g == f
True

construction()
Return the construction functor.

cyclotomic_polynomial(n)
Return the nth cyclotomic polynomial as a polynomial in this polynomial ring. For details of the implementation, see the documentation for sage.rings.polynomial.cyclotomic.
cyclotomic_coeffs().

EXAMPLES:

sage: R = ZZ['x']
sage: R.cyclotomic_polynomial(8)
x^4 + 1
sage: R.cyclotomic_polynomial(12)
x^4 - x^2 + 1

sage: S = PolynomialRing(FiniteField(7), 'x')
sage: S.cyclotomic_polynomial(12)
x^4 + 6*x^2 + 1
sage: S.cyclotomic_polynomial(1)
x + 6

>>> from sage.all import *
>>> R = ZZ['x']
>>> R.cyclotomic_polynomial(Integer(8))
x^4 + 1
>>> R.cyclotomic_polynomial(Integer(12))
x^4 - x^2 + 1

>>> S = PolynomialRing(FiniteField(Integer(7)), 'x')
>>> S.cyclotomic_polynomial(Integer(12))
x^4 + 6*x^2 + 1
>>> S.cyclotomic_polynomial(Integer(1))
x + 6

extend_variables(added_names, order='degrevlex')
Return a multivariate polynomial ring with the same base ring but with \texttt{added_names} as additional variables.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x> = ZZ[]; R
Univariate Polynomial Ring in x over Integer Ring
sage: R.extend_variables('y, z')
Multivariate Polynomial Ring in x, y, z over Integer Ring
sage: R.extend_variables(('y', 'z'))
Multivariate Polynomial Ring in x, y, z over Integer Ring
>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1); R
Univariate Polynomial Ring in x over Integer Ring
>>> R.extend_variables(y, z)
Multivariate Polynomial Ring in x, y, z over Integer Ring
>>> R.extend_variables((y, z))
Multivariate Polynomial Ring in x, y, z over Integer Ring
\end{verbatim}

\textbf{flattening_morphism}()

Return the flattening morphism of this polynomial ring

\textbf{EXAMPLES:}

\begin{verbatim}
sage: QQ['a','b']['x'].flattening_morphism()
Flattening morphism:
 From: Univariate Polynomial Ring in x over
 Multivariate Polynomial Ring in a, b over Rational Field
 To: Multivariate Polynomial Ring in a, b, x over Rational Field
sage: QQ['x'].flattening_morphism()
Identity endomorphism of Univariate Polynomial Ring in x over Rational Field
>>> from sage.all import *
>>> QQ['a','b']['x'].flattening_morphism()
Flattening morphism:
 From: Univariate Polynomial Ring in x over
 Multivariate Polynomial Ring in a, b over Rational Field
 To: Multivariate Polynomial Ring in a, b, x over Rational Field
>>> QQ['x'].flattening_morphism()
Identity endomorphism of Univariate Polynomial Ring in x over Rational Field
\end{verbatim}

\textbf{gen} (\textit{n}=0)

Return the indeterminate generator of this polynomial ring.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<abc> = Integers(8)[]; R
Univariate Polynomial Ring in abc over Ring of integers modulo 8
sage: t = R.gen(); t
abc
sage: t.is_gen()
True
\end{verbatim}
An identical generator is always returned.

```python
sage: t is R.gen()
True
```
is_field\(\text{(proof=True)}\)

Return \(\text{False}\), since polynomial rings are never fields.

EXAMPLES:

```
sage: # needs sage.libsntl
sage: R.<z> = Integers(2)[]; R
Univariate Polynomial Ring in z over Ring of integers modulo 2 (using GF2X)
sage: R.is_field()
False
```

is_integral_domain\(\text{(proof=True)}\)

EXAMPLES:

```
sage: ZZ['x'].is_integral_domain()  
True
sage: Integers(8)['x'].is_integral_domain()  
False
```

is_noetherian()

is_sparse()

Return \(\text{True}\) if elements of this polynomial ring have a sparse representation.

EXAMPLES:

```
sage: R.<z> = Integers(8)[]; R
Univariate Polynomial Ring in z over Ring of integers modulo 8
sage: R.is_sparse()
False
sage: R.<W> = PolynomialRing(QQ, sparse=True); R
Sparse Univariate Polynomial Ring in W over Rational Field
sage: R.is_sparse()
True
```
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> R = Integers(Integer(8))[\'z\']; (z,) = R._first_ngens(1); R
Univariate Polynomial Ring in z over Ring of integers modulo 8
>>> R.is_sparse()
False
>>> R = PolynomialRing(QQ, sparse=True, names=(\'W\',)); (W,) = R._first_ngens(1); R
Sparse Univariate Polynomial Ring in W over Rational Field
>>> R.is_sparse()
True
```

is_unique_factorization_domain *(proof=True)*

EXAMPLES:

```
sage: ZZ[\'x\'].is_unique_factorization_domain()
True
sage: Integers(8)[\'x\'].is_unique_factorization_domain()
False
```

karatsuba_threshold()
Return the Karatsuba threshold used for this ring by the method _mul_karatsuba() to fall back to the schoolbook algorithm.

EXAMPLES:

```
sage: K = QQ[\'x\']
sage: K.karatsuba_threshold()
8
sage: K = QQ[\'x\'][\'y\']
sage: K.karatsuba_threshold()
0
```

krull_dimension()
Return the Krull dimension of this polynomial ring, which is one more than the Krull dimension of the base ring.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: R.krull_dimension()
1
```

(continues on next page)
sage: # needs sage.rings.finite_rings
sage: R.<z> = GF(9, 'a')[]; R
Univariate Polynomial Ring in z over Finite Field in a of size 3^2
sage: R.krull_dimension()
1
sage: S.<t> = R[]
sage: S.krull_dimension()
2
sage: for n in range(10):
 ...: S = PolynomialRing(S, 'w')
 ...: S.krull_dimension()
12

>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> R.krull_dimension()
1

>>> # needs sage.rings.finite_rings
>>> R = GF(Integer(9), 'a')['z']; (z,) = R._first_ngens(1); R
Univariate Polynomial Ring in z over Finite Field in a of size 3^2
>>> R.krull_dimension()
1
>>> S = R['t']; (t,) = S._first_ngens(1)
>>> S.krull_dimension()
2
>>> for n in range(Integer(10)):
 ...: S = PolynomialRing(S, 'w')
 ...: S.krull_dimension()
12

monics (of_degree=None, max_degree=None)
Return an iterator over the monic polynomials of specified degree.

INPUT: Pass exactly one of:

- max_degree – an int; the iterator will generate all monic polynomials which have degree less than or equal to max_degree
- of_degree – an int; the iterator will generate all monic polynomials which have degree of_degree

OUTPUT: an iterator

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: P = PolynomialRing(GF(4, 'a'), 'y')
sage: for p in P.monic(of_degree=2): print(p)
y^2
y^2 + a
y^2 + a + 1
y^2 + 1
y^2 + a*y
y^2 + a*y + a
y^2 + a*y + a + 1
y^2 + a*y + 1
y^2 + (a + 1)*y
y^2 + (a + 1)*y + a

(continues on next page)
(continued from previous page)

\begin{align*}
y^2 + (a + 1)y + a + 1 \\
y^2 + (a + 1)y + 1 \\
y^2 + y \\
y^2 + y + a \\
y^2 + y + a + 1 \\
y^2 + y + 1 \\
sage: \text{for } p \text{ in } P\text{.monics(max_degree=1)}: \text{print}(p) \\
1 \\
y \\
y + a \\
y + a + 1 \\
y + 1 \\
sage: \text{for } p \text{ in } P\text{.monics(max_degree=1, of_degree=3)}: \text{print}(p) \\
\text{Traceback (most recent call last):} \\
\text{...} \\
\text{ValueError: you should pass exactly one of of_degree and max_degree}
\end{align*}

\begin{verbatim}
>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> P = PolynomialRing(GF(Integer(4), a), 'y')
>>> for p in P.monics(of_degree=Integer(2)):
... print(p)

{y^2, y^2 + a, y^2 + a + 1, y^2 + 1, y^2 + a*y, y^2 + a*y + a, y^2 + a*y + a + 1, y^2 + a*y + 1, y^2 + (a + 1)*y, y^2 + (a + 1)*y + a, y^2 + (a + 1)*y + a + 1, y^2 + (a + 1)*y + 1, y^2 + y, y^2 + y + a, y^2 + y + a + 1, y^2 + y + 1}
>>> for p in P.monics(max_degree=Integer(1)):
... print(p)

{1, y, y + a, y + a + 1, y + 1}
>>> for p in P.monics(max_degree=Integer(1), of_degree=Integer(3)):
... print(p)

\text{Traceback (most recent call last):} \\
\text{...} \\
\text{ValueError: you should pass exactly one of of_degree and max_degree}
\end{verbatim}

AUTHORS:
- Joel B. Mohler

\texttt{monomial}(\textit{exponent})

Return the monomial with the \textit{exponent}.

INPUT:
- \texttt{exponent} – nonnegative integer
EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: R.monomial(5)
x^5
sage: e = (10,)
sage: R.monomial(*e)
x^10
sage: m = R.monomial(100)
sage: R.monomial(m.degree()) == m
True
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>> R.monomial(Integer(5))
x^5
>>> e = (Integer(10),)
>>> R.monomial(*e)
x^10
>>> m = R.monomial(Integer(100))
>>> R.monomial(m.degree()) == m
True
```

`ngens()`

Return the number of generators of this polynomial ring, which is 1 since it is a univariate polynomial ring.

EXAMPLES:

```python
sage: R.<z> = Integers(8)[]; R
Univariate Polynomial Ring in z over Ring of integers modulo 8
sage: R.ngens()
1
```

```python
>>> from sage.all import *
>>> R = Integers(Integer(8))[z]; (z,) = R._first_ngens(1); R
Univariate Polynomial Ring in z over Ring of integers modulo 8
>>> R.ngens()
1
```

`parameter()`

Return the generator of this polynomial ring.

This is the same as `self.gen()`.

`polynomials(of_degree=None, max_degree=None)`

Return an iterator over the polynomials of specified degree.

INPUT: Pass exactly one of:

- `max_degree` -- an int; the iterator will generate all polynomials which have degree less than or equal to `max_degree`
- `of_degree` -- an int; the iterator will generate all polynomials which have degree `of_degree`

OUTPUT: an iterator

EXAMPLES:
```python
sage: P = PolynomialRing(GF(3), 'y')
sage: for p in P.polynomials(of_degree=2): print(p)
y^2
y^2 + 1
y^2 + 2
y^2 + y
y^2 + y + 1
y^2 + y + 2
y^2 + 2*y
y^2 + 2*y + 1
y^2 + 2*y + 2
2*y^2
2*y^2 + 1
2*y^2 + 2
2*y^2 + y
2*y^2 + y + 1
2*y^2 + y + 2
2*y^2 + 2*y
2*y^2 + 2*y + 1
2*y^2 + 2*y + 2
sage: for p in P.polynomials(max_degree=1): print(p)
0
1
2
y
y + 1
y + 2
2*y
2*y + 1
2*y + 2
sage: for p in P.polynomials(max_degree=1, of_degree=3): print(p)
Traceback (most recent call last):
...
ValueError: you should pass exactly one of of_degree and max_degree
```

```python
>>> from sage.all import *
>>> P = PolynomialRing(GF(Integer(3)), 'y')
>>> for p in P.polynomials(of_degree=Integer(2)): print(p)
y^2
y^2 + 1
y^2 + 2
y^2 + y
y^2 + y + 1
y^2 + y + 2
y^2 + 2*y
y^2 + 2*y + 1
y^2 + 2*y + 2
2*y^2
2*y^2 + 1
2*y^2 + 2
2*y^2 + y
2*y^2 + y + 1
2*y^2 + y + 2
2*y^2 + 2*y
2*y^2 + 2*y + 1
2*y^2 + 2*y + 2
>>> for p in P.polynomials(max_degree=Integer(1)): print(p)
(continues on next page)
```
AUTHORS:

- Joel B. Mohler

random_element\(\text{degree}=(-1, 2), \text{monic}=False, *\text{args}, **\text{kwd}\)

Return a random polynomial of given degree (bounds).

INPUT:

- degree – (default: \((-1, 2)\)) integer for fixing the degree or a tuple of minimum and maximum degrees
- monic – boolean (optional); indicate whether the sampled polynomial should be monic
- *args, **kwd – additional keyword parameters passed on to the random_element method for the base ring

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: f = R.random_element(10, x=5, y=10)
sage: f.degree()
10
sage: f.parent() is R
True
sage: all(a in range(5, 10) for a in f.coefficients())
True
sage: R.random_element(6).degree()
6
```

```python
>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> f = R.random_element(Integer(10), x=Integer(5), y=Integer(10))
>>> f.degree()
10
>>> f.parent() is R
True
>>> all(a in range(Integer(5), Integer(10)) for a in f.coefficients())
True
>>> R.random_element(Integer(6)).degree()
6
```

If a tuple of two integers is given for the degree argument, a polynomial is chosen among all polynomials with degree between them. If the base ring can be sampled uniformly, then this method also samples
uniformly:

```python
sage: R.random_element(degree=(0, 4)).degree() in range(0, 5)
True
sage: found = [False]*5
sage: while not all(found):
....:     found[R.random_element(degree=(0, 4)).degree()] = True
```

True

```python
>>> from sage.all import *
>>> R.random_element(degree=(Integer(0), Integer(4))).degree() in range(Integer(0), Integer(5))
True
>>> found = [False]*Integer(5)
>>> while not all(found):
...     found[R.random_element(degree=(Integer(0), Integer(4))).degree()] = True
```

Notethat the zeropolynomial has degree -1, so if you want to consider it set the minimum degree to -1:

```python
sage: while R.random_element(degree=(-1,2), x=-1, y=1) != R.zero():
....:     pass
```

```python
>>> from sage.all import *
>>> while R.random_element(degree=(-Integer(1),Integer(2)), x=-Integer(1), y=Integer(1)) != R.zero():
...     pass
```

Monic polynomials are chosen among all monic polynomials with degree between the given degree argument:

```python
sage: all(R.random_element(degree=(-1, 1), monic=True).is_monic() for _ in range(10**3))
True
sage: all(R.random_element(degree=(0, 1), monic=True).is_monic() for _ in range(10**3))
True
```

```python
>>> from sage.all import *
>>> all(R.random_element(degree=(-Integer(1), Integer(1)), monic=True).is_monic() for _ in range(Integer(10)**Integer(3)))
True
>>> all(R.random_element(degree=(Integer(0), Integer(1)), monic=True).is_monic() for _ in range(Integer(10)**Integer(3)))
True
```

set_karatsuba_threshold *(Karatsuba_threshold)*

Changes the default threshold for this ring in the method `_mul_karatsuba()` to fall back to the schoolbook algorithm.

Warning: This method may have a negative performance impact in polynomial arithmetic. So use it at your own risk.

EXAMPLES:
Polynomials, Release 10.4

```python
sage: K = QQ['x']
sage: K.karatsuba_threshold()
8
sage: K.set_karatsuba_threshold(0)
sage: K.karatsuba_threshold()
0
```

```python
>>> from sage.all import *
>>> K = QQ['x']
>>> K.karatsuba_threshold()
8
>>> K.set_karatsuba_threshold(Integer(0))
>>> K.karatsuba_threshold()
0
```

some_elements()

Return a list of polynomials.

This is typically used for running generic tests.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: R.some_elements()
[x, 0, 1, 1/2, x^2 + 2*x + 1, x^3, x^2 - 1, x^2 + 1, 2*x^2 + 2]
```

```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> R.some_elements()
[x, 0, 1, 1/2, x^2 + 2*x + 1, x^3, x^2 - 1, x^2 + 1, 2*x^2 + 2]
```

variable_names_recursive(depth=+Infinity)

Return the list of variable names of this ring and its base rings, as if it were a single multi-variate polynomial.

INPUT:

- depth – an integer or Infinity.

OUTPUT:

A tuple of strings.

EXAMPLES:

```python
sage: R = QQ['x']['y']['z']
sage: R.variable_names_recursive()
('x', 'y', 'z')
sage: R.variable_names_recursive(2)
('y', 'z')
```

```python
>>> from sage.all import *
>>> R = QQ['x']['y']['z']
>>> R.variable_names_recursive()
('x', 'y', 'z')
>>> R.variable_names_recursive(Integer(2))
('y', 'z')
```
class sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain

 (base_ring, name='x', sparse=False, implementation=None, element_class=None, category=None)

Bases: PolynomialRing_commutative, PolynomialRing_singular_repr, IntegralDomain

construction()

 Return the construction functor.

EXAMPLES:

 sage: from sage.rings.polynomial.polynomial_ring import PolynomialRing_integral_domain as PRing
 sage: R = PRing(ZZ, 'x'); R
 Univariate Polynomial Ring in x over Integer Ring
 sage: functor, arg = R.construction(); functor, arg
 (Poly[x], Integer Ring)
 sage: functor.implementation
 None
 sage: # needs sage.libsntl
 sage: R = PRing(ZZ, 'x', implementation='NTL'); R
 Univariate Polynomial Ring in x over Integer Ring (using NTL)
 sage: functor, arg = R.construction(); functor, arg
 (Poly[x], Integer Ring)
 sage: functor.implementation
 'NTL'

weil_polynomials(d, q, sign=1, lead=1)

 Return all integer polynomials whose complex roots all have a specified absolute value.
Such polynomials f satisfy a functional equation

$$T^d f(q/T) = sq^{d/2} f(T)$$

where d is the degree of f, s is a sign and $q^{1/2}$ is the absolute value of the roots of f.

INPUT:

- d – integer, the degree of the polynomials
- q – integer, the square of the complex absolute value of the roots
- $sign$ – integer (default 1), the sign s of the functional equation
- $lead$ – integer, list of integers or list of pairs of integers (default 1), constraints on the leading few coefficients of the generated polynomials. If pairs (a, b) of integers are given, they are treated as a constraint of the form $\equiv a \pmod{b}$; the moduli must be in decreasing order by divisibility, and the modulus of the leading coefficient must be 0.

See also:

More documentation and additional options are available using the iterator `sage.rings.polynomial.weil.weil_polynomials.WeilPolynomials` directly. In addition, polynomials have a method `is_weil_polynomial()` to test whether or not the given polynomial is a Weil polynomial.

EXAMPLES:

```python
sage: # needs sage.libs.flint
sage: R.<T> = ZZ[]
sage: L = R.weil_polynomials(4, 2)
sage: len(L)
35
sage: L[9]
T^4 + T^3 + 2*T^2 + 2*T + 4
sage: all(p.is_weil_polynomial() for p in L)
True
```

Setting multiple leading coefficients:

```python
sage: R.<T> = QQ[]
```

```python
sage: l = R.weil_polynomials(4, 2, lead=((1,0), (2,4), (1,2))); l
[T^4 + 2*T^3 + 5*T^2 + 4*T + 4,
 T^4 + 2*T^3 + 3*T^2 + 4*T + 4,
 T^4 - 2*T^3 + 5*T^2 - 4*T + 4,
 T^4 - 2*T^3 + 3*T^2 - 4*T + 4]
```
We do not require Weil polynomials to be monic. This example generates Weil polynomials associated to K3 surfaces over \mathbb{F}_2 of Picard number at least 12:

```python
>>> from sage.all import *
>>> R = QQ['T']; (T,) = R._first_ngens(1)
>>> l = R.weil_polynomials(Integer(4), Integer(2), lead=((Integer(1), Integer(0)), (Integer(2),Integer(4)), (Integer(1),Integer(2)))); l
# needs sage.libs.flint
[T^4 + 2*T^3 + 5*T^2 + 4*T + 4,
 T^4 + 2*T^3 + 3*T^2 + 4*T + 4,
 T^4 - 2*T^3 + 5*T^2 - 4*T + 4,
 T^4 - 2*T^3 + 3*T^2 - 4*T + 4]
```

This polynomial ring is not univariate.

```python
sage: is_PolynomialRing(ZZ['x,y,z'])
False
sage: is_MPolynomialRing(ZZ['x,y,z'])
True
```
Univariate means not only in one variable, but is a specific data type. There is a multivariate (sparse) polynomial ring data type, which supports a single variable as a special case.

```
sage: # needs sage.libs.singular
sage: R.<w> = PolynomialRing(ZZ, implementation="singular"); R
Multivariate Polynomial Ring in w over Integer Ring
sage: is_PolynomialRing(R)
False
sage: type(R)
<class sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular>
```

```
sage: # needs sage.libs.singular
sage: R = PolynomialRing(ZZ, implementation="singular", names=('w',)); (w,) = R._first_ngens(1); R
Multivariate Polynomial Ring in w over Integer Ring
sage: is_PolynomialRing(R)
False
sage: type(R)
<class sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular>
```

```
2.1. Univariate Polynomials and Polynomial Rings

sage.rings.polynomial.polynomial_ring.polygen(ring_or_element, name='x')
Return a polynomial indeterminate.

INPUT:

- polygen(base_ring, name="x")
- polygen(ring_element, name="x")

If the first input is a ring, return a polynomial generator over that ring. If it is a ring element, return a polynomial generator over the parent of the element.

EXAMPLES:

```
sage: z = polygen(QQ, 'z')
sage: z^3 + z +1
z^3 + z + 1
sage: parent(z)
Univariate Polynomial Ring in z over Rational Field
```
>>> from sage.all import *
>>> z = polygen(QQ, 'z')
>>> z**Integer(3) + z + Integer(1)
z^3 + z + 1
>>> parent(z)
Univariate Polynomial Ring in z over Rational Field

**Note:** If you give a list or comma-separated string to `polygen()`, you'll get a tuple of indeterminates, exactly as if you called `polygens()`.

```python
sage.rings.polynomial.polynomial_ring.polygens(base_ring, names='x', *args)
```

Return indeterminates over the given base ring with the given names.

**EXAMPLES:**

```python
sage: x, y, z = polygens(QQ, 'x, y, z')
sage: (x*y+z)^2
x^2 + 2*x*y + y^2 + 2*x*z + 2*y*z + z^2
sage: parent(x)
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: t = polygens(QQ, ['x', 'yz', 'abc'])
sage: t
(x, yz, abc)
```

```python
>>> from sage.all import *
>>> polygens(QQ, x, 4)
(x0, x1, x2, x3)
```

The number of generators can be passed as a third argument:

```python
sage: polygens(QQ, 'x', 4)
(x0, x1, x2, x3)
```

2.1.2 Ring homomorphisms from a polynomial ring to another ring

This module currently implements the canonical ring homomorphism from $A[x]$ to $B[x]$ induced by a ring homomorphism from $A$ to $B$.

**Todo:** Implement homomorphisms from $A[x]$ to an arbitrary ring $R$, given by a ring homomorphism from $A$ to $R$ and the image of $x$ in $R$.

**AUTHORS:**
Peter Bruin (March 2014): initial version

class  sage.rings.polynomial.polynomial_ring_homomorphism.PolynomialRingHomomorphism_from_base
Bases:  RingHomomorphism_from_base

The canonical ring homomorphism from \( R[x] \) to \( S[x] \) induced by a ring homomorphism from \( R \) to \( S \).

EXAMPLES:

```
sage: QQ['x'].coerce_map_from(ZZ['x'])
Ring morphism:
 From: Univariate Polynomial Ring in x over Integer Ring
 To: Univariate Polynomial Ring in x over Rational Field
 Defn: Induced from base ring by
 Natural morphism:
 From: Integer Ring
 To: Rational Field

>>> from sage.all import *

>>> QQ['x'].coerce_map_from(ZZ['x'])
Ring morphism:
 From: Univariate Polynomial Ring in x over Integer Ring
 To: Univariate Polynomial Ring in x over Rational Field
 Defn: Induced from base ring by
 Natural morphism:
 From: Integer Ring
 To: Rational Field
```

**is_injective()**

Return whether this morphism is injective.

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: S.<x> = QQ[]
sage: R.hom(S).is_injective()
True

>>> from sage.all import *

>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> S = QQ['x']; (x,) = S._first_ngens(1)
>>> R.hom(S).is_injective()
True
```

**is_surjective()**

Return whether this morphism is surjective.

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: S.<x> = Zmod(2)[]
sage: R.hom(S).is_surjective()
True

>>> from sage.all import *

>>> R = ZZ['x']; (x,) = R._first_ngens(1)
```
2.1.3 Univariate polynomial base class

AUTHORS:

- William Stein: first version
- Martin Albrecht: added singular coercion
- Robert Bradshaw: moved Polynomial_generic_dense to Cython
- Miguel Marco: implemented resultant in the case where PARI fails
- Simon King: used a faster way of conversion from the base ring
- Kwankyu Lee (2013-06-02): enhanced quo_rem()
- Julian Rueth (2012-05-25, 2014-05-09): fixed is_squarefree() for imperfect fields, fixed division without remainder over QQbar; added _cache_key for polynomials with unhashable coefficients
- Simon King (2013-10): implemented copying of PolynomialBaseringInjection
- Bruno Grenet (2014-07-13): enhanced quo_rem()
- Kiran Kedlaya (2016-03): added root counting
- Edgar Costa (2017-07): added rational reconstruction
- Kiran Kedlaya (2017-09): added reciprocal transform, trace polynomial
- David Zureick-Brown (2017-09): added is_weil_polynomial
- Sebastian Oehms (2018-10): made roots() and factor() work over more cases of proper integral domains (see Issue #26421)

class sage.rings.polynomial.polynomial_element.ConstantPolynomialSection

Bases: Map

This class is used for conversion from a polynomial ring to its base ring.

Since Issue #9944, it calls the constant_coefficient() method, which can be optimized for a particular polynomial type.

EXAMPLES:

```python
sage: P0.<y_1> = GF(3)[]
sage: P1.<y_2,y_1,y_0> = GF(3)[]
sage: P0(-y_1)
2*y_1
sage: phi = GF(3).convert_map_from(P0); phi
Generic map:
 From: Univariate Polynomial Ring in y_1 over Finite Field of size 3
 To: Finite Field of size 3
sage: type(phi)
<class 'sage.rings.polynomial.polynomial_element.ConstantPolynomialSection'>
sage: phi(P0.one())
1
```
sage: phi(y_1)
Traceback (most recent call last):
... TypeError: y_1 is not a constant polynomial

>>> from sage.all import *

>>> P0 = GF(Integer(3))['y_1']; (y_1,) = P0._first_ngens(1)
>>> P1 = GF(Integer(3))['y_2, y_1, y_0']; (y_2, y_1, y_0,) = P1._first_ngens(3)

>>> P0(-y_1)
2*y_1

>>> phi = GF(Integer(3)).convert_map_from(P0); phi
Generic map:
  From: Univariate Polynomial Ring in y_1 over Finite Field of size 3
  To:   Finite Field of size 3

>>> type(phi)
<class sage.rings.polynomial.polynomial_element.ConstantPolynomialSection'>

>>> phi(P0.one())
1

>>> phi(y_1)
Traceback (most recent call last):
... TypeError: y_1 is not a constant polynomial

class sage.rings.polynomial.polynomial_element.Polynomial

Bases: CommutativePolynomial

A polynomial.

EXAMPLES:

sage: R.<y> = QQ['y']
sage: S.<x> = R['x']
sage: S
Univariate Polynomial Ring in x over Univariate Polynomial Ring in y
  over Rational Field
sage: f = x*y; f
y*x

sage: type(f)
<class 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>

sage: p = (y+1)^10; p(1)
1024

>>> from sage.all import *

>>> R = QQ['y']; (y,) = R._first_ngens(1)

>>> S = R['x']; (x,) = S._first_ngens(1)

>>> S
Univariate Polynomial Ring in x over Univariate Polynomial Ring in y
  over Rational Field

>>> f = x*y; f
y*x

>>> type(f)
<class 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>

>>> p = (y=Integer(1))**Integer(10); p(Integer(1))
1024

_add_(right)
Add two polynomials.

**EXAMPLES:**

```
sage: R = ZZ['x']
sage: p = R([1,2,3,4])
sage: q = R([4,-3,2,-1])
sage: p + q # indirect doctest
3*x^3 + 5*x^2 - x + 5
```

```python
>>> from sage.all import *
>>> R = ZZ['x']
>>> p = R([Integer(1),Integer(2),Integer(3),Integer(4)])
>>> q = R([Integer(4),-Integer(3),Integer(2),-Integer(1)])
>>> p + q # indirect doctest
3*x^3 + 5*x^2 - x + 5
```

**_sub_(other)**

Default implementation of subtraction using addition and negation.

**_lmul_(left)**

Multiply self on the left by a scalar.

**EXAMPLES:**

```
sage: R.<x> = ZZ[]
sage: f = (x^3 + x + 5)
sage: f._lmul_(7)
7*x^3 + 7*x + 35
```

```python
>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> f = (x**Integer(3) + x + Integer(5))
>>> f._lmul_(Integer(7))
7*x^3 + 7*x + 35
```

**_rmul_(right)**

Multiply self on the right by a scalar.

**EXAMPLES:**

```
sage: R.<x> = ZZ[]
sage: f = (x^3 + x + 5)
sage: f._rmul_(7)
7*x^3 + 7*x + 35
```

```python
>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> f = (x**Integer(3) + x + Integer(5))
>>> f._rmul_(Integer(7))
7*x^3 + 7*x + 35
```
Polynomials, Release 10.4

(continued from previous page)

\[ 7x^3 + 7x + 35 \]

>>> f*Integer(7)
\[ 7x^3 + 7x + 35 \]

__(right)\_

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: (x - 4) * (x^2 - 8*x + 16)
x^3 - 12*x^2 + 48*x - 64
sage: C.<t> = PowerSeriesRing(ZZ)
sage: D.<s> = PolynomialRing(C)
sage: z = (1 + O(t)) + t*s^2
sage: z*z
t^2*s^4 + (2*t + O(t^2))*s^2 + 1 + O(t)
```

## More examples from trac 2943, added by Kiran S. Kedlaya 2 Dec 09

```
sage: C.<t> = PowerSeriesRing(Integers())
sage: D.<s> = PolynomialRing(C)
sage: z = 1 + (t + O(t^2))*s + (t^2 + O(t^3))*s^2
sage: z*z
t^4 + O(t^5))*s^4 + (2*t^3 + O(t^4))*s^3 + (3*t^2 + O(t^3))*s^2 + (2*t + O(t^2))*s + 1
```

>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> (x - Integer(4)) * (x**Integer(2) - Integer(8)*x + Integer(16))
x^3 - 12*x^2 + 48*x - 64
>>> C = PowerSeriesRing(ZZ, names=('t',)); (t,) = C._first_ngens(1)
>>> D = PolynomialRing(C, names=('s',)); (s,) = D._first_ngens(1)
>>> z = (Integer(1) + O(t)) + t*s**Integer(2)
>>> z*z
t^2*s^4 + (2*t + O(t^2))*s^2 + 1 + O(t)
```

More examples from trac 2943, added by Kiran S. Kedlaya 2 Dec 09

```
>>> C = PowerSeriesRing(Integers(), names=('t',)); (t,) = C._first_ngens(1)
>>> D = PolynomialRing(C, names=('s',)); (s,) = D._first_ngens(1)
>>> z = Integer(1) + (t + O(t**Integer(2)))*s + (t**Integer(2) + O(t**Integer(3)))*s^2
>>> z*z
t^4 + O(t^5))*s^4 + (2*t^3 + O(t^4))*s^3 + (3*t^2 + O(t^3))*s^2 + (2*t + O(t^2))*s + 1
```

__mul_trunc__ (right, n)_

Return the truncated multiplication of two polynomials up to \(n \).

This is the default implementation that does the multiplication and then truncate! There are custom imple-
mentations in several subclasses:

- on dense polynomial over integers (via FLINT)
- on dense polynomial over \(\mathbb{Z}/n\mathbb{Z} \) (via FLINT)
- on dense rational polynomial (via FLINT)
- on dense polynomial on \(\mathbb{Z}/n\mathbb{Z} \) (via NTL)

EXAMPLES:
sage: R = QQ['x']['y']
sage: y = R.gen()
sage: x = R.base_ring().gen()
sage: p1 = 1 - x*y + 2*y**3
sage: p2 = -1/3 + y**5
sage: p1._mul_trunc_(p2, 5)
-2/3*y^3 + 1/3*x*y - 1/3

Todo: implement a generic truncated Karatsuba and use it here.

adams_operator(*args, **kwds)

Deprecated: Use adams_operator_on_roots() instead. See Issue #36396 for details.

adams_operator_on_roots(n, monic=False)

Return the polynomial whose roots are the \(n \)-th powers of the roots of self.

INPUT:

- \(n \) – an integer
- \(\text{monic} \) – boolean (default False) if set to True, force the output to be monic

EXAMPLES:

sage: # needs sage.libs.pari sage.libs.singular
sage: f = cyclotomic_polynomial(30)
sage: f.adams_operator_on_roots(7) == f
True
sage: f.adams_operator_on_roots(6) == cyclotomic_polynomial(5)**2
True
sage: f.adams_operator_on_roots(10) == cyclotomic_polynomial(3)**4
True
sage: f.adams_operator_on_roots(15) == cyclotomic_polynomial(2)**8
True
sage: f.adams_operator_on_roots(30) == cyclotomic_polynomial(1)**8
True
sage: x = polygen(QQ)
sage: f = x^2 - 2*x + 2
sage: f.adams_operator_on_roots(10) # needs sage.libs.singular
x^2 + 1024

>>> from sage.all import *
>>> # needs sage.libs.pari sage.libs.singular
>>> f = cyclotomic_polynomial(Integer(30))
>>> f.adams_operator_on_roots(Integer(7)) == f
(continues on next page)
True

```python
>>> f.adams_operator_on_roots(Integer(6)) == cyclotomic_polynomial(Integer(5))**Integer(2)
True
>>> f.adams_operator_on_roots(Integer(10)) == cyclotomic_polynomial(Integer(3))**Integer(4)
True
>>> f.adams_operator_on_roots(Integer(15)) == cyclotomic_polynomial(Integer(2))**Integer(8)
True
>>> f.adams_operator_on_roots(Integer(30)) == cyclotomic_polynomial(Integer(1))**Integer(8)
True

>>> x = polygen(QQ)
```n
>>> f = x**Integer(2) - Integer(2)*x + Integer(2)
```n
>>> f.adams_operator_on_roots(Integer(10))  # needs sage.libs.singular
x^2 + 1024

When `self` ismonic, the output will have leading coefficient ±1 depending on the degree, but we can force it to be monic:

```python
sage: R.<a,b,c> = ZZ[]
sage: x = polygen(R)
sage: f = (x - a) * (x - b) * (x - c)
sage: f.adams_operator_on_roots(Integer(3)).factor() # needs sage.libs.singular
(-1) * (x - c^3) * (x - b^3) * (x - a^3)
sage: f.adams_operator_on_roots(Integer(3), monic=True).factor() # needs sage.libs.singular
(x - c^3) * (x - b^3) * (x - a^3)
```

### add_bigoh(prec)

Return the power series of precision at most `prec` got by adding \(O(q^{\text{prec}})\) to `self`, where \(q\) is its variable.

**EXAMPLES:**

```python
sage: R.<x> = ZZ[]
sage: f = 1 + 4*x + x^3
sage: f.add_bigoh(7)
1 + 4*x + x^3 + O(x^7)
sage: f.add_bigoh(2)
1 + 4*x + O(x^2)
sage: f.add_bigoh(2).parent()
Power Series Ring in x over Integer Ring
```
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> f = Integer(1) + Integer(4)*x + x**Integer(3)
>>> f.add_bigoh(Integer(7))
1 + 4*x + x^3 + O(x^7)
>>> f.add_bigoh(Integer(2))
1 + 4*x + O(x^2)
>>> f.add_bigoh(Integer(2)).parent()
Power Series Ring in x over Integer Ring
```

all_roots_in_interval \((a=None, b=None)\)

Return True if the roots of this polynomial are all real and contained in the given interval.

EXAMPLES:

```python
sage: # needs sage.libs.pari
sage: R.<x> = PolynomialRing(ZZ)
sage: pol = (x - 1)^2 * (x - 2)^2 * (x - 3)
sage: pol.all_roots_in_interval(1, 3)
True
sage: pol.all_roots_in_interval(1.01, 3)
False
sage: pol = chebyshev_T(5, x)
sage: pol.all_roots_in_interval(-1, 1)
True
sage: pol = chebyshev_T(5, x/2)
sage: pol.all_roots_in_interval(-1, 1)
False
sage: pol.all_roots_in_interval()
True
```

any_irreducible_factor \((degree=None, assume_squarefree=False, assume_equal_deg=False, ext_degree=None)\)

Return an irreducible factor of this polynomial.

INPUT:

- degree (None or positive integer) – (default: None). Used for polynomials over finite fields. If None, returns the first factor found (usually the smallest). Otherwise, attempts to return an irreducible factor of self of chosen degree degree.
• assume_squarefree (boolean) – (default: False). Used for polynomials over finite fields. If True, this polynomial is assumed to be squarefree.

• assume_equal_deg (boolean) – (default: False). Used for polynomials over finite fields. If True, this polynomial is assumed to be the product of irreducible polynomials of degree equal to degree.

• ext_degree – positive integer or None (default); used for polynomials over finite fields. If not None only returns irreducible factors of self whose degree divides ext_degree.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: F = GF(163)
sage: R.<x> = F[]
sage: f = (x + 40)^3 * (x^5 + 76*x^4 + 93*x^3 + 112*x^2 + 22*x + 27)^2 * (x^6 + 50*x^5 + 143*x^4 + 162*x^2 + 109*x + 140)
sage: f.any_irreducible_factor()
 x + 40
sage: f.any_irreducible_factor(degree=5)
 x^5 + 76*x^4 + 93*x^3 + 112*x^2 + 22*x + 27
```

When the polynomial is known to be squarefree we can optimise the call by setting assume_squarefree to be True:

```python
sage: # needs sage.rings.finite_rings
sage: F = GF(163)
sage: R.<x> = F[]
sage: g = (x - 1) * (x^3 + 7*x + 161)
sage: g.any_irreducible_factor(assume_squarefree=True)
 x + 162
sage: g.any_irreducible_factor(degree=3, assume_squarefree=True)
 x^3 + 7*x + 161
```

If we ask for an irreducible factor which does not exist, the function will throw a `ValueError`:

```python
>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> F = GF(Integer(163))
>>> R = F['x']; (x,) = R._first_ngens(1)
>>> g = (x - Integer(1)) * (x^3 + Integer(7)*x + Integer(161))
>>> g.any_irreducible_factor(assume_squarefree=True)
 x + 162
>>> g.any_irreducible_factor(degree=Integer(3), assume_squarefree=True)
 x^3 + Integer(7)*x + Integer(161)
```
If we assume that the polynomial is product of irreducible polynomials of the same degree, we must also supply the degree:

sage: # needs sage.rings.finite_rings
sage: F = GF(163)
sage: R.<x> = F[]
sage: h = (x + 57) * (x + 98) * (x + 117) * (x + 145)
sage: h.any_irreducible_factor(degree=Integer(1), assume_equal_deg=True) # random
x + 98
sage: h.any_irreducible_factor(assume_equal_deg=True)
Traceback (most recent call last):
... ValueError: degree must be known if distinct degree factorisation is assumed

Also works for extension fields and even characteristic:

sage: F.<z4> = GF(2^4)
sage: R.<x> = F[]
sage: f = (x + z4^3 + z4^2)^4 * (x^2 + z4*x + z4) * (x^2 + (z4^3 + z4^2 +
   z4)*x + z4^2 + z4 + 1)
sage: f.any_irreducible_factor()
x + z4^3 + z4^2

(continues on next page)
sage: f.any_irreducible_factor(degree=2)  # random
x^2 + (z4^3 + z4^2 + z4)*x + z4^2 + z4 + 1

We can also use this function for polynomials which are not defined over finite fields, but this simply falls back to a slow method of factorisation:

sage: R.<x> = ZZ[]
sage: f = 3*x^4 + 2*x^3
sage: f.any_irreducible_factor()
3*x + 2

any_root (ring=None, degree=None, assume_squarefree=False, assume_equal_deg=False)

Return a root of this polynomial in the given ring.

INPUT:

- ring – The ring in which a root is sought. By default this is the coefficient ring.
- degree (None or nonzero integer) – Used for polynomials over finite fields. Return a root of degree abs(degree) over the ground field. If negative, also assumes that all factors of this polynomial are of degree abs(degree). If None, returns a root of minimal degree contained within the given ring.
- assume_squarefree (bool) – Used for polynomials over finite fields. If True, this polynomial is assumed to be squarefree.
- assume_equal_deg (bool) – Used for polynomials over finite fields. If True, all factors of this polynomial are assumed to have degree degree. Note that degree must be set.

Warning: Negative degree input will be deprecated. Instead use assume_equal_deg.

Note: For finite fields, any_root() is non-deterministic when finding linear roots of a polynomial over the base ring. However, if degree is greater than one, or ring is an extension of the base ring, then the root computed is found by attempting to return a root after factorisation. Roots found in this way are deterministic. This may change in the future. For all other rings or fields, roots are found by first fully-factoring self and the output is deterministic.

EXAMPLES:
Polynomials, Release 10.4

```python
sage: # needs sage.rings.finite_rings
sage: R.<x> = GF(11)[]
```

```python
sage: f = 7*x^7 + 8*x^6 + 4*x^5 + x^4 + 6*x^3 + 10*x^2 + 8*x + 5
sage: f.any_root()
2
sage: f.factor()
(7) * (x + 9) * (x^6 + 10*x^4 + 6*x^3 + 5*x^2 + 2*x + 2)
```

```python
sage: root = f.any_root(GF(11^6, 'a'))
```

```python
sage: roots = sorted(f.roots(GF(11^6, 'a'), multiplicities=False))
```

```python
sage: root in roots
True
```

```python
sage: g = (x-1) * (x^2 + 3*x + 9) * (x^5 + 5*x^4 + 8*x^3 + 5*x^2 + 3*x + 5)
```

```python
sage: g.any_root(ring=GF(11^10, 'b'), degree=1)
1
```

```python
sage: root = g.any_root(ring=GF(11^10, 'b'), degree=2)
```

```python
sage: roots = (x^2 + 3*x + 9).roots(ring=GF(11^10, 'b'), multiplicities=False)
```

```python
sage: root in roots
True
```

```python
sage: root = g.any_root(ring=GF(11^10, 'b'), degree=5)
```

```python
sage: roots = (x^5 + 5*x^4 + 8*x^3 + 5*x^2 + 3*x + 5).roots(ring=GF(11^10, 'b'))
```

```python
sage: root in roots
True
```

```python
>>> from sage.all import *
```

```python
>>> # needs sage.rings.finite_rings
```

```python
>>> R = GF(Integer(11))['x']; (x,) = R._first_ngens(1)
```

```python
>>> f = Integer(7)*x**Integer(7) + Integer(8)*x**Integer(6) +
 Integer(4)*x**Integer(5) + x**Integer(4) + Integer(6)*x**Integer(3) +
 Integer(10)*x**Integer(2) + Integer(8)*x + Integer(5)
```

```python
>>> f.any_root()
2
```

```python
>>> f.factor()
(7) * (x + 9) * (x^6 + 10*x^4 + 6*x^3 + 5*x^2 + 2*x + 2)
```

```python
>>> root = f.any_root(GF(Integer(11)**Integer(6), 'a'))
```

```python
>>> roots = sorted(f.roots(GF(Integer(11)**Integer(6), 'a'), multiplicities=False))
```

```python
>>> root in roots
True
```

(continues on next page)
Polynomials, Release 10.4

>>> # needs sage.rings.finite_rings
>>> g = (x-Integer(1)) * (x**Integer(2) + Integer(3)*x + Integer(9)) *␣
   → (x**Integer(5) + Integer(5)*x**Integer(4) + Integer(8)*x**Integer(3) +␣
   → Integer(5)*x**Integer(2) + Integer(3)*x + Integer(5))
>>> g.any_root(ring=GF(Integer(11)**Integer(10), 'b'), degree=Integer(1))
1
>>> root = g.any_root(ring=GF(Integer(11)**Integer(10), 'b'),␣
   → degree=Integer(2))
>>> roots = (x**Integer(2) + Integer(3)*x + Integer(9)).roots(ring=GF(Integer(11)**Integer(10), 'b'),␣
   → multiplicities=False)
>>> root in roots
True
>>> root = g.any_root(ring=GF(Integer(11)**Integer(10), 'b'),␣
   → degree=Integer(5))
>>> roots = (x**Integer(5) + Integer(5)*x**Integer(4) +␣
   → Integer(8)*x**Integer(3) + Integer(5)*x**Integer(2) + Integer(3)*x +␣
   → Integer(5)).roots(ring=GF(Integer(11)**Integer(10), 'b'),␣
   → multiplicities=False)
>>> root in roots
True

\section*{args()}

Return the generator of this polynomial ring, which is the (only) argument used when calling self.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x> = QQ[]
sage: x.args()
(x,)

>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> x.args()
(x,)
\end{verbatim}

A constant polynomial has no variables, but still takes a single argument.

\begin{verbatim}
sage: R(2).args()
(x,)

>>> from sage.all import *
>>> R(Integer(2)).args()
(x,)
\end{verbatim}

\section*{base_extend($R$)}

Return a copy of this polynomial but with coefficients in $R$, if there is a natural map from the coefficient ring of self to $R$.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x> = QQ[]
sage: f = x^3 - 17*x + 3
sage: f.base_extend(GF(7))
Traceback (most recent call last):
\end{verbatim}
```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(3) - Integer(17)*x + Integer(3)
>>> f.base_extend(GF(Integer(7)))
Traceback (most recent call last):
... TypeError: no such base extension

>>> f.change_ring(GF(Integer(7)))
x^3 + 4*x + 3
```

### base_ring()

Return the base ring of the parent of self.

**EXAMPLES:**

```python
sage: R.<x> = ZZ[]
sage: x.base_ring()
Integer Ring
sage: (2*x + 3).base_ring()
Integer Ring
```

### change_ring (R)

Return a copy of this polynomial but with coefficients in R, if at all possible.

**INPUT:**

- R – a ring or morphism.

**EXAMPLES:**

```python
sage: K.<z> = CyclotomicField(3) # needs sage.rings.number_field
sage: f = K.defining_polynomial() # needs sage.rings.number_field
sage: f.change_ring(GF(7)) # needs sage.rings.rings number field
x^2 + x + 1
```

(continues on next page)
\begin{verbatim}
# needs sage.rings.finite_rings sage.rings.number_field
x^2 + x + 1

sage: # needs sage.rings.number_field
sage: K.<z> = CyclotomicField(3)
sage: R.<x> = K[]
sage: f = x^2 + z
sage: f.change_ring(K.embeddings(CC)[1]) # needs sage.rings.real_mpfr
x^2 - 0.500000000000000 - 0.866025403784438*I

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> K = CyclotomicField(Integer(3), names=('z',)); (z,) = K._first_ngens(1)
>>> R = K['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(2) + z
>>> f.change_ring(K.embeddings(CC)[Integer(1)]) # needs sage.rings.real_mpfr
x^2 - 0.500000000000000 - 0.866025403784438*I

sage: R.<x> = QQ[]
sage: f = x^2 + 1
sage: f.change_ring(QQ.embeddings(CC)[0]) # needs sage.rings.real_mpfr
x^2 + 1.00000000000000

>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(2) + Integer(1)
>>> f.change_ring(QQ.embeddings(CC)[Integer(0)]) # needs sage.rings.real_mpfr
x^2 + 1.00000000000000

change_variable_name(var)

Return a new polynomial over the same base ring but in a different variable.

EXAMPLES:

sage: x = polygen(QQ, 'x')
sage: f = -2/7*x^3 + (2/3)*x - 19/993; f
-2/7*x^3 + 2/3*x - 19/993
sage: f.change_variable_name('theta')
-2/7*theta^3 + 2/3*theta - 19/993

>>> from sage.all import *
>>> x = polygen(QQ, 'x')
>>> f = -Integer(2)/Integer(7)*x**Integer(3) + (Integer(2)/Integer(3))*x
-Integer(19)/Integer(993); f
-2/7*x^3 + 2/3*x - 19/993
>>> f.change_variable_name('theta')
-2/7*theta^3 + 2/3*theta - 19/993

coefficients(sparse=True)

Return the coefficients of the monomials appearing in self.
If \( \text{sparse=\text{True}} \) (the default), it returns only the non-zero coefficients. Otherwise, it returns the same value as \( \text{self.list()} \). (In this case, it may be slightly faster to invoke \( \text{self.list()} \) directly.) In either case, the coefficients are ordered by increasing degree.

**EXAMPLES:**

```python
sage: _.<x> = PolynomialRing(ZZ)
sage: f = 3*x^4 + 2*x^2 + 1
sage: f.coefficients()
[1, 2, 3]
sage: f.coefficients(sparse=False)
[1, 0, 2, 0, 3]
```

```python
>>> from sage.all import *
>>> _ = PolynomialRing(ZZ, names=(x,)); (x,) = _.first_ngens(1)
>>> f = Integer(3)*x**Integer(4) + Integer(2)*x**Integer(2) + Integer(1)
>>> f.coefficients()
[1, 2, 3]
>>> f.coefficients(sparse=False)
[1, 0, 2, 0, 3]
```

**complex_roots()**

Return the complex roots of this polynomial, without multiplicities.

Calls \( \text{self.roots(ring=CC)} \), unless this is a polynomial with floating-point coefficients, in which case it is uses the appropriate precision from the input coefficients.

**EXAMPLES:**

```python
sage: # needs sage.libs.pari sage.rings.real_mpfr
sage: x = polygen(ZZ)
```

```python
sage: (x^3 - 1).complex_roots() # note: low order bits slightly different on ppc.
[1.00000000000000,
-0.500000000000000 - 0.86602540378443...*I,
-0.500000000000000 + 0.86602540378443...*I]
```

```python
>>> from sage.all import *
>>> # needs sage.libs.pari sage.rings.real_mpfr
```  

```python
>>> x = polygen(ZZ)
>>> (x**Integer(3) - Integer(1)).complex_roots() # note: low order bits slightly different on ppc.
[1.00000000000000,
-0.500000000000000 - 0.86602540378443...*I,
-0.500000000000000 + 0.86602540378443...*I]
```

**compose_power** \((k, \text{algorithm=None}, \text{monic=False})\)

Return the \( k \)-th iterate of the composed product of this polynomial with itself.

**INPUT:**

- \( k \) – a non-negative integer
- \( \text{algorithm=None} \) (default), "resultant" or "BFSS". See \( \text{composed_op()} \)
- \( \text{monic=False} \) (default) or True. See \( \text{composed_op()} \)

**OUTPUT:**
The polynomial of degree $d^k$ where $d$ is the degree, whose roots are all $k$-fold products of roots of this polynomial. That is, $f * f * ... * f$ where this is $f$ and $f * f = f \text{. composed_op}(f, \text{operator.mul})$.

**EXAMPLES:**

```
sage: R.<a,b,c> = ZZ[]
sage: x = polygen(R)
sage: f = (x - a) * (x - b) * (x - c)
sage: f.compose_power(2).factor() #_ needs sage.libs.singular sage.modules
(x - c^2) * (x - b^2) * (x - a^2) * (x - b*c)^2 * (x - a*c)^2 * (x - a*b)^2
```

```
sage: f2 = f.compose_power(2); f2
x^4 - 4*x^3 + 8*x^2 - 16*x + 16
sage: f2 == f.composed_op(f, operator.mul)
True
sage: f3 = f.compose_power(3); f3
x^8 - 8*x^7 + 32*x^6 - 64*x^5 + 128*x^4 - 512*x^3 + 2048*x^2 - 4096*x + 4096
sage: f3 == f2.composed_op(f, operator.mul)
True
sage: f4 = f.compose_power(4)
sage: f4 == f3.composed_op(f, operator.mul)
True
```

```
>>> from sage.all import *
>>> R = ZZ['a, b, c']; (a, b, c,) = R._first_ngens(3)
>>> x = polygen(R)
>>> f = (x - a) * (x - b) * (x - c)
>>> f.compose_power(Integer(2)).factor() #_ needs sage.libs.singular sage.modules
(x - c^2) * (x - b^2) * (x - a^2) * (x - b*c)^2 * (x - a*c)^2 * (x - a*b)^2
>>> f2 = f.compose_power(Integer(2)); f2
x^4 - 4*x^3 + 8*x^2 - 16*x + 16
>>> f2 == f.composed_op(f, operator.mul)
True
>>> f3 = f.compose_power(Integer(3)); f3
x^8 - 8*x^7 + 32*x^6 - 64*x^5 + 128*x^4 - 512*x^3 + 2048*x^2 - 4096*x + 4096
>>> f3 == f2.composed_op(f, operator.mul)
True
>>> f4 = f.compose_power(Integer(4))
>>> f4 == f3.composed_op(f, operator.mul)
True
```

**compose_trunc**(other, n)

Return the composition of self and other, truncated to $O(x^n)$.

This method currently works for some specific coefficient rings only.

**EXAMPLES:**

```python
compose_trunc (other, n)
```

2.1. Univariate Polynomials and Polynomial Rings 69
composed_op(p1, p2, algorithm=None, monic=False)

Return the composed sum, difference, product or quotient of this polynomial with another one.

In the case of two monic polynomials \( p_1 \) and \( p_2 \) over an integral domain, the composed sum, difference, etc. are given by

\[
\prod_{p_1(a) = p_2(b) = 0} (x - (a \cdot b)), \quad * \in \{+, -, \cdot, \div\}
\]

where the roots \( a \) and \( b \) are to be considered in the algebraic closure of the fraction field of the coefficients and counted with multiplicities. If the polynomials are not monic this quantity is multiplied by \( \alpha_1^{\deg(p_2)} \alpha_2^{\deg(p_1)} \) where \( \alpha_1 \) and \( \alpha_2 \) are the leading coefficients of \( p_1 \) and \( p_2 \) respectively.

INPUT:

- \( \text{p2} \) – univariate polynomial belonging to the same polynomial ring as this polynomial
- \( \text{op} \) – operator.OP where OP=add or sub or mul or truediv.
- \( \text{algorithm} \) can be "resultant" or "BFSS"; by default the former is used when the polynomials have few nonzero coefficients and small degrees or if the base ring is not \( \mathbb{Z} \) or \( \mathbb{Q} \). Otherwise the latter is used.
- \( \text{monic} \) – whether to return a monic polynomial. If True the coefficients of the result belong to the fraction field of the coefficients.

ALGORITHM:

The computation is straightforward using resultants. Indeed for the composed sum it would be \( \text{Res}_y(p_1(x - y), p_2(y)) \). However, the method from [BFSS2006] using series expansions is asymptotically much faster.
Note that the algorithm BFSS with polynomials with coefficients in \( \mathbb{Z} \) needs to perform operations over \( \mathbb{Q} \).

**Todo:**

- The [BFSS2006] algorithm has been implemented here only in the case of polynomials over rationals. For other rings of zero characteristic (or if the characteristic is larger than the product of the degrees), one needs to implement a generic method \_exp\_series. In the general case of non-zero characteristic there is an alternative algorithm in the same paper.

- The Newton series computation can be done much more efficiently! See [BFSS2006].

**EXAMPLES:**

```python
sage: x = polygen(ZZ)
sage: p1 = x^2 - 1
sage: p2 = x^4 - 1
sage: p1.composed_op(p2, operator.add) # needs sage.libs.singular
x^8 - 4*x^6 + 4*x^4 - 16*x^2
sage: p1.composed_op(p2, operator.mul) # needs sage.libs.singular
x^8 - 2*x^4 + 1
sage: p1.composed_op(p2, operator.truediv) # needs sage.libs.singular
x^8 - 2*x^4 + 1
```

This function works over any field. However for base rings other than \( \mathbb{Z} \) and \( \mathbb{Q} \) only the resultant algorithm is available:

```python
>>> from sage.all import *
>>> x = polygen(ZZ)
>>> p1 = x**Integer(2) - Integer(1)
>>> p2 = x**Integer(4) - Integer(1)
>>> p1.composed_op(p2, operator.add) # needs sage.libs.singular
x^8 - 4*x^6 + 4*x^4 - 16*x^2
>>> p1.composed_op(p2, operator.mul) # needs sage.libs.singular
x^8 - 2*x^4 + 1
>>> p1.composed_op(p2, operator.truediv) # needs sage.libs.singular
x^8 - 2*x^4 + 1
```

This function works over any field. However for base rings other than \( \mathbb{Z} \) and \( \mathbb{Q} \) only the resultant algorithm is available:

```python
sage: # needs sage.rings.number_field
sage: x = polygen(QQbar)
sage: p1 = x**2 - AA(2).sqrt()
sage: p2 = x**3 - AA(3).sqrt()
sage: r1 = p1.roots(multiplicities=False)
sage: r2 = p2.roots(multiplicities=False)
>>> p = p1.composed_op(p2, operator.add); p
x^6 - 4.242640687119285?*x^4 - 3.464101615137755?*x^3 + 6*x^2 - 14.69693845669907?*x + 0.1715728752538099?
>>> all(p(x+y).is_zero() for x in r1 for y in r2)
True
```

```python
sage: x = polygen(GF(2))
sage: p1 = x**2 + x - 1
```

(continues on next page)
sage: p2 = x**3 + x - 1
sage: p_add = p1.composed_op(p2, operator.add); p_add  # needs sage.libs.singular
x^6 + x^5 + x^3 + x^2 + 1
sage: p_mul = p1.composed_op(p2, operator.mul); p_mul  # needs sage.libs.singular
x^6 + x^4 + x^2 + x + 1
sage: p_div = p1.composed_op(p2, operator.truediv); p_div  # needs sage.libs.singular
x^6 + x^5 + x^4 + x^2 + 1

sage: # needs sage.rings.finite_rings
sage: K = GF(2**6, a)
sage: r1 = p1.roots(K, multiplicities=False)
sage: r2 = p2.roots(K, multiplicities=False)
sage: all(p_add(x1+x2).is_zero() for x1 in r1 for x2 in r2)  # needs sage.libs.singular
True
sage: all(p_mul(x1*x2).is_zero() for x1 in r1 for x2 in r2)  # needs sage.libs.singular
True
sage: all(p_div(x1/x2).is_zero() for x1 in r1 for x2 in r2)  # needs sage.libs.singular
True

```
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> x = polygen(QQbar)
>>> p1 = x**Integer(2) - AA(Integer(2)).sqrt()
>>> p2 = x**Integer(3) - AA(Integer(3)).sqrt()
>>> r1 = p1.roots(multiplicities=False)
>>> r2 = p2.roots(multiplicities=False)
>>> p = p1.composed_op(p2, operator.add); p
x^6 - 4.242640687119285?*x^4 - 3.464101615137755?*x^3 + 6*x^2 - 14.69693845669907?*x + 0.1715728752538099?
>>> all(p(x+y).is_zero() for x in r1 for y in r2) # needs sage.libs.singular
True
```

```
>>> x = polygen(GF(Integer(2)))
>>> p1 = x**Integer(2) + x - Integer(1)
>>> p2 = x**Integer(3) + x - Integer(1)
>>> p_add = p1.composed_op(p2, operator.add); p_add # needs sage.libs.singular
x^6 + x^5 + x^3 + x^2 + 1
>>> p_mul = p1.composed_op(p2, operator.mul); p_mul # needs sage.libs.singular
x^6 + x^4 + x^2 + x + 1
>>> p_div = p1.composed_op(p2, operator.truediv); p_div # needs sage.libs.singular
x^6 + x^5 + x^4 + x^2 + 1
```

```
>>> # needs sage.rings.finite_rings
>>> K = GF(Integer(2)**Integer(6), a')
>>> r1 = p1.roots(K, multiplicities=False)
>>> r2 = p2.roots(K, multiplicities=False)
>>> all(p_add(x1+x2).is_zero() for x1 in r1 for x2 in r2) # needs sage.libs.singular
True
```
```
needs sage.libs.singular
True

all(p_mul(x1*x2).is_zero() for x1 in r1 for x2 in r2) # needs sage.libs.singular
True

all(p_div(x1/x2).is_zero() for x1 in r1 for x2 in r2) # needs sage.libs.singular
True

constant_coefficient()

Return the constant coefficient of this polynomial.

OUTPUT: element of base ring

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = -2*x^3 + 2*x - 1/3
sage: f.constant_coefficient()
-1/3
```

```python
from sage.all import *
R = QQ['x']; (x,) = R._first_ngens(1)
f = -Integer(2)*x**Integer(3) + Integer(2)*x - Integer(1)/Integer(3)
f.constant_coefficient()
-1/3
```

content_ideal()

Return the content ideal of this polynomial, defined as the ideal generated by its coefficients.

EXAMPLES:

```python
sage: R.<x> = IntegerModRing(4)[
sage: f = x^4 + 3*x^2 + 2
sage: f.content_ideal()
Ideal (2, 3, 1) of Ring of integers modulo 4
```

```python
from sage.all import *
R = IntegerModRing(Integer(4))[x]; (x,) = R._first_ngens(1)
f = x**Integer(4) + Integer(3)*x**Integer(2) + Integer(2)
f.content_ideal()
Ideal (2, 3, 1) of Ring of integers modulo 4
```

When the base ring is a gcd ring, the content as a ring element is the generator of the content ideal:

```python
sage: R.<x> = ZZ[
sage: f = 2*x^3 - 4*x^2 + 6*x - 10
sage: f.content_ideal().gen()
2
```

```python
from sage.all import *
R = ZZ['x']; (x,) = R._first_ngens(1)
f = Integer(2)*x**Integer(3) - Integer(4)*x**Integer(2) + Integer(6)*x - Integer(10)
f.content_ideal().gen()
2
```
cyclotomic_part()

Return the product of the irreducible factors of this polynomial which are cyclotomic polynomials.

The algorithm assumes that the polynomial has rational coefficients.

See also:
is_cyclotomic() is_cyclotomic_product() has_cyclotomic_factor()

EXAMPLES:

```python
sage: P.<x> = PolynomialRing(Integers())
sage: pol = 2*(x^4 + 1)
sage: pol.cyclotomic_part()
x^4 + 1
sage: pol = x^4 + 2
sage: pol.cyclotomic_part()
1
sage: pol = (x^4 + 1)^2 * (x^4 + 2)
sage: pol.cyclotomic_part()
x^8 + 2*x^4 + 1
sage: P.<x> = PolynomialRing(QQ)
sage: pol = (x^4 + 1)^2 * (x^4 + 2)
sage: pol.cyclotomic_part()
x^8 + 2*x^4 + 1
sage: pol = (x - 1) * x * (x + 2)
sage: pol.cyclotomic_part()
x - 1
```

degree(gen=None)

Return the degree of this polynomial. The zero polynomial has degree -1.

EXAMPLES:
AUTHORS:

• Naqi Jaffery (2006-01-24): examples

denominator()

Return a denominator of self.

First, the lcm of the denominators of the entries of self is computed and returned. If this computation fails, the unit of the parent of self is returned.

Note that some subclasses may implement their own denominator() method. For example, see sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint

2.1. Univariate Polynomials and Polynomial Rings
Warning: This is not the denominator of the rational function defined by `self`, which would always be 1 since `self` is a polynomial.

EXAMPLES:

First we compute the denominator of a polynomial with integer coefficients, which is of course 1.

```sage
sage: R.<x> = ZZ[]
sage: f = x^3 + 17*x + 1
sage: f.denominator()
1
```

```python
>>> from sage.all import *
>>> R = ZZ[x]; (x,) = R._first_ngens(1)
>>> f = x**Integer(3) + Integer(17)*x + Integer(1)
>>> f.denominator()
1
```

Next we compute the denominator of a polynomial with rational coefficients.

```sage
sage: R.<x> = PolynomialRing(QQ)
sage: f = (1/17)*x^19 - (2/3)*x + 1/3; f
1/17*x^19 - 2/3*x + 1/3
sage: f.denominator()
51
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=(x,)); (x,) = R._first_ngens(1)
>>> f = (Integer(1)/Integer(17))*x**Integer(19) - (Integer(2)/Integer(3))*x + Integer(1)/Integer(3); f
1/17*x^19 - 2/3*x + 1/3
>>> f.denominator()
51
```

Finally, we try to compute the denominator of a polynomial with coefficients in the real numbers, which is a ring whose elements do not have a `denominator()` method.

```sage
sage: # needs sage.rings.real_mpfr
sage: R.<x> = RR[]
sage: f = x + RR('0.3'); f
x + 0.300000000000000
sage: f.denominator()
1.00000000000000
```

```python
>>> from sage.all import *
>>> # needs sage.rings.real_mpfr
>>> R = RR['x']; (x,) = R._first_ngens(1)
>>> f = x + RR('0.3'); f
x + 0.300000000000000
>>> f.denominator()
1.00000000000000
```

Check that the denominator is an element over the base whenever the base has no `denominator()` method. This closes Issue #9063.
```
sage: R.<a> = GF(5)[]
sage: x = R(0)
sage: x.denominator()
1
sage: type(x.denominator())
<class 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
sage: isinstance(x.numerator() / x.denominator(), Polynomial)
True
sage: isinstance(x.numerator() / R(1), Polynomial)
False
```

```
>>> from sage.all import *
>>> R = GF(Integer(5))['a']; (a,) = R._first_ngens(1)
>>> x = R(Integer(0))
>>> x.denominator()
1
>>> type(x.denominator())
<class 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
>>> isinstance(x.numerator() / x.denominator(), Polynomial)
True
>>> isinstance(x.numerator() / R(Integer(1)), Polynomial)
False
```

derivative(*args)

The formal derivative of this polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:

_derivative()

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: g = -x^4 + x^2/2 - x
sage: g.derivative()
-4*x^3 + x - 1
sage: g.derivative(x)
-4*x^3 + x - 1
sage: g.derivative(x, x)
-12*x^2 + 1
sage: g.derivative(x, 2)
-12*x^2 + 1
```

```
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> g = -x**Integer(4) + x**Integer(2)/Integer(2) - x
>>> g.derivative()
-4*x^3 + x - 1
>>> g.derivative(x)
-4*x^3 + x - 1
>>> g.derivative(x, x)
-12*x^2 + 1
>>> g.derivative(x, Integer(2))
-12*x^2 + 1
```
sage: R.<t> = PolynomialRing(ZZ)
sage: S.<x> = PolynomialRing(R)
sage: f = t^3*x^2 + t^4*x^3
sage: f.derivative()
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(x)
3*t^4*x^2 + 2*t^3*x
sage: f.derivative(t)
4*t^3*x^3 + 3*t^2*x^2

>>> from sage.all import *

>>> R = PolynomialRing(ZZ, names=('t',)); (t,) = R._first_ngens(1)
>>> S = PolynomialRing(R, names=('x',)); (x,) = S._first_ngens(1)
>>> f = t**Integer(3)*x**Integer(2) + t**Integer(4)*x**Integer(3)

>>> f.derivative()
3*t^4*x^2 + 2*t^3*x

>>> f.derivative(x)
3*t^4*x^2 + 2*t^3*x

>>> f.derivative(t)
4*t^3*x^3 + 3*t^2*x^2

dict()

Return a sparse dictionary representation of this univariate polynomial.

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = x^3 + -1/7*x + 13
sage: f.dict()
{0: 13, 1: -1/7, 3: 1}

>>> from sage.all import *

>>> R = QQ['x']; (x,) = R._first_ngens(1)

>>> f = x**Integer(3) + -Integer(1)/Integer(7)*x + Integer(13)

>>> f.dict()
{0: 13, 1: -1/7, 3: 1}

diff(*args)

The formal derivative of this polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:

_derivative()

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: g = -x^4 + x^2/2 - x
sage: g.derivative()
-4*x^3 + x - 1
sage: g.derivative(x)
-4*x^3 + x - 1
sage: g.derivative(x, x)
-12*x^2 + 1

(continues on next page)
differentiate (*args)

The formal derivative of this polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:

_derivative()
Discriminant

Return the discriminant of self.

The discriminant is

\[R_n := a_n^{2n-2} \prod_{1<i<j<n} (r_i - r_j)^2, \]

where \(n \) is the degree of self, \(a_n \) is the leading coefficient of self, and the roots of self are \(r_1, \ldots, r_n \).

OUTPUT: An element of the base ring of the polynomial ring.

ALGORITHM:

Uses the identity \(R_n(f) := (-1)^{n(n-1)/2}R(f, f')a_n^{n-k-2} \), where \(n \) is the degree of self, \(a_n \) is the leading coefficient of self, \(f' \) is the derivative of \(f \), and \(k \) is the degree of \(f' \). Calls resultant().

EXAMPLES:

In the case of elliptic curves in special form, the discriminant is easy to calculate:
Polynomials, Release 10.4

```python
sage: R.<x> = QQ[]
sage: f = x^3 + x + 1
sage: d = f.discriminant(); d
# see needs sage.libs.pari
-31
sage: d.parent() is QQ
# see needs sage/libs/pari
True
sage: EllipticCurve([1, 1]).discriminant() / 16
# see needs sage/libs/pari sage/schemes
-31
```

```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(3) + x + Integer(1)
>>> d = f.discriminant(); d
# see needs sage/libs/pari
-31
>>> d.parent() is QQ
# see needs sage/libs/pari
True
>>> EllipticCurve([Integer(1), Integer(1)]).discriminant() / Integer(16)
# see needs sage/libs/pari sage/schemes
-31
```

```python
sage: R.<x> = QQ[]
sage: f = 2*x^3 + x + 1
sage: d = f.discriminant(); d
# see needs sage/libs/pari
-116
```

```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = Integer(2) * x**Integer(3) + x + Integer(1)
>>> d = f.discriminant(); d
# see needs sage/libs/pari
-116
```

We can compute discriminants over univariate and multivariate polynomial rings:

```python
sage: R.<a> = QQ[]
sage: S.<x> = R[]
sage: f = a*x + x + a + 1
sage: d = f.discriminant(); d
# see needs sage/libs/pari
1
sage: d.parent() is R
# see needs sage/libs/pari
True
```

```python
>>> from sage.all import *
>>> R = QQ['a']; (a,) = R._first_ngens(1)
>>> S = R['x']; (x,) = S._first_ngens(1)
>>> f = a*x + x + a + Integer(1)
>>> d = f.discriminant(); d
# see needs sage/libs/pari
```

(continues on next page)
Compute the dispersion of a pair of polynomials.

The dispersion of f and g is the largest nonnegative integer n such that $f(x + n)$ and $g(x)$ have a nonconstant common factor.

When `other` is `None`, compute the auto-dispersion of `self`, i.e., its dispersion with itself.

See also:

`dispersion_set()`

EXAMPLES:

sage: Pol.<x> = QQ[]
sage: x.dispersion(x + 1) # needs sage.libs.pari
1
sage: (x + 1).dispersion(x) # needs sage.libs.pari
-Infinity

sage: # needs sage.libs.pari sage.rings.number_field sage.symbolic
sage: Pol.<x> = QQbar[]
sage: pol = Pol([sqrt(5), 1, 3/2])
sage: pol.dispersion() # needs sage.libs.pari sage.rings.number_field sage.symbolic
0
sage: (pol*pol(x+3)).dispersion() # needs sage.libs.pari sage.rings.number_field sage.symbolic
3
dispersion_set (other=None)

Compute the dispersion set of two polynomials.

The dispersion set of \(f \) and \(g \) is the set of nonnegative integers \(n \) such that \(f(x + n) \) and \(g(x) \) have a nonconstant common factor.

When \(\text{other} \) is None, compute the auto-dispersion set of \(\text{self} \), i.e., its dispersion set with itself.

ALGORITHM:
See Section 4 of Man & Wright [MW1994].

See also:

\(\text{dispersion()} \)

EXAMPLES:

```python
sage: Pol.<x> = QQ[]
sage: x.dispersion_set(x + 1)       # needs sage.libs.pari [1]
sage: (x + 1).dispersion_set(x)      # needs sage.libs.pari []
sage: pol = x^3 + x - 7
sage: (pol*pol(x+3)^2).dispersion_set()  # needs sage.libs.pari [0, 3]
```

(continues on next page)
divides(p)

Return True if this polynomial divides p.

This method is only implemented for polynomials over an integral domain.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: (2*x + 1).divides(4*x**2 - 1)
True
sage: (2*x + 1).divides(4*x**2 + 1)
False
sage: (2*x + 1).divides(R(0))
True
sage: R(0).divides(2*x + 1)
False
sage: R(0).divides(R(0))
True
sage: S.<y> = R[]
sage: p = x * y**2 + (2*x + 1) * y + x + 1
sage: q = (x + 1) * y + (3*x + 2)
```

(continues on next page)
Polynomials, Release 10.4

>>> q = Integer(5)*x**Integer(2) + x + Integer(2)
>>> q.divides(p)
False
>>> p.divides(q)
False

euclidean_degree()

Return the degree of this element as an element of an Euclidean domain.

If this polynomial is defined over a field, this is simply its \textit{degree()}.

EXAMPLES:

\begin{verbatim}
sage: R.<x> = QQ[]
sage: x.euclidean_degree()
1
sage: R.<x> = ZZ[]
sage: x.euclidean_degree()
Traceback (most recent call last):
...
NotImplementedError
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> x.euclidean_degree()
1
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> x.euclidean_degree()
Traceback (most recent call last):
...
NotImplementedError
\end{verbatim}

exponents()

Return the exponents of the monomials appearing in \textit{self}.

EXAMPLES:

\begin{verbatim}
sage: _.<x> = PolynomialRing(ZZ)
sage: f = x^4 + 2*x^2 + 1
sage: f.exponents()
[0, 2, 4]
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> _ = PolynomialRing(ZZ, names=('x',)); (x,) = _.first_ngens(1)
>>> f = x**Integer(4) + Integer(2)*x**Integer(2) + Integer(1)
>>> f.exponents()
[0, 2, 4]
\end{verbatim}

factor(**kwargs)

Return the factorization of \textit{self} over its base ring.

INPUT:

- \textit{kwargs} -- any keyword arguments are passed to the method _factor_univariate_polynomial() of the base ring if it defines such a method.

OUTPUT:
A factorization of `self` over its parent into a unit and irreducible factors. If the parent is a polynomial ring over a field, these factors are monic.

EXAMPLES:

Factorization is implemented over various rings. Over `\mathbb{Q}`:

```python
sage: x = QQ['x'].0
sage: f = (x^3 - 1)^2
sage: f.factor() # needs sage.libs.pari
(x - 1)^2 * (x^2 + x + 1)^2
```

```python
>>> from sage.all import *
>>> x = QQ['x'].gen(0)
>>> f = (x**Integer(3) - Integer(1))**Integer(2)
>>> f.factor() # needs sage.libs.pari
(x - 1)^2 * (x^2 + x + 1)^2
```

Since `\mathbb{Q}` is a field, the irreducible factors are monic:

```python
sage: f = 10*x^5 - 1
sage: f.factor() # needs sage.libs.pari
10*x^5 - 1
```

```python
>>> from sage.all import *
>>> x = ZZ['x'].gen(0)
>>> f = Integer(10)*x**Integer(5) - Integer(1)
>>> f.factor() # needs sage.libs.pari
10*x^5 - 1
```

Over `\mathbb{Z}` the irreducible factors need not be monic:

```python
sage: x = ZZ['x'].0
sage: f = 10*x^5 - 1
sage: f.factor() # needs sage.libs.pari
10*x^5 - 1
```

```python
>>> from sage.all import *
>>> x = ZZ['x'].gen(0)
>>> f = Integer(10)*x**Integer(5) - Integer(1)
>>> f.factor() # needs sage.libs.pari
10*x^5 - 1
```

We factor a non-monic polynomial over a finite field of 25 elements:
Polynomials, Release 10.4

```python
sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(25)
sage: R.<x> = k[]
sage: f = 2*x^10 + 2*x + 2*a
sage: F = f.factor(); F
(2) * (x + a + 2) * (x^2 + 3*x + 4*a + 4) * (x^2 + (a + 1)*x + a + 2)
* (x^5 + (3*a + 4)*x^4 + (3*a + 3)*x^3 + 2*a*x^2 + (3*a + 1)*x + 3*a + 1)
```

Notice that the unit factor is included when we multiply F back out:

```python
sage: expand(F)  # needs sage.rings.finite_rings sage.symbolic
2*x^10 + 2*x + 2*a
```

A new ring. In the example below, we set the special method `factor_univariate_polynomial()` in the base ring which is called to factor univariate polynomials. This facility can be used to easily extend polynomial factorization to work over new rings you introduce:

```python
sage: # needs sage.libs.ntl
sage: R.<x> = PolynomialRing(IntegerModRing(4), implementation="NTL")
sage: (x^2).factor()
Traceback (most recent call last):
... NotImplementedError: factorization of polynomials over rings with composite characteristic is not implemented
```

```python
sage: def my_factor(f):
    ....: return f.change_ring(ZZ).factor()
```

```python
sage: R.base_ring()._factor_univariate_polynomial = my_factor
```

```python
sage: (x^2).factor()  # needs sage.libs.pari
x^2
```

```python
sage: del R.base_ring()._factor_univariate_polynomial  # clean up
```

(continues on next page)
>>> def my_factor(f):
... return f.change_ring(ZZ).factor()

>>> R = ZZ
>>> (x**Integer(2)).factor() # needs sage.libs.pari
x^2

Randomly generated univariate polynomials:

```python
>>> from sage.all import *

>>> # needs sage.libs.pari sage.rings.real_mpfr
>>> R = RealField(100)[]
>>> x = R['x']; (x,) = R._first_ngens(1)
>>> F = factor(x**Integer(2) - Integer(3)); F
(x - 1.732050807568772935274463415) * (x + 1.732050807568772935274463415)

>>> expand(F)
x^2 - 3.0000000000000000000000000000
>>> factor(x**2 + 1)
x^2 + 1.0000000000000000000000000000

>>> # needs sage.libs.pari sage.rings.real_mpfr
>>> R = ComplexField(100)[]
>>> x = R['x']; (x,) = R._first_ngens(1)
>>> F = factor(x**Integer(2) + Integer(3)); F
(x - 1.732050807568772935274463415*I) * (x + 1.732050807568772935274463415*I)

>>> expand(F)
x^2 + 3.0000000000000000000000000000
>>> factor(x**2 + Integer(1))
(x - I) * (x + I)

>>> f = R(I) * (x**Integer(2) + Integer(1)) ; f
I*x^2 + I

>>> expand(F)
I*x^2 + I
```

Arbitrary precision real and complex factorization:

```python
sage: # needs sage.libs.pari sage.rings.real_mpfr
sage: R.<x> = RealField(100)[]
sage: F = factor(x**2 - 3); F
(x - 1.7320508075688772935274463415) * (x + 1.732050807568772935274463415)

sage: expand(F)
x^2 - 3.0000000000000000000000000000
sage: factor(x**2 + 1)
x^2 + 1.0000000000000000000000000000

sage: # needs sage.libs.pari sage.rings.real_mpfr
sage: R.<x> = ComplexField(100)[]
sage: F = factor(x**2 + 3); F
(x - 1.7320508075688772935274463415*I) * (x + 1.732050807568772935274463415*I)

sage: expand(F)
x^2 + 3.0000000000000000000000000000
sage: factor(x**2 + Integer(1))
(x - I) * (x + I)
```

```python
>>> from sage.all import *

>>> # needs sage.libs.pari sage.rings.real_mpfr
>>> R = RealField(Integer(100))[x]; (x,) = R._first_ngens(1)
>>> F = factor(x**Integer(2) - Integer(3)); F
(x - 1.732050807568772935274463415) * (x + 1.732050807568772935274463415)

>>> expand(F)
x^2 - 3.0000000000000000000000000000
>>> factor(x**2 + Integer(1))
(x - I) * (x + I)

>>> f = R(I) * (x**Integer(2) + Integer(1)) ; f
I*x^2 + I

>>> expand(F)
I*x^2 + I
```
Over a number field:

```
sage: # needs sage.rings.number_field
sage: K.<z> = CyclotomicField(15)
sage: x = polygen(K)
sage: ((x^3 + z*x + 1)^3 * (x - z)).factor()
(x - z) * (x^3 + z*x + 1)^3
sage: cyclotomic_polynomial(12).change_ring(K).factor()
(x^2 - z^5 - 1) * (x^2 + z^5)
sage: ((x^3 + z*x + 1)^3 * (x/(z+2) - 1/3)).factor()
(-1/331*z^7 + 3/331*z^6 - 6/331*z^5 + 11/331*z^4
 - 21/331*z^3 + 41/331*z^2 - 82/331*z + 165/331)
* (x - 1/3*z - 2/3) * (x^3 + z*x + 1)^3
```

Over a relative number field:

```
sage: # needs sage.rings.number_field
sage: x = polygen(QQ)
sage: K.<z> = CyclotomicField(3)
sage: L.<a> = K.extension(x^3 - 2)
sage: t = polygen(L, 't')
sage: f = (t^3 + t + a) * (t^5 + t + z); f
t^8 + t^6 + a*t^5 + t^4 + z*t^3 + t^2 + (a + z)*t + z*a
sage: f.factor()
(t^3 + t + a) * (t^5 + t + z)
```

```
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> K = CyclotomicField(Integer(15), names=(z,)); (z,) = K._first_ngens(1)
>>> x = polygen(K)
>>> ((x**Integer(3) + z*x + Integer(1))**Integer(3) * (x - z)).factor()
(x - z) * (x^3 + z*x + 1)^3
>>> cyclotomic_polynomial(Integer(12)).change_ring(K).factor()
(x^2 - z^5 - 1) * (x^2 + z^5)
>>> ((x**Integer(3) + z*x + Integer(1))**Integer(3) * (x/(z+Integer(2)) - Integer(1)/Integer(3))).factor()
(-1/331*z^7 + 3/331*z^6 - 6/331*z^5 + 11/331*z^4
 - 21/331*z^3 + 41/331*z^2 - 82/331*z + 165/331)
* (x - 1/3*z - 2/3) * (x^3 + z*x + 1)^3
```

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> K = CyclotomicField(Integer(3), names=(z,)); (z,) = K._first_ngens(1)
>>> x = polygen(K)
>>> ((x**Integer(3) + z*x + Integer(1))**Integer(3) * (x - z)).factor()
(x - z) * (x^3 + z*x + 1)^3
>>> cyclotomic_polynomial(Integer(12)).change_ring(K).factor()
(x^2 - z^5 - 1) * (x^2 + z^5)
>>> ((x**Integer(3) + z*x + Integer(1))**Integer(3) * (x/(z+Integer(2)) - Integer(1)/Integer(3))).factor()
(-1/331*z^7 + 3/331*z^6 - 6/331*z^5 + 11/331*z^4
 - 21/331*z^3 + 41/331*z^2 - 82/331*z + 165/331)
* (x - 1/3*z - 2/3) * (x^3 + z*x + 1)^3
```
Over the real double field:

```
sage: # needs numpy
sage: R.<x> = RDF[]
sage: (-2*x^2 - 1).factor()
(-2.0) * (x^2 + 0.5000000000000001)
sage: f = (x - 1)^3
sage: f.factor() # abs tol 2e-5
(x - 1.0000065719436413) * (x^2 - 1.9999934280563585*x + 0.9999934280995487)
```

The above output is incorrect because it relies on the `roots()` method, which does not detect that all the roots are real:

```
sage: f.roots() # abs tol 2e-5
 needs numpy
[(1.0000065719436413, 1)]
```

Over the complex double field the factors are approximate and therefore occur with multiplicity 1:

```
sage: # needs numpy sage.rings.complex_double
sage: R.<x> = CDF[]
sage: f = (x^2 + 2*R(I))^3
sage: F = f.factor()
sage: F # abs tol 3e-5
(x - 1.0000138879287663 + 1.0000013435286879*I)
* (x - 0.9999942196864997 + 0.9999873009803959*I)
* (x - 0.9999918923847313 + 1.0000113554909125*I)
* (x + 0.9999908759550227 - 1.0000069659624138*I)
* (x + 0.9999985293216753 - 0.999986153831807*I)
* (x + 1.000005947233 - 1.000004186544053*I)
sage: [f(t[0][0]).abs() for t in F] # abs tol 1e-13
[1.979365054e-14, 1.97936298566e-14, 3.6812407475e-14, 3.65211563729e-14, 3.65220890052e-14]
```
Factoring polynomials over $\mathbb{Z}/n\mathbb{Z}$ for composite $n$ is not implemented:

```python
sage: R.<x> = PolynomialRing(Integers(35))
sage: f = (x^2 + 2*x + 2) * (x^2 + 3*x + 9)
sage: f.factor()
Traceback (most recent call last):
...
NotImplementedError: factorization of polynomials over rings with composite characteristic is not implemented
```

Factoring polynomials over the algebraic numbers (see Issue #8544):

```python
sage: R.<x> = QQbar[]
needs sage.rings.number_field
sage: (x^8 - 1).factor()
(x - 1) * (x - 0.7071067811865475? - 0.7071067811865475?*I)
* (x - 0.7071067811865475? + 0.7071067811865475?*I) * (x - I) * (x + I)
* (x + 0.7071067811865475? - 0.7071067811865475?*I)
* (x + 0.7071067811865475? + 0.7071067811865475?*I) * (x + 1)
```

Factoring polynomials over the algebraic reals (see Issue #8544):

```python
sage: R.<x> = AA[]
needs sage.rings.number_field
(continues on next page)
gcd(other)

Return a greatest common divisor of this polynomial and other.

INPUT:

- other – a polynomial in the same ring as this polynomial

OUTPUT:

A greatest common divisor as a polynomial in the same ring as this polynomial. If the base ring is a field, the return value is a monic polynomial.

Note: The actual algorithm for computing greatest common divisors depends on the base ring underlying the polynomial ring. If the base ring defines a method `gcd_univariate_polynomial()`, then this method will be called (see examples below).

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: (2*x^2).gcd(2*x)
x
sage: R.zero().gcd(0)
0
sage: (2*x).gcd(0)
x
```

```
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> (Integer(2)*x**Integer(2)).gcd(Integer(2)*x)
x
>>> R.zero().gcd(Integer(0))
0
>>> (Integer(2)*x).gcd(Integer(0))
x
```

One can easily add gcd functionality to new rings by providing a method `gcd_univariate_polynomial`:
sage: # needs sage.rings.number_field sage.symbolic
sage: O = ZZ[-sqrt(5)]
sage: R.<x> = O[]
sage: a = O.1
sage: p = x + a
sage: q = x^2 - 5
sage: p.gcd(q)
Traceback (most recent call last):
 ...
NotImplementedError: Order of conductor 2 generated by a in Number
Field in a with defining polynomial x^2 - 5 with a = -2.236067977499790?
does not provide a gcd implementation for univariate polynomials
sage: S.<x> = O.number_field()[]
sage: O._gcd_univariate_polynomial = lambda f, g: R(S(f).gcd(S(g)))
sage: p.gcd(q)
x + a
sage: del O._gcd_univariate_polynomial

Use multivariate implementation for polynomials over polynomial rings:

sage: R.<x> = ZZ[]
sage: S.<y> = R[]
sage: T.<z> = S[]
sage: r = 2*x*y + z
sage: p = r* (3*x*y*z - 1)
sage: q = r* (x + y + z - 2)
sage: p.gcd(q)
˓→ needs sage.libs.singular
z + 2*x*y

sage: R.<x> = QQ[]
sage: S.<y> = R[]
sage: r = 2*x*y + 1
sage: p = r* (x - 1/2 * y)
sage: q = r* (x*y^2 - x + 1/3)
sage: p.gcd(q)
˓→ needs sage.libs.singular
2*x*y + 1

2.1. Univariate Polynomials and Polynomial Rings 93
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> S = R['y']; (y,) = S._first_ngens(1)
>>> T = S['z']; (z,) = T._first_ngens(1)
>>> r = Integer(2)*x*y + z
>>> p = r * (Integer(3)*x*y*z - Integer(1))
>>> q = r * (x + y + z - Integer(2))
>>> p.gcd(q)  # needs sage.libs.singular
z + 2*x*y
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> S = R['y']; (y,) = S._first_ngens(1)
>>> r = Integer(2)*x*y + Integer(1)
>>> p = r * (x - Integer(1)/Integer(2) * y)
>>> q = r * (x*y**Integer(2) - x + Integer(1)/Integer(3))
>>> p.gcd(q)  # needs sage.libs.singular
2*x*y + 1
```

global_height (prec=None)

Returns the (projective) global height of the polynomial.

This returns the absolute logarithmic height of the coefficients thought of as a projective point.

INPUT:

- `prec` – desired floating point precision (default: default `RealField` precision).

OUTPUT: a real number.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: f = 3*x^3 + 2*x^2 + x
sage: exp(f.global_height())  # needs sage.symbolic
3.00000000000000
```

Scaling should not change the result:

```python
sage: R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
sage: f = Integer(3)*x**Integer(3) + Integer(2)*x**Integer(2) + x
sage: exp(f.global_height())  # needs sage.symbolic
3.00000000000000
```

```python
sage: R.<x> = PolynomialRing(QQ)
sage: f = 1/25*x^2 + 25/3*x + 1
sage: f.global_height()  # needs sage.symbolic
6.43775164973640
sage: g = 100 * f
sage: g.global_height()  # needs sage.symbolic
6.43775164973640
```
Polynomials, Release 10.4

>>> from sage.all import *

>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)

>>> f = Integer(1)/Integer(25)*x**Integer(2) + Integer(25)/Integer(3)*x + Integer(1)

>>> f.global_height()
needs sage.symbolic
6.43775164973640

>>> g = Integer(100) * f

>>> g.global_height()
needs sage.symbolic
6.43775164973640

sage: R.<x> = PolynomialRing(QQbar)

needs sage.rings.number_field

sage: f = QQbar(i)*x^2 + 3*x

needs sage.rings.number_field

sage: f.global_height()
needs sage.rings.number_field
1.0986128866811

>>> from sage.all import *

>>> R = PolynomialRing(QQbar, names=('x',)); (x,) = R._first_ngens(1)

needs sage.rings.number_field

>>> f = QQbar(i)*x**Integer(2) + Integer(3)*x

needs sage.rings.number_field

>>> f.global_height()
needs sage.rings.number_field
1.0986128866811

>>> from sage.all import *

needs sage.rings.number_field

>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)

>>> K = NumberField(x**Integer(2) + Integer(5), names=('k',)); (k,) = K._first_ngens(1)

>>> T = PolynomialRing(K, names=('t',)); (t,) = T._first_ngens(1)

>>> f = Integer(1)/Integer(1331) * t**Integer(2) + Integer(5) * t + Integer(7)

>>> f.global_height()
9.13959596745043

>>> from sage.all import *

needs sage.rings.number_field

>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)

>>> K = NumberField(x**Integer(2) + Integer(5), names=('k',)); (k,) = K._first_ngens(1)

>>> T = PolynomialRing(K, names=('t',)); (t,) = T._first_ngens(1)

>>> f = Integer(1)/Integer(1331) * t**Integer(2) + Integer(5) * t + Integer(7)

>>> f.global_height()
9.13959596745043

sage: R.<x> = QQ[]

sage: f = 1/123*x^2 + 12

needs sage.symbolic
8.0

>>> from sage.all import *

needs sage.rings.number_field

>>> R = QQ['x']; (x,) = R._first_ngens(1)

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

```
>>> f = Integer(1)/Integer(123)*x**Integer(2) + Integer(12)
>>> f.global_height(prec=Integer(2))
˓→ # needs sage.symbolic
8.0
```

```
sage: R.<x> = QQ[]
sage: f = 0*x
sage: f.global_height()
˓→ needs sage.rings.real_mpfr
0.000000000000000
```

```
from sage.all import *

>>> from sage.all import *

R = QQ[x]; (x,) = R._first_ngens(1)

>>> f = Integer(0)*x

f.gradient()
˓→ needs sage.rings.real_mpfr
0.000000000000000
```

gradient()

Return a list of the partial derivatives of self with respect to the variable of this univariate polynomial.

There is only one partial derivative.

EXAMPLES:

```
sage: P.<x> = QQ[]
sage: f = x^2 + (2/3)*x + 1
sage: f.gradient()
[2*x + 2/3]
sage: f = P(1)
sage: f.gradient()
[0]
```

```
from sage.all import *

>>> from sage.all import *

P = QQ['x']; (x,) = P._first_ngens(1)

>>> f = x**Integer(2) + (Integer(2)/Integer(3))*x + Integer(1)

>>> f.gradient()
[2*x + 2/3]

>>> f = P(Integer(1))

>>> f.gradient()
[0]
```

hamming_weight()

Return the number of non-zero coefficients of self.

Also called weight, Hamming weight or sparsity.

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: f = x^3 - x
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x + 1)^100
```
The method \texttt{hamming_weight()} is an alias:

\begin{verbatim}
sage: f.hamming_weight()
101
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> f.hamming_weight()
101
\end{verbatim}

\begin{verbatim}
has_cyclotomic_factor()
\end{verbatim}

Return \texttt{True} if the given polynomial has a nontrivial cyclotomic factor.

The algorithm assumes that the polynomial has rational coefficients.

If the polynomial is known to be irreducible, it may be slightly more efficient to call \texttt{is_cyclotomic()} instead.

\textbf{See also:}

\texttt{is_cyclotomic()} \texttt{is_cyclotomic_product()} \texttt{cyclotomic_part()}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: pol.<x> = PolynomialRing(Rationals())
sage: u = x^5 - 1; u.has_cyclotomic_factor()
True
sage: u = x^5 - 2; u.has_cyclotomic_factor()
False
sage: u = pol(cyclotomic_polynomial(7)) * pol.random_element() # random
sage: u.has_cyclotomic_factor()
True
\end{verbatim}
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> pol = PolynomialRing(Rationals(), names=('x',)); (x,) = pol._first_ngens(1)
>>> u = x**Integer(5) - Integer(1); u.has_cyclotomic_factor()
True
>>> u = x**Integer(5) - Integer(2); u.has_cyclotomic_factor()
False
>>> u = pol(cyclotomic_polynomial(Integer(7))) * pol.random_element()  # random
>>> u.has_cyclotomic_factor()
# random
True
```

homogenize *(var='h')*

Return the homogenization of this polynomial.

The polynomial itself is returned if it is homogeneous already. Otherwise, its monomials are multiplied with the smallest powers of *var* such that they all have the same total degree.

INPUT:

- *var* — a variable in the polynomial ring (as a string, an element of the ring, or 0) or a name for a new variable (default: 'h')

OUTPUT:

If *var* specifies the variable in the polynomial ring, then a homogeneous element in that ring is returned. Otherwise, a homogeneous element is returned in a polynomial ring with an extra last variable *var*.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = x^2 + 1
sage: f.homogenize()
x^2 + h^2
```

The parameter *var* can be used to specify the name of the variable:

```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(2) + Integer(1)
>>> f.homogenize()
x^2 + h^2
```

However, if the polynomial is homogeneous already, then that parameter is ignored and no extra variable is added to the polynomial ring:

```python
>>> from sage.all import *
>>> g = f.homogenize('z'); g
x^2 + z^2
>>> g.parent()
Multivariate Polynomial Ring in x, z over Rational Field
```

```python
>>> g = f.homogenize('z'); g
x^2 + z^2
>>> g.parent()
Multivariate Polynomial Ring in x, z over Rational Field
```
sage: f = x^2
sage: g = f.homogenize('z'); g
x^2
sage: g.parent()
Univariate Polynomial Ring in x over Rational Field

>>> from sage.all import *
>>> f = x**Integer(2)
>>> g = f.homogenize('z'); g
x^2
>>> g.parent()
Univariate Polynomial Ring in x over Rational Field

For compatibility with the multivariate case, if var specifies the variable of the polynomial ring, then the monomials are multiplied with the smallest powers of var such that the result is homogeneous; in other words, we end up with a monomial whose leading coefficient is the sum of the coefficients of the polynomial:

sage: f = x^2 + x + 1
sage: f.homogenize('x')
3*x^2

>>> from sage.all import *
>>> f = x**Integer(2) + x + Integer(1)
>>> f.homogenize('x')
3*x^2

In positive characteristic, the degree can drop in this case:

sage: R.<x> = GF(2)[]
sage: f = x + 1
sage: f.homogenize(x)
0

>>> from sage.all import *
>>> R = GF(Integer(2))['x']; (x,) = R._first_ngens(1)
>>> f = x + Integer(1)
>>> f.homogenize(x)
0

For compatibility with the multivariate case, the parameter var can also be 0 to specify the variable in the polynomial ring:

sage: R.<x> = QQ[]
sage: f = x^2 + x + 1
sage: f.homogenize(0)
3*x^2

>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(2) + x + Integer(1)
>>> f.homogenize(Integer(0))
3*x^2

integral (var=None)

Return the integral of this polynomial.
By default, the integration variable is the variable of the polynomial.
Otherwise, the integration variable is the optional parameter `var`.

Note: The integral is always chosen so that the constant term is 0.

EXAMPLES:

```sage
sage: R.<x> = ZZ[]
sage: R(0).integral()
0
sage: f = R(2).integral(); f
2*x
>>> from sage.all import *
>>>
R = ZZ['x']; (x,) = R._first_ngens(1)
>>>
R(Integer(0)).integral()
0
>>>
R(Integer(2)).integral(); f
2*x

Note that the integral lives over the fraction field of the scalar coefficients:

```sage
sage: f.parent()
Univariate Polynomial Ring in x over Rational Field
sage: R(0).integral().parent()
Univariate Polynomial Ring in x over Rational Field
sage: f = x^3 + x - 2
sage: g = f.integral(); g
1/4*x^4 + 1/2*x^2 - 2*x
sage: g.parent()
Univariate Polynomial Ring in x over Rational Field

This shows that the issue at Issue #7711 is resolved:

```sage
# needs sage.rings.finite_rings
sage: P.<x,z> = PolynomialRing(GF(2147483647))
sage: Q.<y> = PolynomialRing(P)
sage: p = x + y + z
sage: p.integral()
-1073741823*y^2 + (x + z)*y
```

(continues on next page)
A truly convoluted example:

```python
sage: A.<a1, a2> = PolynomialRing(ZZ)
sage: B.<b> = PolynomialRing(A)
sage: C.<c> = PowerSeriesRing(B)
sage: R.<x> = PolynomialRing(C)
sage: f = a2*x^2 + c*x - a1*b
sage: f.parent()
Univariate Polynomial Ring in x over Power Series Ring in c over Multivariate Polynomial Ring in a1, a2 over Integer Ring
sage: f.integral()
1/3*a2*x^3 + 1/2*c*x^2 - a1*b*x
sage: f.integral().parent()
Univariate Polynomial Ring in x over Power Series Ring in c over Univariate Polynomial Ring in b over Multivariate Polynomial Ring in a1, a2 over Rational Field
sage: g = 3*a2*x^2 + 2*c*x - a1*b
sage: g.integral()
a2*x^3 + c*x^2 - a1*b*x
sage: g.integral().parent()
Univariate Polynomial Ring in x over Power Series Ring in c over Univariate Polynomial Ring in b over Multivariate Polynomial Ring in a1, a2 over Rational Field
```

```python
>>> from sage.all import *
```
Integration with respect to a variable in the base ring:

```python
sage: R.<x> = QQ[]
sage: t = PolynomialRing(R, 't').gen()
sage: f = x*t + 5*t^2
sage: f.integral(x)
5*x*t^2 + 1/2*x^2*t
```

inverse_mod \((a, m)\)

Invert the polynomial \(a\) with respect to \(m\), or raise a \texttt{ValueError} if no such inverse exists.

The parameter \(m\) may be either a single polynomial or an ideal (for consistency with \texttt{inverse_mod()} in other rings).

See also:

If you are only interested in the inverse modulo a monomial \(x^k\) then you might use the specialized method \texttt{inverse_series_trunc()} which is much faster.

EXAMPLES:

```python
sage: S.<t> = QQ[]
sage: f = inverse_mod(t^2 + 1, t^3 + 1); f
-1/2*t^2 - 1/2*t + 1/2
sage: f * (t^2 + 1) % (t^3 + 1)  # (t^3 + 1)
1
sage: f = t.inverse_mod((t + 1)^7); f
-t^6 - 7*t^5 - 21*t^4 - 35*t^3 - 35*t^2 - 21*t - 7
sage: (f * t) + (t + 1)^7
1
sage: t.inverse_mod(S.ideal((t + 1)^7)) == f
True
```
```python
>>> from sage.all import *
>>> S = QQ['t']; (t,) = S._first_ngens(1)
>>> f = inverse_mod(t**Integer(2) + Integer(1), t**Integer(3) + Integer(1)); f
-1/2*t^2 - 1/2*t + 1/2
>>> f * (t**Integer(2) + Integer(1)) % (t**Integer(3) + Integer(1))
1
>>> f = t.inverse_mod((t + Integer(1))**Integer(7)); f
-t^6 - 7*t^5 - 21*t^4 - 35*t^3 - 35*t^2 - 21*t - 7
>>> (f * t) + (t + Integer(1))**Integer(7)
1
>>> t.inverse_mod(S.ideal((t + Integer(1))**Integer(7))) == f
True
```

This also works over inexact rings, but note that due to rounding error the product may not always exactly equal the constant polynomial 1 and have extra terms with coefficients close to zero.

```python
sage: # needs scipy sage.modules
g: RDF['x'] = RDF[]  # Allow an error of up to 50 ulp
g: epsilon = RDF(1).ulp()*50  # Allow an error of up to 50 ulp
g: f = inverse_mod(x^2 + 1, x^5 + x + 1); f  # abs tol 1e-14
0.4*x^4 - 0.2*x^3 - 0.4*x^2 + 0.2*x + 0.8
```

```python
sage: poly = f * (x^2 + 1) % (x^5 + x + 1)
```

```python
sage: # Remove noisy zero terms:
sage: parent(poly)([0.0 if abs(c) <= epsilon else c for c in poly.coefficients(sparse=False)])
1.0
```

```python
sage: f = inverse_mod(x^3 - x + 1, x - 2); f
0.14285714285714285
```

```python
sage: f * (x^3 - x + 1) % (x - 2)
1.0
```

```python
sage: g = Integer(5)*x^3 + x - Integer(7); m = x^4 - 12*x + 13; f = inverse_mod(g, m); f
-0.0319636125...*x^3 - 0.0383269759...*x^2 - 0.0463050900...*x + 0.346479687...
```

```python
sage: poly = f*g % m
```

```python
sage: # Remove noisy zero terms:
sage: parent(poly)([RealNumber(0.0) if abs(c) <= epsilon else c for c in poly.coefficients(sparse=False)])
1.0
```

(continues on next page)
ALGORITHM: Solve the system \(as + mt = 1 \), returning \(s \) as the inverse of \(a \) mod \(m \).

Uses the Euclidean algorithm for exact rings, and solves a linear system for the coefficients of \(s \) and \(t \) for inexact rings (as the Euclidean algorithm may not converge in that case).

AUTHORS:

inverse_of_unit()

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = x - 90283
sage: f.inverse_of_unit()
Traceback (most recent call last):
  ... ArithmeticError: x - 90283 is not a unit
in Univariate Polynomial Ring in x over Rational Field
```

```python
sage: f = R(-90283); g = f.inverse_of_unit(); g
-1/90283
sage: parent(g)
Univariate Polynomial Ring in x over Rational Field
```

```python
from sage.all import *

>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = x - Integer(90283)
>>> f.inverse_of_unit()
Traceback (most recent call last):
  ... ArithmeticError: x - 90283 is not a unit
in Univariate Polynomial Ring in x over Rational Field
```

```python
>>> f = R(-Integer(90283)); g = f.inverse_of_unit(); g
-1/90283
>>> parent(g)
Univariate Polynomial Ring in x over Rational Field
```

inverse_series_trunc(prec)

Return a polynomial approximation of precision \(\text{prec} \) of the inverse series of this polynomial.

See also:

The method \textbf{inverse_mod()} allows more generally to invert this polynomial with respect to any ideal.

EXAMPLES:

```python
sage: x = polygen(ZZ)
sage: s = (1 + x).inverse_series_trunc(5)
```
Polynomials, Release 10.4

(continued from previous page)

```
sage: s
x^4 - x^3 + x^2 - x + 1
sage: s * (1 + x)
x^5 + 1
```

```python
>>> from sage.all import *
```

```python
>>> x = polygen(ZZ)
```

```python
>>> s = (Integer(1) + x).inverse_series_trunc(Integer(5))
```

```python
>>> s
x^4 - x^3 + x^2 - x + 1
```  

```python
>>> s * (Integer(1) + x)
x^5 + 1
```

Note that the constant coefficient needs to be a unit:

```
sage: ZZx.<x> = ZZ[]
sage: ZZxy.<y> = ZZx[]
sage: (1+x + y**2).inverse_series_trunc(4)
Traceback (most recent call last):
  ...  
ValueError: constant term x + 1 is not a unit
```

```
sage: (1+x + y**2).change_ring(ZZx.fraction_field()).inverse_series_trunc(4)
(-1/(x^2 + 2*x + 1))*y^2 + 1/(x + 1)
```

```python
>>> from sage.all import *
```

```python
>>> ZZx = ZZ[x]; (x,) = ZZx._first_ngens(1)
```

```python
>>> ZZxy = ZZx[y]; (y,) = ZZxy._first_ngens(1)
```

```python
>>> (Integer(1)+x + y**Integer(2)).inverse_series_trunc(Integer(4))
Traceback (most recent call last):
  ...  
ValueError: constant term x + 1 is not a unit
```  

```python
>>> (Integer(1)+x + y**Integer(2)).change_ring(ZZx.fraction_field()).inverse_series_trunc(Integer(4))
(-1/(x^2 + 2*x + 1))*y^2 + 1/(x + 1)
```

The method works over any polynomial ring:

```
sage: R = Zmod(4)
sage: Rx.<x> = R[]
sage: Rxy.<y> = Rx[]
sage: p = 1 + (1+2*x)*y + x**2*y**4
sage: q = p.inverse_series_trunc(10)
sage: (p*q).truncate(11)
(2*x^4 + 3*x^2 + 3)*y^10 + 1
```

```python
>>> from sage.all import *
```  

```python
>>> R = Zmod(Integer(4))
```  

```python
>>> Rx = R['x']; (x,) = Rx._first_ngens(1)
```  

```python
>>> Rxy = Rx['y']; (y,) = Rxy._first_ngens(1)
```  

```python
>>> p = Integer(1) + (Integer(1)+Integer(2))*x*y + x**Integer(2)*y**Integer(4)
```  

```python
>>> q = p.inverse_series_trunc(Integer(10))
>>> (p*q).truncate(Integer(11))
(2*x^4 + 3*x^2 + 3)*y^10 + 1
```

2.1. Univariate Polynomials and Polynomial Rings 105
Even noncommutative ones:

```python
sage: # needs sage.modules
sage: M = MatrixSpace(ZZ, 2)
sage: x = polygen(M)
sage: p = M([1,2,3,4])*x^3 + M([-1,0,0,1])*x^2 + M([1,3,-1,0])*x + M.one()
sage: q = p.inverse_series_trunc(5)
sage: (p*q).truncate(5) == M.one()
True
```

```python
>>> from sage.all import *
>>> # needs sage.modules
>>> M = MatrixSpace(ZZ, Integer(2))
>>> x = polygen(M)
>>> p = M([Integer(1),Integer(2),Integer(3),Integer(4)])*x**Integer(3) + M([-Integer(1),Integer(0),Integer(0),Integer(1)])*x**Integer(2) + M([Integer(1),-Integer(1),Integer(0),Integer(0)])*x + M.one()
>>> q = p.inverse_series_trunc(Integer(5))
>>> (p*q).truncate(Integer(5)) == M.one()
True
```

AUTHORS:

- David Harvey (2006-09-09): Newton’s method implementation for power series
- Vincent Delecroix (2014-2015): move the implementation directly in polynomial

`is_constant()`

Return `True` if this is a constant polynomial.

OUTPUT:

- `bool` – `True` if and only if this polynomial is constant

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: x.is_constant()
False
```

```python
>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> x.is_constant()
False
>>> R(Integer(2)).is_constant()
True
>>> R(Integer(0)).is_constant()
True
```

106 Chapter 2. Univariate Polynomials
is_cyclotomic (certificate=False, algorithm='pari')

Test if this polynomial is a cyclotomic polynomial.

A cyclotomic polynomial is a monic, irreducible polynomial such that all roots are roots of unity.

By default the answer is a boolean. But if certificate is True, the result is a non-negative integer: it is 0 if self is not cyclotomic, and a positive integer n if self is the n-th cyclotomic polynomial.

See also:

is_cyclotomic_product() cyclotomic_part() has_cyclotomic_factor()

INPUT:

- certificate – boolean, default to False. Only works with algorithm set to "pari".
- algorithm – either "pari" or "sage" (default is "pari")

ALGORITHM:

The native algorithm implemented in Sage uses the first algorithm of [BD1989]. The algorithm in PARI (using pari:poliscyclo) is more subtle since it does compute the inverse of the Euler \(\phi \) function to determine the \(n \) such that the polynomial is the \(n \)-th cyclotomic polynomial.

EXAMPLES:

Quick tests:

```python
sage: # needs sage.libs.pari
sage: P.<x> = ZZ['x']
sage: (x - 1).is_cyclotomic()
True
sage: (x + 1).is_cyclotomic()
True
sage: (x^2 - 1).is_cyclotomic()
False
sage: (x^2 + x + 1).is_cyclotomic(certificate=True)
3
sage: (x^2 + 2*x + 1).is_cyclotomic(certificate=True)
0
```

```python
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> P = ZZ['x']; (x,) = P._first_ngens(1)
>>> (x - Integer(1)).is_cyclotomic()
True
>>> (x + Integer(1)).is_cyclotomic()
True
>>> (x**Integer(2) - Integer(1)).is_cyclotomic()
False
>>> (x**Integer(2) + x + Integer(1)).is_cyclotomic(certificate=True)
3
>>> (x**Integer(2) + Integer(2)*x + Integer(1)).is_cyclotomic(certificate=True)
0
```

Test first 100 cyclotomic polynomials:

```python
sage: all(cyclotomic_polynomial(i).is_cyclotomic() for i in range(1, 101))  #...
```

2.1. Univariate Polynomials and Polynomial Rings 107
Some more tests:

```python
sage: # needs sage.libs.pari
sage: f = x^16 + x^14 - x^10 + x^8 - x^6 + x^2 + 1
sage: f.is_cyclotomic(algorithm="pari")
False
sage: f.is_cyclotomic(algorithm="sage")
False
sage: g = x^16 + x^14 - x^10 - x^8 - x^6 + x^2 + 1
sage: g.is_cyclotomic(algorithm="pari")
True
sage: g.is_cyclotomic(algorithm="sage")
True
sage: y = polygen(QQ)
sage: (y/2 - 1/2).is_cyclotomic()
False
sage: (2*(y/2 - 1/2)).is_cyclotomic() # needs sage.libs.pari
True
```

Invalid arguments:

```python
sage: (x - 3).is_cyclotomic(algorithm="sage", certificate=True)  # needs sage.libs.pari
Traceback (most recent call last):
  ...
ValueError: no implementation of the certificate within Sage
```
```python
>>> from sage.all import *
>>> (x - Integer(3)).is_cyclotomic(algorithm="sage", certificate=True)
# needs sage.libs.pari
Traceback (most recent call last):
...
ValueError: no implementation of the certificate within Sage

Test using other rings:

```python
sage: z = polygen(GF(5))
sage: (z - 1).is_cyclotomic()
Traceback (most recent call last):
...
NotImplementedError: not implemented in non-zero characteristic
```

```
>>> from sage.all import *
>>> z = polygen(GF(Integer(5)))
>>> (z - Integer(1)).is_cyclotomic()
Traceback (most recent call last):
...
NotImplementedError: not implemented in non-zero characteristic
```

**is_cyclotomic_product()**

Test whether this polynomial is a product of cyclotomic polynomials.

This method simply calls the function pari:poliscycloprod from the Pari library.

See also:

*is_cyclotomic()*  
*cyclotomic_part()*  
*has_cyclotomic_factor()*

**EXAMPLES:**

```python
sage: x = polygen(ZZ)
sage: (x^5 - 1).is_cyclotomic_product()
needs sage.libs.pari
True
sage: (x^5 + x^4 - x^2 + 1).is_cyclotomic_product()
needs sage.libs.pari
False
sage: p = prod(cyclotomic_polynomial(i) for i in [2, 5, 7, 12])
sage: p.is_cyclotomic_product()
needs sage.libs.pari
True
sage: (x^5 - 1/3).is_cyclotomic_product()
False
sage: x = polygen(Zmod(5))
sage: (x - 1).is_cyclotomic_product()
Traceback (most recent call last):
...
NotImplementedError: not implemented in non-zero characteristic
```

```python
>>> from sage.all import *
>>> x = polygen(ZZ)
>>> (x**Integer(5) - Integer(1)).is_cyclotomic_product()
```

(continues on next page)
is_gen()

Return True if this polynomial is the distinguished generator of the parent polynomial ring.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: R(1).is_gen()
False
sage: R(x).is_gen()
True
```

Important - this function doesn’t return True if self equals the generator; it returns True if self is the generator.

```python
sage: f = R([0,1]); f
x
sage: f.is_gen()
False
sage: f is x
False
sage: f == x
True
```

```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> R(Integer(1)).is_gen()
False
>>> R(x).is_gen()
True
```
is_homogeneous()

Return True if this polynomial is homogeneous.

EXAMPLES:

```python
sage: P.<x> = PolynomialRing(QQ)
sage: x.is_homogeneous()
True
sage: P(0).is_homogeneous()
True
sage: (x + 1).is_homogeneous()
False
```

is_irreducible()

Return whether this polynomial is irreducible.

EXAMPLES:

```python
sage: R.<x> = ZZ[

sage: (x^3 + 1).is_irreducible() # needs sage.libs.pari
False
sage: (x^2 - 1).is_irreducible() # needs sage.libs.pari
False
sage: (x^3 + 2).is_irreducible() # needs sage.libs.pari
True
sage: R(0).is_irreducible()
False
```

---

2.1. Univariate Polynomials and Polynomial Rings
Polynomials, Release 10.4

The base ring does matter: for example, $2x$ is irreducible as a polynomial in $\mathbb{Q}[x]$, but not in $\mathbb{Z}[x]$:

```
sage: R.<x> = ZZ[]
sage: R(2*x).is_irreducible() # needs sage.libs.pari
False
sage: R.<x> = QQ[]
sage: R(2*x).is_irreducible() # needs sage.libs.pari
True
```

\textbf{is\_lorentzian} (\textit{explain}=${\text{False}}$)

Return True if this is a Lorentzian polynomial.

A univariate real polynomial is Lorentzian if and only if it is a monomial with positive coefficient, or zero. The definition is more involved for multivariate real polynomials.

INPUT:

- \textit{explain} – boolean (default: False); if \text{True} return a tuple whose first element is the boolean result of the test, and the second element is a string describing the reason the test failed, or None if the test succeeded

EXAMPLES:

```
sage: P.<x> = QQ[]
sage: p1 = x^2
sage: p1.is_lorentzian()
True
sage: p2 = 1 + x^2
sage: p2.is_lorentzian()
False
sage: p3 = P.zero()
True
sage: p4 = -2*x^3
sage: p4.is_lorentzian()
False
```

```
>>> from sage.all import *
>>> P = QQ['x']; (x,) = P._first_ngens(1)
>>> P(x**2).is_lorentzian()
True
```

(continues on previous page)
It is an error to check if a polynomial is Lorentzian if its base ring is not a subring of the real numbers, as the notion is not defined in this case:

```sage
needs sage.rings.real_mpfr
Q.<y> = CC[]
q = y^2
q.is_lorentzian() # Traceback (most recent call last):...
NotImplementedError: is_lorentzian only implemented for real polynomials
```

The method can give a reason for a polynomial failing to be Lorentzian:

```sage
p = x^2 + 2*x
p.is_lorentzian(explain=True) # (False, 'inhomogeneous')
```

```sage
from sage.all import *

p = x^2 + Integer(2)*x
p.is_lorentzian(explain=True) # (False, 'inhomogeneous')
```

REFERENCES:
For full definitions and related discussion, see [BrHu2019] and [HMMS2019].

**is_monic()**
Returns True if this polynomial is monic. The zero polynomial is by definition not monic.

EXAMPLES:

```sage
x = QQ['x'].0
f = x + 33
f.is_monic() # True
f = 0*x
f.is_monic() # True
```
AUTHORS:

- Naqi Jaffery (2006-01-24): examples

**is_monomial()**

Return True if self is a monomial, i.e., a power of the generator.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: x.is_monomial() # True
sage: (x + 1).is_monomial() # False
sage: (x^2).is_monomial() # True
sage: R(1).is_monomial() # True
```

```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> x.is_monomial() # True
>>> (x + Integer(1)).is_monomial() # False
>>> (x**Integer(2)).is_monomial() # True
>>> R(Integer(1)).is_monomial() # True
```

The coefficient must be 1:

```python
sage: (2*x^5).is_monomial() # False
```
Polynomials, Release 10.4

>>> from sage.all import *

>>> (Integer(2)*x**Integer(5)).is_monomial()
False

To allow a non-1 leading coefficient, use is_term():

sage: (2*x^5).is_term()
True

>>> from sage.all import *

>>> (Integer(2)*x**Integer(5)).is_term()
True

**Warning:** The definition of is_monomial() in Sage up to 4.7.1 was the same as is_term(), i.e., it allowed a coefficient not equal to 1.

**is_nilpotent()**

Return True if this polynomial is nilpotent.

**EXAMPLES:**

sage: R = Integers(12)
sage: S.<x> = R[]
sage: f = 5 + 6*x
sage: f.is_nilpotent()
False
sage: f = 6 + 6*x^2
sage: f.is_nilpotent()
True
sage: f^2
0

EXERCISE (Atiyah-McDonald, Ch 1): Let $A[x]$ be a polynomial ring in one variable. Then $f = \sum a_i x^i \in A[x]$ is nilpotent if and only if every $a_i$ is nilpotent.

**is_one()**

Test whether this polynomial is 1.

**EXAMPLES:**

sage: R.<x> = QQ[]
sage: (x - 3).is_one()
isPrimitive(n=None, n_prime_divs=None)

Return True if the polynomial is primitive.

The semantics of “primitive” depend on the polynomial coefficients.

- (field theory) A polynomial of degree \( m \) over a finite field \( F_q \) is primitive if it is irreducible and its root in \( F_{q^m} \) generates the multiplicative group \( F_{q^m}^* \).

- (ring theory) A polynomial over a ring is primitive if its coefficients generate the unit ideal.

Calling isPrimitive() on a polynomial over an infinite field will raise an error.

The additional inputs to this function are to speed up computation for field semantics (see note).

INPUT:

- n (default: None) – if provided, should equal \( q - 1 \) where \( \text{self.parent()} \) is the field with \( q \) elements; otherwise it will be computed.

- n_prime_divs (default: None) – if provided, should be a list of the prime divisors of \( n \); otherwise it will be computed.

Note: Computation of the prime divisors of \( n \) can dominate the running time of this method, so performing this computation externally (e.g., \( \text{pdivs = n.prime_divisors()} \)) is a good idea for repeated calls to isPrimitive() for polynomials of the same degree.

Results may be incorrect if the wrong \( n \) and/or factorization are provided.

EXAMPLES:

Field semantics examples.
sage: # needs sage.rings.finite_rings
sage: R.<x> = GF(2)[x]
sage: f = x^4 + x^3 + x^2 + x + 1
sage: f.is_irreducible(), f.is_primitive()
(True, False)
sage: f = x^3 + x + 1
sage: f.is_irreducible(), f.is_primitive()
(True, True)
sage: R.<x> = GF(3)[x]
sage: f = x^3 - x + 1
sage: f.is_irreducible(), f.is_primitive()
(True, True)
sage: f = x^2 + 1
sage: f.is_irreducible(), f.is_primitive()
(True, False)
sage: R.<x> = GF(5)[x]
sage: f = x^2 + x + 1
sage: f.is_primitive()
False
sage: f = x^2 - x + 2
sage: f.is_primitive()
True
sage: x = polygen(QQ); f = x^2 + 1
sage: f.is_primitive()
Traceback (most recent call last):
...  
NotImplementedError: is_primitive() not defined for polynomials over infinite_ fields.

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> R = GF(Integer(2))[x]; (x,) = R._first_ngens(1)
>>> f = x**Integer(4) + x**Integer(3) + x**Integer(2) + x + Integer(1)
>>> f.is_irreducible(), f.is_primitive()
(True, False)
>>> f = x**Integer(3) + x + Integer(1)
>>> f.is_irreducible(), f.is_primitive()
(True, True)
>>> R = GF(Integer(3))[x]; (x,) = R._first_ngens(1)
>>> f = x**Integer(3) - x + Integer(1)
>>> f.is_irreducible(), f.is_primitive()
(True, True)
>>> f = x**Integer(2) + Integer(1)
>>> f.is_irreducible(), f.is_primitive()
(True, False)
>>> R = GF(Integer(5))[x]; (x,) = R._first_ngens(1)
>>> f = x**Integer(2) + x + Integer(1)
>>> f.is_primitive()
False
>>> f = x**Integer(2) - x + Integer(2)
>>> f.is_primitive()
True
>>> x = polygen(QQ); f = x**Integer(2) + Integer(1)
>>> f.is_primitive()
Traceback (most recent call last):
...  
NotImplementedError: is_primitive() not defined for polynomials over infinite_
Ring semantics examples.

```sage
sage: x = polygen(ZZ)
sage: f = 5*x^2 + 2
sage: f.is_primitive()
True
sage: f = 5*x^2 + 5
sage: f.is_primitive()
False

sage: # needs sage.rings.number_field
sage: K = NumberField(x^2 + 5, 'a')
sage: R = K.ring_of_integers()
sage: a = R.gen(1)
sage: a^2
-5
sage: f = a*x + 2
sage: f.is_primitive()
True
sage: f = (1+a)*x + 2
sage: f.is_primitive()
False

sage: x = polygen(Integers(10))
sage: f = 5*x^2 + 2
sage: f.is_primitive() #BUG: elsewhere in Sage, should return True
sage: f = 4*x^2 + 2
sage: f.is_primitive() #BUG: elsewhere in Sage, should return False

>>> from sage.all import *
>>> x = polygen(ZZ)
>>> f = Integer(5)*x**Integer(2) + Integer(2)
>>> f.is_primitive()
True
>>> f = Integer(5)*x**Integer(2) + Integer(5)
>>> f.is_primitive()
False

>>> # needs sage.rings.number_field
>>> K = NumberField(x**Integer(2) + Integer(5), 'a')
>>> R = K.ring_of_integers()
>>> a = R.gen(Integer(1))
>>> a**Integer(2)
-5
>>> f = a*x + Integer(2)
>>> f.is_primitive()
True
>>> f = (Integer(1)+a)*x + Integer(2)
>>> f.is_primitive()
False

>>> x = polygen(Integers(Integer(10)))
>>> f = Integer(5)*x**Integer(2) + Integer(2)
>>> f.is_primitive() #BUG: elsewhere in Sage, should return True
```
is_real_rooted()

Return True if the roots of this polynomial are all real.

EXAMPLES:

```python
sage: # needs sage.libs.pari
sage: R.<x> = PolynomialRing(ZZ)
```

```python
sage: pol = chebyshev_T(5, x)
sage: pol.is_real_rooted()
True
```

```python
sage: pol = x^2 + 1
sage: pol.is_real_rooted()
False
```

is_square (root=True)

Return whether or not polynomial is square.

If the optional argument root is set to True, then also returns the square root (or None, if the polynomial is not square).

INPUT:

- root – whether or not to also return a square root (default: False)

OUTPUT:

- bool – whether or not a square
- root – (optional) an actual square root if found, and None otherwise.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: (x^2 + 2*x + 1).is_square()
True
```

```python
sage: (x^4 + 2*x^3 - x^2 - 2*x + 1).is_square(root=True)
(True, x^2 + x - 1)
```

```python
sage: f = 12 * (x + 1)^2 * (x + 3)^2
sage: f.is_square()
False
```

```python
sage: f.is_square(root=True)
(False, None)
```

```python
sage: h = f/3; h
```

(continues on next page)
is\_squarefree()

Return False if this polynomial is not square-free, i.e., if there is a non-unit $g$ in the polynomial ring such that $g^2$ divides self.

**Warning:** This method is not consistent with squarefree\_decomposition() since the latter does not factor the content of a polynomial. See the examples below.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = (x-1) * (x-2) * (x^2-5) * (x^17-3); f
x^21 - 3*x^20 - 3*x^19 + 15*x^18 - 10*x^17 - 3*x^4 + 9*x^3 + 9*x^2 - 45*x + 30
```
A generic implementation is available, which relies on gcd computations:

```
>>> from sage.all import *
""> R = QQ['x']; (x,) = R._first_ngens(1)
""> f = (x-Integer(1)) * (x-Integer(2)) * (x**Integer(2)-Integer(5)) * (x**Integer(17)-Integer(3)); f
x^21 - 3*x^20 - 3*x^19 + 15*x^18 - 10*x^17 - 3*x^4 + 9*x^3 + 9*x^2 - 45*x + 30
>>> f.is_squarefree()
True
>>> (f * (x**Integer(2)-Integer(5))).is_squarefree()
False
```

In positive characteristic, we compute the square-free decomposition or a full factorization, depending on which is available:

```
n sage: R.<x> = ZZ[]
n sage: (2*x).is_squarefree()
True
sage: (4*x).is_squarefree()
False
sage: (2*x^2).is_squarefree()
False
sage: R(0).is_squarefree()
False
sage: S.<y> = QQ[]
sage: R.<x> = S[
```

(continues on next page)
In the following example, $t^2$ is a unit in the base field:

```
sage: R(t^2).is_squarefree()
True
```

This method is not consistent with `squarefree_decomposition()`:

```
sage: R.<x> = ZZ[]
sage: f = 4 * x
sage: f.is_squarefree() # needs sage.libs.pari
False
sage: f.squarefree_decomposition() # needs sage.libs.pari
(4) * x
```

If you want this method equally not to consider the content, you can remove it as in the following example:
If the base ring is not an integral domain, the question is not mathematically well-defined:

```sage
c = f.content()
sage: (f/c).is_squarefree() # needs sage.libs.pari
True
```

```python
>>> from sage.all import *
>>> c = f.content()
>>> (f/c).is_squarefree() # needs sage.libs.pari
True
```

**is_term()**

Return True if this polynomial is a nonzero element of the base ring times a power of the variable.

**EXAMPLES:**

```sage
c = QQ[]
sage: x.is_term()
True
sage: R(0).is_term()
False
sage: R(1).is_term()
True
sage: (3*x^5).is_term()
True
sage: (1 + 3*x^5).is_term()
False
```

```python
>>> from sage.all import *
>>> c = QQ['x']; (x,) = c._first_ngens(1)
>>> x.is_term()
True
>>> R(Integer(0)).is_term()
False
>>> R(Integer(1)).is_term()
```

(continues on next page)
To require that the coefficient is 1, use \texttt{is_monomial()} instead:

\begin{verbatim}
sage: (3*x^5).is_monomial()
False
\end{verbatim}

\texttt{is_unit()}

Return \texttt{True} if this polynomial is a unit.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: a = Integers(90384098234^3)
sage: b = a(2*191*236607587)
sage: b.is_nilpotent()
True
sage: # needs sage.libs.pari
sage: R.<x> = a[]
sage: f = 3 + b*x + b^2*x^2
sage: f.is_unit()
True
sage: f = 3 + b*x + b^2*x^2 + 17*x^3
sage: f.is_unit()
False
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> a = Integers(Integer(90384098234)**Integer(3))
>>> b = a(Integer(2)*Integer(191)*Integer(236607587))

>>> # needs sage.libs.pari
>>> R = a[\'x\']; (x,) = R._first_ngens(1)
>>> f = Integer(3) + b*x + b**Integer(2)*x**Integer(2)
>>> f.is_unit()
True
>>> f = Integer(3) + b*x + b**Integer(2)*x**Integer(2) +
 Integer(17)*x**Integer(3)
>>> f.is_unit()
False
\end{verbatim}

\textit{EXERCISE} (Atiyah-McDonald, Ch 1): Let $A[x]$ be a polynomial ring in one variable. Then $f = \sum a_i x^i \in A[x]$ is a unit if and only if $a_0$ is a unit and $a_1, \ldots, a_n$ are nilpotent.

\texttt{is_weil_polynomial (return_q=False)}

Return \texttt{True} if this is a Weil polynomial.

This polynomial must have rational or integer coefficients.
INPUT:

- self – polynomial with rational or integer coefficients
- return_q – (default False) if True, return a second value $q$ which is the prime power with respect to which this is $q$-Weil, or 0 if there is no such value.

EXAMPLES:

```python
sage: polRing.<x> = PolynomialRing(Rationals())
sage: P0 = x^4 + 5*x^3 + 15*x^2 + 25*x + 25
sage: P1 = x^4 + 25*x^3 + 15*x^2 + 5*x + 25
sage: P2 = x^4 + 5*x^3 + 25*x^2 + 25*x + 25
sage: P0.is_weil_polynomial(return_q=True) # needs sage.libs.pari
(True, 5)
sage: P0.is_weil_polynomial(return_q=False) # needs sage.libs.pari
True
sage: P1.is_weil_polynomial(return_q=True) # needs sage.libs.pari
(False, 0)
sage: P1.is_weil_polynomial(return_q=False) # needs sage.libs.pari
False
sage: P2.is_weil_polynomial() # needs sage.libs.pari
False
```

```python
>>> from sage.all import *
>>> polRing = PolynomialRing(Rationals(), names=('x',)); (x,) = polRing._first_ngens(1)
>>> P0 = x**Integer(4) + Integer(5)*x**Integer(3) + Integer(15)*x**Integer(2) + Integer(25)*x + Integer(25)
>>> P1 = x**Integer(4) + Integer(25)*x**Integer(3) + Integer(15)*x**Integer(2) + Integer(5)*x + Integer(25)
>>> P2 = x**Integer(4) + Integer(5)*x**Integer(3) + Integer(25)*x**Integer(2) + Integer(25)*x + Integer(25)
>>> P0.is_weil_polynomial(return_q=True) # needs sage.libs.pari
(True, 5)
>>> P0.is_weil_polynomial(return_q=False) # needs sage.libs.pari
True
>>> P1.is_weil_polynomial(return_q=True) # needs sage.libs.pari
(False, 0)
>>> P1.is_weil_polynomial(return_q=False) # needs sage.libs.pari
False
>>> P2.is_weil_polynomial() # needs sage.libs.pari
False
```

See also:

Polynomial rings have a method `weil_polynomials()` to compute sets of Weil polynomials. This computation uses the iterator `sage.rings.polynomial.weil.weil_polynomials`. WeilPolynomials.

AUTHORS:

David Zureick-Brown (2017-10-01)
**is_zero()**

Test whether this polynomial is zero.

**EXAMPLES:**

```
sage: R = GF(2)['x']['y']
sage: R([0,1]).is_zero()
False
sage: R([0]).is_zero()
True
sage: R([-1]).is_zero()
False
```

```
>>> from sage.all import *
>>> R = GF(Integer(2))['x']['y']
>>> R([Integer(0),Integer(1)]).is_zero()
False
>>> R([Integer(0)]).is_zero()
True
>>> R([-Integer(1)]).is_zero()
False
```

**lc()**

Return the leading coefficient of this polynomial.

**OUTPUT:** element of the base ring

This method is the same as **leading_coefficient()**.

**EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: f = (-2/5)*x^3 + 2*x - 1/3
sage: f.lc()
-2/5
```

```
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = (-Integer(2)/Integer(5))*x**Integer(3) + Integer(2)*x - Integer(1)/...
 -Integer(3)
>>> f.lc()
-2/5
```

**lcm(other)**

Let $f$ and $g$ be two polynomials. Then this function returns the monic least common multiple of $f$ and $g$.

**leading_coefficient()**

Return the leading coefficient of this polynomial.

**OUTPUT:** element of the base ring

**EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: f = (-2/5)*x^3 + 2*x - 1/3
sage: f.leading_coefficient()
-2/5
```
list (copy=True)

Return a new copy of the list of the underlying elements of self.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: f = (-2/5)*x^3 + 2*x - 1/3
sage: v = f.list(); v
[-1/3, 2, 0, -2/5]
```

Note that v is a list, it is mutable, and each call to the list() method returns a new list:

```
sage: type(v)
<... 'list'>
sage: v[0] = 5
sage: f.list()
[-1/3, 2, 0, -2/5]
```

Here is an example with a generic polynomial ring:

```
sage: R.<x> = QQ[]
sage: S.<y> = R[]
sage: f = y^3 + x*y - 3*x; f
y^3 + x*y - 3*x
sage: type(f)
<class 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
sage: v = f.list(); v
[-3*x, x, 0, 1]
sage: v[0] = 10
sage: f.list()
[-3*x, x, 0, 1]
```

(continues on next page)
Polynomials, Release 10.4

>>> f = y**Integer(3) + x*y - Integer(3)*x; f
y^3 + x*y - 3*x
>>> type(f)
<class 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
>>> v = f.list(); v
[-3*x, x, 0, 1]
>>> v[Integer(0)] = Integer(10)
>>> f.list()
[-3*x, x, 0, 1]

**lm()**

Return the leading monomial of this polynomial.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = (-2/5)*x^3 + 2*x - 1/3
sage: f.lm()
x^3
sage: R(5).lm()
1
sage: R(0).lm()
0
sage: R(0).lm().parent() is R
True
```

**local_height** *(v, prec=None)*

Return the maximum of the local height of the coefficients of this polynomial.

**INPUT:**

- **v** – a prime or prime ideal of the base ring.
- **prec** – desired floating point precision (default: default *RealField* precision).

**OUTPUT:** a real number.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(QQ)
sage: f = 1/1331*x^2 + 1/4000*x
sage: f.local_height(1331) # needs sage.rings.real_mpfr
7.19368581839511
```
```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> f = Integer(1)/Integer(1331)*x**Integer(2) + Integer(1)/Integer(4000)*x
>>> f.local_height(Integer(1331)) # needs sage.rings.real_mpfr
7.19368581839511
```

```python
sage: # needs sage.rings.number_field
sage: R.<x> = QQ[]
sage: K.<k> = NumberField(x^2 - 5)
sage: T.<t> = K[]
sage: I = K.ideal(3)
sage: f = 1/3*t**2 + 3
sage: f.local_height(I)
1.09861228866811
```

```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQ[x]; (x,) = R._first_ngens(1)
>>> K = NumberField(x**Integer(2) - Integer(5), names=('k',)); (k,) = K._first_ngens(1)
>>> T = K[t]; (t,) = T._first_ngens(1)
>>> I = K.ideal(Integer(3))
>>> f = Integer(1)/Integer(3)*t**Integer(2) + Integer(3)
>>> f.local_height(I)
1.09861228866811
```

```python
sage: R.<x> = QQ[]
sage: f = 1/2*x^2 + 2
sage: f.local_height(2, prec=2) # needs sage.rings.real_mpfr
0.75
```

```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> K = NumberField(x**Integer(2) - Integer(5), names=('k',)); (k,) = K._first_ngens(1)
>>> T = K['t']; (t,) = T._first_ngens(1)
>>> I = K.ideal(Integer(3))
>>> f = Integer(1)/Integer(3)*t**Integer(2) + Integer(3)
>>> f.local_height(I)
1.09861228866811
```

```python
sage: R.<x> = QQ[]
sage: f = 1/2*x^2 + 2
sage: f.local_height(2, prec=2) # needs sage.rings.real_mpfr
0.75
```

**local_height_arch***(i, prec=\texttt{None})*

Return the maximum of the local height at the \textit{i}-th infinite place of the coefficients of this polynomial.

**INPUT:**

- \textit{i} – an integer.
- \textit{prec} – desired floating point precision (default: default \texttt{RealField} precision).

**OUTPUT:** a real number.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(QQ)
sage: f = 210*x^2
sage: f.local_height_arch(0) # needs sage.rings.real_mpfr
5.34710753071747
```
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> f = Integer(210)*x**Integer(2)
>>> f.local_height_arch(Integer(0))
5.34710753071747
```

```python
sage: # needs sage.rings.real_mpfr
sage: R.<x> = QQ[]
sage: K.<k> = NumberField(x^2 - 5)
sage: T.<t> = K[]
sage: f = 1/2*t^2 + 3
sage: f.local_height_arch(1, prec=Integer(52))
1.09861228866811
```

```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> K = NumberField(x**Integer(2) - Integer(5), names=('k',)); (k,) = K._first_ngens(1)
>>> T = K['t']; (t,) = T._first_ngens(1)
>>> f = Integer(1)/Integer(2)*t**Integer(2) + Integer(3)
>>> f.local_height_arch(Integer(1), prec=0)
1.09861228866811
```

```python
sage: R.<x> = QQ[]
sage: f = 1/2*x^2 + 3
sage: f.local_height_arch(0, prec=2)
1.0
```

```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = Integer(1)/Integer(2)*x**Integer(2) + Integer(3)
>>> f.local_height_arch(Integer(0), prec=Integer(2))
1.0
```

```python
lt()
```

Return the leading term of this polynomial.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = (-2/5)*x^3 + 2*x - 1/3
sage: f.lt()
-2/5*x^3
sage: R(5).lt()
5
sage: R(0).lt()
0
sage: R(0).lt().parent() is R
True
```

```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
```

(continues on next page)
map_coefficients \( f, \text{new\_base\_ring=}\text{None} \)

Return the polynomial obtained by applying \( f \) to the non-zero coefficients of \( \text{self} \).

If \( f \) is a `sage.categories.map.Map`, then the resulting polynomial will be defined over the codomain of \( f \). Otherwise, the resulting polynomial will be over the same ring as \( \text{self} \). Set `new_base_ring` to override this behaviour.

**INPUT:**

- \( f \) – a callable that will be applied to the coefficients of \( \text{self} \).
- `new_base_ring` (optional) – if given, the resulting polynomial will be defined over this ring.

**EXAMPLES:**

```python
sage: R.<x> = ZZ[]
sage: f = x^2 + 2
sage: f.map_coefficients(lambda a: a + 42)
43*x^2 + 44
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: f = x^(2^32) + 2
sage: f.map_coefficients(lambda a: a + 42)
43*x^4294967296 + 44
sage: # needs sage.symbolic
sage: R.<x> = SR[]
sage: f = (1+I)*x^2 + 3*x - I
sage: f.map_coefficients(lambda z: z.conjugate())
(-I + 1)*x^2 + 3*x + I
sage: R.<x> = PolynomialRing(SR, sparse=True)
sage: f = (1+I)*x^(2^32) - I
sage: f.map_coefficients(lambda z: z.conjugate())
(-I + 1)*x^4294967296 + I
```

```python
>>> from sage.all import *
```

```python
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(2) + Integer(2)
>>> f.map_coefficients(lambda a: a + Integer(42))
43*x^2 + 44
>>> R = PolynomialRing(ZZ, sparse=True, names=('x',)); (x,) = R._first_ngens(1)
>>> f = x**(Integer(2)**Integer(32)) + Integer(2)
>>> f.map_coefficients(lambda a: a + Integer(42))
43*x^4294967296 + 44
```

```python
>>> # needs sage.symbolic
>>> R = SR['x']; (x,) = R._first_ngens(1)
```

(continues on next page)
Examples with different base ring:

```python
sage: R.<x> = ZZ[]
sage: k = GF(2)
sage: residue = lambda x: k(x)
sage: f = 4*x^2 + x + 3
sage: g = f.map_coefficients(residue); g
x + 1
sage: g.parent()
Univariate Polynomial Ring in x over Integer Ring
sage: g = f.map_coefficients(residue, new_base_ring=k); g
x + 1
sage: g.parent()
Univariate Polynomial Ring in x over Finite Field of size 2 (using GF2X)
```

```python
from sage.all import *

sage: R = ZZ['x']; (x,) = R._first_ngens(1)
sage: k = GF(Integer(2))
sage: residue = lambda x: k(x)
sage: f = Integer(4)*x**Integer(2) + x + Integer(3)
```

```python
mod (other)

Remainder of division of self by other.

EXAMPLES:
```
sage: R.<x> = ZZ[]
sage: x % (x+1)
-1
sage: (x^3 + x - 1) % (x^2 - 1)
2*x - 1

>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> x % (x+Integer(1))
-1
>>> (x**Integer(3) + x - Integer(1)) % (x**Integer(2) - Integer(1))
2*x - 1

monic()

Return this polynomial divided by its leading coefficient. Does not change this polynomial.

EXAMPLES:

sage: x = QQ['x'].0
sage: f = 2*x^2 + x^3 + 56*x^5
sage: f.monic()
x^5 + 1/56*x^3 + 1/28*x^2
sage: f = (1/4)*x^2 + 3*x + 1
sage: f.monic()
x^2 + 12*x + 4

>>> from sage.all import *
>>> x = QQ['x'].gen(0)
>>> f = Integer(2)*x**Integer(2) + x**Integer(3) + Integer(56)*x**Integer(5)
>>> f.monic()
x^5 + 1/56*x^3 + 1/28*x^2
>>> f = (Integer(1)/Integer(4))*x**Integer(2) + Integer(3)*x + Integer(1)
>>> f.monic()
x^2 + 12*x + 4

The following happens because $f = 0$ cannot be made into a monic polynomial

sage: f = 0*x
sage: f.monic()
Traceback (most recent call last):
...
ZeroDivisionError: rational division by zero

>>> from sage.all import *
>>> f = Integer(0)*x
>>> f.monic()
Traceback (most recent call last):
...
ZeroDivisionError: rational division by zero

Notice that the monic version of a polynomial over the integers is defined over the rationals.

sage: x = ZZ['x'].0
sage: f = 3*x^19 + x^2 - 37
sage: g = f.monic(); g
x^19 + 1/3*x^2 - 37/3

(continues on next page)
AUTHORS:

- Naqi Jaffery (2006-01-24): examples

**monomial_coefficient** \(m\)

Return the coefficient in the base ring of the monomial \(m\) in \(self\), where \(m\) must have the same parent as \(self\).

**INPUT:**

- \(m\) – a monomial

**OUTPUT:** Coefficient in base ring.

**EXAMPLES:**

```python
sage: P.<x> = QQ[]
sage: f = 2 * x
sage: c = f.monomial_coefficient(x); c
2
sage: c.parent()
Rational Field
sage: f = x^9 - 1/2*x^2 + 7*x + 5/11
sage: f.monomial_coefficient(x^9)
1
sage: f.monomial_coefficient(x^2)
-1/2
sage: f.monomial_coefficient(x)
7
sage: f.monomial_coefficient(x^0)
5/11
sage: f.monomial_coefficient(x^3)
0
```

```python
>>> from sage.all import *
```
```python
>>> f.monomial_coefficient(x**Integer(2))
-1/2
>>> f.monomial_coefficient(x)
7
>>> f.monomial_coefficient(x**Integer(0))
5/11
>>> f.monomial_coefficient(x**Integer(3))
0
```

```python
monomials()

Return the list of the monomials in self in a decreasing order of their degrees.

EXAMPLES:
```
sage: P.<x> = QQ[]
sage: f = x^2 + (2/3)*x + 1
sage: f.monomials()
[x^2, x, 1]
sage: f = P(3/2)
sage: f.monomials()
[1]
sage: f = P(0)
sage: f.monomials()
[]
sage: f = x
sage: f.monomials()
[x]
sage: f = -1/2*x^2 + x^9 + 7*x + 5/11
sage: f.monomials()
[x^9, x^2, x, 1]
sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, 'x')
sage: K.<rho> = NumberField(x^2 + 1)
sage: R.<y> = QQ[]
sage: p = rho * y
sage: p.monomials()
[y]
```

```python
>>> from sage.all import *
>>> P = QQ['x']; (x,) = P._first_ngens(1)
>>> f = x**Integer(2) + (Integer(2)/Integer(3))*x + Integer(1)
>>> f.monomials()
[x^2, x, 1]
>>> f = P(Integer(3)/Integer(2))
>>> f.monomials()
[1]
>>> f = P(Integer(0))
>>> f.monomials()
[]
>>> f = x
>>> f.monomials()
[x]
>>> f = -Integer(1)/Integer(2)*x**Integer(2) + x**Integer(9) + Integer(7)*x...
˓→+ Integer(5)/Integer(11)
>>> f.monomials()
```

(continues on next page)
Polynomials, Release 10.4

>>> # needs sage.rings.number_field
>>> x = polygen(ZZ, 'x')
>>> K = NumberField(x**Integer(2) + Integer(1), names=('rho',)); (rho,) = K._first_ngens(1)
>>> R = QQ['y']; (y,) = R._first_ngens(1)
>>> p = rho * y
>>> p.monomials()
[y]

\texttt{multiplication_trunc}(other, n)

Truncated multiplication

\textbf{EXAMPLES:}

\begin{verbatim}
 sage: R.<x> = ZZ[]
 sage: (x^10 + 5*x^5 + x^2 - 3).multiplication_trunc(x^7 - 3*x^3 + 1, 11)
 x^10 + x^9 - 15*x^8 - 3*x^7 + 2*x^5 + 9*x^3 + x^2 - 3
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> (x**Integer(10) + Integer(5)*x**Integer(5) + x**Integer(2) - Integer(3)).multiplication_trunc(x**Integer(7) - Integer(3)*x**Integer(3) + Integer(1), Integer(11))
 x^10 + x^9 - 15*x^8 - 3*x^7 + 2*x^5 + 9*x^3 + x^2 - 3
\end{verbatim}

Check that coercion is working:

\begin{verbatim}
 sage: R2 = QQ['x']
 sage: x2 = R2.gen()
 sage: p1 = (x^3 + 1).multiplication_trunc(x2^3 - 2, 5); p1
 -x^3 - 2
 sage: p2 = (x2^3 + 1).multiplication_trunc(x^3 - 2, 5); p2
 -x^3 - 2
 sage: parent(p1) == parent(p2) == R2
 True
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> R2 = QQ['x']
>>> x2 = R2.gen()
>>> p1 = (x**Integer(3) + Integer(1)).multiplication_trunc(x2**Integer(3) - 2, 5); p1
 -x^3 - 2
>>> p2 = (x2**Integer(3) + Integer(1)).multiplication_trunc(x**Integer(3) - 2, 5); p2
 -x^3 - 2
>>> parent(p1) == parent(p2) == R2
 True
\end{verbatim}

\texttt{newton_raphson}(n, x0)

Return a list of n iterative approximations to a root of this polynomial, computed using the Newton-Raphson method.

The Newton-Raphson method is an iterative root-finding algorithm. For \(f(x) \) a polynomial, as is the case here, this is essentially the same as Horner’s method.
INPUT:

- \(n \) – an integer (the number of iterations),
- \(x_0 \) – an initial guess \(x_0 \).

OUTPUT: A list of numbers hopefully approximating a root of \(f(x) = 0 \).

If one of the iterates is a critical point of \(f \), a ZeroDivisionError exception is raised.

EXAMPLES:

```python
sage: x = PolynomialRing(RealField(), 'x').gen()  # needs sage.rings.real_mpfr
sage: f = x^2 - 2  # needs sage.rings.real_mpfr
sage: f.newton_raphson(4, 1)  # needs sage.rings.real_mpfr
[1.50000000000000, 1.41666666666667, 1.41421568627451, 1.41421356237469]
```

AUTHORS:

- David Joyner and William Stein (2005-11-28)

newton_slopes \((p, \text{lengths}=False)\)

Return the \(p \)-adic slopes of the Newton polygon of \(\text{self} \), when this makes sense.

OUTPUT:

If \(\text{lengths} \) is False, a list of rational numbers. If \(\text{lengths} \) is True, a list of couples \((s, l)\) where \(s \) is the slope and \(l \) the length of the corresponding segment in the Newton polygon.

EXAMPLES:

```python
sage: x = QQ['x'].0  # needs sage.libs.pari
sage: f = x^3 + 2  # needs sage.libs.pari
sage: f.newton_slopes(2)  # needs sage.libs.pari
[1/3, 1/3, 1/3]
```

```
>>> from sage.all import *
>>> x = QQ['x'].gen(0)
```
ALGORITHM: Uses PARI if lengths is False.

norm \((p) \)

Return the \(p \)-norm of this polynomial.

DEFINITION: For integer \(p \), the \(p \)-norm of a polynomial is the \(p \)th root of the sum of the \(p \)th powers of the absolute values of the coefficients of the polynomial.

INPUT:

* \(p \) – (positive integer or +infinity) the degree of the norm

EXAMPLES:

```
sage: # needs sage.rings.real_mpfr
sage: R.<x> = RR[]
sage: f = x^6 + x^2 + -x^4 - 2*x^3
sage: f.norm(2)
2.64575131106459
sage: (sqrt(1^2 + 1^2 + (-1)^2 + (-2)^2)).n()  # needs sage.symbolic
2.64575131106459
```

```
sage: from sage.all import *
>>> # needs sage.rings.real_mpfr
>>> R = RR['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(6) + x**Integer(2) + -x**Integer(4) - 2*x**Integer(3)
>>> f.norm(Integer(2))
2.64575131106459
>>> (sqrt(Integer(1)**Integer(2) + Integer(1)**Integer(2) + (-Integer(1)**Integer(2) + (-Integer(2)**Integer(2)))).n()  # needs sage.symbolic
2.64575131106459
```

```
sage: f.norm(1)  # needs sage.rings.real_mpfr
5.00000000000000
sage: f.norm(infinity)  # needs sage.rings.real_mpfr
2.00000000000000
```
```python
>>> from sage.all import *
>>> f.norm(Integer(1))
# needs sage.rings.real_mpfr
5.00000000000000
>>> f.norm(infinity)
# needs sage.rings.real_mpfr
2.00000000000000
sage: f.norm(-1)
# needs sage.rings.real_mpfr
Traceback (most recent call last):
  ... ValueError: The degree of the norm must be positive
```

AUTHORS:

- Didier Deshommess
- William Stein: fix bugs, add definition, etc.

nth_root (*n*)

Return a *n*-th root of this polynomial.

This is computed using Newton method in the ring of power series. This method works only when the base ring is an integral domain. Moreover, for polynomial whose coefficient of lower degree is different from 1, the elements of the base ring should have a method `nth_root()` implemented.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: a = 27 * (x+3)**6 * (x+5)**3
sage: a.nth_root(3)
3*x^3 + 33*x^2 + 117*x + 135
sage: b = 25 * (x^2 + x + 1)
sage: b.nth_root(2)
Traceback (most recent call last):
  ... ValueError: not a 2nd power
sage: R(0).nth_root(3)
0
sage: R.<x> = QQ[]
sage: a = 1/4 * (x/7 + 3/2)^2 * (x/2 + 5/3)^4
sage: a.nth_root(2)
1/56*x^3 + 103/336*x^2 + 365/252*x + 25/12
sage: # needs sage.rings.number_field
sage: K.<sqrt2> = QuadraticField(2)
sage: R.<x> = K[]
sage: a = (x + sqrt2)^3 * ((1+sqrt2)*x - 1/sqrt2)^6
sage: b = a.nth_root(3); b
```

(continues on next page)
(2*sqrt2 + 3)*x^3 + (2*sqrt2 + 2)*x^2 + (-2*sqrt2 - 3/2)*x + 1/2*sqrt2
sage: b^3 == a
True

sage: # needs sage.rings.number_field
sage: R.<x> = QQbar[]
sage: p = x**3 + QQbar(2).sqrt() * x - QQbar(3).sqrt()
sage: r = (p**5).nth_root(5)
sage: r * p[0] == p * r[0]
True
sage: p = (x+1)^20 + x^20
sage: p.nth_root(20)
Traceback (most recent call last):
...
ValueError: not a 20th power

sage: # needs sage.rings.finite_rings
sage: z = GF(4).gen()
sage: R.<x> = GF(4)[]
sage: p = z*x**4 + 2*x - 1
sage: r = (p**15).nth_root(15)
sage: r * p[0] == p * r[0]
True
sage: ((x+1)**2).nth_root(2)
x + 1
sage: ((x+1)**4).nth_root(4)
x + 1
sage: ((x+1)**12).nth_root(12)
x + 1
sage: (x^4 + x^3 + 1).nth_root(2)
Traceback (most recent call last):
...
ValueError: not a 2nd power

sage: R1.<x> = ZZ[]
sage: R2.<y> = R1[]
sage: R3.<z> = R2[]
sage: (((y**2+x)*z^2 + x*y*z + 2*x)**3).nth_root(3)
(y^2 + x)*z^2 + x*y*z + 2*x
sage: (x+y+z)**5
Traceback (most recent call last):
...
ValueError: not a 17th power

>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> a = Integer(27) * (x+Integer(3))**Integer(6) * (x+Integer(5))**Integer(3)
>>> a.nth_root(Integer(3))
3*x^3 + 33*x^2 + 117*x + 135
>>> b = Integer(25) * (x**Integer(2) + x + Integer(1))
>>> b.nth_root(Integer(2))
Traceback (most recent call last):
Polynomials, Release 10.4

2.1. Univariate Polynomials and Polynomial Rings

```python
>>> R(Integer(0)).nth_root(Integer(3))
0
>>> R = QQ['x']; (x,) = R._first_ngens(1)
a = Integer(1)/Integer(4) * (x/Integer(7) + Integer(3)/
Integer(2))**Integer(2) * (x/Integer(2) + Integer(5)/Integer(3))**Integer(4)
a.nth_root(Integer(2))
1/56*x^3 + 103/336*x^2 + 365/252*x + 25/12
>>> # needs sage.rings.number_field
K = QuadraticField(Integer(2), names=('sqrt2',)); (sqrt2,) = K._first_ngens(1)
R = K['x']; (x,) = R._first_ngens(1)
a = (x + sqrt2)**Integer(3) * ((Integer(1)+sqrt2)*x - Integer(1)/
-sqrt2)**Integer(5)
b = a.nth_root(Integer(3)); b
(2*sqrt2 + 3)*x^3 + (2*sqrt2 + 2)*x^2 + (-2*sqrt2 - 3/2)*x + 1/2*sqrt2
>>> b**Integer(3) == a
True
>>> # needs sage.rings.number_field
R = QQbar['x']; (x,) = R._first_ngens(1)
p = x**Integer(3) + QQbar(Integer(2)).sqrt() * x - QQbar(Integer(3)).sqrt()
r = (p**Integer(5)).nth_root(Integer(5))
r * p[Integer(0)] == p * r[Integer(0)]
True
>>> p = (x+Integer(1))**Integer(20) + x**Integer(20)
p.nth_root(Integer(20))
Traceback (most recent call last):
...
ValueError: not a 20th power
>>> # needs sage.rings.finite_rings
z = GF(Integer(4)).gen()
R = GF(Integer(4))['x']; (x,) = R._first_ngens(1)
p = z*x**Integer(4) + Integer(2)*x - Integer(1)
r = (p**Integer(15)).nth_root(Integer(15))
r * p[Integer(0)] == p * r[Integer(0)]
True
>>> ((x+Integer(1))**Integer(2)).nth_root(Integer(2))
x + 1
>>> ((x+Integer(1))**Integer(4)).nth_root(Integer(4))
x + 1
>>> ((x+Integer(1))**Integer(12)).nth_root(Integer(12))
x + 1
>>> (x**Integer(4) + x**Integer(3) + Integer(1)).nth_root(Integer(2))
Traceback (most recent call last):
...
ValueError: not a 2nd power
>>> p = (x+Integer(1))**Integer(17) + x**Integer(17)
r = p.nth_root(Integer(17))
Traceback (most recent call last):
...
ValueError: not a 17th power
```

(continues from previous page)
Here we consider a base ring without \texttt{nth_root} method. The third example with a non-trivial coefficient of lowest degree raises an error:

\begin{verbatim}
sage: # needs sage.libs.pari
sage: R.<x> = QQ[]
sage: R2 = R.quotient(x**2 + 1)
sage: x = R2.gen()
sage: R3.<y> = R2[]
sage: (y**2 - 2*y + 1).nth_root(2)
-y + 1
sage: (y**3).nth_root(3)
y
sage: (y**2 + x).nth_root(2)
Traceback (most recent call last):
 ... AttributeError: ... has no attribute 'nth_root'...
\end{verbatim}

\texttt{number_of_real_roots}()

Return the number of real roots of this polynomial, counted without multiplicity.

EXAMPLES:

\begin{verbatim}
sage: # needs sage.libs.pari
sage: R.<x> = PolynomialRing(ZZ)
sage: pol = (x - 1)^2 * (x - 2)^2 * (x - 3)
sage: pol.number_of_real_roots()
3
sage: pol = (x - 1) * (x - 2) * (x - 3)
sage: pol.number_of_real_roots()
1
sage: # needs sage.libs.pari sage.rings.real_mpfr
sage: pol2 = pol.change_ring(CC)
sage: pol2.number_of_real_roots()
\end{verbatim}
number_of_roots_in_interval \((a=None, b=None) \)

Return the number of roots of this polynomial in the interval \([a, b]\), counted without multiplicity. The endpoints \(a, b\) default to \(-\infty, \infty\) (which are also valid input values).

Calls the PARI routine \texttt{pari:polsturm}.

Note that as of version 2.8, PARI includes the left endpoint of the interval (and no longer uses Sturm’s algorithm on exact inputs). \texttt{pari:polsturm} requires a polynomial with real coefficients; in case PARI returns an error, we try again after taking the GCD of \texttt{self} with its complex conjugate.

EXAMPLES:
sage: pol.number_of_roots_in_interval(0, 2)
1

>>> from sage.all import *
>>> # needs sage.libs.pari

>>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>> pol = (x - Integer(1))**Integer(2) * (x - Integer(2))**Integer(2) * (x -
˓→Integer(3))
>>> pol.number_of_roots_in_interval(Integer(1), Integer(2))
2
>>> pol.number_of_roots_in_interval(RealNumber('1.01'), Integer(2))
1
>>> pol.number_of_roots_in_interval(None, Integer(2))
2
>>> pol.number_of_roots_in_interval(Integer(1), Infinity)
3
>>> pol.number_of_roots_in_interval()
3

number_of_terms()

Return the number of non-zero coefficients of self.
Also called weight, Hamming weight or sparsity.

EXAMPLES:

sage: R.<x> = ZZ[]

sage: f = x^3 - x

sage: f.number_of_terms()
2

sage: R(0).number_of_terms()
0

sage: f = (x + 1)**100

sage: f.number_of_terms()
101

sage: S = GF(5)['y']

sage: S(f).number_of_terms()
5

sage: cyclotomic_polynomial(105).number_of_terms()
33

>>> from sage.all import *

>>> R = ZZ['x']; (x,) = R._first_ngens(1)

>>> f = x**Integer(3) - x

>>> f.number_of_terms()
2

(continues on next page)
Polynomials, Release 10.4

>>> R(Integer(0)).number_of_terms()
0
>>> f = (x + Integer(1))**Integer(100)
>>> f.number_of_terms()
101
>>> S = GF(Integer(5))['y']
>>> S(f).number_of_terms()
5
>>> cyclotomic_polynomial(Integer(105)).number_of_terms()
33

The method :meth:`hamming_weight` is an alias:

```
sage: f.hamming_weight()
101
```

numerator()

Return a numerator of :attr:`self`, computed as :attr:`self` * :attr:`self`.denominator()

Note that some subclasses may implement its own numerator function. For example, see :class:`sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint`

Warning: This is not the numerator of the rational function defined by :attr:`self`, which would always be :attr:`self` since :attr:`self` is a polynomial.

EXAMPLES:

First we compute the numerator of a polynomial with integer coefficients, which is of course :attr:`self`.

```
sage: R.<x> = ZZ[]
sage: f = x^3 + 17*x + 1
sage: f.numerator()
x^3 + 17*x + 1
sage: f == f.numerator()
True
```

Next we compute the numerator of a polynomial with rational coefficients.

```
sage: R.<x> = PolynomialRing(QQ)
sage: f = (1/17)*x^19 - (2/3)*x + 1/3; f
1/17*x^19 - 2/3*x + 1/3
sage: f.numerator()
```

(continues on next page)
We try to compute the denominator of a polynomial with coefficients in the real numbers, which is a ring whose elements do not have a denominator method.

We check that the computation of the numerator and denominator are valid.
ord\((p=None)\)

This is the same as the valuation of *self* at \(p\). See the documentation for *valuation*().

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: (x^2 + x).ord(x + 1)
1

>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> (x**Integer(2) + x).ord(x + Integer(1))
1
```

padded_list\((n=None)\)

Return list of coefficients of *self* up to (but not including) \(q^n\).

Includes 0's in the list on the right so that the list has length \(n\).

INPUT:

- \(n\) – (default: None); if given, an integer that is at least 0

EXAMPLES:

```python
sage: x = polygen(QQ)
sage: f = 1 + x^3 + 23*x^5
sage: f.padded_list()
[1, 0, 0, 1, 0, 23]
sage: f.padded_list(10)
[1, 0, 0, 1, 0, 23, 0, 0, 0, 0]
sage: len(f.padded_list(10))
10
sage: f.padded_list(3)
[1, 0, 0]
sage: f.padded_list(0)
[]
sage: f.padded_list(-1)
Traceback (most recent call last):
  ... ValueError: n must be at least 0

>>> from sage.all import *
>>> x = polygen(QQ)
>>> f = Integer(1) + x**Integer(3) + Integer(23)*x**Integer(5)
>>> f.padded_list()
[1, 0, 0, 1, 0, 23]
>>> f.padded_list(Integer(10))
[1, 0, 0, 1, 0, 23, 0, 0, 0, 0]
>>> len(f.padded_list(Integer(10)))
10
>>> f.padded_list(Integer(3))
[1, 0, 0]
>>> f.padded_list(Integer(0))
[]
>>> f.padded_list(-Integer(1))
Traceback (most recent call last):
  ... ValueError: n must be at least 0
```
plot (xmin=None, xmax=None, *args, **kwds)

Return a plot of this polynomial.

INPUT:

- xmin – float
- xmax – float
- *args, **kwds – passed to either plot or point

OUTPUT: returns a graphic object.

EXAMPLES:

```sage
x = polygen(GF(389))
sage: plot(x^2 + 1, rgbcolor=(0,0,1))
# needs sage.plot
Graphics object consisting of 1 graphics primitive
sage: x = polygen(QQ)
sage: plot(x^2 + 1, rgbcolor=(1,0,0))
# needs sage.plot
Graphics object consisting of 1 graphics primitive
```

polynomial (**var**)

Let var be one of the variables of the parent of self. This returns self viewed as a univariate polynomial in var over the polynomial ring generated by all the other variables of the parent.

For univariate polynomials, if var is the generator of the parent ring, we return this polynomial, otherwise raise an error.

EXAMPLES:

```sage
R.<x> = QQ[]
sage: (x + 1).polynomial(x)
x + 1
```

power_trunc (**n**, **prec**)

Truncated n-th power of this polynomial up to precision prec

INPUT:

- n – (non-negative integer) power to be taken
- prec – (integer) the precision
EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: (3*x^2 - 2*x + 1).power_trunc(5, 8)
-1800*x^7 + 1590*x^6 - 1052*x^5 + 530*x^4 - 200*x^3 + 55*x^2 - 10*x + 1
sage: ((3*x^2 - 2*x + 1)^5).truncate(8)
-1800*x^7 + 1590*x^6 - 1052*x^5 + 530*x^4 - 200*x^3 + 55*x^2 - 10*x + 1
sage: S.<y> = R[]
sage: (x + y).power_trunc(5,5)
5*x*y^4 + 10*x^2*y^3 + 10*x^3*y^2 + 5*x^4*y + x^5
sage: ((x + y)^5).truncate(5)
5*x*y^4 + 10*x^2*y^3 + 10*x^3*y^2 + 5*x^4*y + x^5
sage: R.<x> = GF(3)[]
sage: p = x^2 - x + 1
sage: q = p.power_trunc(80, 20); q
x^19 + x^18 + ... + 2*x^4 + 2*x^3 + x + 1
sage: (p^80).truncate(20) == q
True
sage: R.<x> = GF(7)[]
sage: p = (x^2 + x + 1).power_trunc(2^100, 100); p
2*x^99 + x^98 + x^95 + 2*x^94 + ... + 3*x^2 + 2*x + 1
sage: for i in range(100):
...:     q1 = (x^2 + x + 1).power_trunc(2^100 + i, 100)
...:     q2 = p * (x^2 + x + 1).power_trunc(i, 100)
...:     q2 = q2.truncate(100)
...:     assert q1 == q2, "i = {}".format(i)
>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> (3*x^2 - 2*x + 1).power_trunc(5, 8)
-1800*x^7 + 1590*x^6 - 1052*x^5 + 530*x^4 - 200*x^3 + 55*x^2 - 10*x + 1
>>> ((3*x^2 - 2*x + 1)^5).truncate(8)
-1800*x^7 + 1590*x^6 - 1052*x^5 + 530*x^4 - 200*x^3 + 55*x^2 - 10*x + 1
>>> S = R['y']; (y,) = S._first_ngens(1)
>>> (x + y).power_trunc(Integer(5),Integer(5))
5*x*y^4 + 10*x^2*y^3 + 10*x^3*y^2 + 5*x^4*y + x^5
>>> ((x + y)**Integer(5)).truncate(Integer(5))
5*x*y^4 + 10*x^2*y^3 + 10*x^3*y^2 + 5*x^4*y + x^5
>>> R = GF(Integer(3))['x']; (x,) = R._first_ngens(1)
>>> p = x**Integer(2) - x + Integer(1)
>>> q = p.power_trunc(Integer(80), Integer(20)); q
x^19 + x^18 + ... + 2*x^4 + 2*x^3 + x + 1
>>> (p**Integer(80)).truncate(Integer(20)) == q
True
>>> R = GF(Integer(7))['x']; (x,) = R._first_ngens(1)
>>> p = (x^2 + x + 1).power_trunc(Integer(2)**Integer(100), Integer(100)); p
2*x^99 + x^98 + x^95 + 2*x^94 + ... + 3*x^2 + 2*x + 1
```
for i in range(Integer(100)):
... q1 = (x**Integer(2) + x + Integer(1)).power_trunc(Integer(2)**Integer(100) + i, Integer(100))
... q2 = p * (x**Integer(2) + x + Integer(1)).power_trunc(i, Integer(100))
... assert q1 == q2, "i = {}".format(i)

prec()

Return the precision of this polynomial. This is always infinity, since polynomials are of infinite precision by definition (there is no big-oh).

EXAMPLES:

sage: x = polygen(ZZ)
sage: (x^5 + x + 1).prec()
+Infinity
sage: x.prec()
+Infinity

from sage.all import *

x = polygen(ZZ)

(x**Integer(5) + x + Integer(1)).prec()
+Infinity

x.prec()
+Infinity

pseudo_quo_rem(other)

Compute the pseudo-division of two polynomials.

INPUT:

• other — a nonzero polynomial

OUTPUT:

Q and R such that $l^{m-n+1} \cdot self = Q \cdot other + R$ where m is the degree of this polynomial, n is the degree of other, l is the leading coefficient of other. The result is such that $\deg(R) < \deg(other)$.

ALGORITHM:

Algorithm 3.1.2 in [Coh1993].

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: p = x^4 + 6*x^3 + x^2 - x + 2
sage: q = 2*x^2 - 3*x - 1
sage: quo, rem = p.pseudo_quo_rem(q); quo, rem
((3*x^4 + 13*x^3 + 19*x^2 + 5*x)*T + 18*x^4 + 12*x^3 + 16*x^2 + 16*x, (-113*x^6 - 106*x^5 - 133*x^4 - 101*x^3 - 42*x^2 - 41*x)*T)
```python
sage: (-x^2 - 4*x - 5)^(3-2+1) * p == quo*q + rem
True
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(ZZ, sparse=True, names=('x',)); (x,) = R._first_ngens(1)
>>> p = x**Integer(4) + Integer(6)*x**Integer(3) + x**Integer(2) - x + Integer(2)
>>> q = (Integer(2)**Integer(2)*x**Integer(2) - Integer(3))*x - Integer(1)
>>> quo, rem = p.pseudo_quo_rem(q); quo, rem
(4*x^2 + 30*x + 51, 175*x + 67)
```

```python
>>> Integer(2)**(Integer(4)-Integer(2)+Integer(1))*p == quo*q + rem
True
```

```python
>>> S = R[T]; (T,) = S._first_ngens(1)
>>> p = (-Integer(3)*x**Integer(2) - x)*T**Integer(3) - Integer(3)*x*T**Integer(2) + (x**Integer(2) - x)*T + Integer(2)*x**Integer(2) + Integer(3)*x - Integer(2)
>>> quo, rem = p.pseudo_quo_rem(q); quo, rem
((3*x^4 + 13*x^3 + 54*x^2 + 126*x^3 + 134*x^2 - 5*x - 50), -34*x^6 + 13*x^5 + 54*x^4 + 126*x^3 + 134*x^2 - 5*x - 50)
```

```python
>>> (-x**Integer(2) - Integer(4)*x - Integer(5))**(Integer(3)-Integer(2)+Integer(1)) * p == quo*q + rem
True
```

```
radical()

Return the radical of self.

Over a field, this is the product of the distinct irreducible factors of self. (This is also sometimes called the “square-free part” of self, but that term is ambiguous; it is sometimes used to mean the quotient of self by its maximal square factor.)

EXAMPLES:

```python
sage: P.<x> = ZZ[]
sage: t = (x^2-x+1)^3 * (3*x-1)^2
sage: t.radical()
3*x^3 - 4*x^2 + 4*x - 1
sage: radical(12 * x^5)
6*x
```

```python
>>> from sage.all import *
>>> P = ZZ['x']; (x,) = P._first_ngens(1)
>>> t = (x**Integer(2)-x*Integer(1))**Integer(3) * (Integer(3)*x-Integer(1))**Integer(2)
>>> t.radical()
3*x^3 - 4*x^2 + 4*x - 1
>>> radical(Integer(12) * x**Integer(5))
6*x
```

If self has a factor of multiplicity divisible by the characteristic (see Issue #8736):

2.1. Univariate Polynomials and Polynomial Rings

151
sage: P.<x> = GF(2)[]
sage: (x^3 + x^2).radical()  # needs sage.rings.finite_rings
x^2 + x

>>> from sage.all import *
>>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1)
>>> (x**Integer(3) + x**Integer(2)).radical()  # needs sage.rings.finite_rings
x^2 + x

rational_reconstruct (*args, **kwds)

Deprecated: Use rational_reconstruction() instead. See Issue #12696 for details.

rational_reconstruction (m, n_deg=None, d_deg=None)

Return a tuple of two polynomials (n, d) where self * d is congruent to n modulo m and n.degree() <= n_deg and d.degree() <= d_deg.

INPUT:

- m – a univariate polynomial
- n_deg – (optional) an integer; the default is ⌊(deg(m) – 1)/2⌋
- d_deg – (optional) an integer; the default is ⌊(deg(m) – 1)/2⌋

ALGORITHM:

The algorithm is based on the extended Euclidean algorithm for the polynomial greatest common divisor.

EXAMPLES:

Over \( \mathbb{Q}[z] \):  

sage: z = PolynomialRing(QQ, 'z').gen()
sage: p = -z**16 - z**15 - z**14 + z**13 + z**12 + z**11 - z**5 - z**4 - z**3 + z**2 + z + 1
sage: m = z**21
sage: n, d = p.rational_reconstruction(m); n, d
(z^4 + 2*z^3 + 3*z^2 + 2*z + 1, z^10 + z^9 + z^8 + z^7 + z^6 + z^5 + z^4 + z^3 + z^2 + z + 1)
sage: ((p*d - n) % m).is_zero()
True

Over \( \mathbb{Z}[z] \):  

>>> z = PolynomialRing(ZZ, 'z').gen()
>>> p = -z**Integer(16) - z**Integer(15) - z**Integer(14) + z**Integer(13) + z**Integer(12) + z**Integer(11) - z**Integer(5) - z**Integer(4) - z**Integer(3) + z**Integer(2) + z + Integer(1)
>>> m = z**Integer(21)
>>> n, d = p.rational_reconstruction(m); n, d
(z^4 + 2*z^3 + 3*z^2 + 2*z + 1, z^10 + z^9 + z^8 + z^7 + z^6 + z^5 + z^4 + z^3 + z^2 + z + 1)
>>> ((p*d - n) % m).is_zero()
True
sage: z = PolynomialRing(ZZ, 'z').gen()
sage: p = -z**16 - z**15 - z**14 + z**13 + z**12 + z**11 - z**5 - z**4 - z**3 + z**2 + z + 1
sage: m = z**21
sage: n, d = p.rational_reconstruction(m); n, d
(z^4 + 2*z^3 + 3*z^2 + 2*z + 1, z^10 + z^9 + z^8 + z^7 + z^6 + z^5 + z^4 + z^3 + z^2 + z + 1)
sage: ((p*d - n) % m).is_zero()
True
>>> from sage.all import *
>>> z = PolynomialRing(ZZ, 'z').gen()
>>> p = -z**Integer(16) - z**Integer(15) - z**Integer(14) + z**Integer(13) +
   z**Integer(12) + z**Integer(11) - z**Integer(5) - z**Integer(4) -
   z**Integer(3) + z**Integer(2) + z + Integer(1)
>>> m = z**Integer(21)
>>> n, d = p.rational_reconstruction(m); n, d
(z^4 + 2*z^3 + 3*z^2 + 2*z + 1, 5*x + 8)
>>> ((p*d - n) % m).is_zero()
True
>>> from sage.all import *
>>> P = PolynomialRing(ZZ, x)
>>> x = P.gen()
>>> p = 7*x^5 - 10*x^4 + 16*x^3 - 32*x^2 + 128*x + 256
>>> m = x^5
>>> n, d = p.rational_reconstruction(m, 3, 2); n, d
(-32*x^3 + 384*x^2 + 2304*x + 2048, 5*x + 8)
>>> ((p*d - n) % m).is_zero()
True
>>> n, d = p.rational_reconstruction(m, 4, 0); n, d
(-10*x^4 + 16*x^3 - 32*x^2 + 128*x + 256, 1)
>>> ((p*d - n) % m).is_zero()
True

Over an integral domain, d might not be monic:

sage: P = PolynomialRing(ZZ, 'x')
sage: x = P.gen()
sage: p = 7*x^5 - 10*x^4 + 16*x^3 - 32*x^2 + 128*x + 256
sage: m = x^5
sage: n, d = p.rational_reconstruction(m, 3, 2); n, d
(-32*x^3 + 384*x^2 + 2304*x + 2048, 5*x + 8)
>>> ((p*d - n) % m).is_zero()
True
>>> n, d = p.rational_reconstruction(m, 4, 0); n, d
(-10*x^4 + 16*x^3 - 32*x^2 + 128*x + 256, 1)
>>> ((p*d - n) % m).is_zero()
True

Over $\mathbb{Q}(t)[z]$:

sage: P = PolynomialRing(QQ, 't')
sage: t = P.gen()
Polynomials, Release 10.4

sage: Pz = PolynomialRing(P.fraction_field(), 'z')
sage: z = Pz.gen()
sage: # p = (1 + t^2*z + z^4) / (1 - t*z)
sage: p = (1 + t^2*z + z^4)*(1 - t*z).inverse_mod(z^9)
sage: m = z^9
sage: n, d = p.rational_reconstruction(m); n, d
(-1/t*z^4 - t*z - 1/t, z - 1/t)
sage: ((p*d - n) % m).is_zero()
True
sage: w = PowerSeriesRing(P.fraction_field(), 'w').gen()
sage: n = -10*t^2*z^4 + (-t^2 + t - 1)*z^3 + (-t - 8)*z^2 + z + 2*t^2 - t
sage: d = z^4 + (2*t + 4)*z^3 + (-t + 5)*z^2 + (t^2 + 2)*z + t^2 + 2*t + 1
sage: prec = 9
sage: x = n.subs(z=w)/d.subs(z=w) + O(w^prec)

>>> from sage.all import *
>>> P = PolynomialRing(QQ, 't')
>>> t = P.gen()
>>> z = PolynomialRing(P, 'z').gen()
>>> # p = (1 + t^2*z + z^4) mod z^9
>>> p = (1 + t^2*z + z^4) * sum((t*z)**i for i in range(9))
>>> m = z^9

Over Q[t][z]:

sage: P = PolynomialRing(QQ, 't')
>>> t = P.gen()
>>> z = PolynomialRing(P, 'z').gen()
>>> # p = (1 + t^2*z + z^4) / (1 - t*z) mod z^9
>>> p = (1 + t^2*z + z^4) * sum((t*z)**i for i in range(9))
>>> m = z^9
Polynomials, Release 10.4

```python
sage: n, d = p.rational_reconstruction(m,); n, d
(-z^4 - t^2*z - 1, t*z - 1)
sage: (p*d - n) % m).is_zero()
True
```

```python
from sage.all import *

P = PolynomialRing(QQ, 't')
t = P.gen()
z = PolynomialRing(P, 'z').gen()

p = (1 + t^2*z + z^4) / (1 - t*z) mod z^9
p = (Integer(1) + t**2*z + z**4) / (1 - t*z) mod z^9

m = z**9

n, d = p.rational_reconstruction(m,); n, d
(-z^4 - t^2*z - 1, t*z - 1)

((p*d - n) % m).is_zero()
True
```

Over \( \mathbb{Q}_5 \):

```python
sage: # needs sage.rings.padics
sage: x = PolynomialRing(Qp(5), 'x').gen()
p = 4*x^5 + 3*x^4 + 2*x^3 + 2*x^2 + 4*x + 2
m = x^6

n, d = p.rational_reconstruction(m, 3, 2)

((p*d - n) % m).is_zero()
True
```

Can also be used to obtain known Padé approximations:

```python
sage: z = PowerSeriesRing(QQ, 'z').gen()
P = PolynomialRing(QQ, 'x')
x = P.gen()
p = P(z.exp().list())
m = x^5

n, d = p.rational_reconstruction(m, 4, 0); n, d
(1/24*x^4 + 1/6*x^3 + 1/2*x^2 + x + 1, 1)
sage: ((p*d - n) % m).is_zero()
True
```

(continues on next page)
sage: m = x^9
sage: n, d = p.rational_reconstruction(m, 4, 4); n, d
(25/6*x^4 - 130/3*x^3 + 105*x^2 - 70*x, x^4 - 20*x^3 + 90*x^2 - 140*x + 70)
sage: ((p*d - n) % m).is_zero()
True
sage: p = P(sqrt(1+z).list())
sage: m = x^6
sage: n, d = p.rational_reconstruction(m, 3, 2); n, d
(1/6*x^3 + 3*x^2 + 8*x + 16/3, x^2 + 16/3*x + 16/3)
sage: ((p*d - n) % m).is_zero()
True
sage: p = P((2*z).exp().list())
sage: m = x^7
sage: n, d = p.rational_reconstruction(m, 3, 3); n, d
(-x^3 - 6*x^2 - 15*x - 15, x^3 - 6*x^2 + 15*x - 15)
sage: ((p*d - n) % m).is_zero()
True
>>> from sage.all import *

Over \( \mathbb{R}[z] \):

```
sage: # needs sage.rings.real_mpfr
sage: z = PowerSeriesRing(RR, 'z').gen()
```

(continues on next page)
sage: P = PolynomialRing(RR, 'x')
sage: x = P.gen()
sage: p = P((2*z).exp().list())
sage: m = x^7
sage: n, d = p.rational_reconstruction(m, 3, 3); n, d  # absolute tolerance...
    → 1e-10
    (-x^3 - 6.0*x^2 - 15.0*x - 15.0, x^3 - 6.0*x^2 + 15.0*x - 15.0)

>>> from sage.all import *
>>> # needs sage.rings.real_mpfr
>>> z = PowerSeriesRing(RR, 'z').gen()
>>> P = PolynomialRing(RR, 'x')
>>> x = P.gen()
>>> p = P((Integer(2)*z).exp().list())
>>> m = x**Integer(7)
>>> n, d = p.rational_reconstruction(m, Integer(3), Integer(3)); n, d  #...
    → absolute tolerance 1e-10
    (-x^3 - 6.0*x^2 - 15.0*x - 15.0, x^3 - 6.0*x^2 + 15.0*x - 15.0)

See also:

• sage.matrix.berlekamp_massey.

• sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint.
rational_reconstruction()
INPUT:

• $R$ – polynomial
• $q$ – scalar (default: 1)

EXAMPLES:

```python
sage: pol.<x> = PolynomialRing(Rationals())
sage: u = x^2 + x - 1
sage: u.reciprocal_transform()
x^4 + x^3 + x^2 + x + 1
sage: u.reciprocal_transform(R=x-1)
x^5 - 1
sage: u.reciprocal_transform(q=3)
x^4 + x^3 + 5*x^2 + 3*x + 9
```

```python
>>> from sage.all import *
>>> pol = PolynomialRing(Rationals(), names=('x',)); (x,) = pol._first_ngens(1)
>>> u = x**Integer(2) + x - Integer(1)
>>> u.reciprocal_transform(R=x-Integer(1))
x^5 - 1
>>> u.reciprocal_transform(q=Integer(3))
x^4 + x^3 + 5*x^2 + 3*x + 9
```

resultant (other)

Return the resultant of self and other.

INPUT:

• other – a polynomial

OUTPUT: an element of the base ring of the polynomial ring

ALGORITHM:

Uses PARI’s function pari:polresultant. For base rings that are not supported by PARI, the resultant is computed as the determinant of the Sylvester matrix.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = x^3 + x + 1; g = x^3 - x - 1
sage: r = f.resultant(g); r
#...
->needs sage.libs.pari -8
sage: r.parent() is QQ
#...
->needs sage.libs.pari
True
```

```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(3) + x + Integer(1); g = x**Integer(3) - x - Integer(1)
>>> r = f.resultant(g); r
#...
->needs sage.libs.pari -8
>>> r.parent() is QQ
#...
```

(continues on next page)
We can compute resultants over univariate and multivariate polynomial rings:

```
sage: R.<a> = QQ[]
sage: S.<x> = R[]
sage: f = x^2 + a; g = x^3 + a
sage: r = f.resultant(g); r
a^3 + a^2
sage: r.parent() is R
true
```

```
>>> from sage.all import *
>>> R = QQ['a']; (a,) = R._first_ngens(1)
>>> S = R['x']; (x,) = S._first_ngens(1)
>>> f = x**Integer(2) + a; g = x**Integer(3) + a
>>> r = f.resultant(g); r
a^3 + a^2
>>> r.parent() is R
true
```

```
sage: R.<a, b> = QQ[]
sage: S.<x> = R[]
sage: f = x^2 + a; g = x^3 + b
sage: r = f.resultant(g); r
a^3 + b^2
sage: r.parent() is R
true
```

```
>>> from sage.all import *
>>> R = QQ['a, b']; (a, b,) = R._first_ngens(2)
>>> S = R['x']; (x,) = S._first_ngens(1)
>>> f = x**Integer(2) + a; g = x**Integer(3) + b
>>> r = f.resultant(g); r
a^3 + b^2
>>> r.parent() is R
true
```

The `reverse` function is defined as follows:

```
reverse(degree=None)
```

Return polynomial but with the coefficients reversed.

If an optional `degree` argument is given, the coefficient list will be truncated or zero padded as necessary before reversing it. Assuming that the constant coefficient of `self` is nonzero, the reverse polynomial will have the specified degree.

EXAMPLES:
revert_series \( n \)

Return a polynomial \( f \) such that \( f(self(x)) = self(f(x)) = x \mod x^n \).

Currently, this is only implemented over some coefficient rings.

EXAMPLES:

```python
sage: Pol.<x> = QQ[]
sage: (x + x^3/6 + x^5/120).revert_series(6)
3/40*x^5 - 1/6*x^3 + x
sage: Pol.<x> = CBF[]
needs sage.libs.flint
sage: (x + x^3/6 + x^5/120).revert_series(6)
needs sage.libs.flint
([0.075000000000000 +/- ...e-17])*x^5 + ([0.166666666666667 +/- ...e-16])*x^3 + x

sage: # needs sage.symbolic
sage: Pol.<x> = SR[]
sage: x.revert_series(6)
Traceback (most recent call last):
...
NotImplementedError: only implemented for certain base rings
```

(continues on next page)
Polynomials, Release 10.4

>>> # needs sage.symbolic
>>> Pol = SR['x']; (x,) = Pol._first_ngens(1)
>>> x.revert_series(Integer(6))
Traceback (most recent call last):
... 
NotImplementedError: only implemented for certain base rings

\textbf{root_field}(\textit{names, check_irreducible=True})

Return the field generated by the roots of the irreducible polynomial self. The output is either a number field, relative number field, a quotient of a polynomial ring over a field, or the fraction field of the base ring.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x> = QQ['x']
sage: f = x^3 + x + 17
sage: f.root_field('a') # needs sage.rings.number_field
Number Field in a with defining polynomial x^3 + x + 17

>>> from sage.all import *

R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(3) + x + Integer(17)
>>> f.root_field('a') # needs sage.rings.number_field
Number Field in a with defining polynomial x^3 + x + 17

sage: R.<x> = QQ['x']
sage: f = x - 3
sage: f.root_field('b') # needs sage.rings.number_field
Rational Field

>>> from sage.all import *

R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = x - Integer(3)
>>> f.root_field('b') # needs sage.rings.number_field
Rational Field

sage: R.<x> = ZZ['x']
sage: f = x^3 + x + 17
sage: f.root_field('b') # needs sage.rings.number_field
Number Field in b with defining polynomial x^3 + x + 17

>>> from sage.all import *

R = ZZ['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(3) + x + Integer(17)
>>> f.root_field('b') # needs sage.rings.number_field
Number Field in b with defining polynomial x^3 + x + 17

sage: # needs sage.rings.number_field
sage: y = QQ['x'].0
\end{verbatim}
```python
sage: L.<a> = NumberField(y^3 - 2)
sage: R.<x> = L[x]
sage: f = x^3 + x + 17
sage: f.root_field('c')
Number Field in c with defining polynomial x^3 + x + 17 over its base field
```

```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> y = QQ['x'].gen(0)
>>> L = NumberField(y**Integer(3) - Integer(2), names=('a',)); (a,) = L._first_ngens(1)
>>> R = L['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(3) + x + Integer(17)
>>> f.root_field('c')
Number Field in c with defining polynomial x^3 + x + 17 over its base field
```

```python
sage: # needs sage.rings.finite_rings
sage: R.<x> = PolynomialRing(GF(9, 'a'))
sage: f = x^3 + x^2 + 8
sage: K.<alpha> = f.root_field(); K
Univariate Quotient Polynomial Ring in alpha over Finite Field in a of size 3^2 with modulus x^3 + x^2 + 2
sage: alpha^2 + 1
alpha^2 + 1
sage: alpha^3 + alpha^2
1
```

```python
>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> R = PolynomialRing(GF(Integer(9), a), names=(x,)); (x,) = R._first_ngens(1)
>>> f = x**Integer(3) + x**Integer(2) + Integer(8)
>>> K = f.root_field(names=('alpha',)); (alpha,) = K._first_ngens(1); K
Univariate Quotient Polynomial Ring in alpha over Finite Field in a of size 3^2 with modulus x^3 + x^2 + 2
>>> alpha**Integer(2) + Integer(1)
alpha^2 + 1
>>> alpha**Integer(3) + alpha**Integer(2)
1
```

```python
sage: R.<x> = QQ[]
sage: f = x^2
sage: K.<alpha> = f.root_field() # needs sage.libs.pari
Traceback (most recent call last):
...
ValueError: polynomial must be irreducible
```

```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(2)
>>> K = f.root_field(names=('alpha',)); (alpha,) = K._first_ngens(1)# needs...
>>> sage.libs.pari
Traceback (most recent call last):
...
roots (ring=None, multiplicities=True, algorithm=None, **kwds)

Return the roots of this polynomial (by default, in the base ring of this polynomial).

INPUT:

- ring – the ring to find roots in
- multiplicities – bool (default: True) if True return list of pairs \((r, n)\), where \(r\) is the root and \(n\) is the multiplicity. If False, just return the unique roots, with no information about multiplicities.
- algorithm – the root-finding algorithm to use. We attempt to select a reasonable algorithm by default, but this lets the caller override our choice.

By default, this finds all the roots that lie in the base ring of the polynomial. However, the ring parameter can be used to specify a ring to look for roots in.

If the polynomial and the output ring are both exact (integers, rationals, finite fields, etc.), then the output should always be correct (or raise an exception, if that case is not yet handled).

If the output ring is approximate (floating-point real or complex numbers), then the answer will be estimated numerically, using floating-point arithmetic of at least the precision of the output ring. If the polynomial is ill-conditioned, meaning that a small change in the coefficients of the polynomial will lead to a relatively large change in the location of the roots, this may give poor results. Distinct roots may be returned as multiple roots, multiple roots may be returned as distinct roots, real roots may be lost entirely (because the numerical estimate thinks they are complex roots). Note that polynomials with multiple roots are always ill-conditioned; there’s a footnote at the end of the docstring about this.

If the output ring is a `RealIntervalField` or `ComplexIntervalField` of a given precision, then the answer will always be correct (or an exception will be raised, if a case is not implemented). Each root will be contained in one of the returned intervals, and the intervals will be disjoint. (The returned intervals may be of higher precision than the specified output ring.)

At the end of this docstring (after the examples) is a description of all the cases implemented in this function, and the algorithms used. That section also describes the possibilities for the `algorithm` keyword, for the cases where multiple algorithms exist.

EXAMPLES:

```python
sage: # needs sage.libs.pari
sage: x = QQ['x'].0
sage: f = x^3 - 1
sage: f.roots()
[(1, 1)]
sage: f.roots(ring=CC)  # ... - low order bits slightly different on ppc  #
...needs sage.rings.real_mpfr
[(1.00000000000000, 1),
 (-0.500000000000000 - 0.86602540378443...*I, 1),
 (-0.500000000000000 + 0.86602540378443...*I, 1)]
sage: f = (x^3 - 1)^2
sage: f.roots()
[(1, 2)]
sage: f = -19*x + 884736
sage: f.roots()
[(884736/19, 1)]
sage: (f^20).roots()
[(884736/19, 20)]
```
```python
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> x = QQ['x'].gen(0)
>>> f = x**Integer(3) - Integer(1)
>>> f.roots()
[(1, 1)]
>>> f.roots(ring=CC)  # ... - low order bits slightly different on ppc #
[(1.00000000000000, 1),
 (-0.500000000000000 - 0.86602540378443...*I, 1),
 (-0.500000000000000 + 0.86602540378443...*I, 1)]
>>> f = (x**Integer(3) - Integer(1))**Integer(2)
>>> f.roots()
[(1, 2)]
>>> f = -Integer(19)*x + Integer(884736)
>>> f.roots()
[(884736/19, 1)]
>>> (f**Integer(20)).roots()
[(884736/19, 20)]
```

```python
sage: # needs sage.rings.number_field
sage: K.<z> = CyclotomicField(3)
sage: f = K.defining_polynomial()
sage: f.roots(ring=GF(7))
[(4, 1), (2, 1)]
```

```python
sage: # needs sage.rings.real_mpfr
sage: g = f.change_ring(GF(7))
```

```python
sage: g.roots(multiplicities=False)
[4, 2]
```

A new ring. In the example below, we add the special method `_roots_univariate_polynomial()` to the base ring, and observe that this method is called instead to find roots of polynomials over this ring. This facility can be used to easily extend root finding to work over new rings you introduce:

```python
sage: R.<x> = QQ[]
```

```python
sage: def my_roots(f, *args, **kwds):
    ....:     return f.change_ring(CDF).roots()
```

```python
sage: QQ._roots_univariate_polynomial = my_roots
sage: (x^2 + 1).roots()  # abs tol 1e-14
```

(continues on next page)
An example over RR, which illustrates that only the roots in RR are returned:

```python
sage: # needs numpy sage.rings.real_mpfr
sage: x = RR['x'].0
sage: f = x^3 - 2
sage: f.roots()
[(1.25992104989487, 1)]
```

```python
sage: f.factor()
(x - 1.25992104989487) * (x^2 + 1.25992104989487*x + 1.58740105196820)
```

```python
sage: x = RealField(100)['x'].0
sage: f = x^3 - 2
sage: f.roots()
[(1.2599210498948731647672106073, 1)]
```

```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> (x**Integer(2) + Integer(1)).roots()  # needs sage.libs.pari
[]
```

```python
>>> def my_roots(f, *args, **kwds):
...     return f.change_ring(CDF).roots()
...     # abs tol 1e-14
>>> QQ._roots_univariate_polynomial = my_roots
>>> (x**Integer(2) + Integer(1)).roots()  # needs numpy
[(2.7755575615628914e-17 - 1.0*I, 1), (0.9999999999999997*I, 1)]
```

```python
>>> del QQ._roots_univariate_polynomial
```
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> # needs sage.rings.real_mpfr
>>> x = CC['x'].gen(0)
>>> f = x**Integer(3) - Integer(2)
>>> f.roots()  # needs numpy
[(1.25992104989487, 1),
 (-0.629960524947437 - 1.09112363597172*I, 1),
 (-0.629960524947437 + 1.09112363597172*I, 1)]
>>> f.roots(algorithm='pari')  # needs sage.libs.pari
[(1.25992104989487, 1),
 (-0.629960524947437 - 1.09112363597172*I, 1),
 (-0.629960524947437 + 1.09112363597172*I, 1)]

Another example showing that only roots in the base ring are returned:

```sage```
x = polygen(ZZ)
f = (2*x - 3) * (x - 1) * (x + 1)
f.roots() # needs sage.libs.pari
[(1, 1), (-1, 1)]
f.roots(ring=QQ) # needs sage.libs.pari
[(3/2, 1), (1, 1), (-1, 1)]```

An example where we compute the roots lying in a subring of the base ring:

```sage```
Pols.<n> = QQ[]
pol = (n - 1/2)^2 * (n - 1)^2 * (n - 2)
pol.roots(ZZ)  # needs sage.libs.pari
[(2, 1), (1, 2)]```

An example involving large numbers:

```sage```
x = RR['x'].0
f = x**2 - 1e100
```

(continues on next page)
Polynomials, Release 10.4

sage: f.roots()
[(-1.00000000000000e50, 1), (1.00000000000000e50, 1)]
sage: f = x^10 - 2 * (5*x - 1)^2
sage: f.roots(multiplicities=False)
[-1.6772670339941..., 0.19995479628..., 0.20004530611..., 1.5763035161844...]

>>> from sage.all import *
>>> # needs numpy sage.rings.real_mpfr
>>> x = RR['x'].gen(0)
>>> f = x**Integer(10) - Integer(2) * (Integer(5)*x - Integer(1))**Integer(2)
>>> f.roots(multiplicities=False)
[-1.6772670339941..., 0.19995479628..., 0.20004530611..., 1.5763035161844...]

sage: # needs numpy sage.rings.real_mpfr
sage: x = CC['x'].0
sage: i = CC.0
sage: f = (x - 1) * (x - i)
sage: f.roots(multiplicities=False)
[1.00000000000000, 1.00000000000000*I]
sage: g = (x - 1.33 + 1.33*i) * (x - 2.66 - 2.66*i)

Describing roots using radical expressions:

sage: x = QQ['x'].0
sage: f = x^2 + 2
sage: f.roots(SR)
[(-I*sqrt(2), 1), (I*sqrt(2), 1)]
sage: f.roots(SR, multiplicities=False)
[-I*sqrt(2), I*sqrt(2)]

>>> from sage.all import *
>>> x = QQ['x'].gen(0)
>>> f = x**Integer(2) + Integer(2)

(continues on next page)
The roots of some polynomials cannot be described using radical expressions:

```
sage: (x^5 - x + 1).roots(SR) # needs sage.symbolic
[]
```

For some other polynomials, no roots can be found at the moment due to the way roots are computed. Issue #17516 addresses these defects. Until that gets implemented, one such example is the following:

```
sage: f = x^6 - 300*x^5 + 30361*x^4 - 1061610*x^3 + 1141893*x^2 - 915320*x + 101724

sage: f.roots() # needs sage.libs.pari
[]
```

A purely symbolic roots example:

```
sage: X = var('X')
sage: f = expand((X - 1) * (X - I)^3 * (X^2 - sqrt(2))); f
X^6 - (3*I + 1)*X^5 - sqrt(2)*X^4 + (3*I - 3)*X^4 + (3*I + 1)*sqrt(2)*X^3 + (I + 3)*X^3 - (3*I - 3)*sqrt(2)*X^2 - I*X^2 - (I + 3)*sqrt(2)*X + I*sqrt(2)

sage: f.roots() # needs sage.libs.pari
[(I, 3), (-2^(1/4), 1), (2^(1/4), 1), (1, 1)]
```

The same operation, performed over a polynomial ring with symbolic coefficients:
A couple of examples where the base ring does not have a factorization algorithm (yet). Note that this is currently done via a rather naive enumeration, so could be very slow:

```python
sage: R = Integers(6)
sage: A = PolynomialRing(R, 'y')
sage: y = A.gen()
sage: f = 10*y^2 - y^3 - 9
sage: f.roots(multiplicities=False) # needs sage.libs.sage
[1, 0, 3, 6]
```

```python
>>> from sage.all import *
>>> R = Integers(Integer(6))
>>> S = R['x']; (x,) = S._first_ngens(1)
>>> p = x**Integer(2) - Integer(1)
>>> p.roots() # needs sage.libs.sage
Traceback (most recent call last):
 ...
NotImplementedError: root finding with multiplicities for this polynomial not implemented (try the multiplicities=False option)
```

```python
sage: R = Integers(9)
sage: A = PolynomialRing(R, 'y')
sage: y = A.gen()
sage: f = 10*y^2 - y^3 - 9
sage: f.roots(multiplicities=False) # needs sage.libs.sage
[1, 0, 3, 6]
```

(continues on next page)
An example over the complex double field (where root finding is fast, thanks to NumPy):

```python
sage: # needs numpy sage.rings.complex_double
sage: R.<x> = CDF[]
sage: f = R.cyclotomic_polynomial(5); f
x^4 + x^3 + x^2 + x + 1.0
sage: f.roots(multiplicities=False) # abs tol 1e-9
[-0.8090169943749469 - 0.5877852522924724*I, -0.8090169943749473 + 0.5877852522924724*I, 0.3090169943749477 - 0.951056516295154*I, 0.3090169943749476 + 0.9510565162951525*I]
sage: [z**5 for z in f.roots(multiplicities=False)] # abs tol 2e-14
[0.9999999999999957 - 1.2864981197413038e-15*I, 0.9999999999999976 + 3.062854959127759e-15*I, 1.0000000000000024 + 1.13130177795295987e-15*I, 0.9999999999999953 - 2.0212861992297117e-15*I]
sage: f = CDF['x']([1,2,3,4]); f
4.0*x^3 + 3.0*x^2 + 2.0*x + 1.0
sage: r = f.roots(multiplicities=False)
sage: [f(a).abs() for a in r] # abs tol 1e-14
```

Another example over RDF:

```python
sage: x = RDF['x']().0
sage: ((x^3 - 1)).roots() # abs tol 4e-16
[1.0, 0.3090169943749477 + 0.951056516295154*I, -0.8090169943749473 - 0.5877852522924724*I]
```
More examples involving the complex double field:

```python
>>> from sage.all import *
>>> x = RDF['x'].gen(0)
>>> ((x^Integer(3) - Integer(1))).roots() # abs tol 4e-16
[[-1.091123635971727 - 0.629960524947437*I, 1],
 [-1.091123635971727 + 0.629960524947437*I, 1],
 [1.091123635971727 - 0.629960524947437*I, 1]]
```

```python
>>> f.roots(multiplicities=False) # abs tol 4e-16
([-1.091123635971727 - 0.629960524947437*I, 1],
 [-1.091123635971727 + 0.629960524947437*I, 1],
 [1.091123635971727 - 0.629960524947437*I, 1])
```

```python
>>> f.roots() # needs numpy
[(-1.091123635971727 - 0.629960524947437*I, 1),
 (-1.091123635971727 + 0.629960524947437*I, 1),
 (1.091123635971727 - 0.629960524947437*I, 1)]
```

```python
>>> abs(f(z)) for z in f.roots(multiplicities=False) # abs tol 1e-14
[8.95090418262362e-16, 8.728374398092689e-16, 1.0235750533041806e-15]
```

```python
>>> f = i*x^Integer(3) + Integer(2); f
I*x^3 + 2.0
```

```python
>>> f.roots() # needs numpy
[(-1.091123635971727 + 0.629960524947437*I, 1),
 (-1.091123635971727 - 0.629960524947437*I, 1),
 (1.091123635971727 + 0.629960524947437*I, 1)]
```

```python
>>> abs(f(f.roots()[0][0])) # abs tol 1e-13
1.1102230246251565e-16
```

```python
>>> from sage.all import *
>>> x = CDF['x'].gen(0)
>>> i = CDF.gen(0)
>>> f = x**Integer(3) + Integer(2)*i; f
x^3 + 2.0*I
```

```python
>>> f.roots() # needs numpy
[(-1.091123635971727 - 0.629960524947437*I, 1),
 (-1.091123635971727 + 0.629960524947437*I, 1),
 (1.091123635971727 - 0.629960524947437*I, 1)]
```

```python
>>> abs(f(z)) for z in f.roots(multiplicities=False) # abs tol 1e-14
[8.95090418262362e-16, 8.728374398092689e-16, 1.0235750533041806e-15]
```

```python
>>> f = i*x**Integer(3) + Integer(2); f
I*x^3 + 2.0
```

(continues on next page)
\[ I \times x^3 + 2.0 \]

```python
f.roots()
((\begin{array}{l}
\text{(-1.09112363597172... + 0.62996052494743...i, 1),} \\
\text{(-1.25992104989487... + 0.62996052494743...i, 1),} \\
\text{(1.09112363597172... + 0.62996052494743...i, 1)}
\end{array})\})
```

```python
f.roots()
((\begin{array}{l}
\text{(-1.09112363597172... + 0.62996052494743...i, 1),} \\
\text{(-1.25992104989487... + 0.62996052494743...i, 1),} \\
\text{(1.09112363597172... + 0.62996052494743...i, 1)}
\end{array})\})
```

Examples using real root isolation:

```python
f = x^2 - x - 1
f.roots(ring=AA)
((\begin{array}{l}
\text{(-0.618033988749895?, 1), (1.618033988749895?, 1)}
\end{array})\})
```

```python
f = f^2 * (x - 1)
f.roots(ring=RIF, multiplicities=False)
((\begin{array}{l}
\text{-0.6180339887498948482045868343657?, 1.6180339887498948482045868343657?}
\end{array})\})
```

```python
f = x**Integer(2) - x - Integer(1)
```

```python
f.roots(ring=RIF, multiplicities=False)
((\begin{array}{l}
\text{-0.6180339887498948482045868343657?, 1.6180339887498948482045868343657?}
\end{array})\})
```

```python
from sage.all import *
```

```python
x = polygen(ZZ)
```

```python
f = x^2 - x - 1
f.roots()
((\begin{array}{l}
\text{(-1.09112363597172... + 0.62996052494743...i, 1),} \\
\text{(-1.25992104989487... + 0.62996052494743...i, 1),} \\
\text{(1.09112363597172... + 0.62996052494743...i, 1)}
\end{array})\})
```

```python
abs(f(f.roots()[Integer(0)])[Integer(0)]) # abs tol 1e-13
1.1102230246251565e-16
```
Examples using complex root isolation:

```python
sage: x = polygen(ZZ)
sage: p = x^5 - x - 1
sage: p.roots()
˓→ needs sage.libs.pari
[]
sage: p.roots(ring=CIF)
˓→ needs sage.rings.complex_interval_field
[(1.167303978261419?, 1),
 (-0.76488433605847260298231877085417303289965194736756700778? - 0.352471546031727?*I, 1),
 (-0.76488433605847260298231877085417303289965194736756700778? + 0.352471546031727?*I, 1),
 (0.181232444698767? - 1.083954101317111?*I, 1),
 (0.181232444698767? + 1.083954101317111?*I, 1)]
sage: p.roots(ring=ComplexIntervalField(200))
˓→ needs sage.rings.complex_interval_field
[(1.16730397826141984256045899854842180720560371525489039140082?, 1),
 (-0.764884433605847260298231877085417303289965194736756700778? - 0.3524715460317270543942648082424733238770?*I, 1),
 (-0.764884433605847260298231877085417303289965194736756700778? + 0.3524715460317270543942648082424733238770?*I, 1),
 (0.1812324446987538390180023778112063996871646618462304743774? - 1.083954101317111?*I, 1),
 (0.1812324446987538390180023778112063996871646618462304743774? + 1.083954101317111?*I, 1)]
sage: rts = p.roots(ring=QQbar); rts
˓→ needs sage.rings.number_field
[(1.16730397826141984256045899854842180720560371525489039140082?, 1),
 (-0.764884433605847260298231877085417303289965194736756700778? - 0.3524715460317270543942648082424733238770?*I, 1),
 (-0.764884433605847260298231877085417303289965194736756700778? + 0.3524715460317270543942648082424733238770?*I, 1),
 (0.1812324446987538390180023778112063996871646618462304743774? - 1.083954101317111?*I, 1),
 (0.1812324446987538390180023778112063996871646618462304743774? + 1.083954101317111?*I, 1)]
sage: p = (x - rts[4][0])^2 * (3*x^2 + x + 1)
˓→ needs sage.rings.number_field
sage: p.roots(ring=QQbar)
˓→ needs sage.rings.complex_interval_field
[(-0.16666666666666667? - 0.552770789329567?*I, 1),
 (-0.166666666666666667? + 0.552770789329567?*I, 1),
 (0.1812324446987538390180023778112063996871646618462304743774? - 1.083954101317111?*I, 2)]
sage: p.roots(ring=CIF)
˓→ needs sage.rings.complex_interval_field
[(-0.16666666666666667? - 0.552770789329567?*I, 1),
 (-0.166666666666666667? + 0.552770789329567?*I, 1),
 (0.1812324446987538390180023778112063996871646618462304743774? - 1.083954101317111?*I, 2)]
```
In some cases, it is possible to isolate the roots of polynomials over complex ball fields:

```python
sage: # needs sage.libs.flint
sage: Pol.<x> = CBF[]
```

### Chapter 2. Univariate Polynomials

---

(continues from previous page)
Note that coefficients in a number field with defining polynomial $x^2 + 1$ are considered to be Gaussian rationals (with the generator mapping to $+i$), if you ask for complex roots.

```
sage: from sage.all import *
sage: # needs sage.libs.flint
sage: Pol = CBF['x']; (x,) = Pol._first_ngens(1)
sage: (x**Integer(2) + Integer(1)).roots(multiplicities=False)
[[-1.214638932244183? + 0.141421356237095?*I, 1],
 (-0.141421356237095? + 1.214638932244183?*I, 1),
 (0.141421356237095? + 1.214638932244183?*I, 1),
 (1.214638932244183? + 0.141421356237095?*I, 1)]
sage: p = p^2 * (y^2 - 2)
sage: p.roots(ring=CIF)
[(-1.41421356237095?, 1), (1.41421356237095?, 1),
 (-1.214638932244183? - 0.141421356237095?*I, 2),
 (-0.141421356237095? + 1.214638932244183?*I, 2),
 (0.141421356237095? - 1.214638932244183?*I, 2),
 (1.214638932244183? + 0.141421356237095?*I, 2)]
```
Note that one should not use NumPy when wanting high precision output as it does not support any of the high precision types:

```python
sage: # needs numpy sage.rings.real_mpfr sage.symbolic
sage: R.<x> = RealField(200)[]

sage: f = x^2 - R(pi)

sage: f.roots()
[(-1.7724538509055160272981674833411451827975494561223871282138, 1),
 (1.7724538509055160272981674833411451827975494561223871282138, 1)]

sage: f.roots(algorithm='numpy')
doctest... UserWarning: NumPy does not support arbitrary precision arithmetic. The roots found will likely have less precision than you expect.
[(-1.77245385090551..., 1), (1.77245385090551..., 1)]
```

We can also find roots over number fields:

```python
sage: K.<z> = CyclotomicField(15) # needs sage.rings.number_field

sage: R.<x> = PolynomialRing(K) # needs sage.rings.number_field

sage: (x^2 + x + 1).roots()
[(z^5, 1), (-z^5 - 1, 1)]
```

There are many combinations of floating-point input and output types that work. (Note that some of them are quite pointless like using `algorithm='numpy'` with high-precision types.)

```python
sage: # needs numpy sage.rings.complex_double sage.rings.real_mpfr
sage: rflds = (RR, RDF, RealField(100))
sage: cflds = (CC, CDF, ComplexField(100))
```
```python
def cross(a, b):
 return list(cartesian_product_iterator((a, b)))

flds = cross(rflds, rflds) + cross(rflds, cflds) + cross(cflds, cflds)

for (fld_in, fld_out) in flds:
 x = polygen(fld_in)
 f = x**3 - fld_in(2)
 x2 = polygen(fld_out)
 f2 = x2**3 - fld_out(2)

 for algo in (None, 'pari', 'numpy'):
 rts = f.roots(ring=fld_out, multiplicities=False)
 rts = sorted(rts, key=lambda x: x.imag())
 if fld_in == fld_out and algo is None:
 print("{}").format(fld_in, rts)
 for rt in rts:
 assert abs(f2(rt)) <= 1e-10
 assert rt.parent() == fld_out

Real Field with 53 bits of precision [1.25992104989487]
Real Double Field [1.25992104989...
Complex Field with 53 bits of precision [-0.62996052494743... - 1.0912363597172142*I, 1.25992104989487, -0.62996052494743... + 1.0912363597172142*I]
```

```python
>>> from sage.all import *
>>> # needs numpy sage.rings.complex_double sage.rings.real_mpfr
>>> rflds = (RR, RDF, RealField(Integer(100)))
>>> cflds = (CC, CDF, ComplexField(Integer(100)))
>>> def cross(a, b):
... return list(cartesian_product_iterator((a, b)))
>>> flds = cross(rflds, rflds) + cross(rflds, cflds) + cross(cflds, cflds)
>>> for (fld_in, fld_out) in flds:
... x = polygen(fld_in)
... f = x**3 - fld_in(Integer(2))
... x2 = polygen(fld_out)
... f2 = x2**3 - fld_out(Integer(2))
... for algo in (None, 'pari', 'numpy'):
... rts = f.roots(ring=fld_out, multiplicities=False)
... rts = sorted(rts, key=lambda x: x.imag())
... if fld_in == fld_out and algo is None:
... print("{}").format(fld_in, rts)
... for rt in rts:
... assert abs(f2(rt)) <= RealNumber('1e-10')
... assert rt.parent() == fld_out

Real Field with 53 bits of precision [1.25992104989487]
Real Double Field [1.25992104989...
Complex Field with 53 bits of precision [-0.62996052494743... - 1.0912363597172142*I, 1.25992104989487, -0.62996052494743... + 1.0912363597172142*I]
```
Complex Field with 100 bits of precision [-0.62996052494743658238360530364 - 1.091123659717214035600726142*I, 1.2599210498948731647672106073, -0.62996052494743658238360530364 + 1.0911236359717214035600726142*I]

Note that we can find the roots of a polynomial with algebraic coefficients:

```python
sage: # needs sage.rings.number_field
sage: rt2 = sqrt(AA(2))
sage: rt3 = sqrt(AA(3))
sage: x = polygen(AA)
sage: f = (x - rt2) * (x - rt3); f
x^2 - 3.146264369941973?*x + 2.449489742783178?
sage: rts = f.roots(); rts
[(1.414213562373095?, 1), (1.732050807568878?, 1)]
sage: rts[0][0] == rt2
True
sage: f.roots(ring=RealIntervalField(150))
[(1.41421356237309504880168872420969807569671875376948073176679738?, 1), (1.7320508075688772935274463415058723669428052538103862805806980?, 1)]
```

We can handle polynomials with huge coefficients.

This number doesn't even fit in an IEEE double-precision float, but RR and CC allow a much larger range of floating-point numbers:

```python
sage: bigc = 2^1500
sage: CDF(bigc) # needs sage.rings.complex_double
+infinity
sage: CC(bigc) # needs sage.rings.real_mpfr
3.50746621104340e451
```

```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> rt2 = sqrt(AA(Integer(2)))
>>> rt3 = sqrt(AA(Integer(3)))
>>> x = polygen(AA)
>>> f = (x - rt2) * (x - rt3); f
x^2 - 3.146264369941973?*x + 2.449489742783178?
>>> rts = f.roots(); rts
[(1.414213562373095?, 1), (1.732050807568878?, 1)]
>>> rts[Integer(0)][Integer(0)] == rt2
True
>>> f.roots(ring=RealIntervalField(Integer(150)))
[(1.41421356237309504880168872420969807569671875376948073176679738?, 1), (1.7320508075688772935274463415058723669428052538103862805806980?, 1)]
```

```python
sage: bigc = 2^1500
sage: CDF(bigc) # needs sage.rings.complex_double
+infinity
sage: CC(bigc) # needs sage.rings.real_mpfr
3.50746621104340e451
```

```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> rt2 = sqrt(AA(Integer(2)))
>>> rt3 = sqrt(AA(Integer(3)))
>>> x = polygen(AA)
>>> f = (x - rt2) * (x - rt3); f
x^2 - 3.146264369941973?*x + 2.449489742783178?
>>> rts = f.roots(); rts
[(1.414213562373095?, 1), (1.732050807568878?, 1)]
>>> rts[Integer(0)][Integer(0)] == rt2
True
>>> f.roots(ring=RealIntervalField(Integer(150)))
[(1.41421356237309504880168872420969807569671875376948073176679738?, 1), (1.7320508075688772935274463415058723669428052538103862805806980?, 1)]
```
Polynomials using such large coefficients can’t be handled by numpy, but pari can deal with them:

```python
sage: x = polygen(QQ)
sage: p = x + bigc
sage: p.roots(ring=RR, algorithm='numpy') # needs numpy sage.rings.real_mpfr
Traceback (most recent call last):
...
LinAlgError: Array must not contain infs or NaNs
sage: p.roots(ring=RR, algorithm='pari') # needs sage.libs.pari sage.rings.real_mpfr
[(-3.50746621104340e451, 1)]
sage: p.roots(ring=AA) # needs sage.rings.number_field
[(-3.5074662110434039e451, 1)]
sage: p.roots(ring=QQbar) # needs sage.rings.number_field
[(-3.5074662110434039e451, 1)]
sage: p = bigc*x + Integer(1)
sage: p.roots(ring=RR) # needs numpy
[(-2.85106096489671e-452, 1)]
sage: p.roots(ring=AA) # needs sage.rings.number_field
[(-2.8510609648967059e-452, 1)]
sage: p.roots(ring=QQbar) # needs sage.rings.number_field
[(-2.8510609648967059e-452, 1)]
sage: p = x**2 - bigc
sage: p.roots(ring=RR) # needs numpy
[(-5.92238652153286e-225, 1), (5.92238652153286e225, 1)]
sage: p.roots(ring=QQbar) # needs sage.rings.number_field
[(-5.9223865215328558e-225, 1), (5.9223865215328558e225, 1)]
```

```python
>>> from sage.all import *
>>> x = polygen(QQ)
>>> p = x + bigc
>>> p.roots(ring=RR, algorithm='numpy') # needs numpy sage.rings.real_mpfr
Traceback (most recent call last):
...
LinAlgError: Array must not contain infs or NaNs
>>> p.roots(ring=RR, algorithm='pari') # needs sage.libs.pari sage.rings.real_mpfr
[(-3.50746621104340e451, 1)]
>>> p.roots(ring=AA) # needs sage.rings.number_field
[(-3.5074662110434039e451, 1)]
>>> p.roots(ring=QQbar) # needs sage.rings.number_field
[(-3.5074662110434039e451, 1)]
>>> p = bigc*x + Integer(1)
>>> p.roots(ring=RR) # needs numpy
[(-2.85106096489671e-452, 1)]
>>> p.roots(ring=AA) # needs sage.rings.number_field
```
Polynomials, Release 10.4

Check that Issue #30522 is fixed:

```python
sage: PolynomialRing(SR, names="x")("x^2").roots() #...
<@
needs sage.symbolic

[(0, 2)]
```

Check that Issue #30523 is fixed:

```python
sage: PolynomialRing(SR, names="x")("x^2 + q").roots() #...
<@
needs sage.symbolic

[(-sqrt(-q), 1), (sqrt(-q), 1)]
```

ALGORITHM:

For brevity, we will use RR to mean any RealField of any precision; similarly for RDF, CDF, and RR. Since Sage has no specific implementation of Gaussian rationals (or of number fields with embedding, at all), when we refer to Gaussian rationals below we will accept any number field with defining polynomial \( x^2 + 1 \), mapping the field generator to \( +I \).

We call the base ring of the polynomial \( K \), and the ring given by the ring argument \( L \). (If ring is not specified, then \( L \) is the same as \( K \).)

If \( K \) and \( L \) are floating-point (RDF, CDF, RR, or CC), then a floating-point root-finder is used. If \( L \) is RDF or CDF, then we default to using NumPy’s \texttt{roots()}\); otherwise, we use PARI’s function \texttt{pari:polroots}. This choice can be overridden with \texttt{algorithm=pari} or \texttt{algorithm=numpy}. If the algorithm is unspecified and NumPy’s \texttt{roots()} algorithm fails, then we fall back to PARI (NumPy will fail if some coefficient is infinite, for instance).

If \( L \) is \texttt{SR} (or one of its subrings), then the roots will be radical expressions, computed as the solutions of a symbolic polynomial expression. At the moment this delegates to \texttt{sage.symbolic.expression.Expression.solve()} which in turn uses Maxima to find radical solutions. Some solutions may be lost in this approach. Once Issue #17516 gets implemented, all possible radical solutions should become available.

If \( L \) is \texttt{AA} or \texttt{RIF}, and \( K \) is \texttt{ZZ}, \texttt{QQ}, or \texttt{AA}, then the root isolation algorithm \texttt{sage.rings.polynomial.}
real_roots().real_roots() is used. (You can call real_roots() directly to get more control than this method gives.)

If $L$ is QQbar or CIF, and $K$ is ZZ, QQ, AA, QQbar, or the Gaussian rationals, then the root isolation algorithm sage.rings.polynomial.complex_roots.complex_roots() is used. (You can call complex_roots() directly to get more control than this method gives.)

If $L$ is AA and $K$ is QQbar or the Gaussian rationals, then complex_roots() is used (as above) to find roots in QQbar, then these roots are filtered to select only the real roots.

If $L$ is floating-point and $K$ is not, then we attempt to change the polynomial ring to $L$ (using change_ring()) (or, if $L$ is complex and $K$ is not, to the corresponding real field). Then we use either PARI or NumPy as specified above.

For all other cases where $K$ is different from $L$, we attempt to use .change_ring($L$). When that fails but $L$ is a subring of $K$, we also attempt to compute the roots over $K$ and filter the ones belonging to $L$.

The next method, which is used if $K$ is an integral domain, is to attempt to factor the polynomial. If this succeeds, then for every degree-one factor $ax + b$, we add $-b/a$ as a root (as long as this quotient is actually in the desired ring).

If factoring over $K$ is not implemented (or $K$ is not an integral domain), and $K$ is finite, then we find the roots by enumerating all elements of $K$ and checking whether the polynomial evaluates to zero at that value.

Note: We mentioned above that polynomials with multiple roots are always ill-conditioned; if your input is given to $n$ bits of precision, you should not expect more than $n/k$ good bits for a $k$-fold root. (You can get solutions that make the polynomial evaluate to a number very close to zero; basically the problem is that with a multiple root, there are many such numbers, and it’s difficult to choose between them.)

To see why this is true, consider the naive floating-point error analysis model where you just pretend that all floating-point numbers are somewhat imprecise - a little ‘fuzzy’, if you will. Then the graph of a floating-point polynomial will be a fuzzy line. Consider the graph of $(x - 1)^3$: this will be a fuzzy line with a horizontal tangent at $x = 1, y = 0$. If the fuzziness extends up and down by about $j$, then it will extend left and right by about cube_root($j$).

shift ($n$)

Return this polynomial multiplied by the power $x^n$. If $n$ is negative, terms below $x^n$ will be discarded. Does not change this polynomial (since polynomials are immutable).

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: p = x^2 + 2*x + 4
sage: p.shift(0)
x^2 + 2*x + 4
sage: p.shift(-1)
x + 2
sage: p.shift(-5)
0
sage: p.shift(2)
x^4 + 2*x^3 + 4*x^2

>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> p = x**Integer(2) + Integer(2)*x + Integer(4)
>>> p.shift(Integer(0))
x^2 + 2*x + 4
```

(continues on next page)
Polynomials, Release 10.4

>>> p.shift(-Integer(1))
x + 2
>>> p.shift(-Integer(5))
0
>>> p.shift(Integer(2))
x^4 + 2*x^3 + 4*x^2

One can also use the infix shift operator:

\begin{verbatim}
sage: f = x^3 + x
sage: f >> 2
x
sage: f << 2
x^5 + x^3
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> f = x**Integer(3) + x
>>> f >> Integer(2)
x
>>> f << Integer(2)
x^5 + x^3
\end{verbatim}

AUTHORS:

- David Harvey (2006-08-06)

\textbf{specialization}(D=None, phi=None)

Specialization of this polynomial.

Given a family of polynomials defined over a polynomial ring. A specialization is a particular member of that family. The specialization can be specified either by a dictionary or a \texttt{SpecializationMorphism}.

INPUT:

- \texttt{D} – dictionary (optional)
- \texttt{phi} – \texttt{SpecializationMorphism} (optional)

OUTPUT: a new polynomial

EXAMPLES:

\begin{verbatim}
sage: R.<c> = PolynomialRing(ZZ)
sage: S.<z> = PolynomialRing(R)
sage: F = c*z^2 + c^2
sage: F.specialization({c:2})
2*z^2 + 4
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> R = PolynomialRing(ZZ, names=('c',)); (c,) = R._first_ngens(1)
>>> S = PolynomialRing(R, names=('z',)); (z,) = S._first_ngens(1)
>>> F = c*z**Integer(2) + c**Integer(2)
>>> F.specialization({c:Integer(2)})
2*z^2 + 4
\end{verbatim}
sage: A.<c> = QQ[]
sage: R.<x> = Frac(A)[]
sage: X = (1 + x/c).specialization({c:20})
sage: X
1/20*x + 1
sage: X.parent()
Univariate Polynomial Ring in x over Rational Field

>>> from sage.all import *
>>> A = QQ['c']; (c,) = A._first_ngens(1)
>>> R = Frac(A)[x]; (x,) = R._first_ngens(1)
>>> X = (Integer(1) + x/c).specialization({c:Integer(20)})
>>> X
1/20*x + 1
>>> X.parent()
Univariate Polynomial Ring in x over Rational Field

splitting_field (names=None, map=False, **kwds)

Compute the absolute splitting field of a given polynomial.

INPUT:

- names – (default: None) a variable name for the splitting field.
- map – (default: False) also return an embedding of self into the resulting field.
- kwds – additional keywords depending on the type. Currently, only number fields are implemented. See sage.rings.number_field.splitting_field.splitting_field() for the documentation of these keywords.

OUTPUT:

If map is False, the splitting field as an absolute field. If map is True, a tuple (K, phi) where phi is an embedding of the base field of self in K.

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ)
sage: K.<a> = (x^3 + 2).splitting_field(); K  # needs sage.rings.number_field
Number Field in a with defining polynomial
x^6 + 3*x^5 + 6*x^4 + 11*x^3 + 12*x^2 - 3*x + 1
sage: K.<a> = (x^3 - 3*x + 1).splitting_field(); K  # needs sage.rings.number_field
Number Field in a with defining polynomial x^3 - 3*x + 1

>>> from sage.all import *
>>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>> K = (x**Integer(3) + Integer(2)).splitting_field(names=('a',)); (a,) = K._
first_ngens(1); K # needs sage.rings.number_field
Number Field in a with defining polynomial
x^6 + 3*x^5 + 6*x^4 + 11*x^3 + 12*x^2 - 3*x + 1
>>> K = (x**Integer(3) - Integer(3)*x + Integer(1)).splitting_field(names=('a 
->',)); (a,) = K._first_ngens(1); K # needs sage.
Number Field in a with defining polynomial
x^3 - 3*x + 1

Relative situation:
sage: # needs sage.rings.number_field
sage: R.<x> = PolynomialRing(QQ)

sage: K.<a> = NumberField(x^3 + 2)

sage: S.<t> = PolynomialRing(K)

sage: L.<b> = (t^2 - a).splitting_field()

sage: L
Number Field in b with defining polynomial t^6 + 2

>>> from sage.all import *

>>> # needs sage.rings.number_field

>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)

>>> K = NumberField(x**Integer(3) + Integer(2), names=('a',)); (a,) = K._
˓→first_ngens(1)

>>> S = PolynomialRing(K, names=('t',)); (t,) = S._first_ngens(1)

>>> L = (t**Integer(2) - a).splitting_field(names=('b',)); (b,) = L._first_
˓→ngens(1)

>>> L
Number Field in b with defining polynomial t^6 + 2

With map=True, we also get the embedding of the base field into the splitting field:

sage: L.<b>, phi = (t^2 - a).splitting_field(map=True)  # needs sage.rings.number_field

sage: phi  # needs sage.rings.number_field
Ring morphism:
  From: Number Field in a with defining polynomial x^3 + 2
  To:   Number Field in b with defining polynomial t^6 + 2
  Defn: a |--> b^2

>>> from sage.all import *

>>> L, phi = (t**Integer(2) - a).splitting_field(map=True, names=('b',)); (b, ˓→) = L._first_ngens(1)# needs sage.rings.number_field

>>> phi  # needs sage.rings.number_field
Ring morphism:
  From: Number Field in a with defining polynomial x^3 + 2
  To:   Number Field in b with defining polynomial t^6 + 2
  Defn: a |--> b^2

An example over a finite field:

sage: P.<x> = PolynomialRing(GF(7))

sage: t = x^2 + 1

sage: t.splitting_field('b')  # needs sage.rings.finite_rings
Finite Field in b of size 7^2

sage: P.<x> = PolynomialRing(GF(7^3, 'a'))  # needs sage.rings.finite_rings

sage: t = x^2 + 1

sage: t.splitting_field('b', map=True)  # needs sage.rings.finite_rings
(Finite Field in b of size 7^6, Ring morphism:
  From: Finite Field in a of size 7^3
  To:   Finite Field in b of size 7^6
  Defn: a |--> b^2

(continues on next page)
To: Finite Field in b of size 7^6
Defn: a |--> 2*b^4 + 6*b^3 + 2*b^2 + 3*b + 2)

```
>>> from sage.all import *
>>> P = PolynomialRing(GF(Integer(7)), names=('x',)); (x,) = P._first_ngens(1)
>>> t = x**Integer(2) + Integer(1)
>>> t.splitting_field('b') #...
→ needs sage.rings.finite_rings
Finite Field in b of size 7^2

>>> P = PolynomialRing(GF(Integer(7)**Integer(3), a), names=('x',)); (x,) = ...
→ P._first_ngens(1)# needs sage.rings.finite_rings
>>> t = x**Integer(2) + Integer(1)
>>> t.splitting_field('b', map=True) #...
→ needs sage.rings.finite_rings
(Finite Field in b of size 7^6,
Ring morphism:
 From: Finite Field in a of size 7^3
 To: Finite Field in b of size 7^6
 Defn: a |--> 2*b^4 + 6*b^3 + 2*b^2 + 3*b + 2)
```

If the extension is trivial and the generators have the same name, the map will be the identity:

```
sage: t = 24*x^13 + 2*x^12 + 14
sage: t.splitting_field(a, map=True) #...
→ needs sage.rings.finite_rings
(Finite Field in a of size 7^3,
Identity endomorphism of Finite Field in a of size 7^3)
```

```
sage: t = x^56 - 14*x^3
sage: t.splitting_field(b, map=True) #...
→ needs sage.rings.finite_rings
(Finite Field in b of size 7^3,
Ring morphism:
 From: Finite Field in a of size 7^3
 To: Finite Field in b of size 7^3
 Defn: a |--> b)
```

```
>>> from sage.all import *
>>> t = Integer(24)*x**Integer(13) + Integer(2)*x**Integer(12) + Integer(14)
>>> t.splitting_field('a', map=True) #...
→ needs sage.rings.finite_rings
(Finite Field in a of size 7^3,
Identity endomorphism of Finite Field in a of size 7^3)
```

```
>>> t = x**Integer(56) - Integer(14)*x**Integer(3)
>>> t.splitting_field('b', map=True) #...
→ needs sage.rings.finite_rings
(Finite Field in b of size 7^3,
Ring morphism:
 From: Finite Field in a of size 7^3
 To: Finite Field in b of size 7^3
 Defn: a |--> b)
```

See also:

sage.rings.number_field.splitting_field.splitting_field() for more examples
over number fields

**square()**

Return the square of this polynomial.

**Todo:**

- This is just a placeholder; for now it just uses ordinary multiplication. But generally speaking, squaring is faster than ordinary multiplication, and it’s frequently used, so subclasses may choose to provide a specialised squaring routine.
- Perhaps this even belongs at a lower level? RingElement or something?

**AUTHORS:**

- David Harvey (2006-09-09)

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = x^3 + 1
sage: f.square()
x^6 + 2*x^3 + 1
```

```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(3) + Integer(1)
>>> f.square()
x^6 + 2*x^3 + 1
```

**squarefree_decomposition()**

Return the square-free decomposition of this polynomial. This is a partial factorization into square-free, coprime polynomials.

**EXAMPLES:**

```python
sage: x = polygen(QQ)
sage: p = 37 * (x - 1)^3 * (x - 2)^3 * (x - 1/3)^7 * (x - 3/7)
sage: p.squarefree_decomposition()
(37*x - 111/7) * (x^2 - 3*x + 2)^3 * (x - 1/3)^7
```

```python
sage: x = polygen(GF(3))
sage: x.squarefree_decomposition()
x
```

```python
sage: f = QQbar['x'](1)
needs sage.rings.number_field
```

```python
sage: f.squarefree_decomposition() # needs sage.rings.number_field
```
subresultants\text{(other)}

Return the nonzero subresultant polynomials of self and other.

INPUT:

\begin{itemize}
\item other – a polynomial
\end{itemize}

OUTPUT: a list of polynomials in the same ring as self

EXAMPLES:

\begin{verbatim}
sage: R.<x> = ZZ[]
sage: f = x^8 + x^6 - 3*x^4 - 3*x^3 + 8*x^2 + 2*x - 5
sage: g = 3*x^6 + 5*x^4 - 4*x^2 - 9*x + 21
sage: f.subresultants(g)
[260708, 9326*x - 12300, 169*x^2 + 325*x - 637, 65*x^2 + 125*x - 245, 25*x^4 - 5*x^2 + 15, 15*x^4 - 3*x^2 + 9]
\end{verbatim}

ALGORITHM:

We use the schoolbook algorithm with Lazard's optimization described in [Duc1998]
REFERENCES:

Wikipedia article Polynomial_greatest_common_divisor#Subresultants

**subs** *(in_dict=None, *args, **kwds)*

Substitute the variable in *self*.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: f = x^3 + x - 3
sage: f.subs(x=5)
127
sage: f.subs(5)
127
sage: f.subs({x:2})
7
sage: f.subs({})
x^3 + x - 3
sage: f.subs({'x':2})
Traceback (most recent call last):
...
TypeError: keys do not match self's parent
```

```python
>>> from sage.all import *

>>> R = QQ[x]; (x,) = R._first_ngens(1)

>>> f = x**Integer(3) + x - Integer(3)

>>> f.subs(x=Integer(5))
127

>>> f.subs(Integer(5))
127

>>> f.subs({x:Integer(2)})
7

>>> f.subs({})
x^3 + x - 3

>>> f.subs({'x':Integer(2)})
Traceback (most recent call last):
...
TypeError: keys do not match self's parent
```

**sylvester_matrix** *(right, variable=None)*

Return the Sylvester matrix of *self* and *right*.

Note that the Sylvester matrix is not defined if one of the polynomials is zero.

**INPUT:**

- **right** – a polynomial in the same ring as *self*.

- **variable** – optional, included for compatibility with the multivariate case only. The variable of the polynomials.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: f = (6*x + 47) * (7*x^2 - 2*x + 38)
sage: g = (6*x + 47) * (3*x^3 + 2*x + 1)
sage: M = f.sylvester_matrix(g); M

[42 317 134 1786 0 0 0]
```

(continues on next page)
If the polynomials share a non-constant common factor then the determinant of the Sylvester matrix will be zero:

```python
sage: M.determinant() # needs sage.modules
0
```

If `self` and `right` are polynomials of positive degree, the determinant of the Sylvester matrix is the resultant of the polynomials.

```python
sage: M1 = h1.sylvester_matrix(h2) # needs sage.modules
sage: M1.determinant() == h1.resultant(h2) # needs sage.libs.pari sage.modules
True
```

The rank of the Sylvester matrix is related to the degree of the gcd of `self` and `right`:

```python
>>> h1 = R._random_nonzero_element()
>>> h2 = R._random_nonzero_element()
>>> M1 = h1.sylvester_matrix(h2) # needs sage.modules
>>> M1.determinant() == h1.resultant(h2) # needs sage.libs.pari sage.modules
True
```
\texttt{sage}: \texttt{f.gcd(g).degree()} == \texttt{f.degree()} + \texttt{g.degree()} - \texttt{M.rank()}
\hspace{1cm} \#_{\text{needs sage.modules}}
\texttt{True}

\texttt{sage}: \texttt{h1.gcd(h2).degree()} == \texttt{h1.degree()} + \texttt{h2.degree()} - \texttt{M1.rank()}
\hspace{1cm} \#_{\text{needs sage.modules}}
\texttt{True}

\texttt{from sage.all import *}

\texttt{f.gcd(g).degree()} == \texttt{f.degree()} + \texttt{g.degree()} - \texttt{M.rank()}
\hspace{1cm} \#_{\text{needs sage.modules}}
\texttt{True}

\texttt{h1.gcd(h2).degree()} == \texttt{h1.degree()} + \texttt{h2.degree()} - \texttt{M1.rank()}
\hspace{1cm} \#_{\text{needs sage.modules}}
\texttt{True}

\textbf{symmetric\_power} \((k, \text{monic}=\text{False})\)

Return the polynomial whose roots are products of \(k\)-th distinct roots of this.

\textbf{EXAMPLES:}

\texttt{sage}: \texttt{x = polygen(QQ)}
\texttt{sage}: \texttt{f = x^4 - x + 2}
\texttt{sage}: \texttt{[f.symmetric\_power(k) \textbf{for k in range(5)}]} \hspace{1cm} \#_{\text{needs sage.libs.singular}}
\texttt{[x - 1, x^4 - x + 2, x^6 - 2*x^4 - x^3 - 4*x^2 + 8, x^4 - x^3 + 8, x - 2]}

\texttt{sage}: \texttt{f = x^5 - 2*x + 2}
\texttt{sage}: \texttt{[f.symmetric\_power(k) \textbf{for k in range(6)}]} \hspace{1cm} \#_{\text{needs sage.libs.singular}}
\texttt{[x - 1, x^5 - 2*x + 2, x^10 + 2*x^8 - 4*x^6 - 8*x^5 - 8*x^4 - 8*x^3 + 16, x^10 + 4*x^7 - 8*x^6 + 16*x^5 - 16*x^4 + 32*x^2 + 64, x^5 + 2*x^4 - 16, x + 2]}

\texttt{sage}: \texttt{R.<a,b,c,d> = ZZ[]}
\texttt{sage}: \texttt{x = polygen(R)}
\texttt{sage}: \texttt{f = (x - a) * (x - b) * (x - c) * (x - d)}
\texttt{sage}: \texttt{[f.symmetric\_power(k) .factor() \textbf{for k in range(5)}]} \hspace{1cm} \#_{\text{needs sage.libs.singular}}
\texttt{[x - 1, (-x + d) * (-x + c) * (-x + b) * (-x + a), (x - c*d) * (x - b*d) * (x - a*d) * (x - b*c) * (x - a*c) * (x - a*b), (x - b*c*d) * (x - a*c*d) * (x - a*b*d) * (x - a*b*c), x - a*b*c*d]}

\texttt{from sage.all import *}
\texttt{x = polygen(QQ)}
\texttt{f = x^5 - Integer(2)*x + Integer(2)}
\texttt{[f.symmetric\_power(k) \textbf{for k in range(Integer(5))}]} \hspace{1cm} \#_{\text{needs sage.libs.singular}}
\texttt{[x - 1, x^4 - x + 2, x^6 - 2*x^4 - x^3 - 4*x^2 + 8, x^4 - x^3 + 8, x - 2]}

\texttt{f = x^6 - Integer(2)*x + Integer(2)}
\texttt{[f.symmetric\_power(k) \textbf{for k in range(Integer(6))}]} \hspace{1cm} \#_{\text{needs sage.libs.singular}}

(continues on next page)
trace_polynomial()
Compute the trace polynomial and cofactor.

The input $P$ and output $Q$ satisfy the relation

$$P(x) = Q(x + q/x)x^{\deg(Q)} R(x).$$

In this relation, $Q$ has all roots in the real interval $[-2\sqrt{q}, 2\sqrt{q}]$ if and only if $P$ has all roots on the circle $|x| = \sqrt{q}$ and $R$ divides $x^2 - q$. We thus require that the base ring of this polynomial have a coercion to the real numbers.

See also:
The inverse operation is reciprocal_transform().

OUTPUT:
• $Q$ – trace polynomial
• $R$ – cofactor
• $q$ – scaling factor

EXAMPLES:

```
sage: pol.<x> = PolynomialRing(Rationals())
sage: u = x^5 - 1; u.trace_polynomial() (x^2 + x - 1, x - 1, 1)
sage: u = x^4 + x^3 + 5*x^2 + 3*x + 9
sage: u.trace_polynomial() (x^2 + x - 1, 1, 3)
```
We check that this function works for rings that have a coercion to the reals:

```python
sage: # needs sage.rings.number_field
sage: K.<a> = NumberField(x^2 - 2, embedding=1.4)
sage: u = x^4 + a*x^3 + 3*x^2 + 2*a*x + 4
sage: u.trace_polynomial()
(x^2 + a*x - 1, 1, 2)
sage: (u*(x^2-2)).trace_polynomial()
(x^2 + a*x - 1, x^2 - 2, 2)
sage: (u*(x^2-2)^2).trace_polynomial()
(x^4 + a*x^3 - 9*x^2 - 8*a*x + 8, 1, 2)
```

```
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> K = NumberField(x**Integer(2) - Integer(2), embedding=RealNumber('1.4'),
… → names=('a',)); (a,) = K._first_ngens(1)
>>> u = x**Integer(4) + a*x**Integer(3) + Integer(3)*x**Integer(2) +
… → Integer(2)*a*x + Integer(4)
>>> u.trace_polynomial()
(x^2 + a*x - 1, 1, 2)
>>> (u*(x**Integer(2)-Integer(2))).trace_polynomial()
(x^2 + a*x - 1, x^2 - 2, 2)
>>> (u*(x**Integer(2)-Integer(2))**Integer(2)).trace_polynomial()
(x^4 + a*x^3 - 9*x^2 - 8*a*x + 8, 1, 2)
>>> (u*(x**Integer(2)-Integer(2))**Integer(3)).trace_polynomial()
(x^4 + a*x^3 - 9*x^2 - 8*a*x + 8, x^2 - 2, 2)
```

`truncate(n)`

Return the polynomial of degree < n which is equivalent to self modulo $x^n$.

**EXAMPLES:**

```python
sage: R.<x> = ZZ[]; S.<y> = PolynomialRing(R, sparse=True)
sage: f = y^3 + x*y - 3*x; f
y^3 + x*y - 3*x
sage: f.truncate(2)
x*y - 3*x
sage: f.truncate(1)
-3*x
sage: f.truncate(0)
0
```
Polynomials, Release 10.4

>>> from sage.all import *

>>> R = ZZ['x']; (x,) = R._first_ngens(1); S = PolynomialRing(R, sparse=True, names=('y',)); (y,) = S._first_ngens(1)

>>> f = y*Integer(3) + x*y - Integer(3)*x; f
y^3 + x*y - 3*x

>>> f.truncate(Integer(2))
x*y - 3*x

>>> f.truncate(Integer(1))
-3*x

>>> f.truncate(Integer(0))
0

valuation(p=None)

If \( f = a_r x^r + a_{r+1} x^{r+1} + \cdots \), with \( a_r \) nonzero, then the valuation of \( f \) is \( r \). The valuation of the zero polynomial is \( \infty \).

If a prime (or non-prime) \( p \) is given, then the valuation is the largest power of \( p \) which divides \( self \).

The valuation at \( \infty \) is \(-self\text{.degree()}\).

EXAMPLES:

sage: P.<x> = ZZ[]

sage: (x^2 + x).valuation()
1

sage: (x^2 + x).valuation(x + 1)
1

sage: (x^2 + 1).valuation()
0

sage: (x^3 + 1).valuation(infinity)
-3

sage: P(0).valuation()
+Infinity

>>> from sage.all import *

>>> P = ZZ['x']; (x,) = P._first_ngens(1)

>>> (x**Integer(2) + x).valuation()
1

>>> (x**Integer(2) + x).valuation(x + Integer(1))
1

>>> (x**Integer(2) + Integer(1)).valuation()
0

>>> (x**Integer(3) + Integer(1)).valuation(infinity)
-3

>>> P(Integer(0)).valuation()
+Infinity

variable_name()

Return name of variable used in this polynomial as a string.

OUTPUT: string

EXAMPLES:

sage: R.<t> = QQ[]

sage: f = t^3 + 3/2*t + 5

sage: f.variable_name()
't'

2.1. Univariate Polynomials and Polynomial Rings 193
variables()

Return the tuple of variables occurring in this polynomial.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: x.variables()
(x,)
```

A constant polynomial has no variables.

```
sage: R(2).variables()
()
```

xgcd(other)

Return an extended gcd of this polynomial and other.

INPUT:

* other – a polynomial in the same ring as this polynomial

OUTPUT:

A tuple \((r, s, t)\) where \(r\) is a greatest common divisor of this polynomial and \(\text{other}\), and \(s\) and \(t\) are such that \(r = s*\text{self} + t*\text{other}\) holds.

Note: The actual algorithm for computing the extended gcd depends on the base ring underlying the polynomial ring. If the base ring defines a method \_xgcd\_univariate\_polynomial(), then this method will be called (see examples below).

EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: R.<x> = QQbar[]
sage: (2*x^2).gcd(2*x)
```

194 Chapter 2. Univariate Polynomials
One can easily add \texttt{xgcd} functionality to new rings by providing a method \texttt{\_xgcd\_univariate\_polynomial()}:  

```python
sage: R.<x> = QQ[]
sage: S.<y> = R[]
sage: h1 = y*x
sage: h2 = y^2*x^2
sage: h1.xgcd(h2)
Traceback (most recent call last):
 ...
NotImplementedError: Univariate Polynomial Ring in x over Rational Field
does not provide an \texttt{xgcd} implementation for univariate polynomials
```

```python
sage: T.<x,y> = QQ[]
sage: def poor_xgcd(f, g):
 ...: ret = S(T(f).gcd(g))
 ...: if ret == f: return ret, S.one(), S.zero()
 ...: if ret == g: return ret, S.zero(), S.one()
 ...: raise
sage: R._xgcd_univariate_polynomial = poor_xgcd
sage: h1.xgcd(h2)
(x*y, 1, 0)
```

```python
sage: del R._xgcd_univariate_polynomial
```
It calls the \_new\_constant\_poly() method on the generator, which should be optimized for a particular polynomial type.

Technically, it should be a method of the polynomial ring, but few polynomial rings are Cython classes, and so, as a method of a Cython polynomial class, it is faster.

EXAMPLES:

We demonstrate that most polynomial ring classes use polynomial base injection maps for coercion. They are supposed to be the fastest maps for that purpose. See Issue\#9944.

```python
sage: # needs sage.rings.padics
sage: R.<x> = Qp(3)[]
sage: R.coerce_map_from(R.base_ring())
Polynomial base injection morphism:
 From: 3-adic Field with capped relative precision 20
 To: Univariate Polynomial Ring in x over 3-adic Field with capped relative precision 20
sage: R.<x,y> = Qp(3)[]
sage: R.coerce_map_from(R.base_ring())
Polynomial base injection morphism:
 From: 3-adic Field with capped relative precision 20
 To: Multivariate Polynomial Ring in x, y over 3-adic Field with capped relative precision 20
sage: R.<x,y> = QQ[

sage: R.coerce_map_from(R.base_ring())
Polynomial base injection morphism:
 From: Rational Field
 To: Multivariate Polynomial Ring in x, y over Rational Field
sage: R.<x> = QQ[

sage: R.coerce_map_from(R.base_ring())
Polynomial base injection morphism:
 From: Rational Field
 To: Univariate Polynomial Ring in x over Rational Field
```
Polynomial base injection morphism:
From: Rational Field
To: Univariate Polynomial Ring in x over Rational Field

By Issue #9944, there are now only very few exceptions:

```sage
sage: PolynomialRing(QQ, names=[]).coerce_map_from(QQ)
Call morphism:
From: Rational Field
To: Multivariate Polynomial Ring in no variables over Rational Field
```

```python
>>> from sage.all import *
>>> PolynomialRing(QQ, names=[]).coerce_map_from(QQ)
Call morphism:
From: Rational Field
To: Multivariate Polynomial Ring in no variables over Rational Field
```

**is_injective()**

Return whether this morphism is injective.

**EXAMPLES:**

```sage
sage: R.<x> = ZZ[]
sage: S.<y> = R[]
sage: S.coerce_map_from(R).is_injective()
True
```

```python
>>> from sage.all import *
>>> R = ZZ[x]; (x,) = R._first_ngens(1)
>>> S = R[y]; (y,) = S._first_ngens(1)
>>> S.coerce_map_from(R).is_injective()
True
```

Check that Issue #23203 has been resolved:

```sage
sage: R.is_subring(S) # indirect doctest
True
```

```python
>>> from sage.all import *
>>> R = ZZ[x]; (x,) = R._first_ngens(1)
>>> R.is_subring(S) # indirect doctest
True
```

**is_surjective()**

Return whether this morphism is surjective.

**EXAMPLES:**

```sage
sage: R.<x> = ZZ[]
sage: R.coerce_map_from(ZZ).is_surjective()
False
```

```python
>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> R.coerce_map_from(ZZ).is_surjective()
False
```
**class** \texttt{sage.rings.polynomial.polynomial_element.Polynomial\_generic\_dense}

Bases: \texttt{Polynomial}

A generic dense polynomial.

**EXAMPLES:**

```python
sage: f = QQ['x']['y'].random_element()
sage: loads(f.dumps()) == f
True
```

```python
>>> from sage.all import *

>>> f = QQ['x']['y'].random_element()

>>> loads(f.dumps()) == f

True
```

**constant\_coefficient()**

Return the constant coefficient of this polynomial.

OUTPUT: element of base ring

**EXAMPLES:**

```python
sage: R.<t> = QQ[]
sage: S.<x> = R[]
sage: f = x*t + x + t
sage: f.constant_coefficient()

\texttt{t}
```

```python
>>> from sage.all import *

>>> R = QQ['t']; (t,) = R._first_ngens(1)

>>> S = R['x']; (x,) = S._first_ngens(1)

>>> f = x*t + x + t

>>> f.constant_coefficient()

\texttt{t}
```

**degree** \texttt{(gen=None)}

**EXAMPLES:**

```python
sage: R.<x> = RDF[]
sage: f = (1+2*x^7)^5
sage: f.degree()

\texttt{35}
```

```python
>>> from sage.all import *

>>> R = RDF['x']; (x,) = R._first_ngens(1)

>>> f = (Integer(1)+Integer(2)*x**Integer(7))**Integer(5)

>>> f.degree()

\texttt{35}
```

**is\_term()**

Return \texttt{True} if this polynomial is a nonzero element of the base ring times a power of the variable.

**EXAMPLES:**

```python
```
sage: # needs sage.symbolic
sage: R.<x> = SR[]
sage: R(0).is_term()  # False
sage: R(1).is_term()   # True
sage: (3*x^5).is_term()  # True
sage: (1 + 3*x^5).is_term()  # False

>>> from sage.all import *
>>> # needs sage.symbolic
>>> R = SR['x']; (x,) = R._first_ngens(1)
>>> R(Integer(0)).is_term()  # False
>>> R(Integer(1)).is_term()   # True
>>> (Integer(3)*x**Integer(5)).is_term()  # True
>>> (Integer(1) + Integer(3)*x**Integer(5)).is_term()  # False

list (copy=True)

Return a new copy of the list of the underlying elements of self.

EXAMPLES:

sage: R.<x> = GF(17)[]
sage: f = (1+2*x)^3 + 3*x; f
8*x^3 + 12*x^2 + 9*x + 1
sage: f.list()
[1, 9, 12, 8]

>>> from sage.all import *
>>> R = GF(Integer(17))[x]; (x,) = R._first_ngens(1)
>>> f = (Integer(1)+Integer(2)*x)**Integer(3) + Integer(3)*x; f
8*x^3 + 12*x^2 + 9*x + 1
>>> f.list()
[1, 9, 12, 8]

quo_rem (other)

Return the quotient and remainder of the Euclidean division of self and other.

Raises a ZeroDivisionError if other is zero. Raises an ArithmeticError if the division is not exact.

EXAMPLES:

sage: P.<x> = QQ[]
sage: R.<y> = P[]
sage: f = y^10 + R.random_element(9)
sage: g = y^5 + R.random_element(4)
sage: q, r = f.quo_rem(g)
sage: f == q*g + r  # True
sage: g = x*y^5

(continues on next page)
Polynomials, Release 10.4

sage: f.quo_rem(g)
Traceback (most recent call last):
...
ArithmeticError: division non exact (consider coercing to polynomials over the fraction field)
sage: g = 0
sage: f.quo_rem(g)
Traceback (most recent call last):
...
ZeroDivisionError: division by zero polynomial

>>> from sage.all import *
>>>
>>> P = QQ['x']; (x,) = P._first_ngens(1)
>>> R = P['y']; (y,) = R._first_ngens(1)
>>> f = y**Integer(10) + R.random_element(Integer(9))
>>> g = y**Integer(5) + R.random_element(Integer(4))
>>> q, r = f.quo_rem(g)
>>> f == q*g + r
True

Polynomials over noncommutative rings are also allowed (after Issue #34733):

sage: # needs sage.combinat sage.modules
sage: HH = QuaternionAlgebra(QQ, -1, -1)
sage: P.<x> = HH[]
sage: f = P.random_element(5)
sage: g = P.random_element((0, 5))

shift\((n)\)

Return this polynomial multiplied by the power \(x^n\).

If \(n\) is negative, terms below \(x^n\) will be discarded. Does not change this polynomial.
EXAMPLES:

```
sage: R.<x> = PolynomialRing(PolynomialRing(QQ,'y'), 'x')
sage: p = x^2 + 2*x + 4
sage: type(p)
<class 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
sage: p.shift(0)
x^2 + 2*x + 4
sage: p.shift(-1)
x + 2
sage: p.shift(2)
x^4 + 2*x^3 + 4*x^2
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(PolynomialRing(QQ,'y'), 'x', names=('x',)); (x,) = R._first_ngens(1)
>>> p = x**Integer(2) + Integer(2)*x + Integer(4)
>>> type(p)
<class 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'>
>>> p.shift(Integer(0))
x^2 + 2*x + 4
>>> p.shift(-Integer(1))
x + 2
>>> p.shift(Integer(2))
x^4 + 2*x^3 + 4*x^2
```

AUTHORS:
• David Harvey (2006-08-06)

**truncate** \(n\)

Return the polynomial of degree < \(n\) which is equivalent to self modulo \(x^n\).

EXAMPLES:

```
sage: S.<q> = QQ['t']['q']
sage: f = (1 + q^10 + q^11 + q^12).truncate(11); f
q^10 + 1
sage: f = (1 + q^10 + q^100).truncate(50); f
q^10 + 1
sage: f.degree()
10
sage: f = (1 + q^10 + q^100).truncate(500); f
q^100 + q^10 + 1
```

```python
>>> from sage.all import *
>>> S = QQ['t']['q']; (q,) = S._first_ngens(1)
>>> f = (Integer(1) + q**Integer(10) + q**Integer(11) + q**Integer(12)).
 \→ truncate(Integer(11)); f
q^10 + 1
>>> f = (Integer(1) + q**Integer(10) + q**Integer(100)).truncate(Integer(50));
 \→ f
q^10 + 1
>>> f.degree()
10
>>> f = (Integer(1) + q**Integer(10) + q**Integer(100)).
 \→ truncate(Integer(500)); f
q^100 + q^10 + 1
```
class sage.rings.polynomial.polynomial_element.Polynomial_generic_dense_inexact
    Bases: Polynomial_generic_dense

    A dense polynomial over an inexact ring.

    AUTHOR:
    • Xavier Caruso (2013-03)

    degree (secure=False)
    INPUT:
    • secure – a boolean (default: False)
    OUTPUT: The degree of self.

    If secure is True and the degree of this polynomial is not determined (because the leading coefficient is indistinguishable from 0), an error is raised.

    If secure is False, the returned value is the largest $n$ so that the coefficient of $x^n$ does not compare equal to 0.

    EXAMPLES:

    sage: # needs sage.rings.padics
    sage: K = Qp(3, 10)
    sage: R.<T> = K[]
    sage: f = T + 2; f
    (1 + O(3^10))*T + 2 + O(3^10)
    sage: f.degree()
    1
    sage: (f - T).degree()
    0
    sage: (f - T).degree(secure=True)
    Traceback (most recent call last):
    ...
    PrecisionError: the leading coefficient is indistinguishable from 0

    sage: # needs sage.rings.padics
    sage: x = O(3^5)
    sage: li = [3^i * x for i in range(0,5)]; li
    [O(3^5), O(3^6), O(3^7), O(3^8), O(3^9)]
    sage: f = R(li); f
    O(3^9)*T^4 + O(3^8)*T^3 + O(3^7)*T^2 + O(3^6)*T + O(3^5)
    sage: f.degree()
    -1
    sage: f. degree(secure=True)
    Traceback (most recent call last):
    ...
    PrecisionError: the leading coefficient is indistinguishable from 0

    >>> from sage.all import *
    >>> # needs sage.rings.padics
    >>> K = Qp(Integer(3), Integer(10))
    >>> R = K['T']; (T,) = R._first_ngens(1)
    >>> f = T + Integer(2); f
    (1 + O(3^10))*T + 2 + O(3^10)
    >>> f.degree()
    1

    (continues on next page)
AUTHOR:

- Xavier Caruso (2013-03)

**prec_degree()**

Return the largest $n$ so that precision information is stored about the coefficient of $x^n$. Always greater than or equal to degree.

**EXAMPLES:**

```python
sage: # needs sage.rings.padics
sage: K = Qp(3, 10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^10))*T + 2 + O(3^10)
sage: f.degree()
1
sage: f.prec_degree()
1

sage: g = f - T; g # _needs sage.rings.padics
0(3^10)*T + 2 + O(3^10)
sage: g.degree() # _needs sage.rings.padics
0
sage: g.prec_degree() # _needs sage.rings.padics
1
```

```python
>>> from sage.all import *
>>> # needs sage.rings.padics
>>> K = Qp(Integer(3), Integer(10))
>>> R = K['T']; (T,) = R._first_ngens(1)
>>> f = T + Integer(2); f
(1 + O(3^10))*T + 2 + O(3^10)
```
AUTHOR:

- Xavier Caruso (2013-03)

```
sage.rings.polynomial.polynomial_element.generic_power_trunc(p, n, prec)
```

Generic truncated power algorithm

**INPUT:**

- \( p \) – a polynomial
- \( n \) – an integer (of type `sage.rings.integer.Integer`)
- \( \text{prec} \) – a precision (should fit into a `C long`)

```
sage.rings.polynomial.polynomial_element.is_Polynomial(f)
```

Return `True` if `f` is of type univariate polynomial.

This function is deprecated.

**INPUT:**

- \( \ell \) – an object

**EXAMPLES:**

```
sage: from sage.rings.polynomial.polynomial_element import is_Polynomial
sage: R.<x> = ZZ[]
sage: is_Polynomial(x^3 + x + 1)
True
sage: S.<y> = R[]
sage: f = y^3 + x*y - 3*x; f
y^3 + x*y - 3*x
sage: is_Polynomial(f)
True
```

```
>>> from sage.all import *
>>> from sage.rings.polynomial.polynomial_element import is_Polynomial
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> is_Polynomial(x^Integer(3) + x + Integer(1))
```

(continues on next page)
use isinstance(x, sage.rings.polynomial.polynomial_element.Polynomial) instead
See https://github.com/sagemath/sage/issues/32709 for details.
True

```python
>>> S = R['y']; (y,) = S._first_ngens(1)
>>> f = y**Integer(3) + x*y - Integer(3)*x; f
y^3 + x*y - 3*x
>>> is_Polynomial(f)
True
```

However this function does not return True for genuine multivariate polynomial type objects or symbolic polynomials, since those are not of the same data type as univariate polynomials:

```python
sage: R.<x,y> = QQ[]
sage: f = y^3 + x*y - 3*x; f
y^3 + x*y - 3*x
sage: is_Polynomial(f)
False

sage: # needs sage.symbolic
sage: var('x,y')
(x, y)
sage: f = y^3 + x*y - 3*x; f
y^3 + x*y - 3*x
sage: is_Polynomial(f)
False
```

```python
>>> from sage.all import *

>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> f = y**Integer(3) + x*y - Integer(3)*x; f
y^3 + x*y - 3*x
>>> is_Polynomial(f)
False

>>> # needs sage.symbolic

>>> var('x,y')
(x, y)
>>> f = y**Integer(3) + x*y - Integer(3)*x; f
y^3 + x*y - 3*x
>>> is_Polynomial(f)
False
```

sage.rings.polynomial.polynomial_element.make_generic_polynomial (parent, coeffs)

sage.rings.polynomial.polynomial_element.polynomial_is_variable (x)

Test whether the given polynomial is a variable of its parent ring.

Implemented for instances of Polynomial and MPolynomial.

See also:

- `sage.rings.polynomial.polynomial_element.Polynomial.is_gen()`
- `sage.rings.polynomial.multi_polynomial.MPolynomial.is_generator()`

EXAMPLES:
 sage: from sage.rings.polynomial.polynomial_element import polynomial_is_variable
 sage: R.<x> = QQ[]
 sage: polynomial_is_variable(x)
 True
 sage: polynomial_is_variable(R([0,1]))
 True
 sage: polynomial_is_variable(x^2)
 False
 sage: polynomial_is_variable(R(42))
 False

 sage: R.<y,z> = QQ[]
 sage: polynomial_is_variable(y)
 True
 sage: polynomial_is_variable(z)
 True
 sage: polynomial_is_variable(y^2)
 False
 sage: polynomial_is_variable(y+z)
 False
 sage: polynomial_is_variable(R(42))
 False

 sage: polynomial_is_variable(42)
 False

 sage.rings.polynomial.polynomial_element.universal_discriminant()
Return the discriminant of the ‘universal’ univariate polynomial \( a_n x^n + \cdots + a_1 x + a_0 \) in \( \mathbb{Z}[a_0, \ldots, a_n][x] \).

**INPUT:**

- \( n \) – degree of the polynomial

**OUTPUT:**

The discriminant as a polynomial in \( n + 1 \) variables over \( \mathbb{Z} \). The result will be cached, so subsequent computations of discriminants of the same degree will be faster.

**EXAMPLES:**

```python
sage: # needs sage.libs.pari
sage: from sage.rings.polynomial.polynomial_element import universal_discriminant
sage: universal_discriminant(1)
1
sage: universal_discriminant(2)
a1^2 - 4*a0*a2
sage: universal_discriminant(3)
a1^2*a2^2 - 4*a0*a2^3 - 4*a1^3*a3 + 18*a0*a1*a2*a3 - 27*a0^2*a3^2
sage: universal_discriminant(4).degrees()
(3, 4, 4, 4, 3)
```

```python
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> from sage.rings.polynomial.polynomial_element import universal_discriminant
>>> universal_discriminant(Integer(1))
1
>>> universal_discriminant(Integer(2))
a1^2 - 4*a0*a2
>>> universal_discriminant(Integer(3))
a1^2*a2^2 - 4*a0*a2^3 - 4*a1^3*a3 + 18*a0*a1*a2*a3 - 27*a0^2*a3^2
>>> universal_discriminant(Integer(4)).degrees()
(3, 4, 4, 4, 3)
```

See also: `Polynomial.discriminant()`

### 2.1.4 Univariate Polynomials over domains and fields

**AUTHORS:**

- William Stein: first version
- Martin Albrecht: Added singular coercion.
- David Harvey: split off polynomial_integer_dense_ntl.pyx (2007-09)
- Robert Bradshaw: split off polynomial_modn_dense_ntl.pyx (2007-09)

**class** `sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv` (parent, is_gen=False, construct=False)

**Bases:** `Polynomial_generic_domain`

A generic class for polynomials over complete discrete valuation domains and fields.
factor_of_slope (slope=None)

INPUT:

• slope – a rational number (default: the first slope in the Newton polygon of self)

OUTPUT:

The factor of self corresponding to the slope slope (i.e. the unique monic divisor of self whose slope is slope and degree is the length of slope in the Newton polygon).

**EXAMPLES:**

```python
sage: # needs sage.geometry.polyhedron sage.rings.padics
sage: K = Qp(5)
sage: R.<x> = K[]
sage: K = Qp(5)
sage: R.<t> = K[]
sage: f = 5 + 3*t + t^4 + 25*t^10
sage: f.newton_slopes()
[1, 0, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3]
sage: g = f.factor_of_slope(0)
sage: g.newton_slopes()
[0, 0, 0]
sage: (f % g).is_zero()
True
sage: h = f.factor_of_slope()
sage: h.newton_slopes()
[1]
sage: (f % h).is_zero()
True

>>> from sage.all import *
>>> # needs sage.geometry.polyhedron sage.rings.padics
>>> K = Qp(Integer(5))
>>> R = K['x']; (x,) = R._first_ngens(1)
>>> K = Qp(Integer(5))
>>> R = K['t']; (t,) = R._first_ngens(1)
>>> f = Integer(5) + Integer(3)*t + t**Integer(4) + Integer(25)*t**Integer(10)
>>> f.newton_slopes()
[1, 0, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3]
>>> g = f.factor_of_slope(Integer(0))
>>> g.newton_slopes()
[0, 0, 0]
>>> (f % g).is_zero()
True
>>> h = f.factor_of_slope()
>>> h.newton_slopes()
[1]
>>> (f % h).is_zero()
True
```

If slope is not a slope of self, the corresponding factor is 1:

```python
sage: f.factor_of_slope(-1) # needs sage.geometry.polyhedron sage.rings.padics
1 + O(5^20)
```
AUTHOR:

- Xavier Caruso (2013-03-20)

**hensel_lift** \((a)\)

Lift \(a\) to a root of this polynomial (using Newton iteration).

If \(a\) is not close enough to a root (so that Newton iteration does not converge), an error is raised.

**EXAMPLES:**

```python
sage: # needs sage.rings.padics
sage: K = Qp(Integer(5), Integer(10))
sage: P = PolynomialRing(K, names=('x',)); (x,) = P._first_ngens(1)
sage: f = x**Integer(2) + Integer(1)
sage: root = f.hensel_lift(Integer(2)); root
2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10)
sage: f(root)
O(5^10)
sage: g = (x**2 + 1) * (x - Integer(7))
needs sage.rings.padics
Traceback (most recent call last):
... ValueError: a is not close enough to a root of this polynomial
```

AUTHOR:

- Xavier Caruso (2013-03-23)

**newton_polygon**

Return a list of vertices of the Newton polygon of this polynomial.
Note: If some coefficients have not enough precision an error is raised.

EXAMPLES:

```python
sage: # needs sage.geometry.polyhedron sage.rings.padics
sage: K = Qp(5)
sage: R.<t> = K[]
sage: f = 5 + 3*t + t^4 + 25*t^10
sage: f.newton_polygon()
Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)
sage: g = f + K(0,0)*t^4; g
(5^2 + O(5^22))*t^10 + O(5^0)*t^4 + (3 + O(5^20))*t + 5 + O(5^21)
sage: g.newton_polygon()
Traceback (most recent call last):
 ...
PrecisionError: The coefficient of t^4 has not enough precision
```

AUTHOR:

• Xavier Caruso (2013-03-20)

`newton_slopes (repetition=True)`

Return a list of the Newton slopes of this polynomial.

These are the valuations of the roots of this polynomial.

If repetition is True, each slope is repeated a number of times equal to its multiplicity. Otherwise it appears only one time.

EXAMPLES:

```python
sage: # needs sage.geometry.polyhedron sage.rings.padics
sage: f.newton_slopes()
[1, 0, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3]
sage: f.newton_slopes(repetition=False)
[1, 0, -1/3]
```
AUTHOR:

• Xavier Caruso (2013-03-20)

`slope_factorization()`

Return a factorization of `self` into a product of factors corresponding to each slope in the Newton polygon.

EXAMPLES:
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdvf(parent, is_gen=False, construct=False)

Bases: Polynomial_generic_cdv, Polynomial_generic_field
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdvr(parent, is_gen=False, construct=False)

Bases: Polynomial_generic_cdv
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_cdv

Bases: Polynomial_generic_dense_inexact, Polynomial_generic_cdv

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_cdvr

Bases: Polynomial_generic_dense_cdv, Polynomial_generic_cdvr
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_field(parent, x=None, check=True, is_gen=False, construct=False)

Bases: Polynomial_generic_dense, Polynomial_generic_field
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_domain

Bases: Polynomial, IntegralDomainElement

is_unit()

Return True if this polynomial is a unit.

EXERCISE (Atiyah-McDonald, Ch 1): Let \( A[x] \) be a polynomial ring in one variable. Then \( f = \sum a_i x^i \in A[x] \) is a unit if and only if \( a_0 \) is a unit and \( a_1, \ldots, a_n \) are nilpotent.

EXAMPLES:

```
sage: R.<z> = PolynomialRing(ZZ, sparse=True)
sage: (2 + z^3).is_unit() # False
sage: f = -1 + 3*z^3; f
3*z^3 - 1
sage: f.is_unit() # False
```
(continues on next page)
False
sage: R(-3).is_unit()
False
sage: R(-1).is_unit()
True
sage: R(0).is_unit()
False

>>> from sage.all import *

>>> R = PolynomialRing(ZZ, sparse=True, names=('z',)); (z,) = R._first_ngens(1)
>>> (Integer(2) + z**Integer(3)).is_unit()
False
>>> f = -Integer(1) + Integer(3)*z**Integer(3); f
3*z^3 - 1
>>> f.is_unit()
False
>>> R(-Integer(3)).is_unit()
False
>>> R(-Integer(1)).is_unit()
True
>>> R(Integer(0)).is_unit()
False

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_field(parent, is_gen=False, construct=False)

Bases: Polynomial_singular_repr, Polynomial_generic_domain, EuclideanDomainElement

quo_rem(other)
Return a tuple (quotient, remainder) where self = quotient * other + remainder.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: R.<y> = PolynomialRing(QQ)
sage: K.<t> = NumberField(y^2 - 2)
sage: P.<x> = PolynomialRing(K)
sage: x.quo_rem(K(Integer(1)))
(x, 0)
sage: x.xgcd(K(Integer(1)))
(1, 0, 1)

>>> from sage.all import *

>>> # needs sage.rings.number_field
>>> R = PolynomialRing(QQ, names=('y',)); (y,) = R._first_ngens(1)
>>> K = NumberField(y**Integer(2) - Integer(2), names=('t',)); (t,) = K._first_ngens(1)
>>> P = PolynomialRing(K, names=('x',)); (x,) = P._first_ngens(1)
>>> x.quo_rem(K(Integer(1)))
(x, 0)
>>> x.xgcd(K(Integer(1)))
(1, 0, 1)
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse (parent, x=None, check=True, is_gen=False, construct=False)

Bases: Polynomial

A generic sparse polynomial.

The Polynomial_generic_sparse class defines functionality for sparse polynomials over any base ring. A sparse polynomial is represented using a dictionary which maps each exponent to the corresponding coefficient. The coefficients must never be zero.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(PolynomialRing(QQ, 'y'), sparse=True)
sage: f = x^3 - x + 17
sage: type(f)
<...>
sage: loads(f.dumps()) == f
True
```

A more extensive example:

```
sage: # needs sage.libs.pari
sage: A.<T> = PolynomialRing(Integers(5), sparse=True)
sage: f = T^2 + 1; B = A.quo(f)
sage: C.<s> = PolynomialRing(B)
sage: C
Univariate Polynomial Ring in s over Univariate Quotient Polynomial Ring in Tbar over Ring of integers modulo 5 with modulus T^2 + 1
sage: s + T
s + Tbar
sage: (s + T)^2
s^2 + 2*Tbar*s + 4
```
over Ring of integers modulo 5 with modulus $T^2 + 1$

```
>>> s + T
s + Tbar

>>> (s + T)**Integer(2)
\[s^2 + 2*Tbar*s + 4\]
```

**coefficients** *(sparse=True)*

Return the coefficients of the monomials appearing in `self`.

**EXAMPLES:**

```
sage: R.<w> = PolynomialRing(Integers(8), sparse=True)
sage: f = 5 + w^1997 - w^10000; f
7*w^10000 + w^1997 + 5
sage: f.coefficients()
[5, 1, 7]
```

```
>>> from sage.all import *

>>> R = PolynomialRing(Integers(Integer(8)), sparse=True, names=('w',)); (w,)_
˓→= R._first_ngens(1)

>>> f = Integer(5) + w**Integer(1997) - w**Integer(10000); f
7*w^10000 + w^1997 + 5

>>> f.coefficients()
[5, 1, 7]
```

**degree** *(gen=None)*

Return the degree of this sparse polynomial.

**EXAMPLES:**

```
sage: R.<z> = PolynomialRing(ZZ, sparse=True)
sage: f = 13*z^50000 + 15*z^2 + 17*z
sage: f.degree()
50000
```

```
>>> from sage.all import *

>>> R = PolynomialRing(ZZ, sparse=True, names=('z',)); (z,)_
˓→= R._first_ngens(1)

>>> f = Integer(13)*z**Integer(50000) + Integer(15)*z**Integer(2) +
˓→Integer(17)*z

>>> f.degree()
50000
```

**dict**

Return a new copy of the dict of the underlying elements of `self`.

**EXAMPLES:**

```
sage: R.<w> = PolynomialRing(Integers(8), sparse=True)
sage: f = 5 + w^1997 - w^10000; f
7*w^10000 + w^1997 + 5
sage: d = f.dict(); d
{0: 5, 1997: 1, 10000: 7}
sage: d[0] = 10
sage: f.dict()
{0: 10, 1997: 1, 10000: 7}
```
from sage.all import *

R = PolynomialRing(Integers(8), sparse=True, names=('w',)); (w,)

f = Integer(5) + w**Integer(1997) - w**Integer(10000); f
7*w^10000 + w^1997 + 5
d = f.dict(); d
(0: 5, 1997: 1, 10000: 7)
d[Integer(0)] = Integer(10)
f.dict()
(0: 5, 1997: 1, 10000: 7)

exponents()
Return the exponents of the monomials appearing in self.

EXAMPLES:
sage: R.<w> = PolynomialRing(Integers(8), sparse=True)
sage: f = 5 + w^1997 - w^10000; f
7*w^10000 + w^1997 + 5
sage: f.exponents()
[0, 1997, 10000]

>>> from sage.all import *
>>> R = PolynomialRing(Integers(Integer(8)), sparse=True, names=('w',)); (w,)
˓→ R._first_ngens(1)
>>> f = Integer(5) + w**Integer(1997) - w**Integer(10000); f
7*w^10000 + w^1997 + 5
>>> f.exponents()
[0, 1997, 10000]

gcd(other, algorithm=None)
Return the gcd of this polynomial and other

INPUT:
• other – a polynomial defined over the same ring as this polynomial.

ALGORITHM:
Two algorithms are provided:
• generic – Uses the generic implementation, which depends on the base ring being a UFD or a field.
• dense – The polynomials are converted to the dense representation, their gcd is computed and is converted back to the sparse representation.

Default is dense for polynomials over $\mathbb{Z}$ and generic in the other cases.

EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: p = x^6 + 7*x^5 + 8*x^4 + 6*x^3 + 2*x^2 + x + 2
sage: q = 2*x^4 - x^3 - 2*x^2 - 4*x - 1
sage: gcd(p, q)
x^2 + x + 1
sage: gcd(p, q, algorithm="dense")
x^2 + x + 1
sage: gcd(p, q, algorithm="generic")
x^2 + x + 1
(continues on next page)
```python
sage: gcd(p, q, algorithm="foobar")
Traceback (most recent call last):
...
ValueError: Unknown algorithm 'foobar'
```
>>> from sage.all import *
>>> R = PolynomialRing(Integers(Integer(100)), sparse=True, names=('z',)); (z,)
     = R._first_ngens(1)
>>> f = Integer(13)*z**Integer(5) + Integer(15)*z**Integer(2) + Integer(17)*z
>>> f.list()
[0, 17, 15, 0, 0, 13]

number_of_terms()

Return the number of nonzero terms.

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: p = x^100 - 3*x^10 + 12
sage: p.number_of_terms()
3

>>> from sage.all import *
>>> R = PolynomialRing(ZZ, sparse=True, names=('x',)); (x,) = R._first_ngens(1)
>>> p = x**Integer(100) - Integer(3)*x**Integer(10) + Integer(12)
>>> p.number_of_terms()
3

quo_rem(other)

Return the quotient and remainder of the Euclidean division of self and other.

Raises ZeroDivisionError if other is zero.

Raises ArithmeticError if other has a nonunit leading coefficient and this causes the Euclidean division to fail.

EXAMPLES:

sage: P.<x> = PolynomialRing(ZZ, sparse=True)
sage: R.<y> = PolynomialRing(P, sparse=True)
sage: f = R.random_element(10)
....: while x.divides(f.leading_coefficient()):
    ....:     f = R.random_element(10)
....: g = y^5 + R.random_element(4)
....: q, r = f.quo_rem(g)
....: f == q*g + r and r.degree() < g.degree()
True
sage: g = x*y^5
sage: f.quo_rem(g)
Traceback (most recent call last):
...
ArithmeticError: Division non exact (consider coercing to polynomials over the fraction field)
sage: g = 0
sage: f.quo_rem(g)
Traceback (most recent call last):
...
ZeroDivisionError: Division by zero polynomial
\[\text{ngens(1)}\]

\[R = \text{PolynomialRing}(P, \text{sparse=True}, \text{names=('y',))}; (y,) = R._first_ngens(1)\]

\[f = R.random_element(\text{Integer(10)})\]

\[\text{while } x \text{.divides}(f\text{.leading_coefficient()}):\]
\[\quad f = R.random_element(\text{Integer(10)})\]

\[g = y^*\text{Integer(5)} + R\text{.random_element}(\text{Integer(4)})\]

\[q, r = f\text{.quo_rem}(g)\]

\[f == q^*g + r \text{ and } r\text{.degree()} < g\text{.degree()}\]

True

\[g = x^y^*\text{Integer(5)}\]

\[f\text{.quo_rem}(g)\]

Traceback (most recent call last):
...
ArithmeticError: Division non exact
(consider coercing to polynomials over the fraction field)

\[g = \text{Integer(0)}\]

\[f\text{.quo_rem}(g)\]

Traceback (most recent call last):
...
ZeroDivisionError: Division by zero polynomial

If the leading coefficient of other is not a unit, Euclidean division may still work:

\[
\begin{align*}
\text{sage: } f &= -x^y^10 + 2^*x^y^7 + y^3 - 2^*x^2*y^2 - y \\
\text{sage: } g &= x^y^5 \\
\text{sage: } f\text{.quo_rem}(g) \\
(-y^5 + 2^*y^2, y^3 - 2^*x^2*y^2 - y)
\end{align*}
\]

\[
\begin{align*}
\text{from sage.all import } * \\
\text{sage: } f &= -x^y^*\text{Integer(10)} + \text{Integer(2)}^*x^y^*\text{Integer(7)} + y^*\text{Integer(3)} - \text{-Integer(2)}^*x^y^*\text{Integer(2)} - y \\
\text{sage: } g &= x^y^*\text{Integer(5)} \\
\text{sage: } f\text{.quo_rem}(g) \\
(-y^5 + 2^*y^2, y^3 - 2^*x^2*y^2 - y)
\end{align*}
\]

Polynomials over noncommutative rings are also allowed:

\[
\begin{align*}
\text{sage: } &\# \text{ needs sage.combinat sage.modules} \\
\text{sage: } HH = \text{QuaternionAlgebra}(\text{QQ}, -1, -1) \\
\text{sage: } P.<x> = \text{PolynomialRing}(HH, \text{sparse=True}) \\
\text{sage: } f = P.random_element(5) \\
\text{sage: } g = P.random_element((0, 5)) \\
\text{sage: } q, r = f\text{.quo_rem}(g) \\
\text{sage: } f == q^*g + r \\
\text{True}
\end{align*}
\]

\[
\begin{align*}
\text{from sage.all import } * \\
\text{\# \text{ needs sage.combinat sage.modules} } \\
\text{HH = QuaternionAlgebra(QQ, -Integer(1), -Integer(1))} \\
\text{P = PolynomialRing(HH, \text{sparse=True}, \text{names=('x',))}; (x,) = P._first_ngens(1)} \\
\text{f = P.random_element(Integer(5))} \\
\text{g = P.random_element((Integer(0), Integer(5)))} \\
\text{q, r = f\text{.quo_rem}(g)} \\
\text{f == q^*g + r} \\
\text{True}
\end{align*}
\]
reverse (degree=None)

Return this polynomial but with the coefficients reversed.

If an optional degree argument is given, the coefficient list will be truncated or zero padded as necessary and the reverse polynomial will have the specified degree.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: p = x^4 + 2*x^2^100
sage: p.reverse()
x^12676506002282289401496703205372 + 2
sage: p.reverse(10)
x^6
```

shift (n)

Return this polynomial multiplied by the power \( x^n \).

If \( n \) is negative, terms below \( x^n \) will be discarded. Does not change this polynomial.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ, sparse=True)
sage: p = x^100000 + 2*x + 4
sage: type(p)
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain_with_category.element_class'>
sage: p.shift(0)
x^100000 + 2*x + 4
sage: p.shift(-1)
x^99999 + 2
sage: p.shift(-100002)
0
sage: p.shift(2)
x^100002 + 2*x^3 + 4*x^2
```

(continues on next page)
AUTHOR: David Harvey (2006-08-06)

**truncate (n)**

Return the polynomial of degree \(< n\) equal to self modulo \(x^n\).

**EXAMPLES:**

```python
taxe: R.<x> = PolynomialRing(ZZ, sparse=True)
taxe: (x^11 + x^10 + 1).truncate(11)
 x^10 + 1
taxe: (x^2^500 + x^2^100 + 1).truncate(2^101)
 x^1267650600228229401496703205376 + 1
```

**valuation (p=None)**

Return the valuation of self.

**EXAMPLES:**

```python
taxe: # needs sage.rings.finite_rings
taxe: R.<w> = PolynomialRing(GF(9, 'a'), sparse=True)
taxe: f = w^1997 - w^10000
ntaxe: f.valuation()
 1997
ntaxe: R(19).valuation()
 0
ntaxe: R(0).valuation()
 +Infinity
```

2.1. Univariate Polynomials and Polynomial Rings
class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_cdv (parent, x=None, check=True, is_gen=False, construct=False)

Bases: Polynomial_generic_sparse, Polynomial_generic_cdv

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_cdvf (parent, x=None, check=True, is_gen=False, construct=False)

Bases: Polynomial_generic_sparse_cdv, Polynomial_generic_cdvf

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_cdvr (parent, x=None, check=True, is_gen=False, construct=False)

Bases: Polynomial_generic_sparse_cdv, Polynomial_generic_cdvr

class sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse_field (parent, x=None, check=True, is_gen=False, construct=False)

Bases: Polynomial_generic_sparse, Polynomial_generic_field

EXAMPLES:

sage: R.<x> = PolynomialRing(Frac(RR['t']), sparse=True)
sage: f = x^3 - x + 17
sage: type(f)
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_field_with_category.element_class'>
sage: loads(f.dumps()) == f
True

>>> from sage.all import *
>>> R = PolynomialRing(Frac(RR['t']), sparse=True, names=('x',)); (x,) = R._first_ngens(1)
>>> f = x**Integer(3) - x + Integer(17)
>>> type(f)
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_field_with_category.element_class'>
>>> loads(f.dumps()) == f
True
2.1.5 Univariate Polynomials over GF(2) via NTL’s GF2X

AUTHOR: Martin Albrecht (2008-10) initial implementation

sage.rings.polynomial.polynomial_gf2x.GF2X_BuildIrred_list(n)

Return the list of coefficients of the lexicographically smallest irreducible polynomial of degree \( n \) over the field of 2 elements.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildIrred_list
sage: GF2X_BuildIrred_list(2)
[1, 1, 1]
sage: GF2X_BuildIrred_list(3)
[1, 1, 0, 1]
sage: GF2X_BuildIrred_list(4)
[1, 1, 0, 0, 1]
sage: GF(2)['x'](GF2X_BuildIrred_list(33))
x^33 + x^6 + x^3 + x + 1
```

sage.rings.polynomial.polynomial_gf2x.GF2X_BuildRandomIrred_list(n)

Return the list of coefficients of an irreducible polynomial of degree \( n \) of minimal weight over the field of 2 elements.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildRandomIrred_list
sage: GF2X_BuildRandomIrred_list(2)
[1, 1, 1]
sage: GF2X_BuildRandomIrred_list(3)
in [[1, 1, 0, 1], [1, 0, 1, 1]]
True
```

sage.rings.polynomial.polynomial_gf2x.GF2X_BuildSparseIrred_list(n)

Return the list of coefficients of an irreducible polynomial of degree \( n \) of minimal weight over the field of 2 elements.

EXAMPLES:
```python
sage: from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildIrred_list,
 GF2X_BuildSparseIrred_list
sage: all([GF2X_BuildSparseIrred_list(n) == GF2X_BuildIrred_list(n)
 : for n in range(1,33)])
True
sage: GF(2)]['x'](GF2X_BuildSparseIrred_list(33))
x^33 + x^10 + 1

>>> from sage.all import *
>>> from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildIrred_list, GF2X_
 BuildSparseIrred_list
>>> all([GF2X_BuildSparseIrred_list(n) == GF2X_BuildIrred_list(n)
 ... for n in range(Integer(1),Integer(33))])
True
>>> GF(Integer(2))['x'](GF2X_BuildSparseIrred_list(Integer(33)))
x^33 + x^10 + 1

class sage.rings.polynomial.polynomial_gf2x.Polynomial_GF2X

 Bases: Polynomial_template

Univariate Polynomials over \(\mathbb{F}_2 \) via NTL's GF2X.

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: x^3 + x^2 + 1
x^3 + x^2 + 1

>>> from sage.all import *
>>> P = GF(Integer(2))[x]; (x,) = P._first_ngens(1)
>>> x**Integer(3) + x**Integer(2) + Integer(1)
x^3 + x^2 + 1
```

```python
is_irreducible()
```

Return whether this polynomial is irreducible over \(\mathbb{F}_2 \).

EXAMPLES:

```python
sage: R.<x> = GF(2)[]
sage: (x^2 + 1).is_irreducible()
False
sage: (x^3 + x + 1).is_irreducible()
True

>>> from sage.all import *
>>> R = GF(Integer(2))['x']; (x,) = R._first_ngens(1)
>>> (x**Integer(2) + Integer(1)).is_irreducible()
False
>>> (x**Integer(3) + x + Integer(1)).is_irreducible()
True
```

Test that caching works:

```python
sage: R.<x> = GF(2)[]
sage: f = x^2 + 1
sage: f.is_irreducible()
```
False
sage: f.is_irreducible.cache
False

>>> from sage.all import *
>>> R = GF(Integer(2))['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(2) + Integer(1)
>>> f.is_irreducible()
False
>>> f.is_irreducible.cache
False

modular_composition (g, h, algorithm=None)
Compute \(f(g) \) (mod \(h \)).

INPUT:

- \(g \) – a polynomial
- \(h \) – a polynomial
- \(\text{algorithm} \) – either ‘native’ or ‘ntl’ (default: ‘native’)

EXAMPLES:

sage: P.<x> = GF(2)[]
\[\begin{align*}
\text{sage: } & r = 279 \\
\text{sage: } & f = x^r + x +1 \\
\text{sage: } & g = x^r \\
\text{sage: } & g.modular_composition(g, f) == g(g) % f \\
\text{sage: } & True
\end{align*}\]

sage: P.<x> = GF(2)[]
\[\begin{align*}
\text{sage: } & f = x^{29} + x^{24} + x^{22} + x^{21} + x^{20} + x^{16} + x^{14} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^2 \\
\text{sage: } & g = x^31 + x^{30} + x^{28} + x^{26} + x^{24} + x^{21} + x^{19} + x^{18} + x^{11} + x^{10} + x^9 + x^8 + x^5 + x^2 + 1 \\
\text{sage: } & h = x^{30} + x^{28} + x^{26} + x^{25} + x^{24} + x^{22} + x^{21} + x^{18} + x^{17} + x^{15} + x^{13} + x^{12} + x^{11} + x^{10} + x^9 + x^4 \\
\text{sage: } & f.modular_composition(g, h) == f(g) % h \\
\text{sage: } & True
\end{align*}\]
AUTHORS:

- Paul Zimmermann (2008-10) initial implementation
- Martin Albrecht (2008-10) performance improvements

class sage.rings.polynomial.polynomial_gf2x.Polynomial_template

Bases: Polynomial

Template for interfacing to external C/C++ libraries for implementations of polynomials.

AUTHORS:

- Robert Bradshaw (2008-10): original idea for templating
- Martin Albrecht (2008-10): initial implementation

This file implements a simple templating engine for linking univariate polynomials to their C/C++ library implementations. It requires a ‘linkage’ file which implements the `celement_` functions (see `sage.libsntl.ntl_GF2X_linkage` for an example). Both parts are then plugged together by inclusion of the linkage file when inheriting from this class. See `sage.rings.polynomial.polynomial_gf2x` for an example.

We illustrate the generic glueing using univariate polynomials over GF(2).

Note: Implementations using this template MUST implement coercion from base ring elements and `get_unsafe()`. See `Polynomial_GF2X` for an example.

\[degree() \]

EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: x.degree()
1
sage: P(1).degree()
0
sage: P(0).degree()
-1
```

```python
>>> from sage.all import *
>>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1)
>>> x.degree()
1
>>> P(Integer(1)).degree()
0
>>> P(Integer(0)).degree()
-1
```
gcd\((other)\)
Return the greatest common divisor of self and other.

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: f = x*(x+1)
sage: f.gcd(x+1)
x + 1
sage: f.gcd(x^2)
x
```

```python
>>> from sage.all import *
>>> P = GF(Integer(2))[x]; (x,) = P._first_ngens(1)
>>> f = x*(x+Integer(1))
>>> f.gcd(x+Integer(1))
x + 1
>>> f.gcd(x**Integer(2))
x
```

get_cparent()
is_gen()
EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: x.is_gen()
True
sage: (x+1).is_gen()
False
```

```python
>>> from sage.all import *
>>> P = GF(Integer(2))[x]; (x,) = P._first_ngens(1)
>>> x.is_gen()
True
>>> (x+Integer(1)).is_gen()
False
```

is_one()
EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: P(1).is_one()
True
```

```python
>>> from sage.all import *
>>> P = GF(Integer(2))[x]; (x,) = P._first_ngens(1)
>>> P(Integer(1)).is_one()
True
```

is_zero()
EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: x.is_zero()
False
```
list (copy=True)

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: x.list()
[0, 1]
sage: list(x)
[0, 1]
```

quo_rem (right)

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: f = x^2 + x + 1
sage: f.quo_rem(x + 1)
(x, 1)
```

shift (n)

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: f = x^3 + x^2 + 1
sage: f.shift(1)
x^4 + x^3 + x
sage: f.shift(-1)
x^2 + x
```

truncate (n)

Returns this polynomial mod \(x^n \).
EXAMPLES:

```python
sage: R.<x> =GF(2)[]
sage: f = sum(x^n for n in range(10)); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(6)
x^5 + x^4 + x^3 + x^2 + x + 1
```

If the precision is higher than the degree of the polynomial then the polynomial itself is returned:

```python
sage: f.truncate(10) is f
True
```

If the precision is negative, the zero polynomial is returned:

```python
sage: f.truncate(-1)
0
```

`xgcd(other)`

Computes extended gcd of self and other.

EXAMPLES:

```python
sage: P.<x> = GF(7)[]
sage: f = x*(x+1)
sage: f.xgcd(x+1)
(x + 1, 0, 1)
sage: f.xgcd(x^2)
(x, 1, 6)
```

```python
>>> from sage.all import *
>>> P = GF(Integer(7))['x']; (x,) = P._first_ngens(1)
>>> f = x*(x+Integer(1))
>>> f.xgcd(x+Integer(1))
(x + 1, 0, 1)
>>> f.xgcd(x**Integer(2))
(x, 1, 6)
```

`sage.rings.polynomial.polynomial_gf2x.make_element(parent, args)`
2.1.6 Univariate polynomials over number fields

AUTHOR:

EXAMPLES:
Define a polynomial over an absolute number field and perform basic operations with them:

```plaintext
sage: x = polygen(ZZ, 'x')
sage: N.<a> = NumberField(x^2 - 2)
sage: K.<x> = N[]
sage: f = x - a
sage: g = x^3 - 2*a + 1
sage: f * (x + a)
x^2 - 2
sage: f + g
x^3 + x - 3*a + 1
sage: g // f
x^2 + a*x + 2
sage: g % f
1
sage: factor(x^3 - 2*a*x^2 - 2*x + 4*a)
(x - 2*a) * (x - a) * (x + a)
sage: gcd(f, x - a)
x - a
```

Polynomials are aware of embeddings of the underlying field:

```plaintext
>>> from sage.all import *
>>> x = polygen(ZZ, 'x')
>>> Q7 = Qp(7)
>>> r1 = Q7(3 + 7 + 2*7^2 + 6*7^3 + 7^4 + 2*7^5 + 7^6 + 2*7^7 + 4*7^8
....:  + 6*7^9 + 6*7^10 + 2*7^11 + 7^12 + 7^13 + 2*7^15 + 7^16 + 7^17
....:  + 4*7^18 + 6*7^19)
>>> N.<b> = NumberField(x^2 - 2, embedding=r1)
>>> K.<t> = N[]
```

(continues on next page)
sage: f = t^3 - 2*t + 1
sage: f(r1)
1 + O(7^20)

We can also construct polynomials over relative number fields:

sage: # needs sage.symbolic
sage: N.<i, s2> = QQ[I, sqrt(2)]
sage: K.<x> = N[]
sage: f = x - s2
sage: g = x^3 - 2*i*x^2 + s2*x
sage: f * (x + s2)
x^2 - 2
sage: f + g
x^3 - 2*I*x^2 + (sqrt2 + 1)*x - sqrt2
sage: g // f
x^2 + (-2*I + sqrt2)*x - 2*sqrt2*I + sqrt2 + 2
sage: g % f
-4*I + 2*sqrt2 + 2
sage: factor(i*x^4 - 2*i*x^2 + 9*i)
(I) * (x - I + sqrt2) * (x + I - sqrt2) * (x - I - sqrt2) * (x + I + sqrt2)

We can also construct polynomials over relative number fields:

sage: # needs sage.symbolic
sage: N.<i, s2> = QQ[I, sqrt(Integer(2))]
sage: K.<x> = N[]
sage: f = x - s2
sage: g = x^3 - 2*i*x^2 + s2*x
sage: f * (x + s2)
x^2 - 2
sage: f + g
x^3 - 2*I*x^2 + (sqrt2 + 1)*x - sqrt2
sage: g // f
x^2 + (-2*I + sqrt2)*x - 2*sqrt2*I + sqrt2 + 2
sage: g % f
-4*I + 2*sqrt2 + 2
sage: factor(i*x^4 - 2*i*x^2 + 9*i)
(I) * (x - I + sqrt2) * (x + I - sqrt2) * (x - I - sqrt2) * (x + I + sqrt2)

2.1. Univariate Polynomials and Polynomial Rings 231
Polynomials, Release 10.4

>>> x^2 + (-2*I + sqrt2)*x - 2*sqrt2*I + sqrt2 + 2
>>> g % f
-4*I + 2*sqrt2 + 2
>>> factor(i*x**Integer(4) - Integer(2)*i*x**Integer(2) + Integer(9)*i)
(I) * (x - I + sqrt2) * (x + I - sqrt2) * (x - I - sqrt2) * (x + I + sqrt2)
>>> gcd(f, x - i)
1

class sage.rings.polynomial.polynomial_number_field.Polynomial_absolute_number_field_dense

Bases: Polynomial_generic_dense_field

Class of dense univariate polynomials over an absolute number field.

gcd(other)

Compute the monic gcd of two univariate polynomials using PARI.

INPUT:

• other – a polynomial with the same parent as self.

OUTPUT: The monic gcd of self and other.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: N.<a> = NumberField(x^3 - 1/2, 'a')
sage: R.<r> = N[r]
sage: f = (5/4*a^2 - 2*a + 4)*r^2 + (5*a^2 - 81/5*a - 17/2)*r + 4/5*a^2 +
→ 24*a + 6
sage: g = (5/4*a^2 - 2*a + 4)*r^2 + (-11*a^2 + 79/5*a - 7/2)*r - 4/5*a^2 -
→ 24*a - 6
sage: gcd(f, g**2)
 r - 60808/96625*a^2 - 69936/96625*a - 149212/96625
sage: R = QQ[I][x]
sage: f = R.random_element(2)
sage: g = f + 1
sage: h = R.random_element(2).monic()
sage: f *= h
sage: g *= h
sage: gcd(f, g) - h
0
sage: f.gcd(g) - h
0

>>> from sage.all import *

(continues on previous page)
Integer(5)*a - Integer(17)/Integer(2)))*r + Integer(4)/Integer(5)*a**Integer(2) + Integer(24)*a + Integer(6)

>>> g = (Integer(5)/Integer(4)*a**Integer(2) - Integer(2)*a + Integer(4))*r**Integer(2) + (-Integer(11)*a**Integer(2) + Integer(79)/Integer(5)*a - Integer(7)/Integer(2))*r - Integer(4)/Integer(5)*a**Integer(2) - Integer(24)*a - Integer(6)

>>> gcd(f, g**Integer(2))
\[r - 60808/96625*a^2 - 69936/96625*a - 149212/96625\]

>>> R = QQ[I][x]

>>> f = R.random_element(Integer(2))

>>> g = f + Integer(1)

>>> h = R.random_element(Integer(2)).monic()

>>> f *= h

>>> g *= h

>>> gcd(f, g) - h
\[0\]

>>> f.gcd(g) - h
\[0\]

Bases: `Polynomial_generic_dense_field`

Class of dense univariate polynomials over a relative number field.

gcd(other)

Compute the monic gcd of two polynomials.

Currently, the method checks corner cases in which one of the polynomials is zero or a constant. Then, computes an absolute extension and performs the computations there.

INPUT:

- `other` — a polynomial with the same parent as `self`.

OUTPUT:

The monic gcd of `self` and `other`.

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: N = QQ[sqrt(2), sqrt(3)]
sage: s2, s3 = N.gens()
sage: x = polygen(N)
sage: f = x^4 - 5*x^2 + 6
sage: g = x^3 + (-2*s2 + s3)*x^2 + (-2*s3*s2 + 2)*x + 2*s3
sage: gcd(f, g)
x^2 + (-sqrt2 + sqrt3)*x - sqrt3*sqrt2
sage: f.gcd(g)
x^2 + (-sqrt2 + sqrt3)*x - sqrt3*sqrt2
```
2.1.7 Dense univariate polynomials over \(\mathbb{Z} \), implemented using FLINT

AUTHORS:

- David Harvey: rewrote to talk to NTL directly, instead of via ntl.pyx (2007-09); a lot of this was based on Joel Mohler’s recent rewrite of the NTL wrapper
- David Harvey: split off from polynomial_element_generic.py (2007-09)
- Burcin Erocal: rewrote to use FLINT (2008-06-16)

```python
class sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint:
    Bases: Polynomial

    A dense polynomial over the integers, implemented via FLINT.

    __add__(right)
    Return self plus right.

    EXAMPLES:

    sage: R.<x> = PolynomialRing(ZZ)
    sage: f = 2*x + 1
    sage: g = -3*x^2 + 6
    sage: f + g
    -3*x^2 + 2*x + 7
```

```python
class sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint:
    Bases: Polynomial

    A dense polynomial over the integers, implemented via FLINT.

    __sub__(right)
    Return self minus right.

    EXAMPLES:

    sage: R.<x> = PolynomialRing(ZZ)
    sage: f = 2*x + 1
    sage: g = -3*x^2 + 6
    sage: f - g
    -3*x^2 + 2*x + 7
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

```python
sage: f - g
3*x^2 + 2*x - 5
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>> f = Integer(2)*x + Integer(1)
>>> g = -Integer(3)*x**Integer(2) + Integer(6)
>>> f - g
3*x^2 + 2*x - 5
```

lmul(right)

Return self multiplied by right, where right is a scalar (integer).

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: x*3
3*x
sage: (2*x^2 + 4)*3
6*x^2 + 12
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>> x*Integer(3)
3*x
>>> (Integer(2)*x**Integer(2) + Integer(4))*Integer(3)
6*x^2 + 12
```

rmul(right)

Return self multiplied by right, where right is a scalar (integer).

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: 3*x
3*x
sage: 3*(2*x^2 + 4)
6*x^2 + 12
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>> Integer(3)*x
3*x
>>> Integer(3)*(Integer(2)*x**Integer(2) + Integer(4))
6*x^2 + 12
```

mul(right)

Return self multiplied by right.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: (x - 2)*(x^2 - 8*x + 16)
x^3 - 10*x^2 + 32*x - 32
```
Polynomials, Release 10.4

>>> from sage.all import *

>>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)

>>> (x - Integer(2))*(x**Integer(2) - Integer(8)*x + Integer(16))
x^3 - 10*x^2 + 32*x - 32

_mul_trunc_(right, n)

Truncated multiplication

See also:

mul() for standard multiplication

EXAMPLES:

sage: x = polygen(ZZ)
sage: p1 = 1 + x + x^2 + x^4
sage: p2 = -2 + 3*x^2 + 5*x^4
sage: p1._mul_trunc_(p2, 4)
3*x^3 + x^2 - 2*x - 2
sage: (p1*p2).truncate(4)
3*x^3 + x^2 - 2*x - 2
sage: p1._mul_trunc_(p2, 6)
5*x^5 + 6*x^4 + 3*x^3 + x^2 - 2*x - 2

>>> from sage.all import *

>>> x = polygen(ZZ)

>>> p1 = Integer(1) + x + x**Integer(2) + x**Integer(4)

>>> p2 = -Integer(2) + Integer(3)*x**Integer(2) + Integer(5)*x**Integer(4)

>>> p1._mul_trunc_(p2, Integer(4))
3*x^3 + x^2 - 2*x - 2

content()

Return the greatest common divisor of the coefficients of this polynomial. The sign is the sign of the leading coefficient. The content of the zero polynomial is zero.

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ)
sage: (2*x^2 - 4*x^4 + 14*x^7).content()
2
sage: x.content()
1
sage: R(1).content()
1
sage: R(0).content()
0

>>> from sage.all import *

>>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)

>>> (Integer(2)*x**Integer(2) - Integer(4)*x**Integer(2) + Integer(14)*x**Integer(7)).content()
2

(continues on next page)
degree \(\text{gen=None} \)

Return the degree of this polynomial.

The zero polynomial has degree \(-1\).

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: x.degree()
1
sage: (x**2).degree()
2
sage: R(1).degree()
0
sage: R(0).degree()
-1
```

```python
>>> from sage.all import *
```

```python
>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>> x.degree()
1
>>> (x**Integer(2)).degree()
2
>>> R(Integer(1)).degree()
0
>>> R(Integer(0)).degree()
-1
```

disc \(\text{proof=True} \)

Return the discriminant of \text{self}, which is by definition

\[
(-1)^{m(m-1)/2} \text{resultant}(a, a')/\text{lc}(a),
\]

where \(m = \text{deg}(a) \), and \(\text{lc}(a) \) is the leading coefficient of \(a \). If \text{proof} is False (the default is True), then this function may use a randomized strategy that errors with probability no more than \(2^{-80} \).

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: f = 3*x^3 + 2*x + 1
sage: f.discriminant()
-339
sage: f.discriminant(proof=False)
-339
```

```python
>>> from sage.all import *
```

```python
>> R = ZZ['x']; (x,) = R._first_ngens(1)
>> f = Integer(3)*x**Integer(3) + Integer(2)*x + Integer(1)
>> f.discriminant()
-339
```
discriminant (proof=True)

Return the discriminant of self, which is by definition

\[(-1)^{m(m-1)/2} \text{resultant}(a, a')/\text{lc}(a), \]

where \(m = \deg(a) \), and \(\text{lc}(a) \) is the leading coefficient of \(a \). If \(\text{proof} \) is False (the default is True), then this function may use a randomized strategy that errors with probability no more than \(2^{-80} \).

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: f = 3*x^3 + 2*x + 1
sage: f.discriminant()
-339
sage: f.discriminant(proof=False)
-339
```

factor()

This function overrides the generic polynomial factorization to make a somewhat intelligent decision to use PARI or NTL based on some benchmarking.

Note: This function factors the content of the polynomial, which can take very long if it's a really big integer. If you do not need the content factored, divide it out of your polynomial before calling this function.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: f = x^4 - 1
sage: f.factor()
(x - 1) * (x + 1) * (x^2 + 1)
sage: f = 1 - x
sage: f.factor()
(-1) * (x - 1)
sage: f = -30*x; f.factor()
(-1) * 2 * 3 * 5 * x
```

(continues on next page)
factor_mod \(p\)

Return the factorization of \(self\) modulo the prime \(p\).

INPUT:

\- \(p\) – prime

OUTPUT: factorization of \(self\) reduced modulo \(p\).

EXAMPLES:

```python
sage: R.<x> = ZZ['x']
sage: f = -3*x*(x-2)*(x-9) + x
sage: f.factor_mod(3)
x
sage: f = -3 * x * (x - 2) * (x - 9)
sage: f.factor_mod(3)
Traceback (most recent call last):
... ArithmeticError: factorization of 0 is not defined
sage: f = 2 * x * (x - 2) * (x - 9)
sage: f.factor_mod(7)
(2) * x * (x + 5)^2
```

factor_padic \((p, \text{prec}=10)\)

Return \(p\)-adic factorization of \(self\) to given precision.

INPUT:

\- \(p\) – prime
\- \(\text{prec}\) – integer; the precision

OUTPUT: factorization of \(self\) over the completion at \(p\).

EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ)
sage: f = x^2 + 1
sage: f.factor_padic(5, 4)
((1 + O(5^4))*x + 2 + 5 + 2*5^2 + 5^3 + O(5^4))
* ((1 + O(5^4))*x + 3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4))

>>> from sage.all import *

>>>

R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>>

f = x**Integer(2) + Integer(1)
>>>

f.factor_padic(Integer(5), Integer(4))
((1 + O(5^4))*x + 2 + 5 + 2*5^2 + 5^3 + O(5^4))
* ((1 + O(5^4))*x + 3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4))

A more difficult example:

sage: f = 100 * (5*x + 1)^2 * (x + 5)^2
sage: f.factor_padic(5, 10)
(4 + O(5^10)) * (5 + O(5^11))^2 * ((1 + O(5^10))*x + 5 + O(5^10))^2
* ((5 + O(5^10))*x + 1 + O(5^10))^2

>>> from sage.all import *

>>>

f = Integer(100) * (Integer(5)*x + Integer(1))**Integer(2) * (x +...
˓
→Integer(5))**Integer(2)
>>>

f.factor_padic(Integer(5), Integer(10))
(4 + O(5^10)) * (5 + O(5^11))^2 * ((1 + O(5^10))*x + 5 + O(5^10))^2
* ((5 + O(5^10))*x + 1 + O(5^10))^2

gcd(right)

Return the GCD of self and right. The leading coefficient need not be 1.

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ)
sage: f = (6*x + 47) * (7*x^2 - 2*x + 38)
sage: g = (6*x + 47) * (3*x^3 + 2*x + 1)
sage: f.gcd(g)
6*x + 47

>>> from sage.all import *

>>>

R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>>

f = (Integer(6)*x + Integer(47)) * (Integer(7)*x**Integer(2) -...
˓
→Integer(38))
>>>

g = (Integer(6)*x + Integer(47)) * (Integer(3)*x**Integer(3) +...
˓
→Integer(1))
>>> f.gcd(g)
6*x + 47

inverse_series_trunc(prec)

Return a polynomial approximation of precision prec of the inverse series of this polynomial.

EXAMPLES:

sage: x = polygen(ZZ)
sage: p = 1 + x + 2*x^2
sage: q5 = p.inverse_series_trunc(5)
sage: q5

(continues on next page)
-x^4 + 3*x^3 - x^2 - x + 1
\[\text{sage: } p*q5\]
-2*x^6 + 5*x^5 + 1
\[\text{sage: } (x-1).inverse_series_trunc(5)\]
-x^4 - x^3 - x^2 - x - 1
\[\text{sage: } q100 = p.inverse_series_trunc(100)\]
\[\text{sage: } (q100 * p).truncate(100)\]
1

```
>>> from sage.all import *

>>> x = polygen(ZZ)

>>> p = Integer(1) + x + Integer(2)*x**Integer(2)

>>> q5 = p.inverse_series_trunc(Integer(5))

>>> q5
-x^4 + 3*x^3 - x^2 - x + 1

>>> p*q5
-2*x^6 + 5*x^5 + 1

>>> (x-Integer(1)).inverse_series_trunc(Integer(5))
-x^4 - x^3 - x^2 - x - 1

>>> q100 = p.inverse_series_trunc(Integer(100))

>>> (q100 * p).truncate(Integer(100))
1
```

is_one()

Return True if self is equal to one.

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: R(0).is_one()
False

sage: R(1).is_one()
True

sage: x.is_one()
False
```

```
>>> from sage.all import *

>>> R = ZZ['x']; (x,) = R._first_ngens(1)

>>> R(Integer(0)).is_one()
False

>>> R(Integer(1)).is_one()
True

>>> x.is_one()
False
```

is_zero()

Return True if self is equal to zero.

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: R(0).is_zero()

sage: R(1).is_zero()  # This should return False
```

(continues on next page)
True
 sage: R(1).is_zero()
 False
 sage: x.is_zero()
 False

```python
>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> R(Integer(0)).is_zero()
True
>>> R(Integer(1)).is_zero()
False
>>> x.is_zero()
False
```

\textbf{lcm}\texttt{(right)}

Return the LCM of self and right.

\textbf{EXAMPLES:}

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: f = (6*x + 47) * (7*x^2 - 2*x + 38)
sage: g = (6*x + 47) * (3*x^3 + 2*x + 1)
sage: h = f.lcm(g); h
126*x^6 + 951*x^5 + 486*x^4 + 6034*x^3 + 585*x^2 + 3706*x + 1786
sage: h == (6*x + 47) * (7*x^2 - 2*x + 38) * (3*x^3 + 2*x + 1)
True
```

\textbf{list}\texttt{(copy=True)}

Return a new copy of the list of the underlying elements of self.

\textbf{EXAMPLES:}

```python
sage: x = PolynomialRing(ZZ,'x').0
sage: f = x^3 + 3*x - 17
sage: f.list()
[-17, 3, 0, 1]
```

```python
>>> from sage.all import *
>>> x = PolynomialRing(ZZ,'x').gen(0)
(continues on next page)```
Polynomials, Release 10.4

(continued from previous page)

```python
>>> f = x**Integer(3) + Integer(3)*x - Integer(17)
>>> f.list()
[-17, 3, 0, 1]
>>> f = PolynomialRing(ZZ,'x')(Integer(0))
>>> f.list()
[]
```

**pseudo_divrem** (*B*)

Write \( A = \text{self} \). This function computes polynomials \( Q \) and \( R \) and an integer \( d \) such that

\[
\text{lead}(B)^d A = BQ + R
\]

where \( R \) has degree less than that of \( B \).

**INPUT:**
- \( B \) – a polynomial over \( Z \)

**OUTPUT:**
- \( Q, R \) – polynomials
- \( d \) – nonnegative integer

**EXAMPLES:**

```
sage: R.<x> = ZZ['x']
sage: A = R(range(10))
sage: B = 3*R([-1, 0, 1])
sage: Q, R, d = A.pseudo_divrem(B)
sage: Q, R, d
(9*x^7 + 8*x^6 + 16*x^5 + 14*x^4 + 21*x^3 + 18*x^2 + 24*x + 20, 75*x + 60, 1)
sage: B.leading_coefficient()^d * A == B*Q + R
True
```

```python
>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> A = R(range(Integer(10)))
>>> B = Integer(3)*R([-Integer(1), Integer(0), Integer(1)])
>>> Q, R, d = A.pseudo_divrem(B)
>>> Q, R, d
(9*x^7 + 8*x^6 + 16*x^5 + 14*x^4 + 21*x^3 + 18*x^2 + 24*x + 20, 75*x + 60, 1)
>>> B.leading_coefficient()**d * A == B*Q + R
True
```

**quo_rem** (*right*)

Attempts to divide \( \text{self} \) by \( \text{right} \), and return a quotient and remainder.

**EXAMPLES:**

```
sage: R.<x> = PolynomialRing(ZZ)
sage: f = R(range(10)); g = R([-1, 0, 1])
sage: q, r = f.quo_rem(g)
sage: q, r
(9*x^7 + 8*x^6 + 16*x^5 + 14*x^4 + 21*x^3 + 18*x^2 + 24*x + 20, 25*x + 20)
sage: q*g + r == f
True
```

(continues on next page)
sage: f = x^2
sage: f.quo_rem(0)
Traceback (most recent call last):
... ZeroDivisionError: division by zero polynomial

sage: f = (x^2 + 3) * (2*x - 1)
sage: f.quo_rem(2*x - 1)
(x^2 + 3, 0)

sage: f = x^2
sage: f.quo_rem(2*x - 1)
(0, x^2)

real_root_intervals()

Return isolating intervals for the real roots of this polynomial.

EXAMPLES: We compute the roots of the characteristic polynomial of some Salem numbers:

sage: R.<x> = PolynomialRing(ZZ)
sage: f = 1 - x^2 - x^3 - x^4 + x^6
sage: f.real_root_intervals()  # needs sage.libs.linbox
[((1/2, 3/4), 1), ((1, 3/2), 1)]

resultant (other, proof=True)
Return the resultant of `self` and `other`, which must lie in the same polynomial ring.

If `proof=False` (the default is `proof=True`), then this function may use a randomized strategy that errors with probability no more than $2^{-80}$.

**INPUT:**
- `other` – a polynomial

**OUTPUT:** an element of the base ring of the polynomial ring

**EXAMPLES:**

```sage
sage: x = PolynomialRing(ZZ,'x').0
sage: f = x^3 + x + 1; g = x^3 - x - 1
sage: r = f.resultant(g); r
-8
sage: r.parent() is ZZ
True
```

```python
>>> from sage.all import *

R.<x> = ZZ[]
p = R([1,2,3,4]); p
4*x^3 + 3*x^2 + 2*x + 1
```

**reverse** *(degree= None)*

Return a polynomial with the coefficients of this polynomial reversed.

If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary before computing the reverse.

**EXAMPLES:**

```sage
sage: R.<x> = ZZ[]
sage: p = R([1,2,3,4]); p
4*x^3 + 3*x^2 + 2*x + 1
sage: p.reverse()
x^3 + 2*x^2 + 3*x + 4
sage: p.reverse(degree=6)
x^6 + 2*x^5 + 3*x^4 + 4*x^3
sage: p.reverse(degree=2)
x^2 + 2*x + 3
```

```python
>>> from sage.all import *

R = ZZ['x']; (x,) = R._first_ngens(1)
p = R([Integer(1),Integer(2),Integer(3),Integer(4)]); p
4*x^3 + 3*x^2 + 2*x + 1
```

**revert_series** *(n)*

Return a polynomial `f` such that `f( self(x)) = self( f(x)) = x (mod x^n)`.
EXAMPLES:

```python
sage: R.<t> = ZZ[]
sage: f = t - t^3 + t^5
sage: f.revert_series(6)
2*t^5 + t^3 + t
sage: f.revert_series(-1)
Traceback (most recent call last):
...
ValueError: argument n must be a non-negative integer, got -1
sage: g = - t^3 + t^5
sage: g.revert_series(6)
Traceback (most recent call last):
...
ValueError: self must have constant coefficient 0 and a unit for coefficient \rightarrow t^1
```

```python
>>> from sage.all import *

>>> R = ZZ['t']; (t,) = R._first_ngens(1)

>>> f = t - Integer(3)^t + t^Integer(5)

>>> f.revert_series(Integer(6))
2*t^5 + t^3 + t

>>> f.revert_series(-Integer(1))
Traceback (most recent call last):
...
ValueError: argument n must be a non-negative integer, got -1

>>> g = - t^Integer(3) + t^Integer(5)

>>> g.revert_series(Integer(6))
Traceback (most recent call last):
...
ValueError: self must have constant coefficient 0 and a unit for coefficient \rightarrow t^1

squarefree_decomposition()

Return the square-free decomposition of self. This is a partial factorization of self into square-free, relatively prime polynomials.

This is a wrapper for the NTL function SquareFreeDecomp.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ)

sage: p = (x-1)^2 * (x-2)^2 * (x-3)^3 * (x-4)

sage: p.squarefree_decomposition()
(x - 4) * (x^2 - 3*x + 2)^2 * (x - 3)^3

sage: p = 37 * (x-1)^2 * (x-2)^2 * (x-3)^3 * (x-4)

sage: p.squarefree_decomposition()
(37) * (x - 4) * (x^2 - 3*x + 2)^2 * (x - 3)^3
```

```python
>>> from sage.all import *

>>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)

>>> p = (x-Integer(1))^2 * (x-Integer(2))^2 * (x-Integer(3))^3 * (x-Integer(4))

>>> p.squarefree_decomposition()
(continues on next page)
```
\[(x - 4) \cdot (x^2 - 3x + 2)^2 \cdot (x - 3)^3\]

```
>>> p = Integer(37) * (x-Integer(1))^2 * (x-Integer(2))^2 →* (x-Integer(3))^3 * (x-Integer(4))
>>> p.squarefree_decomposition()
(37) * (x - 4) * (x^2 - 3x + 2)^2 * (x - 3)^3
```

xgcd *(right)*

Return a triple \((g, s, t)\) such that \(g = s \cdot \text{self} + t \cdot \text{right}\) and such that \(g\) is the gcd of \(\text{self}\) and \(\text{right}\) up to a divisor of the resultant of \(\text{self}\) and \(\text{other}\).

As integer polynomials do not form a principal ideal domain, it is not always possible given \(a\) and \(b\) to find a pair \(s, t\) such that \(gcd(a, b) = sa + tb\). Take \(a = x + 2\) and \(b = x + 4\) as an example for which the gcd is 1 but the best you can achieve in the Bezout identity is 2.

If \(\text{self}\) and \(\text{right}\) are coprime as polynomials over the rationals, then \(g\) is guaranteed to be the resultant of \(\text{self}\) and \(\text{right}\) as a constant polynomial.

EXAMPLES:

```
sage: P.<x> = PolynomialRing(ZZ)
sage: (x + 2).xgcd(x + 4)
(2, -1, 1)
sage: (x + 2).resultant(x + 4)
2
sage: (x + 2).gcd(x + 4)
1
```

```
sage: P = PolynomialRing(ZZ, names=('x',)); (x,) = P._first_ngens(1)
>>> from sage.all import *
>>> (x + Integer(2)).xgcd(x + Integer(4))
(2, -1, 1)
>>> (x + Integer(2)).resultant(x + Integer(4))
2
```

(continues on next page)
2.1.8 Dense univariate polynomials over \(\mathbb{Z} \), implemented using NTL.

AUTHORS:

- David Harvey: split off from polynomial_element_generic.py (2007-09)
- David Harvey: rewrote to talk to NTL directly, instead of via ntl.pyx (2007-09); a lot of this was based on Joel Mohler’s recent rewrite of the NTL wrapper

Sage includes two implementations of dense univariate polynomials over \(\mathbb{Z} \); this file contains the implementation based on NTL, but there is also an implementation based on FLINT in Sage.rings.polynomial.polynomial_integer_dense_flint.

The FLINT implementation is preferred (FLINT’s arithmetic operations are generally faster), so it is the default; to use the NTL implementation, you can do:

```python
sage: K.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: K
Univariate Polynomial Ring in x over Integer Ring (using NTL)
```

```python
>>> from sage.all import *
>>> K = PolynomialRing(ZZ, implementation='NTL', names=('x',)); (x,) = K._first_ngens(1)
>>> K
Univariate Polynomial Ring in x over Integer Ring (using NTL)
```

class sage.rings.polynomial.polynomial_integer_dense_ntl.
Polynomial_integer_dense_ntl

 Bases: Polynomial

 A dense polynomial over the integers, implemented via NTL.
content()

Return the greatest common divisor of the coefficients of this polynomial. The sign is the sign of the leading coefficient. The content of the zero polynomial is zero.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: (2*x^2 - 4*x^4 + 14*x^7).content()
2
sage: (2*x^2 - 4*x^4 - 14*x^7).content()
-2
sage: x.content()
1
sage: R(1).content()
1
sage: R(0).content()
0
```

degree (gen=None)

Return the degree of this polynomial. The zero polynomial has degree -1.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: x.degree()
1
sage: (x^2).degree()
2
sage: R(1).degree()
0
sage: R(0).degree()
-1
```

(continues on next page)
discriminant (proof=True)

Return the discriminant of self, which is by definition

\[(-1)^{m(m-1)/2} \text{resultant}(a, a')/\text{lc}(a), \]

where \(m = \deg(a) \), and \(\text{lc}(a) \) is the leading coefficient of \(a \). If proof is False (the default is True), then this function may use a randomized strategy that errors with probability no more than \(2^{-80} \).

EXAMPLES:

```python
sage: f = ntl.ZZX([1,2,0,3])
sage: f.discriminant()
-339
sage: f.discriminant(proof=False)
-339
```

factor()

This function overrides the generic polynomial factorization to make a somewhat intelligent decision to use PARI or NTL based on some benchmarking.

Note: This function factors the content of the polynomial, which can take very long if it's a really big integer. If you do not need the content factored, divide it out of your polynomial before calling this function.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: f = x^4 - 1
sage: f.factor()
(x - 1) * (x + 1) * (x^2 + 1)
sage: f = 1 - x
sage: f.factor()
(-1) * (x - 1)
sage: f.factor().unit()
-1
sage: f = -30*x; f.factor()
(-1) * 2 * 3 * 5 * x
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

```python
>>> f.factor().unit()
-1
>>> f = -Integer(30)*x; f.factor()
(-1) * 2 * 3 * 5 * x
```

factor_mod \((p)\)

Return the factorization of \(self\) modulo the prime \(p\).

INPUT:

• \(p\) – prime

OUTPUT: factorization of \(self\) reduced modulo \(p\).

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ, 'x', implementation='NTL')
sage: f = -3*x*(x-2)*(x-9) + x
sage: f.factor_mod(3)
x
sage: f = -3*x*(x-2)*(x-9)
sage: f.factor_mod(3)
Traceback (most recent call last):
... ArithmeticError: factorization of 0 is not defined
```

```python
>>> from sage.all import *
```

```python
>>> R = PolynomialRing(ZZ, 'x', implementation='NTL', names=('x',)); (x,) = R._first_ngens(1)
>>> f = -Integer(3)*x*(x-Integer(2))*(x-Integer(9)) + x
>>> f.factor_mod(Integer(3))
x
>>> f = -Integer(3)*x*(x-Integer(2))*(x-Integer(9))
>>> f.factor_mod(Integer(3))
Traceback (most recent call last):
... ArithmeticError: factorization of 0 is not defined
```

factor_padic \((p, prec=10)\)

Return \(p\)-adic factorization of \(self\) to given precision.

INPUT:

• \(p\) – prime

• \(prec\) – integer; the precision

OUTPUT:

• factorization of \(self\) over the completion at \(p\).

EXAMPLES:
Polynomials, Release 10.4

\[
sage: \text{R.<x> = PolynomialRing(ZZ, implementation='NTL')} \\
\text{sage: f = } x^2 + 1 \\
\text{sage: f.factor_padic(5, 4)} \\
((1 + O(5^4))*x + 2 + 5 + 2*5^2 + 5^3 + O(5^4)) \\
* ((1 + O(5^4))*x + 3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4)) \\
\]

A more difficult example:

\[
\text{sage: f = } 100 * (5*x + 1)^2 * (x + 5)^2 \\
\text{sage: f.factor_padic(5, 10)} \\
(4 + O(5^10)) * (5 + O(5^11))^2 * ((1 + O(5^10))*x + 5 + O(5^10))^2 \\
* ((5 + O(5^10))*x + 1 + O(5^10))^2 \\
\]

\[
\text{gcd}(\text{right}) \\
\text{Return the GCD of } self \text{ and } right. \text{ The leading coefficient need not be 1.} \\
\text{EXAMPLES:} \\
\text{sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')} \\
\text{sage: f = } (6*x + 47) * (7*x^2 - 2*x + 38) \\
\text{sage: g = } (6*x + 47) * (3*x^3 + 2*x + 1) \\
\text{sage: f.gcd(g)} \\
6*x + 47 \\
\]

\[
\text{lcm}(\text{right}) \\
\text{Return the LCM of } self \text{ and } right. \\
\text{EXAMPLES:} \\
\text{sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')} \\
\text{sage: f = } (6*x + 47) * (7*x^2 - 2*x + 38) \\
\]

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

sage: g = (6*x + 47) * (3*x^3 + 2*x + 1)
sage: h = f.lcm(g); h
126*x^6 + 951*x^5 + 486*x^4 + 6034*x^3 + 585*x^2 + 3706*x + 1786
sage: h == (6*x + 47) * (7*x^2 - 2*x + 38) * (3*x^3 + 2*x + 1)
True

>>> from sage.all import *
>>> R = PolynomialRing(ZZ, implementation='NTL', names=('x',)); (x,) = R._
˓→first_ngens(1)
>>> f = (Integer(6)*x + Integer(47)) * (Integer(7)*x**Integer(2) -
˓→Integer(2)*x + Integer(38))
>>> g = (Integer(6)*x + Integer(47)) * (Integer(3)*x**Integer(3) +
˓→Integer(2)*x + Integer(1))
>>> h = f.lcm(g); h
126*x^6 + 951*x^5 + 486*x^4 + 6034*x^3 + 585*x^2 + 3706*x + 1786
>>> h == (Integer(6)*x + Integer(47)) * (Integer(7)*x**Integer(2) -
˓→Integer(2)*x + Integer(38)) * (Integer(3)*x**Integer(3) + Integer(2)*x +
˓→Integer(1))
True

list (copy=True)

Return a new copy of the list of the underlying elements of self.

Examples:

sage: x = PolynomialRing(ZZ, 'x', implementation='NTL').0
sage: f = x^3 + 3*x - 17
sage: f.list()
[-17, 3, 0, 1]
sage: f = PolynomialRing(ZZ, 'x', implementation='NTL')(0)
sage: f.list()
[]

quo_rem (right)

Attempt to divide self by right, and return a quotient and remainder.

If right is monic, then it returns (q, r) where self = q * right + r and deg(r) < deg(right).

If right is not monic, then it returns (q,0) where q = self/right if right exactly divides self, otherwise it raises an exception.

Examples:

sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: f = R(range(10)); g = R([-1, 0, 1])
sage: q, r = f.quo_rem(g)
sage: q, r
(continues on next page)
\[(9x^7 + 8x^6 + 16x^5 + 14x^4 + 21x^3 + 18x^2 + 24x + 20, 25x + 20)\]

\texttt{sage: q\cdot g + r == f}\n\texttt{True}

\texttt{sage: 0\div(2x)}
\texttt{0}

\texttt{sage: f = x^2}
\texttt{sage: f.quo_rem(0)}
\text{Traceback (most recent call last):}
\texttt{...}
\texttt{ArithmeticError: division by zero polynomial}

\texttt{sage: f = (x^2 + 3) * (2x - 1)}
\texttt{sage: f.quo_rem(2x - 1)}
\texttt{(x^2 + 3, 0)}

\texttt{sage: f = x^2}
\texttt{sage: f.quo_rem(2x - 1)}
\text{Traceback (most recent call last):}
\texttt{...}
\texttt{ArithmeticError: division not exact in Z[x] (consider coercing to Q[x] first)}

... from sage.all import *
R = PolynomialRing(ZZ, implementation='NTL', names=('x',)); (x,) = R._first_ngens(1)
>>> f = R(range(Integer(10))); g = R([-Integer(1), Integer(0), Integer(1)])
>>> q, r = f.quo_rem(g)
>>> q*g + r == f
\texttt{True}

>>> Integer(0)//(Integer(2)*x)
\texttt{0}

>>> f = x**Integer(2)
>>> f.quo_rem(Integer(0))
\text{Traceback (most recent call last):}
\texttt{...}
\texttt{ArithmeticError: division by zero polynomial}

>>> f = (x**Integer(2) + Integer(3)) * (Integer(2)*x - Integer(1))
>>> f.quo_rem(Integer(2)*x - Integer(1))
\texttt{(x^2 + 3, 0)}

>>> f = x**Integer(2)
>>> f.quo_rem(Integer(2)*x - Integer(1))
\text{Traceback (most recent call last):}
\texttt{...}
\texttt{ArithmeticError: division not exact in Z[x] (consider coercing to Q[x] first)}

\texttt{real_root_intervals()}
Returns isolating intervals for the real roots of this polynomial.

\textbf{EXAMPLES:} We compute the roots of the characteristic polynomial of some Salem numbers:
```python
sage: R.<x> = PolynomialRing(ZZ, implementation='NTL')

sage: f = 1 - x^2 - x^3 - x^4 + x^6

sage: f.real_root_intervals()  # needs sage.libs.linbox
[[(1/2, 3/4), 1), (1, 3/2), 1]]

resultant (other, proof=True)

Returns the resultant of self and other, which must lie in the same polynomial ring.

If proof=False (the default is proof=True), then this function may use a randomized strategy that
errors with probability no more than $2^{-80}$.

INPUT:

• other – a polynomial

OUTPUT: an element of the base ring of the polynomial ring

EXAMPLES:

```python
sage: x = PolynomialRing(ZZ, 'x', implementation='NTL').0
sage: f = x^3 + x + 1; g = x^3 - x - 1
sage: r = f.resultant(g); r
-8
sage: r.parent() is ZZ
True
```
```python
>>> from sage.all import *
>>> R = PolynomialRing(ZZ, implementation='NTL', names=('x',)); (x,) = R._first_ngens(1)
>>> p = Integer(37) * (x-Integer(1))**Integer(2) * (x-Integer(2))**Integer(2) * (x-Integer(3))**Integer(3) * (x-Integer(4))
>>> p.squarefree_decomposition()
(37) * (x - 4) * (x^2 - 3*x + 2)^2 * (x - 3)^3
```

**xgcd**(right)

This function can’t in general return \((g, s, t)\) as above, since they need not exist. Instead, over the integers, we first multiply \(g\) by a divisor of the resultant of \(a/g\) and \(b/g\), up to sign, and return \(g, u, v\) such that \(g = s*\text{self} + s*\text{right}\). But note that this \(g\) may be a multiple of the gcd.

If \text{self} and \text{right} are coprime as polynomials over the rationals, then \(g\) is guaranteed to be the resultant of \text{self} and \text{right}, as a constant polynomial.

**EXAMPLES:**

```
sage: P.<x> = PolynomialRing(ZZ, implementation='NTL')
sage: F = (x^2 + 2)*x^3; G = (x^2+2)*(x-3)
sage: g, u, v = F.xgcd(G)
sage: g, u, v
(27*x^2 + 54, 1, -x^2 - 3*x - 9)
sage: u*F + v*G
27*x^2 + 54
sage: x.xgcd(P(0))
(x, 1, 0)
sage: f = P(0)
sage: f.xgcd(x)
(x, 0, 1)
sage: F = (x-3)^3; G = (x-15)^2
sage: g, u, v = F.xgcd(G)
sage: g, u, v
(2985984, -432*x + 8208, 432*x^2 + 864*x + 14256)
sage: u*F + v*G
2985984
```

(continues on next page)
2.1.9 Univariate polynomials over \( \mathbb{Q} \) implemented via FLINT

AUTHOR:

- Sebastian Pancratz

```python
class sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint
 Bases: Polynomial

Univariate polynomials over the rationals, implemented via FLINT.
Internally, we represent rational polynomial as the quotient of an integer polynomial and a positive denominator
which is coprime to the content of the numerator.

__add__(right)
Return the sum of two rational polynomials.

EXAMPLES:

```python
sage: R.<t> = QQ[

sage: f = 2/3 + t + 2*t^3
sage: g = -1 + t/3 - 10/11*t^4
sage: f + g
-10/11*t^4 + 2*t^3 + 4/3*t - 1/3
```

```python
>>> from sage.all import *

>>> R = QQ[t]; (t,) = R._first_ngens(1)

>>> f = Integer(2)/Integer(3) + t + Integer(2)*t**Integer(3)

>>> g = -Integer(1) + t/Integer(3) - Integer(10)/Integer(11)*t**Integer(4)

>>> f + g
-10/11*t^4 + 2*t^3 + 4/3*t - 1/3
```

__sub__(right)
Return the difference of two rational polynomials.

EXAMPLES:

```python
sage: f = -Integer(10)/Integer(11)*t**Integer(4) + Integer(2)*t**Integer(3) -
    Integer(1)/Integer(3)

sage: g = Integer(2)*t**Integer(3)

sage: f - g
-10/11*t^4 + 4/3*t - 1/3
```

```python
>>> from sage.all import *

>>> R = QQ['t']; (t,) = R._first_ngens(1)

>>> f = -Integer(10)/Integer(11)*t**Integer(4) + Integer(2)*t**Integer(3) +
    Integer(4)/Integer(3)*t - Integer(1)/Integer(3)

>>> g = Integer(2)*t**Integer(3)

>>> f - g
-10/11*t^4 + 4/3*t - 1/3
```
Polynomials, Release 10.4

 RCMPM (right)
 Return self * right, where right is a rational number.

 EXAMPLES:

 sage: R.<t> = QQ[]
 sage: f = 3/2*t^3 - t + 1/3
 sage: f * 6
 9*t^3 - 6*t + 2

 >>> from sage.all import *
 >>> R = QQ['t']; (t,) = R._first_ngens(1)
 >>> f = Integer(3)/Integer(2)*t**Integer(3) - t + Integer(1)/Integer(3)
 >>> Integer(6) * f
 9*t^3 - 6*t + 2

 RCMPM (left)
 Return left * self, where left is a rational number.

 EXAMPLES:

 sage: R.<t> = QQ[]
 sage: f = 3/2*t^3 - t + 1/3
 sage: 6 * f
 9*t^3 - 6*t + 2

 >>> from sage.all import *
 >>> R = QQ['t']; (t,) = R._first_ngens(1)
 >>> f = Integer(3)/Integer(2)*t**Integer(3) - t + Integer(1)/Integer(3)
 >>> Integer(6) * f
 9*t^3 - 6*t + 2

 MM (right)
 Return the product of self and right.

 EXAMPLES:

 sage: R.<t> = QQ[]
 sage: f = -1 + 3*t/2 - t^3
 sage: g = 2/3 + 7/3*t + 3*t^2
 sage: f * g
 -3*t^5 - 7/3*t^4 + 23/6*t^3 + 1/2*t^2 - 4/3*t - 2/3

 >>> from sage.all import *
 >>> R = QQ['t']; (t,) = R._first_ngens(1)
 >>> f = -Integer(1) + Integer(3)*t/Integer(2) - t**Integer(3)
 >>> g = Integer(2)/Integer(3) + Integer(7)/Integer(3)*t +
 Integer(3)*t**Integer(2)
 >>> f * g
 -3*t^5 - 7/3*t^4 + 23/6*t^3 + 1/2*t^2 - 4/3*t - 2/3

 MM_trunc (right, n)
 Truncated multiplication.

 EXAMPLES:
sage: x = polygen(QQ)
sage: p1 = 1/2 - 3*x + 2/7*x**3
sage: p2 = x + 2/5*x**5 + x**7
sage: p1._mul_trunc_(p2, 5)
2/7*x^4 - 3*x^2 + 1/2*x
sage: (p1*p2).truncate(5)
2/7*x^4 - 3*x^2 + 1/2*x
sage: p1._mul_trunc_(p2, 1)
0
sage: p1._mul_trunc_(p2, 0)
Traceback (most recent call last):
 ... ValueError: n must be > 0

ALGORITHM:
Call the FLINT method `fmpq_poly_mullow`.

degree()

Return the degree of `self`.
By convention, the degree of the zero polynomial is −1.

EXAMPLES:

sage: R.<t> = QQ[]
sage: f = 1 + t + t^2/2 + t^3/3 + t^4/4
sage: f.degree()
4
sage: g = R(0)
sage: g.degree()
-1

>>> from sage.all import *
>>> x = polygen(QQ)
>>> p1 = Integer(1)/Integer(2) - Integer(3)*x + Integer(2)/
Integer(7)*x**Integer(3)
>>> p2 = x + Integer(2)/Integer(5)*x**Integer(5) + x**Integer(7)
>>> p1._mul_trunc_(p2, Integer(5))
2/7*x^4 - 3*x^2 + 1/2*x
>>> (p1*p2).truncate(Integer(5))
2/7*x^4 - 3*x^2 + 1/2*x
>>> p1._mul_trunc_(p2, Integer(1))
0
>>> p1._mul_trunc_(p2, Integer(0))
Traceback (most recent call last):
 ... ValueError: n must be > 0

(continues on next page)
denominator()
Return the denominator of self.

EXAMPLES:

```
sage: R.<t> = QQ[]  
sage: f = (3 * t^3 + 1) / -3  
sage: f.denominator()  
3
```

```
>>> from sage.all import *  
>>> R = QQ['t']; (t,) = R._first_ngens(1)  
>>> f = (Integer(3) * t**Integer(3) + Integer(1)) / -Integer(3)  
>>> f.denominator()  
3
```

disc()
Return the discriminant of this polynomial.

The discriminant R_n is defined as

$$R_n = a_n^{2n-2} \prod_{1 \leq i < j \leq n} (r_i - r_j)^2,$$

where n is the degree of this polynomial, a_n is the leading coefficient and the roots over \mathbb{Q} are r_1, \ldots, r_n.

The discriminant of constant polynomials is defined to be 0.

OUTPUT: Discriminant, an element of the base ring of the polynomial ring

Note: Note the identity $R_n(f) := (-1)^{(n-1)/2} R(f, f') a_n^{(n-k-2)}$, where n is the degree of this polynomial, a_n is the leading coefficient, f' is the derivative of f, and k is the degree of f'. Calls `resultant()`.

ALGORITHM:

Use PARI.

EXAMPLES:

In the case of elliptic curves in special form, the discriminant is easy to calculate:

```
sage: R.<t> = QQ[]  
sage: f = t^3 + t + 1  
sage: d = f.discriminant(); d  
-31  
sage: d.parent() is QQ  
True  
sage: EllipticCurve([1, 1]).discriminant() / 16  
# needs sage.schemes
-31
```
Polynomials, Release 10.4

```python
>>> from sage.all import *

>>>
R = QQ['t']; (t,) = R._first_ngens(1)
>>> f = t**Integer(3) + t + Integer(1)
>>> d = f.discriminant(); d
-31
>>> d.parent() is QQ
True

>>> EllipticCurve([Integer(1), Integer(1)]).discriminant() / Integer(16)  # needs sage.schemes
-31

sage: R.<t> = QQ[]
sage: f = 2*t^3 + t + 1
sage: d = f.discriminant(); d
-116

sage: R.<t> = QQ[]
sage: f = t^3 + 3*t - 17
sage: f.discriminant()
-7911

sage: R.<t> = QQ[]
sage: f = t**Integer(3) + Integer(3)*t - Integer(17)
sage: f.discriminant()
-7911
```

discriminant()

Return the discriminant of this polynomial.

The discriminant \(R_n \) is defined as

\[
R_n = a_n^{2n-2} \prod_{1 \leq i < j \leq n} (r_i - r_j)^2,
\]

where \(n \) is the degree of this polynomial, \(a_n \) is the leading coefficient and the roots over \(\mathbb{Q} \) are \(r_1, \ldots, r_n \). The discriminant of constant polynomials is defined to be 0.

OUTPUT: Discriminant, an element of the base ring of the polynomial ring

Note: Note the identity \(R_n(f) := (-1)^{(n(n-1)/2)} R(f, f') a_n^{(n-k-2)} \), where \(n \) is the degree of this polynomial, \(a_n \) is the leading coefficient, \(f' \) is the derivative of \(f \), and \(k \) is the degree of \(f' \). Calls \texttt{resultant()}.

ALGORITHM:
Use PARI.

EXAMPLES:

In the case of elliptic curves in special form, the discriminant is easy to calculate:
Polynomials, Release 10.4

```python
sage: R.<t> = QQ[]
sage: f = t^3 + t + 1
sage: d = f.discriminant(); d
-31
sage: d.parent() is QQ
True
sage: EllipticCurve([1, 1]).discriminant() / 16 # needs sage.schemes
-31
```

```python
>>> from sage.all import *

>>> R = QQ['t']; (t,) = R._first_ngens(1)
>>> f = t**Integer(3) + t + Integer(1)
>>> d = f.discriminant(); d
-31
>>> d.parent() is QQ
True
>>> EllipticCurve([Integer(1), Integer(1)]).discriminant() / Integer(16) # needs sage.schemes
-31
```

```python
sage: R.<t> = QQ[]
sage: f = 2*t^3 + t + 1
sage: d = f.discriminant(); d
-116
```

```python
>>> from sage.all import *

>>> R = QQ['t']; (t,) = R._first_ngens(1)
>>> f = Integer(2)*t**Integer(3) + t + Integer(1)
>>> d = f.discriminant(); d
-116
```

```python
sage: R.<t> = QQ[]
sage: f = t^3 + 3*t - 17
sage: f.discriminant()
-7911
```

```python
>>> from sage.all import *

>>> R = QQ['t']; (t,) = R._first_ngens(1)
>>> f = t**Integer(3) + Integer(3)*t - Integer(17)
>>> f.discriminant()
-7911
```

factor_mod (*p*)

Return the factorization of self modulo the prime *p*.

Assumes that the degree of this polynomial is at least one, and raises a `ValueError` otherwise.

INPUT:

- *p* – Prime number

OUTPUT: Factorization of this polynomial modulo *p*

EXAMPLES:
Polynomials, Release 10.4

```
sage: R.<x> = QQ[]
sage: (x^5 + 17*x^3 + x + 3).factor_mod(3)
  x * (x^2 + 1)^2
sage: (x^5 + 2).factor_mod(5)
  (x + 2)^5

>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> (x**Integer(5) + Integer(17)*x**Integer(3) + x + Integer(3)).factor_mod(Integer(3))
  x * (x^2 + 1)^2
>>> (x**Integer(5) + Integer(2)).factor_mod(Integer(5))
  (x + 2)^5
```

Variable names that are reserved in PARI, such as `zeta`, are supported (see Issue #20631):

```
sage: R.<zeta> = QQ[]
sage: (zeta^2 + zeta + 1).factor_mod(7)
  (zeta + 3) * (zeta + 5)
```

```
factor_padic(p, prec=10)

Return the \( p \)-adic factorization of this polynomial to the given precision.

INPUT:

- \( p \) – Prime number
- \( \text{prec} \) – Integer; the precision

OUTPUT: factorization of `self` viewed as a \( p \)-adic polynomial

EXAMPLES:

```
sage: # needs sage.rings.padics
sage: R.<x> = QQ[]
sage: f = x^3 - 2
sage: f.factor_padic(2)
 (1 + O(2^10))*x^3 + O(2^10)*x^2 + O(2^10)*x + 2 + 2*2 + 2*3 + 3*4 + 2*5 + 2*6 + 2*7 + 2*8 + 2*9 + O(2^10)

sage: f.factor_padic(3)
 (1 + O(3^10))*x^3 + O(3^10)*x^2 + O(3^10)*x + 1 + 2*3 + 2*3*2 + 2*3*3 + 2*3*3*4 + 2*3*3*5 + 2*3*3*6 + 2*3*3*7 + 2*3*3*8 + 2*3*3*9 + O(3^10)

sage: f.factor_padic(5)
 ((1 + O(5^10))*x + 2 + 3*5 + 2*3*2 + 2*3*3 + 2*3*3*4 + 2*3*3*5 + 2*3*3*6 + 2*3*3*7 + 2*3*3*8 + 2*3*3*9 + O(5^10)) * ((1 + O(5^10))*x^2 + (3 + 2*5*2 + 2*5*3 + 3*5*4 + 2*5*5 + 4*5*6 + 2*5*8 + 3*5*9 + O(5^10))*x + 4 + 5 + 2*5*2 + 4*5*3 + 4*5*4 + 3*5*5 + 3*5*6 + 4*5*7 + 4*5*9 + O(5^10))
```

```
needs sage.rings.padics
>>> R = QQ['x']; (x,) = R._first_ngens(1)
```
The input polynomial is considered to have “infinite” precision, therefore the $p$-adic factorization of the polynomial is not the same as first coercing to $\mathbb{Q}_p$, and then factoring (see also Issue #15422):

```python
sage: # needs sage.rings.padics
sage: f = x^2 - 3^6
sage: f.factor_padic(3, 5)
((1 + O(3^5))*x + 3^3 + O(3^5)) * ((1 + O(3^5))*x + 2*3^3 + 2*3^4 + O(3^5))
sage: f.change_ring(Qp(3,5)).factor()
Traceback (most recent call last):
 ...PrecisionError: p-adic factorization not well-defined since
the discriminant is zero up to the requested p-adic precision
```

A more difficult example:

```python
sage: R.<x> = QQ[]
sage: f = 100 * (5*x + 1)^2 * (x + 5)^2
sage: f.factor_padic(5, 10)
needs sage.rings.padics
(4*5^4 + O(5^14)) * ((1 + O(5^9))*x + 5^-1 + O(5^9))^2
* ((1 + O(5^10))*x + 5 + O(5^10))^2
```

```python
>>> from sage.all import *
>>> # needs sage.rings.padics
>>> f = x**Integer(2) - Integer(3)**Integer(6)
>>> f.factor_padic(3, Integer(5))
((1 + O(3^5))*x + 3^3 + O(3^5)) * ((1 + O(3^5))*x + 2*3^3 + 2*3^4 + O(3^5))
>>> f.change_ring(Qp(Integer(3),Integer(5))).factor()
Traceback (most recent call last):
 ...PrecisionError: p-adic factorization not well-defined since
the discriminant is zero up to the requested p-adic precision
```
Try some bogus inputs:

```
sage: # needs sage.rings.padic
sage: f.factor_padic(3, -1)
Traceback (most recent call last):
 ...
ValueError: prec_cap must be non-negative
sage: f.factor_padic(6, 10)
Traceback (most recent call last):
 ...
ValueError: p must be prime
sage: f.factor_padic('hello', 'world')
Traceback (most recent call last):
 ...
TypeError: unable to convert 'hello' to an integer
```

```
>>> from sage.all import *
>>> # needs sage.rings.padic
>>> f.factor_padic(Integer(3), -Integer(1))
Traceback (most recent call last):
 ...
ValueError: prec_cap must be non-negative
>>> f.factor_padic(Integer(6), Integer(10))
Traceback (most recent call last):
 ...
ValueError: p must be prime
>>> f.factor_padic('hello', 'world')
Traceback (most recent call last):
 ...
TypeError: unable to convert 'hello' to an integer
```

galois_group(pari_group=False, algorithm='pari')

Return the Galois group of this polynomial as a permutation group.

INPUT:

- **self** – Irreducible polynomial
- **pari_group** – bool (default: False); if True instead return the Galois group as a PARI group. This has a useful label in it, and may be slightly faster since it doesn’t require looking up a group in GAP. To get a permutation group from a PARI group P, type `PermutationGroup(P)`.
- **algorithm** – 'pari', 'gap', 'kash', 'magma' (default: 'pari', for degrees is at most 11; 'gap', for degrees from 12 to 15; 'kash', for degrees from 16 or more).

OUTPUT: Galois group

ALGORITHM:

The Galois group is computed using PARI in C library mode, or possibly GAP, KASH, or MAGMA.

**Note:** The PARI documentation contains the following warning: The method used is that of resolvent polynomials and is sensitive to the current precision. The precision is updated internally but, in very rare cases, a wrong result may be returned if the initial precision was not sufficient.

GAP uses the “Transitive Groups Libraries” from the “TransGrp” GAP package which comes installed with the “gap” Sage package.
MAGMA does not return a provably correct result. Please see the MAGMA documentation for how to obtain a provably correct result.

EXAMPLES:

```
sage: # needs sage.groups sage.libs.pari
sage: R.<x> = QQ[]
sage: f = x^4 - 17*x^3 - 2*x + 1
sage: G = f.galois_group(); G
Transitive group number 5 of degree 4
sage: G.gens()
((1,2,3,4), (1,2))
sage: G.order()
24
```

```bash
>>> from sage.all import *
>>> # needs sage.groups sage.libs.pari
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(4) - Integer(17)*x**Integer(3) - Integer(2)*x + Integer(1)
>>> G = f.galois_group(pari_group=True); G
Transitive group number 5 of degree 4
>>> G.gens()
((1,2,3,4), (1,2))
>>> G.order()
24
```

It is potentially useful to instead obtain the corresponding PARI group, which is little more than a 4-tuple. See the PARI manual for the exact details. (Note that the third entry in the tuple is in the new standard ordering.)

```
sage: # needs sage.groups sage.libs.pari
sage: f = x^4 - 17*x^3 - 2*x + 1
sage: G = f.galois_group(pari_group=True); G
PARI group [24, -1, 5, "S4"] of degree 4
sage: PermutationGroup(G)
Transitive group number 5 of degree 4
```

```bash
>>> from sage.all import *
>>> # needs sage.groups sage.libs.pari
>>> f = x**Integer(4) - Integer(17)*x**Integer(3) - Integer(2)*x + Integer(1)
>>> G = f.galois_group(pari_group=True); G
PARI group [24, -1, 5, "S4"] of degree 4
>>> PermutationGroup(G)
Transitive group number 5 of degree 4
```

You can use KASH or GAP to compute Galois groups as well. The advantage is that KASH (resp. GAP) can compute Galois groups of fields up to degree 23 (resp. 15), whereas PARI only goes to degree 11. (In my not-so-thorough experiments PARI is faster than KASH.)

```
sage: R.<x> = QQ[]
sage: f = x^4 - 17*x^3 - 2*x + 1
sage: f.galois_group(algorithm='kash') # optional - kash
Transitive group number 5 of degree 4
sage: # needs sage.libs.gap
sage: f = x^4 - 17*x^3 - 2*x + 1
sage: f.galois_group(algorithm='gap')
```

(continues on next page)
Polynomials, Release 10.4

Transitive group number 5 of degree 4
sage: f = x^13 - 17*x^3 - 2*x + 1
sage: f.galois_group(algorithm='gap')

Transitive group number 9 of degree 13
sage: f = x^12 - 2*x^8 - x^7 + 2*x^6 + 4*x^4 - 2*x^3 - x^2 - x + 1
sage: f.galois_group(algorithm='gap')

Transitive group number 183 of degree 12

>>> from sage.all import *

>>> R = QQ['x']; (x,) = R._first_ngens(1)

>>> f = x**Integer(4) - Integer(17)*x**Integer(3) - Integer(2)*x + Integer(1)

>>> f.galois_group(algorithm='kash')  # optional - kash

Transitive group number 5 of degree 4

>>> # needs sage.libs.gap

>>> f = x**Integer(4) - Integer(17)*x**Integer(3) - Integer(2)*x + Integer(1)

>>> f.galois_group(algorithm='gap')

Transitive group number 5 of degree 4

>>> f = x**Integer(13) - Integer(17)*x**Integer(3) - Integer(2)*x + Integer(1)

>>> f.galois_group(algorithm='gap')

Transitive group number 5 of degree 4

>>> f = x**Integer(12) - Integer(2)*x**Integer(8) - x**Integer(7) +
    Integer(2)*x**Integer(6) + Integer(4)*x**Integer(4) -
    Integer(2)*x**Integer(3) - x**Integer(2) - x + Integer(1)

>>> f.galois_group(algorithm='gap')

Transitive group number 183 of degree 12

>>> f.galois_group(algorithm='magma')  # optional - magma

Transitive group number 5 of degree 4

\begin{Verbatim}
\begin{verbatim}
galois_group_davenport_smith_test \(num\_trials=50, assume\_irreducible=False\)
Use the Davenport-Smith test to attempt to certify that \(f\) has Galois group \(A_n\) or \(S_n\).

Return 1 if the Galois group is certified as \(S_n\), 2 if \(A_n\), or 0 if no conclusion is reached.

By default, we first check that \(f\) is irreducible. For extra efficiency, one can override this by specifying \(assume\_irreducible=True\); this yields undefined results if \(f\) is not irreducible.

A corresponding function in Magma is IsEasySnAn.

EXAMPLES:

\begin{verbatim}
sage: P.<x> = QQ[]
sage: u = x^7 + x + 1
sage: u.galois_group_davenport_smith_test()
1
sage: u = x^7 - x^4 - x^3 + 3*x^2 - 1
sage: u.galois_group_davenport_smith_test()
2
sage: u = x^7 - 2
sage: u.galois_group_davenport_smith_test()
0
\end{verbatim}
\end{verbatim}\end{Verbatim}

2.1. Univariate Polynomials and Polynomial Rings 267
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> P = QQ['x']; (x,) = P._first_ngens(1)
>>> u = x**Integer(7) + x + Integer(1)
>>> u.galois_group_davenport_smith_test()
1
>>> u = x**Integer(7) - x**Integer(4) - x**Integer(3) +
 -Integer(3)*x**Integer(2) - Integer(1)
>>> u.galois_group_davenport_smith_test()
2
>>> u = x**Integer(7) - Integer(2)
>>> u.galois_group_davenport_smith_test()
0
```

gcd(right)

Return the (monic) greatest common divisor of self and right.

Corner cases: if self and right are both zero, returns zero. If only one of them is zero, returns the other polynomial, up to normalisation.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: f = -2 + 3*t/2 + 4*t^2/7 - t^3
sage: g = 1/2 + 4*t + 2*t^4/3
sage: f.gcd(g)
1
```

```python
>>> from sage.all import *
>>> R = QQ['t']; (t,) = R._first_ngens(1)
>>> f = -Integer(2) + Integer(3)*t/Integer(2) + Integer(4)*t**Integer(2)/
 -Integer(7) - t**Integer(3)
>>> g = Integer(1)/Integer(2) + Integer(4)*t + Integer(2)*t**Integer(4)/
 -Integer(3)
>>> f.gcd(g)
1
```

hensel_lift(p, e)

Assuming that this polynomial factors modulo p into distinct monic factors, computes the Hensel lifts of these factors modulo p^e. We assume that self has integer coefficients.

Return an empty list if this polynomial has degree less than one.

INPUT:

- p – Prime number; coercible to Integer
- e – Exponent; coercible to Integer

OUTPUT: Hensel lifts; list of polynomials over \( \mathbb{Z}/p^e\mathbb{Z} \)

EXAMPLES:
Polynomials, Release 10.4

```python
sage: R.<x> = QQ[]
sage: R((x-1)*(x+1)).hensel_lift(7, 2)
[x + 1, x + 48]
```

If the input polynomial \(f\) is not monic, we get a factorization of \(f/\text{lc}(f)\):

```python
sage: R(2*x^2 - 2).hensel_lift(7, 2)
[x + 1, x + 48]
```

**inverse_series_trunc** \((\text{prec})\)

Return a polynomial approximation of precision \(\text{prec}\) of the inverse series of this polynomial.

**EXAMPLES:**

```python
sage: x = polygen(QQ)
sage: p = 2 + x - 3/5*x**2
sage: q5 = p.inverse_series_trunc(5)
sage: q5
151/800*x^4 - 17/80*x^3 + 11/40*x^2 - 1/4*x + 1/2
sage: q5 * p
-453/4000*x^6 + 253/800*x^5 + 1
```

```python
>>> from sage.all import *

>>> x = polygen(QQ)

>>> p = Integer(2) + x - Integer(3)/Integer(5)*x**2

>>> q5 = p.inverse_series_trunc(Integer(5))

>>> q5
151/800*x^4 - 17/80*x^3 + 11/40*x^2 - 1/4*x + 1/2

>>> q5 * p
-453/4000*x^6 + 253/800*x^5 + 1
```

**is_irreducible**

Return whether this polynomial is irreducible.

This method computes the primitive part as an element of \(\mathbb{Z}[t]\) and calls the method \text{is}\_\text{irreducible} for elements of that polynomial ring.

By definition, over any integral domain, an element \(r\) is irreducible if and only if it is non-zero, not a unit and whenever \(r = ab\) then \(a\) or \(b\) is a unit.

2.1. Univariate Polynomials and Polynomial Rings
EXAMPLES:

```
sage: R.<t> = QQ[]
sage: (t^2 + 2).is_irreducible()
True
sage: (t^2 - 1).is_irreducible()
False
```

```>>> from sage.all import *
>>> R = QQ['t']; (t,) = R._first_ngens(1)
>>> (t**Integer(2) + Integer(2)).is_irreducible()
True
>>> (t**Integer(2) - Integer(1)).is_irreducible()
False
```

`is_one()`
Return whether or not this polynomial is one.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: R([0,1]).is_one()
False
sage: R([1]).is_one()
True
sage: R([0]).is_one()
False
sage: R([-1]).is_one()
False
sage: R([1,1]).is_one()
False
```

```>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> R([Integer(0),Integer(1)]).is_one()
False
>>> R([Integer(1)]).is_one()
True
>>> R([Integer(0)]).is_one()
False
>>> R([-Integer(1)]).is_one()
False
>>> R([Integer(1),Integer(1)]).is_one()
False
```

`is_zero()`
Return whether or not `self` is the zero polynomial.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: f = 1 - t + 1/2*t^2 - 1/3*t^3
sage: f.is_zero()
False
sage: R(0).is_zero()
True
```
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> R = QQ['t']; (t,) = R._first_ngens(1)
>>> f = Integer(1) - t + Integer(1)/Integer(2)*t**Integer(2) - Integer(1)/Integer(3)*t**Integer(3)
>>> f.is_zero()
False
>>> R(Integer(0)).is_zero()
True
```

**lcm**(right)

Return the monic (or zero) least common multiple of `self` and `right`.

Corner cases: if either of `self` and `right` are zero, returns zero. This behaviour is ensures that the relation \(\text{lcm}(a, b) \cdot \text{gcd}(a, b) = a \cdot b\) holds up to multiplication by rationals.

**EXAMPLES:**

```python
sage: R.<t> = QQ[]
sage: f = -2 + 3*t/2 + 4*t^2/7 - t^3
sage: g = 1/2 + 4*t + 2*t^4/3
sage: f.lcm(g)
t^7 - 4/7*t^6 - 3/2*t^5 + 8*t^4 - 75/28*t^3 - 66/7*t^2 + 87/8*t + 3/2
sage: f.lcm(g) * f.gcd(g) // (f * g)
-3/2
```

```python
>>> from sage.all import *
>>> R = QQ['t']; (t,) = R._first_ngens(1)
>>> f = -Integer(2) + Integer(3)*t/Integer(2) + Integer(4)*t**Integer(2)/Integer(7) - t**Integer(3)
>>> g = Integer(1)/Integer(2) + Integer(4)*t + Integer(2)*t**Integer(4)/Integer(3)
>>> f.lcm(g)
t^7 - 4/7*t^6 - 3/2*t^5 + 8*t^4 - 75/28*t^3 - 66/7*t^2 + 87/8*t + 3/2
>>> f.lcm(g) * f.gcd(g) // (f * g)
-3/2
```

**list**(copy=True)

Return a list with the coefficients of `self`.

**EXAMPLES:**

```python
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2/2 + t^3/3 + t^4/4
sage: f.list()
[1, 1, 1/2, 1/3, 1/4]
sage: g = R(0)
sage: g.list()
[]
```

```python
>>> from sage.all import *
>>> R = QQ['t']; (t,) = R._first_ngens(1)
>>> f = Integer(1) + t + t**Integer(2)/Integer(2) + t**Integer(3)/Integer(3) - t**Integer(4)/Integer(4)
>>> f.list()
[1, 1, 1/2, 1/3, 1/4]
>>> g = R(Integer(0))
```

(continues on next page)
Polynomials, Release 10.4

>>> g.list()
[]

\textbf{numerator()} \hfill (continued from previous page)

Return the numerator of self.

Representing self as the quotient of an integer polynomial and a positive integer denominator (coprime to the content of the polynomial), returns the integer polynomial.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<t> = QQ[]
sage: f = (3 * t^3 + 1) / -3
sage: f.numerator()
-3*t^3 - 1
\end{verbatim}

\textbf{quo_rem(right)} \hfill (continued from previous page)

Return the quotient and remainder of the Euclidean division of self and right.

Raises a \texttt{ZeroDivisionError} if right is zero.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<t> = QQ[]
sage: g = R.random_element(1000)
sage: q, r = f.quo_rem(g)
sage: f == q*g + r
True
\end{verbatim}

\textbf{real_root_intervals()}

Return isolating intervals for the real roots of self.

\textbf{EXAMPLES:}

We compute the roots of the characteristic polynomial of some Salem numbers:

\begin{verbatim}
sage: R.<t> = QQ[]
sage: f = 1 - t^2 - t^3 - t^4 + t^6
sage: f.real_root_intervals()
[[(1/2, 3/4), 1], ((1, 3/2), 1)]
\end{verbatim}
resultant(right)

Return the resultant of self and right.

Enumerating the roots over \( \mathbb{Q} \) as \( r_1, \ldots, r_m \) and \( s_1, \ldots, s_n \) and letting \( x \) and \( y \) denote the leading coefficients of \( f \) and \( g \), the resultant of the two polynomials is defined by

\[
x^d y^e \prod_{i,j} (r_i - s_j).
\]

Corner cases: if one of the polynomials is zero, the resultant is zero. Note that otherwise if one of the polynomials is constant, the last term in the above is the empty product.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: f = (t - 2/3) * (t + 4/5) * (t - 1)
sage: g = (t - 1/3) * (t + 1/2) * (t + 1)
sage: f.resultant(g)
119/1350
sage: h = (t - 1/3) * (t + 1/2) * (t - 1)
sage: f.resultant(h)
0
```

reverse(degree=None)

Reverse the coefficients of this polynomial (thought of as a polynomial of degree degree).

INPUT:

- degree (None or integral value that fits in an unsigned long, default: degree of self) - if specified, truncate or zero pad the list of coefficients to this degree before reversing it.

EXAMPLES:

We first consider the simplest case, where we reverse all coefficients of a polynomial and obtain a polynomial of the same degree:

```python
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2 / 2 + t^3 / 3 + t^4 / 4
```
Next, an example where the returned polynomial has lower degree because the original polynomial has low coefficients equal to zero:

```
sage: R.<t> = QQ[]
sage: f = 3/4*t^2 + 6*t^7
sage: f.reverse()
3/4*t^5 + 6
```

The next example illustrates the passing of a value for degree less than the length of self, notationally resulting in truncation prior to reversing:

```
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2 / 2 + t^3 / 3 + t^4 / 4
sage: f.reverse(2)
t^2 + t + 1/2
```

Now we illustrate the passing of a value for degree greater than the length of self, notationally resulting in zero padding at the top end prior to reversing:

```
sage: R.<t> = QQ[]
sage: f = 1 + t + t^2 / 2 + t^3 / 3
sage: f.reverse(4)
t^4 + t^3 + 1/2*t^2 + 1/3*t
```

```
revert_series(n)
```
Return a polynomial $f$ such that $f(self(x)) = self(f(x)) = x \mod x^n$.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: f = t - t^3/6 + t^5/120
sage: f.revert_series(6)
3/40*t^5 + 1/6*t^3 + t
sage: f.revert_series(-1)
Traceback (most recent call last):
 ... ValueError: argument n must be a non-negative integer, got -1
sage: g = - t^3/3 + t^5/5
sage: g.revert_series(6)
Traceback (most recent call last):
 ... ValueError: self must have constant coefficient 0 and a unit for coefficient...
```

```python
>>> from sage.all import *
>>> R = QQ[t]; (t,) = R._first_ngens(1)
>>> f = Integer(1) - t + Integer(1)/Integer(2)*t**Integer(2) - Integer(1)/
 Integer(3)*t**Integer(3)
```

`truncate(n)`

Return self truncated modulo $t^n$.

INPUT:

- $n$ – The power of $t$ modulo which self is truncated

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: f = 1 - t + 1/2*t^2 - 1/3*t^3
sage: f.truncate(0)
0
sage: f.truncate(2)
-t + 1
```

```python
>>> from sage.all import *
>>> R = QQ['t']; (t,) = R._first_ngens(1)
>>> f = Integer(1) - t + Integer(1)/Integer(2)*t**Integer(2) - Integer(1)/
 Integer(3)*t**Integer(3)
```
Polynomials, Release 10.4

```python
>>> f.truncate(Integer(0))
0
>>> f.truncate(Integer(2))
-t + 1
```

**xgcd** (*right*)

Return polynomials *d*, *s*, and *t* such that

\[ d = s \times \text{self} + t \times \text{right}, \]

where *d* is the (monic) greatest common divisor of `self` and `right`. The choice of *s* and *t* is not specified any further.

Corner cases: if `self` and `right` are zero, returns zero polynomials. Otherwise, if only `self` is zero, returns (*d*, *s*, *t*) = (right, 0, 1) up to normalisation, and similarly if only `right` is zero.

**EXAMPLES:**

```python
sage: R.<t> = QQ[]
sage: f = 2/3 + 3/4 * t - t^2
sage: g = -3 + 1/7 * t
sage: f.xgcd(g)
(1, -12/5095, -84/5095*t - 1701/5095)
```

### 2.1.10 Dense univariate polynomials over \( \mathbb{Z}/n\mathbb{Z} \), implemented using FLINT

This module gives a fast implementation of \( (\mathbb{Z}/n\mathbb{Z})[x] \) whenever \( n \) is at most `sys.maxsize`. We use it by default in preference to NTL when the modulus is small, falling back to NTL if the modulus is too large, as in the example below.

**EXAMPLES:**

```python
sage: R.<a> = PolynomialRing(Integers(100))
sage: type(a)
<class 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>
sage: R.<a> = PolynomialRing(Integers(5*2^64))
sage: type(a)
<class 'sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_ZZ'>
sage: R.<a> = PolynomialRing(Integers(5*2^64), implementation="FLINT")
Traceback (most recent call last):
... ValueError: FLINT does not support modulus 9223372036854775808
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(Integers(Integer(100)), names=('a',)); (a,) = R._first_ngens(1)
>>> R = PolynomialRing(Integers(Integer(5)*Integer(2)**Integer(64)), names=('a',)); →(a,) = R._first_ngens(1)
>>> R = PolynomialRing(Integers(Integer(5)*Integer(2)**Integer(64)), implementation="FLINT")
```

(continues on next page)
AUTHORS:

- Burcin Erocal (2008-11) initial implementation
- Martin Albrecht (2009-01) another initial implementation

class sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template

Template for interfacing to external C / C++ libraries for implementations of polynomials.

AUTHORS:

- Robert Bradshaw (2008-10): original idea for templating
- Martin Albrecht (2008-10): initial implementation

This file implements a simple templating engine for linking univariate polynomials to their C/C++ library implementations. It requires a 'linkage' file which implements the \texttt{element\_} functions (see \texttt{sage.libsntl.ntl\_GF2X\_linkage} for an example). Both parts are then plugged together by inclusion of the linkage file when inheriting from this class. See \texttt{sage.rings.polynomial.polynomial_gf2x} for an example.

We illustrate the generic gluing using univariate polynomials over GF(2).

\textbf{Note:} Implementations using this template MUST implement coercion from base ring elements and \texttt{get\_unsafe()}. See \texttt{Polynomial\_GF2X} for an example.

degree()

EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: x.degree()
1
sage: P(1).degree()
0
sage: P(0).degree()
-1
```

```
>>> from sage.all import *

>>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1)

>>> x.degree()
1

>>> P(Integer(1)).degree()
0

>>> P(Integer(0)).degree()
-1
```

gcd(other)

Return the greatest common divisor of self and other.

EXAMPLES:
Polynomials, Release 10.4

 sage: P.<x> = GF(2)[]
sage: f = x*(x+1)
sage: f.gcd(x+1)
x + 1
sage: f.gcd(x^2)
x

>>> from sage.all import *
>>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1)
>>> f = x^2(x+Integer(1))
>>> f.gcd(x+Integer(1))
x + 1
>>> f.gcd(x**Integer(2))
x

get_cparent()

is_gen()

EXAMPLES:

 sage: P.<x> = GF(2)[]
sage: x.is_gen()
True
sage: (x+1).is_gen()
False

>>> from sage.all import *
>>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1)
>>> x.is_gen()
True
>>> (x+Integer(1)).is_gen()
False

is_one()

EXAMPLES:

 sage: P.<x> = GF(2)[]
sage: P(1).is_one()
True

>>> from sage.all import *
>>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1)
>>> P(Integer(1)).is_one()
True

is_zero()

EXAMPLES:

 sage: P.<x> = GF(2)[]
sage: x.is_zero()
False

>>> from sage.all import *
>>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1)

(continues on next page)
```
>>> x.is_zero()
False

list (copy=True)
EXAMPLES:
```
sage: P.<x> = GF(2)[]
sage: x.list()
[0, 1]
sage: list(x)
[0, 1]
```
```
>>> from sage.all import *
```
```
```sage: P = GF(Integer(2))[x]; (x,) = P._first_ngens(1)
```
```
```sage: x.list()
[0, 1]
sage: list(x)
[0, 1]
```

quo_rem (right)
EXAMPLES:
```
sage: P.<x> = GF(2)[]
sage: f = x^2 + x + 1
sage: f.quo_rem(x + 1)
(x, 1)
```
```
>>> from sage.all import *
```
```
```sage: P = GF(Integer(2))[x]; (x,) = P._first_ngens(1)
```
```
```sage: f = x**Integer(2) + x + Integer(1)
```
```
```sage: f.quo_rem(x + Integer(1))
(x, 1)
```

shift (n)
EXAMPLES:
```
sage: P.<x> = GF(2)[]
sage: f = x^3 + x^2 + 1
sage: f.shift(1)
x^4 + x^3 + x
sage: f.shift(-1)
x^2 + x
```
```
>>> from sage.all import *
```
```
```sage: P = GF(Integer(2))[x]; (x,) = P._first_ngens(1)
```
```
```sage: f = x**Integer(3) + x**Integer(2) + Integer(1)
```
```
```sage: f.shift(Integer(1))
x^4 + x^3 + x
>>> f.shift(-Integer(1))
x^2 + x
```

truncate (n)
Returns this polynomial mod \(x^n\).
EXAMPLES:
sage: R.<x> = GF(2)[]
sage: f = sum(x^n for n in range(10)); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(6)
x^5 + x^4 + x^3 + x^2 + x + 1

If the precision is higher than the degree of the polynomial then the polynomial itself is returned:

sage: f.truncate(10) is f
True

If the precision is negative, the zero polynomial is returned:

sage: f.truncate(-1)
0

xgcd(other)
Computes extended gcd of self and other.
EXAMPLES:

sage: P.<x> = GF(7)[]
sage: f = x*(x+1)
sage: f.xgcd(x+1)
(x + 1, 0, 1)
sage: f.xgcd(x^2)
(x, 1, 6)

Polynomial on \(\mathbb{Z}/n\mathbb{Z} \) implemented via FLINT.
Polynomials, Release 10.4

\texttt{add}(right)

EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: x + 1
x + 1

>>> from sage.all import *
>>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1)
>>> x + Integer(1)
x + 1
```

\texttt{sub}(right)

EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: x - 1
x + 1

>>> from sage.all import *
>>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1)
>>> x - Integer(1)
x + 1
```

\texttt{lmul}(left)

EXAMPLES:

```
sage: P.<x> = GF(2)[]
sage: t = x^2 + x + 1
sage: 0*t
0
sage: 1*t
x^2 + x + 1

sage: R.<y> = GF(5)[]
sage: u = y^2 + y + 1
sage: 3*u
3*y^2 + 3*y + 3
sage: 5*u
0
sage: (2^81)*u
2*y^2 + 2*y + 2
sage: (-2^81)*u
3*y^2 + 3*y + 3

>>> from sage.all import *
>>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1)
>>> t = x**Integer(2) + x + Integer(1)
>>> Integer(0)*t
0
>>> Integer(1)*t
x^2 + x + 1

>>> R = GF(Integer(5))['y']; (y,) = R._first_ngens(1)
>>> u = y**Integer(2) + y + Integer(1)
>>> Integer(3)*u
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

```
3*y^2 + 3*y + 3
>>> Integer(5)*u
0
>>> (Integer(2)**Integer(81))*u
2*y^2 + 2*y + 2
>>> (-Integer(2)**Integer(81))*u
3*y^2 + 3*y + 3
```

```
sage: P.<x> = GF(2)[]
```
```
sage: t = x^2 + x + 1
```
```
sage: t*0
0
```
```
sage: t*1
x^2 + x + 1
```
```
sage: R.<y> = GF(5)[]
```
```
sage: u = y^2 + y + 1
```
```
sage: u*3
3*y^2 + 3*y + 3
```
```
sage: R.<x> = ZZ[]
```
```
sage: f = (x^3 + x + 5)
```
```
sage: f._rmul_(7)
7*x^3 + 7*x + 35
```

>>> from sage.all import *
```
```
#_rmul_(right)
```
Multiply self on the right by a scalar.

EXAMPLES:

```
sage: P.<x> = ZZ[]
```
```
sage: f = (x^3 + x + 5)
```
```
sage: f._rmul_(Integer(7))
7*x^3 + 7*x + 35
```
```
sage: f*7
7*x^3 + 7*x + 35
```
```
Polynomials, Release 10.4

__mul__ (right)

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: x*(x+1)
x^2 + x

>>> from sage.all import *
>>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1)
>>> x*(x+Integer(1))
x^2 + x
```

__mul_trunc__ (right, n)

Return the product of this polynomial and other truncated to the given length n.

This function is usually more efficient than simply doing the multiplication and then truncating. The function is tuned for length n about half the length of a full product.

EXAMPLES:

```python
sage: P.<a> = GF(7)[]
sage: a = P(range(10)); b = P(range(5, 15))
sage: a._mul_trunc_(b, 5)
4*a^4 + 6*a^3 + 2*a^2 + 5*a

>>> from sage.all import *
>>> P = GF(Integer(7))['a']; (a,) = P._first_ngens(1)
>>> a._mul_trunc_(b, Integer(5))
4*a^4 + 6*a^3 + 2*a^2 + 5*a
```

factor ()

Return the factorization of the polynomial.

EXAMPLES:

```python
sage: R.<x> = GF(5)[]
sage: (x^2 + 1).factor()
(x + 2) * (x + 3)

>>> from sage.all import *
>>> R = GF(Integer(5))['x']; (x,) = R._first_ngens(1)
>>> (x**Integer(2) + Integer(1)).factor()
(x + 2) * (x + 3)
```

It also works for prime-power moduli:

```python
sage: R.<x> = Zmod(Integer(23)^5)[]
sage: (x^3 + 1).factor()
(x + 1) * (x^2 + 6436342*x + 1)

>>> from sage.all import *
>>> R = Zmod(Integer(23)**Integer(5))['x']; (x,) = R._first_ngens(1)
>>> (x**Integer(3) + Integer(1)).factor()
(x + 1) * (x^2 + 6436342*x + 1)
```
is_irreducible()

Return whether this polynomial is irreducible.

EXAMPLES:

```python
sage: R.<x> = GF(5)[]
sage: (x^2 + 1).is_irreducible()
False
sage: (x^3 + x + 1).is_irreducible()
True
```

Not implemented when the base ring is not a field:

```python
sage: S.<s> = Zmod(10)[]
sage: (s^2).is_irreducible()
Traceback (most recent call last):
... NotImplementedError: checking irreducibility of polynomials over rings with composite characteristic is not implemented
```

minpoly_mod(other)

Thin wrapper for `sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n.minpoly_mod()`.

EXAMPLES:

```python
sage: R.<x> = GF(127)[]
sage: type(x)
<class 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>
sage: (x^5 - 3).minpoly_mod(x^3 + 5*x - 1)
x^3 + 34*x^2 + 125*x + 95
```

```python
>>> from sage.all import *
```
Polynomials, Release 10.4

Raises `ValueError` if the leading coefficient is not invertible in the base ring.

EXAMPLES:

```python
sage: R.<x> = GF(5)[]
sage: (2*x^2 + 1).monic()
x^2 + 3
```

```python
>>> from sage.all import *
>>> R = GF(Integer(5))['x']; (x,) = R._first_ngens(1)
>>> (Integer(2)*x**Integer(2) + Integer(1)).monic()
x^2 + 3
```

`rational_reconstruct (*args, **kwds)`

Deprecated: Use `rational_reconstruction()` instead. See Issue #12696 for details.

rational_reconstruction `(m, n_deg=0, d_deg=0)`

Construct a rational function `n/d` such that `p * d` is equivalent to `n` modulo `m` where `p` is this polynomial.

EXAMPLES:

```python
sage: P.<x> = GF(5)[]
sage: p = 4*x^5 + 3*x^4 + 2*x^3 + 2*x^2 + 4*x + 2
sage: n, d = p.rational_reconstruction(x^9, 4, 4); n, d
(3*x^4 + 2*x^3 + x^2 + 2*x, x^4 + 3*x^3 + x^2 + x)
sage: (p*d % x^9) == n
True
```

```python
>>> from sage.all import *
>>> P = GF(Integer(5))[x]; (x,) = P._first_ngens(1)
>>> p = Integer(4)*x**Integer(5) + Integer(3)*x**Integer(4) +
˓→ Integer(2)*x**Integer(3) + Integer(2)*x**Integer(2) + Integer(4)*x +
˓→ Integer(2)
>>> n, d = p.rational_reconstruction(x**Integer(9), Integer(4), Integer(4));
˓→ n, d
(3*x^4 + 2*x^3 + x^2 + 2*x, x^4 + 3*x^3 + x^2 + x)
>>> (p*d % x**Integer(9)) == n
True
```

Check that Issue #37169 is fixed - it does not throw an error:

```python
sage: R.<x> = Zmod(4)[]
sage: _,<z> = R.quotient_ring(x^2 - 1)
sage: c = 2 * z + 1
sage: c * Zmod(2).zero()
Traceback (most recent call last):
...
RuntimeError: Aborted
```

```python
>>> from sage.all import *
>>> R = Zmod(Integer(4))['x']; (x,) = R._first_ngens(1)
>>> _, = R.quotient_ring(x**Integer(2) - Integer(1), names=('z',)); (z,) = _,
˓→ first_ngens(1)
>>> c = Integer(2) * z + Integer(1)
>>> c * Zmod(Integer(2)).zero()
Traceback (most recent call last):
...
RuntimeError: Aborted
```

2.1. Univariate Polynomials and Polynomial Rings
resultant(\texttt{other})

Return the resultant of \texttt{self} and \texttt{other}, which must lie in the same polynomial ring.

INPUT:

- \texttt{other} – a polynomial

OUTPUT: an element of the base ring of the polynomial ring

EXAMPLES:

\begin{verbatim}
sage: R.<x> = GF(19)[x]
sage: f = x^3 + x + 1; g = x^3 - x - 1
sage: r = f.resultant(g); r
11
sage: r.parent() is GF(19)
True
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> R = GF(Integer(19))[x]; (x,) = R._first_ngens(1)
>>> f = x**Integer(3) + x + Integer(1); g = x**Integer(3) - x - Integer(1)
>>> r = f.resultant(g); r
11
>>> r.parent() is GF(Integer(19))
True
\end{verbatim}

The following example shows that Issue #11782 has been fixed:

\begin{verbatim}
sage: R.<x> = ZZ.quo(9)[x]
sage: f = 2*x^3 + x^2 + x; g = 6*x^2 + 2*x + 1
sage: f.resultant(g)
5
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> R = ZZ.quo(Integer(9))[x]; (x,) = R._first_ngens(1)
>>> f = Integer(2)*x**Integer(3) + x**Integer(2) + x; g = Integer(6)*x**Integer(2) + Integer(2)*x + Integer(1)
>>> f.resultant(g)
5
\end{verbatim}

reverse(\texttt{degree}=\texttt{None})

Return a polynomial with the coefficients of this polynomial reversed.

If the optional argument \texttt{degree} is given, the coefficient list will be truncated or zero padded as necessary before computing the reverse.

EXAMPLES:

\begin{verbatim}
sage: R.<x> = GF(5)[x]
sage: p = R([1,2,3,4]); p
4*x^3 + 3*x^2 + 2*x + 1
sage: p.reverse()
x^3 + 2*x^2 + 3*x + 4
sage: p.reverse(degree=6)
x^6 + 2*x^5 + 3*x^4 + 4*x^3
sage: p.reverse(degree=2)
x^2 + 2*x + 3
sage: R.<x> = GF(101)[x]
\end{verbatim}

(continues on next page)
sage: f = x^3 - x + 2; f
x^3 + 100*x + 2
sage: f.reverse()
2*x^3 + 100*x^2 + 1
sage: f.reverse() == f(1/x) * x^f.degree()
True

>>> from sage.all import *
>>> R = GF(Integer(5))[x]; (x,) = R._first_ngens(1)
>>> p = R([Integer(1),Integer(2),Integer(3),Integer(4)]); p
4*x^3 + 3*x^2 + 2*x + 1
>>> p.reverse()
4*x^3 + 2*x^2 + 3*x + 4
>>> p.reverse(degree=Integer(6))
4*x^6 + 2*x^5 + 3*x^4 + 4*x^3
>>> p.reverse(degree=Integer(2))
4*x^2 + 2*x + 3

>>> R = GF(Integer(101))[x]; (x,) = R._first_ngens(1)
>>> f = x**Integer(3) - x + Integer(2); f
x^3 + 100*x + 2
>>> f.reverse()
2*x^3 + 100*x^2 + 1
>>> f.reverse() == f(Integer(1)/x) * x**f.degree()
True

Note that if \(f \) has zero constant coefficient, its reverse will have lower degree.

sage: f = x^3 + 2*x
sage: f.reverse()
2*x^2 + 1

>>> from sage.all import *
>>> f = x**Integer(3) + Integer(2)*x
>>> f.reverse()
2*x^2 + 1

In this case, reverse is not an involution unless we explicitly specify a degree.

sage: f
x^3 + 2*x
sage: f.reverse().reverse()
x^2 + 2
sage: f.reverse(5).reverse(5)
x^3 + 2*x

revert_series(\(n \))

Return a polynomial \(f \) such that \(f(\text{self}(x)) = \text{self}(f(x)) = x \pmod{x^n} \).
EXAMPLES:

```python
sage: R.<t> = GF(5)[]
sage: f = t + 2*t^2 - t^3 - 3*t^4
sage: f.revert_series(5)
3*t^4 + 4*t^3 + 3*t^2 + t
sage: f.revert_series(-1)
Traceback (most recent call last):
  ... ValueError: argument n must be a non-negative integer, got -1
sage: g = - t^3 + t^5
sage: g.revert_series(6)
Traceback (most recent call last):
  ... ValueError: self must have constant coefficient 0 and a unit for coefficient
˓→t^1
sage: g = t + 2*t^2 - t^3 -3*t^4 + t^5
sage: g.revert_series(6)
Traceback (most recent call last):
  ... ValueError: the integers 1 up to n=5 are required to be invertible over the␣ ˓→base field
```

```python
>>> from sage.all import *
>>> R = GF(Integer(5))['t']; (t,) = R._first_ngens(1)
>>> f = t + Integer(2)*t**Integer(2) - t**Integer(3) -
˓→Integer(3)*t**Integer(4)
>>> f.revert_series(Integer(5))
3*t^4 + 4*t^3 + 3*t^2 + t

>>> f.revert_series(Integer(-1))
Traceback (most recent call last):
  ... ValueError: argument n must be a non-negative integer, got -1

>>> g = - t**Integer(3) + t**Integer(5)
>>> g.revert_series(Integer(6))
Traceback (most recent call last):
  ... ValueError: self must have constant coefficient 0 and a unit for coefficient
˓→t^1

>>> g = t + Integer(2)*t**Integer(2) - t**Integer(3) -
˓→Integer(3)*t**Integer(4) + t**Integer(5)
>>> g.revert_series(Integer(6))
Traceback (most recent call last):
  ... ValueError: the integers 1 up to n=5 are required to be invertible over the␣ ˓→base field
```

`small_roots(*args, **kwds)`

See `sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots()` for the documentation of this function.

EXAMPLES:
Polynomials, Release 10.4

```
sage: N = 10001
sage: K = Zmod(10001)
sage: P.<x> = PolynomialRing(K)
sage: f = x^3 + 10*x^2 + 5000*x - 222
sage: f.small_roots()
[4]
```

```python
>>> from sage.all import *
>>> N = Integer(10001)
>>> K = Zmod(Integer(10001))
>>> P = PolynomialRing(K, names=('x',)); (x,) = P._first_ngens(1)
>>> f = x**Integer(3) + Integer(10)*x**Integer(2) + Integer(5000)*x - Integer(222)
>>> f.small_roots()
[4]
```

```
sage: R.<x> = GF(5)[]
sage: ((x+1)*(x^2+1)^2*x^3).squarefree_decomposition()
(x + 1) * (x^2 + 1)^2 * x^3
```

```python
>>> from sage.all import *
>>> R = GF(Integer(5))[x]; (x,) = R._first_ngens(1)
>>> ((x+Integer(1))*(x**Integer(2)+Integer(1))**Integer(2)*x**Integer(3)).
→squarefree_decomposition()
(x + 1) * (x^2 + 1)^2 * x^3
```

2.1.11 Dense univariate polynomials over $\mathbb{Z}/n\mathbb{Z}$, implemented using NTL

This implementation is generally slower than the FLINT implementation in `polynomial_zmod_flint`, so we use FLINT by default when the modulus is small enough; but NTL does not require that n be int-sized, so we use it as default when n is too large for FLINT.

Note that the classes `Polynomial_dense_modn_ntl_zz` and `Polynomial_dense_modn_ntl_ZZ` are different; the former is limited to moduli less than a certain bound, while the latter supports arbitrarily large moduli.

AUTHORS:
- Robert Bradshaw: Split off from `polynomial_element_generic.py` (2007-09)
- Robert Bradshaw: Major rewrite to use NTL directly (2007-09)

```
class sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n
    Bases: Polynomial

    A dense polynomial over the integers modulo n, where n is composite, with the underlying arithmetic done using NTL.

    EXAMPLES:
```
```python
sage: R.<x> = PolynomialRing(Integers(16), implementation='NTL')
sage: f = x^3 - x + 17
sage: f^2
x^6 + 14*x^4 + 2*x^3 + x^2 + 14*x + 1
sage: loads(f.dumps()) == f
True

sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')

sage: p = 3*x
sage: q = 7*x
sage: p + q
10*x

sage: R.<x> = PolynomialRing(Integers(8), implementation='NTL')

sage: parent(p)
Univariate Polynomial Ring in x over Ring of integers modulo 100 (using NTL)
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(Integers(16)), implementation='NTL', names=('x',)); (x,) = R._first_ngens(1)
>>> f = x**Integer(3) - x + Integer(17)
>>> f**Integer(2)
x^6 + 14*x^4 + 2*x^3 + x^2 + 14*x + 1
>>> loads(f.dumps()) == f
True

>>> R = PolynomialRing(Integers(100)), implementation='NTL', names=('x',)); (x,) = R._first_ngens(1)
>>> p = Integer(3)*x
>>> q = Integer(7)*x
>>> p + q
10*x

>>> R = PolynomialRing(Integers(8)), implementation='NTL', names=('x',)); (x,) = R._first_ngens(1)
>>> parent(p)
Univariate Polynomial Ring in x over Ring of integers modulo 100 (using NTL)
```

```python
sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')

sage: (x^3 + 3*x - 17).degree()
3
sage: R.zero().degree()
-1
```

degree *(gen=None)*

Return the degree of this polynomial.

The zero polynomial has degree -1.

EXAMPLES:
>>> from sage.all import *
>>> R = PolynomialRing(Integers(Integer(100)), implementation='NTL', names=('x',)); (x,) = R._first_ngens(1)
>>> (x**Integer(3) + Integer(3)*x - Integer(17)).degree()
3
>>> R.zero().degree()
-1

int_list()

list (copy=True)

Return a new copy of the list of the underlying elements of self.

EXAMPLES:

sage: _.<x> = PolynomialRing(Integers(100), implementation='NTL')
sage: f = x^3 + 3*x - 17
sage: f.list()
[83, 3, 0, 1]

minpoly_mod (other)

Compute the minimal polynomial of this polynomial modulo another polynomial in the same ring.

ALGORITHM:

NTL’s MinPolyMod(), which uses Shoup’s algorithm [Sho1999].

EXAMPLES:

sage: R.<x> = PolynomialRing(GF(101), implementation='NTL')
sage: f = x^17 + x^2 - 1
sage: (x^2).minpoly_mod(f)
x^17 + 100*x^2 + 2*x + 100

ntl_ZZ_pX()

Return underlying NTL representation of this polynomial. Additional “bonus” functionality is available through this function.

Warning: You must call ntl.set_modulus(ntl.ZZ(n)) before doing arithmetic with this object!
ntl_set_directly \((v)\)

Set the value of this polynomial directly from a vector or string.

Polynomials over the integers modulo \(n\) are stored internally using NTL’s \(\mathbb{Z}_n\) class. Use this function to set the value of this polynomial using the NTL constructor, which is potentially very fast. The input \(v\) is either a vector of ints or a string of the form \([n_1 \ n_2 \ n_3 \ldots]\) where the \(n_i\) are integers and there are no commas between them. The optimal input format is the string format, since that’s what NTL uses by default.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
sage: from sage.rings.polynomial.polynomial_modn_dense_ntl import Polynomial_
       →dense_mod_n as poly_modn_dense
sage: poly_modn_dense(R, ([1,-2,3]))
3*x^2 + 98*x + 1
sage: f = poly_modn_dense(R, 0)
sage: f.ntl_set_directly([1,-2,3])
f3*x^2 + 98*x + 1
sage: f.ntl_set_directly('1 -2 3')
f3*x^2 + 98*x + 1
sage: f
4*x^3 + 3*x^2 + 98*x + 1
```

quo_rem \((right)\)

Return a tuple \((quotient, remainder)\) where \(self = quotient*other + remainder.\)

shift \((n)\)

Return this polynomial multiplied by the power \(x^n\). If \(n\) is negative, terms below \(x^n\) will be discarded. Does not change this polynomial.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(12345678901234567890), implementation='NTL')
sage: p = x^2 + 2*x + 4
sage: p.shift(0)
x^2 + 2*x + 4
sage: p.shift(-1)
x + 2
sage: p.shift(-5)
0
sage: p.shift(2)
x^4 + 2*x^3 + 4*x^2
```
AUTHOR:
 - David Harvey (2006-08-06)

small_roots (*args, **kwds)
See sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots() for the
documentation of this function.

EXAMPLES:

```python
sage: N = 10001
sage: K = Zmod(10001)
sage: P.<x> = PolynomialRing(K, implementation='NTL')
sage: f = x^3 + 10*x^2 + 5000*x - 222
sage: f.small_roots()
[4]
```

```
>>> from sage.all import *

>>> N = Integer(10001)

>>> K = Zmod(Integer(10001))

>>> P = PolynomialRing(K, implementation='NTL', names=('x',)); (x,) = P._first_ngens(1)

>>> f = x**Integer(3) + Integer(10)*x**Integer(2) + Integer(5000)*x - Integer(222)

>>> f.small_roots()
[4]
```

class sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_p
Bases: Polynomial_dense_mod_n

A dense polynomial over the integers modulo p, where p is prime.

discriminant()

EXAMPLES:

```python
sage: _.<x> = PolynomialRing(GF(19), implementation='NTL')
sage: f = x^3 + 3*x - 17
sage: f.discriminant()
12
```

```python
>>> from sage.all import *

>>> _.<x> = PolynomialRing(GF(Integer(19)), implementation='NTL', names=('x',)); (x,) = _.first_ngens(1)

>>> f = x**Integer(3) + Integer(3)*x - Integer(17)
```

(continues on next page)
Polynomials, Release 10.4

```python
>>> f.discriminant()
12
```

gcd *(right)*

Return the greatest common divisor of this polynomial and other, as a monic polynomial.

INPUT:

- **other** – a polynomial defined over the same ring as self

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(GF(3), implementation="NTL")
sage: f, g = x + 2, x^2 - 1
sage: f.gcd(g)
x + 2
```

```python
from sage.all import *
```

```python
R = PolynomialRing(GF(Integer(3)), implementation=NTL, names=('x',));␣
˓→(x,) = R._first_ngens(1)
>>> f, g = x + Integer(2), x**Integer(2) - Integer(1)
>>> f.gcd(g)
x + 2
```

resultant *(other)*

Return the resultant of self and other, which must lie in the same polynomial ring.

INPUT:

- **other** – a polynomial

OUTPUT: an element of the base ring of the polynomial ring

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(GF(19), implementation='NTL')
sage: f = x^3 + x + 1; g = x^3 - x - 1
sage: r = f.resultant(g); r
11
sage: r.parent() is GF(19)
True
```

```python
from sage.all import *
```

```python
R = PolynomialRing(GF(Integer(19)), implementation=NTL, names=('x',));␣
˓→(x,) = R._first_ngens(1)
>>> f = x**Integer(3) + x + Integer(1); g = x**Integer(3) - x - Integer(1)
>>> r = f.resultant(g); r
11
>>> r.parent() is GF(Integer(19))
True
```

xgcd *(other)*

Compute the extended gcd of this element and other.

INPUT:

- **other** – an element in the same polynomial ring
OUTPUT:

A tuple \((r, s, t)\) of elements in the polynomial ring such that \(r = s \cdot \text{self} + t \cdot \text{other}\).

EXAMPLES:

```sage
sage: R.<x> = PolynomialRing(GF(3), implementation='NTL')
sage: x.xgcd(x)
(x + 2, 0, 1)
sage: (x^2 - 1).xgcd(x - 1)
(x + 2, 0, 1)
sage: R.zero().xgcd(R.one())
(1, 0, 1)
sage: (x^3 - 1).xgcd((x - 1)^2)
(x + 2 + x + 1, 0, 1)
sage: ((x - 1)*(x + 1)).xgcd(x*(x - 1))
(x + 2, 1, 2)
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(GF(Integer(3)), implementation='NTL', names=('x',)); (x,) = R._first_ngens(1)
>>> f = x**Integer(4) - x - Integer(1)
>>> f.degree()
4
>>> f = Integer(14)**Integer(43)*x + Integer(1)
>>> f.is_gen()
```

class `sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_ZZ`

Bases: `Polynomial_dense_mod_n`

degree()

EXAMPLES:

```sage
sage: R.<x> = PolynomialRing(Integers(14^34), implementation='NTL')
sage: f = x^4 - x - 1
sage: f.degree()
4
sage: f = 14^43*x + 1
sage: f.degree()
0
```

```python
>>> R = PolynomialRing(Integers(Integer(14)**Integer(34)), implementation='NTL', names=('x',)); (x,) = R._first_ngens(1)
>>> f = x**Integer(4) - x - Integer(1)
>>> f.degree()
4
>>> f = Integer(14)**Integer(43)*x + Integer(1)
>>> f.is_gen()
```

is_gen()
list (copy=True)

quo_rem(right)

Return \(q \) and \(r \), with the degree of \(r \) less than the degree of \(\text{right} \), such that \(q \cdot \text{right} + r = \text{self} \).

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(10^30), implementation='NTL')

sage: f = x^5+1; g = (x+1)^2
sage: q, r = f.quo_rem(g)
sage: q
x^3 + 999999999999999999999999999998*x^2 + 3*x + 999999999999999999999999999996
sage: r
5*x + 5
sage: q*g + r
x^5 + 1
```

reverse (degree=None)

Return the reverse of the input polynomial thought as a polynomial of degree \(\text{degree} \).

If \(f \) is a degree-\(d \) polynomial, its reverse is \(x^d f(1/x) \).

INPUT:

- \(\text{degree} \) (None or an integer) – if specified, truncate or zero pad the list of coefficients to this degree before reversing it.

EXAMPLES:

```python
>>> from sage.all import *

>>> R = PolynomialRing(Integers(Integer(12)**Integer(29)), implementation='NTL')

>>> f = x^4 + 2*x + 5

>>> f.reverse()
5*x^4 + 2*x^3 + 1

>>> f = x^3 + x

>>> f.reverse()
x^2 + 1

>>> f.reverse(1)
1

>>> f.reverse(5)
x^4 + x^2
```

(continues on next page)
\begin{verbatim}
>>> f = x**Integer(4) + Integer(2)*x + Integer(5)
>>> f.reverse()
5*x^4 + 2*x^3 + 1
>>> f = x**Integer(3) + x
>>> f.reverse()
x^2 + 1
>>> f.reverse(Integer(1))
1
>>> f.reverse(Integer(5))
x^4 + x^2
\end{verbatim}

shift \((n)\)

Shift self to left by \(n\), which is multiplication by \(x^n\), truncating if \(n\) is negative.

EXAMPLES:

\begin{verbatim}
sage: R.<x> = PolynomialRing(Integers(12^30), implementation='NTL')
sage: f = x^7 + x + 1
sage: f.shift(1)
x^8 + x^2 + x
sage: f.shift(-1)
x^6 + 1
sage: f.shift(10).shift(-10) == f
True
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> R = PolynomialRing(Integers(Integer(15)**Integer(30)), implementation='NTL', names=('x',)); (x,) = R._first_ngens(1)
>>> f = x**Integer(7) + x + Integer(1)
>>> f.shift(Integer(1))
x^8 + x^2 + x
>>> f.shift(-Integer(1))
x^6 + 1
>>> f.shift(Integer(10)).shift(-Integer(10)) == f
True
\end{verbatim}

truncate \((n)\)

Return this polynomial mod \(x^n\).

EXAMPLES:

\begin{verbatim}
sage: R.<x> = PolynomialRing(Integers(15^30), implementation='NTL')
sage: f = sum(x^n for n in range(10)); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(Integer(6))
x^5 + x^4 + x^3 + x^2 + x + 1
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> R = PolynomialRing(Integers(Integer(15)**Integer(30)), implementation='NTL', names=('x',)); (x,) = R._first_ngens(1)
>>> f = sum(x^n for n in range(Integer(10))); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
>>> f.truncate(Integer(6))
x^5 + x^4 + x^3 + x^2 + x + 1
\end{verbatim}

valuation

...
Return the valuation of \texttt{self}, that is, the power of the lowest non-zero monomial of \texttt{self}.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(10^50), implementation='NTL')
sage: x.valuation()
1
sage: f = x - 3; f.valuation()
0
sage: f = x^99; f.valuation()
99
sage: f = x - x; f.valuation()
+Infinity
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(Integers(Integer(10)**Integer(50)), implementation='NTL', names=('x',)); (x,) = R._first_ngens(1)
>>> x.valuation()
1
>>> f = x - Integer(3); f.valuation()
0
>>> f = x**Integer(99); f.valuation()
99
>>> f = x - x; f.valuation()
+Infinity
```

class

```
sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz
```

Bases: \texttt{Polynomial
dense_mod_n}

Polynomial on \texttt{Z}/n\texttt{Z} implemented via NTL.

- \texttt{add} (_right)
- \texttt{sub} (_right)
- \texttt{lmul} (c)
- \texttt{rmul} (c)
- \texttt{mul} (_right)
- \texttt{mul_trunc} (right, n)

Return the product of \texttt{self} and \texttt{right} truncated to the given length \texttt{n}

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(100), implementation="NTL")
sage: f = x - 2
sage: g = x^2 - 8*x + 16
sage: f*g
x^3 + 90*x^2 + 32*x + 68
sage: f._mul_trunc_(g, 42)
x^3 + 90*x^2 + 32*x + 68
sage: f._mul_trunc_(g, 3)
90*x^2 + 32*x + 68
sage: f._mul_trunc_(g, 2)
32*x + 68
```

(continues on next page)
```python
sage: f._mul_trunc_(g, 1)
68
sage: f._mul_trunc_(g, 0)
0
sage: f = x^2 - 8*x + 16
sage: f._mul_trunc_(f, 2)
44*x + 56

>>> from sage.all import *
>>> R = PolynomialRing(Integers(Integer(100)), implementation="NTL", names=('x →',)); (x,) = R._first_ngens(1)
>>> f = x - Integer(2)
>>> g = x**Integer(2) - Integer(8)*x + Integer(16)
>>> f*g
x^3 + 90*x^2 + 32*x + 68
>>> f._mul_trunc_(g, Integer(42))
32*x + 68
>>> f._mul_trunc_(g, Integer(3))
90*x^2 + 32*x + 68
>>> f._mul_trunc_(g, Integer(2))
32*x + 68
>>> f._mul_trunc_(g, Integer(1))
68
>>> f._mul_trunc_(g, Integer(0))
0
>>> f = x**Integer(2) - Integer(8)*x + Integer(16)
>>> f._mul_trunc_(f, Integer(2))
44*x + 56
```

degree()

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(77), implementation='NTL')
sage: f = x^4 - x - 1
sage: f.degree()
4
sage: f = 77*x + 1
sage: f.degree()
0
```

int_list()

Return the coefficients of self as efficiently as possible as a list of python ints.

EXAMPLES:
Polynomials, Release 10.4

```
sage: R.<x> = PolynomialRing(Integers(100), implementation='NTL')
sage: from sage.rings.polynomial.polynomial_modn_dense_ntl import Polynomial_
˓→dense_mod_n as poly_modn_dense
sage: f = poly_modn_dense(R,[5,0,0,1])
sage: f.int_list()
[5, 0, 0, 1]
sage: [type(a) for a in f.int_list()]
[<... 'int'>, <... 'int'>, <... 'int'>, <... 'int'>]
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(Integers(Integer(100)), implementation='NTL', names=('x'
˓→',)); (x,) = R._first_ngens(1)
>>> from sage.rings.polynomial.polynomial_modn_dense_ntl import Polynomial_
˓→dense_mod_n as poly_modn_dense
>>> f = poly_modn_dense(R,[Integer(5),Integer(0),Integer(0),Integer(1)])
>>> f.int_list()
[5, 0, 0, 1]
>>> [type(a) for a in f.int_list()]
[<... 'int'>, <... 'int'>, <... 'int'>, <... 'int'>]
```

is_gen()

ntl_set_directly(v)

quo_rem(right)

Return q and r, with the degree of r less than the degree of right, such that q·right + r = self.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(125), implementation='NTL')
sage: f = x^5+1; g = (x+1)^2
sage: q, r = f.quo_rem(g)
sage: q
x^3 + 123*x^2 + 3*x + 121
sage: r
5*x + 5
sage: q*g + r
x^5 + 1
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(Integers(Integer(125)), implementation='NTL', names=('x'
˓→',)); (x,) = R._first_ngens(1)
>>> f = x**Integer(5)+Integer(1); g = (x+Integer(1))**Integer(2)
>>> q, r = f.quo_rem(g)
>>> q
x^3 + 123*x^2 + 3*x + 121
>>> r
5*x + 5
>>> q*g + r
x^5 + 1
```

reverse(degree=None)

Return the reverse of the input polynomial thought as a polynomial of degree degree.

If f is a degree-d polynomial, its reverse is x^d f(1/x).

INPUT:
• degree (None or an integer) – if specified, truncate or zero pad the list of coefficients to this degree before reversing it.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(77), implementation='NTL')
sage: f = x^4 - x - 1
sage: f.reverse()
76*x^4 + 76*x^3 + 1
sage: f.reverse(2)
76*x^2 + 76*x
sage: f.reverse(5)
76*x^5 + 76*x^4 + x
sage: g = x^3 - x
sage: g.reverse()
76*x^2 + 1
```

shift (*n*)

Shift self to left by *n*, which is multiplication by \(x^n\), truncating if *n* is negative.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(77), implementation='NTL')
sage: f = x^7 + x + 1
sage: f.shift(1)
x^8 + x^2 + x
sage: f.shift(-1)
x^6 + 1
sage: f.shift(10).shift(-10) == f
True
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(Integers(Integer(77)), implementation='NTL', names=('x --> ',')); (x,) = R._first_ngens(1)
>>> f = x**Integer(4) - x - Integer(1)
>>> f.reverse()
76*x^4 + 76*x^3 + 1
>>> f.reverse(Integer(2))
76*x^2 + 76*x
>>> f.reverse(Integer(5))
76*x^5 + 76*x^4 + x
>>> g = x**Integer(3) - x
>>> g.reverse()
76*x^2 + 1
```

truncate (*n*)

Return this polynomial mod \(x^n\).
EXAMPLES:

```
sage: R.<x> = PolynomialRing(Integers(77), implementation='NTL')
sage: f = sum(x^n for n in range(10)); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(6)
x^5 + x^4 + x^3 + x^2 + x + 1
```

```python
from sage.all import *
R = PolynomialRing(Integers(Integer(77)), implementation='NTL', names=('x',)); (x,) = R._first_ngens(1)
f = sum(x**n for n in range(Integer(10))); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
f.truncate(Integer(6))
x^5 + x^4 + x^3 + x^2 + x + 1
```

```
sage: R.<x> = PolynomialRing(Integers(10), implementation='NTL')
sage: x.valuation()
1
sage: f = x-3; f.valuation()
0
sage: f = x^99; f.valuation()
99
sage: f = x-x; f.valuation()
+Infinity
```

```python
from sage.all import *
R = PolynomialRing(Integers(Integer(10)), implementation='NTL', names=('x',)); (x,) = R._first_ngens(1)
x.valuation()
1
f = x-Integer(3); f.valuation()
0
f = x**Integer(99); f.valuation()
99
f = x-x; f.valuation()
+Infinity
```

```
sage.rings.polynomial.polynomial_modn_dense_ntl.make_element (parent, args)
sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots (self, X=None, beta=1.0, epsilon=None, **kwds)
```

Let N be the characteristic of the base ring this polynomial is defined over: $N = \text{self.base_ring().characteristic()}$. This method returns small roots of this polynomial modulo some factor b of N with the constraint that $b > N^{\beta}$. Small in this context means that if x is a root of f modulo b then $|x| < X$. This X is either provided by the user or the maximum X is chosen such that this algorithm terminates in polynomial time. If X is chosen automatically it is $X = \lceil 12 \sqrt{N^{2\beta}}/\delta \rceil$. The algorithm may also return some roots which are larger than X. ‘This algorithm’ in this context means Coppersmith’s algorithm for finding small roots using the LLL algorithm. The implementation of this algorithm follows Alexander May’s PhD thesis referenced below.

INPUT:

- X – an absolute bound for the root (default: see above)
• **beta** – compute a root mod b where b is a factor of N and $b \geq N^\beta$. (Default: 1.0, so $b = N$.)
• **epsilon** – the parameter ϵ described above. (Default: $\beta/8$)
• **kwds** – passed through to method `Matrix_integer_dense.LLL()`.

EXAMPLES:
First consider a small example:

```python
sage: N = 10001
sage: K = Zmod(10001)
sage: P.<x> = PolynomialRing(K, implementation='NTL')
sage: f = x^3 + 10*x^2 + 5000*x - 222
```

This polynomial has no roots without modular reduction (i.e. over \mathbb{Z}):

```python
>>> from sage.all import *
>>> N = Integer(10001)
>>> K = Zmod(Integer(10001))
>>> P = PolynomialRing(K, implementation='NTL', names=('x',)); (x,) = P._first_ngens(1)
>>> f = x**Integer(3) + Integer(10)*x**Integer(2) + Integer(5000)*x - Integer(222)
```

To compute its roots we need to factor the modulus N and use the Chinese remainder theorem:

```python
sage: p, q = N.prime_divisors()
sage: f.change_ring(GF(p)).roots()
[(4, 1)]
sage: f.change_ring(GF(q)).roots()
[(4, 1)]
sage: crt(4, 4, p, q)
4
```

This root is quite small compared to N, so we can attempt to recover it without factoring N using Coppersmith’s small root method:

```python
sage: f.small_roots()
[4]
```
An application of this method is to consider RSA. We are using 512-bit RSA with public exponent $e = 3$ to encrypt a 56-bit DES key. Because it would be easy to attack this setting if no padding was used we pad the key K with 1s to get a large number:

```python
>>> from sage.all import *
>>> f.small_roots()
[4]
```

We choose two primes of size 256-bit each:

```python
sage: Nbits, Kbits = 512, 56
sage: e = 3

>>> from sage.all import *

>>> Nbits, Kbits = Integer(512), Integer(56)
>>> e = Integer(3)
```

We choose a random key:

```python
sage: K = ZZ.random_element(0, 2^Kbits)
```

and pad it with $512 - 56 = 456$ 1s:

```python
sage: Kdigits = K.digits(2)
sage: M = [0]*Kbits + [1]*(Nbits-Kbits)
sage: for i in range(len(Kdigits)): M[i] = Kdigits[i]
sage: M = ZZ(M, 2)
```

Now we encrypt the resulting message:
To recover \(K \) we consider the following polynomial modulo \(N \):

\[
\text{sage: } P.<x> = PolynomialRing(ZmodN, implementation='NTL')
\]
\[
\text{sage: } f = (2^{N\text{bits}} - 2^{K\text{bits}} + x)^e - C
\]

and recover its small roots:

\[
\text{sage: } Kbar = f.\text{small}_\text{roots}()[0]
\]
\[
\text{sage: } K == Kbar
\]
True

The same algorithm can be used to factor \(N = pq \) if partial knowledge about \(q \) is available. This example is from the Magma handbook:

First, we set up \(p, q \) and \(N \):

\[
\text{sage: } length = 512
\]
\[
\text{sage: } hidden = 110
\]
\[
\text{sage: } p = \text{next}_\text{prime}(2^{\text{int}(\text{round}(\text{length}/2))})
\]
\[
\text{sage: } q = \text{next}_\text{prime}(\text{round}(\text{pi.n()}*p))
\]

Now we disturb the low 110 bits of \(q \):

\[
\text{sage: } qbar = q + \text{ZZ.random_element}(0, 2^\text{hidden} - 1)
\]

2.1. Univariate Polynomials and Polynomial Rings
And try to recover q from it:

```python
sage: F.<x> = PolynomialRing(Zmod(N), implementation='NTL')  # needs sage.symbolic
sage: f = x - qbar  # needs sage.symbolic
```

We know that the error is $\leq 2^{\text{hidden}} - 1$ and that the modulus we are looking for is $\geq \sqrt{N}$:

```python
sage: from sage.misc.verbose import set_verbose
sage: set_verbose(2)
```

```python
sage: d = f.small_roots(X=2^hidden-1, beta=0.5)[0]  # time random  # needs sage.symbolic
verbose 2 (<module>) m = 4
verbose 2 (<module>) t = 4
verbose 2 (<module>) X = 1298074214633706907132624082305023
verbose 1 (<module>) LLL of 8x8 matrix (algorithm fpLLL:wrapper)
verbose 1 (<module>) LLL finished (time = 0.006998)
```

```python
sage: q == qbar - d  # needs sage.symbolic
True
```

REFERENCES:

2.1.12 Dense univariate polynomials over R, implemented using MPFR

```
class sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense
    Bases: Polynomial

    change_ring($R$)

    EXAMPLES:

    sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import *
    sage: f = PolynomialRealDense(RR['x'], [-2, 0, 1.5])
    sage: f.change_ring(QQ)
    3/2*x^2 - 2
    sage: f.change_ring(RealField(10))
    1.5*x^2 - 2.0
    sage: f.change_ring(RealField(100))
    1.5000000000000000000000000000*x^2 - 2.0000000000000000000000000000

    degree()

    Return the degree of the polynomial.

    EXAMPLES:

    sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import *
    sage: f = PolynomialRealDense(RR['x'], [1, 2, 3]); f
    3.00000000000000*x^2 + 2.00000000000000*x + 1.00000000000000
    sage: f.degree()
    2

    integral()

    EXAMPLES:

    sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import *
    sage: f = PolynomialRealDense(RR['x'], [3, pi, 1])
```

(continues on next page)
needs sage.symbolic
sage: f.integral()
#...

0.333333333333333*x^3 + 1.57079632679490*x^2 + 3.00000000000000*x

>>> from sage.all import *
>>> from sage.rings.polynomial.polynomial_real_mpfr_dense import...
PolynomialRealDense
>>> f = PolynomialRealDense(RR['x'], [Integer(3), pi, Integer(1)])
needs sage.symbolic
>>> f.integral()
#...

0.333333333333333*x^3 + 1.57079632679490*x^2 + 3.00000000000000*x

list (copy=True)

EXAMPLES:

sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import...
PolynomialRealDense
sage: f = PolynomialRealDense(RR['x'], [1, 0, -2]); f
-2.00000000000000*x^2 + 1.00000000000000
sage: f.list()
[1.00000000000000, 0.000000000000000, -2.00000000000000]

sage: from sage.all import *
>>> from sage.rings.polynomial.polynomial_real_mpfr_dense import...
PolynomialRealDense
>>> f = PolynomialRealDense(RR['x'], [-2, 0, 1])
sage: g = PolynomialRealDense(RR['x'], [5, 1])
sage: q, r = f.quo_rem(g)

x - 5.00000000000000
sage: q
23.0000000000000
sage: q^g + r == f
True
sage: fg = f*g
sage: fg.quo_rem(f)
(x + 5.00000000000000, 0)

sage: # needs sage.symbolic
sage: f = PolynomialRealDense(RR['x'], range(5))
reverse (degree=\texttt{None})

Return reverse of the input polynomial thought as a polynomial of degree \texttt{degree}.

If \(f \) is a degree-\(d \) polynomial, its reverse is \(x^d f(1/x) \).

INPUT:

- \texttt{degree (None or an integer)} – if specified, truncate or zero pad the list of coefficients to this degree before reversing it.

EXAMPLES:

\begin{verbatim}
sage: # needs sage.symbolic
sage: f = RR['x']([-3, pi, 0, 1])
sage: f.reverse()
-3.00000000000000*x^3 + 3.14159265358979*x^2 + 1.00000000000000
sage: f.reverse(2)
-3.00000000000000*x^2 + 3.14159265358979*x
sage: f.reverse(5)
-3.00000000000000*x^5 + 3.14159265358979*x^4 + x^2
\end{verbatim}
-3.00000000000000*x^2 + 3.14159265358979*x

>>> f.reverse(Integer(5))
-3.00000000000000*x^5 + 3.14159265358979*x^4 + x^2

shift \(n \)

Returns this polynomial multiplied by the power \(x^n \). If \(n \) is negative, terms below \(x^n \) will be discarded. Does not change this polynomial.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import ...
                    PolynomialRealDense
sage: f = PolynomialRealDense(RR['x'], [1, 2, 3]); f
3.000000000000000*x^2 + 2.000000000000000*x + 1.000000000000000
sage: f.shift(10)
3.000000000000000*x^12 + 2.000000000000000*x^11 + x^10
sage: f.shift(-1)
3.000000000000000*x + 2.000000000000000
sage: f.shift(-10)
0
```

truncate \(n \)

Returns the polynomial of degree < \(n \) which is equivalent to self modulo \(x^n \).

EXAMPLES:

```python
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import ...
                    PolynomialRealDense
sage: f = PolynomialRealDense(RealField(10)['x'], [1, 2, 4, 8])
sage: f.truncate(3)
4.0*x^2 + 2.0*x + 1.0
sage: f.truncate(100)
8.0*x^3 + 4.0*x^2 + 2.0*x + 1.0
sage: f.truncate(1)
1.0
sage: f.truncate(0)
0
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polynomial_real_mpfr_dense import ...
                    PolynomialRealDense
>>> f = PolynomialRealDense(RealField(Integer(10))['x'], [Integer(1), ...
                    Integer(2), Integer(4), Integer(8)])
>>> f.truncate(Integer(3))
```
Polynomials, Release 10.4

(continued from previous page)

\[4.0 \times x^2 + 2.0 \times x + 1.0 \]

```
>>> f.truncate(Integer(100))
8.0 \times x^3 + 4.0 \times x^2 + 2.0 \times x + 1.0
```

\[1.0 \]

```
>>> f.truncate(Integer(1))
1.0
```

```
>>> f.truncate(Integer(0))
0
```

\textbf{truncate_abs} (\textit{bound})

Truncate all high order coefficients below \textit{bound}.

\textbf{EXAMPLES:}

```
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import *

-->PolynomialRealDense
sage: f = PolynomialRealDense(RealField(10)['x'], [10^-k for k in range(10)])
sage: f
1.0e-9 \times x^9 + 1.0e-8 \times x^8 + 1.0e-7 \times x^7 + 1.0e-6 \times x^6 + 0.000010 \times x^5
+ 0.00010 \times x^4 + 0.0010 \times x^3 + 0.010 \times x^2 + 0.10 \times x + 1.0
```

```
sage: f.truncate_abs(0.5e-6)
1.0e-6 \times x^6 + 0.000010 \times x^5 + 0.00010 \times x^4 + 0.0010 \times x^3 + 0.010 \times x^2 + 0.10 \times x + 1.
```

```
sage: f.truncate_abs(1e-100) == f
True
```

```
>>> from sage.all import *
```

```
>>> from sage.rings.polynomial.polynomial_real_mpfr_dense import *

-->PolynomialRealDense
```

```
>>> f = PolynomialRealDense(RealField(Integer(10))['x'], [Integer(10)**-k for k in range(Integer(10))])
```

```
>>> f
1.0e-9 \times x^9 + 1.0e-8 \times x^8 + 1.0e-7 \times x^7 + 1.0e-6 \times x^6 + 0.000010 \times x^5
+ 0.00010 \times x^4 + 0.0010 \times x^3 + 0.010 \times x^2 + 0.10 \times x + 1.0
```

```
>>> f.truncate_abs(RealNumber(0.5e-6))
1.0e-6 \times x^6 + 0.000010 \times x^5 + 0.00010 \times x^4 + 0.0010 \times x^3 + 0.010 \times x^2 + 0.10 \times x + 1.
```

```
>>> f.truncate_abs(RealNumber(10.0))
0
```

```
>>> f.truncate_abs(RealNumber('1e-100')) == f
True
```

\textbf{sage.rings.polynomial.polynomial_real_mpfr_dense.make_PolynomialRealDense} (\textit{parent}, \textit{data})

\textbf{EXAMPLES:}

```
sage: from sage.rings.polynomial.polynomial_real_mpfr_dense import make_

-->PolynomialRealDense
sage: make_PolynomialRealDense(RR['x'], [1,2,3])
3.00000000000000 \times x^2 + 2.00000000000000 \times x + 1.00000000000000
```

```
>>> from sage.all import *
```

```
>>> from sage.rings.polynomial.polynomial_real_mpfr_dense import make_
```

(continues on next page)

2.1. Univariate Polynomials and Polynomial Rings 311
2.1.13 Polynomial Interfaces to Singular

AUTHORS:
- Martin Albrecht <malb@informatik.uni-bremen.de> (2006-04-21)
- Robert Bradshaw: Re-factor to avoid multiple inheritance vs. Cython (2007-09)
- Syed Ahmad Lavasani: Added function field to _singular_init_ (2011-12-16); Added non-prime finite fields to _singular_init_ (2012-1-22)

class sage.rings.polynomial.polynomial_singular_interface.PolynomialRing_singular_repr
Bases: object
Implements methods to convert polynomial rings to Singular.
This class is a base class for all univariate and multivariate polynomial rings which support conversion from and to Singular rings.

class sage.rings.polynomial.polynomial_singular_interface.Polynomial_singular_repr
Bases: object
Implements coercion of polynomials to Singular polynomials.
This class is a base class for all (univariate and multivariate) polynomial classes which support conversion from and to Singular polynomials.
Due to the incompatibility of Python extension classes and multiple inheritance, this just defers to module-level functions.
sage.rings.polynomial.polynomial_singular_interface.can_convert_to_singular(R)
Return True if this ring's base field or ring can be represented in Singular, and the polynomial ring has at least one generator.
The following base rings are supported: finite fields, rationals, number fields, and real and complex fields.
EXAMPLES:

```
sage: from sage.rings.polynomial.polynomial_singular_interface import can_convert_to_singular
sage: can_convert_to_singular(PolynomialRing(QQ, names=['x']))
True
sage: can_convert_to_singular(PolynomialRing(ZZ, names=['x']))
True
sage: can_convert_to_singular(PolynomialRing(QQ, names=[]))
False
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polynomial_singular_interface import can_convert_to_singular
```
2.1.14 Base class for generic p-adic polynomials

This provides common functionality for all p-adic polynomials, such as printing and factoring.

AUTHORS:

- Jeroen Demeyer (2013-11-22): initial version, split off from other files, made Polynomial_padic the common base class for all p-adic polynomials.

```python
class sage.rings.polynomial.padics.polynomial_padic.Polynomial_padic(parent, x=None, check=True, is_gen=False, construct=False)
```

Bases: `Polynomial`

```python
content() -> poly
```

Compute the content of this polynomial.

OUTPUT:

If this is the zero polynomial, return the constant coefficient. Otherwise, since the content is only defined up to a unit, return the content as π^k with maximal precision where k is the minimal valuation of any of the coefficients.

EXAMPLES:

```python
sage: # needs sage.libs.ntl
sage: K = Zp(13,7)
sage: R.<t> = K[]
sage: f = 13^7*t^3 + K(169,4)*t - 13^4
sage: f.content()
13^2 + O(13^9)
sage: R(0).content()  
0
sage: f = R(K(0,3)); f  
O(13^3)
sage: f.content()  
O(13^3)
```

```python
sage: # needs sage.libs.ntl
sage: P.<x> = ZZ[]
sage: f = x + 2
sage: f.content()  
1
sage: fp = f.change_ring(pAdicRing(2, 10))
sage: fp
```

(continues on next page)
(1 + O(2^10))*x + 2 + O(2^11)
\begin{verbatim}
sage: fp.content()
1 + O(2^10)
sage: (2*fp).content()
2 + O(2^11)
\end{verbatim}

Over a field it would be sufficient to return only zero or one, as the content is only defined up to multiplication with a unit. However, we return \(\pi^k \) where \(k \) is the minimal valuation of any coefficient:

\begin{verbatim}
>>> from sage.all import *
>>> # needs sage.libs.ntl
>>> K = Qp(Integer(13),Integer(7))
>>> R.<t> = K[]
>>> f = 13^7*t^3 + K(169,4)*t - 13^-4
>>> f.content()
13^-4 + O(13^3)
>>> f = R.zero()
>>> f.content()
0
>>> f = 13*t^3 + K(0,1)*t
>>> f.content()
13 + O(13^8)
\end{verbatim}
factor()

Return the factorization of this polynomial.

EXAMPLES:

```python
sage: # needs sage.libs.ntl
sage: R.<t> = PolynomialRing(Qp(3, 3, print_mode='terse', print_pos=False))
sage: pol = t^8 - 1
sage: for p,e in pol.factor():
....:     print("{} {}").format(e, p))
1 (1 + O(3^3))*t + 1 + O(3^3)
1 (1 + O(3^3))*t - 1 + O(3^3)
1 (1 + O(3^3))*t^2 + (5 + O(3^3))*t - 1 + O(3^3)
1 (1 + O(3^3))*t^2 + (-5 + O(3^3))*t - 1 + O(3^3)
1 (1 + O(3^3))*t^2 + O(3^3)*t + 1 + O(3^3)

sage: R.<t> = PolynomialRing(Qp(5, 6, print_mode='terse', print_pos=False))

sage: pol = Integer(100) * (Integer(5)*t - Integer(1)) * (t - Integer(5)); pol
(500 + O(5^9))*t^2 + (-2600 + O(5^8))*t + 500 + O(5^9)

sage: pol.factor()
(500 + O(5^9)) * ((1 + O(5^5))*t - 1/5 + O(5^5)) * ((1 + O(5^6))*t - 5 + O(5^6))

sage: pol.factor().value()
(500 + O(5^8))*t^2 + (-2600 + O(5^8))*t + 500 + O(5^8)
```

```python
>>> from sage.all import *
>>> # needs sage.libs.ntl

>>> R = PolynomialRing(Qp(Integer(3), Integer(3), print_mode='terse', print_pos=False), names=('t',)); (t,) = R._first_ngens(1)
>>> pol = t**Integer(8) - Integer(1)
>>> for p,e in pol.factor():
...     print("{} {}").format(e, p))
1 (1 + O(3^3))*t + 1 + O(3^3)
1 (1 + O(3^3))*t - 1 + O(3^3)
1 (1 + O(3^3))*t^2 + (5 + O(3^3))*t - 1 + O(3^3)
1 (1 + O(3^3))*t^2 + (-5 + O(3^3))*t - 1 + O(3^3)
1 (1 + O(3^3))*t^2 + O(3^3)*t + 1 + O(3^3)

>>> R = PolynomialRing(Qp(Integer(5), Integer(6), print_mode='terse', print_pos=False), names=('t',)); (t,) = R._first_ngens(1)

```
The same factorization over \mathbb{Z}_p. In this case, the “unit” part is a p-adic unit and the power of p is considered to be a factor:

$$\begin{align*}
500 + O(5^8) & \cdot t^2 + (-2600 + O(5^8)) \cdot t + 500 + O(5^8)
\end{align*}$$

In the following example, the discriminant is zero, so the p-adic factorization is not well defined:

```
>>> from sage.all import *
>>> # needs sage.libs.ntl
>>> R = PolynomialRing(Zp(Integer(5), Integer(6), print_mode='terse', print_pos=False), names=('t',)); (t,) = R._first_ngens(1)
>>> pol = Integer(100) * (Integer(5)*t - Integer(1)) * (t - Integer(5)); pol
(500 + O(5^9))^2 * (t^2 - 5 + O(5^7)) * (t - 1 + O(5^6))
>>> pol.factor().value()
(500 + O(5^9)) \cdot t^2 + (-2600 + O(5^8)) \cdot t + 500 + O(5^8)
```

An example of factoring a constant polynomial (see Issue #26669):
Polynomials, Release 10.4

```python
>>> from sage.all import *

>>> R = Qp(Integer(5))['x']; (x,) = R._first_ngens(1)  # needs sage.libs.ntl
>>> R(Integer(2)).factor()  # needs sage.libs.ntl
2 + O(5^20)

More examples over \( \mathbb{Z}_p \):

```
sage: R.<w> = PolynomialRing(Zp(5, prec=6, type='capped-abs', print_mode='val-unit'))
sage: f = w^5 - 1
sage: f.factor() # needs sage.libs.ntl
((1 + O(5^6))*w + 3124 + O(5^6))
* ((1 + O(5^6))*w^4 + (12501 + O(5^6))*w^3 + (9376 + O(5^6))*w^2
 + (6251 + O(5^6))*w + 3126 + O(5^6))
```

See Issue #4038:

```
sage: # needs sage.libs.sage.schemes
sage: E = EllipticCurve('37a1')
sage: K = Qp(7,10)
sage: EK = E.base_extend(K)
sage: g = EK.division_polynomial_0(3)
sage: g.factor()
(3 + O(7^10))
* ((1 + O(7^10))*x
 + 1 + 2*7 + 4*7^2 + 2*7^3 + 5*7^4 + 7^5 + 5*7^6 + 3*7^7 + 5*7^8 + 3*7^9 +
 O(7^10))
* ((1 + O(7^10))*x^3
 + (6 + 4*7 + 2*7^2 + 4*7^3 + 7^4 + 5*7^5 + 7^6 + 3*7^7 + 7^8 + 3*7^9 + O(7^10))*x^2
 + (6 + 3*7 + 5*7^2 + 2*7^3 + 7^4 + 6*7^5 + 3*7^6 + 7^7 + 2*7^8 + O(7^10))*x
 + 2 + 5*7 + 4*7^2 + 2*7^3 + 6*7^4 + 3*7^5 + 7^6 + 4*7^7 + O(7^10))
```

(continues on next page)

2.1. Univariate Polynomials and Polynomial Rings 317
+ (6 + 4*7 + 2*7^2 + 4*7^3 + 7^4 + 5*7^5 + 7^6 + 3*7^7 + 7^8 + 3*7^9 + O(7^10))*x^2 + (6 + 3*7 + 5*7^2 + 2*7^4 + 7^5 + 7^6 + 2*7^8 + 3*7^9 + O(7^10))*x + 2 + 5*7 + 4*7^2 + 2*7^3 + 6*7^4 + 3*7^5 + 7^6 + O(7^10))

root_field(names, check_irreducible=True, **kwds)

Return the $p$-adic extension field generated by the roots of the irreducible polynomial self.

INPUT:

- names – name of the generator of the extension
- check_irreducible – check whether the polynomial is irreducible
- kwds – see sage.rings.padics.padic_generic.pAdicGeneric.extension()

EXAMPLES:

```
sage: R.<x> = Qp(3,5,print_mode='digits')[x]
#...→ needs sage.libs.ntl
sage: f = x^2 - 3
#...→ needs sage.libs.ntl
sage: f.root_field('x')
#...→ needs sage.libs.ntl
3-adic Eisenstein Extension Field in x defined by x^2 - 3

>>> from sage.all import *
>>> R = Qp(Integer(3),Integer(5),print_mode='digits')['x']; (x,) = R._first_
needs sage.libs.ntl
>>> f = x**Integer(2) - Integer(3)
needs sage.libs.ntl
>>> f.root_field('x')
#...→ needs sage.libs.ntl
3-adic Eisenstein Extension Field in x defined by x^2 - 3

sage: R.<x> = Qp(5,5,print_mode='digits')[x]
#...→ needs sage.libs.ntl
sage: f = x^2 - 3
#...→ needs sage.libs.ntl
sage: f.root_field('x', print_mode='bars')
#...→ needs sage.libs.ntl
5-adic Unramified Extension Field in x defined by x^2 - 3

>>> from sage.all import *
>>> R = Qp(Integer(5),Integer(5),print_mode='digits')['x']; (x,) = R._first_
needs sage.libs.ntl
>>> f = x**Integer(2) - Integer(3)
needs sage.libs.ntl
>>> f.root_field('x', print_mode='bars')
#...→ needs sage.libs.ntl
5-adic Unramified Extension Field in x defined by x^2 - 3

sage: R.<x> = Qp(11,5,print_mode='digits')[x]
#...→ needs sage.libs.ntl
sage: f = x^2 - 3
#...→ needs sage.libs.ntl
```
2.1.15 p-adic Capped Relative Dense Polynomials

```
>>> from sage.all import *
>>> R = Qp(Integer(11),Integer(5),print_mode='digits')[x]; (x,) = R._first_
˓→ngens(1)# needs sage.libsntl
>>> f = x**Integer(2) - Integer(3) # needs sage.libsntl
>>> f.root_field('x', print_mode='bars') # needs sage.libsntl
Traceback (most recent call last):
...
ValueError: polynomial must be irreducible
```

Bases: `Polynomial_generic_cdv, Polynomial_padic`

degree (secure=False)

Return the degree of self.

INPUT:

- secure – a boolean (default: False)

If secure is True and the degree of this polynomial is not determined (because the leading coefficient is indistinguishable from 0), an error is raised.

If secure is False, the returned value is the largest \( n \) so that the coefficient of \( x^n \) does not compare equal to 0.

EXAMPLES:

```
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
```

(continues on next page)
polynomial:  \((1 + O(3^{10}))T + 2 + O(3^{10})\)

```python
sage: f.degree()
1
sage: (f-T).degree()
0
sage: (f-T).degree(secure=True)
Traceback (most recent call last):
...
PrecisionError: the leading coefficient is indistinguishable from 0
```

```python
sage: x = O(3^5)
sage: li = [3^i * x for i in range(0,5)]; li
[O(3^5), O(3^6), O(3^7), O(3^8), O(3^9)]
sage: f = R(li); f
O(3^9)*T^4 + O(3^8)*T^3 + O(3^7)*T^2 + O(3^6)*T + O(3^5)
sage: f.degree()
1
sage: f.degree(secure=True)
Traceback (most recent call last):
...
PrecisionError: the leading coefficient is indistinguishable from 0
```

```python
>>> from sage.all import *

>>> K = Qp(Integer(3),Integer(10))

>>> R = K['T']; (T,) = R._first_ngens(1)

>>> f = T + Integer(2); f
(1 + O(3^{10}))*T + 2 + O(3^{10})

>>> f.degree()
1

>>> (f-T).degree()
0

>>> (f-T).degree(secure=True)
Traceback (most recent call last):
...
PrecisionError: the leading coefficient is indistinguishable from 0
```

disc()

factor_mod()  
   Return the factorization of self modulo \(p\).

is_eisenstein(secure=False)  
   Return True if this polynomial is an Eisenstein polynomial.

EXAMPLES:
AUTHOR:

- Xavier Caruso (2013-03)

lift()

Return an integer polynomial congruent to this one modulo the precision of each coefficient.

Note: The lift that is returned will not necessarily be the same for polynomials with the same coefficients (i.e. same values and precisions): it will depend on how the polynomials are created.

EXAMPLES:

```python
sage: K = Qp(13,7)
sage: R.<t> = K[]
sage: a = 13^7*t^3 + K(169,4)*t - 13^4
sage: a.lift()
62748517*t^3 + 169*t - 28561
```

```python
>>> from sage.all import *
>>> K = Qp(Integer(13),Integer(7))
>>> R = K['t']; (t,) = R._first_ngens(1)
>>> a = Integer(13)**Integer(7)*t**Integer(3) + K(Integer(169),Integer(4))*t - Integer(13)**Integer(4)
>>> a.lift()
62748517*t^3 + 169*t - 28561
```

list(copy=True)

Return a list of coefficients of self.

Note: The length of the list returned may be greater than expected since it includes any leading zeros that have finite absolute precision.

EXAMPLES:

```python
sage: K = Qp(13,7)
sage: R.<t> = K[]
sage: a = 2*t^3 + 169*t - 1
sage: a
(2 + O(13^7))*t^3 + (13^2 + O(13^9))*t + 12 + 12*13 + 12*13^2 + 12*13^3 +...
```

(continues on next page)
Polynomials, Release 10.4

```python
sage: a.list()
[12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + O(13^7),
 13^2 + O(13^9),
 0,
 2 + O(13^7)]
```

```python
>>> from sage.all import *
>>> K = Qp(Integer(13),Integer(7))
>>> R = K['t']; (t,) = R._first_ngens(1)
>>> a = Integer(2)*t**Integer(3) + Integer(169)*t - Integer(1)
```

```python
>>> a
(2 + O(13^7))*t^3 + (13^2 + O(13^9))*t + 12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + O(13^7)
```

```python
>>> a.list()
[12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + O(13^7),
 13^2 + O(13^9),
 0,
 2 + O(13^7)]
```

### lshift_coeffs (shift, no_list=False)

Return a new polynomials whose coefficients are multiplied by p^shift.

**EXAMPLES:**

```python
sage: K = Qp(13, 4)
sage: R.<t> = K[

sage: a = K(t + 52)
```

```python
sage: a.lshift_coeffs(3)
(13^3 + O(13^7))*t + 4*13^4 + O(13^8)
```

```python
>>> from sage.all import *
>>> K = Qp(Integer(13), Integer(4))
>>> R = K['t']; (t,) = R._first_ngens(1)
>>> a = R(t + Integer(52))
>>> a.lshift_coeffs(Integer(3))
(13^3 + O(13^7))*t + 4*13^4 + O(13^8)
```

### newton_polygon()

Return the Newton polygon of this polynomial.

**Note:** If some coefficients have not enough precision an error is raised.

**OUTPUT:**

- a NewtonPolygon

**EXAMPLES:**

```python
sage: K = Qp(2, prec=5)
sage: P.<x> = K[

sage: f = x^4 + 2^3*x^3 + 2^13*x^2 + 2^21*x + 2^37
```

```python
sage: f.newton_polygon() # needs sage.geometry.polyhedron
```

Finite Newton polygon with 4 vertices: (0, 37), (1, 21), (3, 3), (4, 0)

(continues on next page)
Here is an example where the computation fails because precision is not sufficient:

```sage
sage: g = f + K(0,0)*t^4; g
(5^2 + O(5^22))*t^10 + O(5^0)*t^4 + (3 + O(5^20))*t + 5 + O(5^21)
sage: g.newton_polygon()
Traceback (most recent call last):
 ...PrecisionError: The coefficient of t^4 has not enough precision
```

```sage
from sage.all import *
>>> K = Qp(Integer(2), prec=Integer(5))
>>> P = K[x]; (x,) = P._first_ngens(1)
>>> f = x**Integer(4) + Integer(2)**Integer(3)*x**Integer(3) +...
 Integer(2)**Integer(13)*x**Integer(2) + Integer(2)**Integer(21)*x +...
 Integer(2)**Integer(37)
>>> f.newton_polygon() #...
 ...needs sage.geometry.polyhedron
Finite Newton polygon with 4 vertices: (0, 37), (1, 21), (3, 3), (4, 0)
```

AUTHOR:
• Xavier Caruso (2013-03-20)

newton_slopes (repetition=True)
Return a list of the Newton slopes of this polynomial.
These are the valuations of the roots of this polynomial.
If repetition is True, each slope is repeated a number of times equal to its multiplicity. Otherwise it appears only one time.

INPUT:
• repetition – boolean (default True)
OUTPUT:

- a list of rationals

EXAMPLES:

```python
sage: K = Qp(5)
sage: R.<t> = K[]
sage: f = 5 + 3*t + t^4 + 25*t^10
sage: f.newton_polygon()
needs sage.geometry.polyhedron
Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)
```

```python
sage: f.newton_slopes()
needs sage.geometry.polyhedron
[1, 0, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3]
```

```python
sage: f.newton_slopes(repetition=False)
needs sage.geometry.polyhedron
[1, 0, -1/3]
```

```python
>>> from sage.all import *
>>> K = Qp(Integer(5))
>>> R = K['t']; (t,) = R._first_ngens(1)
>>> f = Integer(5) + Integer(3)*t + t**Integer(4) + Integer(25)*t**Integer(10)
>>> f.newton_polygon()
needs sage.geometry.polyhedron
Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)
```

```python
>>> f.newton_slopes()
needs sage.geometry.polyhedron
[1, 0, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3]
```

```python
>>> f.newton_slopes(repetition=False)
needs sage.geometry.polyhedron
[1, 0, -1/3]
```

AUTHOR:

- Xavier Caruso (2013-03-20)

**prec_degree()**

Return the largest $n$ so that precision information is stored about the coefficient of $x^n$.

Always greater than or equal to degree.

EXAMPLES:

```python
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^10))*T + 2 + O(3^10)
sage: f.prec_degree()
1
```

```python
>>> from sage.all import *
>>> K = Qp(Integer(3),Integer(10))
>>> R = K['T']; (T,) = R._first_ngens(1)
>>> f = T + Integer(2); f
```

(continues on next page)
(continued from previous page)

\[(1 + O(3^{10}))*T + 2 + O(3^{10})\]

>>> f.prec_degree()
1

**precision_absolute** *(n=None)*

Return absolute precision information about *self*.

**INPUT:**

- *self* — a p-adic polynomial
- *n* — None or an integer (default None).

**OUTPUT:**

If *n* is None, returns a list of absolute precisions of coefficients. Otherwise, returns the absolute precision of the coefficient of \(x^n\).

**EXAMPLES:**

```sage
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^{10}))*T + 2 + O(3^{10})
sage: f.precision_absolute()
[10, 10]
```

```sage
>>> from sage.all import *
>>> K = Qp(Integer(3),Integer(10))
>>> R = K[T]; (T,) = R._first_ngens(1)
>>> f = T + Integer(2); f
(1 + O(3^{10}))*T + 2 + O(3^{10})
>>> f.precision_absolute()
[10, 10]
```

**precision_relative** *(n=None)*

Return relative precision information about *self*.

**INPUT:**

- *self* — a p-adic polynomial
- *n* — None or an integer (default None).

**OUTPUT:**

If *n* is None, returns a list of relative precisions of coefficients. Otherwise, returns the relative precision of the coefficient of \(x^n\).

**EXAMPLES:**

```sage
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^{10}))*T + 2 + O(3^{10})
sage: f.precision_relative()
[10, 10]
```
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> K = Qp(Integer(3),Integer(10))
>>> R = K['T']; (T,) = R._first_ngens(1)
>>> f = T + Integer(2); f
(1 + O(3^10))*T + 2 + O(3^10)
>>> f.precision_relative()
[10, 10]
```

**quo_rem** *(right, secure=False)*

Return the quotient and remainder in division of *self* by *right*.

**EXAMPLES:**

```
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2
sage: g = T**4 + 3*T+22
sage: g.quo_rem(f)
((1 + O(3^10))*T^3 + (1 + 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7˓→+ 2*3^8 + 2*3^9 + O(3^10))*T^2 + (1 + 3 + O(3^10))*T + 1 + 3 + 2*3^2 + 2*3^→3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + O(3^10),
2 + 3 + 3^3 + O(3^10))
```

**rescale** *(a)*

Return *f(a · x)*.

**Todo:** Need to write this function for integer polynomials before this works.

**EXAMPLES:**

```
sage: K = Zp(13, 5)
sage: R.<t> = K[]
sage: f = t^3 + K(13, 3) * t
sage: f.rescale(2) # not implemented
```

**reverse** *(degree=None)*

Return the reverse of the input polynomial, thought as a polynomial of degree *degree*.

If *f* is a degree-*d* polynomial, its reverse is \( x^d f(1/x) \).
INPUT:

- degree (None or an integer) – if specified, truncate or zero pad the list of coefficients to this degree before reversing it.

EXAMPLES:

```python
sage: K = Qp(13, 7)
sage: R.<t> = K[

sage: f = t^3 + 4*t; f
(1 + O(13^7))*t^3 + (4 + O(13^7))*t
sage: f.reverse()
0*t^3 + (4 + O(13^7))*t^2 + 1 + O(13^7)
sage: f.reverse(3)
0*t^3 + (4 + O(13^7))*t^2 + 1 + O(13^7)
sage: f.reverse(2)
0*t^2 + (4 + O(13^7))*t
sage: f.reverse(4)
0*t^4 + (4 + O(13^7))*t^3 + (1 + O(13^7))*t
sage: f.reverse(6)
0*t^6 + (4 + O(13^7))*t^5 + (1 + O(13^7))*t^3
```

```python
sage: from sage.all import *

>>> from sage.all import *

>>> K = Qp(Integer(13), Integer(7))

>>> R = K[
t]

>>> (t,) = R._first_ngens(1)

>>> f = t**Integer(3) + Integer(4)*t; f
(1 + O(13^7))*t^3 + (4 + O(13^7))*t

>>> f.reverse()
0*t^3 + (4 + O(13^7))*t^2 + 1 + O(13^7)

>>> f.reverse(Integer(3))
0*t^3 + (4 + O(13^7))*t^2 + 1 + O(13^7)

>>> f.reverse(Integer(2))
0*t^2 + (4 + O(13^7))*t

>>> f.reverse(Integer(4))
0*t^4 + (4 + O(13^7))*t^3 + (1 + O(13^7))*t

>>> f.reverse(Integer(6))
0*t^6 + (4 + O(13^7))*t^5 + (1 + O(13^7))*t^3
```

`rshift_coeffs(shift, no_list=False)`

Return a new polynomial whose coefficients are $p$-adically shifted to the right by `shift`.

**Note:** Type `Qp(5)(0).__rshift__?` for more information.

EXAMPLES:

```python
sage: K = Zp(13, 4)
sage: R.<t> = K[

sage: a = t^2 + K(13,3)*t + 169; a
(1 + O(13^4))*t^2 + (13 + O(13^3))*t + 13^2 + O(13^6)
sage: b = a.rshift_coeffs(1); b
O(13^3)*t^2 + (1 + O(13^2))*t + 13 + O(13^5)
sage: b.list()
[13 + O(13^5), 1 + O(13^2), 0(13^3)]
sage: b = a.rshift_coeffs(2); b
O(13^2)*t^2 + O(13)*t + 1 + O(13^4)
sage: b.list()
[1 + O(13^4), 0(13), 0(13^2)]
```
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> K = Zp(Integer(13), Integer(4))
>>> R = K['t']; (t,) = R._first_ngens(1)
>>> a = t**Integer(2) + K(Integer(13),Integer(3))*t + Integer(169); a
(1 + O(13^4))*t^2 + (13 + O(13^3))*t + 13^2 + O(13^6)
>>> b = a.rshift_coeffs(Integer(1)); b
O(13^3)*t^2 + (1 + O(13^2))*t + 13 + O(13^5)
>>> b.list()
[13 + O(13^5), 1 + O(13^2), O(13^3)]
>>> b = a.rshift_coeffs(Integer(2)); b
O(13^2)*t^2 + O(13)*t + 1 + O(13^4)
>>> b.list()
[1 + O(13^4), O(13), O(13^2)]
```

valuation(val_of_var=None)

Return the valuation of self.

INPUT:

- `self` - a p-adic polynomial
- `val_of_var` - None or a rational (default None).

OUTPUT:

If `val_of_var` is None, returns the largest power of the variable dividing self. Otherwise, returns the valuation of self where the variable is assigned valuation `val_of_var`.

EXAMPLES:

```python
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^10))*T + 2 + O(3^10)
sage: f.valuation()
0
```

valuation_of_coefficient(n=None)

Return valuation information about self's coefficients.

INPUT:

- `self` - a p-adic polynomial
- `n` - None or an integer (default None).

OUTPUT:

If `n` is None, returns a list of valuations of coefficients. Otherwise, returns the valuation of the coefficient of \(x^n\).

EXAMPLES:

```python
>>> from sage.all import *
>>> K = Qp(Integer(3),Integer(10))
>>> R = K['T']; (T,) = R._first_ngens(1)
>>> f = T + Integer(2); f
(1 + O(3^10))*T + 2 + O(3^10)
>>> f.valuation()
0
```
sage: K = Qp(3,10)
sage: R.<T> = K[]
sage: f = T + 2; f
(1 + O(3^10))*T + 2 + O(3^10)
sage: f.valuation_of_coefficient(1)
0

>>> from sage.all import *
>>> K = Qp(Integer(3),Integer(10))
>>> R = K[T]; (T,) = R._first_ngens(1)
>>> f = T + Integer(2); f
(1 + O(3^10))*T + 2 + O(3^10)
>>> f.valuation_of_coefficient(Integer(1))
0

sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.make_padic_poly (parent, x, version)

2.1.16 p-adic Flat Polynomials

class sage.rings.polynomial.padics.polynomial_padic_flat.Polynomial_padic_flat (parent, x=None, check=True, is_gen=False, construct=False, absprec=None)

Bases: Polynomial_generic_dense, Polynomial_padic

2.1.17 Univariate Polynomials over GF(p^e) via NTL's ZZ_pEX

AUTHOR:
• Yann Laigle-Chapuy (2010-01) initial implementation
• Lorenz Panny (2023-01): minpoly_mod()
• Giacomo Pope (2023-08): reverse(), inverse_series_trunc()

class sage.rings.polynomial.polynomial_zz_pex.Polynomial_ZZ_pEX

Bases: Polynomial_template

Univariate Polynomials over \( F_p^n \) via NTL's ZZ_pEX.

EXAMPLES:

sage: K.<a> = GF(next_prime(2**60)**3)
sage: R.<x> = PolynomialRing(K, implementation='NTL')
sage: (x^3 + a*x^2 + 1) * (x + a)
x^4 + 2*a*x^3 + a^2*x^2 + x + a
Polynomials, Release 10.4

---

>>> from sage.all import *

>>> K = GF(next_prime(Integer(2)**Integer(60))**Integer(3), names=('a',)); (a,) = K._first_ngens(1)

>>> R = PolynomialRing(K, implementation='NTL', names=('x',)); (x,) = R._first_ngens(1)

>>> (x**Integer(3) + a*x**Integer(2) + Integer(1)) * (x + a)

\[x^4 + 2a x^3 + a^2 x^2 + x + a\]

inverse_series_trunc(prec)

Compute and return the inverse of self modulo \(x^{\text{prec}}\).

The constant term of self must be invertible.

EXAMPLES:

```python
sage: R.<x> = GF(101^2)[]
sage: z2 = R.base_ring().gen()
sage: f = (3*z2 + 57)*x^3 + (13*z2 + 94)*x^2 + (7*z2 + 2)*x + 66*z2 + 15
sage: f.inverse_series_trunc(1)
51*z2 + 92
sage: f.inverse_series_trunc(2)
(30*z2 + 30)*x + 51*z2 + 92
sage: f.inverse_series_trunc(3)
(42*z2 + 94)*x^2 + (30*z2 + 30)*x + 51*z2 + 92
sage: f.inverse_series_trunc(4)
(99*z2 + 96)*x^3 + (42*z2 + 94)*x^2 + (30*z2 + 30)*x + 51*z2 + 92
```

---

>>> from sage.all import *

>>> R = GF(Integer(101)**Integer(2))[x]; (x,) = R._first_ngens(1)

>>> f = (Integer(3)*z2 + Integer(57))*x^3 + (Integer(13)*z2 + Integer(94))*x^2 + (Integer(7)*z2 + Integer(2))*x + Integer(66)*z2 + Integer(15)

```python
sage: f.inverse_series_trunc(Integer(1))
51*z2 + 92
sage: f.inverse_series_trunc(Integer(2))
(30*z2 + 30)*x + 51*z2 + 92
sage: f.inverse_series_trunc(Integer(3))
(42*z2 + 94)*x^2 + (30*z2 + 30)*x + 51*z2 + 92
sage: f.inverse_series_trunc(Integer(4))
(99*z2 + 96)*x^3 + (42*z2 + 94)*x^2 + (30*z2 + 30)*x + 51*z2 + 92
```

---

is_irreducible(algorithm='fast_when_false', iter=1)

Return True precisely when self is irreducible over its base ring.

INPUT:

- algorithm -- a string (default "fast_when_false"), there are 3 available algorithms: "fast_when_true", "fast_when_false", and "probabilistic".
- iter -- (default: 1) if the algorithm is "probabilistic", defines the number of iterations. The error probability is bounded by \(q^{-\text{iter}}\) for polynomials in \(F_q[x]\).

EXAMPLES:

```python
sage: K.<a> = GF(next_prime(2**60)**3)
sage: R.<x> = PolynomialRing(K, implementation='NTL')
sage: P = x^3 + (2-a)*x + 1
```

(continues on next page)
```python
sage: P.is_irreducible(algorithm="fast_when_false")
True
sage: P.is_irreducible(algorithm="fast_when_true")
True
sage: P.is_irreducible(algorithm="probabilistic")
True
sage: Q = (x^2+a)*(x+a^3)
sage: Q.is_irreducible(algorithm="fast_when_false")
False
sage: Q.is_irreducible(algorithm="fast_when_true")
False
sage: Q.is_irreducible(algorithm="probabilistic")
False
```

```python
>>> from sage.all import *

>>> K = GF(next_prime(Integer(2)**Integer(60))**Integer(3), names=(a,)); (a,)
 ➞ K._first_ngens(1)
>>> R = PolynomialRing(K, implementation='NTL', names=('x',)); (x,)
 ➞ R._first_ngens(1)
>>> P = x**Integer(3) + (Integer(2)-a)*x + Integer(1)
>>> P.is_irreducible(algorithm="fast_when_false")
True
>>> P.is_irreducible(algorithm="fast_when_true")
True
>>> P.is_irreducible(algorithm="probabilistic")
True
>>> Q = (x**Integer(2)+a)*(x+a**Integer(3))
>>> Q.is_irreducible(algorithm="fast_when_false")
False
>>> Q.is_irreducible(algorithm="fast_when_true")
False
>>> Q.is_irreducible(algorithm="probabilistic")
False
```

### list 
*copy=True*

Return the list of coefficients.

**EXAMPLES:**

```python
sage: K.<a> = GF(5**3)
sage: P = PolynomialRing(K, 'x')
sage: f = P.random_element(100)
sage: f.list() == [f[i] for i in range(f.degree()+1)]
True
sage: P.0.list()
[0, 1]
```

```python
>>> from sage.all import *

>>> K = GF(Integer(5)**Integer(3), names=('a',)); (a,)
 ➞ K._first_ngens(1)
>>> P = PolynomialRing(K, 'x')
>>> f = P.random_element(Integer(100))
>>> f.list() == [f[i] for i in range(f.degree()+Integer(1))]
True
>>> P.gen(0).list()
[0, 1]
```

### minpoly_mod 
*other*

2.1. Univariate Polynomials and Polynomial Rings
Compute the minimal polynomial of this polynomial modulo another polynomial in the same ring.

**Algorithm:**

NTL's `MinPolyMod()`, which uses Shoup's algorithm [Sho1999].

**Examples:**

```python
sage: R.<x> = GF(101^2)[]
sage: f = x^17 + x^2 - 1
sage: (x^2).minpoly_mod(f)
x^17 + 100*x^2 + 2*x + 100
```

```python
>>> from sage.all import *

>>> R = GF(Integer(101)**Integer(2))['x']; (x,) = R._first_ngens(1)
>>> f = x^17 + x^2 - Integer(1)
>>> (x**Integer(2)).minpoly_mod(f)
x^17 + 100*x^2 + 2*x + 100
```

**resultant(other)**

Return the resultant of self and other, which must lie in the same polynomial ring.

**Input:**

- other - a polynomial

**Output:** an element of the base ring of the polynomial ring

**Examples:**

```python
sage: K.<a> = GF(next_prime(2**60)**3)
sage: R.<x> = PolynomialRing(K, implementation='NTL')
sage: f = (x-a)*(x-a^2)*(x+1)
sage: g = (x-a^3)*(x-a^4)*(x+a)
sage: r = f.resultant(g)
sage: r == prod(u - v for (u,eu) in f.roots() for (v,ev) in g.roots())
True
```

```python
>>> from sage.all import *

>>> K = GF(next_prime(Integer(2)**Integer(60))**Integer(3), names=(a,)); (a,
˓→) = K._first_ngens(1)
>>> R = PolynomialRing(K, implementation='NTL', names=(x,)); (x,) = R._
˓→first_ngens(1)
>>> f = (x-a)*(x-a**2)*(x+1)
>>> g = (x-a**3)*(x-a**4)*(x+a)
>>> r = f.resultant(g)
>>> r == prod(u - v for (u,eu) in f.roots() for (v,ev) in g.roots())
True
```

**reverse(degree=None)**

Return the polynomial obtained by reversing the coefficients of this polynomial. If degree is set then this function behaves as if this polynomial has degree degree.

**Examples:**

```python
sage: R.<x> = GF(101^2)[]
sage: f = x^13 + 11*x^10 + 32*x^6 + 4
sage: f.reverse()
```

(continues on next page)
4\times x^{13} + 32\times x^{7} + 11\times x^{3} + 1 \\
sage: f.reverse(degree=15) \\
4\times x^{15} + 32\times x^{9} + 11\times x^{5} + x^{2} \\
sage: f.reverse(degree=2) \\
4\times x^{2} \\

>>> from sage.all import * \\
>>> R = GF(Integer(101)**Integer(2))['x']; (x,) = R._first_ngens(1) \\
>>> f = x**Integer(13) + Integer(11)\times x**Integer(10) + _ \\
Integer(32)\times x**Integer(6) + Integer(4) \\
>>> f.reverse() \\
4\times x^{13} + 32\times x^{7} + 11\times x^{3} + 1 \\
>>> f.reverse(degree=Integer(15)) \\
4\times x^{15} + 32\times x^{9} + 11\times x^{5} + x^{2} \\
>>> f.reverse(degree=Integer(2)) \\
4\times x^{2} 

shift \(n\)

EXAMPLES:

sage: K.<a> = GF(next_prime(2**60)**3) \\
sage: R.<x> = PolynomialRing(K, implementation='NTL') \\
sage: f = x^3 + x^2 + 1 \\
sage: f.shift(1) \\
x^4 + x^3 + x \\
sage: f.shift(-1) \\
x^2 + x \\

>>> from sage.all import * \\
>>> K = GF(next_prime(Integer(2)**Integer(60))**Integer(3), names=('a',)); (a, _) = K._first_ngens(1) \\
>>> R = PolynomialRing(K, implementation='NTL', names=('x',)); (x,) = R._ \\
first_ngens(1) \\
>>> f = x**Integer(3) + x**Integer(2) + Integer(1) \\
>>> f.shift(Integer(1)) \\
x^4 + x^3 + x \\
>>> f.shift(-Integer(1)) \\
x^2 + x

class sage.rings.polynomial.polynomial_zz_pex.Polynomial_template

   Template for interfacing to external C / C++ libraries for implementations of polynomials.

AUTHORS:

- Robert Bradshaw (2008-10): original idea for templating
- Martin Albrecht (2008-10): initial implementation

This file implements a simple templating engine for linking univariate polynomials to their C/C++ library implementa-
tions. It requires a ‘linkage’ file which implements the celement_ functions (see sage.libsntl. 
nl_GF2X_linkage for an example). Both parts are then plugged together by inclusion of the linkage file when inheriting from this class. See sage.rings.polynomial.polynomial_gf2x for an example.

We illustrate the generic glueing using univariate polynomials over GF(2).
Note: Implementations using this template MUST implement coercion from base ring elements and get_unsafe(). See Polynomial_GF2X for an example.

**degree()**

 EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: x.degree()
1
sage: P(1).degree()
0
sage: P(0).degree()
-1
```

```python
>>> from sage.all import *

>>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1)

>>> x.degree()
1

>>> P(Integer(1)).degree()
0

>>> P(Integer(0)).degree()
-1
```

**gcd(other)**

Return the greatest common divisor of self and other.

 EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: f = x*(x+1)
sage: f.gcd(x+1)
x + 1

sage: f = f.gcd(x^2)
x
```

```python
>>> from sage.all import *

>>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1)

>>> f = x*(x+Integer(1))

>>> f.gcd(x+Integer(1))
x + 1

>>> f.gcd(x**Integer(2))
x
```

**get_cparent()**

**is_gen()**

 EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: x.is_gen()
True

sage: (x+1).is_gen()
False
```
>>> from sage.all import *
>>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1)
>>> x.is_gen()
True
>>> (x+Integer(1)).is_gen()
False

is_one()

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: P(1).is_one()
True
```

is_zero()

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: x.is_zero()
False
```

list (copy=True)

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: x.list()
[0, 1]
sage: list(x)
[0, 1]
```

quo_rem(right)

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: f = x^2 + x + 1
sage: f.quo_rem(x + 1)
(x, 1)
```

2.1. Univariate Polynomials and Polynomial Rings 335
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1)
>>> f = x**Integer(2) + x + Integer(1)
>>> f.quo_rem(x + Integer(1))
(x, 1)
```

**shift** \( (n) \)

EXAMPLES:

```python
sage: P.<x> = GF(2)[]
sage: f = x^3 + x^2 + 1
sage: f.shift(1)
x^4 + x^3 + x
sage: f.shift(-1)
x^2 + x
```

```python
>>> from sage.all import *
>>> P = GF(Integer(2))['x']; (x,) = P._first_ngens(1)
>>> f = x**Integer(3) + x**Integer(2) + Integer(1)
>>> f.shift(Integer(1))
x^4 + x^3 + x
>>> f.shift(-Integer(1))
x^2 + x
```

**truncate** \( (n) \)

Returns this polynomial mod \( x^n \).

EXAMPLES:

```python
sage: R.<x> =GF(2)[]
sage: f = sum(x^n for n in range(10)); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(6)
x^5 + x^4 + x^3 + x^2 + x + 1
```

```python
>>> from sage.all import *
>>> R = GF(Integer(2))['x']; (x,) = R._first_ngens(1)
>>> f = sum(x**n for n in range(Integer(10))); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
>>> f.truncate(Integer(6))
x^5 + x^4 + x^3 + x^2 + x + 1
```

If the precision is higher than the degree of the polynomial then the polynomial itself is returned:

```python
sage: f.truncate(10) is f
True
```

```python
>>> from sage.all import *
>>> f.truncate(Integer(10)) is f
True
```

If the precision is negative, the zero polynomial is returned:

```python
sage: f.truncate(-1)
0
```
>>> from sage.all import *
>>> f.truncate(-Integer(1))
0

\textbf{\texttt{xgcd}} (\textit{other})

Computes extended gcd of \texttt{self} and \texttt{other}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: P.<x> = GF(7)[]
sage: f = x*(x+1)
sage: f.xgcd(x+1)
(x + 1, 0, 1)
sage: f.xgcd(x^2)
(x, 1, 6)
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> P = GF(Integer(7))['x']; (x,) = P._first_ngens(1)
>>> f = x*(x+Integer(1))
>>> f.xgcd(x+Integer(1))
(x + 1, 0, 1)
>>> f.xgcd(x**Integer(2))
(x, 1, 6)
\end{verbatim}

\texttt{sage.rings.polynomial.polynomial_zz_pex.make_element (parent, args)}

\section{2.1.18 Isolate Real Roots of Real Polynomials}

\textbf{AUTHOR:}

• Carl Witty (2007-09-19): initial version

This is an implementation of real root isolation. That is, given a polynomial with exact real coefficients, we compute isolating intervals for the real roots of the polynomial. (Polynomials with integer, rational, or algebraic real coefficients are supported.)

We convert the polynomials into the Bernstein basis, and then use de Casteljau's algorithm and Descartes' rule of signs on the Bernstein basis polynomial (using interval arithmetic) to locate the roots. The algorithm is similar to that in “A Descartes Algorithm for Polynomials with Bit-Stream Coefficients”, by Eigenwillig, Kettner, Krandick, Mehlhorn, Schmitt, and Wolpert, but has three crucial optimizations over the algorithm in that paper:

• Precision reduction: at certain points in the computation, we discard the low-order bits of the coefficients, widening the intervals.

• Degree reduction: at certain points in the computation, we find lower-degree polynomials that are approximately equal to our high-degree polynomial over the region of interest.

• When the intervals are too wide to continue (either because of a too-low initial precision, or because of precision or degree reduction), and we need to restart with higher precision, we recall which regions have already been proven not to have any roots and do not examine them again.

The best description of the algorithms used (other than this source code itself) is in the slides for my Sage Days 4 talk, currently available from \url{https://wiki.sagemath.org/days4schedule}.

\texttt{exception sage.rings.polynomial.real_roots.PrecisionError}

\begin{verbatim}
Bases: ValueError
\end{verbatim}

\section{2.1. Univariate Polynomials and Polynomial Rings}
**sage.rings.polynomial.real_roots.bernstein_down** \((d1, d2, s)\)

Given polynomial degrees \(d1\) and \(d2\) (where \(d1 < d2\)), and a number of samples \(s\), computes a matrix \(bd\).

If you have a Bernstein polynomial of formal degree \(d2\), and select \(s\) of its coefficients (according to subsample_vec), and multiply the resulting vector by \(bd\), then you get the coefficients of a Bernstein polynomial of formal degree \(d1\), where this second polynomial is a good approximation to the first polynomial over the region of the Bernstein basis.

**EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: bernstein_down(3, 8, 5)
[612/245 -348/245 -37/49 338/245 -172/245]
[-724/441 132/49 395/441 -290/147 452/441]
[452/441 -290/147 395/441 132/49 -724/441]
[-172/245 338/245 -37/49 -348/245 612/245]

>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> bernstein_down(Integer(3), Integer(8), Integer(5))
[612/245 -348/245 -37/49 338/245 -172/245]
[-724/441 132/49 395/441 -290/147 452/441]
[452/441 -290/147 395/441 132/49 -724/441]
[-172/245 338/245 -37/49 -348/245 612/245]
```

**sage.rings.polynomial.real_roots.bernstein_expand** \((c, d2)\)

Given an integer vector representing a Bernstein polynomial \(p\), and a degree \(d2\), compute the representation of \(p\) as a Bernstein polynomial of formal degree \(d2\).

This is similar to multiplying by the result of bernstein_up, but should be faster for large \(d2\) (this has about the same number of multiplies, but in this version all the multiplies are by single machine words).

This returns a pair consisting of the expanded polynomial, and the maximum error \(E\). (So if an element of the returned polynomial is \(a\), and the true value of that coefficient is \(b\), then \(a \leq b < a + E\).)

**EXAMPLES:**

```
sage: from sage.rings.polynomial.real_roots import *
sage: c = vector(ZZ, [1000, 2000, -3000])
sage: bernstein_expand(c, 3)
((1000, 1666, 333, -3000), 1)
sage: bernstein_expand(c, 4)
((1000, 1500, 1000, -500, -3000), 1)
sage: bernstein_expand(c, 20)
((1000, 1100, 1168, 1205, 1210, 1184, 1126, 1036, 915, 763, 578, 363, 115, -164, -474, -816, -1190, -1595, -2032, -2500, -3000), 1)

>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> c = vector(ZZ, [Integer(1000), Integer(2000), -Integer(3000)])
>>> bernstein_expand(c, Integer(3))
((1000, 1666, 333, -3000), 1)
>>> bernstein_expand(c, Integer(4))
((1000, 1500, 1000, -500, -3000), 1)
>>> bernstein_expand(c, Integer(20))
((1000, 1100, 1168, 1205, 1210, 1184, 1126, 1036, 915, 763, 578, 363, 115, -164, -474, -816, -1190, -1595, -2032, -2500, -3000), 1)
```
class sage.rings.polynomial.real_roots.bernstein_polynomial_factory

    Bases: object

    An abstract base class for bernstein_polynomial factories. That is, elements of subclasses represent Bernstein polynomials (exactly), and are responsible for creating interval_bernstein_polynomial_integer approximations at arbitrary precision.

    Supports four methods, coeffs_bitsize(), bernstein_polynomial(), lsign(), and usign(). The coeffs_bitsize() method gives an integer approximation to the log2 of the max of the absolute values of the Bernstein coefficients. The bernstein_polynomial(scale_log2) method gives an approximation where the maximum coefficient has approximately coeffs_bitsize() - scale_log2 bits. The lsign() and usign() methods give the (exact) sign of the first and last coefficient, respectively.

    lsign()

    Return the sign of the first coefficient of this Bernstein polynomial.

    usign()

    Return the sign of the last coefficient of this Bernstein polynomial.

class sage.rings.polynomial.real_roots.bernstein_polynomial_factory_ar(poly, neg)

    Bases: bernstein_polynomial_factory

    This class holds an exact Bernstein polynomial (represented as a list of algebraic real coefficients), and returns arbitrarily-precise interval approximations of this polynomial on demand.

    bernstein_polynomial(scale_log2)

    Compute an interval_bernstein_polynomial_integer that approximates this polynomial, using the given scale_log2. (Smallerscale_log2 values give more accurate approximations.)

    EXAMPLES:

    sage: from sage.rings.polynomial.real_roots import *
    sage: x = polygen(AA)
    sage: p = (x - 1) * (x - sqrt(AA(2))) * (x - 2)
    sage: bpf = bernstein_polynomial_factory_ar(p, False)
    sage: print(bpf.bernstein_polynomial(0))
    degree 3 IBP with 2-bit coefficients
    sage: bpf.bernstein_polynomial(-20)
    <IBP: ((-2965821, 2181961, -1542880, 1048576) + [0 .. 1)) * 2^-20>
    sage: bpf.bernstein_polynomial(-20)
    <IBP: ((-2965821, -2181962, -1542880, -1048576) + [0 .. 1)) * 2^-20>
    sage: p = x^2 - 1
    sage: bpf = bernstein_polynomial_factory_ar(p, False)
    sage: bpf.bernstein_polynomial(-10)
    <IBP: ((-1024, 0, 1024) + [0 .. 1)) * 2^-10>
    >>> from sage.all import *
    >>> from sage.rings.polynomial.real_roots import *
    >>> x = polygen(AA)
    >>> p = (x - Integer(1)) * (x - sqrt(AA(Integer(2)))) * (x - Integer(2))
    >>> bpf = bernstein_polynomial_factory_ar(p, False)
    >>> print(bpf.bernstein_polynomial(Integer(0)))
    degree 3 IBP with 2-bit coefficients
    >>> bpf.bernstein_polynomial(Integer(-20))
    <IBP: ((-2965821, 2181961, -1542880, 1048576) + [0 .. 1)) * 2^-20>
    >>> bpf = bernstein_polynomial_factory_ar(p, True)
    >>> bpf.bernstein_polynomial(Integer(-20))
    <IBP: ((-2965821, -2181962, -1542880, -1048576) + [0 .. 1)) * 2^-20>
    >>> bpf = bernstein_polynomial_factory_ar(p, False)
    >>> bpf.bernstein_polynomial(Integer(-10))
    <IBP: ((-1024, 0, 1024) + [0 .. 1)) * 2^-10>

    (continues on next page)
Polynomials, Release 10.4

(continued from previous page)

```python
>>> p = x**Integer(2) - Integer(1)
>>> bpf = bernstein_polynomial_factory_ar(p, False)
>>> bpf.bernstein_polynomial(-Integer(10))
<IBP: ((1024, 0, 1024) + [0 .. 1)) * 2^-10>
```

```python
coeffs_bitsize()
Computes the approximate log2 of the maximum of the absolute values of the coefficients.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(AA)
sage: p = (x - 1) * (x - sqrt(AA(2))) * (x - 2)
sage: bernstein_polynomial_factory_ar(p, False).coeffs_bitsize()
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> x = polygen(AA)
>>> p = (x - Integer(1)) * (x - sqrt(AA(Integer(2)))) * (x - Integer(2))
>>> bernstein_polynomial_factory_ar(p, False).coeffs_bitsize()
```

```python
class sage.rings.polynomial.real_roots.bernstein_polynomial_factory_intlist(coeffs)
Bases: bernstein_polynomial_factory

This class holds an exact Bernstein polynomial (represented as a list of integer coefficients), and returns arbitrarily-precise interval approximations of this polynomial on demand.

bernstein_polynomial(scale_log2)

Compute an interval_bernstein_polynomial_integer that approximates this polynomial, using the given scale_log2. (Smallerscale_log2values give more accurate approximations.)

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bpf = bernstein_polynomial_factory_intlist([10, -20, 30, -40])
sage: print(bpf.bernstein_polynomial(0))
degree 3 IBP with 6-bit coefficients
sage: bpf.bernstein_polynomial(20)
<IBP: ((0, -1, 0, -1) + [0 .. 1)) * 2^20; lsign 1>
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> bpf = bernstein_polynomial_factory_intlist([Integer(10), -Integer(20), Integer(30), -Integer(40)])
```

(continues on next page)
coffs_bitsize()

Computes the approximate \log_2 of the maximum of the absolute values of the coefficients.

EXAMPLES:

```python
>>> from sage.rings.polynomial.real_roots import *
>>> sage: bernstein_polynomial_factory_intlist([1, 2, 3, -60000]).coeffs_bitsize()
16
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> sage: bernstein_polynomial_factory_intlist([Integer(1), Integer(2), Integer(3),
 →Integer(-60000)]).coeffs_bitsize()
16
```

class sage.rings.polynomial.real_roots.bernstein_polynomial_factory_ratlist(coeffs)

Bases: bernstein_polynomial_factory

This class holds an exact Bernstein polynomial (represented as a list of rational coefficients), and returns arbitrarily-precise interval approximations of this polynomial on demand.

bernstein_polynomial(scale_log2)

Compute an interval_bernstein_polynomial_integer that approximates this polynomial, using the given scale_log2. (Smaller scale_log2 values give more accurate approximations.)

EXAMPLES:

```python
>>> from sage.rings.polynomial.real_roots import *
>>> sage: bpf = bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99])
>>> sage: print(bpf.bernstein_polynomial(0))
degree 3 IBP with 3-bit coefficients
```
Polynomials, Release 10.4

```python
>>> bpf.bernstein_polynomial(-Integer(20))
<IBP: ((349525, -3295525, 2850354, -1482835) + [0 .. 1)) * 2^-20>
```

coeffs_bitsize()

Computes the approximate log2 of the maximum of the absolute values of the coefficients.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bernstein_polynomial_factory_ratlist([1, 2, 3, -60000]).coeffs_bitsize()
15
sage: bernstein_polynomial_factory_ratlist([65535/65536]).coeffs_bitsize()
-1
sage: bernstein_polynomial_factory_ratlist([65536/65535]).coeffs_bitsize()
1
```

sage.rings.polynomial.real_roots.bernstein_up(d1, d2, s=None)

Given polynomial degrees d1 and d2, where d1 < d2, compute a matrix bu.

If you have a Bernstein polynomial of formal degree d1, and multiply its coefficient vector by bu, then the result is the coefficient vector of the same polynomial represented as a Bernstein polynomial of formal degree d2.

If s is not None, then it represents a number of samples; then the product only gives s of the coefficients of the new Bernstein polynomial, selected according to subsample_vec.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bernstein_down(3, 7, 4)
[[12/5 -4 3 -2/5]
 [13/15 16/3 -4 8/15]
 [8/15 -4 16/3 -13/15]
 [-2/5 3 -4 12/5]
```

sage.rings.polynomial.real_roots.bitsize_doctest(n)

342 Chapter 2. Univariate Polynomials
sage.rings.polynomial.real_roots.cl_maximum_root(cl)

Given a polynomial represented by a list of its coefficients (as RealIntervalFieldElements), compute an upper bound on its largest real root.

Uses two algorithms of Akritas, Strzeboński, and Vigklas, and picks the better result.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: cl_maximum_root([RIF(-1), RIF(0), RIF(1)])
1.00000000000000
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> cl_maximum_root([RIF(-Integer(1)), RIF(Integer(0)), RIF(Integer(1))])
1.00000000000000
```

sage.rings.polynomial.real_roots.cl_maximum_root_first_lambda(cl)

Given a polynomial represented by a list of its coefficients (as RealIntervalFieldElements), compute an upper bound on its largest real root.


EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: cl_maximum_root_first_lambda([RIF(-1), RIF(0), RIF(1)])
1.00000000000000
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> cl_maximum_root_first_lambda([RIF(-Integer(1)), RIF(Integer(0)), RIF(Integer(1))])
1.00000000000000
```

sage.rings.polynomial.real_roots.cl_maximum_root_local_max(cl)

Given a polynomial represented by a list of its coefficients (as RealIntervalFieldElements), compute an upper bound on its largest real root.


EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: cl_maximum_root_local_max([RIF(-1), RIF(0), RIF(1)])
1.41421356237310
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> cl_maximum_root_local_max([RIF(-Integer(1)), RIF(Integer(0)), RIF(Integer(1))])
1.41421356237310
```

class sage.rings.polynomial.real_roots.context

Bases: object
A simple context class, which is passed through parts of the real root isolation algorithm to avoid global variables. Holds logging information, a random number generator, and the target machine wordsize.

\texttt{get\_be\_log()}

\texttt{get\_dc\_log()}

\texttt{sage.rings.polynomial.real_roots.de\_casteljau\_doublevec}(c, x)

Given a polynomial in Bernstein form with floating-point coefficients over the region \([0 \ldots 1]\), and a split point \(x\), use de Casteljau’s algorithm to give polynomials in Bernstein form over \([0 \ldots x]\) and \([x \ldots 1]\).

This function will work for an arbitrary rational split point \(x\), as long as \(0 < x < 1\); but it has a specialized code path for \(x=1/2\).

**INPUT:**

- \(c\) – vector of coefficients of polynomial in Bernstein form
- \(x\) – rational splitting point; \(0 < x < 1\)

**OUTPUT:**

- \(c_1\) – coefficients of polynomial over range \([0 \ldots x]\)
- \(c_2\) – coefficients of polynomial over range \([x \ldots 1]\)
- \(\text{err\_inc}\) – number of half-ulps by which error intervals widened

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.real_roots import *
sage: c = vector(RDF, [0.7, 0, 0, 0, 0, 0])
sage: de_casteljau_doublevec(c, 1/2)
((0.7, 0.35, 0.175, 0.0875, 0.04375, 0.021875), (0.021875, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), 5)
sage: de_casteljau_doublevec(c, 1/3) # rel tol
((0.7, 0.4666666666666667, 0.31111111111111117, 0.20740740740740746, 0.
 \rightarrow 13827160493827165, 0.09218106995884777), (0.09218106995884777, 0.0, 0.0, 0.0, 0.
 \rightarrow 0, 0.0, 0.0), 15)
sage: de_casteljau_doublevec(c, 7/22) # rel tol
((0.7, 0.4772727272727273, 0.3254132231404959, 0.22187265214124724, 0.
 \rightarrow 15127680827812312, 0.10314327837144759), (0.10314327837144759, 0.0, 0.0, 0.0, 0.
 \rightarrow 0, 0.0, 15))
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *

>>> c = vector(RDF, [RealNumber('0.7'), Integer(0), Integer(0), Integer(0), \nInteger(0), Integer(0)])

>>> de_casteljau_doublevec(c, Integer(1)/Integer(2))
((0.7, 0.35, 0.175, 0.0875, 0.04375, 0.021875), (0.021875, 0.0, 0.0, 0.0, 0.0, 0.
 \rightarrow 0, 0.0), 5)

>>> de_casteljau_doublevec(c, Integer(1)/Integer(3)) # rel tol
((0.7, 0.4666666666666667, 0.31111111111111117, 0.20740740740740746, 0.
 \rightarrow 13827160493827165, 0.09218106995884777), (0.09218106995884777, 0.0, 0.0, 0.
 \rightarrow 0, 0.0, 0.0), 15)

>>> de_casteljau_doublevec(c, Integer(7)/Integer(22)) # rel tol
((0.7, 0.4772727272727273, 0.3254132231404959, 0.22187265214124724, 0.
 \rightarrow 15127680827812312, 0.10314327837144759), (0.10314327837144759, 0.0, 0.0, 0.
 \rightarrow 0, 0.0, 15))
```
sage.rings.polynomial.real_roots.de_casteljau_intvec(c, c_bitsize, x, use_ints)

Given a polynomial in Bernstein form with integer coefficients over the region \([0 .. 1]\), and a split point \(x\), use de Casteljau's algorithm to give polynomials in Bernstein form over \([0 .. x]\) and \([x .. 1]\).

This function will work for an arbitrary rational split point \(x\), as long as \(0 < x < 1\); but it has specialized code paths that make some values of \(x\) faster than others. If \(x = a/(a + b)\), there are special efficient cases for \(a=1, b=1, a+b\) fits in a machine word, \(a+b\) is a power of 2, a fits in a machine word, \(b\) fits in a machine word. The most efficient case is \(x=1/2\).

Given split points \(x = a/(a + b)\) and \(y = c/(c + d)\), where \(\min(a, b)\) and \(\min(c, d)\) fit in the same number of machine words and \(a+b\) and \(c+d\) are both powers of two, then \(x\) and \(y\) should be equally fast split points.

If use_ints is nonzero, then instead of checking whether numerators and denominators fit in machine words, we check whether they fit in ints (32 bits, even on 64-bit machines). This slows things down, but allows for identical results across machines.

**INPUT:**
- \(c\) – vector of coefficients of polynomial in Bernstein form
- \(c\_bitsize\) – approximate size of coefficients in \(c\) (in bits)
- \(x\) – rational splitting point; \(0 < x < 1\)

**OUTPUT:**
- \(c1\) – coefficients of polynomial over range \([0 .. x]\)
- \(c2\) – coefficients of polynomial over range \([x .. 1]\)
- \(err\_inc\) – amount by which error intervals widened

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.real_roots import *
sage: c = vector(ZZ, [1048576, 0, 0, 0, 0, 0])
sage: de_casteljau_intvec(c, 20, 1/2, 1)
((1048576, 524288, 262144, 131072, 65536, 32768), (32768, 0, 0, 0, 0, 0), 1)
sage: de_casteljau_intvec(c, 20, 1/3, 1)
((1048576, 699050, 466033, 310689, 207126, 138084), (138084, 0, 0, 0, 0, 0), 1)
sage: de_casteljau_intvec(c, 20, 7/22, 1)
((1048576, 714938, 487457, 332357, 226607, 154505), (154505, 0, 0, 0, 0, 0), 1)
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *

>>> c = vector(ZZ, [Integer(1048576), Integer(0), Integer(0), Integer(0),
 Integer(0), Integer(0)])
>>> de_casteljau_intvec(c, Integer(20), Integer(1)/Integer(2), Integer(1))
((1048576, 524288, 262144, 131072, 65536, 32768), (32768, 0, 0, 0, 0, 0), 1)
>>> de_casteljau_intvec(c, Integer(20), Integer(1)/Integer(3), Integer(1))
((1048576, 699050, 466033, 310689, 207126, 138084), (138084, 0, 0, 0, 0, 0), 1)
>>> de_casteljau_intvec(c, Integer(20), Integer(7)/Integer(22), Integer(1))
((1048576, 714938, 487457, 332357, 226607, 154505), (154505, 0, 0, 0, 0, 0), 1)
```

sage.rings.polynomial.real_roots.degree_reduction_next_size(n)

Given \(n\) (a polynomial degree), returns either a smaller integer or None. This defines the sequence of degrees followed by our degree reduction implementation.

**EXAMPLES:**
sage: from sage.rings.polynomial.real_roots import *
sage: degree_reduction_next_size(1000)
30
sage: degree_reduction_next_size(20)
15
sage: degree_reduction_next_size(3)
2
sage: degree_reduction_next_size(2) is None
True

>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> degree_reduction_next_size(Integer(1000))
30
>>> degree_reduction_next_size(Integer(20))
15
>>> degree_reduction_next_size(Integer(3))
2
>>> degree_reduction_next_size(Integer(2)) is None
True

sage.rings.polynomial.real_roots.dprod_imatrow_vec(m, v, k)

Computes the dot product of row k of the matrix m with the vector v (that is, compute one element of the product m*v).

If v has more elements than m has columns, then elements of v are selected using subsample_vec.

EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: m = matrix(3, range(9))
sage: dprod_imatrow_vec(m, vector(ZZ, [1, 0, 0, 0]), 1)
0
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 1, 0, 0]), 1)
3
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 0, 1, 0]), 1)
4
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 0, 0, 1]), 1)
5
sage: dprod_imatrow_vec(m, vector(ZZ, [1, 0, 0]), 1)
3
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 1, 0]), 1)
4
sage: dprod_imatrow_vec(m, vector(ZZ, [0, 0, 1]), 1)
5
sage: dprod_imatrow_vec(m, vector(ZZ, [1, 2, 3]), 1)
26

(continues on next page)
sage.rings.polynomial.real_roots.get_realfield_rndu(n)

A simple cache for RealField fields (with rounding set to round-to-positive-infinity).

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: get_realfield_rndu(20)
Real Field with 20 bits of precision and rounding RNDU
sage: get_realfield_rndu(53)
Real Field with 53 bits of precision and rounding RNDU
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *

>>> get_realfield_rndu(Integer(20))
Real Field with 20 bits of precision and rounding RNDU
>>> get_realfield_rndu(Integer(53))
Real Field with 53 bits of precision and rounding RNDU
>>> get_realfield_rndu(Integer(20))
Real Field with 20 bits of precision and rounding RNDU
```

class sage.rings.polynomial.real_roots.interval_bernstein_polynomial

Bases: object

An interval_bernstein_polynomial is an approximation to an exact polynomial. This approximation is in the form of a Bernstein polynomial (a polynomial given as coefficients over a Bernstein basis) with interval coefficients.

The Bernstein basis of degree n over the region [a .. b] is the set of polynomials

\[
\binom{n}{k} (x-a)^k (b-x)^{n-k} / (b-a)^n
\]

for 0 ≤ k ≤ n.

A degree-n interval Bernstein polynomial P with its region [a .. b] can represent an exact polynomial p in two different ways: it can “contain” the polynomial or it can “bound” the polynomial.
We say that $P$ contains $p$ if, when $p$ is represented as a degree-$n$ Bernstein polynomial over $[a..b]$, its coefficients are contained in the corresponding interval coefficients of $P$. For instance, $[0.9 .. 1.1]*x^2$ (which is a degree-2 interval Bernstein polynomial over $[0 .. 1]$) contains $x^2$.

We say that $P$ bounds $p$ if, for all $a \leq x \leq b$, there exists a polynomial $p'$ contained in $P$ such that $p(x) = p'(x)$. For instance, $[0 .. 1]*x$ is a degree-1 interval Bernstein polynomial which bounds $x^2$ over $[0 .. 1]$.

If $P$ contains $p$, then $P$ bounds $p$; but the converse is not necessarily true. In particular, if $n < m$, it is possible for a degree-$n$ interval Bernstein polynomial to bound a degree-$m$ polynomial; but it cannot contain the polynomial.

In the case where $P$ bounds $p$, we maintain extra information, the “slope error”. We say that $P$ (over $[a..b]$) bounds $p$ with a slope error of $E$ (where $E$ is an interval) if there is a polynomial $p'$ contained in $P$ such that the derivative of $(p - p')$ is bounded by $E$ in the range $[a..b]$. If $P$ bounds $p$ with a slope error of 0 then $P$ contains $p$.

(Note that “contains” and “bounds” are not standard terminology; I just made them up.)

Interval Bernstein polynomials are useful in finding real roots because of the following properties:

- Given an exact real polynomial $p$, we can compute an interval Bernstein polynomial over an arbitrary region containing $p$.
- Given an interval Bernstein polynomial $P$ over $[a..c]$, where $a < b < c$, we can compute interval Bernstein polynomials $P_1$ over $[a..b]$ and $P_2$ over $[b..c]$, where $P_1$ and $P_2$ contain (or bound) all polynomials that $P$ contains (or bounds).
- Given a degree-$n$ interval Bernstein polynomial $P$ over $[a..b]$, and $m < n$, we can compute a degree-$m$ interval Bernstein polynomial $P'$ over $[a..b]$ that bounds all polynomials that $P$ bounds.
- It is sometimes possible to prove that no polynomial bounded by $P$ over $[a..b]$ has any roots in $[a..b]$. (Roughly, this is possible when no polynomial contained by $P$ has any complex roots near the line segment $[a..b]$, where “near” is defined relative to the length $b-a$.)
- It is sometimes possible to prove that every polynomial bounded by $P$ over $[a..b]$ with slope error $E$ has exactly one root in $[a..b]$. (Roughly, this is possible when every polynomial contained by $P$ over $[a..b]$ has exactly one root in $[a..b]$, there are no other complex roots near the line segment $[a..b]$, and every polynomial contained in $P$ has a derivative which is bounded away from zero over $[a..b]$ by an amount which is large relative to $E$.)
- Starting from a sufficiently precise interval Bernstein polynomial, it is always possible to split it into polynomials which provably have 0 or 1 roots (as long as your original polynomial has no multiple real roots).

So a rough outline of a family of algorithms would be:

- Given a polynomial $p$, compute a region $[a..b]$ in which any real roots must lie.
- Compute an interval Bernstein polynomial $P$ containing $p$ over $[a..b]$.
- Keep splitting $P$ until you have isolated all the roots. Optionally, reduce the degree or the precision of the interval Bernstein polynomials at intermediate stages (to reduce computation time). If this seems not to be working, go back and try again with higher precision.

Obviously, there are many details to be worked out to turn this into a full algorithm, like:

- What initial precision is selected for computing $P$?
- How do you decide when to reduce the degree of intermediate polynomials?
- How do you decide when to reduce the precision of intermediate polynomials?
- How do you decide where to split the interval Bernstein polynomial regions?
- How do you decide when to give up and start over with higher precision?
Each set of answers to these questions gives a different algorithm (potentially with very different performance characteristics), but all of them can use this interval_bernstein_polynomial class as their basic building block.

To save computation time, all coefficients in an interval_bernstein_polynomial share the same interval width. (There is one exception: when creating an interval_bernstein_polynomial, the first and last coefficients can be marked as “known positive” or “known negative”. This has some of the same effect as having a (potentially) smaller interval width for these two coefficients, although it does not affect de Casteljau splitting.) To allow for widely varying coefficient magnitudes, all coefficients in an interval_bernstein_polynomial are scaled by $2^n$ (where $n$ may be positive, negative, or zero).

There are two representations for interval_bernstein_polynomials, integer and floating-point. These are the two subclasses of this class; interval_bernstein_polynomial itself is an abstract class.

interval_bernstein_polynomial and its subclasses are not expected to be used outside this file.

region()

region_width()

try_rand_split(ctx, logging_note)

Compute a random split point $r$ (using the random number generator embedded in ctx). We require $1/4 \leq r < 3/4$ (to ensure that recursive algorithms make progress).

Then, try doing a de Casteljau split of this polynomial at $r$, resulting in polynomials $p_1$ and $p_2$. If we see that the sign of this polynomial is determined at $r$, then return $(p_1, p_2, r)$; otherwise, return None.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([50, 20, -90, -70, 200], error=5)
sage: bp1, bp2, _ = bp.try_rand_split(mk_context(), None)
sage: bp1
<IBP: (50, 29, -27, -56, -11) + [0 .. 6) over [0 .. 43/64]>
sage: bp2
<IBP: (-11, 10, 49, 111, 200) + [0 .. 6) over [43/64 .. 1]>
sage: bp1, bp2, _ = bp.try_rand_split(mk_context(sead=42), None)
sage: bp1
<IBP: (50, 32, -11, -41, -29) + [0 .. 6) over [0 .. 583/1024]>
sage: bp2
<IBP: (-29, -20, 13, 83, 200) + [0 .. 6) over [583/1024 .. 1]>
sage: bp = mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], neg_err=-0.1, pos_err=0.01)
sage: bp1, bp2, _ = bp.try_rand_split(mk_context(), None)
sage: bp1
rel tol
<IBP: (0.5, 0.2984375, -0.2642578125, -0.5511661529541015, -0.
˓→3145806974172592) + [-0.10000000000000069 .. 0.010000000000000677] over [0 .˓→. 43/64]>
sage: bp2
rel tol
<IBP: (-0.3145806974172592, -0.19903896331787108, 0.04135986328125002, 0.
˓→43546875, 0.99) + [-0.10000000000000069 .. 0.010000000000000677] over [43/˓→64 .. 1]>

>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> bp = mk_ibpi([Integer(50), Integer(20), -Integer(90), -Integer(70), Integer(200)], error=Integer(5))
>>> bp1, bp2, _ = bp.try_rand_split(mk_context(), None)
>>> bp1
<IBP: (50, 29, -27, -56, -11) + [0 .. 6) over [0 .. 43/64]>
```
bp2
<IBP: (-11, 10, 49, 111, 200) + [0 .. 6) over [43/64 .. 1]>  
bp1, bp2, _ = bp.try_rand_split(mk_context(seed=Integer(42)), None)  
bp1
<IBP: (50, 32, -11, -41, -29) + [0 .. 6) over [0 .. 583/1024]>  
bp2
<IBP: (-29, -20, 13, 83, 200) + [0 .. 6) over [583/1024 .. 1]>  
bp = mk_ibpf([RealNumber(0.5), RealNumber(0.2), -RealNumber(0.9), -RealNumber(0.7), RealNumber('0.99')], neg_err=-RealNumber('0.1'), pos_err=RealNumber('0.01'))  
bp1, bp2, _ = bp.try_split(mk_context(), None)  
bp1 # rel tol
<IBP: (0.5, 0.2984375, -0.2642578125, -0.5511661529541015, -0.3145806974172592) + [-0.10000000000000069 .. 0.010000000000000677] over [0 .. 43/64]>  
bp2 # rel tol
<IBP: (-0.3145806974172592, -0.19903896331787108, 0.04135986328125002, 0.43546875, 0.99) + [-0.10000000000000069 .. 0.010000000000000677] over [43/64 .. 1]>  

try_split (ctx, logging_note)

Try doing a de Casteljau split of this polynomial at 1/2, resulting in polynomials p1 and p2. If we see that the sign of this polynomial is determined at 1/2, then return (p1, p2, 1/2); otherwise, return None.

EXAMPLES:

>>> from sage.all import *  
>>> from sage.rings.polynomial.real_roots import *  
>>> bp = mk_ibpi([Integer(50), Integer(20), -Integer(90), -Integer(70), Integer(200)], error=Integer(5))  
>>> bp1, bp2, _ = bp.try_split(mk_context(), None)  
>>> bp1  
<IBP: (50, 35, 0, -29, -31) + [0 .. 6) over [0 .. 1/2]>  
>>> bp2  
<IBP: (-31, -33, -8, 65, 200) + [0 .. 6) over [1/2 .. 1]>  

```python  
bp = mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], neg_err=-0.1, pos_err=0.01)
bp1, bp2, _ = bp.try_split(mk_context(), None)
bp1
<IBP: (0.5, 0.35, 0.0, -0.2875, -0.369375) + [-0.10000000000000023 .. 0.010000000000000226] over [0 .. 1/2]>
bp2
<IBP: (-0.369375, -0.45125, -0.3275, 0.14500000000000002, 0.99) + [-0.10000000000000023 .. 0.010000000000000226] over [1/2 .. 1]> ```

>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> bp = mk_ibpi([50, 20, -90, -70, 200], error=5)
>>> bp1, bp2, _ = bp.try_split(mk_context(), None)
>>> bp1
<IBP: (50, 35, 0, -29, -31) + [0 .. 6) over [0 .. 1/2]>
>>> bp2
<IBP: (-31, -33, -8, 65, 200) + [0 .. 6) over [1/2 .. 1]>
```python  
bp = mk_ibpf([RealNumber('0.5'), RealNumber('0.2'), -RealNumber('0.9'), -RealNumber('0.7'), RealNumber('0.99')], neg_err=-RealNumber('0.1'), pos_err=RealNumber('0.01'))  
bp1, bp2, _ = bp.try_split(mk_context(), None)  
bp1  
<IBP: (0.5, 0.35, 0.0, -0.2875, -0.369375) + [-0.10000000000000023 .. 0.010000000000000226] over [0 .. 1/2]>  
bp2  
<IBP: (-0.369375, -0.45125, -0.3275, 0.14500000000000002, 0.99) + [-0.10000000000000023 .. 0.010000000000000226] over [1/2 .. 1]>  ```
Consider a polynomial (written in either the normal power basis or the Bernstein basis). Take its list of coefficients, omitting zeroes. Count the number of positions in the list where the sign of one coefficient is opposite the sign of the next coefficient.

This count is the number of sign variations of the polynomial. According to Descartes’ rule of signs, the number of real roots of the polynomial (counted with multiplicity) in a certain interval is always less than or equal to the number of sign variations, and the difference is always even. (If the polynomial is written in the power basis, the region is the positive reals; if the polynomial is written in the Bernstein basis over a particular region, then we count roots in that region.)

In particular, a polynomial with no sign variations has no real roots in the region, and a polynomial with one sign variation has one real root in the region.

In an interval Bernstein polynomial, we do not necessarily know the signs of the coefficients (if some of the coefficient intervals contain zero), so the polynomials contained by this interval polynomial may not all have the same number of sign variations. However, we can compute a range of possible numbers of sign variations.

This function returns the range, as a 2-tuple of integers.

```python
<IBP: (0.1, 0.2, 0.3) + [0.0 .. 0.5]>
<IBP: (-0.3, -0.1, 0.1, -0.1, -0.3, -0.1) + [0.0 .. 0.2] * 2^-3
```

### class sage.rings.polynomial.real_roots.interval_bernstein_polynomial_float

This is the subclass of `interval_bernstein_polynomial` where polynomial coefficients are represented using floating-point numbers.

In the floating-point representation, each coefficient is represented as an IEEE double-precision float A, and the (shared) lower and upper interval widths E1 and E2. These represent the coefficients (A+E1)*2^n <= c <= (A+E2)*2^n.

Note that we always have E1 <= 0 <= E2. Also, each floating-point coefficient has absolute value less than one. (Note that `mk_ibpf()` is a simple helper function for creating elements of `interval_bernstein_polynomial_float` in doctests.)

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpf([0.1, 0.2, 0.3], pos_err=0.5); print(bp)
degree 2 IBP with floating-point coefficients
sage: bp
<IBP: (0.1, 0.2, 0.3) + [0.0 .. 0.5]>
<IBP: ((-0.3, -0.1, 0.1, -0.1, -0.3, -0.1) + [0.0 .. 0.2]) * 2^-3
```
over \([1 .. 5/4]\); usign 1; level 2; slope_err 3.141592653589794?

```python
sage: bp.variations() # needs sage.symbolic
(3, 3)
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *

>>> bp = mk_ibpf([RealNumber('0.1'), RealNumber('0.2'), RealNumber('0.3')], pos_err=RealNumber('0.5')); print(bp)
degree 2 IBP with floating-point coefficients

>>> bp
<IBP: (0.1, 0.2, 0.3) + [0.0 .. 0.5]>

>>> bp.variations() # needs sage.symbolic
(3, 3)
```

```python
>>> bp = mk_ibpf([-RealNumber('0.3'), -RealNumber('0.1'), RealNumber('0.1'), -RealNumber('0.1'), -RealNumber('0.3'), -RealNumber('0.1')], # needs sage.symbolic
 lower=Integer(1), upper=Integer(5)/Integer(4), usign=Integer(1), # pos_err=RealNumber('0.2'),
 scale_log2=-Integer(3), level=Integer(2), slope_err=RIF(pi)); # needs sage.symbolic

>>> print(bp)
degree 5 IBP with floating-point coefficients

>>> bp
<IBP: ((-0.3, -0.1, 0.1, -0.1, -0.3, -0.1) + [0.0 .. 0.2]) * 2^-3 over [1 .. 5/4]; usign 1; level 2; slope_err 3.141592653589794?

>>> bp.variations() # needs sage.symbolic
(3, 3)
```

```python
sage: from sage.rings.polynomial.real_roots import *

sage: ctx = mk_context()
sage: bp = mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], neg_err=-0.1, pos_err=0.01)
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 1/2)

sage: bp1
<IBP: (0.5, 0.35, 0.0, -0.2875, -0.369375) + [-0.10000000000000023 .. 0.00000000000000226] over [0 .. 1/2]>

sage: bp2
```

as_float()

decasteljau (ctx, mid, msign=0)

Uses de Casteljau’s algorithm to compute the representation of this polynomial in a Bernstein basis over new regions.

**INPUT:**

- **mid** – where to split the Bernstein basis region; \(0 < \text{mid} < 1\)
- **msign** – default 0 (unknown); the sign of this polynomial at \(\text{mid}\)

**OUTPUT:**

- **bp1, bp2** – the new interval Bernstein polynomials
- **ok** – a boolean; True if the sign of the original polynomial at \(\text{mid}\) is known

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.real_roots import *

sage: ctx = mk_context()
sage: bp = mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], neg_err=-0.1, pos_err=0.01)
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 1/2)
sage: bp1

sage: bp2
```
get_msb_bit()

Return an approximation of the log2 of the maximum of the absolute values of the coefficients, as an integer.

slope_range()
Compute a bound on the derivative of this polynomial, over its region.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], neg_err=-0.1, pos_err=0.01)
sage: bp.slope_range().str(style='brackets')
'[-4.8400000000000017 .. 7.2000000000000011]'
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *

>>> bp = mk_ibpf([RealNumber('0.5'), RealNumber('0.2'), -RealNumber('0.9'), -RealNumber('0.7'), RealNumber('0.99')], neg_err=-RealNumber('0.1'), pos_err=RealNumber('0.01'))

>>> bp.slope_range().str(style='brackets')
'[-4.8400000000000017 .. 7.2000000000000011]'
```

```
class sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer
Bases: interval_bernstein_polynomial

This is the subclass of interval_bernstein_polynomial where polynomial coefficients are represented using integers.

In this integer representation, each coefficient is represented by a GMP arbitrary-precision integer A, and a (shared) interval width E (which is a machine integer). These represent the coefficients A*2^n <= c < (A+E)*2^n.

(Note that mk_ibpi is a simple helper() function for creating elements of interval_bernstein_polynomial_integer in doctests.)

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([1, 2, 3], error=5); print(bp)
degree 2 IBP with 2-bit coefficients
sage: bp
<IBP: (1, 2, 3) + [0 .. 5)>
sage: bp.variations()
(0, 0)
```

```python
sage: bp = mk_ibpi([-3, -1, 1, -1, -3, -1], lower=1, upper=5/4, usign=1, # needs sage.symbolic
                error=2, scale_log2=-3, level=2, slope_err=RIF(pi)); print(bp)
degree 5 IBP with 2-bit coefficients
sage: bp
<IBP: ((-3, -1, 1, -1, -3, -1) + [0 .. 2)) * 2^-3 over [1 .. 5/4]; usign 1; level 2; slope_err 3.141592653589794?>
sage: bp.variations() # needs sage.symbolic
(3, 3)
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *

>>> bp = mk_ibpi([Integer(1), Integer(2), Integer(3)], error=Integer(5)); #

```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *

>>> bp = mk_ibpi([Integer(1), Integer(2), Integer(3)], error=Integer(5));

```

```python
```
Polynomials, Release 10.4

(continued from previous page)

```python
(0, 0)
>>> bp = mk_ibpi([-Integer(3), -Integer(1), Integer(1), -Integer(1), -Integer(3), ...
˓→-Integer(1)], lower=Integer(1), upper=Integer(5)/Integer(4), usign=Integer(1), ...
˓→# needs sage.symbolic
˓→error=Integer(2), scale_log2=-Integer(3), level=Integer(2), ...
˓→slope_err=RIF(pi)); print(bp)
degree 5 IBP with 2-bit coefficients
>>> bp
˓→needs sage.symbolic
<IBP: ((-3, -1, 1, -1, -3, -1) + [0 .. 2)) * 2^-3 over [1 .. 5/4]; usign 1; ...
˓→level 2; slope_err 3.141592653589794?>
>>> bp.variations()
˓→needs sage.symbolic
(3, 3)
```

as_float()

Compute an interval_bernstein_polynomial_float which contains (or bounds) all the polynomials this interval polynomial contains (or bounds).

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([50, 20, -90, -70, 200], error=5)
sage: print(bp.as_float())
degree 4 IBP with floating-point coefficients
sage: bp.as_float()
<IBP: ((0.1953125, 0.078125, -0.3515625, -0.2734375, 0.78125) + [-1.
˓→1275702593849246e-16 .. 0.01953125000000017]) * 2^8>
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> bp = mk_ibpi([Integer(50), Integer(20), -Integer(90), -Integer(70), ...
˓→-Integer(200)], error=Integer(5))
>>> print(bp.as_float())
degree 4 IBP with floating-point coefficients
>>> bp.as_float()
<IBP: ((0.1953125, 0.078125, -0.3515625, -0.2734375, 0.78125) + [-1.
˓→1275702593849246e-16 .. 0.01953125000000017]) * 2^8>
```

de_casteljau(ctx, mid, msign=0)

Uses de Casteljau’s algorithm to compute the representation of this polynomial in a Bernstein basis over new regions.

INPUT:

- **mid** – where to split the Bernstein basis region; 0 < mid < 1
- **msign** – default 0 (unknown); the sign of this polynomial at mid

OUTPUT:

- **bp1, bp2** – the new interval Bernstein polynomials
- **ok** – a boolean; True if the sign of the original polynomial at mid is known

EXAMPLES:
Compute an interval Bernstein polynomial which bounds all the polynomial this interval polynomial bounds, but is of lesser degree.

During the computation, we find an “expected error” expected_err, which is the error inherent in our approach (this depends on the degrees involved, and is proportional to the error of the current polynomial).

We require that the error of the new interval polynomial be bounded both by max_err, and by expected_err << exp_err_shift. If we find such a polynomial p, then we return a pair of p and some debugging/logging information. Otherwise, we return the pair (None, None).

If the resulting polynomial would have error more than 2^{17}, then it is downscaled before returning.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([50, 20, -90, -70, 200], error=5)
sage: ctx = mk_context()
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 1/2)
sage: bp1
<IBP: (50, 35, 0, -29, -31) + [0 .. 6) over [0 .. 1/2]>
sage: bp2
<IBP: (-31, -33, -8, 65, 200) + [0 .. 6) over [1/2 .. 1]>
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 2/3)
sage: bp1
<IBP: (50, 30, -26, -55, -13) + [0 .. 6) over [0 .. 2/3]>
sage: bp2
<IBP: (-13, 8, 47, 110, 200) + [0 .. 6) over [2/3 .. 1]>
sage: bp1, bp2, ok = bp.de_casteljau(ctx, 7/39)
sage: bp1
<IBP: (50, 44, 36, 27, 17) + [0 .. 6) over [0 .. 7/39]>
sage: bp2
<IBP: (17, -26, -75, -22, 200) + [0 .. 6) over [7/39 .. 1]>

>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> bp = mk_ibpi([Integer(50), Integer(20), -Integer(90), -Integer(70), Integer(200)], error=Integer(5))
>>> ctx = mk_context()
>>> bp1, bp2, ok = bp.de_casteljau(ctx, Integer(1)/Integer(2))
>>> bp1
<IBP: (50, 35, 0, -29, -31) + [0 .. 6) over [0 .. 1/2]>
>>> bp2
<IBP: (-31, -33, -8, 65, 200) + [0 .. 6) over [1/2 .. 1]>
>>> bp1, bp2, ok = bp.de_casteljau(ctx, Integer(2)/Integer(3))
>>> bp1
<IBP: (50, 30, -26, -55, -13) + [0 .. 6) over [0 .. 2/3]>
>>> bp2
<IBP: (-13, 8, 47, 110, 200) + [0 .. 6) over [2/3 .. 1]>
>>> bp1, bp2, ok = bp.de_casteljau(ctx, Integer(7)/Integer(39))
>>> bp1
<IBP: (50, 44, 36, 27, 17) + [0 .. 6) over [0 .. 7/39]>
>>> bp2
<IBP: (17, -26, -75, -22, 200) + [0 .. 6) over [7/39 .. 1]>

down_degree (ctx, max_err, exp_err_shift)

Compute an interval Bernstein polynomial integer which bounds all the polynomials this interval polynomial bounds, but is of lesser degree.

During the computation, we find an “expected error” expected_err, which is the error inherent in our approach (this depends on the degrees involved, and is proportional to the error of the current polynomial).

We require that the error of the new interval polynomial be bounded both by max_err, and by expected_err << exp_err_shift. If we find such a polynomial p, then we return a pair of p and some debugging/logging information. Otherwise, we return the pair (None, None).

If the resulting polynomial would have error more than $2^{17}$, then it is downscaled before returning.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903], error=2)
sage: ctx = mk_context()
(continues on next page)```
Polynomials, Release 10.4

sage: bp
<IBP: (0, 100, 400, 903) + [0 .. 2)>
sage: dbp, _ = bp.down_degree(ctx, 10, 32)
sage: dbp
<IBP: (-1, 148, 901) + [0 .. 4); level 1; slope_err 0.?e2>

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> bp = mk_ibpi([Integer(0), Integer(100), Integer(400), Integer(903)], error=Integer(2))
>>> ctx = mk_context()
>>> bp
<IBP: (0, 100, 400, 903) + [0 .. 2)>
>>> dbp, _ = bp.down_degree(ctx, Integer(10), Integer(32))
>>> dbp
<IBP: (-1, 148, 901) + [0 .. 4); level 1; slope_err 0.?e2>
```

down_degree_iter(ctx, max_scale)
Compute a degree-reduced version of this interval polynomial, by iterating down_degree.

We stop when degree reduction would give a polynomial which is too inaccurate, meaning that either we think the current polynomial may have more roots in its region than the degree of the reduced polynomial, or that the least significant accurate bit in the result (on the absolute scale) would be larger than 1 << max_scale.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903, 1600, 2500], error=2)
sage: ctx = mk_context()
sage: bp
<IBP: (0, 100, 400, 903, 1600, 2500) + [0 .. 2)>
sage: rbp = bp.down_degree_iter(ctx, 6)
sage: rbp
<IBP: (-4, 249, 2497) + [0 .. 9); level 2; slope_err 0.?e3>
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> bp = mk_ibpi([Integer(0), Integer(100), Integer(400), Integer(903), Integer(1600), Integer(2500)], error=Integer(2))
>>> ctx = mk_context()
>>> bp
<IBP: (0, 100, 400, 903, 1600, 2500) + [0 .. 2)>
>>> rbp = bp.down_degree_iter(ctx, Integer(6))
>>> rbp
<IBP: (-4, 249, 2497) + [0 .. 9); level 2; slope_err 0.?e3>
```

donscale(bits)
Compute an interval_bernstein_polynomial_integer which contains (or bounds) all the polynomials this interval polynomial contains (or bounds), but uses “bits” fewer bits.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903], error=2)
sage: bp.downscale(5)
<IBP: ((0, 3, 12, 28) + [0 .. 1)) * 2^5>
```
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> bp = mk_ibpi([Integer(0), Integer(100), Integer(400), Integer(903)],
               error=Integer(2))
>>> bp.downscale(Integer(5))
<IBP: ((0, 3, 12, 28) + [0 .. 1)) * 2^5>
```

get_msb_bit()

Return an approximation of the log2 of the maximum of the absolute values of the coefficients, as an integer.

slope_range()

Compute a bound on the derivative of this polynomial, over its region.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([0, 100, 400, 903], error=2)
sage: bp.slope_range().str(style='brackets')
'[294.0000000000000 .. 1515.0000000000000]'
```

```python
sage: from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> bp = mk_ibpi([Integer(0), Integer(100), Integer(400), Integer(903)],
               error=Integer(2))
>>> bp.slope_range().str(style='brackets')
'[294.0000000000000 .. 1515.0000000000000]'
```

```
```sage.rings.polynomial.real_roots.intvec_to_doublevec(b, err)
Given a vector of integers \(A = [a_1, \ldots, a_n]\), and an integer error bound \(E\), returns a vector of floating-point numbers \(B = [b_1, \ldots, b_n]\), lower and upper error bounds \(F_1\) and \(F_2\), and a scaling factor \(d\), such that

\[
(b_k + F_1) \cdot 2^d \leq a_k
\]

and

\[
a_k + E \leq (b_k + F_2) \cdot 2^d
\]

If \(b_j\) is the element of \(B\) with largest absolute value, then \(0.5 \leq \text{abs}(b_j) < 1.0\).

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: intvec_to_doublevec(vector(ZZ, [1, 2, 3, 4, 5]), 3)
((0.125, 0.25, 0.375, 0.5, 0.625), -1.1275702593849246e-16, 0.37500000000000017, 3)
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> intvec_to_doublevec(vector(ZZ, [Integer(1), Integer(2), Integer(3),
                                Integer(4), Integer(5)]), Integer(3))
((0.125, 0.25, 0.375, 0.5, 0.625), -1.1275702593849246e-16, 0.375000000000000017, 3)
```

class sage.rings.polynomial.real_roots.island

Bases: object

This implements the island portion of my ocean-island root isolation algorithm. See the documentation for class ocean, for more information on the overall algorithm.
Island root refinement starts with a Bernstein polynomial whose region is the whole island (or perhaps slightly more than the island in certain cases). There are two subalgorithms; one when looking at a Bernstein polynomial covering a whole island (so we know that there are gaps on the left and right), and one when looking at a Bernstein polynomial covering the left segment of an island (so we know that there is a gap on the left, but the right is in the middle of an island). An important invariant of the left-segment subalgorithm over the region \([l.. r]\) is that it always finds a gap \([r0.. r]\) ending at its right endpoint.

Ignoring degree reduction, downsampling (precision reduction), and failures to split, the algorithm is roughly:

Whole island:
1. If the island definitely has exactly one root, then return.
2. Split the island in (approximately) half.
3. If both halves definitely have no roots, then remove this island from its doubly-linked list (merging its left and right gaps) and return.
4. If either half definitely has no roots, then discard that half and call the whole-island algorithm with the other half, then return.
5. If both halves may have roots, then call the left-segment algorithm on the left half.
6. We now know that there is a gap immediately to the left of the right half, so call the whole-island algorithm on the right half, then return.

Left segment:
1. Split the left segment in (approximately) half.
2. If both halves definitely have no roots, then extend the left gap over the segment and return.
3. If the left half definitely has no roots, then extend the left gap over this half and call the left-segment algorithm on the right half, then return.
4. If the right half definitely has no roots, then split the island in two, creating a new gap. Call the whole-island algorithm on the left half, then return.
5. Both halves may have roots. Call the left-segment algorithm on the left half.
6. We now know that there is a gap immediately to the left of the right half, so call the left-segment algorithm on the right half, then return.

Degree reduction complicates this picture only slightly. Basically, we use heuristics to decide when degree reduction might be likely to succeed and be helpful; whenever this is the case, we attempt degree reduction.

Precision reduction and split failure add more complications. The algorithm maintains a stack of different-precision representations of the interval Bernstein polynomial. The base of the stack is at the highest (currently known) precision; each stack entry has approximately half the precision of the entry below it. When we do a split, we pop off the top of the stack, split it, then push whichever half we’re interested in back on the stack (so the different Bernstein polynomials may be over different regions). When we push a polynomial onto the stack, we may heuristically decide to push further lower-precision versions of the same polynomial onto the stack.

In the algorithm above, whenever we say “split in (approximately) half”, we attempt to split the top-of-stack polynomial using \(\text{try_split}\) and \(\text{try_rand_split}\). However, these will fail if the sign of the polynomial at the chosen split point is unknown (if the polynomial is not known to high enough precision, or if the chosen split point actually happens to be a root of the polynomial). If this fails, then we discard the top-of-stack polynomial, and try again with the next polynomial down (which has approximately twice the precision). This next polynomial may not be over the same region; if not, we split it using de Casteljau’s algorithm to get a polynomial over (approximately) the same region first.

If we run out of higher-precision polynomials (if we empty out the entire stack), then we give up on root refinement for this island. The ocean class will notice this, provide the island with a higher-precision polynomial, and restart
root refinement. Basically the only information kept in that case is the lower and upper bounds on the island. Since these are updated whenever we discover a “half” (of an island or a segment) that definitely contains no roots, we never need to re-examine these gaps. (We could keep more information. For example, we could keep a record of split points that succeeded and failed. However, a split point that failed at lower precision is likely to succeed at higher precision, so it’s not worth avoiding. It could be useful to select split points that are known to succeed, but starting from a new Bernstein polynomial over a slightly different region, hitting such split points would require de Casteljau splits with non-power-of-two denominators, which are much much slower.)

\textbf{bp_done (bp)}

Examine the given Bernstein polynomial to see if it is known to have exactly one root in its region. (In addition, we require that the polynomial region not include 0 or 1. This makes things work if the user gives explicit bounds to \texttt{real_roots()}, where the lower or upper bound is a root of the polynomial. \texttt{real_roots()} deals with this by explicitly detecting it, dividing out the appropriate linear polynomial, and adding the root to the returned list of roots; but then if the island considers itself “done” with a region including 0 or 1, the returned root regions can overlap with each other.)

\textbf{done (ctx)}

Check to see if the island is known to contain zero roots or is known to contain one root.

\textbf{has_root ()}

Assuming that the island is done (has either 0 or 1 roots), reports whether the island has a root.

\textbf{less_bits (ancestors, bp)}

Heuristically pushes lower-precision polynomials on the polynomial stack. See the class documentation for class island for more information.

\textbf{more_bits (ctx, ancestors, bp, rightmost)}

Find a Bernstein polynomial on the “ancestors” stack with more precision than bp; if it is over a different region, then shrink its region to (approximately) match that of bp. (If this is rightmost – if bp covers the whole island – then we only require that the new region cover the whole island fairly tightly; if this is not rightmost, then the new region will have exactly the same right boundary as bp, although the left boundary may vary slightly.)

\textbf{refine (ctx)}

Attempts to shrink and/or split this island into sub-island that each definitely contain exactly one root.

\textbf{refine_recurse (ctx, bp, ancestors, history, rightmost)}

This implements the root isolation algorithm described in the class documentation for class island. This is the implementation of both the whole-island and the left-segment algorithms; if the flag rightmost is True, then it is the whole-island algorithm, otherwise the left-segment algorithm.

The precision-reduction stack is (ancestors + [bp]); that is, the top-of-stack is maintained separately.

\textbf{reset_root_width (target_width)}

Modify the criteria for this island to require that it is not “done” until its width is less than or equal to target_width.

\textbf{shrink_bp (ctx)}

If the island’s Bernstein polynomial covers a region much larger than the island itself (in particular, if either the island’s left gap or right gap are totally contained in the polynomial’s region) then shrink the polynomial down to cover the island more tightly.

\textbf{class sage.rings.polynomial.real_roots.linear_map (lower, upper)}

Bases: object

A simple class to map linearly between original coordinates (ranging from [lower .. upper]) and ocean coordinates (ranging from [0 .. 1]).
from \texttt{ocean} (region)

\texttt{to_ocean} (region)

\texttt{sage.rings.polynomial.real_roots.max_abs_doublevec}(c)

Given a floating-point vector, return the maximum of the absolute values of its elements.

\textbf{EXAMPLES:}

```python
sage: from sage.rings.polynomial.real_roots import *
sage: max_abs_doublevec(vector(RDF, [0.1, -0.767, 0.3, 0.693]))
0.767
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *

>>> max_abs_doublevec(vector(RDF, [RealNumber('0.1'), -RealNumber('0.767'), RealNumber('0.3'), RealNumber('0.693')]))
0.767
```

\texttt{sage.rings.polynomial.real_roots.max_bitsize_intvec_doctest}(b)

\texttt{sage.rings.polynomial.real_roots.maximum_root_first_lambda}(p)

Given a polynomial with real coefficients, computes an upper bound on its largest real root.

This is using the first-lambda algorithm from “Implementations of a New Theorem for Computing Bounds for Positive Roots of Polynomials”, by Akritas, Strzeboński, and Vigklas.

\textbf{EXAMPLES:}

```python
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: maximum_root_first_lambda((x-1)*(x-2)*(x-3))
6.00000000000001
```

```python
sage: maximum_root_first_lambda((x+1)*(x+2)*(x+3))
0.000000000000000
```

```python
sage: maximum_root_first_lambda(x^2 - 1)
1.00000000000000
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *

>>> x = polygen(ZZ)

>>> maximum_root_first_lambda((x-Integer(1))*(x-Integer(2))*(x-Integer(3)))
6.00000000000001

>>> maximum_root_first_lambda((x+Integer(1))*(x+Integer(2))*(x+Integer(3)))
0.000000000000000

>>> maximum_root_first_lambda(x**Integer(2) - Integer(1))
1.00000000000000
```

\texttt{sage.rings.polynomial.real_roots.maximum_root_local_max}(p)

Given a polynomial with real coefficients, computes an upper bound on its largest real root, using the local-max algorithm from “Implementations of a New Theorem for Computing Bounds for Positive Roots of Polynomials”, by Akritas, Strzeboński, and Vigklas.

\textbf{EXAMPLES:}

```python
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: maximum_root_local_max((x-1)*(x-2)*(x-3))
(continues on next page)
```
sage.rings.polynomial.real_roots.min_max_delta_intvec(a, b)

Given two integer vectors \(a \) and \(b \) (of equal, nonzero length), return a pair of the minimum and maximum values taken on by \(a[i] - b[i] \).

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: a = vector(ZZ, [10, -30])
sage: b = vector(ZZ, [15, -60])
sage: min_max_delta_intvec(a, b)
(30, -5)
```

sage.rings.polynomial.real_roots.min_max_diff_doublevec(c)

Given a floating-point vector \(b = (b_0, \ldots, b_n) \), compute the minimum and maximum values of \(b_{j+1} - b_j \).

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: min_max_diff_doublevec(vector(RDF, [1, 7, -2]))
(-9.0, 6.0)
```

sage.rings.polynomial.real_roots.min_max_diff_intvec(b)

Given an integer vector \(b = (b_0, \ldots, b_n) \), compute the minimum and maximum values of \(b_{[j+1]} - b_j \).

EXAMPLES:
sage: from sage.rings.polynomial.real_roots import *
sage: min_max_diff_intvec(vector(ZZ, [1, 7, -2]))
(-9, 6)

>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> min_max_diff_intvec(vector(ZZ, [Integer(1), Integer(7), -Integer(2)]))
(-9, 6)

sage.rings.polynomial.real_roots.mk_context (do_logging=False, seed=0, wordsize=32)
A simple wrapper for creating context objects with coercions, defaults, etc.
For use in doctests.
EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: mk_context(do_logging=True, seed=3, wordsize=64)
root isolation context: seed=3; do_logging=True; wordsize=64

>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> mk_context(do_logging=True, seed=Integer(3), wordsize=Integer(64))
root isolation context: seed=3; do_logging=True; wordsize=64

sage.rings.polynomial.real_roots.mk_ibpf (coeffs, lower=0, upper=1, lsign=0, usign=0, neg_err=0, pos_err=0, scale_log2=0, level=0, slope_err=None)
A simple wrapper for creating interval_bernstein_polynomial_float objects with coercions, defaults, etc.
For use in doctests.
EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: print(mk_ibpf([0.5, 0.2, -0.9, -0.7, 0.99], pos_err=0.1, neg_err=-0.01))
degree 4 IBP with floating-point coefficients

>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> print(mk_ibpf([RealNumber(0.5), RealNumber(0.2), -RealNumber(0.9), -RealNumber(0.7), RealNumber(0.99)], pos_err=RealNumber(0.1), neg_err=-RealNumber(0.01)))
degree 4 IBP with floating-point coefficients

sage.rings.polynomial.real_roots.mk_ibpi (coeffs, lower=0, upper=1, lsign=0, usign=0, error=1, scale_log2=0, level=0, slope_err=None)
A simple wrapper for creating interval_bernstein_polynomial_integer objects with coercions, defaults, etc.
For use in doctests.
EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *
sage: print(mk_ibpi([50, 20, -90, -70, 200], error=5))
degree 4 IBP with 8-bit coefficients
Given the tools we've defined so far, there are many possible root isolation algorithms that differ on where to select split points, what precision to work at when, and when to attempt degree reduction.

Here we implement one particular algorithm, which I call the ocean-island algorithm. We start with an interval Bernstein polynomial defined over the region $[0 \ldots 1]$. This region is the “ocean”. Using de Casteljau’s algorithm and Descartes’ rule of signs, we divide this region into subregions which may contain roots, and subregions which are guaranteed not to contain roots. Subregions which may contain roots are “islands”; subregions known not to contain roots are “gaps”.

All the real root isolation work happens in class island. See the documentation of that class for more information.

An island can be told to refine itself until it contains only a single root. This may not succeed, if the island’s interval Bernstein polynomial does not have enough precision. The ocean basically loops, refining each of its islands, then increasing the precision of islands which did not succeed in isolating a single root; until all islands are done.

Increasing the precision of unsuccessful islands is done in a single pass using split_for_target(); this means it is possible to share work among multiple islands.

\texttt{all_done()}

Return \texttt{True} iff all islands are known to contain exactly one root.

\textbf{EXAMPLES:}

```python
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99]), lmap)
sage: oc.all_done()
False
sage: oc.find_roots()
sage: oc.all_done()
True
```

\texttt{approx_bp(scale_log2)}

Return an approximation to our Bernstein polynomial with the given scale_log2.

\textbf{EXAMPLES:}

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([Integer(1)/
→Integer(3), -Integer(22)/Integer(7), Integer(193)/Integer(71), -
→Integer(140)/Integer(99)]), lmap)
>>> oc.all_done()
False
>>> oc.find_roots()
>>> oc.all_done()
True
```
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99]), lmap)
sage: oc.approx_bp(0)
<IBP: (0, -4, 2, -2) + [0 .. 1); lsign 1>
sage: oc.approx_bp(-20)
<IBP: ((349525, -3295525, 2850354, -1482835) + [0 .. 1)) * 2^-20>

\texttt{find_roots()}

Isolate all roots in this ocean.

\textbf{EXAMPLES:}

sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99]), lmap)
sage: oc.find_roots()
ocean with precision 120 and 3 island(s)

sage: oc.find_roots()
ocean with precision 240 and 3 island(s)

>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([Integer(1)/Integer(3), -Integer(22)/Integer(7), Integer(193)/Integer(71), -Integer(140)/Integer(99)]), lmap)
>>> oc.find_roots()
ocean with precision 120 and 3 island(s)

>>> oc.find_roots()
ocean with precision 240 and 3 island(s)

\texttt{increase_precision()}

Increase the precision of the interval Bernstein polynomial held by any islands which are not done. (In normal
EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99]), lmap)
sage: oc
ocean with precision 120 and 1 island(s)
sage: oc.increase_precision()
sage: oc.increase_precision()
sage: oc.increase_precision()
sage: oc
ocean with precision 960 and 1 island(s)
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([Integer(1)/Integer(3), -Integer(22)/Integer(7), Integer(193)/Integer(71), -Integer(140)/Integer(99)]), lmap)
>>> oc
ocean with precision 120 and 1 island(s)
>>> oc.increase_precision()
>>> oc.increase_precision()
>>> oc.increase_precision()
>>> oc
ocean with precision 960 and 1 island(s)
```

refine_all()

Refine all islands which are not done (which are not known to contain exactly one root).

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99]), lmap)
sage: oc.refine_all()
sage: oc
ocean with precision 120 and 3 island(s)
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([Integer(1)/Integer(3), -Integer(22)/Integer(7), Integer(193)/Integer(71), -Integer(140)/Integer(99)]), lmap)
>>> oc.refine_all()
>>> oc
ocean with precision 120 and 3 island(s)
```

reset_root_width(isle_num, target_width)

Require that the isle_num island have a width at most target_width.

If this is followed by a call to find_roots(), then the corresponding root will be refined to the specified width.

EXAMPLES:
roots()

Return the locations of all islands in this ocean. (If run after find_roots(), this is the location of all roots in the ocean.)

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([1/3, -22/7, 193/71, -140/99]), lmap)
sage: oc.find_roots()
sage: oc.roots()
[(1/32, 1/16), (1/2, 5/8), (3/4, 7/8)]
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

```python
>>> oc = ocean(mk_context(), bernstein_polynomial_factory_ratlist([Integer(1),
  Integer(0), -Integer(1111)/Integer(2), Integer(0), Integer(11108889)/
  Integer(14), Integer(0), Integer(0), Integer(0), Integer(0), -Integer(1)],
  lmap)
```

```text
>>> oc.find_roots()
>>> oc.roots()
```

```
[(95761241267509487747625/9671406556917033397649408, 191522482605387719863145/
  1934281313834066795298816), (1496269395904347376805/
  151115727451828646838272, 374067366568272936175/37778931862957161709568),...
  (31/32, 63/64)]
```

\[\text{sage.rings.polynomial.real_roots.precompute_degree_reduction_cache}(n)\]

Compute and cache the matrices used for degree reduction, starting from degree \(n\).

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: precompute_degree_reduction_cache(5)
sage: dr_cache[5]
{
    [121/126 8/63 -1/9 -2/63 11/126 -2/63]
    [ -3/7 37/42 16/21 1/21 -3/7 1/6]
    [ 1/6 -3/7 1/21 16/21 37/42 -3/7]
    3, [ -2/63 11/126 -2/63 -1/9 8/63 121/126], 2,
    (121 16 -14 -4 11 4]
    [ -54 111 96 6 -54 21]
    [ 21 -54 6 96 111 -54]
    [ -4 11 -4 -14 16 121], 126)
}
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> precompute_degree_reduction_cache(Integer(5))
>>> dr_cache[Integer(5)]
{
    [121/126 8/63 -1/9 -2/63 11/126 -2/63]
    [ -3/7 37/42 16/21 1/21 -3/7 1/6]
    [ 1/6 -3/7 1/21 16/21 37/42 -3/7]
    3, [ -2/63 11/126 -2/63 -1/9 8/63 121/126], 2,
    (121 16 -14 -4 11 4]
    [ -54 111 96 6 -54 21]
    [ 21 -54 6 96 111 -54]
    [ -4 11 -4 -14 16 121], 126)
```

\[\text{sage.rings.polynomial.real_roots.pseudoinverse}(m)\]

\[\text{sage.rings.polynomial.real_roots.rational_root_bounds}(p)\]

Given a polynomial \(p\) with real coefficients, computes rationals \(a\) and \(b\), such that for every real root \(r\) of \(p\), \(a < r < b\). We try to find rationals which bound the roots somewhat tightly, yet are simple (have small numerators and denominators).

EXAMPLES:
Polynomials, Release 10.4

```python
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: rational_root_bounds((x-1)*(x-2)*(x-3))
(0, 7)
sage: rational_root_bounds(x**2)
(-1/2, 1/2)
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> x = polygen(ZZ)
>>> rational_root_bounds((x-Integer(1))*(x-Integer(2))*(x-Integer(3)))
(0, 7)
>>> rational_root_bounds(x**(Integer(2)))
(-1/2, 1/2)
>>> rational_root_bounds(x*(x+Integer(1)))
(-3/2, 1/2)
>>> rational_root_bounds((x+Integer(2))*(x-Integer(3)))
(-3, 6)
>>> rational_root_bounds(x**Integer(995) + (x**2 - Integer(9999)) - 1)
(-100, 1000/7)
>>> rational_root_bounds(x**Integer(995) * (x**2 - Integer(9999)) + 1)
(-142, 213/2)
```

If we can see that the polynomial has no real roots, return None.

sage: rational_root_bounds(x**2 + 7) is None
True

```python
sage.rings.polynomial.real_roots.real_roots(p, bounds=None, seed=None,
skip_squarefree=False, do_logging=False,
wordsize=32, retval='rational', strategy=None,
max_diameter=None)
```

Compute the real roots of a given polynomial with exact coefficients (integer, rational, and algebraic real coefficients are supported).

This returns a list of pairs of a root and its multiplicity.

The root itself can be returned in one of three different ways. If retval=='rational', then it is returned as a pair of rationals that define a region that includes exactly one root. If retval=='interval', then it is returned as a RealIntervalFieldElement that includes exactly one root. If retval=='algebraic_real', then it is returned as an AlgebraicReal. In the former two cases, all the intervals are disjoint.

An alternate high-level algorithm can be used by selecting strategy='warp'. This affects the conversion into Bernstein polynomial form, but still uses the same ocean-island algorithm as the default algorithm. The ‘warp’ algorithm performs the conversion into Bernstein polynomial form much more quickly, but performs the rest of the computation slightly slower in some benchmarks. The ‘warp’ algorithm is particularly likely to be helpful for low-degree polynomials.

Part of the algorithm is randomized; the seed parameter gives a seed for the random number generator. (By default,
the same seed is used for every call, so that results are repeatable.) The random seed may affect the running time, or the exact intervals returned, but the results are correct regardless of the seed used.

The bounds parameter lets you find roots in some proper subinterval of the reals; it takes a pair of a rational lower and upper bound and only roots within this bound will be found. Currently, specifying bounds does not work if you select strategy=’warp’, or if you use a polynomial with algebraic real coefficients.

By default, the algorithm will do a squarefree decomposition to get squarefree polynomials. The skip_squarefree parameter lets you skip this step. (If this step is skipped, and the polynomial has a repeated real root, then the algorithm will loop forever! However, repeated non-real roots are not a problem.)

For integer and rational coefficients, the squarefree decomposition is very fast, but it may be slow for algebraic reals. (It may trigger exact computation, so it might be arbitrarily slow. The only other way that this algorithm might trigger exact computation on algebraic real coefficients is that it checks the constant term of the input polynomial for equality with zero.)

Part of the algorithm works (approximately) by splitting numbers into word-size pieces (that is, pieces that fit into a machine word). For portability, this defaults to always selecting pieces suitable for a 32-bit machine; the wordsize parameter lets you make choices suitable for a 64-bit machine instead. (This affects the running time, and the exact intervals returned, but the results are correct on both 32- and 64-bit machines even if the wordsize is chosen “wrong”.)

The precision of the results can be improved (at the expense of time, of course) by specifying the max_diameter parameter. If specified, this sets the maximum diameter() of the intervals returned. (Sage defines diameter() to be the relative diameter for intervals that do not contain 0, and the absolute diameter for intervals containing 0.) This directly affects the results in rational or interval return mode; in algebraic_real mode, it increases the precision of the intervals passed to the algebraic number package, which may speed up some operations on that algebraic real.

Some logging can be enabled with do_logging=True. If logging is enabled, then the normal values are not returned; instead, a pair of the internal context object and a list of all the roots in their internal form is returned.

ALGORITHM: We convert the polynomial into the Bernstein basis, and then use de Casteljau’s algorithm and Descartes’ rule of signs (using interval arithmetic) to locate the roots.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: real_roots(x^3 - x^2 - x - 1)
[((7/4, 19/8), 1)]
sage: real_roots((x-1)*(x-2)*(x-3)*(x-5)*(x-8)*(x-13)*(x-21)*(x-34))
[((11/16, 33/32), 1), ((11/8, 33/16), 1), ((11/4, 55/16), 1), ((77/16, 165/32), 1), ((11/2, 33/4), 1), ((11, 55/4), 1), ((165/8, 341/16), 1), ((22, 44), 1)]
sage: real_roots(x^5 * (x^2 - 9999)^2 - 1)
[((-2927446381311/9007199254740992, 293964743458749/9007199254740992), 1), ((83072959739759190784196683986376143/8307649793655572420568478941265721536, 166145190591033789137940378745325503/1661534949731144841297582535043072), 1), ((51920372362996217581015249797434335/5192926858534827628530496329220096, 604432689240816060312183/604462908970314587353088), 1)]
sage: real_roots(x^5 * (x^2 - 9999)^2 - 1, wordsize=64)
```
\[
((\frac{-62866503803202151050003}{19342813138340666795298816}, \frac{901086554512564177624143}{19342813113834066795298816}), 1), ((\frac{444245632373373152149909792280905010157}{5444578073505145139937189082938296, \ldots}), 1), (108849127066601964371118845654929064835439/108903574470030830827987437816582766592), 1), (_,
\rightarrow (2722122819266143971106392866060007142141/2722258933536750777070699685945145691648, \ldots), 1), (_{136160141127582350195100399337685485662633/136112946768375385353498429727072845824}, 1))
\]

sage: \text{real_roots}(x)

\[((-47/256, 81/512), 1)\]

sage: \text{real_roots}(x \cdot (x-1))

\[((-47/256, 81/512), 1), ((1/2, 1201/1024), 1)\]

sage: \text{real_roots}(x-1)

\[((209/256, 593/512), 1)\]

sage: \text{real_roots}(x \cdot (x-1) \cdot (x-2), bounds=(0, 2))

\[((0, 0), 1), ((81/128, 337/256), 1), ((2, 2), 1)\]

sage: \text{real_roots}(x \cdot (x-1) \cdot (x-2), bounds=(0, 2), retval=\text{algebraic_real})

\[(0, 1), (1, 1), (2, 1)\]

sage: v = 2^40

sage: \text{real_roots}((x^2-1)^2 \cdot (x^2 - (v+1)/v))

\[((-1285504350776821088501902117412074050402058191291010603283/1285504350776821088501902117412074050402058191291010603283), \ldots), 1), (_{1125899906482725/1125899906482725, 562949953421275/562949953421275}, 2), (_{621654055213326942278101835260512557018849668464680057997111644937126566767914632, \ldots}), (_{3885337784451458141838923813647078717870415394070559419988561060960935709862106808785, \ldots}),(1), (_{2}, \ldots), (_{0.992589904083510574558600183704583974906376779892204678713082380416682642627695449697819/50925899408362152156111422102344502626870984164840626590351123835953249408347654584944, \ldots}), (_{2571100870814384480487139477458601640355247900524685363482016), 1))
\]

sage: \text{real_roots}(x^2 - 2)

\[((-3/2, -1), 1), ((1, 3/2), 1)\]

sage: \text{real_roots}(x^2 - 2, retval=\text{interval})

\[(-2.?, 1), (2.?, 1)\]

sage: \text{real_roots}(x^2 - 2, max_diameter=1/2^{30})

\[((-2250628050604804014726757375988865436435438790979012519198456805737131269246340553365310109/15914345651131275489722319406982688321459682551526958094874260581103940401608017057792, \ldots), (_{45012561012096082945350759197773086524448972309421182031053056595994896985601579952498434/31828687130226345997446388139653376642919365103523591618699451216220788082103624115584), 1), (_{45012561012096082945350759197773086524448972309421182031053056595994896985601579952498434/31828687130226345997446388139653376642919365103523591618699451216220788082103624115584, 1), (_{2250628050604804014726757375988865436435438790979012519198456805737131269246340553365310109/15914345651131275489722319406982688321459682551526958094874260581103940401608017057792, \ldots), (_{4142135623730950488016887242096980785695671875376796807317667973990732478462107038503875343276, \ldots})
\]
sage: ar_rts = real_roots(x^2 - 2, retval='algebraic_real'); ar_rts
[(-1.414213562373095?, 1), (1.414213562373095?, 1)]
sage: ar_rts[0][0]^2 - 2 == 0
True
sage: v = 2^40
sage: real_roots((x-1) * (x-(v+1)/v), retval=interval)
[(1.000000000000?, 1), (1.000000000001?, 1)]
sage: v = 2^60
sage: real_roots((x-1) * (x-(v+1)/v), retval=interval)
[(1.000000000000000000?, 1), (1.000000000000000001?, 1)]
sage: real_roots((x-1) * (x-2), strategy=warp)
[((499/525, 1173/875), 1), ((337/175, 849/175), 1)]
sage: real_roots((x+3)*(x+1)*x*(x-1)*(x-2), strategy=warp)
[((-1713/335, -689/335), 1), ((-2067/2029, -689/1359), 1), ((0, 0), 1), ((499/525, →1173/875), 1), ((337/175, 849/175), 1)]
sage: real_roots((x+3)*(x+1)*x*(x-1)*(x-2), strategy=warp, retval=algebraic_→real)
[(-3.000000000000000?, 1), (-1.000000000000000?, 1), (0, 1), (1.000000000000000?, →1), (2.000000000000000?, 1)]
sage: ar_rts = real_roots(x-1, retval=algebraic_real)
sage: ar_rts[0][0] == 1
True

>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> x = polygen(ZZ)
>>> real_roots(x**Integer(3) - x**Integer(2) - x - Integer(1))
[((7/4, 19/8), 1)]
>>> real_roots(x**Integer(3) - x**Integer(2) - x - Integer(1), wordsize=Integer(64))
[((-628665038032201510500003/372 Chapter 2. Univariate Polynomials

(continues on next page)
>>> real_roots(x)
[[((-47/256, 81/512), 1)]

>>> real_roots(x * (x-Integer(1)))
[[((-47/256, 81/512), 1), ((1/2, 1201/1024), 1)]

>>> real_roots(x-Integer(1))
[[((209/256, 593/512), 1)]

>>> real_roots(x*(x-Integer(1))*(x-Integer(2)), bounds=(Integer(0), Integer(2)))
[[(0, 0), 1), ((81/128, 337/256), 1), ((2, 2), 1]

>>> real_roots(x*(x-Integer(1))*(x-Integer(2)), bounds=(Integer(0), Integer(2)), retval='algebraic_real')
[(0, 1), (1, 1), (2, 1)]

>> v = Integer(2)**Integer(40)

>> real_roots((x**Integer(2)-Integer(1))**Integer(2) * (x**Integer(2) - (v+Integer(1))/v))

(continues on next page)
If the polynomial has no real roots, we get an empty list.

```
sage: (x^2 + 1).real_root_intervals()
[]
```

We can compute Conway’s constant (see http://mathworld.wolfram.com/ConwaysConstant.html) to arbitrary precision.

```
sage: p = x^71 - x^69 - 2*x^68 - x^67 + 2*x^66 + 2*x^65 + x^64 - x^63 - x^62 - x^61 - x^60 - x^59 + 2*x^58 + 5*x^57 + 3*x^56 - 2*x^55 - 10*x^54 - 3*x^53 - 2*x^52 + 6*x^51 + 6*x^50 + x^49 + 9*x^48 - 3*x^47 - 7*x^46 - 8*x^45 - 8*x^44 + 10*x^43 + 6*x^42 + 8*x^41 - 5*x^40 - 12*x^39 + 7*x^38 - 7*x^37 + 7*x^36 + x^35 - 3*x^34 + 10*x^33 + x^32 - 6*x^31 - 2*x^30 - 10*x^29 - 3*x^28 + 2*x^27 + 9*x^26 - 13*x^25 + 14*x^24 - 8*x^23 - 7*x^22 + 9*x^20 - 3*x^19 - 4*x^18 - 10*x^17 - 7*x^16 + 12*x^15 + 7*x^14 + 2*x^13 - 12*x^12 - 4*x^11 - 2*x^10 + 5*x^9 + x^7 - 7*x^6 + 7*x^5 - 4*x^4 + 12*x^3 - 6*x^2 + 3*x - 6
sage: cc = real_roots(p, retval='algebraic_real')[2][0] # long time
sage: RealField(180)(cc) # long time
1.303577269034296391257099112152551890730702504659409
```

We can compute the roots of the polynomial $p = x^{71} - x^{69} - 2x^{68} - x^{67} + 2x^{66} + 2x^{65} + x^{64} - x^{63} - x^{62} - x^{61} - x^{60} - x^{59} + 2x^{58} + 5x^{57} + 3x^{56} - 2x^{55} - 10x^{54} - 3x^{53} - 2x^{52} + 6x^{51} + 6x^{50} + x^{49} + 9x^{48} - 3x^{47} - 7x^{46} - 8x^{45} - 8x^{44} + 10x^{43} + 6x^{42} + 8x^{41} - 5x^{40} - 12x^{39} + 7x^{38} - 7x^{37} + 7x^{36} + x^{35} - 3x^{34} + 10x^{33} + x^{32} - 6x^{31} - 2x^{30} - 10x^{29} - 3x^{28} + 2x^{27} + 9x^{26} - 13x^{25} + 14x^{24} - 8x^{23} - 7x^{22} + 9x^{20} - 3x^{19} - 4x^{18} - 10x^{17} - 7x^{16} + 12x^{15} + 7x^{14} + 2x^{13} - 12x^{12} - 4x^{11} - 2x^{10} + 5x^{9} + x^{7} - 7x^{6} + 7x^{5} - 4x^{4} + 12x^{3} - 6x^{2} + 3x - 6$ to arbitrary precision.
Now we play with algebraic real coefficients.

```
sage: x = polygen(AA)
sage: p = (x - 1) * (x - sqrt(AA(2))) * (x - 2)
sage: real_roots(p)
[((499/525, 2171/1925), 1), ((1173/875, 2521/1575), 1), ((337/175, 849/175), 1)]
sage: ar_rts = real_roots(p, retval=algebraic_real); ar_rts
[(1.000000000000000?, 1), (1.414213562373095?, 1), (2.000000000000000?, 1)]
sage: ar_rts[1][0]^2 == 2
True
sage: ar_rts = real_roots(x*(x-1), retval=algebraic_real)
sage: ar_rts[0][0] == 0
True
sage: p2 = p * (p - 1/100); p2
x^6 - 8.82842712474619?*x^5 + 31.97056274847714?*x^4 - 60.77955262170047?*x^3 +
˓→63.98526763257801?*x^2 - 35.37613490585595?*x + 8.028284271247462?
sage: real_roots(p2, retval='interval')
[(1.00?, 1), (1.1?, 1), (1.38?, 1), (1.5?, 1), (2.00?, 1), (2.1?, 1)]
sage: p = (x - 1) * (x - sqrt(AA(2)))^2 * (x - 2)^3 * sqrt(AA(3))
sage: real_roots(p, retval='interval')
[(1.000000000000000?, 1), (1.414213562373095?, 2), (2.000000000000000?, 3)]
```

Now we play with algebraic real coefficients.
Polynomials, Release 10.4

sage.rings.polynomial.real_roots.relative_bounds\((a, b)\)

INPUT:
- \((a_l, a_h)\) – pair of rationals
- \((b_l, b_h)\) – pair of rationals

OUTPUT:
- \((c_l, c_h)\) – pair of rationals

Computes the linear transformation that maps \((a_l, a_h)\) to \((0, 1)\); then applies this transformation to \((b_l, b_h)\) and returns the result.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: relative_bounds((1/7, 1/4), (1/6, 1/5))
(2/9, 8/15)
```

sage.rings.polynomial.real_roots.reverse_intvec\((c)\)

Given a vector of integers, reverse the vector (like the `reverse()` method on lists).

Modifies the input vector; has no return value.

EXAMPLES:

```
sage: from sage.rings.polynomial.real_roots import *
sage: v = vector(ZZ, [1, 2, 3, 4]); v
(1, 2, 3, 4)
sage: reverse_intvec(v)
```

(continues on next page)
sage: v
(4, 3, 2, 1)

>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *

>> v = vector(ZZ, [Integer(1), Integer(2), Integer(3), Integer(4)]); v
(1, 2, 3, 4)
>>> reverse_intvec(v)
(4, 3, 2, 1)

sage.rings.polynomial.real_roots.root_bounds(p)
Given a polynomial with real coefficients, computes a lower and upper bound on its real roots. Uses algorithms of Akritas, Strzeboński, and Vigklas.

EXAMPLES:

sage: from sage.rings.polynomial.real_roots import *

sage: x = polygen(ZZ)
sage: root_bounds((x-1)*(x-2)*(x-3))
(0.545454545454545, 6.00000000000001)
sage: root_bounds(x**2)
(0.000000000000000, 0.000000000000000)
sage: root_bounds(x*(x+1))
(-1.000000000000000, 0.000000000000000)
sage: root_bounds((x+2)*(x-3))
(-2.44948974278317, 3.46410161513776)
sage: root_bounds(x**995 * (x**2 - 9999) - 1)
(-99.9999999999999, 141.414285714286)
sage: root_bounds(x**995 * (x**2 - 9999) + 1)
(-141.414285714286, 99.9999999999999)

>>> from sage.all import *

>>> from sage.rings.polynomial.real_roots import *

>>> x = polygen(ZZ)

>>> root_bounds((x-Integer(1))*(x-Integer(2))*(x-Integer(3)))
(0.545454545454545, 6.00000000000001)

>>> root_bounds(x**Integer(2) + Integer(1))
(0.000000000000000, 0.000000000000000)

If we can see that the polynomial has no real roots, return None.

sage: root_bounds(x**2 + 1) is None
True

>>> from sage.all import *

>>> root_bounds(x**Integer(2) + Integer(1)) is None
True
class sage.rings.polynomial.real_roots.rr_gap

Bases: object

A simple class representing the gaps between islands, in my ocean-island root isolation algorithm. Named “rr_gap” for “real roots gap”, because “gap” seemed too short and generic.

region()

sage.rings.polynomial.real_roots.scale_intvec_var(c, k)

Given a vector of integers c of length n+1, and a rational k == kn / kd, multiplies each element c[i] by (kd^i)*(kn^(n-i)).

Modifies the input vector; has no return value.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: v = vector(ZZ, [1, 1, 1, 1])
sage: scale_intvec_var(v, 3/4)
sage: v
(64, 48, 36, 27)

>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> v = vector(ZZ, [Integer(1), Integer(1), Integer(1), Integer(1)])
>>> scale_intvec_var(v, Integer(3)/Integer(4))
>>> v
(64, 48, 36, 27)
```

sage.rings.polynomial.real_roots.split_for_targets(ctx, bp, target_list, precise=False)

Given an interval Bernstein polynomial over a particular region (assumed to be a (not necessarily proper) subregion of [0 .. 1]), and a list of targets, uses de Casteljau’s method to compute representations of the Bernstein polynomial over each target. Uses degree reduction as often as possible while maintaining the requested precision.

Each target is of the form (lgap, ugap, b). Suppose lgap.region() is (l1, l2), and ugap.region() is (u1, u2). Then we will compute an interval Bernstein polynomial over a region [l .. u], where l1 <= l <= l2 and u1 <= u <= u2. (split_for_targets() is free to select arbitrary region endpoints within these bounds; it picks endpoints which make the computation easier.) The third component of the target, b, is the maximum allowed scale_log2 of the result; this is used to decide when degree reduction is allowed.

The pair (l1, l2) can be replaced by None, meaning [-infinity .. 0]; or, (u1, u2) can be replaced by None, meaning [1 .. infinity].

There is another constraint on the region endpoints selected by split_for_targets() for a target ((l1, l2), (u1, u2), b). We set a size goal g, such that (u - l) <= g * (u1 - l2). Normally g is 256/255, but if precise is True, then g is 65536/65535.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: bp = mk_ibpi([1000000, -2000000, 3000000, -4000000, -5000000, -6000000])
sage: ctx = mk_context()
sage: bps = split_for_targets(ctx, bp, [(rr_gap(1/1234567893, 1/1234567892, 1), rr_gap(1/1234567891, 1/1234567890, 1), 12), (rr_gap(1/3, 1/2, -1), rr_gap(2/3, 3/4, -1), 6)])
sage: bps[0]
<IBP: (999992, 999992, 999992) + [0 .. 15) over [8613397447114467984778830327/10638323966279326983230456482242756608 .. 59190816802593494813836527495938294787/]
```
Polynomials, Release 10.4

sage.rings.polynomial.real_roots.

sage.rings.polynomial.real_roots.

Given a vector of integers \(c \) of length \(d+1 \), representing the coefficients of a degree-\(d \) polynomial \(p \), modify the vector to perform a Taylor shift by 1 (that is, \(p \) becomes \(p(x+1) \)).

This is the straightforward algorithm, which is not asymptotically optimal.

Modifies the input vector; has no return value.

EXAMPLES:

sage.rings.polynomial.real_roots.

sage.rings.polynomial.real_roots.

sage.rings.polynomial.real_roots.

sage.rings.polynomial.real_roots.

sage.rings.polynomial.real_roots.

sage.rings.polynomial.real_roots.

sage.rings.polynomial.real_roots.

sage.rings.polynomial.real_roots.

sage.rings.polynomial.real_roots.
Given a polynomial p with integer coefficients, and rational bounds low and high, compute the exact rational Bernstein coefficients of p over the region $[\text{low} .. \text{high}]$. The optional parameter degree can be used to give a formal degree higher than the actual degree.

The return value is a pair (c, scale); c represents the same polynomial as $p \times \text{scale}$. (If you only care about the roots of the polynomial, then of course scale can be ignored.)

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: x = polygen(ZZ)
sage: to_bernstein(x)
(\[0, 1\], 1)
sage: to_bernstein(x, degree=5)
(\[0, 1/5, 2/5, 3/5, 4/5, 1\], 1)
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.real_roots import *
>>> x = polygen(ZZ)
>>> to_bernstein(Integer(1) + x + x**2 + x**3 + x**4 + x**5)
[1, 1/5, 1/10, 1/10, 1/5, 1]
```

Given a polynomial p with rational coefficients, compute the exact rational Bernstein coefficients of $p(x/(x+1))$.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: to_bernstein_warp(1 + x + x^2 + x^3 + x^4 + x^5)
[1, 1/5, 1/10, 1/10, 1/5, 1]
```

A class to map between original coordinates and ocean coordinates. If neg is False, then the original->ocean transform is $x \rightarrow x/(x+1)$, and the ocean->original transform is $x/(1-x)$; this maps between $[0 .. \infty]$ and $[0$
.. 1]. If neg is True, then the original->ocean transform is $x \rightarrow -x/(1-x)$, and the ocean->original transform is the same thing: $-x/(1-x)$. This maps between $[0.. -\infty]$ and $[0.. 1]$.

```python
from ocean (region)

to_ocean (region)
sage.rings.polynomial.real_roots.wordsize_rational (a, b, wordsize)
```

Given rationals a and b, select a de Casteljau split point r between a and b.

An attempt is made to select an efficient split point (according to the criteria mentioned in the documentation for de_casteljau_intvec), with a bias towards split points near a.

In full detail:

This takes as input two rationals, a and b, such that $0 \leq a \leq 1$, $0 \leq b \leq 1$, and $a \neq b$. This returns rational r, such that $a \leq r \leq b$ or $b \leq r \leq a$. The denominator of r is a power of 2. Let m be $\min(r, 1-r)$, nm be numerator(m), and dml be $\log_2(\text{denominator(m)})$. The return value r is taken from the first of the following classes to have any members between a and b (except that if a $\leq 1/8$, or 7/8 $\leq a$, then class 2 is preferred to class 1).

1. dml < wordsize
2. bitsize(nm) <= wordsize
3. bitsize(nm) <= 2*wordsize
4. bitsize(nm) <= 3*wordsize
...

k. bitsize(nm) <= (k-1)*wordsize

From the first class to have members between a and b, r is chosen as the element of the class which is closest to a.

EXAMPLES:

```python
sage: from sage.rings.polynomial.real_roots import *
sage: wordsize_rational(1/5, 1/7, 32)
429496729/2147483648
sage: wordsize_rational(1/7, 1/5, 32)
306783379/2147483648
sage: wordsize_rational(1/5, 1/7, 64)
18446744073709551611/9223372036854775808
sage: wordsize_rational(1/7, 1/5, 64)
658812288346769701/4611686018427387904
sage: wordsize_rational(1/17, 1/19, 32)
252645135/4294967296
sage: wordsize_rational(1/17, 1/19, 64)
1085102592571150095/1844674407370955161
sage: wordsize_rational(1/1234567890, 1/1234567891, 32)
938366427/1152921504606846976
sage: wordsize_rational(1/1234567890, 1/1234567891, 64)
4010925763784056541/4951760157141521099596496896
```

```python
>> from sage.all import *
>> from sage.rings.polynomial.real_roots import *
>> wordsize_rational(Integer(1)/Integer(5), Integer(1)/Integer(7), Integer(32))
429496729/2147483648
>> wordsize_rational(Integer(1)/Integer(7), Integer(1)/Integer(5), Integer(32))
306783379/2147483648
>> wordsize_rational(Integer(1)/Integer(5), Integer(1)/Integer(7), Integer(64))
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

1844674407370955161/9223372036854775808
>>> wordsize_rational(Integer(1)/Integer(7), Integer(1)/Integer(5), Integer(64))
658812288346769701/4611686018427387904
>>> wordsize_rational(Integer(1)/Integer(17), Integer(1)/Integer(19), Integer(32))
252645135/4294967296
>>> wordsize_rational(Integer(1)/Integer(17), Integer(1)/Integer(19), Integer(64))
10851029571150095/1844674407370955161
>>> wordsize_rational(Integer(1)/Integer(1234567890), Integer(1)/Integer(1234567891), Integer(32))
933866427/1152921504606846976
>>> wordsize_rational(Integer(1)/Integer(1234567890), Integer(1)/Integer(1234567891), Integer(64))
4010925763784056541/4951760157141521099599469896

2.1.19 Isolate Complex Roots of Polynomials

AUTHOR:
• Carl Witty (2007-11-18): initial version

This is an implementation of complex root isolation. That is, given a polynomial with exact complex coefficients, we compute isolating intervals for the complex roots of the polynomial. (Polynomials with integer, rational, Gaussian rational, or algebraic coefficients are supported.)

We use a simple algorithm. First, we compute a squarefree decomposition of the input polynomial; the resulting polynomials have no multiple roots. Then, we find the roots numerically, using NumPy (at low precision) or Pari (at high precision). Then, we verify the roots using interval arithmetic.

EXAMPLES:

sage: x = polygen(ZZ)
sage: (x^5 - x - 1).roots(ring=CIF)
[(1.167303978261419?, 1),
(-0.764884433600585? - 0.352471546031727?*I, 1),
(-0.764884433600585? + 0.352471546031727?*I, 1),
(0.181232444469876? - 1.083954101317711?*I, 1),
(0.181232444469876? + 1.083954101317711?*I, 1)]

>>> from sage.all import *
>>> x = polygen(ZZ)

sage.rings.polynomial.complex_roots.complex_roots(p, skip_squarefree=False, retval='interval', min_prec=0)

Compute the complex roots of a given polynomial with exact coefficients (integer, rational, Gaussian rational, and algebraic coefficients are supported). Returns a list of pairs of a root and its multiplicity.

Roots are returned as a ComplexIntervalFieldElement; each interval includes exactly one root, and the intervals are disjoint.
By default, the algorithm will do a squarefree decomposition to get squarefree polynomials. The `skip_squarefree` parameter lets you skip this step. (If this step is skipped, and the polynomial has a repeated root, then the algorithm will loop forever!)

You can specify `retval='interval'` (the default) to get roots as complex intervals. The other options are `retval='algebraic'` to get elements of `QQbar`, or `retval='algebraic_real'` to get only the real roots, and to get them as elements of `AA`.

EXAMPLES:

```python
given_code
```

Unfortunately due to numerical noise there can be a small imaginary part to each root depending on CPU, compiler, etc, and that affects the printing order. So we verify the real part of each root and check that the imaginary part is small in both cases:

```python
given_code
```

(continues on next page)
True

```python
>>> K = QuadraticField(-Integer(1), names=('im',)); (im,) = K._first_ngens(1)
>>> eps = Integer(1)/Integer(2)**Integer(100)
>>> x = polygen(K)
>>> p = (x-Integer(1))*(x-Integer(1)-eps)*(x-Integer(1)+eps)*(x-Integer(1)-
    \rightarrow eps*im)*(x-Integer(1)+eps*im)
```

This polynomial actually has all-real coefficients, and is very, very close to (x-1)^5:

```python
sage: [RR(QQ(a)) for a in list(p - (x-1)**5)]
[3.87259191484932e-121, -3.87259191484932e-121]
sage: rts = complex_roots(p)
sage: [ComplexIntervalField(10)(rt[0] - 1) for rt in rts]
```

We can get roots either as intervals, or as elements of QQbar or AA.

```python
sage: p = (x^2 + x - 1)
sage: p = p * p(x*im)
sage: p
-x^4 + (im - 1)*x^3 + im*x^2 + (-im - 1)*x + 1
```

```python
>>> from sage.all import *
```

```python
>>> p = (x**Integer(2) + x - Integer(1))
>>> p = p * p(x*im)
>>> p
-x^4 + (im - 1)*x^3 + im*x^2 + (-im - 1)*x + 1
```

Two of the roots have a zero real component; two have a zero imaginary component. These zero components will be found slightly inaccurately, and the exact values returned are very sensitive to the (non-portable) results of NumPy. So we post-process the roots for printing, to get predictable doctest results.

```python
sage: def tiny(x):
    ....:     return x.contains_zero() and x.absolute_diameter() < 1e-14
sage: def smash(x):
    ....:     x = CIF(x[0])  # discard multiplicity
    ....:     if tiny(x.imag()):
    ....:         return
    ....:     if tiny(x.real()):
    ....:         return CIF(0, x.imag())

sage: rts = complex_roots(p); type(rts[0][0]), sorted(map(smash, rts))
(<class 'sage.rings.complex_interval.ComplexIntervalFieldElement'>, [-1.618033988749895?, -0.618033988749895?*I, 1.618033988749895?*I, 0.618033988749895?])
sage: rts = complex_roots(p, retval='algebraic'); type(rts[0][0]),
    sorted(map(smash, rts))
(<class 'sage.rings.qqbar.AlgebraicNumber'>, [-1.618033988749895?, -0.618033988749895?*I, 1.618033988749895?*I, 0.618033988749895?])
sage: rts = complex_roots(p, retval='algebraic_real'); type(rts[0][0]), rts
```

(continues on next page)
sage.rings.polynomial.complex_roots.interval_roots(p, rts, prec)

We are given a squarefree polynomial \(p \), a list of estimated roots, and a precision. We attempt to verify that the estimated roots are in fact distinct roots of the polynomial, using interval arithmetic of precision \(\text{prec} \). If we succeed, we return a list of intervals bounding the roots; if we fail, we return None.

EXAMPLES:

```python
sage: x = polygen(ZZ)
sage: p = x**Integer(3) - Integer(1)
sage: rts = [CC.zeta(Integer(3))**i for i in range(Integer(0), Integer(3))]
sage: from sage.rings.polynomial.complex_roots import interval_roots
sage: interval_roots(p, rts, Integer(53))
[1, -0.500000000000000? + 0.866025403784439?*I, -0.500000000000000? - 0.866025403784439?*I]
sage: interval_roots(p, rts, Integer(200))
[1, -0.500000000000000000000000000000000000000000000000000000000000? + 0.8660254037844386467637231707529361834714102626905190314027904?*I, -0.500000000000000000000000000000000000000000000000000000000000? - 0.8660254037844386467637231707529361834714102626905190314027904?*I]
```
sage.rings.polynomial.complex_roots.intervals_disjoint(intvs)

Given a list of complex intervals, check whether they are pairwise disjoint.

EXAMPLES:

```python
sage: from sage.rings.polynomial.complex_roots import intervals_disjoint
sage: a = CIF(RIF(0, 3), 0)
sage: b = CIF(0, RIF(1, 3))
sage: c = CIF(RIF(1, 2), RIF(1, 2))
sage: d = CIF(RIF(2, 3), RIF(2, 3))
sage: intervals_disjoint([a, b, c, d])
False

sage: d2 = CIF(RIF(2, 3), RIF(2.001, 3))
sage: intervals_disjoint([a, b, c, d2])
True
```

2.1.20 Refine polynomial roots using Newton–Raphson

This is an implementation of the Newton–Raphson algorithm to approximate roots of complex polynomials. The implementation is based on interval arithmetic

AUTHORS:

• Carl Witty (2007-11-18): initial version

sage.rings.polynomial.refine_root.refine_root(ip, ipd, irf, fld)

We are given a polynomial and its derivative (with complex interval coefficients), an estimated root, and a complex interval field to use in computations. We use interval arithmetic to refine the root and prove that we have in fact isolated a unique root.

If we succeed, we return the isolated root; if we fail, we return None.

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: from sage.rings.polynomial.refine_root import refine_root
sage: x = polygen(ZZ)
sage: p = x^9 - 1
sage: ip = CIF['x'](p); ip
x^9 - 1
```

(continues on next page)
2.1.21 Ideals in Univariate Polynomial Rings

AUTHORS:

- David Roe (2009-12-14) – initial version.

class sage.rings.polynomial.ideal.Ideal_1poly_field

Bases: Ideal_pid

An ideal in a univariate polynomial ring over a field.

class sage.rings.polynomial.ideal.Ideal_1poly_field

Bases: Ideal_pid

An ideal in a univariate polynomial ring over a field.

change_ring(R)

Coerce an ideal into a new ring.

EXAMPLES:

```python
sage: R.<q> = QQ[]
sage: I = R.ideal([q^2 + q - 1])
sage: I.change_ring(RR['q'])
# needs sage.rings.real_mpfr
Principal ideal (q^2 + q - 1.00000000000000) of
Univariate Polynomial Ring in q over Real Field with 53 bits of precision
```
```python
>>> I = R.ideal([q**Integer(2) + q - Integer(1)])
>>> I.change_ring(RR['q'])
needs sage.rings.real_mpfr
Principal ideal (q^2 + q - 1.00000000000000) of
Univariate Polynomial Ring in q over Real Field with 53 bits of precision
```

groebner_basis(algorithm=None)

Return a Gröbner basis for this ideal.

The Gröbner basis has 1 element, namely the generator of the ideal. This trivial method exists for compatibility with multi-variate polynomial rings.

INPUT:

- algorithm – ignored

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: I = R.ideal([x^2 - 1, x^3 - 1])
sage: G = I.groebner_basis(); G
[x - 1]
sage: type(G)
<class 'sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic'>
sage: list(G)
[x - 1]
```

```python
>>> from sage.all import *
```

```python
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> I = R.ideal([x**Integer(2) - Integer(1), x**Integer(3) - Integer(1)])
>>> G = I.groebner_basis(); G
[x - 1]
```

residue_class_degree()

Return the degree of the generator of this ideal.

This function is included for compatibility with ideals in rings of integers of number fields.

EXAMPLES:

```python
sage: R.<t> = GF(5)[]
sage: P = R.ideal(t^4 + t + 1)
sage: P.residue_class_degree()
4
```

```python
>>> from sage.all import *
```

```python
>>> R = GF(Integer(5))['t']; (t,) = R._first_ngens(1)
>>> P = R.ideal(t**Integer(4) + t + Integer(1))
>>> P.residue_class_degree()
4
```
residue_field(names=None, check=True)

If this ideal is \(P \subset F_p[t] \), return the quotient \(F_p[t]/P \).

EXAMPLES:

```
sage: R.<t> = GF(17)[]; P = R.ideal(t^3 + 2*t + 9)
sage: k.<a> = P.residue_field(); k
# needs sage.rings.finite_rings
Residue field in a of Principal ideal (t^3 + 2*t + 9) of
Univariate Polynomial Ring in t over Finite Field of size 17
```

```python
>>> from sage.all import *
>>> R = GF(Integer(17))[t]; (t,) = R._first_ngens(1); P = R.

˓→ideal(t**Integer(3) + Integer(2)*t + Integer(9))
>>> k = P.residue_field(names=(a,)); (a,) = k._first_ngens(1); k
# needs sage.rings.finite_rings
Residue field in a of Principal ideal (t^3 + 2*t + 9) of
Univariate Polynomial Ring in t over Finite Field of size 17
```

2.1.22 Quotients of Univariate Polynomial Rings

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: S = R.quotient(x**3 - 3*x + 1, 'alpha')
sage: S.gen()**2 in S
True
sage: x in S
True
sage: S.gen() in R
False
sage: 1 in S
True
```

```python
>>> from sage.all import *
>>> R = QQ[x]; (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(3) - Integer(3)*x + Integer(1), 'alpha')
>>> S.gen()**Integer(2) in S
True
>>> x in S
True
>>> S.gen() in R
False
>>> Integer(1) in S
True
```

```
class
sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRingFactory
Bases: UniqueFactory

Create a quotient of a polynomial ring.

INPUT:

  • ring – a univariate polynomial ring
  • polynomial – an element of ring with a unit leading coefficient
```

2.1. Univariate Polynomials and Polynomial Rings
Polynomials, Release 10.4

- names – (optional) name for the variable

OUTPUT: Creates the quotient ring R/I, where R is the ring and I is the principal ideal generated by polynomial.

EXAMPLES:

We create the quotient ring $\mathbb{Z}[x]/(x^3 + 7)$, and demonstrate many basic functions with it:

```
sage: Z = IntegerRing()
sage: R = PolynomialRing(Z, 'x'); x = R.gen()
sage: S = R.quotient(x^3 + 7, 'a'); a = S.gen()
sage: S
Univariate Quotient Polynomial Ring in a
  over Integer Ring with modulus x^3 + 7
sage: a^3
-7
sage: a.is_field()  # False
sage: a in S  # True
sage: x in S  # True
sage: a in R  # False
sage: S.polynomial_ring()  # Univariate Polynomial Ring in x over Integer Ring
sage: S.modulus()  # x^3 + 7
sage: S.degree()  # 3
```

```python
>>> from sage.all import *
>>> Z = IntegerRing()
>>> R = PolynomialRing(Z, 'x'); x = R.gen()
>>> S = R.quotient(x**Integer(3) + Integer(7), 'a'); a = S.gen()
>>> S
Univariate Quotient Polynomial Ring in a
  over Integer Ring with modulus x^3 + 7
>>> a**Integer(3)
-7
>>> S.is_field()  # False
>>> a in S  # True
>>> x in S  # True
>>> a in R  # False
>>> S.polynomial_ring()  # Univariate Polynomial Ring in x over Integer Ring
>>> S.modulus()  # x^3 + 7
>>> S.degree()  # 3
```

We create the “iterated” polynomial ring quotient

$$R = (\mathbb{F}_2[y]/(y^2 + y + 1))[x]/(x^3 - 5).$$

390 Chapter 2. Univariate Polynomials
```python
sage: # needs sage.libsntl
sage: A.<y> = PolynomialRing(GF(2)); A
Univariate Polynomial Ring in y over Finite Field of size 2 (using GF2X)
sage: B = A.quotient(y^2 + y + 1, 'y2'); B
Univariate Quotient Polynomial Ring in y2 over Finite Field of size 2
   with modulus y^2 + y + 1
sage: C = PolynomialRing(B, 'x'); x = C.gen(); C
Univariate Polynomial Ring in x
   over Univariate Quotient Polynomial Ring in y2
   over Finite Field of size 2 with modulus y^2 + y + 1
sage: R = C.quotient(x^3 - 5); R
Univariate Quotient Polynomial Ring in xbar
   over Univariate Quotient Polynomial Ring in y2
   over Finite Field of size 2 with modulus y^2 + y + 1
   with modulus x^3 + 1
```

Next we create a number field, but viewed as a quotient of a polynomial ring over \mathbb{Q}:

```python
sage: R = PolynomialRing(RationalField(), x); x = R.gen()
sage: S = R.quotient(x^3 + 2*x - 5, a); S
Univariate Quotient Polynomial Ring in a over Rational Field
   with modulus x^3 + 2*x - 5
sage: S.is_field()
True
sage: S.degree()
3
```

There are conversion functions for easily going back and forth between quotients of polynomial rings over \mathbb{Q} and number fields:

```python
>>> from sage.all import *
>>> # needs sage.libsntl
>>> A = PolynomialRing(GF(Integer(2)), names=('y',)); (y,) = A._first_ngens(1); A
Univariate Polynomial Ring in y over Finite Field of size 2 (using GF2X)
>>> B = A.quotient(y**Integer(2) + y + Integer(1), y2); B
Univariate Quotient Polynomial Ring in y2 over Finite Field of size 2
   with modulus y^2 + y + 1
>>> C = PolynomialRing(B, 'x'); x = C.gen(); C
Univariate Polynomial Ring in x
   over Univariate Quotient Polynomial Ring in y2
   over Finite Field of size 2 with modulus y^2 + y + 1
>>> R = C.quotient(x**Integer(3) - Integer(5)); R
Univariate Quotient Polynomial Ring in xbar
   over Univariate Quotient Polynomial Ring in y2
   over Finite Field of size 2 with modulus y^2 + y + 1
   with modulus x^3 + 1
```
The leading coefficient must be a unit (but need not be 1).

```python
sage: R = PolynomialRing(Integers(9), 'x'); x = R.gen()
sage: S = R.quotient(2*x^4 + 2*x^3 + x + 2, 'a')
sage: S = R.quotient(3*x^4 + 2*x^3 + x + 2, 'a')
Traceback (most recent call last):
  ...TypeError: polynomial must have unit leading coefficient
```

Another example:

```python
sage: R.<x> = PolynomialRing(IntegerRing())
sage: f = x^2 + 1
sage: R.quotient(f)
Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 + 1
```

This shows that the issue at Issue #5482 is solved:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: f = x^2 - 1
sage: R.quotient_by_principal_ideal(f)
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 - 1
```
```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> f = x**Integer(2) - Integer(1)
>>> R.quotient_by_principal_ideal(f)
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 - 1

create_key (ring, polynomial, names=None)
Return a unique description of the quotient ring specified by the arguments.

EXAMPLES:
```sage`
R.<x> = QQ[]
 sage: PolynomialQuotientRing.create_key(R, x + 1)
(Univariate Polynomial Ring in x over Rational Field, x + 1, ('xbar',))
```sage`

```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> PolynomialQuotientRing.create_object((Integer(8), Integer(0), Integer(0)),
... (R, x**Integer(2) - Integer(1), ('xbar'))
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 - 1

create_object (version, key)
Return the quotient ring specified by key.

EXAMPLES:
```sage`
R.<x> = ZZ[]
 sage: S.<x> = QQ[]
 sage: f = S.quo(x^2 + 1).coerce_map_from(R.quo(x^2 + 1)); f
Coercion map:
 From: Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 + 1
 To:  Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 + 1
```sage`
```
```
is_injective()

Return whether this coercion is injective.

EXAMPLES:

If the modulus of the domain and the codomain is the same and the leading coefficient is a unit in the domain, then the map is injective if the underlying map on the constants is:

```python
sage: R.<x> = ZZ[]
sage: S.<x> = QQ[]
sage: f = S.quo(x^2 + 1).coerce_map_from(R.quo(x^2 + 1))
sage: f.is_injective()
True
```

is_surjective()

Return whether this coercion is surjective.

EXAMPLES:

If the underlying map on constants is surjective, then this coercion is surjective since the modulus of the codomain divides the modulus of the domain:

```python
sage: f = R.quo(x).coerce_map_from(R.quo(x^2))
sage: f.is_surjective()
True
```

If the modulus of the domain and the codomain is the same, then the map is surjective if the underlying map on the constants is:

```python
sage: # needs sage.rings.padics
sage: A.<a> = ZqCA(9)
```

(continues on next page)
sage: R.<x> = A[]
sage: S.<x> = A.fraction_field()[]
sage: f = S.quo(x^2 + 2).coerce_map_from(R.quo(x^2 + 2))
sage: f.is_surjective()
False

```python
>>> from sage.all import *
>>> # needs sage.rings.padics
>>> A = ZqCA(Integer(9), names=('a',)); (a,) = A._first_ngens(1)
>>> R = A['x']; (x,) = R._first_ngens(1)
>>> S = A.fraction_field()['x']; (x,) = S._first_ngens(1)
>>> f = S.quo(x**Integer(2) + Integer(2)).coerce_map_from(R.quo(x**Integer(2)→ Integer(2)))
>>> f.is_surjective()
False
```

class sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_domain(ring, polynomial, name=None, category=None):

Bases: PolynomialQuotientRing_generic, IntegralDomain

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: S.<xbar> = R.quotient(x^2 + 1)
sage: S
Univariate Quotient Polynomial Ring in xbar
over Integer Ring with modulus x^2 + 1
sage: loads(S.dumps()) == S
True
sage: loads(xbar.dumps()) == xbar
True
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(2) + Integer(1), names=('xbar',)); (xbar,) = S._first_ngens(1)
>>> S
Univariate Quotient Polynomial Ring in xbar
over Integer Ring with modulus x^2 + 1
>>> loads(S.dumps()) == S
True
>>> loads(xbar.dumps()) == xbar
True
```

field_extension(names)

Take a polynomial quotient ring, and return a tuple with three elements: the NumberField defined by the same polynomial quotient ring, a homomorphism from its parent to the NumberField sending the generators to one another, and the inverse isomorphism.

OUTPUT:
• field
• homomorphism from self to field
• homomorphism from field to self

EXAMPLES:

```python
sage: # needs sage.rings.number_field
sage: R.<x> = PolynomialRing(Rationals())
sage: S.<alpha> = R.quotient(x^3 - 2)
sage: F.<b>, f, g = S.field_extension()
```

Number Field in b with defining polynomial x^3 - 2
```python
sage: a = F.gen()
sage: f(alpha)
```

b
```python
g(a)
```

alpha

Note that the parent ring must be an integral domain:

```python
sage: R.<x> = GF(25, 'f25')[x]
```

needs sage.rings.finite_rings
```python
sage: S.<a> = R.quo(x^3 - 2)
```

needs sage.rings.finite_rings
```python
sage: F, g, h = S.field_extension(b)
```

Traceback (most recent call last):
...
AttributeError: 'PolynomialQuotientRing_generic_with_category' object has no attribute 'field_extension'

```python
>>> from sage.all import *
```

```python
>>> R = GF(Integer(25), 'f25')[x]; (x,) = R._first_ngens(1)
```

needs sage.rings.finite_rings
```python
>>> S = R.quo(x^3 - 2); (a,) = S._first_ngens(1)
```

needs sage.rings.finite_rings
```python
>>> F, g, h = S.field_extension(b)
```

Traceback (most recent call last):
...
AttributeError: 'PolynomialQuotientRing_generic_with_category' object has no attribute 'field_extension'
```
Over a finite field, the corresponding field extension is not a number field:

```
sage: # needs sage.modules sage.rings.finite_rings
sage: R.<x> = GF(25, 'a')['x']
sage: S.<a> = R.quo(x^3 + 2*x + 1)
sage: F, g, h = S.field_extension('b')
```

```
h(F.0^2 + 3)
a^2 + 3
```

```
g(x^2 + 2)
b^2 + 2
```

We do an example involving a relative number field:

```
sage: # needs sage.rings.number_field
sage: R.<x> = QQ['x']
sage: K.<a> = NumberField(x^3 - 2)
sage: S.<X> = K['X']
sage: Q. = S.quo(X^3 + 2*X + 1)
```

```
Q.field_extension(b)
(Number Field in b with defining polynomial X^3 + 2*X + 1 over its base field, ...
... Defn: b |--| b, Relative number field morphism:
 From: Number Field in b with defining polynomial X^3 + 2*X + 1 over its_base field
 To: Univariate Quotient Polynomial Ring in b over Number Field in a with...
defining polynomial x^3 - 2 with modulus X^3 + 2*X + 1
Defn: b |--| b
 a |--| a)
```

```
We slightly change the example above so it works.

```python
sage: # needs sage.rings.number_field
sage: R.<x> = QQ['x']
sage: K.<a> = NumberField(x^3 - 2)
sage: S.<X> = K['X']
sage: f = (X+a)^3 + 2*(X+a) + 1
sage: f
X^3 + 3*a*X^2 + (3*a^2 + 2)*X + 2*a + 3
sage: Q.<z> = S.quo(f)
sage: F.<w>, g, h = Q.field_extension()
sage: c = g(z)
sage: f(c)
0
sage: h(g(z))
z
sage: g(h(w))
w
>>> from sage.all import *
```

AUTHORS:
- Craig Citro (2006-08-07)
- William Stein (2006-08-06)

```
398 Chapter 2. Univariate Polynomials

sage: # needs sage.rings.number_field
sage: R.<x> = PolynomialRing(QQ)
```

Bases: **PolynomialQuotientRing_domain**, Field

EXAMPLES:
sage: S.<xbar> = R.quotient(x^2 + 1)
sage: S
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 + 1
sage: loads(S.dumps()) == S
True
sage: loads(xbar.dumps()) == xbar
True

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(2) + Integer(1), names=('xbar',)); (xbar,) = S._first_ngens(1)

>>> S
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 + 1
>>> loads(S.dumps()) == S
True
>>> loads(xbar.dumps()) == xbar
True

base_field()

Alias for base_ring(), when we’re defined over a field.

complex_embeddings (prec=53)

Return all homomorphisms of this ring into the approximate complex field with precision prec.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: R.<x> = QQ[]
sage: f = x^5 + x + 17
sage: k = R.quotient(f)
sage: v = k.complex_embeddings(100)
[phi(k.gen(0)^2) for phi in v]
[2.9757207403766761469671194565,
 -2.4088994371613850098316292196 + 1.9025410530350528612407363802*I,
 -2.4088994371613850098316292196 - 1.9025410530350528612407363802*I,
 0.9210390669730469364806949137 - 3.07553118845779473265418086*I,
 0.9210390669730469364806949137 + 3.07553118845779473265418086*I]

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQ[x]; (x,) = R._first_ngens(1)
>>> f = x**Integer(5) + x + Integer(17)
>>> k = R.quotient(f)
>>> v = k.complex_embeddings(Integer(100))
[phi(k.gen(0)**Integer(2)) for phi in v]
[2.9757207403766761469671194565,
 -2.4088994371613850098316292196 + 1.9025410530350528612407363802*I,
 -2.4088994371613850098316292196 - 1.9025410530350528612407363802*I,
 0.9210390669730469364806949137 - 3.07553118845779473265418086*I,
 0.9210390669730469364806949137 + 3.07553118845779473265418086*I]
class sage.rings.polynomial.polynomial_quotient_ring.<code>PolynomialQuotientRing_generic</code>(ring, polynomial, name=None, category=None)

Bases: <code>QuotientRing_generic</code>

Quotient of a univariate polynomial ring by an ideal.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(Integers(8)); R
Univariate Polynomial Ring in x over Ring of integers modulo 8
sage: S.<xbar> = R.quotient(x^2 + 1); S
Univariate Quotient Polynomial Ring in xbar over Ring of integers modulo 8
with modulus x^2 + 1
```

We demonstrate object persistence.

```python
sage: loads(S.dumps()) == S
True
sage: loads(xbar.dumps()) == xbar
True
```

We create some sample homomorphisms;

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: S = R.quotient(x^2 - 4)
sage: f = S.hom([2])
sage: f
Ring morphism:
  From: Univariate Quotient Polynomial Ring in xbar over Integer Ring
         with modulus x^2 - 4
  To:   Integer Ring
  Defn: xbar |--> 2
sage: f(x)
2
sage: f(x^2 - 4)
0
```

(continues on next page)
sage: f(x^2)
4

from sage.all import *
R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
S = R.quo(x^Integer(2) - Integer(4))
f = S.hom([Integer(2)])
f

Ring morphism:
 From: Univariate Quotient Polynomial Ring in xbar over Integer Ring
 with modulus x^2 - 4
 To: Integer Ring
 Defn: xbar |--> 2
f(x)
2
f(x**Integer(2) - Integer(4))
0
f(x**Integer(2))
4

Element
 alias of PolynomialQuotientRingElement

S_class_group (S, proof=True)
 If self is an étale algebra \(D\) over a number field \(K\) (i.e. a quotient of \(K[x]\) by a squarefree polynomial) and \(S\) is a finite set of places of \(K\), return a list of generators of the \(S\)-class group of \(D\).

NOTE:
 Since the ideal function behaves differently over number fields than over polynomial quotient rings (the quotient does not even know its ring of integers), we return a set of pairs \((\text{gen}, \text{order})\), where \text{gen} is a tuple of generators of an ideal \(I\) and \text{order} is the order of \(I\) in the \(S\)-class group.

INPUT:
 • \(S\) – a set of primes of the coefficient ring
 • \text{proof} – if False, assume the GRH in computing the class group

OUTPUT:
 A list of generators of the \(S\)-class group, in the form \((\text{gen}, \text{order})\), where \text{gen} is a tuple of elements generating a fractional ideal \(I\) and \text{order} is the order of \(I\) in the \(S\)-class group.

EXAMPLES:
 A trivial algebra over \(\mathbb{Q}(\sqrt{-5})\) has the same class group as its base:

sage: # needs sage.rings.number_field
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient(x)
sage: S.S_class_group([])
[((2, -a + 1), 2)]

from sage.all import *
needs sage.rings.number_field
K = QuadraticField(-Integer(5), names=('a',)); (a,) = K._first_ngens(1)
When we include the prime \((2, -a + 1)\), the \(S\)-class group becomes trivial:

```python
sage: S.S_class_group([K.ideal(2, -a+1)])
```

Here is an example where the base and the extension both contribute to the class group:

```python
sage: K.<a> = QuadraticField(-5)
sage: K.class_group()
Class group of order 2 with structure C2 of Number Field in a
with defining polynomial x^2 + 5 with a = 2.236067977499790?*I
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient(x**2 + 23)
sage: S.S_class_group([])
[((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6)]
```

Now we take an example over a nontrivial base with two factors, each contributing to the class group:

```python
sage: K.<a> = QuadraticField(-5)
sage: S.S_class_group([K.ideal(2, a+1)])
[((2, -a + 1, 1/2*xbar + 1/2, -1/2*a*xbar + 1/2*a + 1), 6)]
```
By using the ideal \((a)\), we cut the part of the class group coming from \(x^2 + 31\) from 12 to 2, i.e. we lose a generator of order 6 (this was fixed in Issue #14489):

```
sage: S.S_class_group([K.ideal(a)])  # representation varies # not tested
```

```
[(1/4*xbar^2 + 31/4,
 -1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8,
 1/16*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16,
 -1/16*a*xbar^3 + (1/16*a + 1/8)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/8),
 6),
((-1/4*xbar^2 - 23/4,
 1/8*a - 1/8)*xbar^2 + 23/8*a - 23/8,
 -1/16*xbar^3 - 1/16*xbar^2 - 23/16*xbar - 23/16,
 1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8),
 6),
((-5/4*xbar^2 - 115/4,
 1/4*a*xbar^2 + 23/4*a,
 -1/16*xbar^3 - 7/16*xbar^2 - 23/16*xbar - 161/16,
 1/16*a*xbar^3 - 1/16*a*xbar^2 + 23/16*a*xbar - 23/16*a),
 2)]
```
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> S.S_class_group([K.ideal(a)])  # representation varies  # not tested, needs sage.rings.number_field
[((1/4*xbar^2 + 31/4, (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8,
  1/16*a*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16,
  -1/16*a*xbar^3 + (1/16*a + 1/8)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/8),
  6),
((-1/4*xbar^2 - 23/4, (1/8*a - 1/8)*xbar^2 + 23/8*a - 23/8,
  -1/16*a*xbar^3 - 1/16*xbar^2 - 23/16*xbar - 23/16,
  1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8),
  2)]
```

Note that all the returned values live where we expect them to:

```python
sage: # needs sage.rings.number_field
sage: CG = S.S_class_group([[]])
```

S_units(S, proof=True)

If self is an étale algebra D over a number field K (i.e. a quotient of $K[x]$ by a squarefree polynomial) and S is a finite set of places of K, return a list of generators of the group of S-units of D.

INPUT:

- S -- a set of primes of the base field
- proof -- if False, assume the GRH in computing the class group

OUTPUT:

A list of generators of the S-unit group, in the form $(gen, order)$, where gen is a unit of order $order$.

EXAMPLES:

```python
sage: K.<a> = QuadraticField(-3)  # needs sage.rings.number_field
sage: K.unit_group()  # needs sage.rings.number_field
Unit group with structure C6 of Number Field in a with defining polynomial x^2 + 3 with a = 1.732050807568878?*I
```

(continues on next page)
sage: 2*u - 1 in {a, -a}
True
sage: u^6
1
sage: u^3
-1
sage: 2*u^2 + 1 in {a, -a}
True

>>> from sage.all import *
>>> K = QuadraticField(-Integer(3), names=('a',)); (a,) = K._first_ngens(1)#
˓→needs sage.rings.number_field
>>> K.unit_group()
˓→needs sage.rings.number_field
Unit group with structure C6 of Number Field in a
with defining polynomial x^2 + 3 with a = 1.732050807568878?*I

>>> # needs sage.rings.number_field
>>> x = polygen(ZZ, 'x')
>>> K = QQ['x'].quotient(x**Integer(2) + Integer(3), names=('a',)); (a,) = K._
˓→first_ngens(1)
>>> u, o = K.S_units([])[[Integer(0)]]; o
6
>>> Integer(2)*u - Integer(1) in {a, -a}
True
>>> u**Integer(6)
1
>>> u**Integer(3)
-1
>>> Integer(2)*u**Integer(2) + Integer(1) in {a, -a}
True
Polynomials, Release 10.4

>>> K = QuadraticField(-Integer(3), names=('a',)); (a,) = K._first_ngens(1)
>>> y = polygen(K)

Univariate Quotient Polynomial Ring in b over Number Field in a
with defining polynomial x^2 + 3 with a = 1.732050807568878?*I
with modulus y^3 + 5

>>> [u for u, o in L.S_units([]) if o is Infinity]
[(-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2,
 2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2]

Note that all the returned values live where we expect them to:

sage: # needs sage.rings.number_field
sage: U = L.S_units([])
sage: type(U[0][0])
<class sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_field_with_category.element_class'>
sage: type(U[0][1])
<class sage.rings.integer.Integer'>
sage: type(U[1][1])
<class sage.rings.infinity.PlusInfinity'>

>>> from sage.all import *

ambient()

Return the base ring of the polynomial ring, of which this ring is a quotient.

EXAMPLES:

The base ring of \(\mathbb{Z}[z]/(z^3 + z^2 + z + 1) \) is \(\mathbb{Z} \).

sage: R.<z> = PolynomialRing(ZZ)
sage: S.<beta> = R.quo(z^3 + z^2 + z + 1)
Polynomials, Release 10.4

```python
sage: S.base_ring()
Integer Ring

>>> from sage.all import *
>>> R = PolynomialRing(ZZ, names=('z',)); (z,) = R._first_ngens(1)
>>> S = R.quo(z**Integer(3) + z**Integer(2) + z + Integer(1), names=('beta',)); (beta,) = S._first_ngens(1)
>>> S.base_ring()
Integer Ring
```

Next we make a polynomial quotient ring over S and ask for its base ring.

```python
sage: T.<t> = PolynomialRing(S)
sage: W = T.quotient(t^99 + 99)
sage: W.base_ring()
Univariate Quotient Polynomial Ring in beta
   over Integer Ring with modulus z^3 + z^2 + z + 1

>>> from sage.all import *
>>> T = PolynomialRing(S, names=('t',)); (t,) = T._first_ngens(1)
>>> W = T.quotient(t**Integer(99) + Integer(99))
>>> W.base_ring()
Univariate Quotient Polynomial Ring in beta
   over Integer Ring with modulus z^3 + z^2 + z + 1
```

cardinality()

Return the number of elements of this quotient ring.

order is an alias of cardinality.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: R.quo(1).cardinality()
1
sage: R.quo(x^3 - 2).cardinality()
+Infinity
sage: R.quo(1).order()
1
sage: R.quo(x^3 - 2).order()
+Infinity

>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> R.quo(Integer(1)).cardinality()
1
>>> R.quo(x**Integer(3) - Integer(2)).cardinality()
+Infinity
>>> R.quo(Integer(1)).order()
1
>>> R.quo(x**Integer(3) - Integer(2)).order()
+Infinity
```

2.1. Univariate Polynomials and Polynomial Rings
Polynomials, Release 10.4

```python
sage: # needs sage.rings.finite_rings
sage: R.<x> = GF(9, 'a')[]
729
sage: R.quo(2*x^3 + x + 1).cardinality()
729
sage: GF(9, 'a').extension(2*x^3 + x + 1).cardinality()
729
sage: R.quo(2).cardinality()
1
```

```python
>>> from sage.all import *

>>> # needs sage.rings.finite_rings
>>> R = GF(Integer(9), 'a')[x]; (x,) = R._first_ngens(1)
>>> R.quo(Integer(2)*x**Integer(3) + x + Integer(1)).cardinality()
729
>>> GF(Integer(9), 'a').extension(Integer(2)*x**Integer(3) + x + Integer(1)).cardinality()
729
>>> R.quo(Integer(2)).cardinality()
1
```

characteristic()

Return the characteristic of this quotient ring.

This is always the same as the characteristic of the base ring.

EXAMPLES:

```python
sage: R.<z> = PolynomialRing(ZZ)
729
sage: S.<a> = R.quo(z - 19)
729
sage: S.characteristic()
0
sage: R.<x> = PolynomialRing(GF(9, 'a'))
729
sage: S = R.quotient(x^3 + 1)
729
sage: S.characteristic()
3
```

```python
>>> from sage.all import *

>>> R = PolynomialRing(ZZ, names=('z',)); (z,) = R._first_ngens(1)
>>> S = R.quotient(z - Integer(19), names=('a',)); (a,) = S._first_ngens(1)
>>> S.characteristic()
0
```  ```python
>>> R = PolynomialRing(GF(Integer(9), 'a'), names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(3) + Integer(1))
3
```  ```python
>>> S.characteristic()
3
```  ```python
>>> from sage.all import *

>>> R = GF(Integer(9), 'a')[x]; (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(3) + Integer(1))
3
>>> S.characteristic()
3
```

**class_group**(proof=True)

If self is a quotient ring of a polynomial ring over a number field \( K \), by a polynomial of nonzero discriminant, return a list of generators of the class group.

**NOTE:**
Since the ideal function behaves differently over number fields than over polynomial quotient rings (the quotient does not even know its ring of integers), we return a set of pairs \((\text{gen}, \ \text{order})\), where \text{gen} is a tuple of generators of an ideal \(I\) and \text{order} is the order of \(I\) in the class group.

**INPUT:**
- **proof** – if False, assume the GRH in computing the class group

**OUTPUT:**
A list of pairs \((\text{gen}, \ \text{order})\), where \text{gen} is a tuple of elements generating a fractional ideal and \text{order} is the order of \(I\) in the class group.

**EXAMPLES:**

```sage
needs sage.rings.number_field
sage: K.<a> = QuadraticField(-3)
sage: K.class_group()
Class group of order 1 of Number Field in a
with defining polynomial x^2 + 3 with a = 1.732050807568878?I

sage: x = polygen(QQ, 'x')
sage: K.<a> = QQ['x'].quotient(x^2 + 3)
sage: K.class_group()
[]
```

A trivial algebra over \(\mathbb{Q}(\sqrt{-5})\) has the same class group as its base:

```sage
needs sage.rings.number_field
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient(x)
sage: S.class_group()
[((2, -a + 1), 2)]
```

The same algebra constructed in a different way:

```sage
x = polygen(ZZ, 'x')
sage: K.<a> = QQ['x'].quotient(x^2 + 5)
sage: K.class_group()
(continues on next page)
```
Here is an example where the base and the extension both contribute to the class group:

```python
>>> from sage.all import *
>>> x = polygen(ZZ, 'x')
>>> K = QQ['x'].quotient(x**Integer(2) + Integer(5), names=('a',)); (a,) = K._first_ngens(1)
>>> K.class_group() # needs sage.rings.number_field
[((2, a + 1), 2)]
```

Here is an example of a product of number fields, both of which contribute to the class group:

```python
>>> from sage.all import *
>>> R.<x> = QQ[]
>>> S.<xbar> = R.quotient((x^2 + 23) * (x^2 + 47))
>>> S.class_group()
[((1/12*xbar^2 + 47/12, 1/48*xbar^3 - 1/48*xbar^2 + 47/48*xbar - 47/48), 3),
((-1/12*xbar^2 - 23/12, -1/48*xbar^3 - 1/48*xbar^2 - 23/48*xbar - 23/48), 5)]
```

(continues on next page)
Now we take an example over a nontrivial base with two factors, each contributing to the class group:

```python
sage: # needs sage.rings.number_field
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: S.<xbar> = R.quotient((x^2 + 23) * (x^2 + 31))
sage: S.class_group() # not tested

[((1/4*xbar^2 + 31/4,
 (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8,
 1/16*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16,
 -1/16*a*xbar^3 + (1/16*a + 1/8)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/8),
 6),
((-1/4*xbar^2 - 23/4,
 (1/8*a - 1/8)*xbar^2 + 23/8*a - 23/8,
 -1/16*xbar^3 - 1/16*xbar^2 - 23/16*xbar - 23/16,
 1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8),
 6),
((-5/4*xbar^2 - 115/4,
 1/4*a*xbar^2 + 23/4*a,
 -1/16*xbar^3 - 7/16*xbar^2 - 23/16*xbar - 161/16,
 1/16*a*xbar^3 - 1/16*a*xbar^2 + 23/16*a*xbar - 23/16*a),
 2))]
```

Note that all the returned values live where we expect them to:

```python
sage: # needs sage.rings.number_field
sage: CG = S.class_group()
```
sage: type(CG[0][0][1])
<class 'sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_
˓
generic_with_category.element_class'>
sage: type(CG[0][1])
<class 'sage.rings.integer.Integer'>

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> CG = S.class_group()
>>> type(CG[Integer(0)][Integer(0)][Integer(1)])
<class 'sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_
˓
generic_with_category.element_class'>
>>> type(CG[Integer(0)][Integer(1)])
<class 'sage.rings.integer.Integer'>

construction()

Functorial construction of self

EXAMPLES:

sage: P.<t> = ZZ[]
sage: Q = P.quo(5 + t^2)
sage: F, R = Q.construction()
sage: F(R) == Q
True
sage: P.<t> = GF(3)[]
sage: Q = P.quo([2 + t^2])
sage: F, R = Q.construction()
sage: F(R) == Q
True

>>> from sage.all import *
>>> P = ZZ['t']; (t,) = P._first_ngens(1)
>>> Q = P.quo(Integer(5) + t**Integer(2))
>>> F, R = Q.construction()
>>> F(R) == Q
True

>>> P = GF(Integer(3))['t']; (t,) = P._first_ngens(1)
>>> Q = P.quo([Integer(2) + t**Integer(2)])
>>> F, R = Q.construction()
>>> F(R) == Q
True

AUTHOR:
– Simon King (2010-05)

cover_ring()

Return the polynomial ring of which this ring is the quotient.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2 - 2)
sage: S.polynomial_ring()
Univariate Polynomial Ring in x over Rational Field
from sage.all import *

R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
S = R.quotient(x**Integer(2) - Integer(2))
S.polynomial_ring()
Univariate Polynomial Ring in x over Rational Field

```

degree()

Return the degree of this quotient ring. The degree is the degree of the polynomial that we quotiented out by.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(GF(3))
sage: S = R.quotient(x^2005 + 1)
sage: S.degree()
2005
```

discriminant(v=None)

Return the discriminant of this ring over the base ring. This is by definition the discriminant of the polynomial that we quotiented out by.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^3 + x^2 + x + 1)
sage: S.discriminant()
-16
sage: S = R.quotient((x + 1) * (x + 1))
sage: S.discriminant()
0
```

The discriminant of the quotient polynomial ring need not equal the discriminant of the corresponding number field, since the discriminant of a number field is by definition the discriminant of the ring of integers of the number field:

```
sage: S = R.quotient(x^2 - 8)
sage: S.number_field().discriminant()   # needs sage.rings.number_field
8
sage: S.discriminant()
32
```
```
>>> from sage.all import *
>>> S = R.quotient(x**Integer(2) - Integer(8))
>>> S.number_field().discriminant()  
# needs sage.rings.number_field
32
```

`gen(n=0)`

Return the generator of this quotient ring. This is the equivalence class of the image of the generator of the polynomial ring.

EXAMPLES:
```
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2 - 8, 'gamma')
sage: S.gen()
gamma
```

`is_field(proof=True)`

Return whether or not this quotient ring is a field.

EXAMPLES:
```
sage: R.<z> = PolynomialRing(ZZ)
sage: S = R.quo(z^2 - 2)
sage: S.is_field()  
False
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2 - 2)
sage: S.is_field()  
True
```

If `proof` is `True`, requires the `is_irreducible` method of the modulus to be implemented:
```
sage: # needs sage.rings.padics
sage: R1.<x> = Qp(2)[]
sage: F1 = R1.quotient_ring(x^2 + x + 1)
sage: R2.<x> = F1[]
sage: F2 = R2.quotient_ring(x^2 + x + 1)
```
sage: F2.is_field()
Traceback (most recent call last):
...
NotImplementedError: cannot rewrite Univariate Quotient Polynomial Ring in
xbar over 2-adic Field with capped relative precision 20 with modulus
(1 + O(2^20))*x^2 + (1 + O(2^20))*x + 1 + O(2^20) as an isomorphic ring
sage: F2.is_field(proof = False)
False

>>> from sage.all import *
>>> # needs sage.rings.padics
>>> R1 = Qp(Integer(2))['x']; (x,) = R1._first_ngens(1)
>>> F1 = R1.quotient_ring(x**Integer(2) + x + Integer(1))
>>> R2 = F1['x']; (x,) = R2._first_ngens(1)
>>> F2 = R2.quotient_ring(x**Integer(2) + x + Integer(1))
>>> F2.is_field()
Traceback (most recent call last):
...
NotImplementedError: cannot rewrite Univariate Quotient Polynomial Ring in
xbar over 2-adic Field with capped relative precision 20 with modulus
(1 + O(2^20))*x^2 + (1 + O(2^20))*x + 1 + O(2^20) as an isomorphic ring

>>> F2.is_field(proof = False)
False

is_finite()
Return whether or not this quotient ring is finite.

EXAMPLES:
sage: R.<x> = ZZ[]
sage: R.quo(1).is_finite()
True
sage: R.quo(x^3 - 2).is_finite()
False

>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> R.quo(Integer(1)).is_finite()
True
>>> R.quo(x**Integer(3) - Integer(2)).is_finite()
False

sage: R.<x> = GF(9, 'a')[]
needs sage.rings.finite_rings
sage: R.quo(2*x^3 + x + Integer(1)).is_finite()
needs sage.rings.finite_rings
True
sage: R.quo(2).is_finite()
needs sage.rings.finite_rings
True

>>> from sage.all import *
>>> R = GF(Integer(9), 'a')['x']; (x,) = R._first_ngens(1)# needs sage.rings.
finite_rings
>>> R.quo(Integer(2)*x**Integer(3) + x + Integer(1)).is_finite()
...
is_integral_domain (proof=True)

Return whether or not this quotient ring is an integral domain.

EXAMPLES:

```python
sage: R.<z> = PolynomialRing(ZZ)
sage: S = R.quotient(z^2 - z)
sage: S.is_integral_domain()  # proof=True
False
sage: T = R.quotient(z^2 + 1)
sage: T.is_integral_domain()  # proof=True
True
sage: U = R.quotient(-1)
sage: U.is_integral_domain()  # proof=True
False
```

```python
sage: # needs sage.libs.singular
sage: R2.<y> = PolynomialRing(R)
sage: S2 = R2.quotient(z^2 - y^3)
sage: S2.is_integral_domain()  # proof=True
True
sage: S3 = R2.quotient(z^2 - 2*y*z + y^2)
sage: S3.is_integral_domain()  # proof=True
False
sage: R.<z> = PolynomialRing(ZZ.quotient(4))
sage: S = R.quotient(z - 1)
sage: S.is_integral_domain()  # proof=True
False
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(ZZ, names=('z',)); (z,) = R._first_ngens(1)
>>> S = R.quotient(z**Integer(2) - z)
>>> S.is_integral_domain()  # proof=True
False
>>> T = R.quotient(z**Integer(2) + Integer(1))
>>> T.is_integral_domain()  # proof=True
True
>>> U = R.quotient(-Integer(1))
```
>>> U.is_integral_domain()
False

```python
>>> # needs sage.libs.singular
>>> R2 = PolynomialRing(R, names=('y',)); (y,) = R2._first_ngens(1)
>>> S2 = R2.quotient(z**Integer(2) - y**Integer(3))
>>> S2.is_integral_domain()
True
>>> S3 = R2.quotient(z**Integer(2) - Integer(2)*y*z + y**Integer(2))
>>> S3.is_integral_domain()
False
```

krull_dimension()

Return the Krull dimension.

This is the Krull dimension of the base ring, unless the quotient is zero.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: R = PolynomialRing(ZZ, 'x').quotient(x**6 - 1)
sage: R.krull_dimension()
1
sage: R = PolynomialRing(ZZ, 'x').quotient(1)
sage: R.krull_dimension()
-1
```

```python
>>> from sage.all import *
>>> x = polygen(ZZ, 'x')
>>> R = PolynomialRing(ZZ, 'x').quotient(x**Integer(6) - Integer(1))
>>> R.krull_dimension()
1
>>> R = PolynomialRing(ZZ, 'x').quotient(Integer(1))
>>> R.krull_dimension()
-1
```

lift(x)

Return an element of the ambient ring mapping to the given argument.

EXAMPLES:

```python
sage: P.<x> = QQ[]
sage: Q = P.quotient(x^2 + 2)
sage: Q.lift(Q.0^3)
-2*x
sage: Q(-2*x)
-2*xbar
sage: Q.0^3
-2*xbar
```
modulus()

Return the polynomial modulus of this quotient ring.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(GF(3))
sage: S = R.quotient(x^2 - 2)
sage: S.modulus()
x^2 + 1
```

ngens()

Return the number of generators of this quotient ring over the base ring. This function always returns 1.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: S.<y> = PolynomialRing(R)
sage: T.<z> = S.quotient(y + x)
sage: T.ngens()
1
```

number_field()

Return the number field isomorphic to this quotient polynomial ring, if possible.

EXAMPLES:

```python
sage: # needs sage.rings.number_field
sage: R.<x> = PolynomialRing(QQ)
```
```python
sage: S.<alpha> = R.quotient(x^29 - 17*x - 1)
sage: K = S.number_field(); K
Number Field in alpha with defining polynomial x^29 - 17*x - 1
sage: alpha = K.gen()
sage: alpha^29
17*alpha + 1
```

```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(29) - Integer(17)*x - Integer(1), names=('alpha →',)); (alpha,) = S._first_ngens(1)
>>> K = S.number_field(); K
Number Field in alpha with defining polynomial x^29 - 17*x - 1
>>> alpha = K.gen()
>>> alpha**Integer(29)
17*alpha + 1
```

order()

Return the number of elements of this quotient ring.

`order` is an alias of `cardinality`.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: R.quo(1).cardinality()
1
sage: R.quo(x^3 - 2).cardinality()
+Infinity
sage: R.quo(1).order()
1
sage: R.quo(x^3 - 2).order()
+Infinity
```

```python
>>> from sage.all import *
>>> R = ZZ[x]; (x,) = R._first_ngens(1)
>>> R.quo(Integer(1)).cardinality()
1
>>> R.quo(x**Integer(3) - Integer(2)).cardinality()
+Infinity
>>> R.quo(Integer(1)).order()
1
>>> R.quo(x**Integer(3) - Integer(2)).order()
+Infinity
```

```python
sage: # needs sage.rings.finite_rings
sage: R.<x> = GF(9, 'a')[]
sage: R.quo(2*x^3 + x + 1).cardinality()
729
sage: GF(9, 'a').extension(2*x^3 + x + 1).cardinality()
729
sage: R.quo(2).cardinality()
1
```

2.1. Univariate Polynomials and Polynomial Rings
polynomial_ring()

Return the polynomial ring of which this ring is the quotient.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: S = R.quotient(x^2 - 2)
sage: S.polynomial_ring()
Univariate Polynomial Ring in x over Rational Field
```

random_element (degree=None, *args, **kwds)

Return a random element of this quotient ring.

INPUT:

- degree – Optional argument: either an integer for fixing the degree, or a tuple of the minimum and maximum degree. By default the degree is n - 1 with n the degree of the polynomial ring. Note that the degree of the polynomial is fixed before the modulo calculation. So when degree is bigger than the degree of the polynomial ring, the degree of the returned polynomial would be lower than degree.

- *args, **kwds – Arguments for randomization that are passed on to the random_element method of the polynomial ring, and from there to the base ring

OUTPUT:

Element of this quotient ring

EXAMPLES:

```python
sage: # needs sage.modules sage.rings.finite_rings
sage: F1.<a> = GF(2^7)
sage: P1.<x> = F1[]
sage: F2 = F1.extension(x^2 + x + 1, 'u')
sage: F2.random_element().parent() is F2
True
```
Polynomials, Release 10.4

>>> F2.random_element().parent() is F2
True

retract (x)

Return the coercion of x into this polynomial quotient ring.

The rings that coerce into the quotient ring canonically are:

• this ring
• any canonically isomorphic ring
• anything that coerces into the ring of which this is the quotient

selmer_generators (S, m, proof=True)

If self is an étale algebra \(\D\) over a number field \(K\) (i.e. a quotient of \(K[x]\) by a squarefree polynomial) and \(S\) is a finite set of places of \(K\), compute the Selmer group \(\D(S, m)\). This is the subgroup of \(\D^*/(\D^*)^m\) consisting of elements \(a\) such that \(\D(\sqrt[m]{a})/\D\) is unramified at all primes of \(\D\) lying above a place outside of \(S\).

INPUT:

• \(S\) – A set of primes of the coefficient ring (which is a number field).
• \(m\) – A positive integer
• \(proof\) – if False, assume the GRH in computing the class group

OUTPUT:

A list of generators of \(\D(S, m)\).

EXAMPLES:

sage: # needs sage.rings.number_field
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: D.<T> = R.quotient(x)
sage: D.selmer_generators((), 2)
[-1, 2]
sage: D.selmer_generators([K.ideal(2, -a + 1)], 2)
[2, -1]
sage: D.selmer_generators([K.ideal(2, -a + 1), K.ideal(3, a + 1)], 2)
[2, a + 1, -1]
sage: D.selmer_generators([K.ideal(2, -a + 1), K.ideal(3, a + 1)], 4)
[2, a + 1, -1]
sage: D.selmer_generators([K.ideal(2, -a + 1)], 3)
[2]
sage: D.selmer_generators([K.ideal(2, -a + 1), K.ideal(3, a + 1)], 3)
[2, a + 1]
sage: D.selmer_generators([K.ideal(2, -a + 1),
 ...: K.ideal(3, a + 1),
 ...: K.ideal(a)], 3)
[2, a + 1, -a]

2.1. Univariate Polynomials and Polynomial Rings
Polynomials, Release 10.4

selmer_group \((S, m, proof=True)\)

If \(S\) is an étale algebra \(D\) over a number field \(K\) (i.e. a quotient of \(K[x]\) by a squarefree polynomial) and \(S\) is a finite set of places of \(K\), compute the Selmer group \(D(S, m)\). This is the subgroup of \(D^*/(D^*)^m\) consisting of elements \(a\) such that \(D(\sqrt{a})/D\) is unramified at all primes of \(D\) lying above a place outside of \(S\).

INPUT:

- \(S\) – A set of primes of the coefficient ring (which is a number field).
- \(m\) – a positive integer
- \(proof\) – if False, assume the GRH in computing the class group

OUTPUT:

A list of generators of \(D(S, m)\).

EXAMPLES:

```python
sage: # needs sage.rings.number_field
sage: K.<a> = QuadraticField(-5)
sage: R.<x> = K[]
sage: D.<T> = R.quotient(x)
sage: D.selmer_generators((), 2)
[[-1, 2]
 sage: D.selmer_generators([(K.ideal(2, -a + Integer(1))], 2)
 [2, -1]
 sage: D.selmer_generators([(K.ideal(2, -a + Integer(1)), K.ideal(Integer(3), a + Integer(1))], 2)
 [2, a + 1, -1]
 sage: D.selmer_generators([(K.ideal(2, -a + Integer(1)), K.ideal=Integer(3), a + Integer(1))], 2)
 [2, a + 1]
 sage: D.selmer_generators([(K.ideal(2, -a + Integer(1)), K.ideal=Integer(3), a + Integer(1))], 2)
 [2, a + 1, a + 1, -a]
```

(continues on next page)
units \((\text{proof}=\text{True})\)

If this quotient ring is over a number field \(K\), by a polynomial of nonzero discriminant, returns a list of generators of the units.

INPUT:

\begin{itemize}
 \item \text{proof} -- if \text{False}, assume the GRH in computing the class group
\end{itemize}

OUTPUT:

A list of generators of the unit group, in the form \((\text{gen}, \text{order})\), where \text{gen} is a unit of order \text{order}.

EXAMPLES:

\begin{verbatim}
sage: K.<a> = QuadraticField(-3) # needs sage.rings.number_field
sage: K.unit_group() # needs sage.rings.number_field
Unit group with structure C6 of
Number Field in a with defining polynomial x^2 + 3 with a = 1.
732050807568878?*I
sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, 'x')
sage: K.<a> = QQ['x'].quotient(x^2 + 3)
sage: u = K.units()[0]
sage: 2*u - 1 in {a, -a}
True
sage: u^6
1
\end{verbatim}

(continues on next page)
Polynomials, Release 10.4

```python
sage: u^3
-1
sage: 2*u^2 + 1 in {a, -a}
True
sage: x = polygen(ZZ, 'x')
sage: K.<a> = QQ['x'].quotient(x^2 + 5)
sage: K.units()
[(-1, 2)]

>>> from sage.all import *
>>> K = QuadraticField(-Integer(3), names=(a,)); (a,) = K._first_ngens(1) # needs sage.rings.number_field
>>> K.unit_group() # needs sage.rings.number_field
Unit group with structure C6 of Number Field in a with defining polynomial x^2 + 3 with a = 1.732050807568878?*I

>>> # needs sage.rings.number_field
>>> x = polygen(ZZ, 'x')
>>> K = QQ['x'].quotient(x**Integer(2) + Integer(3), names=('a',)); (a,) = K._first_ngens(1)
>>> u = K.units()[Integer(0)][Integer(0)]
>>> Integer(2)*u - Integer(1) in {a, -a}
True
>>> u**Integer(6)
1
>>> u**Integer(3)
-1
>>> Integer(2)*u**Integer(2) + Integer(1) in {a, -a}
True
>>> x = polygen(ZZ, 'x')
>>> K = QQ['x'].quotient(x**Integer(2) + Integer(5), names=('a',)); (a,) = K._first_ngens(1)
>>> K.units()
[(-1, 2)]

sage: # needs sage.rings.number_field
sage: K.<a> = QuadraticField(-3)
sage: y = polygen(K)
sage: L.<b> = K[y].quotient(y^3 + 5); L
Univariate Quotient Polynomial Ring in b over Number Field in a with defining polynomial x^2 + 3 with a = 1.732050807568878?*I with modulus y^3 + 5
sage: [u for u, o in L.units() if o is Infinity]
[(-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2, 2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2]
sage: L.<b> = K.extension(y^3 + 5)
sage: L.unit_group()
Unit group with structure C6 x Z x Z of Number Field in b with defining polynomial x^3 + 5 over its base field
sage: L.unit_group().gens() # abstract generators
(u0, u1, u2)
sage: L.unit_group().gens_values()[1:]
[(-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2, 2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2]
```
```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> K = QuadraticField(-Integer(3), names=('a',)); (a,) = K._first_ngens(1)
>>> y = polygen(K)
>>> L = K['y'].quotient(y**Integer(3) + Integer(5), names=('b',)); (b,) = L._
˓→first_ngens(1); L
Univariate Quotient Polynomial Ring in b over Number Field in a
with defining polynomial x^2 + 3 with a = 1.732050807568878?*I
with modulus y^3 + 5
>>> [u for u, o in L.units() if o is Infinity]
[(-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2,
 2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2]
>>> L = K.extension(y**Integer(3) + Integer(5), names=('b',)); (b,) = L._
˓→first_ngens(1)
>>> L.unit_group()
Unit group with structure C6 x Z x Z of
Number Field in b with defining polynomial x^3 + 5 over its base field
>>> L.unit_group().gens()  # abstract generators
(u0, u1, u2)
>>> L.unit_group().gens_values()[Integer(1):]
[(-1/3*a - 1)*b^2 - 4/3*a*b - 5/6*a + 7/2,
 2/3*a*b^2 + (2/3*a - 2)*b - 5/6*a - 7/2]
```

Note that all the returned values live where we expect them to:

```python
sage: # needs sage.rings.number_field
sage: L.<b> = K['y'].quotient(y^3 + 5)
sage: U = L.units()
sage: type(U[0][0])  # abstract generators
<class 'sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_field_with_category.element_class'>
sage: type(U[0][1])
<class 'sage.rings.integer.Integer'>
sage: type(U[1][1])
<class 'sage.rings.infinity.PlusInfinity'>
```

```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> L = K['y'].quotient(y**Integer(3) + Integer(5), names=('b',)); (b,) = L._
˓→first_ngens(1)
>>> U = L.units()
>>> type(U[Integer(0)][Integer(0)])
<class 'sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_field_with_category.element_class'>
>>> type(U[Integer(0)][Integer(1)])
<class 'sage.rings.integer.Integer'>
>>> type(U[Integer(1)][Integer(1)])
<class 'sage.rings.infinity.PlusInfinity'>
```
2.1.23 Elements of Quotients of Univariate Polynomial Rings

EXAMPLES: We create a quotient of a univariate polynomial ring over \(\mathbb{Z} \).

```python
sage: R.<x> = ZZ[]  
sage: S.<a> = R.quotient(x^3 + 3*x - 1)  
sage: 2 * a^3  
-6*a + 2
```

Next we make a univariate polynomial ring over \(\mathbb{Z}[x]/(x^3 + 3x - 1) \).

```python
sage: S1.<y> = S[]  
>>> from sage.all import *  
>>> S1 = S[y]; (y,) = S1._first_ngens(1)
```

And, we quotient out that by \(y^2 + a \).

```python
sage: T.<z> = S1.quotient(y^2 + a)  
>>> from sage.all import *  
>>> T = S1.quotient(y**Integer(2) + a, names=('z',)); (z,) = T._first_ngens(1)
```

In the quotient \(z^2 \) is \(-a\).

```python
sage: z^2  
-a
```

And since \(a^3 = -3x + 1 \), we have:

```python
sage: z^6  
3*a - 1
```

```python
sage: R.<x> = PolynomialRing(Integers(9))  
sage: S.<a> = R.quotient(x^4 + 2*x^3 + x + 2)  
sage: a^100  
7*a^3 + 8*a + 7
```

```python
>>> from sage.all import *  
>>> R = PolynomialRing(Integers(Integer(9)), names=('x',)); (x,) = R._first_ngens(1)  
```
S = R.quotient(x**Integer(4) + Integer(2)*x**Integer(3) + x + Integer(2), names=(˓→'a',)); (a,) = S._first_ngens(1)
>>> a**Integer(100)
7*a^3 + 8*a + 7

For the purposes of comparison in Sage the quotient element a^3 is equal to x^3. This is because when the comparison is performed, the right element is coerced into the parent of the left element, and x^3 coerces to a^3.

AUTHORS:

• William Stein

class sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement

Bases: Polynomial_singular_repr, CommutativeRingElement

Element of a quotient of a polynomial ring.

EXAMPLES:
sage: P.<x> = QQ[]
sage: Q.<xi> = P.quo([(x^2 + 1)])
sage: xi^2
-1
sage: singular(xi) # needs sage.libs.singular
→ needs sage.libs.singular
xi
sage: (singular(xi)*singular(xi)).NF('std(0)') # needs sage.libs.singular
→ needs sage.libs.singular
-1

```python
>>> from sage.all import *
>>> P = QQ['x']; (x,) = P._first_ngens(1)
>>> Q = P.quo([(x**Integer(2) + Integer(1))], names=('xi',)); (xi,) = Q._first_ngens(1)
>>> xi**Integer(2)
-1
>>> singular(xi)  # needs sage.libs.singular
→ needs sage.libs.singular
xi
>>> (singular(xi)*singular(xi)).NF('std(0)')  # needs sage.libs.singular
→ needs sage.libs.singular
-1
```

charpoly (var)

The characteristic polynomial of this element, which is by definition the characteristic polynomial of right multiplication by this element.

INPUT:

- **var** = string; the variable name

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 -389*x^2 + 2*x - 5)
sage: a.charpoly('X')  # needs sage.modules
→ X^3 - 389*X^2 + 2*X - 5
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x^3 -Integer(389)*x^2 + Integer(2)*x -Integer(5), names=('a',)); (a,) = S._first_ngens(1)
>>> a.charpoly('X')  # needs sage.modules
→ X^3 - 389*X^2 + 2*X - 5
```

fcp (var='x')

Return the factorization of the characteristic polynomial of this element.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 -389*x^2 + 2*x - 5)
sage: a.fcp('x')  # needs sage.modules
(continues on next page)```
x^3 - 389*x^2 + 2*x - 5
sage: S(1).fcp('y')
needs sage.modules
(y - 1)^3

>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(3) - Integer(389)*x**Integer(2) + Integer(2)*x - Integer(5), names=('a',)); (a,) = S._first_ngens(1)
>>> a.fcp('x')
needs sage.modules
x^3 - 389*x^2 + 2*x - 5
>>> S(Integer(1)).fcp('y')
needs sage.modules
(y - 1)^3

field_extension(names)

Given a polynomial with base ring a quotient ring, return a 3-tuple: a number field defined by the same
polynomial, a homomorphism from its parent to the number field sending the generators to one another, and
the inverse isomorphism.

INPUT:

- names – name of generator of output field

OUTPUT:

- field
- homomorphism from self to field
- homomorphism from field to self

EXAMPLES:

sage: # needs sage.rings.number_field
sage: R.<x> = PolynomialRing(QQ)
sage: S.<alpha> = R.quotient(x^3 - 2)
sage: F.<a>, f, g = alpha.field_extension()

sage: F
Number Field in a with defining polynomial x^3 - 2
sage: a = F.gen()

sage: f(alpha)
a
sage: g(a)
alpha

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(3) - Integer(2), names=('alpha',)); (alpha,) = S._first_ngens(1)
>>> F, f, g = alpha.field_extension(names=('a',)); (a,) = F._first_ngens(1)
>>> F
Number Field in a with defining polynomial x^3 - 2
>>> a = F.gen()

(continues on next page)
Over a finite field, the corresponding field extension is not a number field:

```python
>>> g(a)
alpha

| sage: # needs sage.rings.finite_rings |
| sage: R.<x> = GF(25,'b')['x'] |
| sage: S.<a> = R.quo(x^3 + 2*x + 1) |
| sage: F., g, h = a.field_extension() |
| sage: h(b^2 + 3) |
| a^2 + 3 |
| sage: g(x^2 + 2) |
| b^2 + 2 |
```

We do an example involving a relative number field:

```python
>>> from sage.all import * |
>>> # needs sage.rings.finite_rings |
>>> R = GF(Integer(25),'b')['x']; (x,) = R._first_ngens(1) |
>>> S = R.quo(x**Integer(3) + Integer(2)*x + Integer(1), names=('a',)); (a,) → S._first_ngens(1) |
>>> F, g, h = a.field_extension(names=('b',)); (b,) = F._first_ngens(1) |
>>> h(b^*Integer(2) + Integer(3)) |
| a^2 + 3 |
>>> g(x**Integer(2) + Integer(2)) |
| b^2 + 2 |
```

Another more awkward example:

```python
>>> from sage.all import * |
>>> # needs sage.rings.finite_rings |
>>> R = QQ['x']; (x,) = R._first_ngens(1) |
>>> K = NumberField(x**Integer(3) - Integer(2), names=('a',)); (a,) = K._first_ngens(1) |
>>> S = K['X']; (X,) = S._first_ngens(1) |
>>> Q = S.quo(X**Integer(3) + Integer(2)*X + Integer(1), names=('b',)); (b,) → Q._first_ngens(1) |
>>> F, g, h = b.field_extension('c') |

An example of a relative number field:

```python
>>> R.<x> = QQ['x'] |
>>> K.<a> = NumberField(x^3 - 2) |
>>> S.<X> = K['X'] |
>>> f = (X+a)^3 + 2*(X+a) + 1 |
>>> f |
| X^3 + 3*a*X^2 + (3*a^2 + 2)*X + 2*a + 3 |
>>> Q.<z> = S.quo(f) |
>>> F.<w>, g, h = z.field_extension() |
>>> c = g(z) |
```
AUTHORS:

- Craig Citro (2006-08-06)
- William Stein (2006-08-06)

is_unit()

Return True if self is invertible.

Warning: Only implemented when the base ring is a field.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: S.<y> = R.quotient(x^2 + 2*x + 1)
sage: (2*y).is_unit()
True
sage: (y + 1).is_unit()
False
```

```python
from sage.all import *
R = QQ['x']; (x,) = R._first_ngens(1)
S = R.quotient(x^2 + 2*x + 1, names=('y',)); (y,) = S._first_ngens(1)
(Integer(2)*y).is_unit()
True
(y + Integer(1)).is_unit()
False
```
lift()
Return lift of this polynomial quotient ring element to the unique equivalent polynomial of degree less than
the modulus.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 - 2)
sage: b = a^2 - 3
sage: b
a^2 - 3
sage: b.lift()
x^2 - 3
```

list (copy=True)
Return list of the elements of self, of length the same as the degree of the quotient polynomial ring.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 + 2*x - 5)
sage: a^10
-134*a^2 - 35*a + 300
sage: (a^10).list()
[300, -35, -134]
```

matrix()
The matrix of right multiplication by this element on the power basis for the quotient ring.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 + 2*x - 5)
sage: a.matrix()  # needs sage.modules
[ 0  1  0]
[ 0  0  1]
[ 5 -2  0]
```
minpoly()

The minimal polynomial of this element, which is by definition the minimal polynomial of the `matrix()`

ALGORITHM: Use `minpoly_mod()` if possible, otherwise compute the minimal polynomial of the `ma-

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 + 2*x - 5)
sage: (a + 123).minpoly()
# needs sage.modules
x^3 - 369*x^2 + 45389*x - 1861118
sage: (a + 123).matrix().minpoly()
# needs sage.modules
x^3 - 369*x^2 + 45389*x - 1861118
```

One useful application of this function is to compute a minimal polynomial of a finite-field element over an
intermediate extension, rather than the absolute minimal polynomial over the prime field:

```python
sage: # needs sage.rings.finite_rings
sage: F2.<i> = GF((431,2), modulus=[1,0,2])
sage: F6.<u> = F2.extension(3)
sage: (u + 1).minpoly()
# needs sage.modules
x^3 + (396*i + 428)*x^2 + (80*i + 39)*x + 9*i + 178
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

```python
>>> F6 = F2.extension(Integer(3), names=('u',)); (u,) = F6._first_ngens(1)
>>> (u + Integer(1)).minpoly()  # needs sage.modules
x^6 + 425*x^5 + 19*x^4 + 125*x^3 + 189*x^2 + 239*x + 302
>>> ext = F6.over(F2)  # indirect doctest
>>> ext(u + Integer(1)).minpoly()  # needs sage.modules # random
x^3 + (396*i + 428)*x^2 + (80*i + 39)*x + 9*i + 178
```

`norm()`
The norm of this element, which is the determinant of the matrix of right multiplication by this element.

```
EXAMPLES:
```
```python
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 - 389*x^2 + 2*x - 5)
sage: a.norm()  # needs sage.modules
5
```

`rational_reconstruction(*args, **kwargs)`
Compute a rational reconstruction of this polynomial quotient ring element to its cover ring.
This method is a thin convenience wrapper around `Polynomial.rational_reconstruction()`.

```
EXAMPLES:
```
```python
sage: # needs sage.rings.finite_rings
sage: R.<x> = GF(65537)[]
sage: m = (x^11 + 25345*x^10 + 10956*x^9 + 13873*x^8 + 23962*x^7 + 17496*x^6 + 30348*x^5 + 7440*x^4 + 65438*x^3 + 7676*x^2 + 54266*x + 47805)
sage: f = (20437*x^10 + 62630*x^9 + 63241*x^8 + 12820*x^7 + 42171*x^6 + 63091*x^5 + 15288*x^4 + 32516*x^3 + 2181*x^2 + 45236*x + 2447)
sage: f_mod_m = R.quotient(m)(f)
sage: f_mod_m.rational_reconstruction()
(51388*x^5 + 29141*x^4 + 59341*x^3 + 7034*x^2 + 14152*x + 23746, x^5 + 15208*x^4 + 19504*x^3 + 20457*x^2 + 11180*x + 28352)
```
trace()

The trace of this element, which is the trace of the matrix of right multiplication by this element.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 - 389*x^2 + 2*x - 5)
sage: a.trace()
```

2.1.24 Polynomial Compilers

AUTHORS:

- Tom Boothby, initial design & implementation
- Robert Bradshaw, bug fixes / suggested & assisted with significant design improvements

```
class sage.rings.polynomial.polynomial_compiled.CompiledPolynomialFunction
```

Builds a reasonably optimized directed acyclic graph representation for a given polynomial. A CompiledPolynomialFunction is callable from python, though it is a little faster to call the eval function from pyrex.

This class is not intended to be called by a user, rather, it is intended to improve the performance of immutable polynomial objects.

Todo:

- Recursive calling
- Faster casting of coefficients / argument
- Multivariate polynomials
• Cython implementation of Pippenger’s Algorithm that doesn’t depend heavily upon dicts.
• Computation of parameter sequence suggested by Pippenger
• Univariate exponentiation can use Brauer’s method to improve extremely sparse polynomials of very high degree

```
class sage.rings.polynomial.polynomial_compiled.abc_pd
    Bases: binary_pd

class sage.rings.polynomial.polynomial_compiled.add_pd
    Bases: binary_pd

class sage.rings.polynomial.polynomial_compiled.binary_pd
    Bases: generic_pd

class sage.rings.polynomial.polynomial_compiled.coeff_pd
    Bases: generic_pd

class sage.rings.polynomial.polynomial_compiled.dummy_pd
    Bases: generic_pd

class sage.rings.polynomial.polynomial_compiled.generic_pd
    Bases: object

class sage.rings.polynomial.polynomial_compiled.mul_pd
    Bases: binary_pd

class sage.rings.polynomial.polynomial_compiled.pow_pd
    Bases: unary_pd

class sage.rings.polynomial.polynomial_compiled.sqr_pd
    Bases: unary_pd

class sage.rings.polynomial.polynomial_compiled.unary_pd
    Bases: generic_pd

class sage.rings.polynomial.polynomial_compiled.univar_pd
    Bases: generic_pd

class sage.rings.polynomial.polynomial_compiled.var_pd
    Bases: generic_pd
```

2.1.25 Polynomial multiplication by Kronecker substitution

2.1.26 Integer-valued polynomial rings

AUTHORS:

• Frédéric Chapoton (2023-03): Initial version

```
class sage.rings.polynomial.integer_valued_polynomials.IntegerValuedPolynomialRing(R)
    Bases: UniqueRepresentation, Parent

The integer-valued polynomial ring over a base ring $R$.

Integer-valued polynomial rings are commutative and associative algebras, with a basis indexed by non-negative integers.
```
There are two natural bases, made of the sequence $\binom{x^n}{n}$ for $n \geq 0$ (the binomial basis) and of the other sequence $\binom{x+n}{n}$ for $n \geq 0$ (the shifted basis).

These two bases are available as follows:

```python
sage: B = IntegerValuedPolynomialRing(QQ).Binomial()
sage: S = IntegerValuedPolynomialRing(QQ).Shifted()
```

or by using the shortcuts:

```python
sage: B = IntegerValuedPolynomialRing(QQ).B()
sage: S = IntegerValuedPolynomialRing(QQ).S()
```

There is a conversion formula between the two bases:

$$\binom{x}{i} = \sum_{k=0}^{i} (-1)^{i-k} \binom{i}{k} \binom{x+k}{k}$$

with inverse:

$$\binom{x+i}{i} = \sum_{k=0}^{i} \binom{i}{k} \binom{x}{k}.$$
>>> from sage.all import *
>>> F = IntegerValuedPolynomialRing(ZZ).S()
>>> B = F.basis()
>>> (Integer(3)*B[Integer(4)] + Integer(6)*B[Integer(7)]).content()
3

polynomial()

Convert to a polynomial in \(x \).

EXAMPLES:

```python
sage: F = IntegerValuedPolynomialRing(ZZ).S()
sage: B = F.gen()
sage: (B+1).polynomial()
x + 2
```

```python
sage: F = IntegerValuedPolynomialRing(ZZ).B()
sage: B = F.gen()
sage: (B+1).polynomial()
x + 1
```

>>> from sage.all import *
>>> F = IntegerValuedPolynomialRing(ZZ).S()
>>> B = F.gen()
>>> (B+Integer(1)).polynomial()
x + 2
```
Return the sum of coefficients.

In the shifted basis, this is the evaluation at \( x = 0 \).

**EXAMPLES:**

```python
sage: F = IntegerValuedPolynomialRing(ZZ).S()
sage: B = F.basis()
sage: (B[2]*B[4]).sum_of_coefficients()
1
```

```python
>>> from sage.all import *
>>> F = IntegerValuedPolynomialRing(ZZ).S()
>>> B = F.basis()
>>> (B[Integer(2)]*B[Integer(4)]).sum_of_coefficients()
1
```

class **ParentMethods**

**Bases:** object

**algebra_generators()**

Return the generators of this algebra.

**EXAMPLES:**

```python
sage: A = IntegerValuedPolynomialRing(ZZ).S(); A
Integer-Valued Polynomial Ring over Integer Ring
in the shifted basis
sage: A.algebra_generators()
Family (S[1],)
```

```python
>>> from sage.all import *
>>> A = IntegerValuedPolynomialRing(ZZ).S(); A
Integer-Valued Polynomial Ring over Integer Ring
in the shifted basis
>>> A.algebra_generators()
Family (S[1],)
```

**degree_on_basis\((m)\)**

Return the degree of the basis element indexed by \( m \).

**EXAMPLES:**

```python
sage: A = IntegerValuedPolynomialRing(QQ).S()
sage: A.degree_on_basis(4)
4
```

```python
>>> from sage.all import *
>>> A = IntegerValuedPolynomialRing(QQ).S()
>>> A.degree_on_basis(Integer(4))
4
```

**from_polynomial\((p)\)**

Convert a polynomial into the ring of integer-valued polynomials.

This raises a `ValueError` if this is not possible.

**INPUT:**
• p – a polynomial in one variable

**EXAMPLES:**

```python
sage: A = IntegerValuedPolynomialRing(ZZ).S()
sage: S = A.basis()
sage: S[5].polynomial()
1/120*x^5 + 1/8*x^4 + 17/24*x^3 + 15/8*x^2 + 137/60*x + 1
sage: A.from_polynomial(_)
S[5]
sage: x = polygen(QQ, 'x')
sage: A.from_polynomial(x)
-S[0] + S[1]
```

```python
sage: A = IntegerValuedPolynomialRing(ZZ).B()
sage: B = A.basis()
sage: B[5].polynomial()
1/120*x^5 - 1/12*x^4 + 7/24*x^3 - 5/12*x^2 + 1/5*x
sage: A.from_polynomial(_)
B[5]
sage: x = polygen(QQ, 'x')
sage: A.from_polynomial(x)
B[1]
```

```python
>>> from sage.all import *
>>> A = IntegerValuedPolynomialRing(ZZ).S()
>>> S = A.basis()
>>> S[Integer(5)].polynomial()
1/120*x^5 + 1/8*x^4 + 17/24*x^3 + 15/8*x^2 + 137/60*x + 1
>>> A.from_polynomial(_)
S[5]
>>> x = polygen(QQ, 'x')
>>> A.from_polynomial(x)
-S[0] + S[1]
```

```python
>>> A = IntegerValuedPolynomialRing(ZZ).B()
>>> B = A.basis()
>>> B[Integer(5)].polynomial()
1/120*x^5 - 1/12*x^4 + 7/24*x^3 - 5/12*x^2 + 1/5*x
>>> A.from_polynomial(_)
B[5]
>>> x = polygen(QQ, 'x')
>>> A.from_polynomial(x)
B[1]
```

---

**gen** *(i=0)*

Return the generator of this algebra.

The optional argument is ignored.

**EXAMPLES:**

```python
sage: F = IntegerValuedPolynomialRing(ZZ).B()
sage: F.gen()
B[1]
```

```python
>>> from sage.all import *
>>> F = IntegerValuedPolynomialRing(ZZ).B()
```

(continues on next page)
\texttt{F.gen()}

\texttt{B[1]}

\texttt{B[1]}

\texttt{gens()}

Return the generators of this algebra.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: A = IntegerValuedPolynomialRing(ZZ).S(); A
Integer-Valued Polynomial Ring over Integer Ring
in the shifted basis
sage: A.algebra_generators()
Family \( (S[1],) \)

>>> from sage.all import *

>>> A = IntegerValuedPolynomialRing(ZZ).S(); A
Integer-Valued Polynomial Ring over Integer Ring
in the shifted basis

>>> A.algebra_generators()
Family \( (S[1],) \)
\end{verbatim}

\texttt{one_basis()}

Return the number 0, which index the unit of this algebra.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: A = IntegerValuedPolynomialRing(QQ).S()
sage: A.one_basis()
0
sage: A.one()
S[0]

>>> from sage.all import *

>>> A = IntegerValuedPolynomialRing(QQ).S()

>>> A.one_basis()
0

>>> A.one()
S[0]
\end{verbatim}

\texttt{super_categories()}

Return the super-categories of \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: A = IntegerValuedPolynomialRing(QQ); A
Integer-Valued Polynomial Ring over Rational Field
sage: C = A.Bases(); C
Category of bases of Integer-Valued Polynomial Ring over Rational Field
sage: C.super_categories()
[Category of realizations of Integer-Valued Polynomial Ring over Rational Field,
 Join of Category of algebras with basis over Rational Field and
 Category of filtered algebras over Rational Field and
 Category of commutative algebras over Rational Field and
 Category of realizations of unital magmas]
\end{verbatim}
```python
>>> from sage.all import *

>>> A = IntegerValuedPolynomialRing(QQ); A
Integer-Valued Polynomial Ring over Rational Field
>>> C = A.Bases(); C
Category of bases of Integer-Valued Polynomial Ring over Rational Field
>>> C.super_categories()
[Category of realizations of Integer-Valued Polynomial Ring over Rational Field,
 Join of Category of algebras with basis over Rational Field and
 Category of filtered algebras over Rational Field and
 Category of commutative algebras over Rational Field and
 Category of realizations of unital magmas]

class Binomial(A)
 Bases: CombinatorialFreeModule, BindableClass

The integer-valued polynomial ring in the binomial basis.

The basis used here is given by $B[i] = \binom{i}{j}$ for $i \in \mathbb{N}$.

Assuming $n_1 \leq n_2$, the product of two monomials $B[n_1] \cdot B[n_2]$ is given by the sum

$$\sum_{k=0}^{n_1} \binom{n_1}{k} \binom{n_1 + n_2 - k}{n_1} B[n_1 + n_2 - k].$$

The product of two monomials is therefore a positive linear combination of monomials.

EXAMPLES:

```
Integer-valued polynomial rings commute with their base ring:

```python
sage: K = IntegerValuedPolynomialRing(QQ).B()
sage: a = K.gen()
sage: K.is_commutative()
True
sage: L = IntegerValuedPolynomialRing(K).B()
sage: c = L.gen()
sage: L.is_commutative()
True
sage: s = a * c**3; s
sage: parent(s)
Integer-Valued Polynomial Ring over Integer-Valued Polynomial Ring over Rational Field in the binomial basis in the binomial basis
```

Integer-valued polynomial rings are commutative:

```python
sage: c**3 * a == c * a * c * c
True

>>> from sage.all import *

>>> c**Integer(3) * a == c * a * c * c
True
```

We can also manipulate elements in the basis:
```python
sage: F = IntegerValuedPolynomialRing(QQ).B()
sage: B = F.basis()
```

and coerce elements from our base field:

```python
sage: F(Integer(4)/Integer(3))
4/3*B[0]
```

class Element

Bases: IndexedFreeModuleElement

```
variable_shift (k=1)

Return the image by the shift of variables.

On polynomials, the action is the shift on variables \(x \mapsto x + k \).

INPUT:

• \(k \) – integer (default: 1)

EXAMPLES:
```
sage: A = IntegerValuedPolynomialRing(ZZ).B()
sage: B = A.basis()
sage: B[5].variable_shift()
sage: B[5].variable_shift(-1)
```
```
product_on_basis (n1, n2)

Return the product of basis elements \( n1 \) and \( n2 \).

INPUT:

• \( n1, n2 \) – integers

EXAMPLES:
```
```
sage: A = IntegerValuedPolynomialRing(QQ).B()
sage: A.product_on_basis(0, 1)
B[1]
sage: A.product_on_basis(1, 2)

>>> from sage.all import *
>>> A = IntegerValuedPolynomialRing(QQ).B()
>>> A.product_on_basis(Integer(0), Integer(1))
B[1]
>>> A.product_on_basis(Integer(1), Integer(2))

S
alias of Shifted
class Shifted(A)

Bases: CombinatorialFreeModule, BindableClass

The integer-valued polynomial ring in the shifted basis.

The basis used here is given by $S[i] = \binom{i+x}{i}$ for $i \in \mathbb{N}$.

Assuming $n_1 \leq n_2$, the product of two monomials $S[n_1] \cdot S[n_2]$ is given by the sum

$$
\sum_{k=0}^{n_1} (-1)^k \binom{n_1}{k} \binom{n_1 + n_2 - k}{n_1} S[n_1 + n_2 - k].
$$

EXAMPLES:

sage: F = IntegerValuedPolynomialRing(QQ).S(); F
Integer-Valued Polynomial Ring over Rational Field
in the shifted basis
sage: F.gen()
S[1]

sage: S = IntegerValuedPolynomialRing(ZZ).S(); S
Integer-Valued Polynomial Ring over Integer Ring
in the shifted basis
sage: S.base_ring()
Integer Ring

sage: G = IntegerValuedPolynomialRing(S).S(); G
Integer-Valued Polynomial Ring over Integer-Valued Polynomial
Ring over Integer Ring in the shifted basis in the shifted basis
sage: G.base_ring()
Integer-Valued Polynomial Ring over Integer Ring
in the shifted basis

>>> from sage.all import *
>>> F = IntegerValuedPolynomialRing(QQ).S(); F
Integer-Valued Polynomial Ring over Rational Field
in the shifted basis

>>> F.gen()
S[1]
Polynomials, Release 10.4

Integer-valued polynomial rings commute with their base ring:

```
sage: K = IntegerValuedPolynomialRing(QQ).S()
sage: a = K.gen()
sage: K.is_commutative()
True
sage: L = IntegerValuedPolynomialRing(K).S()
sage: c = L.gen()
sage: L.is_commutative()
True
sage: s = a * c**Integer(3); s
sage: parent(s)
Integer-Valued Polynomial Ring over Integer-Valued Polynomial Ring over Rational Field in the shifted basis in the shifted basis
```

Integer-valued polynomial rings are commutative:

```
sage: c**3 * a == c * a * c * c
True
>>> from sage.all import *

>>> c**Integer(3) * a == c * a * c * c
True
```

We can also manipulate elements in the basis and coerce elements from our base field:
```python
sage: F = IntegerValuedPolynomialRing(QQ).S()
sage: S = F.basis()
```
fraction()

Return the generating series of values as a fraction.

In the case of Ehrhart polynomials, this is known as the Ehrhart series.

See also: h_vector(), h_polynomial()

EXAMPLES:

```python
sage: A = IntegerValuedPolynomialRing(ZZ).S()
sage: ex = A.monomial(4)
sage: f = ex.fraction(); f
1/(-t^5 + 5*t^4 - 10*t^3 + 10*t^2 - 5*t + 1)
sage: F = LazyPowerSeriesRing(QQ, 't')
sage: F(f)
1 + 5*t + 15*t^2 + 35*t^3 + 70*t^4 + 126*t^5 + 210*t^6 + O(t^7)
sage: poly = ex.polynomial()
sage: [poly(i) for i in range(6)]
[1, 5, 15, 35, 70, 126]
sage: y = polygen(QQ, 'y')
sage: penta = A.from_polynomial(7/2*y^2 + 7/2*y + 1)
sage: penta.fraction()
(t^2 + 5*t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
```

h_polynomial()

Return the h-vector as a polynomial.

See also: h_vector(), fraction()
EXAMPLES:

```python
sage: x = polygen(QQ,'x')
sage: A = IntegerValuedPolynomialRing(ZZ).S()
sage: ex = A.from_polynomial((1+x)**3)
sage: ex.h_polynomial()
z^2 + 4*z + 1
```

```python
>>> from sage.all import *
>>> x = polygen(QQ,'x')
>>> A = IntegerValuedPolynomialRing(ZZ).S()
>>> ex = A.from_polynomial((Integer(1)+x)**Integer(3))
>>> ex.h_polynomial()
z^2 + 4*z + 1
```

**h_vector()**

Return the numerator of the generating series of values.

If `self` is an Ehrhart polynomial, this is the $h$-vector.

See also:

`h_polynomial()`, `fraction()`

EXAMPLES:

```python
sage: x = polygen(QQ,'x')
sage: A = IntegerValuedPolynomialRing(ZZ).S()
sage: ex = A.from_polynomial((1+x)**3)
sage: ex.h_vector()
(0, 1, 4, 1)
```

```python
>>> from sage.all import *
>>> x = polygen(QQ,'x')
>>> A = IntegerValuedPolynomialRing(ZZ).S()
>>> ex = A.from_polynomial((Integer(1)+x)**Integer(3))
>>> ex.h_vector()
(0, 1, 4, 1)
```

**umbra()**

Return the Bernoulli umbra.

This is the derivative at $-1$ of the shift by one.

This is related to Bernoulli numbers.

See also:

`derivative_at_minus_one()`

EXAMPLES:

```python
sage: F = IntegerValuedPolynomialRing(ZZ).S()
sage: B = F.gen()
sage: (B+1).umbra()
3/2
```

```python
>>> from sage.all import *
>>> F = IntegerValuedPolynomialRing(ZZ).S()
```

(continues on next page)
variable_shift \( (k=1) \)

Return the image by the shift of variables.

On polynomials, the action is the shift on variables \( x \mapsto x + k \).

INPUT:

- \( k \) – integer (default: 1)

EXAMPLES:

```python
sage: A = IntegerValuedPolynomialRing(ZZ).S()
sage: S = A.basis()
sage: S[5].variable_shift()
```

```python
sage: S[5].variable_shift(-1)
```

from_h_vector \( (h) \)

Convert from some \( h \)-vector.

INPUT:

- \( h \) – a tuple or vector

See also:

Element.h_vector()

EXAMPLES:

```python
sage: A = IntegerValuedPolynomialRing(ZZ).S()
sage: S = A.basis()
sage: A.from_h_vector(ex.h_vector())
```

```python
>>> from sage.all import *
>>> A = IntegerValuedPolynomialRing(ZZ).S()
>>> S = A.basis()
>>> S[Integer(2)].variable_shift()
```

```python
>>> S[Integer(5)].variable_shift(-Integer(1))
```

product_on_basis \( (n1, n2) \)

Return the product of basis elements \( n1 \) and \( n2 \).

INPUT:
• \( n_1, n_2 \) – integers

EXAMPLES:

```
sage: A = IntegerValuedPolynomialRing(QQ).S()
sage: A.product_on_basis(0, 1)
S[1]
sage: A.product_on_basis(1, 2)
```

```python
>>> from sage.all import *
>>> A = IntegerValuedPolynomialRing(QQ).S()
>>> A.product_on_basis(Integer(0), Integer(1))
S[1]
>>> A.product_on_basis(Integer(1), Integer(2))
```

\( \texttt{a\_realization}() \)

Return a default realization.

The Binomial realization is chosen.

EXAMPLES:

```
sage: IntegerValuedPolynomialRing(QQ).a_realization()
Integer-Valued Polynomial Ring over Rational Field
in the binomial basis
```

```python
>>> from sage.all import *
>>> IntegerValuedPolynomialRing(QQ).a_realization()
Integer-Valued Polynomial Ring over Rational Field
in the binomial basis
```

## 2.2 Generic Convolution

Asymptotically fast convolution of lists over any commutative ring in which the multiply-by-two map is injective. (More precisely, if \( x \in R \), and \( x = 2^k \cdot y \) for some \( k \geq 0 \), we require that \( R(x/2^k) \) returns \( y \).)

The main function to be exported is \( \texttt{convolution()} \).

EXAMPLES:

```
sage: convolution([1, 2, 3, 4, 5], [6, 7])
[6, 19, 32, 45, 58, 35]
```

```python
>>> from sage.all import *
>>> convolution([Integer(1), Integer(2), Integer(3), Integer(4), Integer(5)],
\n[Integer(6), Integer(7)])
[6, 19, 32, 45, 58, 35]
```

The convolution function is reasonably fast, even though it is written in pure Python. For example, the following takes less than a second:

```
sage: v = convolution(list(range(1000)), list(range(1000)))
```

### 2.2. Generic Convolution
ALGORITHM:

Converts the problem to multiplication in the ring $S[x]/(x^M - 1)$, where $S = R[y]/(y^K + 1)$ (where $R$ is the original base ring). Performs FFT with respect to the roots of unity $1, y, y^2, \ldots, y^{2K-1}$ in $S$. The FFT/IFFT are accomplished with just additions and subtractions and rotating python lists. (I think this algorithm is essentially due to Schonhage, not completely sure.) The pointwise multiplications are handled recursively, switching to a classical algorithm at some point.

Complexity is $O(n \log(n) \log(\log(n)))$ additions/subtractions in $R$ and $O(n \log(n))$ multiplications in $R$.

AUTHORS:

- David Harvey (2007-07): first implementation
- William Stein: editing the docstrings for inclusion in Sage.

sage.rings.polynomial.convolution.convolution(L1, L2)

Return convolution of non-empty lists L1 and L2.

L1 and L2 may have arbitrary lengths.

EXAMPLES:

```
sage: convolution([1, 2, 3], [4, 5, 6, 7])
[4, 13, 28, 34, 32, 21]
```

2.3 Fast calculation of cyclotomic polynomials

This module provides a function \texttt{cyclotomic_coeffs()}, which calculates the coefficients of cyclotomic polynomials. This is not intended to be invoked directly by the user, but it is called by the method \texttt{cyclotomic_polynomial()} method of univariate polynomial ring objects and the top-level \texttt{cyclotomic_polynomial()} function.

sage.rings.polynomial.cyclotomic.bateman_bound(nn)

Reference:

Bateman, P. T.; Pomerance, C.; Vaughan, R. C. \textit{On the size of the coefficients of the cyclotomic polynomial}.

EXAMPLES:

```
sage: from sage.rings.polynomial.cyclotomic import bateman_bound
sage: bateman_bound(2**8 * 1234567893377) # needs sage.libs.pari
66944986927
```

452 Chapter 2. Univariate Polynomials
sage.rings.polynomial.cyclotomic.cyclotomic_coeffs\((nn,\ sparse=\text{None})\)

Return the coefficients of the \(n\)-th cyclotomic polynomial by using the formula

\[
\Phi_n(x) = \prod_{d|n} (1 - x^n/d)\mu(d)
\]

where \(\mu(d)\) is the Möbius function that is 1 if \(d\) has an even number of distinct prime divisors, \(-1\) if it has an odd number of distinct prime divisors, and 0 if \(d\) is not squarefree.

Multiplications and divisions by polynomials of the form \(1 - x^n\) can be done very quickly in a single pass.

If \(\text{sparse}\) is \(\text{True}\), the result is returned as a dictionary of the non-zero entries, otherwise the result is returned as a list of python ints.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.cyclotomic import cyclotomic_coeffs
sage: cyclotomic_coeffs(30)
[1, 1, 0, -1, -1, 0, 1, 1]
```

```python
sage: cyclotomic_coeffs(10^5)
{0: 1, 10000: -1, 20000: 1, 30000: -1, 40000: 1}
```

```python
sage: R = QQ['x']
sage: R(cyclotomic_coeffs(30))
x^8 + x^7 - x^5 - x^4 - x^3 + x + 1
```

Check that it has the right degree:

```python
sage: euler_phi(30) # needs sage.libs.pari
8
sage: R(cyclotomic_coeffs(14)).factor() # needs sage.libs.pari
x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
```

The coefficients are not always +/-1:

```python
sage: cyclotomic_coeffs(105)
[1, 1, 1, 0, 0, -1, -1, -2, -1, -1, 0, 0, 1, 1, 1, 1, 1, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, 0, 1, 1, 1, 1, 1, 0, 0, -1, -1, -2, -1, -1, 0, 0, 1, 1, 1]
```
In fact the height is not bounded by any polynomial in \( n \) (Erdos), although takes a while just to exceed linear:

```python
sage: v = cyclotomic_coeffs(1181895)
sage: max(v)
14102773
```

The polynomial is a palindrome for any \( n \):

```python
sage: n = ZZ.random_element(50000)
sage: v = cyclotomic_coeffs(n, sparse=False)
sage: v == list(reversed(v))
True
```

AUTHORS:

- Robert Bradshaw (2007-10-27): initial version (inspired by work of Andrew Arnold and Michael Monagan)

REFERENCE:

- [http://www.cecm.sfu.ca/~ada26/cyclotomic/](http://www.cecm.sfu.ca/~ada26/cyclotomic/)

\[ \text{sage.rings.polynomial.cyclotomic.cyclotomic_value}(n, x) \]

Return the value of the \( n \)-th cyclotomic polynomial evaluated at \( x \).

INPUT:

- \( n \) – an Integer, specifying which cyclotomic polynomial is to be evaluated
- \( x \) – an element of a ring

OUTPUT:

- the value of the cyclotomic polynomial \( \Phi_n \) at \( x \)

ALGORITHM:

- Reduce to the case that \( n \) is squarefree: use the identity
  \[ \Phi_n(x) = \Phi_q(x^{n/q}) \]
  where \( q \) is the radical of \( n \).
- Use the identity
\[ \Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}, \]

where \( \mu \) is the Möbius function.

- Handles the case that \( x^d = 1 \) for some \( d \), but not the case that \( x^d - 1 \) is non-invertible: in this case polynomial evaluation is used instead.

**EXAMPLES:**

```plaintext
sage: cyclotomic_value(51, 3)
1282860140677441
sage: cyclotomic_polynomial(51)(3)
1282860140677441
```

```plaintext
>>> from sage.all import *

>>> cyclotomic_value(Integer(51), Integer(3))
1282860140677441
>>> cyclotomic_polynomial(Integer(51))(Integer(3))
1282860140677441
```

It works for non-integral values as well:

```plaintext
sage: cyclotomic_value(144, 4/3)
79148745433504023621920372161/79766443076872509863361
sage: cyclotomic_polynomial(144)(4/3)
79148745433504023621920372161/79766443076872509863361
```

```plaintext
>>> from sage.all import *

>>> cyclotomic_value(Integer(144), Integer(4)/Integer(3))
79148745433504023621920372161/79766443076872509863361
>>> cyclotomic_polynomial(Integer(144))(Integer(4)/Integer(3))
79148745433504023621920372161/79766443076872509863361
```
### 3.1 Multivariate Polynomials and Polynomial Rings

Sage implements multivariate polynomial rings through several backends. The most generic implementation uses the classes `sage.rings.polynomial.polydict.PolyDict` and `sage.rings.polynomial.polydict.ETuple` to construct a dictionary with exponent tuples as keys and coefficients as values.

Additionally, specialized and optimized implementations over many specific coefficient rings are implemented via a shared library interface to SINGULAR; and polynomials in the boolean polynomial ring

\[ \mathbb{F}_2[x_1, \ldots, x_n]/(x_1^2 + x_1, \ldots, x_n^2 + x_n) \]

are implemented using the PolyBoRi library (cf. `sage.rings.polynomial.pbori`).

#### 3.1.1 Term orders

Sage supports the following term orders:

**Lexicographic (lex)**

\[ x^a < x^b \text{ if and only if there exists } 1 \leq i \leq n \text{ such that } a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i < b_i. \]  

This term order is called 'lp' in Singular.

**EXAMPLES:**

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: x > y
True
sage: x > y^2
True
sage: x > 1
True
sage: x^1*y^2 > y^3*z^4
True
sage: x^3*y^2*z^4 < x^3*y^2*z^1
False

>>> from sage.all import *
>>> P = PolynomialRing(QQ, Integer(3), order='lex', names=('x', 'y', 'z',)); (x, y, z) = P._first_ngens(3)
>>> x > y
True
>>> x > y**Integer(2)
```

(continues on next page)
True
>>> x > Integer(1)
True
>>> x**Integer(1)*y**Integer(2) > y**Integer(3)*z**Integer(4)
True
>>> x**Integer(3)*y**Integer(2)*z**Integer(4) < x**Integer(3)*y**Integer(2)*z**Integer(1)
False

Degree reverse lexicographic (degrevlex)

Let \( \deg(x^a) = a_1 + a_2 + \cdots + a_n \), then \( x^a < x^b \) if and only if \( \deg(x^a) < \deg(x^b) \) or \( \deg(x^a) = \deg(x^b) \) and there exists \( 1 \leq i \leq n \) such that \( a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i > b_i \). This term order is called ‘dp’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='degrevlex')
sage: x > y
True
sage: x > y^2*z
False
sage: x > 1
True
sage: x^1*y^5*z^2 > x^4*y^1*z^3
True
sage: x^2*y*z^2 > x*y^3*z
False
```

```python
>>> from sage.all import *
```

```python
>>> P = PolynomialRing(QQ, Integer(3), order='degrevlex', names=('x', 'y', 'z',));
>>> (x, y, z,) = P._first_ngens(3)
>>> x > y
True
>>> x > y**Integer(2)*z
False
>>> x > Integer(1)
True
>>> x**Integer(1)*y**Integer(5)*z**Integer(2) > x**Integer(4)*y**Integer(1)*z**Integer(3)
True
>>> x**Integer(2)*y*z**Integer(2) > x*y**Integer(3)*z
False
```

Degree lexicographic (deglex)

Let \( \deg(x^a) = a_1 + a_2 + \cdots + a_n \), then \( x^a < x^b \) if and only if \( \deg(x^a) < \deg(x^b) \) or \( \deg(x^a) = \deg(x^b) \) and there exists \( 1 \leq i \leq n \) such that \( a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i < b_i \). This term order is called ‘Dp’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='deglex')
sage: x > y
True
sage: x > y^2*z
False
sage: x > 1
True
sage: x^1*y^2*z^3 > x^3*y^2*z^0
```
Inverse lexicographic (invlex)

\(x^a < x^b\) if and only if there exists \(1 \leq i \leq n\) such that \(a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i < b_i\). This order is called ‘rp’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='invlex')
sage: x > y
False
sage: y > x^2
True
sage: x > 1
True
sage: x*y > z
False
```

This term order only makes sense in a non-commutative setting because if \(P\) is the ring \(k[x_1, \ldots, x_n]\) and term order ‘invlex’ then it is equivalent to the ring \(k[x_n, \ldots, x_1]\) with term order ‘lex’.

Negative lexicographic (neglex)

\(x^a < x^b\) if and only if there exists \(1 \leq i \leq n\) such that \(a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i > b_i\). This term order is called ‘ls’ in Singular.

EXAMPLES:
Negative degree reverse lexicographic (negdegrevlex)

Let \( \deg(x^a) = a_1 + a_2 + \cdots + a_n \), then \( x^a < x^b \) if and only if \( \deg(x^a) > \deg(x^b) \) or \( \deg(x^a) = \deg(x^b) \) and there exists \( 1 \leq i \leq n \) such that \( a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i > b_i \). This term order is called 'ds' in Singular.

**EXAMPLES:**

```
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='neglex')
sage: x > y
False
sage: x > 1
False
sage: x^1*y^2 > y^3*z^4
False
sage: x^3*y^2*z^4 < x^3*y^2*z^1
True
sage: x*y > z
False
```
False

Negative degree lexicographic (negdeglex)

Let \( \text{deg}(x^a) = a_1 + a_2 + \cdots + a_n \), then \( x^a < x^b \) if and only if \( \text{deg}(x^a) > \text{deg}(x^b) \) or \( \text{deg}(x^a) = \text{deg}(x^b) \) and there exists \( 1 \leq i \leq n \) such that \( a_i = b_i, \ldots, a_{i-1} = b_{i-1}, a_i < b_i \). This term order is called ‘Ds’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='negdeglex')
sage: x > y
True
sage: x > x^2
True
sage: x > 1
True
sage: x^1*y^2 > y^3*z^4
False
sage: x^2*y*z^2 > x*y^3*z
True
```

Weighted degree reverse lexicographic (wdegrevlex), positive integral weights

Let \( \text{deg}_w(x^a) = a_1w_1 + a_2w_2 + \cdots + a_nw_n \) with weights \( w \), then \( x^a < x^b \) if and only if \( \text{deg}_w(x^a) < \text{deg}_w(x^b) \) or \( \text{deg}_w(x^a) = \text{deg}_w(x^b) \) and there exists \( 1 \leq i \leq n \) such that \( a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i > b_i \). This term order is called ‘wp’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('wdegrevlex',(1,2,3)))
sage: x > y
False
sage: x > x^2
False
sage: x > 1
True
sage: x^1*y^2 > x^2*z
True
sage: y*z > x^3*y
False
```

```python
>>> from sage.all import *
>>> P = PolynomialRing(QQ, Integer(3), order=TermOrder('wdegrevlex',(Integer(1), Integer(2),Integer(3))), names=('x', 'y', 'z')); (x, y, z) = P._first_ngens(3)
```

(continues on next page)
Weighted degree lexicographic (wdeglex), positive integral weights

Let \( \deg_w(x^n) = a_1w_1 + a_2w_2 + \cdots + a_nw_n \) with weights \( w \), then \( x^n < x^b \) if and only if \( \deg_w(x^n) < \deg_w(x^b) \) or \( \deg_w(x^n) = \deg_w(x^b) \) and there exists \( 1 \leq i \leq n \) such that \( a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i < b_i \). This term order is called ‘Wp’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='wdeglex', (1,2,3))
sage: x > y
False
sage: x > x^2
False
sage: x > 1
True
sage: x^1*y^2 > x^2*z
False
sage: y*z > x^3*y
False
```

Negative weighted degree reverse lexicographic (negwdegrevlex), positive integral weights

Let \( \deg_w(x^n) = a_1w_1 + a_2w_2 + \cdots + a_nw_n \) with weights \( w \), then \( x^n < x^b \) if and only if \( \deg_w(x^n) > \deg_w(x^b) \) or \( \deg_w(x^n) = \deg_w(x^b) \) and there exists \( 1 \leq i \leq n \) such that \( a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i > b_i \). This term order is called ‘ws’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='negwdegrevlex', (1,2,3))
sage: x > y
True
sage: x > x^2
True
```
Degree negative lexicographic (degneglex)

Let \( \text{deg}(x^a) = a_1 + a_2 + \cdots + a_n \), then \( x^a < x^b \) if and only if \( \text{deg}(x^a) < \text{deg}(x^b) \) or \( \text{deg}(x^a) = \text{deg}(x^b) \) and there exists \( 1 \leq i \leq n \) such that \( a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i > b_i \). This term order is called ‘dp_asc’ in PolyBoRi. Singular has the extra weight vector ordering \((a(1:n), ls)\) for this purpose.

EXAMPLES:

```python
sage: t = TermOrder('degneglex')
sage: P.<x,y,z> = PolynomialRing(QQ, order=t)
sage: x*y > y*z # indirect doctest
False
sage: x*y > x
True
```

Negative weighted degree lexicographic (negwdeglex), positive integral weights

Let \( \text{deg}_w(x^a) = a_1 w_1 + a_2 w_2 + \cdots + a_n w_n \) with weights \( w \), then \( x^a < x^b \) if and only if \( \text{deg}_w(x^a) > \text{deg}_w(x^b) \) or \( \text{deg}_w(x^a) = \text{deg}_w(x^b) \) and there exists \( 1 \leq i \leq n \) such that \( a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i < b_i \). This term order is called ‘Ws’ in Singular.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=TermOrder('negwdeglex', (1,2,3)))
sage: x > y
True
sage: x > x^2
```

(continues on next page)
Of these, only ‘degrevlex’, ‘deglex’, ‘degneglex’, ‘wdegrevlex’, ‘wdeglex’, ‘invlex’ and ‘lex’ are global orders.

Sage also supports matrix term order. Given a square matrix $A$,

$x^a <_A x^b$ if and only if $Aa < Ab$

where $<$ is the lexicographic term order.

EXAMPLES:

```python
>>> from sage.all import *

>>> P = PolynomialRing(QQ, Integer(3), order=TermOrder('negwdeglex', (Integer(1), Integer(2), Integer(3))), names=('x', 'y', 'z')); (x, y, z,) = P._first_ngens(3)

>>> x > y
True

>>> x > x**Integer(2)
True

>>> x > Integer(1)
False

>>> x**Integer(1)*y**Integer(2) > x**Integer(2)*z
False

>>> y*z > x**Integer(3)*y
False
```

```python
>>> from sage.all import *

>>> m = matrix(Integer(2), [Integer(2), Integer(3), Integer(0), Integer(1)]); m

[[2 3]
 [0 1]]

>>> T = TermOrder(m); T
Matrix term order with matrix

[[2 3]
 [0 1]]

>>> P.<a,b> = PolynomialRing(QQ, 2, order=T)

>>> P
Multivariate Polynomial Ring in a, b over Rational Field

>>> a > b
False

>>> a^3 < b^2
True

>>> S = TermOrder(M(2,3,0,1))

>>> T == S
True
```

```python
>>> from sage.all import *

>>> # needs sage.modules

>>> m = matrix(QQ, [2,3,0,1]); m

[[2 3]
 [0 1]]

>>> T = TermOrder(m); T
```

(continues on next page)
Matrix term order with matrix
[2 3]
[0 1]

```python
>>> P = PolynomialRing(QQ, Integer(2), order=T, names=('a', 'b',)); (a, b,) = P._
˓→first_ngens(2)
>>> P
Multivariate Polynomial Ring in a, b over Rational Field
>>> a > b
False
>>> a**Integer(3) < b**Integer(2)
True
>>> S = TermOrder(M(2,3,0,1))
>>> T == S
True
```

Additionally all these monomial orders may be combined to product or block orders, defined as:

Let \( x = (x_1, x_2, \ldots, x_n) \) and \( y = (y_1, y_2, \ldots, y_m) \) be two ordered sets of variables, \(<_1 \) a monomial order on \( k[x] \) and \(<_2 \) a monomial order on \( k[y] \).

The product order (or block order) \(< := (<_1, <_2) \) on \( k[x, y] \) is defined as: \( x^a y^b < x^A y^B \) if and only if \( x^a <_1 x^A \) or \( x^a = x^A \) and \( y^b <_2 y^B \).

These block orders are constructed in Sage by giving a comma separated list of monomial orders with the length of each block attached to them.

**EXAMPLES:**

As an example, consider constructing a block order where the first four variables are compared using the degree reverse lexicographical order while the last two variables in the second block are compared using negative lexicographical order.

```python
sage: P.<a,b,c,d,e,f> = PolynomialRing(QQ, 6, order='degrevlex(4),neglex(2)')
sage: a > c^4
False
sage: a > e^4
True
sage: e > f^2
False
```

```python
>>> from sage.all import *
>>> P = PolynomialRing(QQ, Integer(6), order='degrevlex(4),neglex(2)', names=('a', 'b
˓→', 'c', 'd', 'e', 'f',)); (a, b, c, d, e, f,) = P._first_ngens(6)
>>> a > c**Integer(4)
False
>>> a > e**Integer(4)
True
>>> e > f**Integer(2)
False
```

The same result can be achieved by:

```python
sage: T1 = TermOrder('degrevlex',4)
sage: T2 = TermOrder('neglex',2)
sage: T = T1 + T2
sage: P.<a,b,c,d,e,f> = PolynomialRing(QQ, 6, order=T)
sage: a > c^4
False
```

(continues on next page)
sage: a > e^4
True

>>> from sage.all import *

>>> T1 = TermOrder('degrevlex', Integer(4))
>>> T2 = TermOrder('neglex', Integer(2))
>>> T = T1 + T2
>>> P = PolynomialRing(QQ, Integer(6), order=T, names=(a, b, c, d, e, f,
→...)); (a, b, c, d, e, f,) = P._first_ngens(6)
>>> a > c**Integer(4)
False
>>> a > e**Integer(4)
True

If any other unsupported term order is given the provided string can be forced to be passed through as is to Singular, Macaulay2, and Magma. This ensures that it is for example possible to calculate a Groebner basis with respect to some term order Singular supports but Sage doesn’t:

sage: T = TermOrder("royalorder")
Traceback (most recent call last):
... ValueError: unknown term order 'royalorder'
sage: T = TermOrder("royalorder", force=True)

AUTHORS:

- David Joyner and William Stein: initial version of multi_polynomial_ring
- Kiran S. Kedlaya: added macaulay2 interface
- Martin Albrecht: implemented native term orders, refactoring
- Kwankyu Lee: implemented matrix and weighted degree term orders
- Simon King (2011-06-06): added termorder_from_singular

**class** sage.rings.polynomial.term_order.TermOrder(*name=’lex’, n=0, force=False)

**Bases:** SageObject

A term order.

See sage.rings.polynomial.term_order for details on supported term orders.
blocks()
Return the term order blocks of self.

NOTE:
This method has been added in Issue #11316. There used to be an attribute of the same name and the same content. So, it is a backward incompatible syntax change.

EXAMPLES:

```
sage: t = TermOrder('deglex',2) + TermOrder('lex',2)
sage: t.blocks()
(Degree lexicographic term order, Lexicographic term order)
```

```python
>>> from sage.all import *

>>> t = TermOrder('deglex',Integer(2)) + TermOrder('lex',Integer(2))

>>> t.blocks()
(Degree lexicographic term order, Lexicographic term order)
```

property greater_tuple
The default greater_tuple method for this term order.

EXAMPLES:

```
sage: O = TermOrder()
sage: O.greater_tuple.__func__ is O.greater_tuple_lex.__func__
True
sage: O = TermOrder('deglex')
sage: O.greater_tuple.__func__ is O.greater_tuple_deglex.__func__
True
```

```python
>>> from sage.all import *

>>> O = TermOrder()

>>> O.greater_tuple.__func__ is O.greater_tuple_lex.__func__
True

>>> O = TermOrder('deglex')

>>> O.greater_tuple.__func__ is O.greater_tuple_deglex.__func__
True
```

greater_tuple_block(f, g)
Return the greater exponent tuple with respect to the block order as specified when constructing this element.

This method is called by the lm/lc/lt methods of MPolynomial_polydict.

INPUT:

- f – exponent tuple
- g – exponent tuple

EXAMPLES:

```
sage: P.<a,b,c,d,e,f> = PolynomialRing(QQbar, 6, ˓→ needs sage.rings.number_field
...... order='degrevlex(3),degrevlex(3)')
sage: f = a + c^4; f.lm() # indirect doctest ˓→ needs sage.rings.number_field
c^4
sage: g = a + e^4; g.lm() #
```

(continues on next page)
... needs sage.rings.number_field

```python
>>> from sage.all import *
"P = PolynomialRing(QQbar, Integer(6), # needs...
... names=('a', 'b', 'c', 'd', 'e', 'f'),)); (a, b, c, d, e, f,) = P._first_... names=('a', 'b', 'c', 'd', 'e', 'f'),)); (a, b, c, d, e, f,) = P._first_... names=('a', 'b', 'c', 'd', 'e', 'f'),)); (a, b, c, d, e, f,) = P._first_... names=('a', 'b', 'c', 'd', 'e', 'f'),)); (a, b, c, d, e, f,) = P._first_...

f = a + c**Integer(4); f.lm() # indirect doctest ˓→ # needs sage.rings.number_field
c^4
```

**greater_tuple_deglex**(*f*, *g*)

Return the greater exponent tuple with respect to the total degree lexicographical term order.

**INPUT:**

- *f* – exponent tuple
- *g* – exponent tuple

**EXAMPLES:**

```python
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='deglex') ˓→ needs sage.rings.number_field
sage: f = x + y; f.lm() # indirect doctest ˓→ needs sage.rings.number_field
x
sage: f = x + y**2*z; f.lm() # indirect doctest ˓→ needs sage.rings.number_field
y^2*z
```

```python
>>> from sage.all import *
>>> P = PolynomialRing(QQbar, Integer(3), order='deglex', names=('x', 'y', 'z',)) ; (x, y, z,) = P._first_ngens(3) # needs sage.rings.number_field
>>> f = x + y; f.lm() # indirect doctest ˓→ needs sage.rings.number_field
x
>>> f = x + y**Integer(2)*z; f.lm() # needs sage.rings.number_field
y^2*z
```

This method is called by the \lm/\lc/\lt methods of MPolynomial_polydict.

**greater_tuple_degneglex**(*f*, *g*)

Return the greater exponent tuple with respect to the degree negative lexicographical term order.

**INPUT:**

- *f* – exponent tuple
- *g* – exponent tuple

**EXAMPLES:**
This method is called by the \lm/\lc/\lt methods of \MPolynomial\_polydict.

\textbf{greater\_tuple\_degrevlex}(f, g)

Return the greater exponent tuple with respect to the total degree reversed lexicographical term order.

\textbf{INPUT:}

\begin{itemize}
  \item f – exponent tuple
  \item g – exponent tuple
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
>>> from sage.all import *
>>> P = PolynomialRing(QQbar, Integer(3), order='degrevlex', names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3)# needs sage.rings.number_field
>>> f = x + y; f.lm()  # indirect doctest
   # needs sage.rings.number_field
   x
>>> f = x + y^2*z; f.lm()  # indirect doctest
   # needs sage.rings.number_field
   y^2*z
\end{verbatim}

This method is called by the \lm/\lc/\lt methods of \MPolynomial\_polydict.

\textbf{greater\_tuple\_invlex}(f, g)

Return the greater exponent tuple with respect to the inversed lexicographical term order.

\textbf{INPUT:}

\begin{itemize}
  \item f – exponent tuple
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
>>> from sage.all import *
>>> P = PolynomialRing(QQbar, Integer(3), order='degrevlex', names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3)# needs sage.rings.number_field
>>> f = x + y; f.lm()  # indirect doctest
   # needs sage.rings.number_field
   x
>>> f = x + y^2*z; f.lm()  # indirect doctest
   # needs sage.rings.number_field
   y^2*z
\end{verbatim}
• $g$ – exponent tuple

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='invlex') # needs sage.rings.number_field
sage: f = x + y; f.lm() # indirect doctest # needs sage.rings.number_field
sage: f = y + x**2; f.lm() # needs sage.rings.number_field
```

This method is called by the \texttt{lm/lt/lt} methods of \texttt{MPolynomial_polydict}.

\texttt{greater\_tuple\_lex}(f, g)

Return the greater exponent tuple with respect to the lexicographical term order.

\textbf{INPUT:}

• $f$ – exponent tuple

• $g$ – exponent tuple

\textbf{EXAMPLES:}

```python
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='lex') # needs sage.rings.number_field
sage: f = x + y**2; f.lm() # indirect doctest # needs sage.rings.number_field
```

This method is called by the \texttt{lm/lc/lc} methods of \texttt{MPolynomial_polydict}.

\texttt{greater\_tuple\_matrix}(f, g)

Return the greater exponent tuple with respect to the matrix term order.

\textbf{INPUT:}

• $f$ – exponent tuple

• $g$ – exponent tuple

\textbf{EXAMPLES:}
greater_tuple_negdeglex \((f, g)\)

Return the greater exponent tuple with respect to the negative degree lexicographical term order.

**INPUT:**

- \(f\) – exponent tuple
- \(g\) – exponent tuple

**EXAMPLES:**

```python
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='negdeglex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^2*y*z^2 + x*y^3*z; f.lm()
x^2*y*z^2
```

This method is called by the lm/lc/lt methods of \(\text{MPolynomial\_polydict}\).

greater_tuple_negdegrevlex \((f, g)\)

Return the greater exponent tuple with respect to the negative degree reverse lexicographical term order.

**INPUT:**

- \(f\) – exponent tuple
- \(g\) – exponent tuple
EXAMPLES:

```python
sage: # needs sage.rings.number_field
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='negdegrevlex')
sage: f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^2*y*z^2 + x*y^3*z; f.lm()
x*y^3*z
```

```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> P = PolynomialRing(QQbar, Integer(3), order='negdegrevlex', names=('x', 'y', 'z'));
>>> (x, y, z) = P._first_ngens(3)
>>> f = x + y; f.lm() # indirect doctest
x
>>> f = x + x**Integer(2); f.lm()
x
>>> f = x**Integer(2)*y*z**Integer(2) + x*y**Integer(3)*z; f.lm()
x*y^3*z
```

This method is called by the \texttt{lm/lc/lt} methods of \texttt{MPolynomial_polydict}.

\texttt{greater_tuple_neglex}(f, g)

Return the greater exponent tuple with respect to the negative lexicographical term order.

This method is called by the \texttt{lm/lc/lt} methods of \texttt{MPolynomial_polydict}.

INPUT:

- \( f \) – exponent tuple
- \( g \) – exponent tuple

EXAMPLES:

```python
sage: P.<a,b,c,d,e,f> = PolynomialRing(QQbar, 6, # needs sage.rings.number_field
.....: order='degrevlex(3),degrevlex(3)')
sage: f = a + c^4; f.lm() # indirect doctest # needs sage.rings.number_field
c^4
sage: g = a + e^4; g.lm() # needs sage.rings.number_field
a
```

```python
>>> from sage.all import *
>>> P = PolynomialRing(QQbar, Integer(6), # needs sage.rings.number_field
... order='degrevlex(3),degrevlex(3)',
... names=('a', 'b', 'c', 'd', 'e', 'f'));
>>> (a, b, c, d, e, f) = P._first_ngens(6)
>>> f = a + c**Integer(4); f.lm() # indirect doctest # needs sage.rings.number_field
c^4
>>> g = a + e**Integer(4); g.lm() # needs sage.rings.number_field
a
```

Chapter 3. Multivariate Polynomials
greater_tuple_negwdeglex\((f, g)\)

Return the greater exponent tuple with respect to the negative weighted degree lexicographical term order.

**INPUT:**

- \(f\) – exponent tuple
- \(g\) – exponent tuple

**EXAMPLES:**

```python
sage: # needs sage.rings.number_field
t = TermOrder('negwdeglex', (1, 2, 3))
P.<x, y, z> = PolynomialRing(QQbar, 3, order=t)
f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^3 + z; f.lm()
x^3
```

This method is called by the \lm/\lc/\lt methods of \texttt{MPolynomial\_polydict}.

greater_tuple_negwdegrevlex\((f, g)\)

Return the greater exponent tuple with respect to the negative weighted degree reverse lexicographical term order.

**INPUT:**

- \(f\) – exponent tuple
- \(g\) – exponent tuple

**EXAMPLES:**

```python
sage: # needs sage.rings.number_field
t = TermOrder('negwdegrevlex', (1, 2, 3))
P.<x, y, z> = PolynomialRing(QQbar, 3, order=t)
f = x + y; f.lm() # indirect doctest
x
sage: f = x + x^2; f.lm()
x
sage: f = x^3 + z; f.lm()
x^3
```

(continues on next page)
This method is called by the \lm/\lc/lt methods of \texttt{MPolynomial\_polydict}.

\texttt{greater\_tuple\_wdeglex}(f, g)

Return the greater exponent tuple with respect to the weighted degree lexicographical term order.

\textbf{INPUT:}

- \texttt{f} – exponent tuple
- \texttt{g} – exponent tuple

\textbf{EXAMPLES:}

```python
sage: t = TermOrder('wdeglex', (1, 2, 3))
sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order=t) # needs sage.rings.number_field
sage: f = x + y; f.lm() # indirect doctest
y
sage: f = x*y + z; f.lm() # needs sage.rings.number_field
x*y
```

This method is called by the \lm/\lc/lt methods of \texttt{MPolynomial\_polydict}.

\texttt{greater\_tuple\_wdegrevlex}(f, g)

Return the greater exponent tuple with respect to the weighted degree reverse lexicographical term order.

\textbf{INPUT:}

- \texttt{f} – exponent tuple
- \texttt{g} – exponent tuple

\textbf{EXAMPLES:}

```python
>>> from sage.all import *
>>> t = TermOrder('wdegrevlex', (1, 2, 3))
>>> P = PolynomialRing(QQbar, Integer(3), order=t, names=('x', 'y', 'z')); # needs sage.rings.number_field
>>> (x, y, z) = P._first_ngens(3)
>>> f = x + y; f.lm() # indirect doctest
y
>>> f = x*y + z; f.lm() # needs sage.rings.number_field
x*y
```

This method is called by the \lm/\lc/lt methods of \texttt{MPolynomial\_polydict}.
This method is called by the \texttt{lm/\textit{lc}/lt} methods of \texttt{MPolynomial\_polydict}.

**is\_block\_order()**

Return \texttt{True} if \texttt{self} is a block term order.

**EXAMPLES:**

```python
sage: t = TermOrder('deglex', 2) + TermOrder('lex', 2)
sage: t.is_block_order()
True
```

```python
>>> from sage.all import *
>>> t = TermOrder('deglex', Integer(2)) + TermOrder('lex', Integer(2))
>>> t.is_block_order()
True
```

**is\_global()**

Return \texttt{True} if this term order is definitely global. Return \texttt{false} otherwise, which includes unknown term orders.

**EXAMPLES:**

```python
sage: T = TermOrder('lex')
sage: T.is_global()
True
```

```python
sage: T = TermOrder('degrevlex', 3) + TermOrder('degrevlex', 3)
sage: T.is_global()
True
```

```python
sage: T = TermOrder('degrevlex', 3) + TermOrder('negdegrevlex', 3)
sage: T.is_global()
False
```

```python
sage: T = TermOrder('degneglex', 3)
sage: T.is_global()
True
```

```python
sage: T = TermOrder('invlex', 3)
sage: T.is_global()
True
```
from sage.all import *

T = TermOrder('lex')
T.is_global()
True

T = TermOrder('degrevlex', Integer(3)) + TermOrder('degrevlex',...-Integer(3))
T.is_global()
True

T = TermOrder('degrevlex', Integer(3)) + TermOrder('negdegrevlex',...-Integer(3))
T.is_global()
False

T = TermOrder('degneglex', Integer(3))
T.is_global()
True

T = TermOrder('invlex', Integer(3))
T.is_global()
True

is_local()
Return True if this term order is definitely local. Return false otherwise, which includes unknown term orders.

EXAMPLES:
sage: T = TermOrder('lex')
sage: T.is_local()
False

sage: T = TermOrder('negdeglex', 3) + TermOrder('negdegrevlex', 3)
sage: T.is_local()
True

sage: T = TermOrder('degrevlex', 3) + TermOrder('negdegrevlex', 3)
sage: T.is_local()
False

is_weighted_degree_order()
Return True if self is a weighted degree term order.

EXAMPLES:
sage: t = TermOrder('wdeglex', (2,3))
sage: t.is_weighted_degree_order()
True
macaulay2_str()

Return a Macaulay2 representation of self.

Used to convert polynomial rings to their Macaulay2 representation.

EXAMPLES:

```python
sage: P = PolynomialRing(GF(127), 8, names='x', order='degrevlex(3),lex(5)')
sage: T = P.term_order()
sage: T.macaulay2_str()
'(GRevLex => 3, Lex => 5)'
sage: P._macaulay2_().options() # optional - macaulay2
{'MonomialSize' => 16}
{'GRevLex' => {1, 1, 1}}
{'Lex' => 5}
{'Position' => Up}
```

magma_str()

Return a MAGMA representation of self.

Used to convert polynomial rings to their MAGMA representation.

EXAMPLES:

```python
sage: P = PolynomialRing(GF(127), 10, names='x', order='degrevlex')
sage: magma(P) # optional - magma
Polynomial ring of rank 10 over GF(127)
Order: Graded Reverse Lexicographical
Variables: x0, x1, x2, x3, x4, x5, x6, x7, x8, x9
```

3.1. Multivariate Polynomials and Polynomial Rings 477
sage: T = P.term_order()
sage: T.magma_str()
"grevlex"

>>> from sage.all import *
>>> T = P.term_order()
>>> T.magma_str()
"grevlex"

matrix()
Return the matrix defining matrix term order.

EXAMPLES:

sage: t = TermOrder("M(1,2,0,1)"
# needs sage.modules
sage: t.matrix()
# needs sage.modules
[1 2]
[0 1]

>>> from sage.all import *
>>> t = TermOrder("M(1,2,0,1)"
# needs sage.modules
>>> t.matrix()
# needs sage.modules
[1 2]
[0 1]

name()
EXAMPLES:

sage: TermOrder('lex').name()
'lex'

>>> from sage.all import *
>>> TermOrder('lex').name()
'lex'

singular_moreblocks()
Return the number of additional blocks SINGULAR needs to allocate for handling non-native orderings like degneglex.

EXAMPLES:

sage: P = PolynomialRing(GF(127), 10, names='x',
....:                     order='lex(3),deglex(5),lex(2)')
sage: T = P.term_order()
sage: T.singular_moreblocks()
0
sage: P = PolynomialRing(GF(127), 10, names='x',
....:                     order='lex(3),degneglex(5),lex(2)')
sage: T = P.term_order()
sage: T.singular_moreblocks()
1

(continues on next page)
sage: T = P.term_order()
sage: T.singular_moreblocks()
2

>>> from sage.all import *
>>> P = PolynomialRing(GF(Integer(127)), Integer(10), names='x',
... order='lex(3),deglex(5),lex(2)')
>>> T = P.term_order()
>>> T.singular_moreblocks()
0
>>> P = PolynomialRing(GF(Integer(127)), Integer(10), names='x',
... order='lex(3),deglex(5),lex(2)')
>>> T = P.term_order()
>>> T.singular_moreblocks()
1
>>> P = PolynomialRing(GF(Integer(127)), Integer(10), names='x',
... order='deglex(5),deglex(5)')
>>> T = P.term_order()
>>> T.singular_moreblocks()
2

sage_str()
Return a SINGULAR representation of self.
Used to convert polynomial rings to their SINGULAR representation.

EXAMPLES:

sage: P = PolynomialRing(GF(127), 10, names='x',
... order='lex(3),deglex(5),lex(2)')
sage: T = P.term_order()
sage: T.singular_str()
'(lp(3),Dp(5),lp(2))'
sage: P._singular_()  #...
˓→needs sage.libs.singular polynomial ring, over a field, global ordering
// coefficients: ZZ/127
// number of vars : 10
// block 1 : ordering lp
// : names x0 x1 x2
// block 2 : ordering Dp
// : names x3 x4 x5 x6 x7
// block 3 : ordering lp
// : names x8 x9
// block 4 : ordering C

>>> from sage.all import *
>>> P = PolynomialRing(GF(Integer(127)), Integer(10), names='x',
... order='lex(3),deglex(5),lex(2)')
>>> T = P.term_order()
>>> T.singular_str()
'(lp(3),Dp(5),lp(2))'
>>> P._singular_()  #...
˓→needs sage.libs.singular polynomial ring, over a field, global ordering
(continues on next page)
The `degneglex` ordering is somehow special, it looks like a block ordering in SINGULAR:

```python
sage: T = TermOrder("degneglex", 2)
sage: P = PolynomialRing(QQ, 2, names='x', order=T)
sage: T = P.term_order()
sage: T.singular_str()
'(a(1:2),ls(2))'

sage: T = TermOrder("degneglex", 2) + TermOrder("degneglex", 2)
sage: P = PolynomialRing(QQ, 4, names='x', order=T)
sage: T = P.term_order()
sage: T.singular_str()
'(a(1:2),ls(2),a(1:2),ls(2))'

needs sage.libs.singular polynomial ring, over a field, global ordering
```

```
>>> from sage.all import *
>>> T = TermOrder("degneglex", Integer(2))
>>> P = PolynomialRing(QQ,Integer(2), names='x', order=T)
>>> T = P.term_order()
>>> T.singular_str()
'(a(1:2),ls(2))'

>>> T = TermOrder("degneglex", Integer(2)) + TermOrder("degneglex", Integer(2))
>>> P = PolynomialRing(QQ,Integer(4), names='x', order=T)
>>> T = P.term_order()
>>> T.singular_str()
'(a(1:2),ls(2),a(1:2),ls(2))'

needs sage.libs.singular polynomial ring, over a field, global ordering
```
The position of the ordering C block can be controlled by setting _singular_ringorder_column attribute to an integer:

```sage
T = TermOrder("degneglex", 2) + TermOrder("degneglex", 2)
sage: T._singular_ringorder_column = 0
sage: P = PolynomialRing(QQ, 4, names='x', order=T)
sage: P._singular_() # needs sage.libs.singular
```

polynomial ring, over a field, global ordering
```
// coefficients: QQ
// number of vars : 4
// block 1 : ordering C
// block 2 : ordering a
// : names x0 x1
// : weights 1 1
// block 3 : ordering ls
// : names x0 x1
// block 4 : ordering a
// : names x2 x3
// : weights 1 1
// block 5 : ordering ls
// : names x2 x3
```

```sage
sage: T._singular_ringorder_column = 1
sage: P = PolynomialRing(QQ, 4, names='y', order=T)
sage: P._singular_() # needs sage.libs.singular
```

polynomial ring, over a field, global ordering
```
// coefficients: QQ
// number of vars : 4
// block 1 : ordering c
// block 2 : ordering a
// : names y0 y1
// : weights 1 1
// block 3 : ordering ls
// : names y0 y1
// block 4 : ordering a
// : names y2 y3
// : weights 1 1
// block 5 : ordering ls
// : names y2 y3
```

```sage
sage: T._singular_ringorder_column = 2
```

(continues on next page)
sage: P = PolynomialRing(QQ, 4, names=z, order=T)
sage: P._singular_()
# needs sage.libs.singular
polynomial ring, over a field, global ordering
// coefficients: QQ
// number of vars : 4
//   block 1: ordering a
//     : names z0 z1
//     : weights 1 1
//   block 2: ordering C
//   block 3: ordering ls
//     : names z0 z1
//   block 4: ordering a
//     : names z2 z3
//     : weights 1 1
//   block 5: ordering ls
//     : names z2 z3

>>> from sage.all import *
>>> T = TermOrder("degneglex", Integer(2)) + TermOrder("degneglex", Integer(2))
>>> T._singular_ringorder_column = Integer(0)
>>> P = PolynomialRing(QQ, Integer(4), names=x, order=T)
>>> P._singular_()
# needs sage.libs.singular
polynomial ring, over a field, global ordering
// coefficients: QQ
// number of vars : 4
//   block 1: ordering C
//   block 2: ordering a
//     : names x0 x1
//     : weights 1 1
//   block 3: ordering ls
//     : names x0 x1
//   block 4: ordering a
//     : names x2 x3
//     : weights 1 1
//   block 5: ordering ls
//     : names x2 x3

>>> T._singular_ringorder_column = Integer(1)
>>> P = PolynomialRing(QQ, Integer(4), names='y', order=T)
>>> P._singular_()
# needs sage.libs.singular
polynomial ring, over a field, global ordering
// coefficients: QQ
// number of vars : 4
//   block 1: ordering c
//   block 2: ordering a
//     : names y0 y1
//     : weights 1 1
//   block 3: ordering ls
//     : names y0 y1
//   block 4: ordering a
//     : names y2 y3
//     : weights 1 1

(continues on next page)
property sortkey

The default sortkey method for this term order.

EXAMPLES:

```python
sage: O = TermOrder()
sage: O.sortkey.__func__ is O.sortkey_lex.__func__
True
sage: O = TermOrder('deglex')
sage: O.sortkey.__func__ is O.sortkey_deglex.__func__
True
```

sortkey_block(f)

Return the sortkey of an exponent tuple with respect to the block order as specified when constructing this element.

INPUT:

• f – exponent tuple

EXAMPLES:

```python
sage: P.<a,b,c,d,e,f> = PolynomialRing(QQbar, 6,:
.....: order='degrevlex(3),degrevlex(3)')
sage: a > c^4 # indirect doctest
```

(continues on next page)
False
sage: a > e^4
# needs sage.rings.number_field
True

>>> from sage.all import *
>>> P = PolynomialRing(QQbar, Integer(6), # needs...
     sage.rings.number_field
     order='degrevlex(3),degrevlex(3)',
     names=('a', 'b', 'c', 'd', 'e', 'f')); (a, b, c, d, e, f,) = P._first_
     ngens(6)
>>> a > c**Integer(4)  # indirect doctest
# needs sage.rings.number_field
False
>>> a > e**Integer(4)  # needs sage.rings.number_field
True

sortkey_deglex(f)
Return the sortkey of an exponent tuple with respect to the degree lexicographical term order.

INPUT:
  • f – exponent tuple

EXAMPLES:

sage: P.<x,y> = PolynomialRing(QQbar, 2, order='deglex')  # needs...
     sage.rings.number_field
sage: x > y^2  # indirect doctest
# needs sage.rings.number_field
False
sage: x > 1
# needs sage.rings.number_field
True

>>> from sage.all import *
>>> (x, y,) = P._first_ngens(2)  # needs sage.rings.number_field
>>> x > y**Integer(2)  # indirect doctest
# needs sage.rings.number_field
False
>>> x > Integer(1)  # needs sage.rings.number_field
True

sortkey_degneglex(f)
Return the sortkey of an exponent tuple with respect to the degree negative lexicographical term order.

INPUT:
  • f – exponent tuple

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQbar, 3, order='degneglex')  # needs...
     sage.rings.number_field
sortkey_degrevlex(f)

Return the sortkey of an exponent tuple with respect to the degree reversed lexicographical term order.

INPUT:

• f – exponent tuple

EXAMPLES:

```sage
def sortkey_degrevlex(f):
 # Implementation
 return f
```

```sage:
P.<x,y> = PolynomialRing(QQbar, 2, order='degrevlex')

sage: x > y**2 # indirect doctest
False

sage: x > 1
True
```

sortkey_invlex(f)

Return the sortkey of an exponent tuple with respect to the inversed lexicographical term order.

INPUT:

• f – exponent tuple

EXAMPLES:

```sage
def sortkey_invlex(f):
 # Implementation
 return f
```

```sage:
P.<x,y> = PolynomialRing(QQbar, 2, order='invlex')

sage: x > y**2 # indirect doctest
False

sage: x > Integer(1)
```

(continues on next page)
sortkey_lex(f)

Return the sortkey of an exponent tuple with respect to the lexicographical term order.

INPUT:

• f – exponent tuple

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='lex')
 # needs sage.rings.number_field
sage: x > y^2 # indirect doctest
 # needs sage.rings.number_field
True
sage: x > 1
 # needs sage.rings.number_field
True
```

sortkey_matrix(f)

Return the sortkey of an exponent tuple with respect to the matrix term order.

INPUT:

• f – exponent tuple

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='m(1,3,1,0)')
 # needs sage.rings.number_field
sage: y > x^2 # indirect doctest
 # needs sage.rings.number_field
```
sortkey_negdeglex \( (f) \)

Return the sort key of an exponent tuple with respect to the negative degree lexicographical term order.

**INPUT:**

- \( f \) – exponent tuple

**EXAMPLES:**

```python
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='negdeglex') # needs sage.rings.number_field
sage: x > y**2 # indirect doctest
True
sage: x > 1 # needs sage.rings.number_field
False
```

sortkey_negdegrevlex \( (f) \)

Return the sort key of an exponent tuple with respect to the negative degree reverse lexicographical term order.

**INPUT:**

- \( f \) – exponent tuple

**EXAMPLES:**

```python
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='negdegrevlex') # needs sage.rings.number_field
sage: x > y**2 # indirect doctest
True
sage: x > Integer(1) # needs sage.rings.number_field
False
```
Polynomials, Release 10.4

(continued from previous page)

```python
sage: x > 1 # needs sage.rings.number_field
False
```

```python
>>> from sage.all import *

>>> P = PolynomialRing(QQbar, Integer(2), order='negdegrevlex', names=('x', 'y'))
(x, y,) = P._first_ngens(2) # needs sage.rings.number_field
>>> x > y**2 # indirect doctest
needs sage.rings.number_field
True
>>> x > Integer(1)
needs sage.rings.number_field
False
```

**sortkey_neglex(f)**

Return the sortkey of an exponent tuple with respect to the negative lexicographical term order.

**INPUT:**

- \( f \) – exponent tuple

**EXAMPLES:**

```python
sage: P.<x,y> = PolynomialRing(QQbar, 2, order='neglex') # needs sage.rings.number_field
sage: x > y^2 # indirect doctest
needs sage.rings.number_field
False
```

```python
>>> from sage.all import *

>>> P = PolynomialRing(QQbar, Integer(2), order='neglex', names=('x', 'y'))
(x, y,) = P._first_ngens(2) # needs sage.rings.number_field
>>> x > y**2 # indirect doctest
needs sage.rings.number_field
True
>>> x > Integer(1)
needs sage.rings.number_field
False
```

**sortkey_negwdeglex(f)**

Return the sortkey of an exponent tuple with respect to the negative weighted degree lexicographical term order.

**INPUT:**

- \( f \) – exponent tuple

**EXAMPLES:**

```python
sage: t = TermOrder('negwdeglex', (3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t) # needs sage.rings.number_field
sage: x > y^2 # indirect doctest
needs sage.rings.number_field
```

(continues on next page)
True
\sage\colon x^2 > y^3
\rightarrow \text{needs sage.rings.number_field}
True

\begin{verbatim}
>>> from sage.all import *
>>> t = TermOrder('negwdegrevlex',(Integer(3),Integer(2)))
>>> P = PolynomialRing(QQbar, Integer(2), order=t, names=('x', 'y')); (x, y,)
\rightarrow = P._first_ngens(2) # needs sage.rings.number_field
>>> x > y**Integer(2) # indirect doctest
\rightarrow # needs sage.rings.number_field
True
>>> x**Integer(2) > y**Integer(3)
\rightarrow # needs sage.rings.number_field
True
\end{verbatim}

\textbf{sortkey_negwdegrevlex}(f)

Return the sortkey of an exponent tuple with respect to the negative weighted degree reverse lexicographical term order.

\textbf{INPUT:}

- \(f\) – exponent tuple

\textbf{EXAMPLES:}

\begin{verbatim}
sage\colon t = TermOrder('negwdegrevlex',(3,2))
sage\colon P.<x,y> = PolynomialRing(QQbar, 2, order=t) # needs sage.rings.number_field
\rightarrow
sage\colon x > y^2 # indirect doctest # needs sage.rings.number_field
True
sage\colon x^2 > y^3 # needs sage.rings.number_field
True
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> t = TermOrder('negwdegrevlex',(Integer(3),Integer(2)))
>>> P = PolynomialRing(QQbar, Integer(2), order=t, names=('x', 'y')); (x, y,)
\rightarrow = P._first_ngens(2) # needs sage.rings.number_field
>>> x > y**Integer(2) # indirect doctest # needs sage.rings.number_field
True
>>> x**Integer(2) > y**Integer(3) # needs sage.rings.number_field
True
\end{verbatim}

\textbf{sortkey_wdeglex}(f)

Return the sortkey of an exponent tuple with respect to the weighted degree lexicographical term order.

\textbf{INPUT:}

- \(f\) – exponent tuple

\textbf{EXAMPLES:}

\begin{verbatim}
sage\colon t = TermOrder('wdeglex', (3, 2))
sage\colon P.<x,y> = PolynomialRing(QQbar, 2, order=t) # needs sage.rings.number_field
\rightarrow
sage\colon x > y^2 # indirect doctest # needs sage.rings.number_field
True
sage\colon x^2 > y^3 # needs sage.rings.number_field
True
\end{verbatim}
Polynomials, Release 10.4

\begin{verbatim}
sage: t = TermOrder('wdeglex',(3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)  # needs sage.rings.number_field
sage: x > y^2  # indirect doctest
False
sage: x > y
# needs sage.rings.number_field
True

>>> from sage.all import *
>>> t = TermOrder('wdeglex',(Integer(3),Integer(2)))
>>> P = PolynomialRing(QQbar, Integer(2), order=t, names=('x', 'y')); (x, y, t)
>>> P._first_ngens(2)  # needs sage.rings.number_field
>>> x > y**Integer(2)  # indirect doctest
False
>>> x > y
# needs sage.rings.number_field
True

sortkey_wdegrevlex(f)
Return the sortkey of an exponent tuple with respect to the weighted degree reverse lexicographical term order.

INPUT:

• f – exponent tuple

EXAMPLES:

\begin{verbatim}
sage: t = TermOrder('wdegrevlex',(3,2))
sage: P.<x,y> = PolynomialRing(QQbar, 2, order=t)  # needs sage.rings.number_field
sage: x > y^2  # indirect doctest
False
sage: x > y^3
# needs sage.rings.number_field
True

>>> from sage.all import *
>>> t = TermOrder('wdegrevlex',(Integer(3),Integer(2)))
>>> P = PolynomialRing(QQbar, Integer(2), order=t, names=('x', 'y')); (x, y, t)
>>> P._first_ngens(2)  # needs sage.rings.number_field
>>> x > y**Integer(2)  # indirect doctest
False
>>> x**Integer(2) > y**Integer(3)
# needs sage.rings.number_field
True

tuple_weight(f)
Return the weight of tuple f.

INPUT:

• f – exponent tuple
\end{verbatim}
EXAMPLES:

```python
sage: t = TermOrder('wdeglex', (1, 2, 3))
sage: P.<a,b,c> = PolynomialRing(QQbar, order=t) # needs sage.rings.number_field
sage: P.term_order().tuple_weight([3, 2, 1]) # needs sage.rings.number_field
10
```

```python
>>> from sage.all import *

>>> t = TermOrder('wdeglex', (Integer(1), Integer(2), Integer(3)))
>>> P = PolynomialRing(QQbar, order=t, names=(a, b, c,)); (a, b, c,) = P._first_ngens(3) # needs sage.rings.number_field
>>> P.term_order().tuple_weight([Integer(3), Integer(2), Integer(1)]) # needs sage.rings.number_field
10
```

```python
weights()
Return the weights for weighted term orders.

EXAMPLES:

```python
sage: t = TermOrder('wdeglex', (2, 3))
sage: t.weights()
(2, 3)
```

```python
>>> from sage.all import *

>>> t = TermOrder('wdeglex', (Integer(2), Integer(3)))

>>> t.weights()
(2, 3)
```

`sage.rings.polynomial.term_order.termorder_from_singular(S)`
Return the Sage term order of the basering in the given Singular interface

INPUT:
An instance of the Singular interface.

EXAMPLES:

```python
sage: from sage.rings.polynomial.term_order import termorder_from_singular

sage: singular.eval(ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp))  # needs sage.libs.singular
,,
sage: termorder_from_singular(singular)  # needs sage.libs.singular
Block term order with blocks:
(Matrix term order with matrix
 [1 2]
 [3 0],
Weighted degree reverse lexicographic term order with weights (2, 3),
Lexicographic term order of length 2)
```

```python
>>> from sage.all import *

>>> from sage.rings.polynomial.term_order import termorder_from_singular

>>> singular.eval(ring r1 = (9,x),(a,b,c,d,e,f),(M((1,2,3,0)),wp(2,3),lp))  # needs sage.libs.singular
```

(continues on next page)
A term order in Singular also involves information on orders for modules. This information is reflected in `_singular_ringorder_column` attribute of the term order.
// block 2 : ordering dp
// : names x y
// block 3 : ordering lp
// : names z w
>>> T = termorder_from_singular(singular)
>>> T
Block term order with blocks:
(Degree reverse lexicographic term order of length 2,
 Lexicographic term order of length 2)
>>> T._singular_ringorder_column
0
>>> # needs sage.libs.singular
>>> singular.ring(Integer(0), (x,y,z,w), (c,dp(2),lp(2)))
polynomial ring, over a field, global ordering
// coefficients: QQ
// number of vars : 4
// block 1 : ordering c
// block 2 : ordering dp
// : names x y
// block 3 : ordering lp
// : names z w
>>> T = termorder_from_singular(singular)
>>> T
Block term order with blocks:
(Degree reverse lexicographic term order of length 2,
 Lexicographic term order of length 2)
>>> T._singular_ringorder_column
1

3.1.2 Base class for multivariate polynomial rings

class
sage.rings.polynomial.multi_polynomial_ring_base.BooleanPolynomialRing_base

Bases: MPolynomialRing_base

Abstract base class for BooleanPolynomialRing.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

sage: from sage.rings.polynomial.multi_polynomial_ring_base import ...
 BooleanPolynomialRing_base
sage: R.<x, y, z> = BooleanPolynomialRing()
 # needs sage.rings.polynomial.pbori
sage: isinstance(R, BooleanPolynomialRing_base)
 # needs sage.rings.polynomial.pbori
True

>>> from sage.all import *
>>> from sage.rings.polynomial.multi_polynomial_ring_base import ...
 BooleanPolynomialRing_base
>>> R = BooleanPolynomialRing(names=('x', 'y', 'z',)); (x, y, z,) = R._first_
 # needs sage.rings.polynomial.pbori
 ngens(3)
Polynomials, Release 10.4

>>> isinstance(R, BooleanPolynomialRing_base) #...
needs sage.rings.polynomial.pbori
True

By design, there is only one direct implementation subclass:

sage: len(BooleanPolynomialRing_base.__subclasses__()) <= 1
True

>>> from sage.all import *

>>> len(BooleanPolynomialRing_base.__subclasses__()) <= Integer(1)
True

class sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base

Bases: CommutativeRing

Create a polynomial ring in several variables over a commutative ring.

EXAMPLES:

sage: R.<x,y> = ZZ['x,y']; R
Multivariate Polynomial Ring in x, y over Integer Ring
sage: cat = Rings().Commutative()
sage: class CR(Parent):
....: def __init__(self):
....: Parent.__init__(self, self, category=cat)
....: def __call__(self, x):
....: return None
sage: cr = CR()
sage: cr.is_commutative()
True
sage: cr['x,y']
Multivariate Polynomial Ring in x, y over <__main__.CR_with_category object at ...>

>>> from sage.all import *

>>> R = ZZ['x,y']; (x, y,) = R._first_ngens(2); R
Multivariate Polynomial Ring in x, y over Integer Ring

>>> class CR(Parent):
... def __init__(self):
... Parent.__init__(self, self, category=cat)
... def __call__(self, x):
... return None

>>> cr = CR()

>>> cr['x,y']
Multivariate Polynomial Ring in x, y over <__main__.CR_with_category object at ...>

change_ring (base_ring=None, names=None, order=None)

Return a new multivariate polynomial ring which is isomorphic to self, but has a different ordering given by the parameter order or names given by the parameter names.

INPUT:
• base_ring – a base ring
• names – variable names
• order – a term order

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(GF(127), 3, order='lex')
sage: x > y^2
True
sage: Q.<x,y,z> = P.change_ring(order='degrevlex')
sage: x > y^2
False

>>> from sage.all import *
>>> P = PolynomialRing(GF(Integer(127)), Integer(3), order='lex', names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3)
>>> x > y**Integer(2)
True
>>> Q = P.change_ring(order='degrevlex', names=('x', 'y', 'z',)); (x, y, z,) = Q._first_ngens(3)
>>> x > y**Integer(2)
False

characteristic()

Return the characteristic of this polynomial ring.

EXAMPLES:

sage: R = PolynomialRing(QQ, 'x', 3)
sage: R.characteristic()
0
sage: R = PolynomialRing(GF(7), 'x', 20)
sage: R.characteristic()
7

>>> from sage.all import *
>>> R = PolynomialRing(QQ, 'x', Integer(3))
>>> R.characteristic()
0
>>> R = PolynomialRing(GF(Integer(7)), 'x', Integer(20))
>>> R.characteristic()
7

completion(names=None, prec=20, extras={}, **kwds)

Return the completion of self with respect to the ideal generated by the variable(s) names.

INPUT:

• names – (optional) variable or list/tuple of variables (given either as elements of the polynomial ring or as strings); the default is all variables of self
• prec – default precision of resulting power series ring, possibly infinite
• extras – passed as keywords to PowerSeriesRing or LazyPowerSeriesRing; can also be keyword arguments

EXAMPLES:
sage: P.<x,y,z,w> = PolynomialRing(ZZ)
sage: P.completion('w')
Power Series Ring in w over Multivariate Polynomial Ring in
x, y, z over Integer Ring
sage: P.completion((w,x,y))
Multivariate Power Series Ring in w, x, y over
Univariate Polynomial Ring in z over Integer Ring
sage: Q.<w,x,y,z> = P.completion(); Q
Multivariate Power Series Ring in w, x, y, z over Integer Ring
sage: H = PolynomialRing(PolynomialRing(ZZ,3,'z'),4,'f'); H
Multivariate Polynomial Ring in f0, f1, f2, f3 over
Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring
sage: H.completion(H.gens())
Multivariate Power Series Ring in f0, f1, f2, f3 over
Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring
sage: H.completion(H.gens()[2])
Power Series Ring in f2 over
Multivariate Polynomial Ring in f0, f1, f3 over
Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring

>>> from sage.all import *
>>> P = PolynomialRing(ZZ, names=('x', 'y', 'z', 'w',)); (x, y, z, w,) = P._
→first_ngens(4)
>>> P.completion('w')
Power Series Ring in w over Multivariate Polynomial Ring in
x, y, z over Integer Ring
>>> P.completion((w,x,y))
Multivariate Power Series Ring in w, x, y over
Univariate Polynomial Ring in z over Integer Ring
>>> Q = P.completion(names=('w', 'x', 'y', 'z',)); (w, x, y, z,) = Q._first_
→ngens(4); Q
Multivariate Power Series Ring in w, x, y, z over Integer Ring

>>> H = PolynomialRing(PolynomialRing(ZZ,Integer(3),'z'),Integer(4),'f'); H
Multivariate Polynomial Ring in f0, f1, f2, f3 over
Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring

>>> H.completion(H.gens())
Multivariate Power Series Ring in f0, f1, f2, f3 over
Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring

>>> H.completion(H.gens()[Integer(2)])
Power Series Ring in f2 over
Multivariate Polynomial Ring in f0, f1, f3 over
Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring
Polynomials, Release 10.4

3.1. Multivariate Polynomials and Polynomial Rings

```
>>> P = PolynomialRing(ZZ, names=('x', 'y', 'z', 'w',)); (x, y, z, w,) = P._
˓→first_ngens(4)
>>> P.completion(prec=oo)  # needs sage.combinat
Multivariate Lazy Taylor Series Ring in x, y, z, w over Integer Ring
>>> P.completion((w,x,y), prec=oo)  # needs sage.combinat
Multivariate Lazy Taylor Series Ring in w, x, y over Univariate Polynomial Ring in z over Integer Ring
```

construction()

Returns a functor F and base ring R such that $F(R) == self$.

EXAMPLES:

```
sage: S = ZZ['x','y']
sage: F, R = S.construction(); R
Integer Ring
sage: F
MPoly[x,y]
sage: F(R) == S
True
sage: F(R) == ZZ['x']['y']
False
```

```
>>> from sage.all import *
```

```
>>> S = ZZ['x','y']
>>> F, R = S.construction(); R
Integer Ring
>>> F
MPoly[x,y]
>>> F(R) == S
True
>>> F(R) == ZZ['x']['y']
False
```

flattening_morphism()

Return the flattening morphism of this polynomial ring

EXAMPLES:

```
sage: QQ['a','b']['x','y'].flattening_morphism()
Flattening morphism:
  From: Multivariate Polynomial Ring in x, y
      over Multivariate Polynomial Ring in a, b over Rational Field
  To:   Multivariate Polynomial Ring in a, b, x, y over Rational Field
sage: QQ['x','y'].flattening_morphism()
Identity endomorphism of
  Multivariate Polynomial Ring in x, y over Rational Field
```

```
>>> from sage.all import *
```

```
>>> QQ['a','b']['x','y'].flattening_morphism()
Flattening morphism:
  From: Multivariate Polynomial Ring in x, y
```
```
over Multivariate Polynomial Ring in $a, b$ over Rational Field
To:   Multivariate Polynomial Ring in $a, b, x, y$ over Rational Field

```python
>>> QQ['x,y'].flattening_morphism()
Identity endomorphism of
Multivariate Polynomial Ring in x, y over Rational Field
```

**gen** ($n=0$)

**interpolation** ($bound, *args$)

Create a polynomial with specified evaluations.

**CALL FORMATS:**

This function can be called in two ways:

1. `interpolation(bound, points, values)`
2. `interpolation(bound, function)`

**INPUT:**

- `bound` – either an integer bounding the total degree or a list/tuple of integers bounding the degree of the variables
- `points` – list/tuple containing the evaluation points
- `values` – list/tuple containing the desired values at points
- `function` – evaluable function in $n$ variables, where $n$ is the number of variables of the polynomial ring

**OUTPUT:**

1. A polynomial respecting the bounds and having values as values when evaluated at points.
2. A polynomial respecting the bounds and having the same values as function at exactly so many points so that the polynomial is unique.

**EXAMPLES:**

```python
sage: def F(a,b,c):
....: return a^3*b + b + c^2 + 25
....:
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: R.interpolation(4, F) # needs sage.modules
x^3*y + z^2 + y + 25

sage: def F(a,b,c):
....: return a^3*b + b + c^2 + 25
....:
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: R.interpolation([3,1,2], F) # needs sage.modules
x^3*y + z^2 + y + 25

sage: def F(a,b,c):
....: return a^3*b + b + c^2 + 25
....:
sage: R.<x,y,z> = PolynomialRing(QQ)
```
sage: points = [(5,1,1),(7,2,2),(8,5,-1),(2,5,3),(1,4,0),(5,9,0),
....: (2,7,0),(1,10,13),(0,0,1),(-1,1,0),(2,5,3),(1,1,1),(7,4,11),
....: (12,1,9),(1,1,3),(4,-1,2),(0,1,5),(5,1,3),(3,-1,2),(2,11,3),
....: (4,12,19),(3,1,1),(5,2,-3),(12,1,1),(2,3,4)]

sage: R.interpolation([3,1,2], points, [F(*x) for x in points]) # needs sage.modules
x^3*y + z^2 + y + 25

from sage.all import *

>>> def F(a,b,c):
...     return a**Integer(3)*b + b + c**Integer(2) + Integer(25)
...:
>>> R = PolynomialRing(QQ, names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3)
>>> R.interpolation(Integer(4), F) # needs sage.modules
x^3*y + z^2 + y + 25

>>> def F(a,b,c):
...     return a**Integer(3)*b + b + c**Integer(2) + Integer(25)
...:
>>> R = PolynomialRing(QQ, names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3)
>>> R.interpolation([Integer(3),Integer(1),Integer(2)], F) # needs sage.modules
x^3*y + z^2 + y + 25

3.1. Multivariate Polynomials and Polynomial Rings

ALGORITHM:
Solves a linear system of equations with the linear algebra module. If the points are not specified, it samples exactly as many points as needed for a unique solution.

Note: It will only run if the base ring is a field, even though it might work otherwise as well. If your base
ring is an integral domain, let it run over the fraction field.

Also, if the solution is not unique, it spits out one solution, without any notice that there are more.

Lastly, the interpolation function for univariate polynomial rings is called `lagrange_polynomial()`.

**Warning:** If you don’t provide point/value pairs but just a function, it will only use as many points as needed for a unique solution with the given bounds. In particular it will *not* notice or check whether the result yields the correct evaluation for other points as well. So if you give wrong bounds, you will get a wrong answer without any warning.

```python
sage: def F(a,b,c):
 ...: return a^3*b + b + c^2 + 25
 ...:
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: R.interpolation(3, F) # needs sage.modules
1/2*x^3 + x*y + z^2 - 1/2*x + y + 25
```

See also:

- `lagrange_polynomial`
- `irrelevant_ideal()`

**irrelevant_ideal()**

Return the irrelevant ideal of this multivariate polynomial ring.

This is the ideal generated by all of the indeterminate generators of this ring.

**EXAMPLES:**

```python
sage: R.<x,y,z> = QQ[]
sage: R.irrelevant_ideal()
Ideal (x, y, z) of Multivariate Polynomial Ring in x, y, z over Rational Field
```

```python
>>> from sage.all import *
>>> R = QQ['x', 'y', 'z']; (x, y, z,) = R._first_ngens(3)
>>> R.irrelevant_ideal()
Ideal (x, y, z) of Multivariate Polynomial Ring in x, y, z over Rational Field
```

**is_exact()**

Test whether this multivariate polynomial ring is defined over an exact base ring.

**EXAMPLES:**
**is_field** *(proof=True)*

Test whether this multivariate polynomial ring is a field.

A polynomial ring is a field when there are no variable and the base ring is a field.

**EXAMPLES:**

```python
sage: PolynomialRing(QQ, 'x', 2).is_field()
False
sage: PolynomialRing(QQ, 'x', 0).is_field()
True
sage: PolynomialRing(ZZ, 'x', 0).is_field()
False
```

```python
>>> from sage.all import *
```

```python
>>> PolynomialRing(QQ, 'x', Integer(2)).is_field()
False
```

```python
>>> PolynomialRing(QQ, 'x', Integer(0)).is_field()
True
```

```python
>>> PolynomialRing(ZZ, 'x', Integer(0)).is_field()
False
```

```python
>>> PolynomialRing(Zmod(Integer(1)), names=['x','y']).is_finite()
True
```

---

**is_integral_domain** *(proof=True)*

**EXAMPLES:**

```python
sage: ZZ['x,y'].is_integral_domain()
True
sage: Integers(8)['x,y'].is_integral_domain()
False
```

```python
>>> from sage.all import *
```

```python
>>> ZZ['x,y'].is_integral_domain()
True
```

```python
>>> Integers(Integer(8))['x,y'].is_integral_domain()
False
```

---

**is_noetherian**

**EXAMPLES:**

```python
sage: ZZ['x,y'].is_noetherian()
True
```

(continues on next page)
krull_dimension()

macaulay_resultant(*args, **kwds)

Return the Macaulay resultant.

This computes the resultant of universal polynomials as well as polynomials with constant coefficients. This is a project done in sage days 55. It is based on the implementation in Maple by Manfred Minimair, which in turn is based on the references listed below. It calculates the Macaulay resultant for a list of polynomials, up to sign!

REFERENCES:

• [CLO2005]
• [Can1990]
• [Mac1916]

AUTHORS:

• Hao Chen, Solomon Vishkautsan (7-2014)

INPUT:

• args – a list of \( n \) homogeneous polynomials in \( n \) variables. works when args[0] is the list of polynomials, or args is itself the list of polynomials

kwds:

• sparse – boolean (default: False); if True, the function creates sparse matrices.

OUTPUT:

• the Macaulay resultant, an element of the base ring of self

Todo: Working with sparse matrices should usually give faster results, but with the current implementation it actually works slower. There should be a way to improve performance with regards to this.

EXAMPLES:

The number of polynomials has to match the number of variables:

```
sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: R.macaulay_resultant([y, x + z]) # needs sage.modules
Traceback (most recent call last):
...
TypeError: number of polynomials(= 2) must equal number of variables (= 3)
```
The polynomials need to be all homogeneous:

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: R.macaulay_resultant([y, x + z, z + x^3])
```

`Traceback (most recent call last):
... TypeError: resultant for non-homogeneous polynomials is not supported`

All polynomials must be in the same ring:

```python
sage: S.<x,y> = PolynomialRing(QQ, 2)
sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: S.macaulay_resultant([y, z+x])
```

`Traceback (most recent call last):
... TypeError: not all inputs are polynomials in the calling ring`

The following example recreates Proposition 2.10 in Ch.3 in [CLO2005]:

```python
sage: K.<x,y> = PolynomialRing(ZZ, 2)
sage: flist, R = K._macaulay_resultant_universal_polynomials([1,1,2])
sage: R.macaulay_resultant(flist)
```

(continues on next page)
2*u0*u2*u3*u5*u9 + u0^2*u5^2*u9 - u1*u2*u3^2*u10 + u0*u2*u3*u4*u10 + u0*u1*u3*u5*u10 - u0^2*u4*u5*u10 + u1^2*u3^2*u11 - 2*u0*u1*u3*u4*u11 + u0^2*u4^2*u11

```python
>>> from sage.all import *
>>>
K = PolynomialRing(ZZ, Integer(2), names=('x', 'y')); (x, y,) = K._first_ngens(2)
>>> flist, R = K._macaulay_resultant_universal_polynomials([Integer(1), Integer(1),Integer(2)])
>>> R.macaulay_resultant(flist) #...
needs sage.modules
```

The following example degenerates into the determinant of a 3 × 3 matrix:

```python
sage: K.<x,y> = PolynomialRing(ZZ, 2)
sage: flist,R = K._macaulay_resultant_universal_polynomials([1,1,1])
sage: R.macaulay_resultant(flist) #...
needs sage.modules
```

The following example is by Patrick Ingram (arXiv 1310.4114):

```python
sage: U = PolynomialRing(ZZ,y,Integer(2)); y0,y1 = U.gens()
sage: R = PolynomialRing(U,'x',3); x0,x1,x2 = R.gens()
sage: f0 = y0*x2^2 - x0^2 + 2*x1*x2
sage: f1 = y1*x2^2 - x1^2 + 2*x0*x2
sage: f2 = x0*x1 - x2^2
sage: flist = [f0,f1,f2]
sage: R.macaulay_resultant([f0,f1,f2]) #...
needs sage.modules
```

```python
>>> from sage.all import *
>>>
U = PolynomialRing(ZZ,'y',Integer(2)); y0,y1 = U.gens()
>>> R = PolynomialRing(U,'x',Integer(3)); x0,x1,x2 = R.gens()
>>> f0 = y0*x2^2 + x0^2 + 2*x1*x2
>>> f1 = y1*x2^2 + x1^2 + 2*x0*x2
>>> f2 = x0*x1 - x2^2
>>> flist = [f0,f1,f2]
>>> R.macaulay_resultant([f0,f1,f2]) #...
```

(continues on next page)
A simple example with constant rational coefficients:

```python
sage: R.<x,y,z,w> = PolynomialRing(QQ, 4)
sage: R.macaulay_resultant([w, z, y, x])
needs sage.modules
1
```

An example where the resultant vanishes:

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: R.macaulay_resultant([x + y, y^2, x])
needs sage.modules
0
```

An example of bad reduction at a prime \( p = 5 \):

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: R.macaulay_resultant([y, x^3 + 25*y^2*x, 5*z])
needs sage.libs.pari sage.modules
125
```

The input can given as an unpacked list of polynomials:

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: R.macaulay_resultant(y, x^3 + 25*y^2*x, 5*z)
needs sage.libs.pari sage.modules
125
```
An example when the coefficients live in a finite field:

```python
sage: F = FiniteField(11)
sage: R.<x,y,z,w> = PolynomialRing(F, 4)
sage: R.macaulay_resultant([z, x^3, 5*y, w])
needs sage.modules sage.rings.finite_rings
4
```

Example when the denominator in the algorithm vanishes (in this case the resultant is the constant term of the quotient of char polynomials of numerator/denominator):

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: R.macaulay_resultant([y, x + z, z^2])
needs sage.libs.pari sage.modules
-1
```

When there are only 2 polynomials, the Macaulay resultant degenerates to the traditional resultant:

```python
sage: R.<x> = PolynomialRing(QQ, 1)
sage: f = x^2 + 1; g = x^5 + 1
sage: fh = f.homogenize()
sage: gh = g.homogenize()
sage: RH = fh.parent()
sage: f.resultant(g) == RH.macaulay_resultant([fh, gh])
needs sage.modules
True
```

```python
sage: from sage.all import *
>>> F = FiniteField(Integer(11))
>>> R = PolynomialRing(F, Integer(4), names=(x, y, z, w,)); (x, y, z, w,)
˓→ R._first_ngens(4)
>>> R.macaulay_resultant([z, x**Integer(3), Integer(5)*y, w])
˓→ # needs sage.modules sage.rings.finite_rings
4
```
monomial (*exponents)

Return the monomial with given exponents.

EXAMPLES:

```sage
sage: R.<x,y,z> = PolynomialRing(ZZ, 3)
sage: R.monomial(1,1,1)
x*y*z
sage: e=(1,2,3)
sage: R.monomial(*e)
x*y^2*z^3
sage: m = R.monomial(1,2,3)
sage: R.monomial(*m.degrees()) == m
True
```

monomials_of_degree (degree)

Return a list of all monomials of the given total degree in this multivariate polynomial ring.

EXAMPLES:

```sage
sage: # needs sage.combinat
sage: R.<x,y,z> = ZZ[]
sage: mons = R.monomials_of_degree(2)
sage: mons
[z^2, y*z, x*z, y^2, x*y, x^2]
sage: P = PolynomialRing(QQ, 3, 'x, y, z', order=TermOrder('wdeglex', [1, 2, 1]))
sage: P.monomials_of_degree(2)
[z^2, y, x*z, x^2]
sage: P = PolynomialRing(QQ, 3, 'x, y, z', order='lex')
sage: P.monomials_of_degree(3)
[z^3, y*z^2, y^2*z, y^3, x*z^2, x*y*z, x^2*z, x^2*y, x^3]
sage: P = PolynomialRing(QQ, 3, 'x, y, z', order='invlex')
sage: P.monomials_of_degree(3)
[x^3, x^2*y, x*y^2, y^3, x^2*z, x*y*z, y^2*z, x*z^2, y*z^2, z^3]
```

```sage
>>> from sage.all import *
>>> R = ZZ['x, y, z']; (x, y, z,) = R._first_ngens(3)
>>> mons = R.monomials_of_degree(Integer(2))
>>> mons
[z^2, y*z, x*z, y^2, x*y, x^2]
>>> P = PolynomialRing(QQ, Integer(3), 'x, y, z', order=TermOrder('wdeglex', [1, 2, 1]))
>>> P.monomials_of_degree(Integer(2))
```

(continues on next page)
\[ \{z^2, y, x*z, x^2\} \]

\[ \text{\texttt{P = PolynomialRing(QQ, Integer(3), 'x, y, z', order='lex')} \}
\]
\[ \text{\texttt{P.monomials_of_degree(Integer(3))}} \]
\[ \{z^3, y*z^2, y^2*z, y^3, x*z^2, x*y*z, x*y^2, x^2*z, x^2*y, x^3\} \]

\[ \text{\texttt{P = PolynomialRing(QQ, Integer(3), 'x, y, z', order='invlex')} \}
\]
\[ \text{\texttt{P.monomials_of_degree(Integer(3))}} \]
\[ \{x^3, x^2*y, x*y^2, y^3, x^2*z, x*y*z, y^2*z, x*z^2, y*z^2, z^3\} \]

The number of such monomials equals \( \binom{n+k-1}{k} \) where \( n \) is the number of variables and \( k \) the degree:

\[ \text{\texttt{sage: len(mons) == binomial(3 + 2 - 1, 2)}} \]
\[ \text{\texttt{# needs sage.combinat}} \]
\[ \text{True} \]

\[ \text{\texttt{>>> from sage.all import *}} \]
\[ \text{\texttt{>>> len(mons) == binomial(Integer(3) + Integer(2) - Integer(1), Integer(2)) \_}} \]
\[ \text{\texttt{# needs sage.combinat}} \]
\[ \text{True} \]

\section*{ngens()}

\section*{random_element \( (\text{\texttt{degree=2, terms=None, choose_degree=False, *args, **kwargs}}) \)}

Return a random polynomial of at most degree \( d \) and at most \( t \) terms.

First monomials are chosen uniformly random from the set of all possible monomials of degree up to \( d \) (inclusive). This means that it is more likely that a monomial of degree \( d \) appears than a monomial of degree \( d-1 \) because the former class is bigger.

Exactly \( t \) distinct monomials are chosen this way and each one gets a random coefficient (possibly zero) from the base ring assigned.

The returned polynomial is the sum of this list of terms.

**INPUT:**

- \texttt{\texttt{degree}} – maximal degree (likely to be reached) (default: 2)
- \texttt{\texttt{terms}} – number of terms requested (default: 5). If more terms are requested than exist, then this parameter is silently reduced to the maximum number of available terms.
- \texttt{\texttt{choose_degree}} – choose degrees of monomials randomly first rather than monomials uniformly random.
- \texttt{\texttt{**kwargs}} – passed to the random element generator of the base ring

**EXAMPLES:**

\texttt{sage: P.<x,y,z> = PolynomialRing(QQ)}
\texttt{sage: f = P.random_element(2, 5)}
\texttt{sage: f.degree() <= 2}
\texttt{True}
\texttt{sage: f.parent() \texttt{is P}}
\texttt{True}
\texttt{sage: len(list(f)) <= 5}
\texttt{True}
\texttt{sage: f = P.random_element(2, 5, choose_degree=True)}
\texttt{sage: f.degree() <= 2}
\texttt{True}
sage: f.parent()  is  P
True
sage: len(list(f))  <=  5
True

>>> from sage.all import *
>>> P = PolynomialRing(QQ, names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3)
>>> f = P.random_element(Integer(2), Integer(5))
>>> f.degree()  <=  Integer(2)
True
>>> f.parent()  is  P
True
>>> len(list(f))  <=  Integer(5)
True

>>> f = P.random_element(Integer(2), Integer(5), choose_degree=True)
>>> f.degree()  <=  Integer(2)
True
>>> f.parent()  is  P
True
>>> len(list(f))  <=  Integer(5)
True

Stacked rings:

sage: R = QQ['x,y']
sage: S = R['t,u']
sage: f = S._random_nonzero_element(degree=2, terms=1)
sage: len(list(f))
1
sage: f.degree()  <=  2
True
sage: f.parent()  is  S
True

>>> from sage.all import *
>>> R = QQ['x,y']
>>> S = R['t,u']
>>> f = S._random_nonzero_element(degree=Integer(2), terms=Integer(1))
>>> len(list(f))
1
>>> f.degree()  <=  Integer(2)
True
>>> f.parent()  is  S
True

Default values apply if no degree and/or number of terms is provided:

sage: # needs sage.modules
sage: M = random_matrix(QQ['x,y,z'], 2, 2)
sage: all(a.degree()  <=  2  for  a  in  M.list())
True
sage: all(len(list(a))  <=  5  for  a  in  M.list())
True
sage: M = random_matrix(QQ['x,y,z'], 2, 2, terms=1, degree=2)
sage: all(a.degree() <= 2 for a in M.list())
True
sage: all(len(list(a)) <= 1 for a in M.list())
True

sage: P.random_element(0, 1) in QQ
True

sage: P.random_element(2, 0)
0

sage: R.<x> = PolynomialRing(Integers(3), 1)
sage: f = R.random_element()
sage: f.degree() <= 2
True
sage: len(list(f)) <= 3
True

>>> from sage.all import *
>>> # needs sage.modules
>>> M = random_matrix(QQ['x,y,z'], Integer(2), Integer(2))
>>> all(a.degree() <= Integer(2) for a in M.list())
True
>>> all(len(list(a)) <= Integer(5) for a in M.list())
True

>>> M = random_matrix(QQ['x,y,z'], Integer(2), Integer(2), terms=Integer(1), degree=Integer(2))
>>> all(a.degree() <= Integer(2) for a in M.list())
True
>>> all(len(list(a)) <= Integer(1) for a in M.list())
True

>>> P.random_element(Integer(0), Integer(1)) in QQ
True

>>> P.random_element(Integer(2), Integer(0))
0

>>> R = PolynomialRing(Integers(Integer(3)), Integer(1), names=('x',)); (x,) = R._first_ngens(1)
>>> f = R.random_element()
>>> f.degree() <= 2
True
>>> len(list(f)) <= Integer(3)
True

To produce a dense polynomial, pick terms=Infinity:

sage: P.<x,y,z> = GF(127)[]
sage: f = P.random_element(degree=2, terms=Infinity)
sage: while len(list(f)) != 10:
    ....:     f = P.random_element(degree=2, terms=Infinity)
sage: f = P.random_element(degree=3, terms=Infinity)
sage: while len(list(f)) != 20:
    ....:     f = P.random_element(degree=3, terms=Infinity)
sage: f = P.random_element(degree=3, terms=Infinity, choose_degree=True)
sage: while len(list(f)) != 20:
....:     f = P.random_element(degree=3, terms=Infinity)

The number of terms is silently reduced to the maximum available if more terms are requested:

sage: P.<x,y,z> = GF(127)[]
sage: f = P.random_element(degree=2, terms=1000)
sage: len(list(f)) <= 10
True

remove_var(order=None, *var)

Remove a variable or sequence of variables from self.

If order is not specified, then the subring inherits the term order of the original ring, if possible.

EXAMPLES:

sage: P.<x,y,z,w> = PolynomialRing(ZZ)
sage: P.remove_var(z)
Multivariate Polynomial Ring in x, y, w over Integer Ring
sage: P.remove_var(z, x)
Multivariate Polynomial Ring in y, w over Integer Ring
sage: P.remove_var(y, z, x)
Univariate Polynomial Ring in w over Integer Ring

Removing all variables results in the base ring:
If possible, the term order is kept:

```python
sage: R.<x,y,z,w> = PolynomialRing(ZZ, order='deglex')
sage: R.remove_var(y).term_order()
Degree lexicographic term order
sage: R.<x,y,z,w> = PolynomialRing(ZZ, order='lex')
sage: R.remove_var(y).term_order()
Lexicographic term order
```

Be careful with block orders when removing variables:

```python
sage: R.<x,y,z,u,v> = PolynomialRing(ZZ, order='deglex(2),lex(3)')
sage: R.remove_var(x, y, z)
Traceback (most recent call last):
 ...
ValueError: impossible to use the original term order (most likely because it was a block order). Please specify the term order for the subring
sage: R.remove_var(x,y,z, order='degrevlex')
Multivariate Polynomial Ring in u, v over Integer Ring
```

```
>>> from sage.all import *
```
sage: P.<x,y,z> = PolynomialRing(QQ, order=TermOrder('degrevlex','1')
....:   + TermOrder('lex',2))
sage: print(P.repr_long())
Polynomial Ring
Base Ring : Rational Field
Size : 3 Variables
Block 0 : Ordering : degrevlex
   Names : x
Block 1 : Ordering : lex
   Names : y, z

>>> from sage.all import *
>>> P = PolynomialRing(QQ, order=TermOrder('degrevlex',Integer(1))
...   + TermOrder('lex',Integer(2)), names=('x', 'y', 'z',)); (x, y, z) = P._first_ngens(3)
>>> print(P.repr_long())
Polynomial Ring
Base Ring : Rational Field
Size : 3 Variables
Block 0 : Ordering : degrevlex
   Names : x
Block 1 : Ordering : lex
   Names : y, z

**some_elements**

Return a list of polynomials.

This is typically used for running generic tests.

**EXAMPLES:**

```sage
sage: R.<x,y> = QQ[]
sage: R.some_elements()
[x, y, x + y, x^2 + x*y, 0, 1]
```

```python
>>> from sage.all import *
>>> R = QQ['x', 'y']; (x, y) = R._first_ngens(2)
>>> R.some_elements()
[x, y, x + y, x^2 + x*y, 0, 1]
```

**term_order**

**univariate_ring**(*x*)

Return a univariate polynomial ring whose base ring comprises all but one variables of *self*.

**INPUT:**

- *x* – a variable of *self*.

**EXAMPLES:**

```sage
sage: P.<x,y,z> = QQ[]
sage: P.univariate_ring(y)
Univariate Polynomial Ring in y
 over Multivariate Polynomial Ring in x, z over Rational Field
```
>>> from sage.all import *
>>> P = QQ['x, y, z']; (x, y, z,) = P._first_ngens(3)
>>> P.univariate_ring(y)
Univariate Polynomial Ring in y
over Multivariate Polynomial Ring in x, z over Rational Field

variable_names_recursive (depth=None)

Return the list of variable names of this and its base rings, as if it were a single multi-variate polynomial.

EXAMPLES:

sage: R = QQ['x,y']['z,w']
sage: R.variable_names_recursive()
('x', 'y', 'z', 'w')
sage: R.variable_names_recursive(3)
('y', 'z', 'w')

weyl_algebra()

Return the Weyl algebra generated from self.

EXAMPLES:

sage: R = QQ['x,y,z']
sage: W = R.weyl_algebra(); W
Differential Weyl algebra of polynomials in x, y, z over Rational Field
sage: W.polynomial_ring() == R
True

sage.rings.polynomial.multi_polynomial_ring_base.is_MPolynomialRing(x)

sage.rings.polynomial.multi_polynomial_ring_base.unpickle_MPolynomialRing_generic(base_ring, n, names, order)
3.1.3 Base class for elements of multivariate polynomial rings

class sage.rings.polynomial.multi_polynomial.MPolynomial
    Bases: CommutativePolynomial

    args()
    Returns the names of the arguments of self, in the order they are accepted from call.

    EXAMPLES:
    sage: R.<x,y> = ZZ[]
    sage: x.args()
    (x, y)

    >>> from sage.all import *
    >>> R = ZZ['x', 'y']; (x, y,) = R._first_ngens(2)
    >>> x.args()
    (x, y)

    change_ring(R)
    Return this polynomial with coefficients converted to R.

    INPUT:
    • R – a ring or morphism; if a morphism, the coefficients are mapped to the codomain of R

    OUTPUT: a new polynomial with the base ring changed to R.

    EXAMPLES:
    sage: R.<x,y> = QQ[]
    sage: f = x^3 + 3/5*y + 1
    sage: f.change_ring(GF(7))
    x^3 + 2*y + 1
    sage: g = x^2 + 5*y
    sage: g.change_ring(GF(5))
    x^2

    >>> from sage.all import *
    >>> R = QQ['x', 'y']; (x, y,) = R._first_ngens(2)
    >>> f = x**Integer(3) + Integer(3)/Integer(5)*y + Integer(1)
    >>> f.change_ring(GF(Integer(7)))
    x^3 + 2*y + 1
    >>> g = x**Integer(2) + Integer(5)*y
    >>> g.change_ring(GF(Integer(5)))
    x^2

    sage: # needs sage.rings.finite_rings
    sage: R.<x,y> = GF(9,'a')[]

(continues on next page)
sage: (x+2*y).change_ring(GF(3))

x - y

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> R = GF(Integer(9), 'a')[x, y]; (x, y,) = R._first_ngens(2)
>>> (x+Integer(2)*y).change_ring(GF(Integer(3)))

x - y

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(7^2)

sage: R.<x,y> = F[]

sage: f = x^2 + a^2*y^2 + a*x + a^3*y

sage: g = f.change_ring(F.frobenius_endomorphism()); g

x^2 + (-a - 2)*y^2 + (-a + 1)*x + (2*a + 2)*y

sage: g.change_ring(F.frobenius_endomorphism()) == f

True

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> F = GF(Integer(7)**Integer(2), names=(a,)); (a,) = F._first_ngens(1)

>>> R = F['x', 'y']; (x, y,) = R._first_ngens(2)

>>> f = x**Integer(2) + a**Integer(2)*y**Integer(2) + a*x + a**Integer(3)*y

>>> g = f.change_ring(F.frobenius_endomorphism()); g

x^2 + (-a - 2)*y^2 + (-a + 1)*x + (2*a + 2)*y

>>> g.change_ring(F.frobenius_endomorphism()) == f

True

sage: # needs sage.rings.number_field
sage: K.<z> = CyclotomicField(3)

sage: R.<x,y> = K[]

sage: f = x**Integer(2) + z*y

sage: f.change_ring(K.embeddings(CC)[1])

x^2 + (-0.500000000000000 - 0.866025403784438*I)*y

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> K = CyclotomicField(Integer(3), names=('z',)); (z,) = K._first_ngens(1)

>>> R = K['x', 'y']; (x, y,) = R._first_ngens(2)

>>> f = x**Integer(2) + z*y

>>> f.change_ring(K.embeddings(CC)[Integer(1)])

x^2 + (-0.500000000000000 - 0.866025403784438*I)*y

sage: # needs sage.rings.number_field
sage: K.<w> = CyclotomicField(5)

sage: R.<x,y> = K[]

sage: f = x**Integer(2) + w*y

sage: f.change_ring(K.embeddings(QQbar)[1])

x^2 + (-0.8090169943749474? + 0.5877852522924731?*I)*y

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> K = CyclotomicField(Integer(5), names=('w',)); (w,) = K._first_ngens(1)

>>> R = K['x', 'y']; (x, y,) = R._first_ngens(2)
Polynomials, Release 10.4

(continued from previous page)

```python
>>> f = x**Integer(2) + w*y
>>> f.change_ring(K.embeddings(QQbar)[Integer(1)])
x^2 + (-0.8090169943749474? + 0.5877852522924731?*I)*y
```

functions

Return the nonzero coefficients of this polynomial in a list.

The returned list is decreasingly ordered by the term ordering of `self.parent()`, i.e. the list of coefficients matches the list of monomials returned by `sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular.monomials()`.

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='degrevlex')
sage: f = 23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[23, 6, 1]
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: f = 23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[6, 23, 1]
```

```python
>>> from sage.all import *
```

```python
>>> R = PolynomialRing(QQ, Integer(3), order=degrevlex, names=('x', 'y', 'z'));
(x, y, z,) = R._first_ngens(3)
>>> f = Integer(23)*x**Integer(6)*y**Integer(7) +
 -x**Integer(3)*y+Integer(6)*x**Integer(7)*z
>>> f.coefficients()
[23, 6, 1]
```

```python
>>> R = PolynomialRing(QQ, Integer(3), order=lex, names=('x', 'y', 'z'));
(x, y, z,) = R._first_ngens(3)
>>> f = Integer(23)*x**Integer(6)*y**Integer(7) +
 -x**Integer(3)*y+Integer(6)*x**Integer(7)*z
>>> f.coefficients()
[6, 23, 1]
```

Test the same stuff with base ring `ZZ` – different implementation:

```python
sage: R.<x,y,z> = PolynomialRing(ZZ, 3, order='degrevlex')
sage: f = 23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[23, 6, 1]
sage: R.<x,y,z> = PolynomialRing(ZZ, 3, order='lex')
sage: f = 23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[6, 23, 1]
```

```python
>>> from sage.all import *
```

```python
>>> R = PolynomialRing(ZZ, Integer(3), order=degrevlex, names=('x', 'y', 'z'));
(x, y, z,) = R._first_ngens(3)
>>> f = Integer(23)*x**Integer(6)*y**Integer(7) +
 -x**Integer(3)*y+Integer(6)*x**Integer(7)*z
>>> f.coefficients()
[23, 6, 1]
```

```python
>>> R = PolynomialRing(ZZ, Integer(3), order=lex, names=('x', 'y', 'z'));
(x, y, z,) = R._first_ngens(3)
```

(continues on next page)
AUTHOR:

- Didier Deshommes

**content()**

Return the content of this polynomial. Here, we define content as the gcd of the coefficients in the base ring.

See also:

**content_ideal()**

**EXAMPLES:**

```python
sage: R.<x,y> = ZZ[

sage: f = 4*x+6*y

sage: f.content()

2

sage: f.content().parent()
Integer Ring
```

```python
>>> from sage.all import *

>>> R = ZZ['x', 'y']; (x, y,) = R._first_ngens(2)

>>> f = Integer(4)*x+Integer(6)*y

>>> f.content()

2

>>> f.content().parent()
Integer Ring
```

**content_ideal()**

Return the content ideal of this polynomial, defined as the ideal generated by its coefficients.

See also:

**content()**

**EXAMPLES:**

```python
sage: R.<x,y> = ZZ[

sage: f = 2*x*y + 6*x - 4*y + 2

sage: f.content_ideal()
Principal ideal (2) of Integer Ring

sage: S.<z,t> = R[

sage: g = x*z + y*t

sage: g.content_ideal()
Ideal (x, y) of Multivariate Polynomial Ring in x, y over Integer Ring
```

```python
>>> from sage.all import *

>>> R = ZZ['x', 'y']; (x, y,) = R._first_ngens(2)

>>> f = Integer(2)*x*y + Integer(6)*x - Integer(4)*y + Integer(2)

>>> f.content_ideal()
Principal ideal (2) of Integer Ring

>>> S = R['z', 't']; (z, t,) = S._first_ngens(2)

>>> g = x*z + y*t
```

(continues on next page)
denominator()

Return a denominator of self.

First, the lcm of the denominators of the entries of self is computed and returned. If this computation fails, the unit of the parent of self is returned.

Note that some subclasses may implement its own denominator function.

**Warning:** This is not the denominator of the rational function defined by self, which would always be 1 since self is a polynomial.

**EXAMPLES:**

First we compute the denominator of a polynomial with integer coefficients, which is of course 1.

```
sage: R.<x,y> = ZZ[]
sage: f = x^3 + 17*y + x + y
sage: f.denominator()
1
```

Next we compute the denominator of a polynomial over a number field.

```
sage: # needs sage.rings.number_field sage.symbolic
sage: R.<x,y> = NumberField(symbolic_expression(x^2+3),a)['x,y']
sage: f = (1/17)*x^19 - 2/3*x + 1/6*y + 1/3; f
1/17*x^19 - 2/3*x + 1/6*y + 1/3
sage: f.denominator()
102
```

Finally, we try to compute the denominator of a polynomial with coefficients in the real numbers, which is a ring whose elements do not have a denominator method.

```
sage: # needs sage.rings.real_mpfr
sage: R.<a,b,c> = RR[]
sage: f = a + b + RR('0.3'); f
```

(continues on next page)
Check that the denominator is an element over the base whenever the base has no denominator function. This closes Issue #9063:

```python
sage: R.<a,b,c> = GF(5)[]
sage: x = R(0)
sage: x.denominator()
1
sage: type(x.denominator())
<class 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
sage: type(a.denominator())
<class 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
sage: from sage.rings.polynomial.multi_polynomial_element import MPolynomial
sage: isinstance(a / b, MPolynomial)
False
sage: isinstance(a.numerator() / a.denominator(), MPolynomial)
True
```

derivative(*args)
The formal derivative of this polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global function derivative() for more details.

See also:
_derivative() 

EXAMPLES:
Polynomials implemented via Singular:
sage: # needs sage.libs.singular
sage: R.<x, y> = PolynomialRing(FiniteField(5))

sage: f = x^3*y^5 + x^7*y
sage: type(f)
<class sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular>

sage: f.derivative(x)
2*x^6*y - 2*x^2*y^5

sage: f.derivative(y)
x^7

sage: from sage.all import *
>>> # needs sage.libs.singular
>>> R = PolynomialRing(FiniteField(Integer(5)), names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> f = x**Integer(3)*y**Integer(5) + x**Integer(7)*y

>>> type(f)
<class sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'>

>>> f.derivative(x)
(2*t^2 + O(t^3))*x*y^3 + (111*t^4 + O(t^5))*x^2

>>> f.derivative(y)
(3*t^2 + O(t^3))*x^2*y^2

>>> f.derivative(t)
(2*t + O(t^2))*x^2*y^3 + (148*t^3 + O(t^4))*x^3

>>> f.derivative(x, y)
(6*t^2 + O(t^3))*x*y^2

>>> f.derivative(y, 3)
(6*t^2 + O(t^3))*x^2

sage: f.derivative()
Traceback (most recent call last):
... ValueError: must specify which variable to differentiate with respect to

3.1. Multivariate Polynomials and Polynomial Rings

(continues on next page)
Polynomials over the symbolic ring (just for fun….):

```python
sage: # needs sage.symbolic
sage: x = var("x")
```

```python
sage: S.<u, v> = PolynomialRing(SR)
```

```python
sage: f = u*v*x
```

```python
sage: f.derivative(x) == u*v
True
```

```python
sage: f.derivative(u) == v*x
True
```

\[ \text{discriminant}(\text{variable}) \]

Returns the discriminant of \text{self} with respect to the given variable.

**INPUT:**

- \text{variable} – The variable with respect to which we compute the discriminant

**OUTPUT:** An element of the base ring of the polynomial ring.

**EXAMPLES:**

```
sage: from sage.all import *
```

```
sage: R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)
```

```python
\[\text{discriminant}(\text{variable}) \]

Returns the discriminant of \text{self} with respect to the given variable.

INPUT:

- \text{variable} – The variable with respect to which we compute the discriminant

OUTPUT: An element of the base ring of the polynomial ring.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
```

```python
sage: f = 4*x*y^2 + 1/4*x*y*z + 3/2*x*z^2 - 1/2*z^2
```

```python
sage: f.discriminant(x) # needs sage.libs.singular
1
```

```python
sage: f.discriminant(y) # needs sage.libs.singular
-383/16*x^2*z^2 + 8*x*z^2
```

```python
sage: f.discriminant(z) # needs sage.libs.singular
-383/16*x^2*y^2 + 8*x*y^2
```

```python
>>> from sage.all import *
```
Polynomials, Release 10.4

(continued from previous page)

```python
>>> f = Integer(4)*x*y**Integer(2) + Integer(1)/Integer(4)*x*y*z + Integer(3)/
    Integer(2)*x*z**Integer(2) - Integer(1)/Integer(2)*z**Integer(2)
>>> f.discriminant(x)                     # needs sage.libs.singular
1
>>> f.discriminant(y)                     # needs sage.libs.singular
-383/16*x^2*z^2 + 8*x*z^2
>>> f.discriminant(z)                     # needs sage.libs.singular
-383/16*x^2*y^2 + 8*x*y^2
```

Note that, unlike the univariate case, the result lives in the same ring as the polynomial:

```python
sage: R.<x,y> = QQ[]
sage: f = x^5*y + 3*x^2*y^2 - 2*x + y - 1
sage: f.discriminant(y)                     # needs sage.libs.singular
x^10 + 2*x^5 + 24*x^3 + 12*x^2 + 1
sage: f.polynomial(y).discriminant()        # needs sage.libs.pari sage.modules
x^10 + 2*x^5 + 24*x^3 + 12*x^2 + 1
sage: f.discriminant(y).parent() == f.polynomial(y).discriminant().parent()   # needs sage.libs.singular sage.modules
False
```

AUTHOR: Miguel Marco

```python
from sage.all import *
```

```python
>>> R = QQ['x', 'y']; (x, y,) = R._first_ngens(2)
>>> f = x**Integer(5)*y + Integer(3)*x**Integer(2)*y**Integer(2) -
    Integer(2)*x + y - Integer(1)
>>> f.discriminant(y)                     # needs sage.libs.singular
x^10 + 2*x^5 + 24*x^3 + 12*x^2 + 1
>>> f.polynomial(y).discriminant()        # needs sage.libs.pari sage.modules
x^10 + 2*x^5 + 24*x^3 + 12*x^2 + 1
>>> f.discriminant(y).parent() == f.polynomial(y).discriminant().parent()   # needs sage.libs.singular sage.modules
False
```

gcd

Return a greatest common divisor of this polynomial and other.

INPUT:

- **other** – a polynomial with the same parent as this polynomial

EXAMPLES:

```python
sage: Q.<z> = Frac(QQ['z'])
```

```python
sage: R.<x,y> = Q[]
```

```python
sage: r = x*y - (2*z-1)/(z^2+z+1) * x + y/z
```

```python
sage: p = r * (x + z*y - 1/z^2)
```

```python
sage: q = r * (x*y+z + 1)
```

```python
sage: gcd(p, q)
(z^3 + z^2 + z)*x*y + (-2*z^2 + z)*x + (z^2 + z + 1)*y
```

3.1. Multivariate Polynomials and Polynomial Rings 523
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> Q = Frac(QQ['z'], names=('z',)); (z,) = Q._first_ngens(1)
>>> R = Q['x', 'y']; (x, y,) = R._first_ngens(2)
>>> r = x*y - (Integer(2)*z-Integer(1))/(z**Integer(2)+z+Integer(1)) * x + y/z
>>> p = r * (x + z*y - Integer(1)/z**Integer(2))
>>> q = r * (x*y*z + Integer(1))
>>> gcd(p, q)
(z^3 + z^2 + z)*x*y + (-2*z^2 + z)*x + (z^2 + z + 1)*y
```

Polynomials over polynomial rings are converted to a simpler polynomial ring with all variables to compute the gcd:

```python
sage: A.<z,t> = ZZ[]
sage: B.<x,y> = A[]
sage: r = x*y*z*t + Integer(1)
sage: p = r * (x - y + z - t + Integer(1))
sage: q = r * (x*z - y*t)
sage: gcd(p, q) # needs sage.libs.singular
z*t*x*y + 1
sage: _.parent()
Multivariate Polynomial Ring in x, y over
Multivariate Polynomial Ring in z, t over Integer Ring
```

Some multivariate polynomial rings have no gcd implementation:

```python
sage: R.<x,y> = GaussianIntegers[]
# needs sage.rings.number_field
sage: x.gcd(x)
Traceback (most recent call last):
  ... NotImplementedError: GCD is not implemented for multivariate polynomials over
Gaussian Integers generated by I in Number Field in I with defining...
  polynomial x^2 + 1 with I = 1*I
```

```python
>>> from sage.all import *
>>> R = GaussianIntegers()['x, y']; (x, y,) = R._first_ngens(2)# needs sage.rings.number_field
>>> x.gcd(x)
Traceback (most recent call last):
  ... NotImplementedError: GCD is not implemented for multivariate polynomials over
Gaussian Integers generated by I in Number Field in I with defining...
  polynomial x^2 + 1 with I = 1*I
```
gradient()
Return a list of partial derivatives of this polynomial, ordered by the variables of self.parent().

EXAMPLES:
sage: P.<x,y,z> = PolynomialRing(ZZ, 3)
sage: f = x*y + 1
sage: f.gradient()
[y, x, 0]

homogeneous_components()
Return the homogeneous components of this polynomial.

OUTPUT:
A dictionary mapping degrees to homogeneous polynomials.

EXAMPLES:
sage: R.<x,y> = QQ[]
sage: (x^3 + 2*x*y^3 + 4*y^3 + y).homogeneous_components()
{(1: y, 3: x^3 + 4*y^3, 4: 2*x*y^3)}
sage: R.zero().homogeneous_components()
{}

In case of weighted term orders, the polynomials are homogeneous with respect to the weights:
sage: S.<a,b,c> = PolynomialRing(ZZ, order=TermOrder('wdegrevlex', (1,2,3)))
sage: (a^6 + b^3 + b*c + a^2*c + c + a + 1).homogeneous_components()
{(0: 1, 1: a, 3: c, 5: a^2*c + b*c, 6: a^6 + b^3)}

homogenize(var='h')
Return the homogenization of this polynomial.

The polynomial itself is returned if it is homogeneous already. Otherwise, the monomials are multiplied with the smallest powers of var such that they all have the same total degree.
INPUT:

- \texttt{var} – a variable in the polynomial ring (as a string, an element of the ring, or a zero-based index in the list of variables) or a name for a new variable (default: ‘h’)

OUTPUT:

If \texttt{var} specifies a variable in the polynomial ring, then a homogeneous element in that ring is returned. Otherwise, a homogeneous element is returned in a polynomial ring with an extra last variable \texttt{var}.

EXAMPLES:

```sage
sage: R.<x,y> = QQ[]
sage: f = x^2 + y + 1 + 5*x*y^10
sage: f.homogenize()
5*x*y^10 + x^2*h^9 + y*h^10 + h^11

sage: from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> f = x**Integer(2) + y + Integer(1) + Integer(5)*x*y**Integer(10)
>>> f.homogenize()
5*x*y^10 + x^2*h^9 + y*h^10 + h^11
```

The parameter \texttt{var} can be used to specify the name of the variable:

```sage
sage: g = f.homogenize(z); g
5*x*y^10 + x^2*z^9 + y*z^10 + z^11
sage: g.parent()
Multivariate Polynomial Ring in x, y, z over Rational Field
```

However, if the polynomial is homogeneous already, then that parameter is ignored and no extra variable is added to the polynomial ring:

```sage
sage: f = x^2 + y^2
sage: g = f.homogenize(z); g
x^2 + y^2
sage: g.parent()
Multivariate Polynomial Ring in x, y over Rational Field
```

If you want the ring of the result to be independent of whether the polynomial is homogenized, you can use \texttt{var} to use an existing variable to homogenize:

```sage
sage: R.<x,y,z> = QQ[]
sage: f = x^2 + y^2
sage: g = f.homogenize(z); g
```

(continues on next page)
The parameter `var` can also be given as a zero-based index in the list of variables:

```python
sage: g = f.homogenize(2); g
x^2 - y*z
```

If the variable specified by `var` is not present in the polynomial, then setting it to 1 yields the original polynomial:

```python
sage: g(x,y,1)
x^2 - y
```

If it is present already, this might not be the case:

```python
sage: g = f.homogenize(x); g
x^2 - x*y
sage: g(1,y,z)
-y + 1
```

In particular, this can be surprising in positive characteristic:
Polynomials, Release 10.4

In SageMath, you can work with multivariate polynomials in different rings. Here’s an example of how to define a polynomial ring and perform operations on polynomials:

```python
sage: R.<x,y> = GF(2)[]
sage: f = x + 1
sage: f.homogenize(x)
0
```

You can also import polynomials from the `sage.all` module and work with them in a similar way:

```python
>>> from sage.all import *
>>> R = GF(Integer(2))[x, y]; (x, y,) = R._first_ngens(2)
>>> f = x + Integer(1)
>>> f.homogenize(x)
0
```

The `inverse_mod(I)` method returns an inverse of `self` modulo the polynomial ideal `I`, namely a multivariate polynomial `f` such that `self * f - 1` belongs to `I`.

INPUT:
- `I` – an ideal of the polynomial ring in which `self` lives

OUTPUT:
- a multivariate polynomial representing the inverse of `f` modulo `I`

EXAMPLES:

```python
sage: R.<x1,x2> = QQ[]
sage: I = R.ideal(x2**2 + x1 - 2, x1**2 - 1)
sage: f = x1 + 3*x2^2; g = f.inverse_mod(I); g
1/16*x1 + 3/16
```

Test a non-invertible element:

```python
sage: R.<x1,x2> = QQ[]
sage: I = R.ideal(x2**2 + x1 - 2, x1**2 - 1)
sage: f = x1 + x2
sage: f.inverse_mod(I)
Traceback (most recent call last):
  ... ArithmeticError: element is non-invertible
```

(continues on next page)
>>> I = R.ideal(x2**Integer(2) + x1 - Integer(2), x1**Integer(2) - Integer(1))
>>> f = x1 + x2
>>> f.inverse_mod(I)

Traceback (most recent call last):
 ... ArithmeticError: element is non-invertible

is_generator()

Returns True if this polynomial is a generator of its parent.

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: x.is_generator()
True
sage: (x + y - y).is_generator()
True
sage: (x*y).is_generator()
False
sage: R.<x,y> = QQ[
```

```python
sage: x.is_generator()
True
sage: (x + y - y).is_generator()
True
sage: (x*y).is_generator()
False
```

is_homogeneous()

Return True if self is a homogeneous polynomial.

Note: This is a generic implementation which is likely overridden by subclasses.

is_lorentzian(explain=False)

Return whether this is a Lorentzian polynomial.

INPUT:

- explain – boolean (default: False): if True return a tuple whose first element is the boolean result
Lorentzian polynomials are a class of polynomials connected with the area of discrete convex analysis. A polynomial \(f \) with positive real coefficients is Lorentzian if:

- \(f \) is homogeneous;
- the support of \(f \) is \(M \)-convex
- \(f \) has degree less than 2, or if its degree is at least two, the collection of sequential partial derivatives of \(f \) which are quadratic forms have Gram matrices with at most one positive eigenvalue.

Note in particular that the zero polynomial is Lorentzian. Examples of Lorentzian polynomials include homogeneous stable polynomials, volume polynomials of convex bodies and projective varieties, and Schur polynomials after renormalizing the coefficient of each monomial \(x^\alpha \) by \(1/\alpha! \).

EXAMPLES:

Renormalized Schur polynomials are Lorentzian, but not in general if the renormalization is skipped:

```python
sage: P.<x,y> = QQ[]
sage: p = (x^2 / 2) + x*y + (y^2 / 2)
sage: p.is_lorentzian()
True
sage: p = x^2 + x*y + y^2
sage: p.is_lorentzian()
False
```

Homogeneous linear forms and constant polynomials with positive coefficients are Lorentzian, as well as the zero polynomial:

```python
sage: p = x + 2*y
sage: p.is_lorentzian()
True
sage: p = P(5)
```

```python
from sage.all import *

>>> P = QQ['x', 'y'];

>>> p = (x**Integer(2) / Integer(2)) + x*y + (y**Integer(2) / Integer(2))
>>> p.is_lorentzian()
True
>>> p = x**Integer(2) + x*y + y**Integer(2)
>>> p.is_lorentzian()
False
```

```python
sage: p = x + 2*y
sage: p.is_lorentzian()
True
sage: p = P(Integer(5))
```

```python
from sage.all import *

>>> p = x + Integer(2)*y
>>> p.is_lorentzian()
True
>>> p = P(Integer(5))
>>> p.is_lorentzian()
True
>>> P.zero().is_lorentzian()
True
```
Inhomogeneous polynomials and polynomials with negative coefficients are not Lorentzian:

```python
sage: p = x^2 + 2*x + y^2
sage: p.is_lorentzian()
False
sage: p = 2*x^2 - y^2
sage: p.is_lorentzian()
False
```

It is an error to check if a polynomial is Lorentzian if its base ring is not a subring of the real numbers, as the notion is not defined in this case:

```python
sage: # needs sage.rings.real_mpfr
sage: Q.<z,w> = CC[]
sage: q = z^2 + w^2
sage: q.is_lorentzian()
Traceback (most recent call last):
  ...  
NotImplementedError: is_lorentzian only implemented for real polynomials
```

The method can give a reason for a polynomial failing to be Lorentzian:

```python
sage: p = x^2 + 2*x + y^2
sage: p.is_lorentzian(explain=True)
(False, 'inhomogeneous')
```

REFERENCES:

For full definitions and related discussion, see [BrHu2019] and [HMMS2019]. The second reference gives the characterization of Lorentzian polynomials applied in this implementation explicitly.
sage: R.<x,y> = QQbar[] # needs sage.rings.number_field
sage: (x + y).is_nilpotent() # needs sage.rings.number_field
False
sage: R(0).is_nilpotent() # needs sage.rings.number_field
True
sage: _.<x,y> = Zmod(4)[]
sage: (2*x).is_nilpotent()
True
sage: (2 + y*x).is_nilpotent()
False
sage: _.<x,y> = Zmod(36)[]
sage: (4 + 6*x).is_nilpotent()
False
sage: (6*x + 12*y + 18*x*y + 24*(x^2+y^2)).is_nilpotent()
True

>>> from sage.all import *
>>> R = QQbar['x, y']; (x, y,) = R._first_ngens(2) # needs sage.rings.number_field
>>> (x + y).is_nilpotent() # needs sage.rings.number_field
False
>>> R(Integer(0)).is_nilpotent() # needs sage.rings.number_field
True
>>> _ = Zmod(Integer(4))['x, y']; (x, y,) = _.first_ngens(2)
>>> (Integer(2)*x).is_nilpotent()
True
>>> (Integer(2) + y*x).is_nilpotent()
False
>>> _ = Zmod(Integer(36))['x, y']; (x, y,) = _.first_ngens(2)
>>> (Integer(4) + Integer(6)*x).is_nilpotent()
False
>>> (Integer(6)*x + Integer(12)*y + Integer(18)*x*y +
 Integer(24)*(x^2+Integer(2)+y^2+Integer(2))).is_nilpotent()
True

is_square(root=False)

Test whether this polynomial is a square.

INPUT:

- root – if set to True, return a pair (True, root) where root is a square root or (False, None) if it is not a square.

EXAMPLES:

sage: R.<a,b> = QQ[]
sage: a.is_square()
False
sage: ((1+a*b^2)^2).is_square()
True
sage: ((1+a*b^2)^2).is_square(root=True)
(True, a*b^2 + 1)
>>> from sage.all import *

>>> R = QQ['a, b']; (a, b,) = R._first_ngens(2)

>>> a.is_square()
False

>>> ((Integer(1)+a*b**Integer(2))**Integer(2)).is_square()
True

>>> ((Integer(1)+a*b**Integer(2))**Integer(2)).is_square(root=True)
(True, a*b^2 + 1)

is_symmetric (group=None)

Return whether this polynomial is symmetric.

INPUT:

- group (default: symmetric group) – if set, test whether the polynomial is invariant with respect to the given permutation group

EXAMPLES:

```python
sage: # needs sage.groups
sage: R.<x,y,z> = QQ[]

sage: p = (x+y+z)**2 - 3 * (x+y)*(x+z)*(y+z)

sage: p.is_symmetric()
True

sage: (x + y - z).is_symmetric()
False

sage: R.one().is_symmetric()
True

sage: p = (x-y)*(y-z)*(z-x)

sage: p.is_symmetric()
False

sage: p.is_symmetric(AlternatingGroup(3))
True
```

```python
>>> from sage.all import *

>>> # needs sage.groups

>>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)

>>> p = (x+y+z)**2 - Integer(3) * (x+y)*(x+z)*(y+z)

>>> p.is_symmetric()
True

>>> (x + y - z).is_symmetric()
False

>>> R.one().is_symmetric()
True

>>> p = (x-y)*(y-z)*(z-x)

>>> p.is_symmetric()
False
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

```python
>>> p.is_symmetric(AlternatingGroup(Integer(3)))
True
```

```python
>>> R = QQ['x', 'y']; (x, y,) = R._first_ngens(2)
```

```python
>>> ((x + y)**Integer(2)).is_symmetric()
→ # needs sage.groups
True
```

```python
>>> R.one().is_symmetric()
# # needs sage.groups
True
```

```python
>>> (x + Integer(2)*y).is_symmetric()
→ # needs sage.groups
False
```

An example with a GAP permutation group (here the quaternions):

```python
sage: R = PolynomialRing(QQ, 'x', 8)
sage: x = R.gens()
sage: p = sum(prod(x[i] for i in e) for e in [(0,1,2), (0,1,7), (0,2,7), (1,2,7),
... (3,4,5), (3,4,6), (3,5,6), (4,5,6)])
sage: p.is_symmetric(libgap.TransitiveGroup(8, 5))
→ # needs sage.groups
True
```

```python
>>> from sage.all import *
```

```python
>>> R = PolynomialRing(QQ, 'x', Integer(8))
>>> x = R.gens()
>>> p = sum(prod(x[i] for i in e) for e in [(Integer(0),Integer(1),Integer(2)), (Integer(0),
... Integer(1),Integer(7)), (Integer(0),Integer(2),Integer(7)), (Integer(1),Integer(2),
... Integer(7)),
... (Integer(3),Integer(4),Integer(5)), (Integer(3),
... Integer(4),Integer(6)), (Integer(3),Integer(5),Integer(6)), (Integer(4),
... Integer(5),Integer(6))])
>>> p.is_symmetric(libgap.TransitiveGroup(Integer(8), Integer(5)))
→ # needs sage.groups
False
```

is_unit()

Return True if self is a unit, that is, has a multiplicative inverse.
EXAMPLES:

```python
sage: # needs sage.rings.number_field
sage: R.<x,y> = QQbar[]
```

```python
sage: (x + y).is_unit()  # False
```

```python
sage: R(0).is_unit()  # False
```

```python
sage: R(-1).is_unit()  # True
```

```python
sage: R(-1 + x).is_unit()  # False
```

```python
sage: R(2).is_unit()  # True
```

```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQbar['x, y']; (x, y,) = R._first_ngens(2)
```

```python
>>> (x + y).is_unit()  # False
```

```python
>>> R(Integer(0)).is_unit()  # False
```

```python
>>> R(-Integer(1)).is_unit()  # True
```

```python
>>> R(-Integer(1) + x).is_unit()  # False
```

```python
>>> R(Integer(2)).is_unit()  # True
```

Check that Issue #22454 is fixed:

```python
sage: _.<x,y> = Zmod(4)[[]
```

```python
sage: (1 + 2*x).is_unit()  # True
```

```python
sage: (x*y).is_unit()  # False
```

```python
sage: _.<x,y> = Zmod(36)[[]
```

```python
sage: (7+ 6*x + 12*y - 18*x*y).is_unit()  # True
```

```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> _ = Zmod(Integer(4))[x, y]; (x, y,) = _.first_ngens(2)
```

```python
>>> (Integer(1) + Integer(2)*x).is_unit()  # True
```

```python
>>> (x*y).is_unit()  # False
```

```python
>>> _ = Zmod(Integer(36))[x, y]; (x, y,) = _.first_ngens(2)
```

```python
>>> (Integer(7)+ Integer(6)*x + Integer(12)*y - Integer(18)*x*y).is_unit()  # True
```

```
iterator_exp_coeff
```

Iterate over self as pairs of ((E)Tuple, coefficient).

INPUT:

- `as_ETuples = (default: True)` if `True`, iterate over pairs whose first element is an ETuple, otherwise as a tuples

EXAMPLES:
sage: R.<a,b,c> = QQ[]
sage: f = a*c^3 + a^2*b + 2*b^4
sage: list(f.iterator_exp_coeff())
[((0, 4, 0), 2), ((1, 0, 3), 1), ((2, 1, 0), 1)]
sage: list(f.iterator_exp_coeff(as_ETuples=False))
[((0, 4, 0), 2), ((1, 0, 3), 1), ((2, 1, 0), 1)]
sage: R.<a,b,c> = PolynomialRing(QQ, 3, order='lex')
sage: f = a*c^3 + a^2*b + 2*b^4
sage: list(f.iterator_exp_coeff())
[((2, 1, 0), 1), ((1, 0, 3), 1), ((0, 4, 0), 2)]

>>> from sage.all import *

>>> R = QQ['a, b, c']; (a, b, c,) = R._first_ngens(3)
>>> f = a*c**Integer(3) + a**Integer(2)*b + Integer(2)*b**Integer(4)

>>> list(f.iterator_exp_coeff())
[((0, 4, 0), 2), ((1, 0, 3), 1), ((2, 1, 0), 1)]

>>> list(f.iterator_exp_coeff(as_ETuples=False))
[((0, 4, 0), 2), ((1, 0, 3), 1), ((2, 1, 0), 1)]

>>> R = PolynomialRing(QQ, Integer(3), order='lex', names=('a', 'b', 'c'));

Jacobian Ideal

Return the Jacobian ideal of the polynomial self.

Examples:

sage: R.<x,y,z> = QQ[]
sage: f = x^3 + y^3 + z^3
sage: f.jacobian_ideal()
Ideal (3*x^2, 3*y^2, 3*z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field

>>> from sage.all import *

>>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)

Lift (I)

Given an ideal I = (f_1, ..., f_r) that contains self, find s_1, ..., s_r such that self = s_1 f_1 + ... + s_r f_r.

Examples:

sage: # needs sage.rings.real_mpfr
sage: A.<x,y> = PolynomialRing(CC, 2, order='degrevlex')
sage: I = A.ideal([x^10 + x^9*y^2, y^8 - x^2*y^7])
sage: f = x*y^13 + y^12
sage: M = f.lift(I); M

(continues on next page)
sage: sum(map(mul, zip(M, I.gens()))) == f
needs sage.libs.singular
True

>>> from sage.all import *
needs sage.rings.real_mpfr
>>> A = PolynomialRing(CC, Integer(2), order='degrevlex', names=('x', 'y',));
(x, y,) = A._first_ngens(2)
>>> I = A.ideal([x**Integer(10) + x**Integer(9)*y**Integer(2), y**Integer(8) -
 x**Integer(2)*y**Integer(7)])
>>> f = x*y**Integer(13) + y**Integer(12)
>>> M = f.lift(I); M
needs sage.libs.singular
[y^7, x^7*y^2 + x^8 + x^5*y^3 + x^6*y + x^3*y^4 + x^4*y^2 + x*y^5 + x^2*y^3 +
 y^4]
>>> sum(map(mul, zip(M, I.gens()))) == f
needs sage.libs.singular
True

macaulay_resultant (*args)

This is an implementation of the Macaulay resultant. It computes the resultant of universal polynomials as well as polynomials with constant coefficients. This is a project done in sage days 55. It’s based on the implementation in Maple by Manfred Minimair, which in turn is based on the references [CLO], [Can], [Mac]. It calculates the Macaulay resultant for a list of Polynomials, up to sign!

AUTHORS:
• Hao Chen, Solomon Vishkautsan (7-2014)

INPUT:
• args – a list of \(n - 1 \) homogeneous polynomials in \(n \) variables. works when \(\text{args}[0] \) is the list of polynomials, or args is itself the list of polynomials

OUTPUT:
• the Macaulay resultant

EXAMPLES:
The number of polynomials has to match the number of variables:

sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: y.macaulay_resultant(x + z)
needs sage.modules
Traceback (most recent call last):
 ...
TypeError: number of polynomials(= 2) must equal number of variables (= 3)

>>> from sage.all import *
>>> R = PolynomialRing(QQ, Integer(3), names=('x', 'y', 'z',)); (x, y, z,) =
R._first_ngens(3)
>>> y.macaulay_resultant(x + z)
needs sage.modules
Traceback (most recent call last):
 ...
TypeError: number of polynomials(= 2) must equal number of variables (= 3)

The polynomials need to be all homogeneous:
Sage

```python
sage: R.<x, y, z> = PolynomialRing(QQ, 3)
sage: y.macaulay_resultant([x + z, z + x^3])
# needs sage.modules
Traceback (most recent call last):
...
TypeError: resultant for non-homogeneous polynomials is not supported
```

```python
from sage.all import *

R = PolynomialRing(QQ, Integer(3), names=(x, y, z,)); (x, y, z,) = R._first_ngens(3)

y.macaulay_resultant([x + z, z + x**Integer(3)])
# needs sage.modules
Traceback (most recent call last):
...
TypeError: resultant for non-homogeneous polynomials is not supported
```

All polynomials must be in the same ring:

```python
sage: R.<x, y, z> = PolynomialRing(QQ, 3)
sage: S.<x, y> = PolynomialRing(QQ, 2)
sage: y.macaulay_resultant(z + x, z)
# needs sage.modules
Traceback (most recent call last):
...
TypeError: not all inputs are polynomials in the calling ring
```

```python
from sage.all import *

R = PolynomialRing(QQ, Integer(3), names=(x, y, z,)); (x, y, z,) = R._first_ngens(3)

S = PolynomialRing(QQ, Integer(2), names=(x, y,)); (x, y,) = S._first_ngens(2)

y.macaulay_resultant(z + x, z)
# needs sage.modules
Traceback (most recent call last):
...
TypeError: not all inputs are polynomials in the calling ring
```

The following example recreates Proposition 2.10 in Ch. 3 of Using Algebraic Geometry:

```python
sage: K.<x, y> = PolynomialRing(ZZ, 2)
sage: flist, R = K._macaulay_resultant_universal_polynomials([1,1,2])
sage: flist[0].macaulay_resultant(flist[1:])
# needs sage.modules
u2^2*u4^2*u6 - 2*u1*u2*u4*u5*u6 + u1^2*u5^2*u6 - u2^2*u3*u4*u7 + u1*u2*u3*u5*u7 + u0*u2*u4*u5*u7 - u0*u1*u5^2*u7 + u1*u2*u3*u4*u8 - u0*u2*u4^2*u8 - u1^2*u3*u5*u8 + u0*u1*u4*u5*u8 + u2^2*u3^2*u9 - 2*u0*u2*u3*u5*u9 + u0^2*u5^2*u9 - u1*u2*u3^2*u10 + u0*u2*u3*u4*u10 + u0*u1*u3*u5*u10 - u0^2*u4*u5*u10 + u1^2*u3^2*u11 - 2*u0*u1*u3*u4*u11 + u0^2*u4^2*u11
```

```python
from sage.all import *

K = PolynomialRing(ZZ, Integer(2), names=('x', 'y',)); (x, y,) = K._first_ngens(2)

flist, R = K._macaulay_resultant_universal_polynomials([Integer(1), Integer(1),Integer(2)])
```

(continues on next page)
The following example degenerates into the determinant of a 3×3 matrix:

```
sage: K.<x,y> = PolynomialRing(ZZ, 2)
sage: flist, R = K._macaulay_resultant_universal_polynomials([1,1,1])
sage: flist[0].macaulay_resultant(flist[1:])  # needs sage.modules
-u2*u4*u6 + u1*u5*u6 + u2*u3*u7 - u0*u5*u7 - u1*u3*u8 + u0*u4*u8
```

The following example is by Patrick Ingram (arXiv 1310.4114):

```
sage: U = PolynomialRing(ZZ,y,2); y0,y1 = U.gens()
sage: R = PolynomialRing(U,x,3); x0,x1,x2 = R.gens()
sage: f0 = y0*x2**2 - x0**2 + 2*x1*x2
sage: f1 = y1*x2**2 - x1**2 + 2*x0*x2
sage: f2 = x0*x1 - x2**2
sage: f0.macaulay_resultant(f1, f2)  # needs sage.modules
y0^2*y1^2 - 4*y0^3 - 4*y1^3 + 18*y0*y1 - 27
```

A simple example with constant rational coefficients:

```
sage: R.<x,y,z,w> = PolynomialRing(QQ, 4)
sage: w.macaulay_resultant([z, y, x])  # needs sage.modules
```

3.1. Multivariate Polynomials and Polynomial Rings

539
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, Integer(4), names=('x', 'y', 'z', 'w',)); (x, y, z, w) = R._first_ngens(4)
>>> w.macaulay_resultant([z, y, x])
# needs sage.modules
1
```

an example where the resultant vanishes:

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: (x + y).macaulay_resultant([y^2, x])
# needs sage.modules
0
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, Integer(3), names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3)
>>> (x + y).macaulay_resultant([y**Integer(2), x])
# needs sage.modules
0
```

an example of bad reduction at a prime \(p = 5 \):

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: y.macaulay_resultant([x^3 + 25*y^2*x, 5*z])
# needs sage.libs.pari sage.modules
125
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, Integer(3), names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3)
>>> y.macaulay_resultant([x**Integer(3) + Integer(25)*y**Integer(2)*x, Integer(5)*z])
# needs sage.libs.pari sage.modules
125
```

The input can given as an unpacked list of polynomials:

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: y.macaulay_resultant(x^3 + 25*y^2*x, 5*z)
# needs sage.libs.pari sage.modules
125
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, Integer(3), names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3)
>>> y.macaulay_resultant([x**Integer(3) + Integer(25)*y**Integer(2)*x, Integer(5)*z])
# needs sage.libs.pari sage.modules
125
```

an example when the coefficients live in a finite field:

```python
sage: F = FiniteField(11)
sage: R.<x,y,z,w> = PolynomialRing(F, 4)
sage: z.macaulay_resultant([x^3, 5*y, w])
# needs sage.modules sage.rings.finite_rings
4
```
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> F = FiniteField(Integer(11))
>>> R = PolynomialRing(F, Integer(4), names=('x', 'y', 'z', 'w',)); (x, y, z, w) = R._first_ngens(4)
>>> z.macaulay_resultant([x**Integer(3), Integer(5)*y, w])
# needs sage.modules sage.rings.finite_rings
4
```

example when the denominator in the algorithm vanishes (in this case the resultant is the constant term of the quotient of char polynomials of numerator/denominator):

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: y.macaulay_resultant([x + z, z^2])
# needs sage.libs.pari sage.modules
-1
```

When there are only 2 polynomials, the Macaulay resultant degenerates to the traditional resultant:

```python
sage: R.<x> = PolynomialRing(QQ, 1)
sage: f = x^2 + 1; g = x^5 + 1
sage: fh = f.homogenize()
sage: gh = g.homogenize()
sage: RH = fh.parent()
sage: f.resultant(g) == fh.macaulay_resultant(gh)
# needs sage.modules
True
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, Integer(1), names=('x',)); (x,) = R._first_ngens(1)
>>> f = x**Integer(2) + Integer(1); g = x**Integer(5) + Integer(1)
>>> fh = f.homogenize()
>>> gh = g.homogenize()
>>> RH = fh.parent()
>>> f.resultant(g) == fh.macaulay_resultant(gh)
# needs sage.modules
True
```

map_coefficients (f, new_base_ring=None)

Returns the polynomial obtained by applying f to the non-zero coefficients of self.

If f is a sage.categories.map.Map, then the resulting polynomial will be defined over the codomain of f. Otherwise, the resulting polynomial will be over the same ring as self. Set new_base_ring to override this behaviour.

INPUT:

- f – a callable that will be applied to the coefficients of self.
- new_base_ring (optional) – if given, the resulting polynomial will be defined over this ring.

EXAMPLES:
```
sage: k.<a> = GF(9); R.<x,y> = k[]; f = x*a + 2*x^3*y*a + a  # needs sage.rings.finite_rings
sage: f.map_coefficients(lambda a: a + 1)  # needs sage.rings.finite_rings
(-a + 1)*x^3*y + (a + 1)*x + (a + 1)

Examples with different base ring:
```
```
sage: R.<r> = GF(9); S.<s> = GF(81)
sage: h = Hom(R,S)[0]; h
Ring morphism:
  From: Finite Field in r of size 3^2
  To:   Finite Field in s of size 3^4
  Defn: r |--> 2*s^3 + 2*s^2 + 1
sage: T.<X,Y> = R[]
sage: f = r*X + Y
sage: g = f.map_coefficients(h); g
(-s^3 - s^2 + 1)*X + Y
sage: g.parent()
Multivariate Polynomial Ring in X, Y over Finite Field in s of size 3^4
sage: h = lambda x: x.trace()
sage: g = f.map_coefficients(h); g
X - Y
sage: g.parent()
Multivariate Polynomial Ring in X, Y over Finite Field in r of size 3^2
```
```
```
Polynomials, Release 10.4

>>> g.parent()
Multivariate Polynomial Ring in X, Y over Finite Field in r of size 3^2
>>> g = f.map_coefficients(h, new_base_ring=GF(Integer(3))); g
X - Y
>>> g.parent()
Multivariate Polynomial Ring in X, Y over Finite Field of size 3

newton_polytope()
Return the Newton polytope of this polynomial.

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: f = 1 + x*y + x^3 + y^3
sage: P = f.newton_polytope(); P
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices
sage: P.is_simple()
True
```

nth_root(n)
Return a n-th root of this element.

If there is no such root, a `ValueError` is raised.

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: a = 32 * (x*y + 1)^5 * (x+y+z)^5
sage: a.nth_root(5)
2*x^2*y + 2*x*y^2 + 2*x*y*z + 2*x + 2*y + 2*z
sage: b = x + 2*y + 3*z
sage: b.nth_root(42)
Traceback (most recent call last):
  ... ValueError: not a 42nd power
```

(continues on next page)
Polynomials, Release 10.4

Traceback (most recent call last):
...
ValueError: not a 3rd power

```python
>>> from sage.all import *

>>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)

>>> a = Integer(32) * (x*y + Integer(1))**Integer(5) * (x+y+z)**Integer(5)

>>> a.nth_root(Integer(5))
2*x^2*y + 2*x*y^2 + 2*x*y*z + 2*x + 2*y + 2*z

>>> b = x + Integer(2)*y + Integer(3)*z

>>> b.nth_root(Integer(42))
Traceback (most recent call last):
...
ValueError: not a 42nd power
```

```python
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)

>>> S = R['z, t']; (z, t,) = S._first_ngens(2)

>>> T = S['u, v']; (u, v,) = T._first_ngens(2)

>>> p = (Integer(1) + x*u + y + v) * (Integer(1) + z*t)

>>> (p**Integer(3)).nth_root(Integer(3))
(x*z*t + x)*u + (z*t + 1)*v + (y + 1)*z*t + y + 1

>>> ((Integer(1)+x+z+t)**Integer(2)).nth_root(Integer(3))
Traceback (most recent call last):
...
ValueError: not a 3rd power
```

`numerator()`

Return a numerator of `self`, computed as `self * self.denominator()`.

Note that some subclasses may implement its own numerator function.

Warning: This is not the numerator of the rational function defined by `self`, which would always be `self` since `self` is a polynomial.

EXAMPLES:

First we compute the numerator of a polynomial with integer coefficients, which is of course `self`.

```python
sage: R.<x, y> = ZZ[]

sage: f = x^3 + 17*x + y + 1

sage: f.numerator()
x^3 + 17*x + y + 1

sage: f == f.numerator()
True
```

```python
>>> from sage.all import *

>>> R = ZZ['x, y']; (x, y,) = R._first_ngens(2)

>>> f = x**Integer(3) + Integer(17)*x + y + Integer(1)

>>> f.numerator()
x^3 + 17*x + y + 1

>>> f == f.numerator()
True
```
Next we compute the numerator of a polynomial over a number field.

```python
sage: # needs sage.rings.number_field sage.symbolic
sage: R.<x,y> = NumberField(symbolic_expression(x^2+3), 'a')['x,y']
sage: f = (1/17)*y^19 - (2/3)*x + 1/3; f
1/17*y^19 - 2/3*x + 1/3
sage: f.numerator()
3*y^19 - 34*x + 17
sage: f == f.numerator()
False
```

We try to compute the numerator of a polynomial with coefficients in the finite field of 3 elements.

```python
sage: K.<x,y,z> = GF(3)[x, y, z]
sage: f = 2*x*z + 2*z^2 + 2*y + 1; f
-x*z - z^2 - y + 1
sage: f.numerator()
-x*z - z^2 - y + 1
```

We check that the computation the numerator and denominator are valid.

```python
sage: # needs sage.rings.number_field sage.symbolic
sage: K = NumberField(symbolic_expression(x^3+2), 'a')['x'][s,t]
sage: f = K.random_element()
sage: f.numerator() / f.denominator() == f
True
```

(continues on next page)
polynomial(var)

Let var be one of the variables of the parent of self. This returns self viewed as a univariate polynomial in var over the polynomial ring generated by all the other variables of the parent.

EXAMPLES:

```python
sage: R.<x,w,z> = QQ[]
sage: f = x^3 + 3*w*x + w^5 + (17*w^3)*x + z^5
sage: f.polynomial(x)
x^3 + (17*w^3 + 3*w)*x + w^5 + z^5
sage: parent(f.polynomial(x))
Univariate Polynomial Ring in x
  over Multivariate Polynomial Ring in w, z over Rational Field

sage: f.polynomial(w)
w^5 + 17*x*w^3 + 3*x*w + z^5 + x^3
sage: f.polynomial(z)
z^5 + w^5 + 17*x*w^3 + x^3 + 3*x*w
sage: R.<x,w,z,k> = ZZ[

sage: f = x^3 + 3*w*x + w^5 + (17*w^3)*x + z^5 + x*w*z*k + 5
sage: f.polynomial(x)
x^3 + (17*w^3 + w*z*k + 3*w)*x + w^5 + z^5 + 5
sage: f.polynomial(w)
w^5 + 17*x*w^3 + (x*z*k + 3*x)*w + z^5 + x^3 + 5
sage: f.polynomial(z)
z^5 + x*w*k*z + w^5 + 17*x*w^3 + x^3 + 3*x*w + 5
sage: f.polynomial(k)
x*w*z*k + w^5 + z^5 + 17*x*w^3 + x^3 + 3*x*w + 5

sage: R.<x,y> = GF(5)[

sage: f = x^2 + x + y
sage: f.polynomial(x)
x^2 + x + y
sage: f.polynomial(y)
y + x^2 + x
```

```python
>>> from sage.all import *

>>> R = QQ['x, w, z']; (x, w, z,) = R._first_ngens(3)

>>> f = x**Integer(3) + Integer(3)*w*x + w**Integer(5) + x**Integer(3) + 5

>>> f.polynomial(x)
x^3 + (17*w^3 + 3*w)*x + w^5 + z^5

>>> parent(f.polynomial(x))
Univariate Polynomial Ring in x
  over Multivariate Polynomial Ring in w, z over Rational Field

>>> f.polynomial(w)
w^5 + 17*x*w^3 + 3*x*w + z^5 + x^3

>>> f.polynomial(z)
z^5 + w^5 + 17*x*w^3 + x^3 + 3*x*w

>>> R = ZZ['x, w, z, k']; (x, w, z, k,) = R._first_ngens(4)

>>> f = x**Integer(3) + Integer(3)*w*x + w**Integer(5) + x*w*z*k + 5
```
\begin{verbatim}
- (Integer(17)*w**Integer(3))*x + z**Integer(5) + x*w*z*k + Integer(5)
>>> f.polynomial(x)
x^3 + (17*w^3 + w*z*k + 3*w)*x + w^5 + z^5 + 5
>>> f.polynomial(w)
w^5 + 17*x*w^3 + (x*z*k + 3*x)*w + z^5 + x^3 + 5
>>> f.polynomial(z)
z^5 + x*w*k*z + w^5 + 17*x*w^3 + x^3 + 3*x*w + 5
>>> f.polynomial(k)
x*w*z*k + w^5 + z^5 + 17*x*w^3 + x^3 + 3*x*w + 5

R = GF(Integer(5))[x, y]; (x, y,) = R._first_ngens(2)
>>> f = x**Integer(2) + x + y
>>> f.polynomial(x)
x^2 + x + y
>>> f.polynomial(y)
y + x^2 + x
\end{verbatim}

reduced_form(**kwds)**

Return a reduced form of this polynomial.

The algorithm is from Stoll and Cremona’s “On the Reduction Theory of Binary Forms” [CS2003]. This takes a two variable homogeneous polynomial and finds a reduced form. This is a $SL(2, \mathbb{Z})$-equivalent binary form whose covariant in the upper half plane is in the fundamental domain. If the polynomial has multiple roots, they are removed and the algorithm is applied to the portion without multiple roots.

This reduction should also minimize the sum of the squares of the coefficients, but this is not always the case. By default the coefficient minimizing algorithm in [HS2018] is applied. The coefficients can be minimized either with respect to the sum of their squares or the maximum of their global heights.

A portion of the algorithm uses Newton’s method to find a solution to a system of equations. If Newton’s method fails to converge to a point in the upper half plane, the function will use the less precise z_0 covariant from the Q_2 form as defined on page 7 of [CS2003]. Additionally, if this polynomial has a root with multiplicity at least half the total degree of the polynomial, then we must also use the z_0 covariant. See [CS2003] for details.

Note that, if the covariant is within error_limit of the boundary but outside the fundamental domain, our function will erroneously move it to within the fundamental domain, hence our conjugation will be off by 1. If you don’t want this to happen, decrease your error_limit and increase your precision.

Implemented by Rebecca Lauren Miller as part of GSoC 2016. Smallest coefficients added by Ben Hutz July 2018.

INPUT:

keywords:

- **prec** – integer, sets the precision (default: 300)
- **return_conjugation** – boolean. Returns element of $SL(2, \mathbb{Z})$ (default: True)
- **error_limit** – sets the error tolerance (default: 0.000001)
- **smallest_coeffs** – (default: True), boolean, whether to find the model with smallest coefficients
- **norm_type** – either 'norm' or 'height'. What type of norm to use for smallest coefficients
- **emb** – (optional) embedding of based field into \(\mathbb{C} \)

OUTPUT:

- a polynomial (reduced binary form)
- a matrix (element of $SL(2, \mathbb{Z})$)

3.1. Multivariate Polynomials and Polynomial Rings 547
Todo: When Newton’s Method doesn’t converge to a root in the upper half plane. Now we just return z_0. It would be better to modify and find the unique root in the upper half plane.

EXAMPLES:

```python
sage: R.<x,h> = PolynomialRing(QQ)
sage: f = 19*x^8 - 262*x^7*h + 1507*x^6*h^2 - 4784*x^5*h^3 + 9202*x^4*h^4 - 10962*x^3*h^5 + 7844*x^2*h^6 - 3040*x*h^7 + 475*h^8
sage: f.reduced_form(prec=200, smallest_coeffs=False)  # needs sage.modules sage.rings.complex_interval_field
(-x^8 - 2*x^7*h + 7*x^6*h^2 + 16*x^5*h^3 + 2*x^4*h^4 - 2*x^3*h^5 + 4*x^2*h^6 - 5*h^8,
[ 1 -2]
[ 1 -1])
```

An example where the multiplicity is too high:

```python
sage: R.<x,y> = PolynomialRing(QQ)
sage: f = x^3 + 378666*x^2*y - 12444444*x*y^2 + 1234567890*y^3
sage: j = f * (x-545*y)^9
sage: j.reduced_form(prec=200, smallest_coeffs=False)  # needs sage.modules sage.rings.complex_interval_field
Traceback (most recent call last):
  ... ValueError: cannot have a root with multiplicity >= 12/2
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> f = x**Integer(3) + Integer(378666)*x**Integer(2)*y - Integer(12444444)*x*y**Integer(2) + Integer(1234567890)*y**Integer(3)
>>> j = f * (x-Integer(545)*y)**Integer(9)
>>> j.reduced_form(prec=Integer(200), smallest_coeffs=False)  # needs sage.modules sage.rings.complex_interval_field
Traceback (most recent call last):
  ... ValueError: cannot have a root with multiplicity >= 12/2
```
An example where Newton’s Method does not find the right root:

```
sage: R.<x,y> = PolynomialRing(QQ)
sage: F = x^6 + 3*x^5*y - 8*x^4*y^2 - 2*x^3*y^3 - 44*x^2*y^4 - 8*x*y^5
sage: F.reduced_form(smallest_coeffs=False, prec=400) # needs sage.modules sage.rings.complex_interval_field
Traceback (most recent call last):
... ArithmeticError: Newton's method converged to z not in the upper half plane
```

An example with covariant on the boundary, therefore a non-unique form:

```
sage: R.<x,y> = PolynomialRing(QQ)
sage: F = 5*x^2*y - 5*x*y^2 - 30*y^3
sage: F.reduced_form(smallest_coeffs=False)
# needs sage.modules sage.rings.complex_interval_field
( [1 1]
  5*x^2*y + 5*x*y^2 - 30*y^3, [0 1] )
```

An example where precision needs to be increased:

```
sage: R.<x,y> = PolynomialRing(QQ)
sage: F = (-16*x^7 - 114*x^6*y - 345*x^5*y^2 - 599*x^4*y^3...
.....: - 666*x^3*y^4 - 481*x^2*y^5 - 207*x*y^6 - 40*y^7)
sage: F.reduced_form(prec=50, smallest_coeffs=False) # needs sage.modules sage.rings.complex_interval_field
Traceback (most recent call last):
... ValueError: accuracy of Newton's root not within tolerance(0.000012... > 1e-06),
increase precision
sage: F.reduced_form(prec=100, smallest_coeffs=False)
```

(continues on next page)
The code snippet demonstrates the use of SageMath to work with multivariate polynomials. Here are some key points:

1. **Polynomial Creation and Operations**: The code shows how to create polynomial rings and work with polynomials in them. For example, `R.<x,y> = PolynomialRing(QQ)` sets up a polynomial ring with variables `x` and `y` over the rationals. The polynomial `F` is then defined using these variables.

2. **Reduced Forms**: The `reduced_form` method is used to simplify polynomials. This method returns a polynomial that is equivalent to the original one but with certain conditions met, such as the coefficients or the form of the polynomial.

3. **Accuracy Issues**: The code includes comments indicating that the accuracy of Newton's root finding method may not be within the desired tolerance, suggesting the need for increased precision.

4. **Examples**: The code includes examples of polynomials and their simplified forms, showing the process of polynomial manipulation.

5. **SageMath Modules**: The code snippet also includes comments about the use of SageMath modules, particularly `sage.modules` and `sage.rings.complex_interval_field`, which are part of the SageMath library for handling complex interval fields.

Overall, the document provides a practical example of how to use SageMath for polynomial manipulation, highlighting both the syntax and potential issues that might arise during computations.
Polynomials, Release 10.4

(continued from previous page)

```python
>>> F = -Integer(2)*x**Integer(3) + Integer(2)*x**Integer(2)*y +
   Integer(3)*x*y**Integer(2) + Integer(127)*y**Integer(3)
>>> F.reduced_form()  # needs sage.modules sage.rings.complex_interval_field
  [        ]
  [-2*x^3 - 22*x^2*y - 77*x*y^2 + 43*y^3, [0 1]]

sage: R.<x,y> = QQ[]
sage: F = -2*x^3 + 2*x^2*y + 3*x*y^2 + 127*y^3
sage: F.reduced_form(norm_type=height)  # needs sage.modules sage.rings.complex_interval_field
  [    ]
  [-58*x^3 + 47*x^2*y + 52*x*y^2 + 43*y^3, [1 1]]

>>> from sage.all import *
>>> R = QQ['x', 'y']; (x, y,) = R._first_ngens(2)
>>> F = -Integer(2)*x**Integer(3) + Integer(2)*x**Integer(2)*y +
   Integer(3)*x*y**Integer(2) + Integer(127)*y**Integer(3)
>>> F.reduced_form(norm_type='height')  # needs sage.modules sage.rings.complex_interval_field
  [        ]
  [-2*x^3 - 22*x^2*y - 77*x*y^2 + 43*y^3, [0 1]]

sage: R.<x,y,z> = PolynomialRing(QQ)
sage: F = x^4 + x^3*y*z + y^2*z
sage: F.reduced_form()  # needs sage.modules sage.rings.complex_interval_field
Traceback (most recent call last):
... ValueError: (=x^3*y*z + x^4 + y^2*z) must have two variables

>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x', 'y', 'z')); (x, y, z,) = R._first_ngens(3)
>>> F = x**Integer(4) + x**Integer(3)*y*z + y**Integer(2)*z
>>> F.reduced_form()  # needs sage.modules sage.rings.complex_interval_field
Traceback (most recent call last):
... ValueError: (=x^3*y*z + x^4 + y^2*z) must have two variables

sage: R.<x,y> = PolynomialRing(ZZ)
sage: F = - 8*x^6 - 3933*x^3*y - 725085*x^2*y^2 - 59411592*x*y^3 - 99*y^6
sage: F.reduced_form(return_conjugation=False)  # needs sage.modules sage.rings.complex_interval_field
Traceback (most recent call last):
... ValueError: (=-8*x^6 - 99*y^6 - 3933*x^3*y - 725085*x^2*y^2 -
59411592*x*y^3) must be homogeneous
```

3.1. Multivariate Polynomials and Polynomial Rings
>>> from sage.all import *
>>> R = PolynomialRing(ZZ, names=('x', 'y'));
(x, y,) = R._first_ngens(2)
>>> F = -Integer(8)*x**Integer(6) - Integer(3933)*x**Integer(3)*y -
-Integer(725085)*x**Integer(2)*y**Integer(2) -
-Integer(59411592)*x*y**Integer(3) - Integer(99)*y**Integer(6)
>>> F.reduced_form(return_conjugation=False)
needs sage.modules sage.rings.complex_interval_field
Traceback (most recent call last):
...
ValueError: (-8*x^6 - 99*y^6 - 3933*x^3*y - 725085*x^2*y^2 -
59411592*x*y^3) must be homogeneous

sage: R.<x,y> = PolynomialRing(RR)
sage: F = (217.992172373276*x^3 + 96023.1505442490*x^2*y +
....: 1.40987971253579e7*x*y^2 + 6.90016027113216e8*y^3)
needs sage.modules sage.rings.complex_interval_field
(sage: F.reduced_form(smallest_coeffs=False) # tol 1e-8
needs sage.modules sage.rings.complex_interval_field
(-39.5673942565918*x^3 + 111.874026298523*x^2*y +
231.052762985229*x*y^2 - 138.380829811096*y^3,
[-147 -148]
[1 1])

 >>> from sage.all import *
>>> R = PolynomialRing(RR, names=('x', 'y'));
(x, y,) = R._first_ngens(2)
>>> F = (RealNumber(217.992172373276)*x^3 + RealNumber(96023.
...: 1505442490)*x^2*y +
...: RealNumber(1.40987971253579e7)*x*y^2 + RealNumber(6.
...: 90016027113216e8)*y^3)
needs sage.modules sage.rings.complex_interval_field
(sage: F.reduced_form(smallest_coeffs=False) # tol 1e-8
needs sage.modules sage.rings.complex_interval_field
(-39.5673942565918*x^3 + 111.874026298523*x^2*y +
231.052762985229*x*y^2 - 138.380829811096*y^3,
[-147 -148]
[1 1])

sage: R.<x,y> = PolynomialRing(CC)
needs sage.rings.real_mpfr
(sage: F = ((0.759099196558145 + 0.845425869641446*CC.0)*x^3 +
....: 0.845425869641446*CC.0)*x^3
needs sage.rings.real_mpfr
+sage: F.reduced_form(smallest_coeffs=False) # tol 1e-11
needs sage.rings.real_mpfr
(sage: F.reduced_form(smallest_coeffs=False) # tol 1e-11
needs sage.rings.real_mpfr
(-0.571709908900118 - 0.041813346027929*I)*x^2*y +
(0.856525963430103 - 0.0721403997649759*I)*x*y^2 +
(-0.965531044130330 + 0.754252314465703*I)*y^3,

(continues on next page)
specialization \(D=\text{None}, \ phi=\text{None}\)

Specialization of this polynomial.

Given a family of polynomials defined over a polynomial ring. A specialization is a particular member of that family. The specialization can be specified either by a dictionary or a SpecializationMorphism.

INPUT:

- \(D\) – dictionary (optional)
- \(\phi\) – SpecializationMorphism (optional)

OUTPUT: a new polynomial

EXAMPLES:

```
sage: R.<c> = PolynomialRing(QQ)
sage: S.<x,y> = PolynomialRing(R)
sage: F = x^2 + c*y^2
sage: F.specialization({c:2})
x^2 + 2*y^2
```
Polynomials, Release 10.4

```
sage: S.<a,b> = PolynomialRing(QQ)
sage: P.<x,y,z> = PolynomialRing(S)
sage: RR.<c,d> = PolynomialRing(P)
sage: f = a*x^2 + b*y^3 + c*y^2 - b*a*d + d^2 - a*c*b*z^2
sage: f.specialization({a:2, z:4, d:2})
(y^2 - 32*b)*c + b*y^3 + 2*x^2 - 4*b + 4
```

Check that we preserve multi- versus uni-variate:

```
sage: R.<l> = PolynomialRing(QQ, 1)
sage: S.<k> = PolynomialRing(R)
sage: K.<a, b, c> = PolynomialRing(S)
sage: F = a*k^2 + b*l + c^2
sage: F.specialization({b:56, c:5}).parent()
Univariate Polynomial Ring in a over Univariate Polynomial Ring in k
over Multivariate Polynomial Ring in l over Rational Field
```

subresultants (other, variable=None)

Return the nonzero subresultant polynomials of self and other.

INPUT:

- other -- a polynomial

OUTPUT: a list of polynomials in the same ring as self

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: p = (y^2 + 6)*(x - 1) - y*(x^2 + 1)
sage: q = (x^2 + 6)*(y - 1) - x*(y^2 + 1)
sage: p.subresultants(q, y)
[2*x^6 - 22*x^5 + 102*x^4 - 274*x^3 + 488*x^2 - 552*x + 288,
 -x^3 - x^2*y + 6*x^2 + 5*x*y - 11*x - 6*y + 6]
sage: p.subresultants(q, x)
[2*y^6 - 22*y^5 + 102*y^4 - 274*y^3 + 488*y^2 - 552*y + 288,
 x*y^2 + y^3 - 5*x*y - 6*y^2 + 6*x + 11*y - 6]
```
```python
>>> from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> p = (y**Integer(2) + Integer(6))*(x - Integer(1)) - y*(x**Integer(2) +
˓→Integer(1))
>>> q = (x**Integer(2) + Integer(6))*(y - Integer(1)) - x*(y**Integer(2) +
˓→Integer(1))
>>> p.subresultants(q, y)
[2*x^6 - 22*x^5 + 102*x^4 - 274*x^3 + 488*x^2 - 552*x + 288,
-x^3 - x^2*y + 6*x^2 + 5*x*y - 11*x - 6*y + 6]
>>> p.subresultants(q, x)
[2*y^6 - 22*y^5 + 102*y^4 - 274*y^3 + 488*y^2 - 552*y + 288,
-x*y^2 + y^3 - 5*x*y - 6*y^2 + 6*x + 11*y - 6]
```

sylvester_matrix (*right, variable=None*)

Given two nonzero polynomials `self` and `right`, return the Sylvester matrix of the polynomials with respect to a given variable.

Note that the Sylvester matrix is not defined if one of the polynomials is zero.

INPUT:

- `self, right` – multivariate polynomials
- `variable` – optional, compute the Sylvester matrix with respect to this variable. If `variable` is not provided, the first variable of the polynomial ring is used.

OUTPUT:

- The Sylvester matrix of `self` and `right`.

EXAMPLES:

```python
sage: R.<x, y> = PolynomialRing(ZZ)
sage: f = (y + 1)*x + Integer(3)*x**Integer(2)
sage: g = (y + Integer(2))*x + Integer(4)*x**Integer(2)
sage: M = f.sylvester_matrix(g, x)  # needs sage.modules
sage: M  # needs sage.modules
[ 3 y + 1 0 0]
[ 0 3 y + 1 0]
[ 4 y + 2 0 0]
[ 0 4 y + 2 0]
```

If the polynomials share a non-constant common factor then the determinant of the Sylvester matrix will be zero:
If both polynomials are of positive degree with respect to variable, the determinant of the Sylvester matrix is the resultant:

```
sage: f = R.random_element(4) or (x^2 * y^2)
sage: g = R.random_element(4) or (x^2 * y^2)
sage: f.sylvester_matrix(g, x).determinant() == f.resultant(g, x)  # needs sage.libs.singular sage.modules
True
```

`truncate(var, n)`

Returns a new multivariate polynomial obtained from `self` by deleting all terms that involve the given variable to a power at least `n`.

`weighted_degree(*weights)`

Return the weighted degree of `self`, which is the maximum weighted degree of all monomials in `self`; the weighted degree of a monomial is the sum of all powers of the variables in the monomial, each power multiplied with its respective weight in `weights`.

This method is given for convenience. It is faster to use polynomial rings with weighted term orders and the standard `degree` function.

INPUT:

- `weights` – Either individual numbers, an iterable or a dictionary, specifying the weights of each variable. If it is a dictionary, it maps each variable of `self` to its weight. If it is a sequence of individual numbers or a tuple, the weights are specified in the order of the generators as given by `self.parent().gens()`.

EXAMPLES:

```
sage: R.<x,y,z> = GF(7)[]
sage: p = x^3 + y + x*z^2
sage: p.weighted_degree((z:0, x:1, y:2))
```
sage: p.weighted_degree(1, 2, 0)
3
sage: p.weighted_degree((1, 4, 2))
5
sage: p.weighted_degree((1, 4, 1))
4
sage: p.weighted_degree(2**64, 2**50, 2**128)
680564733841876926945195958937245974528
sage: q = R.random_element(100, 20)
sage: q.weighted_degree(1, 1, 1) == q.total_degree()
True

You may also work with negative weights

sage: p.weighted_degree(-1, -2, -1)
-2

Note that only integer weights are allowed

sage: p.weighted_degree(x, 1, 1)
Traceback (most recent call last):
... TypeError: unable to convert non-constant polynomial x to Integer Ring
sage: p.weighted_degree(2/1, 1, 1)
6

>>> from sage.all import *
>>> R = GF(Integer(7))['x, y, z']; (x, y, z) = R._first_ngens(3)
>>> p = x**Integer(3) + y + x*z**Integer(2)
>>> p.weighted_degree((z:Integer(0), x:Integer(1), y:Integer(2)))
3
>>> p.weighted_degree(Integer(1), Integer(2), Integer(0))
3
>>> p.weighted_degree((Integer(1), Integer(4), Integer(2)))
5
>>> p.weighted_degree((Integer(1), Integer(4), Integer(1)))
4
>>> p.weighted_degree(Integer(2)**Integer(64), Integer(2)**Integer(50),...
...-Integer(2)**Integer(128))
680564733841876926945195958937245974528
>>> q = R.random_element(Integer(100), Integer(20))
>>> q.weighted_degree(Integer(1), Integer(1), Integer(1)) == q.total_degree()
True
The `weighted_degree()` coincides with the `degree()` of a weighted polynomial ring, but the latter is faster.

```
sage: K = PolynomialRing(QQ, 'x,y', order=TermOrder('wdegrevlex', (2,3)))
sage: p = K.random_element(10)
sage: p.degree() == p.weighted_degree(2,3)
True
```

```
>>> from sage.all import *
>>> K = PolynomialRing(QQ, 'x,y', order=TermOrder('wdegrevlex', (Integer(2),
   Integer(3)))))
>>> p = K.random_element(Integer(10))
>>> p.degree() == p.weighted_degree(Integer(2),Integer(3))
True
```

```python
class sage.rings.polynomial.multi_polynomial.MPolynomial_libsingular

Bases: MPolynomial

Abstract base class for MPolynomial_libsingular

This class is defined for the purpose of `isinstance()` tests. It should not be instantiated.

EXAMPLES:

```
sage: from sage.rings.polynomial.multi_polynomial import MPolynomial_libsingular
sage: R1.<x> = QQ[]
sage: isinstance(x, MPolynomial_libsingular)
False
sage: R2.<y,z> = QQ[]
sage: isinstance(y, MPolynomial_libsingular)
needs sage.libs.singular
True
```  

```
>>> from sage.all import *
>>> from sage.rings.polynomial.multi_polynomial import MPolynomial_libsingular

>>> R1 = QQ['x']; (x,) = R1._first_ngens(1)

>>> issubclass(x, MPolynomial_libsingular)
False
>>> R2 = QQ['y, z']; (y, z,) = R2._first_ngens(2)

>>> issubclass(y, MPolynomial_libsingular)
needs sage.libs.singular
True
```  

By design, there is a unique direct subclass:

```
sage: len(sage.rings.polynomial.multi_polynomial.MPolynomial_libsingular.__
 __subclasses__()) <= 1
True
```  

```
>>> from sage.all import *

>>> len(sage.rings.polynomial.multi_polynomial.MPolynomial_libsingular.__
 __subclasses__()) <= Integer(1)
True
```  

`sage.rings.polynomial.multi_polynomial.is_MPolynomial(x)`
3.1.4 Multivariate Polynomial Rings over Generic Rings

Sage implements multivariate polynomial rings through several backends. This generic implementation uses the classes PolyDict and ETuple to construct a dictionary with exponent tuples as keys and coefficients as values.

AUTHORS:

- David Joyner and William Stein
- Kiran S. Kedlaya (2006-02-12): added Macaulay2 analogues of Singular features
- Martin Albrecht (2006-04-21): reorganize class hierarchy for singular rep
- Martin Albrecht (2007-04-20): reorganized class hierarchy to support Pyrex implementations

EXAMPLES:

We construct the Frobenius morphism on \( \mathbb{F}_5[x, y, z] \) over \( \mathbb{F}_5 \):

```python
sage: R.<x,y,z> = GF(5)[]
sage: frob = R.hom([x^5, y^5, z^5])
sage: frob(x^2 + 2*y - z^4)
-2*r^20 + x^10 + 2*y^5
sage: frob((x + 2*y)^3)
needs sage.rings.finite_rings
x^15 + x^10*y^5 + 2*x^5*y^10 - 2*y^15
```

We make a polynomial ring in one variable over a polynomial ring in two variables:

```python
sage: R.<x, y> = PolynomialRing(QQ, 2)
sage: S.<t> = PowerSeriesRing(R)
sage: t*(x+y)
(x + y)*t
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, Integer(2), names=('x', 'y')); (x, y,) = R._first_ngens(2)
>>> S = PowerSeriesRing(R, names=('t',)); (t,) = S._first_ngens(1)
>>> t*(x+y)
(x + y)*t
```
A mixin class for polynomial rings that support conversion to Macaulay2.

```python
class sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict (base_ring, n, names, order)
```

**Bases:** `MPolynomialRing_macaulay2_repr`, `PolynomialRing_singular_repr`, `MPolynomialRing_base`

Multivariable polynomial ring.

**EXAMPLES:**

```python
sage: R = PolynomialRing(Integers(12), 'x', 5); R
Multivariate Polynomial Ring in x0, x1, x2, x3, x4 over Ring of integers modulo 12
sage: loads(R.dumps()) == R
True
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(Integers(Integer(12)), 'x', Integer(5)); R
Multivariate Polynomial Ring in x0, x1, x2, x3, x4 over Ring of integers modulo 12
>>> loads(R.dumps()) == R
True
```

**Element_hidden**

alias of `MPolynomial_polydict`

**monomial_all_divisors(t)**

Return a list of all monomials that divide `t`, coefficients are ignored.

**INPUT:**

- `t` – a monomial.

**OUTPUT:** a list of monomials.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
sage: P.<x,y,z> = MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
sage: P.monomial_all_divisors(x^2*z^3)
[x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, z^3, x*z^3, x^2*z^3]
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
>>>
P = MPolynomialRing_polydict_domain(QQ,Integer(3), order='degrevlex',
˓→names=('x', 'y', 'z'))
(x, y, z) = P._first_ngens(3)
>>> P.monomial_all_divisors(x**Integer(2)*z**Integer(3))
[x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, z^3, x*z^3, x^2*z^3]
```

**ALGORITHM:** addwithcarry idea by Toon Segers

**monomial_divides(a, b)**

Return `False` if `a` does not divide `b` and `True` otherwise.

**INPUT:**
• \(a\) – monomial
• \(b\) – monomial

OUTPUT: Boolean

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(ZZ,3, order='degrevlex')
sage: P.monomial_divides(x*y*z, x^3*y^2*z^4)
True
sage: P.monomial_divides(x^3*y^2*z^4, x*y*z)
False
```

```python
>>> from sage.all import *
>>> P = PolynomialRing(ZZ,Integer(3), order='degrevlex', names=(x, y, z,)); (x, y, z,) = P._first_ngens(3)
>>> P.monomial_divides(x*y*z, x**Integer(3)*y**Integer(2)*z**Integer(4))
True
>>> P.monomial_divides(x**Integer(3)*y**Integer(2)*z**Integer(4), x*y*z)
False
```

**monomial_lcm**\((f, g)\)

LCM for monomials. Coefficients are ignored.

INPUT:

• \(f\) – monomial.
• \(g\) – monomial.

OUTPUT: monomial.

EXAMPLES:

```
sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
sage: P.<x,y,z> = MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
sage: P.monomial_lcm(3/2*x*y, x)
x*y
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
>>> P = MPolynomialRing_polydict_domain(QQ,Integer(3), order='degrevlex',
˓→names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3)
>>> P.monomial_lcm(Integer(3)/Integer(2)*x*y, x)
x*y
```

**monomial_pairwise_prime**\((h, g)\)

Return True if \(h\) and \(g\) are pairwise prime.

Both are treated as monomials.

INPUT:

• \(h\) – monomial.
• \(g\) – monomial.

OUTPUT: Boolean.

EXAMPLES:
Polynomials, Release 10.4

sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
sage: P.<x,y,z> = MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
sage: P.monomial_pairwise_prime(x^2*z^3, y^4)
True

>>> from sage.all import *
>>> from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
>>>
P = MPolynomialRing_polydict_domain(QQ,Integer(3), order='degrevlex', names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3)
>>> P.monomial_pairwise_prime(x**Integer(2)*z**Integer(3), y**Integer(4))
True

sage: P.monomial_pairwise_prime(1/2*x^3*y^2, 3/4*y^3)
False

>>> from sage.all import *
>>> from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
>>>
P.monomial_pairwise_prime(Integer(1)/Integer(2)*x^3*y^2, Integer(3)/Integer(4)*y^3)
False

monomial_quotient ($f$, $g$, coeff=False)
Return $f/g$, where both $f$ and $g$ are treated as monomials.
Coefficients are ignored by default.

INPUT:
• $f$ – monomial.
• $g$ – monomial.
• coeff – divide coefficients as well (default: False).

OUTPUT: monomial.

EXAMPLES:
sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
sage: P.<x,y,z> = MPolynomialRing_polydict_domain(QQ, 3, order='degrevlex')
sage: P.monomial_quotient(3/2*x*y, x)
y

>>> from sage.all import *
>>> from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
>>>
P.monomial_quotient(Integer(3)/Integer(2)*x*y, Integer(3)/Integer(4)*y**Integer(2), Integer(3)/Integer(4)*y**Integer(3))
False

sage: P.monomial_quotient(3/2*x*y, 2*x, coeff=True)
3/4*y
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> P.monomial_quotient(Integer(3)/Integer(2)*x*y, Integer(2)*x, coeff=True)
3/4*y
```

**Note:** Assumes that the head term of f is a multiple of the head term of g and return the multiplicant m. If this rule is violated, funny things may happen.

**monomial_reduce** \((f, G)\)

Try to find a \(g\) in \(G\) where \(g.\text{lm}()\) divides \(f\).

If found, \((\text{flt}, g)\) is returned, \((0, 0)\) otherwise, where \(\text{flt}\) is \(f/g.\text{lm}()\). It is assumed that \(G\) is iterable and contains ONLY elements in this ring.

**INPUT:**
- \(f\) – monomial
- \(G\) – list/set of mpolynomials

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_˓→polydict_domain
sage: P.<x,y,z>=MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
sage: f = x*y^2
sage: G = [3/2*x^3 + y^2 + 1/2, 1/4*x*y + 2/7, P(1/2)]
sage: P.monomial_reduce(f,G)
(y, 1/4*x*y + 2/7)
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_˓→polydict_domain
>>> P = MPolynomialRing_polydict_domain(QQ,Integer(3), order='degrevlex',␣˓→names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3)
>>> f = x*y**Integer(2)
>>> G = [Integer(3)/Integer(2)*x**Integer(3) + y**Integer(2) + Integer(1)/Integer(2), Integer(1)/Integer(4)*x**y + Integer(2)/Integer(7), P(Integer(1)/Integer(2))]
>>> P.monomial_reduce(f,G)
(y, 1/4*x*y + 2/7)
```

```python
sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_˓→polydict_domain
sage: P.<x,y,z> = MPolynomialRing_polydict_domain(Zmod(23432),3, order='degrevlex')
sage: f = x*y^2
sage: G = [3*x^3 + y^2 + 2, 4*x*y + 7, P(2)]
sage: P.monomial_reduce(f,G)
(y, 4*x*y + 7)
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_˓→polydict_domain
>>> P = MPolynomialRing_polydict_domain(Zmod(Integer(23432)),Integer(3),␣˓→order='degrevlex', names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3)
>>> f = x*y**Integer(2)
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

```python
>>> G = [Integer(3)*x**Integer(3) + y**Integer(2) + Integer(2),
 Integer(4)*x*y + Integer(7), P(Integer(2))]
>>> P.monomial_reduce(f,G)
(y, 4*x*y + 7)
```

**sum (terms)**

Return a sum of elements of this multivariate polynomial ring.

This is method is much faster than the Python builtin `sum()`.

**EXAMPLES:**

```python
sage: R = QQ['x']
sage: S = R['y, z']
sage: x = R.gen()
sage: y, z = S.gens()
sage: S.sum([x*y, 2*x^2*z - 2*x*y, 1 + y + z])
(-x + 1)*y + (2*x^2 + 1)*z + 1
```

```python
>>> from sage.all import *
>>> R = QQ['x']
>>> S = R['y, z']
>>> x = R.gen()
>>> y, z = S.gens()
>>> S.sum([x*y, Integer(2)*x**Integer(2)*z - Integer(2)*x*y, Integer(1) + y + z])
(-x + 1)*y + (2*x^2 + 1)*z + 1
```

Comparison with builtin `sum()`:

```python
sage: sum([x*y, 2*x^2*z - 2*x*y, 1 + y + z])
(-x + 1)*y + (2*x^2 + 1)*z + 1
```

```python
>>> from sage.all import *
>>> sum([x*y, Integer(2)*x**Integer(2)*z - Integer(2)*x*y, Integer(1) + y + z])
(-x + 1)*y + (2*x^2 + 1)*z + 1
```

**class** `sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_domain (base_ring, n, names, order)`

**Bases:** `IntegralDomain`, `MPolynomialRing_polydict`

**ideal (**`gens`, **`kwds`**)**

Create an ideal in this polynomial ring.

**is_field (proof=True)**

**is_integral_domain (proof=True)**
3.1.5 Generic Multivariate Polynomials

AUTHORS:

- David Joyner: first version
- William Stein: use dict’s instead of lists
- Martin Albrecht malb@informatik.uni-bremen.de: some functions added
- Kiran S. Kedlaya (2006-02-12): added Macaulay2 analogues of some Singular features
- William Stein (2006-04-19): added e.g., f[1, 3] to get coeff of xy^3; added examples of the new R.x,y = PolynomialRing(QQ,2) notation.
- Martin Albrecht: improved singular coercions (restructured class hierarchy) and added ETuples
- Robert Bradshaw (2007-08-14): added support for coercion of polynomials in a subset of variables (including multi-level univariate rings)

EXAMPLES:

We verify Lagrange’s four squares identity:

```python
sage: R.<a0,a1,a2,a3,b0,b1,b2,b3> = QQbar[]

sage: ((a0^2 + a1^2 + a2^2 + a3^2) * (b0^2 + b1^2 + b2^2 + b3^2) ==
 (a0*b0 - a1*b1 - a2*b2 - a3*b3)^2 + (a0*b1 + a1*b0 + a2*b3 - a3*b2)^2
 + (a0*b2 - a1*b3 + a2*b0 + a3*b1)^2 + (a0*b3 + a1*b2 - a2*b1 + a3*b0)^2)
True
```
element()

hamming_weight()

Return the number of non-zero coefficients of this polynomial.

This is also called weight, \texttt{hamming\_weight()} or sparsity.

EXAMPLES:

\begin{verbatim}
sage: # needs sage.rings.real_mpfr
definitions:
sage: R.<x, y> = CC[]
sage: f = x**3 - y
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x+y)**100
sage: f.number_of_terms()
101

>>> from sage.all import *

>>> # needs sage.rings.real_mpfr

>>> R = CC['x, y']; (x, y,) = R._first_ngens(2)

>>> f = x**Integer(3) - y

>>> f.number_of_terms()
2

>>> R(Integer(0)).number_of_terms()
0

>>> f = (x+y)**Integer(100)

>>> f.number_of_terms()
101
\end{verbatim}

The method \texttt{hamming\_weight()} is an alias:

\begin{verbatim}
sage: f.hamming_weight()  # needs sage.rings.real_mpfr
101

>>> from sage.all import *

>>> f.hamming_weight()  # needs sage.rings.real_mpfr
101
\end{verbatim}

number_of_terms()

Return the number of non-zero coefficients of this polynomial.

This is also called weight, \texttt{hamming\_weight()} or sparsity.

EXAMPLES:

\begin{verbatim}
sage: # needs sage.rings.real_mpfr
definitions:
sage: R.<x, y> = CC[]
sage: f = x**3 - y
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x+y)**100

(continues on next page)
The method `hamming_weight()` is an alias:

```
sage: f.hamming_weight() # needs sage.rings.real_mpfr
 → needs sage.rings.real_mpfr
101
```

```
>>> from sage.all import *

>>> # needs sage.rings.real_mpfr

>>> R = CC['x, y']; (x, y,) = R._first_ngens(2)

>>> f = x**Integer(3) - y

>>> f.number_of_terms()
2

>>> R(Integer(0)).number_of_terms()
0

>>> f = (x+y)**Integer(100)

>>> f.number_of_terms()
101
```

```
class sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict (parent, x)
```

Bases: `Polynomial_singular_repr, MPolynomial_element`

Multivariate polynomials implemented in pure python using polydicts.

`coefficient(degrees)`

Return the coefficient of the variables with the degrees specified in the python dictionary `degrees`. Mathematically, this is the coefficient in the base ring adjoined by the variables of this ring not listed in `degrees`. However, the result has the same parent as this polynomial.

This function contrasts with the function `monomial_coefficient` which returns the coefficient in the base ring of a monomial.

INPUT:

- `degrees` – Can be any of:
  - a dictionary of degree restrictions
  - a list of degree restrictions (with None in the unrestricted variables)
  - a monomial (very fast, but not as flexible)

OUTPUT: element of the parent of `self`

See also:

For coefficients of specific monomials, look at `monomial_coefficient()`.

EXAMPLES:
sage: # needs sage.rings.number_field
sage: R.<x, y> = QQbar[]
# needs sage.rings.number_field
sage: f = 2 * x * y
sage: c = f.coefficient({x: 1, y: 1}); c
2
sage: c.parent()
Multivariate Polynomial Ring in x, y over Algebraic Field
sage: c in PolynomialRing(QQbar, 2, names=['x', 'y'])
True
sage: f = y^2 - x^9 - 7*x + 5*x*y
sage: f.coefficient({y: 1})
5*x
sage: f.coefficient({y: 0})
-x^9 + (-7)*x
sage: f.coefficient({x: 0, y: 0})
0
sage: f = (1+y+y^2) * (1+x+x^2)
# Be aware that this may not be what you think!
# The physical appearance of the variable x is deceiving -- particularly if
# the exponent would be a variable.
sage: f.coefficient(x^0) # outputs the full polynomial
x^2*y^2 + x^2*y + x*y^2 + x^2 + x*y + y^2 + x + y + 1

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQbar['x, y']; (x, y,) = R._first_ngens(2)
>>> f = Integer(2) * x * y
>>> c = f.coefficient({x: Integer(1), y: Integer(1)}); c
2
>>> c.parent()
Multivariate Polynomial Ring in x, y over Algebraic Field
>>> c in PolynomialRing(QQbar, Integer(2), names=['x', 'y'])
True
>>> f = y**Integer(2) - x**Integer(9) - Integer(7)*x + Integer(5)*x*y
>>> f.coefficient({y: Integer(1)})
5*x
>>> f.coefficient({y: Integer(0)})
-x^9 + (-7)*x
>>> f.coefficient({x: Integer(0), y: Integer(0)})
0
>>> f = (Integer(1)+y**Integer(2)) * (Integer(1)+x+x**Integer(2))
>>> f.coefficient({x: Integer(0)})
y^2 + y + 1
>>> f.coefficient({Integer(0), None})
y^2 + y + 1
>>> f.coefficient(x)
y^2 + y + 1
>>> # Be aware that this may not be what you think!
>>> # The physical appearance of the variable x is deceiving -- particularly if
# the exponent would be a variable.
>>> f.coefficient(x**Integer(0)) # outputs the full polynomial
(continues on next page)
\[ x^2 y^2 + x^2 y + x y^2 + x^2 + x y + y^2 + x + y + 1 \]

```
sage: # needs sage.rings.real_mpfr
sage: R.<x,y> = RR[]
sage: f = x*y + 5
sage: c = f.coefficient({x: 0, y: 0}); c
5.00000000000000
sage: parent(c)
Multivariate Polynomial Ring in x, y over Real Field with 53 bits of precision
```

```python
>>> from sage.all import *

>>> # needs sage.rings.real_mpfr

>>> R = RR['x, y']; (x, y,) = R._first_ngens(2)

>>> f = x*y + Integer(5)

>>> c = f.coefficient({x: Integer(0), y: Integer(0)}); c
5.00000000000000

>>> parent(c)
Multivariate Polynomial Ring in x, y over Real Field with 53 bits of precision
```

AUTHORS:

- Joel B. Mohler (2007-10-31)

constant_coefficient()

Return the constant coefficient of this multivariate polynomial.

EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: R.<x,y> = QQbar[]

sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5

sage: f.constant_coefficient()
5

sage: f = 3*x^2

sage: f.constant_coefficient()
0
```

```python
>>> from sage.all import *

>>> # needs sage.rings.number_field

>>> R = QQbar['x, y']; (x, y,) = R._first_ngens(2)

>>> f = Integer(3)*x**Integer(2) - Integer(2)*y + Integer(7)*x**Integer(2)*y**Integer(2) + Integer(5)

>>> f.constant_coefficient()
5

>>> f = Integer(3)*x**Integer(2)

>>> f.constant_coefficient()
0
```

degree \((x=None, \text{std\_grading}=False)\)

Return the degree of \(x\) in \(x\), where \(x\) must be one of the generators for the parent of \(x\).

INPUT:

- \(x\) – multivariate polynomial (a generator of the parent of \(x\)). If \(x\) is not specified (or is None), return the total degree, which is the maximum degree of any monomial. Note that a weighted term ordering alters the grading of the generators of the ring; see the tests below. To avoid this behavior, set the optional argument std_grading=True.
OUTPUT: integer

EXAMPLES:

```python
sage: R.<x,y> = RR[]
sage: f = y^2 - x^9 - x
sage: f.degree(x)
9
sage: f.degree(y)
2
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(x)
3
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(y)
10
```

```python
>>> from sage.all import *
>>> R = RR['x, y']; (x, y,) = R._first_ngens(2)
>>> f = y**Integer(2) - x**Integer(9) - x
>>> f.degree(x)
9
>>> f.degree(y)
2
>>> (y**Integer(10)*x - Integer(7)*x**Integer(2)*y**Integer(5) + Integer(5)*x**Integer(3)).degree(x)
3
>>> (y**Integer(10)*x - Integer(7)*x**Integer(2)*y**Integer(5) + Integer(5)*x**Integer(3)).degree(y)
10
```

Note that total degree takes into account if we are working in a polynomial ring with a weighted term order.

```python
sage: R = PolynomialRing(QQ, 'x,y', order=TermOrder('wdeglex', (2,3)))
sage: x,y = R.gens()
sage: x.degree()
2
sage: y.degree()
3
sage: x.degree(y), x.degree(x), y.degree(x), y.degree(y)
(0, 1, 0, 1)
sage: f = x^2*y + x*y^2
sage: f.degree(x)
2
sage: f.degree(y)
2
sage: f.degree()
8
sage: f.degree(std_grading=True)
3
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, 'x,y', order=TermOrder('wdeglex', (Integer(2), Integer(3))))
>>> x,y = R.gens()
```
Note that if \( x \) is not a generator of the parent of \( \text{self} \), for example if it is a generator of a polynomial algebra which maps naturally to this one, then it is converted to an element of this algebra. (This fixes the problem reported in Issue #17366.)

```python
sage: x, y = ZZ['x','y'].gens()
sage: GF(3037000453)['x','y'].gen(0).degree(x) # needs sage.rings.finite_rings
1
sage: x0, y0 = QQ['x','y'].gens()
sage: GF(3037000453)['x','y'].gen(0).degree(x0) # needs sage.rings.finite_rings
Traceback (most recent call last):
... TypeError: x must be one of the generators of the parent
```

```python
>>> from sage.all import *

>>> x, y = ZZ['x','y'].gens()
>>> GF(Integer(3037000453))['x','y'].gen(Integer(0)).degree(x)
needs sage.rings.finite_rings
1

>>> x0, y0 = QQ['x','y'].gens()
>>> GF(Integer(3037000453))['x','y'].gen(Integer(0)).degree(x0)
needs sage.rings.finite_rings
Traceback (most recent call last):
... TypeError: x must be one of the generators of the parent
```

### degrees()

Returns a tuple (precisely - an ETuple) with the degree of each variable in this polynomial. The list of degrees is, of course, ordered by the order of the generators.

**EXAMPLES:**
sage: # needs sage.rings.number_field
sage: R.<x,y,z> = PolynomialRing(QQbar)
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.degrees()
(2, 2, 0)
sage: f = x^2 + z^2
sage: f.degrees()
(2, 0, 2)
sage: f.total_degree()  # this simply illustrates that total degree is not...
→the sum of the degrees
2
sage: R.<x,y,z,u> = PolynomialRing(QQbar)
sage: f = (1-x) * (1+y+z+x^3)^5
sage: f.degrees()
(16, 5, 5, 0)
sage: R(0).degrees()
(0, 0, 0, 0)

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = PolynomialRing(QQbar, names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3)
>>> f = Integer(3)*x**Integer(2) - Integer(2)*y +...
→Integer(7)*x**Integer(2)*y**Integer(2) + Integer(5)
>>> f.degrees()
(2, 2, 0)
>>> f = x**Integer(2) + z**Integer(2)
>>> f.degrees()
(2, 0, 2)
>>> f.total_degree()  # this simply illustrates that total degree is not the...
→sum of the degrees
2
>>> R = PolynomialRing(QQbar, names=('x', 'y', 'z', 'u',)); (x, y, z, u,) = R._first_ngens(4)
>>> f = (Integer(1)-x) * (Integer(1)+y+z+x^3)**Integer(3)**Integer(5)
>>> f.degrees()
(16, 5, 5, 0)
>>> R(Integer(0)).degrees()
(0, 0, 0, 0)

dict()
Return underlying dictionary with keys the exponents and values the coefficients of this polynomial.

exponents(as_ETuples=True)
Return the exponents of the monomials appearing in self.

INPUT:
• as_ETuples — (default: True): return the list of exponents as a list of ETuples

OUTPUT:
The list of exponents as a list of ETuples or tuples.

EXAMPLES:
sage: f = a^3 + b + 2*b^2
˓→ needs sage.rings.number_field

sage: f.exponents()
˓→ needs sage.rings.number_field

[(3, 0, 0), (0, 2, 0), (0, 1, 0)]

>>> from sage.all import *
>>>
R = PolynomialRing(QQbar, Integer(3), names=('a', 'b', 'c',)); (a, b, c,)
˓→ R._first_ngens(3)

>>> f = a**Integer(3) + b + Integer(2)*b**Integer(2)
˓→ # needs sage.rings.number_field

>>> f.exponents()
˓→ needs sage.rings.number_field

[(3, 0, 0), (0, 2, 0), (0, 1, 0)]

Factor the irreducible factorization of this polynomial.

INPUT:

• proof – insist on provably correct results (default: True unless explicitly disabled for the "polynomial" subsystem with sage.structure.proof.proof.WithProof.)

Global height (prec=None)

Return the (projective) global height of the polynomial.

This returns the absolute logarithmic height of the coefficients thought of as a projective point.

INPUT:

• prec – desired floating point precision (default: default RealField precision).

OUTPUT: a real number.

Examples:

sage: R.<x,y> = PolynomialRing(QQbar, 2)
˓→ needs sage.rings.number_field

sage: f = QQbar(i)*x^2 + 3*x*y
˓→ needs sage.rings.number_field

sage: f.global_height()
˓→ needs sage.rings.number_field

(continues on next page)
Scalings should not change the result:

```python
sage: # needs sage.rings.number_field sage.symbolic
sage: R.<x, y> = PolynomialRing(QQbar, 2)
sage: f = 1/25*x^2 + 25/3*x + 1 + QQbar(sqrt(2))*y^2
sage: f.global_height()
6.43775164973640
sage: g = 100 * f
sage: g.global_height()
6.43775164973640
```

```python
sage: # needs sage.rings.number_field sage.symbolic
sage: R.<x> = QQ[]
sage: K.<k> = NumberField(x^2 + 1)
sage: Q.<q,r> = PolynomialRing(K, implementation='generic')
sage: f = 12 * q
sage: f.global_height()
0.000000000000000
```

```python
sage: # needs sage.rings.number_field
sage: R.<x> = QQ[]
sage: K.<k> = NumberField(x^2 + 1)
sage: Q.<q,r> = PolynomialRing(K, implementation='generic')
sage: f = 12 * q
sage: f.global_height()
0.000000000000000
```
integral (var=None)

Integrate self with respect to variable var.

Note: The integral is always chosen so the constant term is 0.

If var is not one of the generators of this ring, integral(var) is called recursively on each coefficient of this polynomial.

EXAMPLES:
On polynomials with rational coefficients:

```
sage: x, y = PolynomialRing(QQ, 'x, y').gens()
sage: ex = x*y + x - y
sage: it = ex.integral(x); it
1/2*x^2*y + 1/2*x^2 - x*y
sage: it.parent() == x.parent()
True
```

```
sage: R = ZZ['x']['y, z']
sage: y, z = R.gens()
sage: R.an_element().integral(y).parent()
Multivariate Polynomial Ring in y, z
over Univariate Polynomial Ring in x over Rational Field
```

```python
>>> from sage.all import *
```
Polynomials, Release 10.4

On polynomials with coefficients in power series:

```python
sage: # needs sage.rings.number_field
sage: R.<t> = PowerSeriesRing(QQbar)
sage: S.<x, y> = PolynomialRing(R)
sage: f = (t^2 + O(t^3))*x^2*y^3 + (37*t^4 + O(t^5))*x^3
evaluation
Multivariate Polynomial Ring in x, y
over Power Series Ring in t over Algebraic Field
sage: f.integral(x) # with respect to x
(1/3*t^2 + O(t^3))*x^3*y^3 + (37/4*t^4 + O(t^5))*x^4
sage: f.integral(x).parent()
Multivariate Polynomial Ring in x, y
over Power Series Ring in t over Algebraic Field
sage: f.integral(y) # with respect to y
(1/4*t^2 + O(t^3))*x^2*y^4 + (37*t^4 + O(t^5))*x^3*y
sage: f.integral(t) # with respect to t (recurses into base ring)
(1/3*t^3 + O(t^4))*x^2*y^3 + (37/5*t^5 + O(t^6))*x^3
```

inverse_of_unit()  
Return the inverse of a unit in a ring.

is_constant()  
Return True if self is a constant and False otherwise.

EXAMPLES:
sage: # needs sage.rings.number_field
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.is_constant()
False
sage: g = 10*x^0
sage: g.is_constant()
True

>>> from sage.all import *

>>> # needs sage.rings.number_field

>>> R = QQbar['x, y']; (x, y,) = R._first_ngens(2)
>>> f = Integer(3)*x**Integer(2) - Integer(2)*y +...
    →Integer(7)*x**Integer(2)*y**Integer(2) + Integer(5)
>>> f.is_constant()
False
>>> g = Integer(10)*x**Integer(0)
>>> g.is_constant()
True

is_generator()
Return True if self is a generator of its parent.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: R.<x,y> = QQbar[]

sage: x.is_generator()
True

sage: (x + y - y).is_generator()
True

sage: (x*y).is_generator()
False

>>> from sage.all import *

>>> # needs sage.rings.number_field

>>> R = QQbar['x, y']; (x, y,) = R._first_ngens(2)

>>> x.is_generator()
True

>>> (x + y - y).is_generator()
True

>>> (x*y).is_generator()
False

is_homogeneous()
Return True if self is a homogeneous polynomial.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: R.<x,y> = QQbar[]

sage: (x + y).is_homogeneous()
True

sage: (x.parent()(0)).is_homogeneous()
True

sage: (x + y^2).is_homogeneous()
False

(continues on next page)
Polynomials, Release 10.4

sage: (x^2 + y^2).is_homogeneous()
True
sage: (x^2 + y^2*x).is_homogeneous()
False
sage: (x^2*y + y^2*x).is_homogeneous()
True

```py
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQbar['x, y']; (x, y,) = R._first_ngens(2)
>>> (x + y).is_homogeneous()
True
>>> (x.parent()(Integer(0))).is_homogeneous()
True
>>> (x + y**Integer(2)).is_homogeneous()
False
>>> (x**Integer(2) + y**Integer(2)).is_homogeneous()
True
>>> (x**Integer(2) + y**Integer(2)*x).is_homogeneous()
False
>>> (x**Integer(2)*y + y**Integer(2)*x).is_homogeneous()
True
```

is_monomial()

Return True if self is a monomial, which we define to be a product of generators with coefficient 1.

Use is_term() to allow the coefficient to not be 1.

EXAMPLES:

```py
sage: # needs sage.rings.number_field
sage: R.<x,y> = QQbar[]
sage: x.is_monomial()
True
sage: (x + 2*y).is_monomial()
False
sage: (2*x).is_monomial()
False
sage: (x*y).is_monomial()
True
```

```py
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQbar['x, y']; (x, y,) = R._first_ngens(2)
>>> x.is_monomial()
True
>>> (x + Integer(2)*y).is_monomial()
False
>>> (Integer(2)*x).is_monomial()
False
>>> (x*y).is_monomial()
True
```

To allow a non-1 leading coefficient, use is_term():
is_term()  
Return True if self is a term, which we define to be a product of generators times some coefficient, which need not be 1.

Use is_monomial() to require that the coefficient be 1.

EXAMPLES:

```python
sage: # needs sage.rings.number_field
sage: R.<x,y> = QQbar[]
sage: x.is_term()
True
sage: (x + 2*y).is_term()
False
sage: (2*x).is_term()
True
sage: (7*x^5*y).is_term()
True
```

To require leading coefficient 1, use is_monomial():

```python
sage: (2*x*y).is_monomial() # needs sage.rings.number_field
False
sage: (2*x*y).is_term() # needs sage.rings.number_field
True
```

(continues on next page)
is_univariate()  
Return True if this multivariate polynomial is univariate and False otherwise.

EXAMPLES:

```python
sage: # needs sage.rings.number_field
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.is_univariate()
False
sage: g = f.subs({x: 10}); g
700*y^2 + (-2)*y + 305
sage: g.is_univariate()
True
sage: f = x^0
sage: f.is_univariate()
True
```  

>>>
```python
from sage.all import *
```  
```python
>>> R = QQbar[x, y]; (x, y,) = R._first_ngens(2)
>>> f = Integer(3)*x**Integer(2) - Integer(2)*y + Integer(7)*x**Integer(2)*y**Integer(2) + Integer(5)
>>> f.is_univariate()
False
>>> g = f.subs({x: Integer(10)}); g
700*y^2 + (-2)*y + 305
>>> g.is_univariate()
True
>>> f = x**Integer(0)
>>> f.is_univariate()
True
```

iterator_exp_coeff (as_ETuples=True)
 Iterate over self as pairs of ((E)Tuple, coefficient).

INPUT:

- as_ETuples – (default: True) if True iterate over pairs whose first element is an ETuple, otherwise as a tuples

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(QQbar, order='lex') # needs sage.rings.number_field
sage: f = (x^1*y^5*z^2 + x^2*z + x^4*y^1*z^3) # needs sage.rings.number_field
sage: list(f.iterator_exp_coeff()) # needs sage.rings.number_field
[((4, 1, 3), 1), ((2, 0, 1), 1), ((1, 5, 2), 1)]
```
sage: R.<x,y,z> = PolynomialRing(QQbar, order='deglex')  # needs sage.rings.number_field
sage: f = (x^1*y^5*z^2 + x^2*z + x^4*y^1*z^3)  # needs sage.rings.number_field
sage: list(f.iterator_exp_coeff(as_ETuples=False))  # needs sage.rings.number_field
[((4, 1, 3), 1), ((1, 5, 2), 1), ((2, 0, 1), 1)]

>>> from sage.all import *
>>> R = PolynomialRing(QQbar, order='lex', names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3)  # needs sage.rings.number_field
>>> f = (x**Integer(1)*y**Integer(5)*z**Integer(2) + x**Integer(2)*z + x**Integer(4)*y**Integer(1)*z**Integer(3))  # needs sage.rings.number_field
>>> list(f.iterator_exp_coeff())  # needs sage.rings.number_field
[((4, 1, 3), 1), ((2, 0, 1), 1), ((1, 5, 2), 1)]

lc()

Returns the leading coefficient of self, i.e., self.coefficient(self.lm())

EXAMPLES:

sage: R.<x,y,z> = QQbar[]  # needs sage.rings.number_field
sage: f = 3*x^2 - y^2 - x*y  # needs sage.rings.number_field
sage: f.lc()  # needs sage.rings.number_field
3

lift(I)

Given an ideal \( I = (f_1, \ldots, f_r) \) and some \( g (= self) \) in \( I \), find \( s_1, \ldots, s_r \) such that \( g = s_1 f_1 + \ldots + s_r f_r \).

ALGORITHM: Use Singular.

EXAMPLES:
The lead monomial (\(\text{lm}\)) of a polynomial is the monomial with the highest total degree according to the term order of the polynomial ring. If the polynomial is \(f(x, y, z) = x^3y^2z^4 + x^3y^2z^1\), the lead monomial is \(x^3y^2z^4\).

```python
sage: R.<x,y,z> = PolynomialRing(GF(7), 3, order='lex')
sage: (x^3*y^2 + y^3*z^4).lm()
x*y^2
```

```python
sage: (x^3*y^2*z^4 + x^3*y^2*z^1).lm()
x^3*y^2*z^4
```

```python
sage: (x^3*y^2*z^4 + x^1*y^1*z^5).lm()
x^3*y^2*z^4
```

```python
sage: R.<x,y,z> = PolynomialRing(CC, 3, order='deglex')
sage: (x^1*y^2*z^3 + x^3*y^2*z^0).lm()
x*y^2*z^3
```

```python
sage: (x^1*y^2*z^4 + x^1*y^1*z^5).lm()
x*y^2*z^4
```

```python
sage: R.<x,y,z> = PolynomialRing(CC, 3, order='degrevlex')
sage: (x^1*y^2*z^3 + x^3*y^2*z^0).lm()
x*y^2*z^3
```

```python
sage: (x^1*y^2*z^4 + x^1*y^1*z^5).lm()
x*y^2*z^4
```

```python
lm() returns the lead monomial of self with respect to the term order of self.parent(). Examples:
```
Polynomials, Release 10.4

>>> R = PolynomialRing(CC, Integer(3), order='deglex', names=('x', 'y', 'z',))
>>> (x**Integer(1)*y**Integer(2)*z**Integer(3) +
→x**Integer(3)*y**Integer(1)*z**Integer(0)).lm()
→x*y^2*z^3
>>> (x**Integer(1)*y**Integer(2)*z**Integer(4) +
→x**Integer(1)*y**Integer(1)*z**Integer(5)).lm()
→x*y^2*z^4

sage: # needs sage.rings.number_field
sage: R.<x,y,z> = PolynomialRing(QQbar, 3, order='degrevlex')

sage: f = x**Integer(1)*y**5*z^2 + x**4*y^1*z^3).lm()

sage: f.local_height(1331)
# needs sage.rings.real_mpfr
7.19368581839511

>>> from sage.all import *

local_height (v, prec=None)

Return the maximum of the local height of the coefficients of this polynomial.

**INPUT:**

- **v** – a prime or prime ideal of the base ring.
- **prec** – desired floating point precision (default: default RealField precision).

**OUTPUT:** a real number.

**EXAMPLES:**

sage: R.<x,y> = PolynomialRing(QQ, implementation='generic')
sage: f = 1/1331*x^2 + 1/4000*y
sage: f.local_height(1331)  # needs sage.rings.real_mpfr
7.19368581839511

sage: # needs sage.rings.number_field
sage: R.<x> = QQ[
(continues on next page)
sage: K.<k> = NumberField(x^2 - 5)
sage: T.<t,w> = PolynomialRing(K, implementation='generic')
sage: I = K.ideal(3)
sage: f = 1/3*t*w + 3
sage: f.local_height(I)
# needs sage.symbolic
1.09861228866811

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> K = NumberField(x**Integer(2) - Integer(5), names=('k',)); (k,) = K._first_ngens(1)
>>> T = PolynomialRing(K, implementation='generic', names=('t', 'w',)); (t, w,)
>>> I = K.ideal(Integer(3))
>>> f = Integer(1)/Integer(3)*t*w + Integer(3)
>>> f.local_height(I)  # needs sage.symbolic
1.09861228866811

sage: R.<x,y> = PolynomialRing(QQ, implementation='generic')
sage: f = 1/2*x*y + 2
sage: f.local_height(2, prec=2)  # needs sage.rings.real_mpfr
0.75

local_height_arch(i, prec=None)
Return the maximum of the local height at the i-th infinite place of the coefficients of this polynomial.

INPUT:
• i – an integer.
• prec – desired floating point precision (default: default RealField precision).

OUTPUT: a real number.

EXAMPLES:
sage: R.<x,y> = PolynomialRing(QQ, implementation='generic')
sage: f = 210*x*y
sage: f.local_height_arch(0)  # needs sage.rings.real_mpfr
5.34710753071747

>>> from sage.all import *
>>> # needs sage.rings.real_mpfr
>>> R = PolynomialRing(QQ, implementation='generic', names=('x', 'y',)); (x, y,)

(continues on next page)
\[ y(x) = R._first_ngens(2) \]

\[
\begin{align*}
\texttt{f} &= \texttt{Integer(210)*x*y} \\
\texttt{f.local_height_arch(Integer(0))} &\quad \rightarrow # \texttt{needs sage.rings.real_mpfr} \\
\end{align*}
\]

5.34710753071747

sage: # needs sage.rings.number_field
sage: R.<x> = QQ[]
sage: K.<k> = NumberField(x**2 - 5)
sage: T.<t,w> = PolynomialRing(K, implementation='generic')
sage: f = 1/2*t*w + 3
sage: f.local_height_arch(1, prec=52)
1.09861228866811

>>> from sage.all import *

>>> # needs sage.rings.number_field
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> K = NumberField(x**2 - 5, names=('k',)); (k,) = K._first_ngens(1)
>>> T = PolynomialRing(K, implementation='generic', names=('t', 'w',)); (t, w,)
>>> f = Integer(1)/Integer(2)*t*w + Integer(3)

l(t)

Return the leading term of \texttt{self} i.e., \texttt{self.lc()*self.lm()}. The notion of “leading term” depends on the ordering defined in the parent ring.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: R.<x,y,z> = PolynomialRing(QQbar)
sage: f = 3*x^2 - y^2 - x*y
sage: f.lt()
3*x^2

sage: R.<x,y,z> = PolynomialRing(QQbar, order="invlex")
sage: f = 3*x^2 - y^2 - x*y
sage: f.lt()
\[ -y^2 \]
Polynomials, Release 10.4

```
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = PolynomialRing(QQbar, names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3)
>>> f = Integer(3)*x**Integer(2) - y**Integer(2) - x*y
>>> f.lt()
3*x^2
>>> R = PolynomialRing(QQbar, order='invlex', names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3)
>>> f = Integer(3)*x**Integer(2) - y**Integer(2) - x*y
>>> f.lt()
-y^2
```

**monomial_coefficient** (*mon*)

Return the coefficient in the base ring of the monomial *mon* in `self`, where *mon* must have the same parent as `self`.

This function contrasts with the function `coefficient` which returns the coefficient of a monomial viewing this polynomial in a polynomial ring over a base ring having fewer variables.

**INPUT:**

- *mon* – a monomial

**OUTPUT:** coefficient in base ring

**See also:**

For coefficients in a base ring of fewer variables, look at `coefficient()`.

**EXAMPLES:**

```
sage: # needs sage.rings.number_field
sage: R.<x,y> = QQbar[]
sage: f = 2 * x * y
sage: c = f.monomial_coefficient(x*y); c
2
```

```
sage: # needs sage.rings.number_field
sage: f = y^2 + y^2*x - x^9 - 7*x + 5*x*y
sage: f.monomial_coefficient(y^2)
1
sage: f.monomial_coefficient(x*y)
5
sage: f.monomial_coefficient(x^9)
-1
sage: f.monomial_coefficient(x^10)
0
```

Chapter 3. Multivariate Polynomials
```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
f = y**Integer(2) + y**Integer(2)*x - x**Integer(9) - Integer(7)*x + Integer(5)*x*y
>>> f.monomial_coefficient(y**Integer(2))
1
>>> f.monomial_coefficient(x*y)
5
>>> f.monomial_coefficient(x**Integer(9))
-1
>>> f.monomial_coefficient(x**Integer(10))
0
```

```python
sage: # needs sage.rings.number_field
sage: a = polygen(ZZ, 'a')
sage: K.<a> = NumberField(a^2 + a + 1)
sage: P.<x,y> = K[]
sage: f = (a*x - 1) * ((a+1)*y - 1); f
-x*y + (-a)*x + (-a - 1)*y + 1
sage: f.monomial_coefficient(x)
-a
```

```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
a = polygen(ZZ, 'a')
>>> K = NumberField(a**Integer(2) + a + Integer(1), names=('a',)); (a,) = K._first_ngens(1)
>>> P = K['x, y']; (x, y) = P._first_ngens(2)
>>> f = (a*x - Integer(1)) * ((a+Integer(1))*y - Integer(1)); f
-x*y + (-a)*x + (-a - 1)*y + 1
>>> f.monomial_coefficient(x)
-a
```

### monomials()

Return the list of monomials in self. The returned list is decreasingly ordered by the term ordering of self.parent().

**OUTPUT:** list of `MPolynomial` instances, representing monomials

**EXAMPLES:**

```python
sage: R.<x,y> = QQbar[]
needs sage.rings.number_field
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
needs sage.rings.number_field
sage: f.monomials()
needs sage.rings.number_field
[x^2*y^2, x^2, y, 1]
```

```python
>>> R = QQbar['x, y']; (x, y) = R._first_ngens(2)# needs sage.rings.number_field
>>> f = Integer(3)*x**Integer(2) - Integer(2)*y + Integer(7)*x**Integer(2)*y**Integer(2) + Integer(5)
needs sage.rings.number_field
>>> f.monomials()
needs sage.rings.number_field
```

(continues on next page)
Polynomials, Release 10.4

needs sage.rings.number_field
[x^2*y^2, x^2, y, 1]

sage: # needs sage.rings.number_field
sage: R.<fx,fy,gx,gy> = QQbar[]

sage: F = (fx*gy - fy*gx)^3; F
-fy^3*gx^3 + 3*fx*fy^2*gx^2*gy + (-3)*fx^2*fy*gx*gy^2 + fx^3*gy^3

sage: F.monomials()
[fy^3*gx^3, fx*fy^2*gx^2*gy, fx^2*fy*gx*gy^2, fx^3*gy^3]

sage: F.coefficients()
[-1, 3, -3, 1]

sage: sum(map(mul, zip(F.coefficients(), F.monomials()))) == F
True

-----------

from sage.all import *

# needs sage.rings.number_field

R = QQbar['fx, fy, gx, gy']; (fx, fy, gx, gy) = R._first_ngens(4)

F = (fx*gy - fy*gx)**Integer(3); F
-fy^3*gx^3 + 3*fx*fy^2*gx^2*gy + (-3)*fx^2*fy*gx*gy^2 + fx^3*gy^3

F.monomials()
[fy^3*gx^3, fx*fy^2*gx^2*gy, fx^2*fy*gx*gy^2, fx^3*gy^3]

F.coefficients()
[-1, 3, -3, 1]

sum(map(mul, zip(F.coefficients(), F.monomials()))) == F
True

nvariables()

Return the number of variables in this polynomial.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: R.<x,y> = QQbar[]

sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5

sage: f.nvariables()
2

sage: g = f.subs({x: 10}); g
700*y^2 + (-2)*y + 305

sage: g.nvariables()
1

---

from sage.all import *

# needs sage.rings.number_field

R = QQbar['x, y']; (x, y) = R._first_ngens(2)

f = Integer(3)*x**Integer(2) - Integer(2)*y +...
-Integer(7)*x**Integer(2)*y**Integer(2) + Integer(5)

f.nvariables()
2

>>> g = f.subs({x: Integer(10)}); g
700*y^2 + (-2)*y + 305

>>> g.nvariables()
1

quo_rem(right)

Returns quotient and remainder of self and right.
EXAMPLES:

```
sage: R.<x,y> = CC[]
needs sage.rings.real_mpfr
sage: f = y*x^2 + x + 1
needs sage.rings.real_mpfr
sage: f.quo_rem(x)
needs sage.libs.singular sage.rings.real_mpfr
(x*y + 1.00000000000000, 1.00000000000000)
sage: R = QQ['a','b']['x','y','z']
sage: p1 = R('a + (1+2*b)*x*y + (3-a^2)*z')
sage: p2 = R('x-1')
sage: p1.quo_rem(p2)
needs sage.libs.singular
((2*b + 1)*y, (2*b + 1)*y + (-a^2 + 3)*z + a)
sage: R.<x,y> = Qp(5)[]
sage: x.quo_rem(y)
needs sage.libs.singular sage.rings.padics
Traceback (most recent call last):
...:
TypeError: no conversion of this ring to a Singular ring defined
```

ALGORITHM: Use Singular.

```
reduce (I)
```

Reduce this polynomial by the polynomials in I.

INPUT:

- I – a list of polynomials or an ideal

EXAMPLES:
```python
sage: # needs sage.rings.number_field
sage: P.<x,y,z> = QQbar[]
sage: f1 = -2 * x^2 + x^3
sage: f2 = -2 * y + x * y
sage: f3 = -x^2 + y^2
sage: F = Ideal([f1, f2, f3])
sage: g = x*y - 3*x*y^2
sage: g.reduce(F)
needs sage.libs.singular
(-6)*y^2 + 2*y
sage: g.reduce(F.gens())
needs sage.libs.singular
(-6)*y^2 + 2*y
```
A = PolynomialRing(k, names=('y9', 'y12', 'y13', 'y15',)); (y9, y12, y13, ...
afirst_ngens(4)
>>> J = [y9 + y12]
>>> f = y9 - y12; f.reduce(J)
-2*y12
>>> f = y13*y15; f.reduce(J)
y13*y15
>>> f = y13*y15 + y9 - y12; f.reduce(J)
y13*y15 - 2*y12

Make sure the remainder returns the correct type, fixing Issue #13903:

```python
sage: R.<y1,y2> = PolynomialRing(Qp(5), 2, order='lex') # needs sage.rings.padics
sage: G = [y1^2 + y2^2, y1*y2 + y2^2, y2^3] # needs sage.rings.padics
sage: type((y2^3).reduce(G)) # needs sage.rings.padics
<class 'sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict'>
```

```python
from sage.all import *

P = PolynomialRing(QQ, Integer(2), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
```

resultant (other, variable=None)

Compute the resultant of self and other with respect to variable.

If a second argument is not provided, the first variable of self.parent() is chosen.

For inexact rings or rings not available in Singular, this computes the determinant of the Sylvester matrix.

INPUT:

• other – polynomial in self.parent()

• variable – (optional) variable (of type polynomial) in self.parent()

EXAMPLES:

```python
sage: P.<x,y> = PolynomialRing(QQ, 2)
sage: a = x + y
sage: b = x^3 - y^3
sage: a.resultant(b) # needs sage.libs.singular
-2*y^3
sage: a.resultant(b, y) # needs sage.libs.singular
2*x^3
```

```python
from sage.all import *

P = PolynomialRing(QQ, Integer(2), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
```
Polynomials, Release 10.4

subresultants \((\text{other, variable=None})\)

Return the nonzero subresultant polynomials of \(\text{self}\) and \(\text{other}\).

INPUT:

- \(\text{other}\) – a polynomial

OUTPUT: a list of polynomials in the same ring as \(\text{self}\)

EXAMPLES:

```python
sage: # needs sage.libs.singular sage.rings.number_field
sage: R.<x,y> = QQbar[]
sage: p = (y^2 + 6)*(x - 1) - y*(x^2 + 1)
sage: q = (x^2 + 6)*(y - 1) - x*(y^2 + 1)
sage: p.subresultants(q, y)
[2*x^6 + (-22)*x^5 + 102*x^4 + (-274)*x^3 + 488*x^2 + (-552)*x + 288,
 -x^3 - x^2*y + 6*x^2 + 5*x*y + (-11)*x + (-6)*y + 6]
sage: p.subresultants(q, x)
[2*y^6 + (-22)*y^5 + 102*y^4 + (-274)*y^3 + 488*y^2 + (-552)*y + 288,
 x*y^2 + y^3 + (-5)*x*y + (-6)*y^2 + 6*x + 11*y - 6]
```

subs \((\text{fixed=None, **kwds})\)

Fix some given variables in a given multivariate polynomial and return the changed multivariate polynomials. The polynomial itself is not affected. The variable, value pairs for fixing are to be provided as a dictionary of the form \{\text{variable: value}\}.

This is a special case of evaluating the polynomial with some of the variables constants and the others the original variables.

INPUT:

- \(\text{fixed}\) – (optional) dictionary of inputs
- **\text{kwds}** – named parameters

OUTPUT: new \text{MPolynomial}
EXAMPLES:

```python
sage: # needs sage.rings.number_field
sage: R.<x,y> = QQbar[]
sage: f = x^2 + y + x^2*y^2 + 5
sage: f((5, y))
25*y^2 + y + 30
sage: f.subs({x: 5})
25*y^2 + y + 30

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQbar['x, y']; (x, y,) = R._first_ngens(2)
>>> f = x**Integer(2) + y + x**Integer(2)*y**Integer(2) + Integer(5)
>>> f((Integer(5), y))
25*y^2 + y + 30
>>> f.subs({x: Integer(5)})
25*y^2 + y + 30

```

**total_degree()**

Return the total degree of *self*, which is the maximum degree of any monomial in *self*.

EXAMPLES:

```python
sage: # needs sage.rings.number_field
sage: R.<x,y,z> = QQbar[]
sage: f = 2*x*y^3*z^2
sage: f.total_degree()
6
sage: f = 4*x^2*y^2*z^3
sage: f.total_degree()
7
sage: f = 99*x^6*y^3*z^9
sage: f.total_degree()
18
sage: f = x*y^3*z^6 + 3*x^2
sage: f.total_degree()
10
sage: f = z^3 + 8*x^4*y^5*z
sage: f.total_degree()
10
sage: f = z^9 + 10*x^4 + y^8*x^2
sage: f.total_degree()
10

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQbar['x, y, z']; (x, y, z,) = R._first_ngens(3)
>>> f = Integer(2)*x*y^3*z^2
>>> f.total_degree()
6
>>> f = Integer(4)*x**Integer(2)*y**Integer(3)*z**Integer(2)
>>> f.total_degree()
7
>>> f = Integer(99)*x**Integer(6)*y**Integer(3)*z**Integer(9)
>>> f.total_degree()
18

(continues on next page)
univariate_polynomial (R=None)

Returns a univariate polynomial associated to this multivariate polynomial.

INPUT:

• R – (default: None) PolynomialRing

If this polynomial is not in at most one variable, then a ValueError exception is raised. This is checked using the method is_univariate(). The new Polynomial is over the same base ring as the given MPolynomial.

EXAMPLES:

```python
sage: # needs sage.rings.number_field
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.univariate_polynomial()
Traceback (most recent call last):
... PyErr: polynomial must involve at most one variable
sage: g = f.subs({x: 10}); g
700*y^2 + (-2)*y + 305
sage: g.univariate_polynomial()
700*y^2 - 2*y + 305
sage: g.univariate_polynomial(PolynomialRing(QQ, z))
700*z^2 - 2*z + 305
```

```python
>> from sage.all import *  
>> # needs sage.rings.number_field
>> R = QQbar['x, y']; (x, y, ) = R._first_ngens(2)
>> f = Integer(3)*x**Integer(2) - Integer(2)*y + ...
-> Integer(7)*x**Integer(2)*y**Integer(2) + Integer(5)
>> f.univariate_polynomial()
Traceback (most recent call last):
... PyErr: polynomial must involve at most one variable
>> g = f.subs({x: Integer(10)}); g
700*y^2 + (-2)*y + 305
>> g.univariate_polynomial()
700*y^2 - 2*y + 305
>> g.univariate_polynomial(PolynomialRing(QQ, 'z'))
700*z^2 - 2*z + 305
```

variable (i)

Return the i-th variable occurring in this polynomial.

EXAMPLES:
Polynomials, Release 10.4

sage: # needs sage.rings.number_field
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.variable(0)
x
sage: f.variable(1)
y

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQbar['x, y']; (x, y,) = R._first_ngens(2)
>>> f = Integer(3)*x**Integer(2) - Integer(2)*y +...
˓→Integer(7)*x**Integer(2)*y**Integer(2) + Integer(5)
>>> f.variable(Integer(0))
x
>>> f.variable(Integer(1))
y

variables()
Returns the tuple of variables occurring in this polynomial.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: R.<x,y> = QQbar[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.variables()
(x, y)

sage: g = f.subs({x: 10}); g
700*y^2 + (-2)*y + 305
sage: g.variables()
(y,)

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQbar['x, y']; (x, y,) = R._first_ngens(2)
>>> f = Integer(3)*x**Integer(2) - Integer(2)*y +...
˓→Integer(7)*x**Integer(2)*y**Integer(2) + Integer(5)
>>> f.variables()
(x, y)

sage: g = f.subs({x: Integer(10)}); g
700*y^2 + (-2)*y + 305
sage: g.variables()
(y,)

sage.rings.polynomial.multi_polynomial_element.degree_lowest_rational_function(r, x)

Return the difference of valuations of \(r \) with respect to variable \(x \).

INPUT:

- \(r \) – a multivariate rational function
- \(x \) – a multivariate polynomial ring generator

OUTPUT: integer – the difference \(\text{val}_x(p) - \text{val}_x(q) \) where \(r = p/q \)
Note: This function should be made a method of the `FractionFieldElement` class.

EXAMPLES:

```python
sage: R1 = PolynomialRing(FiniteField(5), 3, names=["a", "b", "c"])
sage: F = FractionField(R1)
sage: a,b,c = R1.gens()
sage: f = 3*a*b^2*c^3 + 4*a*b*c
sage: g = a^2*b*c^2 + 2*a^2*b^4*c^7
```

Consider the quotient \(f/g = \frac{4+3bc^4}{2ac+2bc^6} \) (note the cancellation).

```python
sage: # needs sage.rings.finite_rings
sage: r = f/g; r
(-2*b*c^2 - 1)/(2*a*b^3*c^6 + a*c)
sage: degree_lowest_rational_function(r, a)
-1
sage: degree_lowest_rational_function(r, b)
0
sage: degree_lowest_rational_function(r, c)
-1
```

3.1.6 Ideals in multivariate polynomial rings

Sage has a powerful system to compute with multivariate polynomial rings. Most algorithms dealing with these ideals are centered on the computation of Groebner bases. Sage mainly uses Singular to implement this functionality. Singular is widely regarded as the best open-source system for Groebner basis calculation in multivariate polynomial rings over fields.

EXAMPLES:

We compute a Groebner basis for some given ideal. The type returned by the `groebner_basis` method is `MPolynomialIdeal`, i.e., it is not a `MPolynomialIdeal`:
Groebner bases can be used to solve the ideal membership problem:

\begin{verbatim}
sage: f,g,h = B
sage: (2*x*f + g).reduce(B)
0
sage: (2*x*f + g) in I
True
sage: (2*x*f + 2*z*h + y^3).reduce(B)
y^3
sage: (2*x*f + 2*z*h + y^3) in I
False
\end{verbatim}

We compute a Groebner basis for Cyclic 6, which is a standard benchmark and test ideal.

\begin{verbatim}
sage: R.<x,y,z,t,u,v> = QQ['x,y,z,t,u,v']
sage: I = sage.rings.ideal.Cyclic(R,6)
sage: B = I.groebner_basis()
sage: len(B)
45
\end{verbatim}
We compute in a quotient of a polynomial ring over $\mathbb{Z}/17\mathbb{Z}$:

```
sage: R.<x,y> = ZZ[]
sage: S.<a,b> = R.quotient((x^2 + y^2, 17))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Integer Ring
by the ideal (x^2 + y^2, 17)
sage: a^2 + b^2 == 0
True
sage: a^3 - b^2
-a*b^2 - b^2
```

Note that the result of a computation is not necessarily reduced:

```
sage: from sage.all import *
>>> R = ZZ['x', 'y']; (x, y,) = R._first_ngens(2)
>>> S = R.quotient((x**Integer(2) + y**Integer(2), Integer(17)), names=('a', 'b',));
→ (a, b,) = S._first_ngens(2)
>>> S
Quotient of Multivariate Polynomial Ring in x, y over Integer Ring
by the ideal (x^2 + y^2, 17)
>>> a**Integer(2) + b**Integer(2) == Integer(0)
True
>>> a**Integer(3) - b**Integer(2)
-a*b^2 - b^2
```

Or we can work with $\mathbb{Z}/17\mathbb{Z}$ directly:

```
sage: R.<x,y> = Zmod(17)[]
sage: S.<a,b> = R.quotient((x^2 + y^2,))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Ring of
integers modulo 17 by the ideal (x^2 + y^2)
sage: a^2 + b^2 == 0
True
sage: a^3 - b^2 == -a*b^2 - b^2 == 16*a*b^2 + 16*b^2
True
sage: (a+b)^17
a*b^16 + b^17
sage: S(Integer(17)) == Integer(0)
True
```
Polynomials, Release 10.4

>>> from sage.all import *
>>> R = Zmod(Integer(17))[x, y]; (x, y,) = R._first_ngens(2)
>>> S = R.quotient((x**Integer(2) + y**Integer(2),), names=('a', 'b',)); (a, b,) = S._
˓→first_ngens(2)
>>> S
Quotient of Multivariate Polynomial Ring in x, y over Ring of integers modulo 17 by the ideal (x^2 + y^2)
>>> a**Integer(2) + b**Integer(2) == Integer(0)
True
>>> a**Integer(3) - b**Integer(2) == -a*b**Integer(2) - b**Integer(2) ==
˓→Integer(16)*a*b**Integer(2) + Integer(16)*b**Integer(2)
True
>>> (a+b)**Integer(17)
a*b^16 + b^17
>>> S(Integer(17)) == Integer(0)
True

Working with a polynomial ring over Z:

sage: R.<x,y,z,w> = ZZ[]
sage: I = ideal(x^2 + y^2 - z^2 - w^2, x-y)
sage: J = I^2
sage: J.groebner_basis()
[4*y^4 - 4*y^2*z^2 + z^4 - 4*y^2*w^2 + 2*z^2*w^2 + w^4,
 2*x*y^2 - 2*y^3 - x*z^2 + y*z^2 - x*w^2 + y*w^2,
 x^2 - 2*x*y + y^2]

sage: y^2 - 2*x*y + x^2 in J
True
sage: 0 in J
True

>> from sage.all import *
>>> R = ZZ['x, y, z, w']; (x, y, z, w,) = R._first_ngens(4)
>>> I = ideal(x**Integer(2) + y**Integer(2) - z**Integer(2) - w**Integer(2), x-y)
>>> J = I^2
>>> J.groebner_basis()
[4*y^4 - 4*y^2*z^2 + z^4 - 4*y^2*w^2 + 2*z^2*w^2 + w^4,
 2*x*y^2 - 2*y^3 - x*z^2 + y*z^2 - x*w^2 + y*w^2,
 x^2 - 2*x*y + y^2]

>>> y**Integer(2) - Integer(2)*x*y + x**Integer(2) in J
True
>>> Integer(0) in J
True

We do a Groebner basis computation over a number field:

sage: K.<zeta> = CyclotomicField(3)
sage: R.<x,y,z> = K[]; R
Multivariate Polynomial Ring in x, y, z over Cyclotomic Field of order 3 and degree 2

sage: i = ideal(x - zeta*y + 1, x^3 - zeta*y^3); i
Ideal (x - zeta*y + 1, x^3 - zeta*y^3) of Multivariate Polynomial Ring in x, y, z over Cyclotomic Field of order 3 and degree 2

(continues on next page)
Two examples from the Mathematica documentation (done in Sage):

We compute a Groebner basis:

```python
>>> from sage.all import *
>>> K = CyclotomicField(Integer(3), names=('zeta',)); (zeta,) = K._first_ngens(1)  
>>> R = K['x, y, z']; (x, y, z,) = R._first_ngens(3); R
Multivariate Polynomial Ring in x, y, z over Cyclotomic Field of order 3 and degree 2

>>> i = ideal(x - zeta*y + Integer(1), x**Integer(3) - zeta*y**Integer(3)); i
Ideal (x + (-zeta)*y + 1, x^3 + (-zeta)*y^3) of Multivariate Polynomial Ring in x, y, z over Cyclotomic Field of order 3 and degree 2

>>> i.groebner_basis()
[y^3 + (2*zeta + 1)*y^2 + (zeta - 1)*y + (-1/3*zeta - 2/3), x + (-zeta)*y + 1]

>>> S = R.quotient(i); S
Quotient of Multivariate Polynomial Ring in x, y, z over Cyclotomic Field of order 3 and degree 2 by the ideal (x + (-zeta)*y + 1, x^3 + (-zeta)*y^3)

>>> S.gen(0) - zeta*S.gen(1)
-1
>>> S.gen(0)**Integer(3) - zeta*S.gen(1)**Integer(3)
0
```

We show that three polynomials have no common root:

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, order='lex', names=('x', 'y',)); (x, y,) = R._first_ngens(2)  
>>> ideal(x**Integer(2) - Integer(2)*y**Integer(2), x*y - Integer(3)).groebner_basis()
[x - 2/3*y^3, y^4 - 9/2]
```

```python
>>> R.<x,y> = QQ[]

>>> ideal(x+y, x^2 - 1, y^2 - 2*x).groebner_basis()
[1]
```
>>> from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> ideal(x+y, x**Integer(2) - Integer(1), y**Integer(2) - Integer(2)*x).
→ groebner_basis()
[1]

The next example shows how we can use Groebner bases over \(\mathbb{Z} \) to find the primes modulo which a system of equations has a solution, when the system has no solutions over the rationals.

We first form a certain ideal \(I \) in \(\mathbb{Z}[x, y, z] \), and note that the Groebner basis of \(I \) over \(\mathbb{Q} \) contains 1, so there are no solutions over \(\mathbb{Q} \) or an algebraic closure of it (this is not surprising as there are 4 equations in 3 unknowns).

```
sage: P.<x,y,z> = PolynomialRing(ZZ,order='lex')
sage: I = ideal(-y^2 - 3*y + z^2 + 3, -2*y*z + z^2 + 2*z + 1,
...: x*z + y*z + z^2, -3*x*y + 2*y*z + 6*z^2)
sage: I.change_ring(P.change_ring(QQ)).groebner_basis()
[1]
```

However, when we compute the Groebner basis of \(I \) (defined over \(\mathbb{Z} \)), we note that there is a certain integer in the ideal which is not 1.

```
sage: I.groebner_basis()
[x + y + 57119*z + 4, y^2 + 3*y + 17220, y*z + ..., 2*y + 158864, z^2 + 17223, 2*z + 41856, 164878]
```

Now for each prime \(p \) dividing this integer 164878, the Groebner basis of \(I \) modulo \(p \) will be non-trivial and will thus give a solution of the original system modulo \(p \).

```
sage: factor(164878)
2 * 7 * 11777
sage: I.change_ring(P.change_ring(GF(2))).groebner_basis() → # needs sage.rings.finite_rings
[x + y + z, y^2 + y, y*z + y, z^2 + 1]
sage: I.change_ring(P.change_ring(GF(7))).groebner_basis() → # needs sage.rings.finite_rings
[x - 1, y + 3, z - 2]
sage: I.change_ring(P.change_ring(GF(11777))).groebner_basis() → # needs sage.rings.finite_rings
[x + 5633, y - 3007, z - 2626]
```
The Groebner basis modulo any product of the prime factors is also non-trivial:

```
sage: I.change_ring(P.change_ring(IntegerModRing(2 * 7))).groebner_basis()
[x + 9*y + 13*z, y^2 + 3*y, y*z + 7*y + 6, 2*y + 6, z^2 + 3, 2*z + 10]
```

Modulo any other prime the Groebner basis is trivial so there are no other solutions. For example:

```
sage: I.change_ring(P.change_ring(GF(3))).groebner_basis()  # needs sage.rings.finite_rings
[1]
```

Note: Sage distinguishes between lists or sequences of polynomials and ideals. Thus an ideal is not identified with a particular set of generators. For sequences of multivariate polynomials see `sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic`.

AUTHORS:

- William Stein: initial version
- Kiran S. Kedlaya (2006-02-12): added Macaulay2 analogues of some Singular features
- Martin Albrecht (2009): added Groebner basis over rings functionality from Singular 3.1
- John Perry (2012): bug fixing equality & containment of ideals

```python
class sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal
```

Bases: `MPolynomialIdeal_singular_repr`, `MPolynomialIdeal_macaulay2_repr`, `MPolynomialIdeal_magma_repr`, `Ideal_generic`

Create an ideal in a multivariate polynomial ring.
INPUT:
- `ring` – the ring the ideal is defined in
- `gens` – a list of generators for the ideal
- `coerce` – whether to coerce elements to the ring ring

EXAMPLES:

```python
sage: R.<x,y> = PolynomialRing(IntegerRing(), 2, order='lex')
sage: R.ideal([x, y])
Ideal (x, y) of Multivariate Polynomial Ring in x, y over Integer Ring
sage: R.<x0,x1> = GF(3)[]
sage: R.ideal([x0^2, x1^3])
Ideal (x0^2, x1^3) of Multivariate Polynomial Ring in x0, x1 over Finite Field of size 3
```

```python
>>> from sage.all import *

>>> R = PolynomialRing(IntegerRing(), Integer(2), order='lex', names=('x', 'y'));
(x, y) = R._first_ngens(2)

>>> R.ideal([x, y])
Ideal (x, y) of Multivariate Polynomial Ring in x, y over Integer Ring

>>> R = GF(Integer(3))[x0, x1]; (x0, x1) = R._first_ngens(2)

>>> R.ideal([x0**Integer(2), x1**Integer(3)])
Ideal (x0^2, x1^3) of Multivariate Polynomial Ring in x0, x1 over Finite Field of size 3
```

property basis

Shortcut to `gens()`.

EXAMPLES:

```python
sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x, y + 1])
sage: I.basis
[x, y + 1]

>>> from sage.all import *

>>> P = PolynomialRing(QQ,Integer(2), names=('x', 'y')); (x, y) = P._first_ngens(2)

>>> I = Ideal([x, y + Integer(1)])

>>> I.basis
[x, y + 1]
```

change_ring (`P`)

Return the ideal `I` in `P` spanned by the generators `g1, ..., gn` of `self` as returned by `self.gens()`.

INPUT:
- `P` – a multivariate polynomial ring

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ,3,order='lex')
sage: I = sage.rings.ideal.Cyclic(P)
sage: I
Ideal (x + y + z, x*y + x*z + y*z, x*y*z - 1) of Multivariate Polynomial Ring in x, y, z over Rational Field
```
degree_of_semi_regularity()

Return the degree of semi-regularity of this ideal under the assumption that it is semi-regular.

Let \(\{f_1, ..., f_m\} \subset K[x_1, ..., x_n] \) be homogeneous polynomials of degrees \(d_1, ..., d_m \) respectively. This sequence is semi-regular if:

- \(\{f_1, ..., f_m\} \neq K[x_1, ..., x_n] \)

- for all \(1 \leq i \leq m \) and \(g \in K[x_1, ..., x_n] \): \(\text{deg}(g \cdot p_i) < D \) and \(g \cdot f_i \in < f_1, ..., f_{i-1} > \) implies that \(g \in < f_1, ..., f_{i-1} > \) where \(D \) is the degree of regularity.

This notion can be extended to affine polynomials by considering their homogeneous components of highest degree.
The degree of regularity of a semi-regular sequence f_1, \ldots, f_m of respective degrees d_1, \ldots, d_m is given by the index of the first non-positive coefficient of:

$$\sum_c c_k z^k = \prod (1-z^{d_i})/(1-z)^n$$

EXAMPLES:

We consider a homogeneous example:

```python
sage: n = 8
sage: K = GF(127)
sage: P = PolynomialRing(K, n, 'x')
sage: s = [K.random_element() for _ in range(n)]
sage: L = []
sage: for i in range(2*n):
    f = P.random_element(degree=2, terms=binomial(n, 2))
    f -= f(*s)
    L.append(f.homogenize())
sage: I = Ideal(L)
sage: I.degree_of_semi_regularity()
4
```

From this, we expect a Groebner basis computation to reach at most degree 4. For homogeneous systems this is equivalent to the largest degree in the Groebner basis:

```python
>>> from sage.all import *
>>> n = Integer(8)
>>> K = GF(Integer(127))
>>> P = PolynomialRing(K, n, 'x')
>>> s = [K.random_element() for _ in range(n)]
>>> L = []
>>> for i in range(Integer(2)*n):
...    f = P.random_element(degree=Integer(2), terms=binomial(n, Integer(2)))
...    f -= f(*s)
...    L.append(f.homogenize())
>>> I = Ideal(L)
>>> I.degree_of_semi_regularity()
4
```

We increase the number of polynomials and observe a decrease the degree of regularity:

```python
sage: for i in range(2*n):
    f = P.random_element(degree=2, terms=binomial(n, 2))
    f -= f(*s)
    L.append(f.homogenize())
sage: I = Ideal(L)
sage: I.degree_of_semi_regularity()
3
```

```python
>>> from sage.all import *
>>> n = Integer(8)
>>> K = GF(Integer(127))
>>> P = PolynomialRing(K, n, 'x')
>>> s = [K.random_element() for _ in range(n)]
>>> L = []
>>> for i in range(Integer(2)*n):
...    f = P.random_element(degree=Integer(2), terms=binomial(n, Integer(2)))
...    f -= f(*s)
...    L.append(f.homogenize())
>>> I = Ideal(L)
>>> I.degree_of_semi_regularity()
4
```

```python
>>> from sage.all import *
>>> n = Integer(8)
>>> K = GF(Integer(127))
>>> P = PolynomialRing(K, n, 'x')
>>> s = [K.random_element() for _ in range(n)]
>>> L = []
>>> for i in range(Integer(2)*n):
...    f = P.random_element(degree=Integer(2), terms=binomial(n, Integer(2)))
...    f -= f(*s)
...    L.append(f.homogenize())
>>> I = Ideal(L)
>>> I.degree_of_semi_regularity()
3
```

```
```

3.1. Multivariate Polynomials and Polynomial Rings
The degree of regularity approaches 2 for quadratic systems as the number of polynomials approaches \(n^2 \):

```
sage: for i in range((n-4) * n):
....:     f = P.random_element(degree=2, terms=binomial(n, 2))
....:     f -= f(*s)
....:     L.append(f.homogenize())
```

```
sage: I = Ideal(L)
sage: I.degree_of_semi_regularity()
2
```

```
sage: max(f.degree() for f in I.groebner_basis())
2
```

Note: It is unknown whether semi-regular sequences exist. However, it is expected that random systems are semi-regular sequences. For more details about semi-regular sequences see [BFS2004].

gens()

Return a set of generators / a basis of this ideal. This is usually the set of generators provided during object creation.

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x, y + 1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.gens()
[x, y + 1]
```

```
>>> from sage.all import *
>>> for i in range((n-Integer(4)) * n):
....:     f = P.random_element(degree=Integer(2), terms=binomial(n, Integer(2)))
....:     f -= f(*s)
....:     L.append(f.homogenize())
```

```
>>> I = Ideal(L)
>>> I.degree_of_semi_regularity()
2
```

```
>>> max(f.degree() for f in I.groebner_basis())
2
```

(continues on next page)
>> I = Ideal([x, y + Integer(1)]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
>> I.gens()
[x, y + 1]

groebner_basis (algorithm='', deg_bound=None, mult_bound=None, prot=False, *args, **kwds)
Return the reduced Groebner basis of this ideal.

A Groebner basis $g_1, ..., g_n$ for an ideal I is a generating set such that $\langle LM(g_i) \rangle = LM(I)$, i.e., the leading monomial ideal of I is spanned by the leading terms of $g_1, ..., g_n$. Groebner bases are the key concept in computational ideal theory in multivariate polynomial rings which allows a variety of problems to be solved.

Additionally, a reduced Groebner basis G is a unique representation for the ideal $\langle G \rangle$ with respect to the chosen monomial ordering.

INPUT:
- algorithm – determines the algorithm to use, see below for available algorithms.
- deg_bound – only compute to degree deg_bound, that is, ignore all S-polynomials of higher degree. (default: None)
- mult_bound – the computation is stopped if the ideal is zero-dimensional in a ring with local ordering and its multiplicity is lower than mult_bound. Singular only. (default: None)
- prot – if set to True the computation protocol of the underlying implementation is printed. If an algorithm from the singular: or magma: family is used, prot may also be sage in which case the output is parsed and printed in a common format where the amount of information printed can be controlled via calls to set_verbose().
- *args – additional parameters passed to the respective implementations
- **kwds – additional keyword parameters passed to the respective implementations

ALGORITHMS:
- autoselect (default)
- 'singular:groebner'
 Singular's groebner command
- 'singular:std'
 Singular's std command
- 'singular:stdhilb'
 Singular's stdhilb command
- 'singular:stdfglm'
 Singular's stdfglm command
- 'singular:slimgb'
 Singular's slimgb command
- 'libSingular:groebner'
 libSingular's groebner command
- 'libSingular:std'
 libSingular's std command
- 'libSingular:slimgb'
 libSingular's slimgb command
'libsingular:stdhilb'
 libSingular's stdhilb command

'libsingular:stdfglm'
 libSingular's stdfglm command

'toy:buchberger'
 Sage's toy/educational buchberger without Buchberger criteria

'toy:buchberger2'
 Sage's toy/educational buchberger with Buchberger criteria

'toy:d_basis'
 Sage's toy/educational algorithm for computation over PIDs

'macaulay2:gb'
 Macaulay2's gb command (if available)

'macaulay2:f4'
 Macaulay2's GroebnerBasis command with the strategy “F4” (if available)

'macaulay2:mgb'
 Macaulay2's GroebnerBasis command with the strategy “MGB” (if available)

'msolve'
 optional package msolve (degrevlex order)

'magma:GroebnerBasis'
 Magma's GroebnerBasis command (if available)

'ginv:TQ', 'ginv:TQBlockHigh', 'ginv:TQBlockLow' and 'ginv:TQDegree'
 One of GINV's implementations (if available)

'giac:gbasis'
 Giac's gbasis command (if available)

If only a system is given - e.g. 'magma' - the default algorithm is chosen for that system.

Note: The Singular and libSingular versions of the respective algorithms are identical, but the former calls an external Singular process while the latter calls a C function, and thus the calling overhead is smaller. However, the libSingular interface does not support pretty printing of computation protocols.

EXAMPLES:

Consider Katsura-3 over \(\mathbb{Q}\) with lexicographical term ordering. We compute the reduced Groebner basis using every available implementation and check their equality.

```python
sage: P.<a,b,c> = PolynomialRing(QQ,3, order='lex')
sage: I = sage.rings.ideal.Katsura(P,3)  # regenerate to prevent caching
sage: I.groebner_basis()
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

```python
>>> from sage.all import *
>>> P = PolynomialRing(QQ,Integer(3), order='lex', names=('a', 'b', 'c',));...
    ->(a, b, c,) = P._first_ngens(3)
>>> I = sage.rings.ideal.Katsura(P,Integer(3))  # regenerate to prevent...
    ->caching
>>> I.groebner_basis()
```

(continues on next page)
\[a - 60c^3 + 158/7c^2 + 8/7c - 1, b + 30c^3 - 79/7c^2 + 3/7c, c^4 - 10/\rightarrow 21c^3 + 1/84c^2 + 1/84c \]

```
sage: I = sage.rings.ideal.Katsura(P,3)  # regenerate to prevent caching
sage: I.groebner_basis('libsingular:groebner')
[a - 60c^3 + 158/7c^2 + 8/7c - 1, b + 30c^3 - 79/7c^2 + 3/7c, c^4 - 10/\rightarrow 21c^3 + 1/84c^2 + 1/84c]
```

```
>>> from sage.all import *
>>> I = sage.rings.ideal.Katsura(P,Integer(3))  # regenerate to prevent_
\rightarrow caching
>>> I.groebner_basis('libsingular:groebner')
[a - 60c^3 + 158/7c^2 + 8/7c - 1, b + 30c^3 - 79/7c^2 + 3/7c, c^4 - 10/\rightarrow 21c^3 + 1/84c^2 + 1/84c]
>>> from sage.all import *
>>> I = sage.rings.ideal.Katsura(P,Integer(3))  # regenerate to prevent_
\rightarrow caching
>>> I.groebner_basis('libsingular:std')
[a - 60c^3 + 158/7c^2 + 8/7c - 1, b + 30c^3 - 79/7c^2 + 3/7c, c^4 - 10/\rightarrow 21c^3 + 1/84c^2 + 1/84c]
```

```
sage: I = sage.rings.ideal.Katsura(P,3)  # regenerate to prevent caching
sage: I.groebner_basis('libsingular:stdhilb')
[a - 60c^3 + 158/7c^2 + 8/7c - 1, b + 30c^3 - 79/7c^2 + 3/7c, c^4 - 10/\rightarrow 21c^3 + 1/84c^2 + 1/84c]
```

```
>>> from sage.all import *
>>> I = sage.rings.ideal.Katsura(P,Integer(3))  # regenerate to prevent_
\rightarrow caching
>>> I.groebner_basis('libsingular:stdhilb')
[a - 60c^3 + 158/7c^2 + 8/7c - 1, b + 30c^3 - 79/7c^2 + 3/7c, c^4 - 10/\rightarrow 21c^3 + 1/84c^2 + 1/84c]
>>> from sage.all import *
>>> I = sage.rings.ideal.Katsura(P,Integer(3))  # regenerate to prevent_
\rightarrow caching
>>> I.groebner_basis('libsingular:stdfglm')
[a - 60c^3 + 158/7c^2 + 8/7c - 1, b + 30c^3 - 79/7c^2 + 3/7c, c^4 - 10/\rightarrow 21c^3 + 1/84c^2 + 1/84c]
```

```
sage: I = sage.rings.ideal.Katsura(P,3)  # regenerate to prevent caching
sage: I.groebner_basis('libsingular:slimgb')
```

(continues on next page)
Although Giac does support lexicographical ordering, we use degree reverse lexicographical ordering here, in order to test against Issue #21884:

```
>>> from sage.all import *
>>> I = sage.rings.ideal.Katsura(P,Integer(3))  # regenerate to prevent caching
>>> I.groebner_basis('libsingular:slimgb')
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
```

Giac's gbasis over \mathbb{Q} can benefit from a probabilistic lifting and multi threaded operations:

```
>>> from sage.all import *
>>> A9 = PolynomialRing(QQ, Integer(9), 'x')
>>> I9 = sage.rings.ideal.Katsura(A9)
>>> print("possible output from giac", flush=True); I9.groebner_basis("giac", proba_epsilon=1e-7)  # long time (3s)
possible output...
Polynomial Sequence with 143 Polynomials in 9 Variables
```

(continues on next page)
possible output...
Polynomial Sequence with 143 Polynomials in 9 Variables

The list of available Giac options is provided at `sage.libs.giac.groebner_basis()`.

Note that `toy:buchberger` does not return the reduced Groebner basis,

```
sage: I = sage.rings.ideal.Katsura(P,3)  # regenerate to prevent caching
sage: gb = I.groebner_basis('toy:buchberger')
sage: gb.is_groebner()
True
sage: gb == gb.reduced()
False
```

but that `toy:buchberger2` does.

```
sage: I = sage.rings.ideal.Katsura(P,3)  # regenerate to prevent caching
sage: gb = I.groebner_basis('toy:buchberger2'); gb
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
sage: gb == gb.reduced()
True
```

Here we use Macaulay2 with three different strategies over a finite field.

```
sage: # optional - macaulay2
sage: R.<a,b,c> = PolynomialRing(GF(101), 3)
sage: I = sage.rings.ideal.Katsura(R,3)  # regenerate to prevent caching
sage: I.groebner_basis('macaulay2:gb')
[c^3 + 28*c^2 - 37*b + 13*c, b^2 - 41*c^2 + 20*b - 20*c, b*c - 19*c^2 + 10*b + 40*c, a + 2*b + 2*c - 1]
sage: I = sage.rings.ideal.Katsura(R,3)  # regenerate to prevent caching
sage: I.groebner_basis('macaulay2:f4')
[c^3 + 28*c^2 - 37*b + 13*c, b^2 - 41*c^2 + 20*b - 20*c, b*c - 19*c^2 + 10*b + 40*c, a + 2*b + 2*c - 1]
sage: I = sage.rings.ideal.Katsura(R,3)  # regenerate to prevent caching
sage: I.groebner_basis('macaulay2:mgb')
[c^3 + 28*c^2 - 37*b + 13*c, b^2 - 41*c^2 + 20*b - 20*c, b*c - 19*c^2 + 10*b + 40*c, a + 2*b + 2*c - 1]
```
Polynomials, Release 10.4

>>> from sage.all import *
>>> # optional - macaulay2
>>> R = PolynomialRing(GF(Integer(101)), Integer(3), names=('a', 'b', 'c',));
˓→(a, b, c,) = R._first_ngens(3)
>>> I = sage.rings.ideal.Katsura(R,Integer(3)) # regenerate to prevent caching
>>> I.groebner_basis('macaulay2:gb')
[c^3 + 28*c^2 - 37*b + 13*c, b^2 - 41*c^2 + 20*b - 20*c,
b*c - 19*c^2 + 10*b + 40*c, a + 2*b + 2*c - 1]
>>> I = sage.rings.ideal.Katsura(R,Integer(3)) # regenerate to prevent caching
>>> I.groebner_basis('macaulay2:f4')
[c^3 + 28*c^2 - 37*b + 13*c, b^2 - 41*c^2 + 20*b - 20*c,
b*c - 19*c^2 + 10*b + 40*c, a + 2*b + 2*c - 1]
>>> I = sage.rings.ideal.Katsura(R,Integer(3)) # regenerate to prevent caching
>>> I.groebner_basis('macaulay2:mgb')
[c^3 + 28*c^2 - 37*b + 13*c, b^2 - 41*c^2 + 20*b - 20*c,
b*c - 19*c^2 + 10*b + 40*c, a + 2*b + 2*c - 1]
Over prime fields of small characteristic, we can also use the optional package msolve:

sage: R.<a,b,c> = PolynomialRing(GF(101), 3)
sage: I = sage.rings.ideal.Katsura(R,3) # regenerate to prevent caching
sage: I.groebner_basis('msolve') # optional - msolve
[a + 2*b + 2*c - 1, b*c - 19*c^2 + 10*b + 40*c,
b^2 - 41*c^2 + 20*b - 20*c, c^3 + 28*c^2 - 37*b + 13*c]

Singular and libSingular can compute Groebner basis with degree restrictions.

sage: R.<x,y> = QQ[]
sage: I = R*[x^3 + y^2, x^2*y + 1]
sage: I.groebner_basis(algorithm='singular')
[x^3 + y^2, x^2*y + 1, y^3 - x]
sage: I.groebner_basis(algorithm='singular', deg_bound=2)
A protocol is printed, if the verbosity level is at least 2, or if the argument prot is provided. Historically, the protocol did not appear during doctests, so, we skip the examples with protocol output.

>>> from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> I = R*[x**Integer(3) + y**Integer(2), x**Integer(2)*y + Integer(1)]
>>> I.groebner_basis(algorithm='singular')
[x^3 + y^2, x^2*y + 1, y^3 - x]
>>> I.groebner_basis(algorithm='singular', deg_bound=Integer(2))
[x^3 + y^2, x^2*y + 1]
>>> I.groebner_basis()
[x^3 + y^2, x^2*y + 1, y^3 - x]
>>> I.groebner_basis(deg_bound=Integer(2))
[x^3 + y^2, x^2*y + 1]

3.1. Multivariate Polynomials and Polynomial Rings
The list of available options is provided at `LibSingularOptions`.

Note that Groebner bases over \mathbb{Z} can also be computed.

Groebner bases over $\mathbb{Z}/n\mathbb{Z}$ are also supported:
sage: P.<a,b,c> = PolynomialRing(Zmod(1000), 3)
sage: I = P * (a + 2*b + 2*c - 1, a^2 - a + 2*b^2 + 2*c^2, 2*a*b + 2*b*c - b)
sage: I.groebner_basis()
[b*c^2 + 732*b*c + 808*b,
 2*c^3 + 884*b*c + 666*c^2 + 320*b,
 3*b^2 + 438*b*c + 281*b,
 5*b^2 + 168*c^2 + 112*b + 948*c,
 50*c^2 + 600*b + 650*c,
a + 2*b + 2*c + 999,
125*b]

sage: R.<x,y,z> = PolynomialRing(Zmod(2233497349584))
sage: I = R.ideal([z*(x-3*y), 3^2*x^2-y*z, z^2+y^2])
sage: I.groebner_basis()
[2*z^4, y*z^2 + 81*z^3, 248166372176*z^3, 9*x^2 - y*z, y^2 + z^2, x*z + 2233497349581*y*z, 248166372176*y*z]

Sage also supports local orderings:

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order=negdegrevlex)
sage: I = P * (x*y*z + z^5, 2*x^2 + y^3 + z^7, 3*z^5 + y^5)
sage: I.groebner_basis()
[x^2 + 1/2*y^3, x*y*z + z^5, y^5 + 3*z^5, y^4*z - 2*x*z^5, z^6]

We can represent every element in the ideal as a combination of the generators using the lift() method:

>>> from sage.all import *
>>> P = PolynomialRing(Integer(1000)), Integer(3), names=('a', 'b', 'c', ...)); (a, b, c,) = P._first_ngens(3)
>>> I = P * (a + Integer(2)*b + Integer(2)*c - Integer(1), a**Integer(2) - a ---> Integer(2)*b**Integer(2) + Integer(2)*c**Integer(2), Integer(2)*a*b +... ---> Integer(2)*b*c - b)
>>> I.groebner_basis()
[b*c^2 + 732*b*c + 808*b,
 2*c^3 + 884*b*c + 666*c^2 + 320*b,
 b^2 + 438*b*c + 281*b,
 5*b*c + 156*c^2 + 112*b + 948*c,
 50*c^2 + 600*b + 650*c,
a + 2*b + 2*c + 999,
125*b]

>>> from sage.all import *
>>> R = PolynomialRing(Zmod(Integer(2233497349584)), names=(x, y, z,)); (x, y, z,) = R._first_ngens(3)
>>> I = R.ideal([z*(x-Integer(3)*y), Integer(3)**Integer(2)*x**Integer(2) - y*z, y^2 + Integer(2)*y**Integer(2)])
>>> I.groebner_basis()
[2*z^4, y*z^2 + 81*z^3, 248166372176*z^3, 9*x^2 - y*z, y^2 + z^2, x*z + 2233497349581*y*z, 248166372176*y*z]
Groebner bases over fraction fields of polynomial rings are also supported:

```
sage: P.<t> = QQ[]
sage: F = Frac(P)
sage: R.<X,Y,Z> = F[]
sage: I = Ideal([f + P.random_element() for f in sage.rings.ideal.Katsura(R).gens()])
sage: I.groebner_basis().ideal() == I
True
```

In cases where a characteristic cannot be determined, we use a toy implementation of Buchberger's algorithm (see Issue #6581):

```
sage: R.<a,b> = QQ[]; I = R.ideal(a^2+b^2-1)
sage: Q = QuotientRing(R,I); K = Frac(Q)
```

sage: R2.<x,y> = K[]; J = R2.ideal([(a^2+b^2)*x + y, x+y])
sage: J.groebner_basis()
verbose 0 (...: multi_polynomial_ideal.py, groebner_basis) Warning: falling…
→back to very slow toy implementation.
[x + y]

>>> from sage.all import *
>>> R = QQ['a, b']; (a, b,) = R._first_ngens(2); I = R.
→ideal(a**Integer(2)+b**Integer(2)-Integer(1))
>>> Q = QuotientRing(R,I); K = Frac(Q)
>>> R2 = K['x, y']; (x, y,) = R2._first_ngens(2); J = R2.
→ideal([(a**Integer(2)+b**Integer(2))*x + y, x+y])
>>> J.groebner_basis()
verbose 0 (...: multi_polynomial_ideal.py, groebner_basis) Warning: falling…
→back to very slow toy implementation.
[x + y]

ALGORITHM:

Uses Singular, one of the other systems listed above (if available), or a toy implementation.

groebner_cover()

Compute the Groebner cover of the ideal, over a field with parameters.

The Groebner cover is a partition of the space of parameters, such that the Groebner basis in each part is given by the same expression.

EXAMPLES:

sage: F = PolynomialRing(QQ,'a').fraction_field()
sage: F.inject_variables()
Defining a
sage: R.<x,y,z> = F[]
sage: I = R.ideal([-x+3*y+z-5,2*x+a*z+4,4*x-3*z-1/a])
sage: I.groebner_cover()
{Quasi-affine subscheme X - Y of Affine Space of dimension 1 over Rational␣-
→Field,
 where X is defined by:
 0
 and Y is defined by:
 2*a^2 + 3*a: [(2*a^2 + 3*a)*z + (8*a + 1),
 (12*a^2 + 18*a)*y + (-20*a^2 - 35*a - 2), (4*a + 6)*x +…-
→11],
Quasi-affine subscheme X - Y of Affine Space of dimension 1 over Rational␣-
→Field,
 where X is defined by:
 ...
 and Y is defined by:
 1: [1],
Quasi-affine subscheme X - Y of Affine Space of dimension 1 over Rational␣-
→Field,
 where X is defined by:
 ...
 and Y is defined by:
 1: [1]}
>>> from sage.all import *
>>> F = PolynomialRing(QQ,'a').fraction_field()
>>> F.inject_variables()
Defining a
>>> R = F['x, y, z']; (x, y, z,) = R._first_ngens(3)
>>> I = R.ideal([-x+Integer(3)*y+z-Integer(5),Integer(2)*x+a*z+Integer(4),
→Integer(4)*x-Integer(3)*z-Integer(1)/a])
>>> I.groebner_cover()
(Quasi-affine subscheme X - Y of Affine Space of dimension 1 over Rational...
→Field,
 where X is defined by:
 0
 and Y is defined by:
 2*a^2 + 3*a: [(2*a^2 + 3*a)*z + (8*a + 1),
 (12*a^2 + 18*a)*y + (-20*a^2 - 35*a - 2), (4*a + 6)*x +...
→11],
Quasi-affine subscheme X - Y of Affine Space of dimension 1 over Rational...
→Field,
 where X is defined by:
 ...
 and Y is defined by:
 1: [1],
Quasi-affine subscheme X - Y of Affine Space of dimension 1 over Rational...
→Field,
 where X is defined by:
 ...
 and Y is defined by:
 1: [1])

groebner_fan(is_groebner_basis=False, symmetry=None, verbose=False)

Return the Groebner fan of this ideal.

The base ring must be Q or a finite field F_p of with p \leq 32749.

EXAMPLES:

sage: P.<x,y> = PolynomialRing(QQ)
sage: i = ideal(x^2 - y^2 + 1)
sage: g = i.groebner_fan()
sage: g.reduced_groebner_bases()
[[x^2 - y^2 + 1], [-x^2 + y^2 - 1]]
homogenize(var='h')

Return homogeneous ideal spanned by the homogeneous polynomials generated by homogenizing the generators of this ideal.

INPUT:

- h – variable name or variable in cover ring (default: 'h')

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(GF(2))
sage: I = Ideal([x^2*y + z + 1, x + y^2 + 1]); I
Ideal (x^2*y + z + 1, y^2 + x + 1) of Multivariate Polynomial Ring in x, y, z over Finite Field of size 2

>>> from sage.all import *

>>> P = PolynomialRing(GF(Integer(2)), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3)
>>> I = Ideal([x**Integer(2)*y + z + Integer(1), x + y**Integer(2) + -Integer(1)]); I
Ideal (x^2*y + z + 1, y^2 + x + 1) of Multivariate Polynomial Ring in x, y, z over Finite Field of size 2

sage: I.homogenize()
Ideal (x^2*y + z*h^2 + h^3, y^2 + x*h + h^2) of Multivariate Polynomial Ring in x, y, z, h over Finite Field of size 2

>>> from sage.all import *

>>> I.homogenize()
Ideal (x^2*y + z*h^2 + h^3, y^2 + x*h + h^2) of Multivariate Polynomial Ring in x, y, z, h over Finite Field of size 2

sage: I.homogenize(y)
Ideal (x^2*y + y^3 + y^2*z, x*y) of Multivariate Polynomial Ring in x, y, z over Finite Field of size 2

>>> from sage.all import *

>>> I.homogenize()
Ideal (x^2*y + y^3 + y^2*z, x*y) of Multivariate Polynomial Ring in x, y, z over Finite Field of size 2

sage: I = Ideal([x^2*y + z^3 + y^2*x, x + y^2 + 1])
sage: I.homogenize()
Ideal (x^2*y + x*y^2 + z^3, y^2 + x*h + h^2) of Multivariate Polynomial Ring in x, y, z, h over Finite Field of size 2

>>> from sage.all import *

>>> I = Ideal([x**Integer(2)*y + z**Integer(3) + y**Integer(2)*x, x + -y**Integer(2)*x + Integer(1)]);

>>> I.homogenize()
Ideal (x^2*y + x*y^2 + z^3, y^2 + x*h + h^2) of Multivariate Polynomial Ring in x, y, z, h over Finite Field of size 2
```
is_homogeneous()

Return True if this ideal is spanned by homogeneous polynomials, i.e., if it is a homogeneous ideal.

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: I = sage.rings.ideal.Katsura(P)
sage: I
Ideal (x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y + 2*y*z - y) of Multivariate Polynomial Ring in x, y, z over Rational Field

sage: I.is_homogeneous()
False

sage: J = I.homogenize()
sage: J
Ideal (x + 2*y + 2*z - h, x^2 + 2*y^2 + 2*z^2 - x*h, 2*x*y + 2*y*z - y*h) of Multivariate Polynomial Ring in x, y, z, h over Rational Field

sage: J.is_homogeneous()
True
```

plot(*args, **kwds)

Plot the real zero locus of this principal ideal.

INPUT:

- self – a principal ideal in 2 variables
- algorithm – set this to ‘surf’ if you want ‘surf’ to plot the ideal (default: None)
• *args – optional tuples (variable, minimum, maximum) for plotting dimensions
• **kwds – optional keyword arguments passed on to implicit_plot

EXAMPLES:

Implicit plotting in 2-d:

```python
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: I = R.ideal([y^3 - x^2])
sage: I.plot() # cusp
# needs sage.plot
Graphics object consisting of 1 graphics primitive
```

```python
>>> from sage.all import *

>>> R = PolynomialRing(QQ, Integer(2), names=('x', 'y')); (x, y,) = R._first_ngens(2)

>>> I = R.ideal([y**Integer(3) - x**Integer(2)])

>>> I.plot() # cusp
# needs sage.plot
Graphics object consisting of 1 graphics primitive
```

```python
sage: I = R.ideal([y**2 - x**2 - 1])
sage: I.plot((x,-3, 3), (y, -2, 2)) # hyperbola
# needs sage.plot
Graphics object consisting of 1 graphics primitive
```

```python
>>> from sage.all import *

>>> I = R.ideal([y**Integer(2) + x**Integer(2)*(Integer(1)/Integer(4)) - Integer(1)])

>>> I.plot() # ellipse
# needs sage.plot
Graphics object consisting of 1 graphics primitive
```

```python
sage: I = R.ideal([y^2-(x^2-1)*(x-2)])
sage: I.plot() # elliptic curve
# needs sage.plot
Graphics object consisting of 1 graphics primitive
```

```python
>>> from sage.all import *

>>> I = R.ideal([y**Integer(2)-(x**Integer(2)-Integer(1))*(x-Integer(2))])

>>> I.plot() # elliptic curve
# needs sage.plot
Graphics object consisting of 1 graphics primitive
```
```
sage: f = ((x+3)^3 + 2*(x+3)^2 - y^2)*(x^3 - y^2)*((x-3)^3-2*(x-3)^2-y^2)
sage: I = R.ideal(f)
sage: I.plot()  # the Singular logo

needs sage.plot
Graphics object consisting of 1 graphics primitive
```

```
>>> from sage.all import *
>>>
f = ((x+Integer(3))^Integer(3) + Integer(2)*(x+Integer(3))^Integer(2) -
    y^Integer(2))*(x^Integer(3) - y^Integer(2))*((x-Integer(3))^Integer(3)-
    Integer(2)*(x-Integer(3))^Integer(2)-y^Integer(2))
>>> I = R.ideal(f)
>>> I.plot()  # the Singular logo

needs sage.plot
Graphics object consisting of 1 graphics primitive
```

```
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: I = R.ideal([x - 1])
sage: I.plot((y, -2, 2))  # vertical line

needs sage.plot
Graphics object consisting of 1 graphics primitive
```

```
>>> from sage.all import *
>>>
R = PolynomialRing(QQ, Integer(2), names=('x', 'y')); (x, y,) = R._first_  
    ngens(2)
>>> I = R.ideal([x - Integer(1)])
>>> I.plot((y, -Integer(2), Integer(2)))  # vertical line

needs sage.plot
Graphics object consisting of 1 graphics primitive
```

```
sage: I = R.ideal([-x^2*y + 1])
sage: I.plot()  # blow up

needs sage.plot
Graphics object consisting of 1 graphics primitive
```

```
>>> from sage.all import *
>>>
I = R.ideal([-x**Integer(2)*y + Integer(1)])
>>> I.plot()  # blow up

needs sage.plot
Graphics object consisting of 1 graphics primitive
```

```
random_element (degree, compute_gb=False, *args, **kwds)
```

Return a random element in this ideal as \(r = \sum h_i f_i \).

INPUT:

- `compute_gb` – if True then a Gröbner basis is computed first and \(f_i \) are the elements in the Gröbner basis. Otherwise whatever basis is returned by `self.gens()` is used.

- `*args` and `**kwds` are passed to `R.random_element()` with `R = self.ring()`.

EXAMPLES:

We compute a uniformly random element up to the provided degree.

```
sage: P.<x,y,z> = GF(127)[]
sage: I = sage.rings.ideal.Katsura(P)
sage: f = I.random_element(degree=4, compute_gb=True, terms=infinity)
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

```python
sage: f.degree() <= 4
True
sage: len(list(f)) <= 35
True
```

```python
>>> from sage.all import *
>>> P = GF(Integer(127))[x, y, z]; (x, y, z,) = P._first_ngens(3)
>>> I = sage.rings.ideal.Katsura(P)
>>> f = I.random_element(degree=Integer(4), compute_gb=True, terms=infinity)
>>> f.degree() <= Integer(4)
True
>>> len(list(f)) <= Integer(35)
True
```

Note that sampling uniformly at random from the ideal at some large enough degree is equivalent to computing a Gröbner basis. We give an example showing how to compute a Gröbner basis if we can sample uniformly at random from an ideal:

```python
sage: n = 3; d = 4
sage: P = PolynomialRing(GF(127), n, 'x')
sage: I = sage.rings.ideal.Cyclic(P)
```

1. We sample n^d uniformly random elements in the ideal:

```python
>>> from sage.all import *
>>> F = Sequence(I.random_element(degree=d, compute_gb=True, terms=infinity)
... for _ in range(n**d))
```

2. We linearize and compute the echelon form:

```python
sage: A, v = F.coefficients_monomials()
sage: A.echelonize()
```

3. The result is the desired Gröbner basis:

```python
sage: G = Sequence((A * v).list())
sage: G.is_grroebner()
True
sage: Ideal(G) == I
True
```
We return some element in the ideal with no guarantee on the distribution:

```python
sage: # needs sage.rings.finite_rings
sage: P = PolynomialRing(GF(127), 10, 'x')
sage: I = sage.rings.ideal.Katsura(P)
sage: f = I.random_element(degree=3)
sage: f # random
-25*x0^2*x1 + 14*x1^3 + 57*x0*x1*x2 + ... + 19*x7*x9 + 40*x8*x9 + 49*x1
sage: f.degree()
3
```

We show that the default method does not sample uniformly at random from the ideal:

```python
sage: # needs sage.rings.finite_rings
sage: P.<x,y,z> = GF(127)[]
sage: G = Sequence([x + 7, y - 2, z + 110])
sage: I = Ideal([sum(P.random_element() * g for g in G)
... for _ in range(4)])
sage: all(I.random_element(degree=1) == 0 for _ in range(100))
True
```

If `degree` equals the degree of the generators, a random linear combination of the generators is returned:

```python
sage: P.<x,y> = QQ[]
sage: I = P.ideal([x^2,y^2])
sage: set_random_seed(5)
sage: I.random_element(degree=2)
-2*x^2 + 2*y^2
```
Reduce an element modulo the reduced Groebner basis for this ideal. This returns 0 if and only if the element is in this ideal. In any case, this reduction is unique up to monomial orders.

EXAMPLES:

```python
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: I = (x^3 + y, y) * R
sage: I.reduce(y)
0
sage: I.reduce(x^3)
x
sage: I.reduce(x - y)
x
```

```python
sage: I = (y^2 - (x^3 + x)) * R
sage: I.reduce(x^3)
y^2 - x
sage: I.reduce(x^6)
y^4 - 2*x*y^2 + x^2
```

Note: Requires computation of a Groebner basis, which can be a very expensive operation.

Substitute variables.

This method substitutes some variables in the polynomials that generate the ideal with given values. Variables that are not specified in the input remain unchanged.
INPUT:

- `in_dict` — (optional) dictionary of inputs
- `**kwds` — named parameters

OUTPUT:

A new ideal with modified generators. If possible, in the same polynomial ring. Raises a TypeError if no common polynomial ring of the substituted generators can be found.

EXAMPLES:

```python
sage: R.<x,y> = PolynomialRing(ZZ, 2, 'xy')
sage: I = R.ideal(x^5 + y^5, x^2 + y + x^2*y^2 + 5); I
Ideal (x^5 + y^5, x^2*y^2 + x^2 + y + 5)
of Multivariate Polynomial Ring in x, y over Integer Ring
sage: I.subs(x=y)
Ideal (2*y^5, y^4 + y^2 + y + 5)
of Multivariate Polynomial Ring in x, y over Integer Ring
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(ZZ, Integer(2), names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> I = R.ideal(x**Integer(5) + y**Integer(5), x**Integer(2)*y**Integer(2) + Integer(5)); I
Ideal (x^5 + y^5, x^2*y^2 + x^2 + y + 5)
of Multivariate Polynomial Ring in x, y over Integer Ring
>>> I.subs(x=y)
Ideal (2*y^5, y^4 + y^2 + y + 5)
of Multivariate Polynomial Ring in x, y over Integer Ring
```
The resulting ring need not be a multivariate polynomial ring:

```
sage: T.<t> = PolynomialRing(QQ)
sage: I.subs(a=t, b=t)
Principal ideal (t^2 + 1) of Univariate Polynomial Ring in t over Rational Field

sage: var("z")
# needs sage.symbolic
z
sage: I.subs(a=z, b=z)
# needs sage.symbolic
Principal ideal (2*z^2 + 2) of Symbolic Ring
```

Variables that are not substituted remain unchanged:

```
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: I = R.ideal(x^2 + y^2 + x - y + 2); I
Ideal (x^2 + y^2 + x - y + 2)
of Multivariate Polynomial Ring in x, y over Rational Field

sage: I.subs(x=1)
Ideal (y^2 - y + 4) of Multivariate Polynomial Ring in x, y over Rational Field
```

weil_restriction()

Compute the Weil restriction of this ideal over some extension field. If the field is a finite field, then this computes the Weil restriction to the prime subfield.

A Weil restriction of scalars - denoted $Res_{L/k}$ - is a functor which, for any finite extension of fields L/k and any algebraic variety X over L, produces another corresponding variety $Res_{L/k}(X)$, defined over k. It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over smaller fields.
This function does not compute this Weil restriction directly but computes on generating sets of polynomial ideals:

Let d be the degree of the field extension L/k, let a a generator of L/k and p the minimal polynomial of L/k. Denote this ideal by I.

Specifically, this function first maps each variable x to its representation over k: $\sum_{i=0}^{d-1} a^ix_i$. Then each generator of I is evaluated over these representations and reduced modulo the minimal polynomial p. The result is interpreted as a univariate polynomial in a and its coefficients are the new generators of the returned ideal.

If the input and the output ideals are radical, this is equivalent to the statement about algebraic varieties above.

OUTPUT: `MPolynomialIdeal`

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(2^2)
sage: P.<x,y> = PolynomialRing(k, 2)
sage: I = Ideal([x*y + 1, a*x + 1])
sage: I.variety()
{(y: a, x: a + 1)}
sage: J = I.weil_restriction()
sage: J
Ideal (x0*y0 + x1*y1 + 1, x1*y0 + x0*y1 + x1*y1, x1 + 1, x0 + x1) of
Multivariate Polynomial Ring in x0, x1, y0, y1 over Finite Field of size 2
sage: J += sage.rings.ideal.FieldIdeal(J.ring()) # ensure radical ideal
sage: J.variety()
{(y1: 1, y0: 0, x1: 1, x0: 1)}
sage: J.weil_restriction() # returns J
Ideal (x0*y0 + x1*y1 + 1, x1*y0 + x0*y1 + x1*y1, x1 + 1, x0 + x1, x0^2 + x0, x1^2 + x1, y0^2 + y0, y1^2 + y1) of Multivariate Polynomial Ring in x0, x1, y0, y1 over Finite Field of size 2
```

```python
sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(3^5)
sage: P.<x,y,z> = PolynomialRing(k)
sage: I = sage.rings.ideal.Katsura(P)
sage: I.dimension()
0
sage: I.variety()
{(z: 0, y: 0, x: 1)}
sage: J = I.weil_restriction(); J
Ideal (x0 - y0 - z0 - 1,
    x1 - y1 - z1, x2 - y2 - z2, x3 - y3 - z3, x4 - y4 - z4,
    x0^2 + x2*x3 + x1*x4 - y0^2 - y2*y3 - y1*y4 - z0^2 - z2*z3 - z1*z4 -...
    → x0,
    -x0*x1 - x2*x3 - x3^2 - x1*x4 + x2*x4 + y0*y1 + y2*y3
    + y3^2 + y1*y4 - y2*y4 + z0*z1 + z2*z3 + z3^2 + z1*z4 - z2*z4 -...
    → x1,
    x1^2 - x0*x2 + x3^2 - x2*x4 + x3*x4 - y1^2 + y0*y2
    - y3^2 + y2*y4 - y3*y4 - z1^2 + z0*z2 - z3^2 + z2*z4 - z3*z4 -...
    → x2,
    -x1*x2 - x0*x3 - x3*x4 - x4^2
    + y1*y2 + y0*y3 + y3*y4 + y4^2 + z1*z2 + z0*z3 + z3*z4 + z4^2 -...
    → x3,
    x2^2 - x1*x3 - x0*x4 + x4^2 - y2^2
    + y1*y3 + y0*y4 - y4^2 - z2^2 + z1*z3 + z0*z4 - z4^2 -...
```

(continues on next page)
\[\begin{align*}
\rightarrow x_4, & \quad -x_0 y_0 + x_4 y_1 + x_3 y_2 + x_2 y_3 \\
& \quad + x_1 y_4 - y_0 z_0 + y_4 z_1 + y_3 z_2 + y_2 z_3 + y_1 z_4 + y_2 z_4
\end{align*} \]

\[\begin{align*}
\rightarrow y_0, & \quad -x_1 y_0 - x_0 y_1 - x_4 y_1 - x_3 y_2 + x_4 y_2 - x_2 y_3 + x_3 y_3 \\
& \quad - x_1 y_4 + x_2 y_4 - y_1 z_0 - y_0 z_1 - y_4 z_1 - y_3 z_2 \\
& \quad + y_4 z_2 - y_2 z_3 + y_3 z_3 - y_1 z_4 + y_2 z_4
\end{align*} \]

\[\begin{align*}
\rightarrow y_1, & \quad -x_2 y_0 - x_1 y_1 - x_0 y_2 - x_4 y_2 - x_3 y_3 + x_4 y_3 - x_2 y_4 + x_3 y_4 \\
& \quad - y_2 z_0 - y_1 z_1 - y_0 z_2 - y_4 z_2 - y_3 z_3 + y_4 z_3 - y_2 z_4 + y_3 z_4
\end{align*} \]

\[\begin{align*}
\rightarrow y_2, & \quad -x_3 y_0 - x_2 y_1 - x_1 y_2 - x_0 y_3 - x_4 y_3 - x_3 y_4 + x_4 y_4 \\
& \quad - y_3 z_0 - y_2 z_1 - y_1 z_2 - y_0 z_3 - y_4 z_3 - y_3 z_4 + y_4 z_4
\end{align*} \]

\[\begin{align*}
\rightarrow y_3, & \quad -x_4 y_0 - x_3 y_1 - x_2 y_2 - x_1 y_3 - x_0 y_4 - x_4 y_4 \\
& \quad - y_4 z_0 - y_3 z_1 - y_2 z_2 - y_1 z_3 - y_0 z_4 - y_4 z_4
\end{align*} \]

\[\rightarrow y_4 \]
of Multivariate Polynomial Ring in x_0, x_1, x_2, x_3, x_4, y_0, y_1, y_2, y_3, y_4, z_0, z_1, z_2, z_3, z_4 over Finite Field of size 3

```python
sage: J += sage.rings.ideal.FieldIdeal(J.ring())  # ensure radical ideal

sage: from sage.doctest.fixtures import reproducible_repr
sage: print(reproducible_repr(J.variety()))
{\{x_0: 1, x_1: 0, x_2: 0, x_3: 0, x_4: 0, \\
y_0: 0, y_1: 0, y_2: 0, y_3: 0, y_4: 0, \\
z_0: 0, z_1: 0, z_2: 0, z_3: 0, z_4: 0\}}
```

```python
>>> from sage.all import *  # needs sage.rings.finite_rings
>>> k = GF(Integer(2)**Integer(2), names=(a,)); (a,) = k._first_ngens(1)
>>> P = PolynomialRing(k, Integer(2), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> I = Ideal([x*y + Integer(1), a*x + Integer(1)])
>>> I.ideal()
[((y: a, x: a + 1))]
>>> J = I.ideal_restriction()
>>> J
Ideal (x_0*y_0 + x_1*y_1 + 1, x_1*y_0 + x_0*y_1 + x_1*y_1, x_1 + 1, x_0 + x_1) of Multivariate Polynomial Ring in x_0, x_1, y_0, y_1 over Finite Field of size 2

>>> J += sage.rings.ideal.FieldIdeal(J.ring())  # ensure radical ideal

>>> J.variety()
{\{y_1: 1, y_0: 0, x_1: 1, x_0: 1\}}
```

```python
>>> J.ideal_restriction()  # returns J
Ideal (x_0*y_0 + x_1*y_1 + 1, x_1*y_0 + x_0*y_1 + x_1*y_1, x_1 + 1, x_0 + x_1, x_0^2 + x_0, x_1^2 + x_1, y_0^2 + y_0, y_1^2 + y_1) of Multivariate Polynomial Ring in x_0, x_1, y_0, y_1 over Finite Field of size 2
```

```python
>>> # needs sage.rings.finite_rings
>>> k = GF(Integer(3)**Integer(5), names=(a,)); (a,) = k._first_ngens(1)
>>> P = PolynomialRing(k, names=(x, y,)); (x, y, z,) = P._first_ngens(3)
>>> I = sage.rings.ideal.Katsura(P)
>>> I.ideal()
0
>>> I.variety()
{\{z: 0, y: 0, x: 1\}}
>>> J = I.ideal_restriction(); J
```

(continues on next page)
Ideal (x0 - y0 - z0 - 1, x1 - y1 - z1, x2 - y2 - z2, x3 - y3 - z3, x4 - y4 - z4, x0^2 + x2*x3 + x1*x4 - y0^2 - y2*y3 + y1*y4 - z0^2 - z2*z3 + z1*z4 - z1^2 + x0, -x0*x1 - x2*x3 - x1*x4 + x2*x4 + y0*y1 + y2*y3 + y3^2 + y1*y4 - y2*y4 + z0*z1 + z2*z3 + z3^2 + z1*z4 - z2*z4 - x1, x1^2 - x0*x2 + x3^2 - x2*x4 + x3*x4 - y1^2 + y0*y2 + y3^2 + y1*y4 - y2*y4 + z1*z2 + z0*z3 + z3*z4 + z4^2 - x2, x2^2 - x1*x3 - x0*x4 + x4^2 - y2^2 + y1*y2 + y0*y3 + y4^2 - y3*y4 + z1*z2 + z0*z3 + z4*z4 - x3, x3^2 - x2*x4 - x1*x3 - x0*x4 - x4^2 + y1*y3 + y2*y4 + y0*y3 + y3*y4 - y2*y4 + z1*z2 + z0*z3 + z3*z4 + z4^2 - x4, -x0*y0 + x4*y1 + x3*y2 + x2*y3 + x1*y4 - y0*z0 + y4*z1 + y3*z2 + y2*z3 + y1*z4 - y0, -x1*y0 - x0*y1 - y4*y2 - x3*y3 + x4*y3 - x2*y4 + x3*y4 - y2*z0 - y1*z1 - y0*z2 - y4*z4 - y3*z3 + y4*z3 - y2*z4 + y3*z4 - y1, -x2*y0 - x1*y1 - x0*y2 - x4*y2 - x3*y3 + x4*y3 - x2*y4 + x3*y4 + y4*z2 - y2*z3 + y3*z3 - y1*z4 + y2*z4 - y2, -x3*y0 - x2*y1 - x1*y2 - x0*y3 - x4*y3 - x3*y4 + x4*y4 - y3*z0 - y2*z1 - y1*z2 - y0*z3 - y4*z3 - y3*z4 + y4*z4 - y4, -x4*y0 - x3*y1 - x2*y2 - x1*y3 - x0*y4 - x4*y4 - y4*z0 - y3*z1 - y2*z2 - y1*z3 - y0*z4 - y4*z4 - y4) of Multivariate Polynomial Ring in x0, x1, x2, x3, x4, y0, y1, y2, y3, y4, z0, z1, z2, z3, z4 over Finite Field of size 3

```python
>>> J += sage.rings.ideal.FieldIdeal(J.ring()) # ensure radical ideal

>>> from sage.doctest.fixtures import reproducible_repr
```

Weil restrictions are often used to study elliptic curves over extension fields so we give a simple example involving those:

```python
sage: K.<a> = QuadraticField(1/3) # needs sage.rings.number_field

sage: E = EllipticCurve(K, [1,2,3,4,5]) # needs sage.rings.number_field

We pick a point on E:
```
 sage: p = E.lift_x(1); p # needs sage.rings.number_field
(1 : -6 : 1)
 sage: I = E.defining_ideal(); I # needs sage.rings.number_field
Ideal (-x^3 - 2*x^2*z + x*y*z + y^2*z - 4*x*z^2 + 3*y*z^2 - 5*z^3)
of Multivariate Polynomial Ring in x, y, z
 over Number Field in a with defining polynomial x^2 - 1/3
 with a = 0.5773502691896258?

>>> from sage.all import *
>>> p = E.lift_x(Integer(1)); p # needs sage.rings.number_field
(1 : -6 : 1)
>>> I = E.defining_ideal(); I # needs sage.rings.number_field
Ideal (-x^3 - 2*x^2*z + x*y*z + y^2*z - 4*x*z^2 + 3*y*z^2 - 5*z^3)
of Multivariate Polynomial Ring in x, y, z
 over Number Field in a with defining polynomial x^2 - 1/3
 with a = 0.5773502691896258?

Of course, the point p is a root of all generators of I:

 sage: I.subs(x=1, y=2, z=1) # needs sage.rings.number_field
Ideal (0) of Multivariate Polynomial Ring in x, y, z
 over Number Field in a with defining polynomial x^2 - 1/3
 with a = 0.5773502691896258?

>>> from sage.all import *
>>> I.subs(x=Integer(1), y=Integer(2), z=Integer(1)) # needs sage.rings.number_field
Ideal (0) of Multivariate Polynomial Ring in x, y, z
 over Number Field in a with defining polynomial x^2 - 1/3
 with a = 0.5773502691896258?

I is also radical:

 sage: I.radical() == I # needs sage.rings.number_field
True

>>> from sage.all import *
>>> I.radical() == I # needs sage.rings.number_field
True

So we compute its Weil restriction:

 sage: J = I.weil_restriction(); J # needs sage.rings.number_field
Ideal (-x^3 - 2*x^2*z + x*y*z + y^2*z - 4*x*z^2 + 3*y*z^2 - 5*z^3)
 - 4/3*x^0*x1*z1 + 1/3*x1*y0*z1 + 1/3*x0*y1*z1 + 2/3*y0*y1*z1
(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

\[-\frac{8}{3}x_1z_0z_1 + 2y_1z_0z_1 - 4/3x_0z_1^2 + y_0z_1^2 - 5z_0z_1^2,
-3x_0^2x_1 - 1/3x_1^3 - 4x_0z_0 - y_1z_0^2 - 2x_0^2z_1 - 2/3x_1^2z_1
+ x_0y_0z_1 + y_0^2z_1 + 1/3x_1y_1z_1 + 1/3y_1^2z_1 - 8x_0z_0z_1
+ 6y_0z_0z_1 - 15z_0^2z_1 - 4/3x_1z_1^2 + y_1z_1^2 - 5/3z_1^3\]

of Multivariate Polynomial Ring in x_0, x_1, y_0, y_1, z_0, z_1 over Rational Field

```python
>>> from sage.all import *
```

```python
>>>
```
J = I.weil_restriction(); J

```
needs sage.rings.number_field
```

Ideal (-x_0^3 - x_0x_1^2 - 2x_0^2z_0 - 2/3x_1^2z_0 + x_0y_0z_0 + y_0^2z_0
+ 1/3x_1y_1z_0 + 1/3y_1^2z_0 - 4x_0z_0 - y_1z_0^2 - 5z_0z_1
- 4/3x_0x_1z_1 + 1/3x_1y_0z_1 + 1/3x_0y_1z_1 + 1/3y_0y_1z_1
- 8/3x_1z_0z_1 - 2y_1z_0z_1 - 4/3x_0z_1^2 + y_0z_1^2 - 5z_0z_1^2,
-3x_0^2x_1 - 1/3x_1^3 - 4x_0x_1z_0 + x_1y_0z_0 + x_0y_1z_0
+ 2y_0y_1z_0 - 4x_1z_0^2 + 3y_1z_0^2 - 2x_0^2z_1 - 2/3x_1^2z_1
+ x_0y_0z_1 + y_0^2z_1 + 1/3x_1y_1z_1 + 1/3y_1^2z_1 - 8x_0z_0z_1
+ 6y_0z_0z_1 - 15z_0^2z_1 - 4/3x_1z_1^2 + y_1z_1^2 - 5/3z_1^3)

of Multivariate Polynomial Ring in x_0, x_1, y_0, y_1, z_0, z_1 over Rational Field

We can check that the point \(p \) is still a root of all generators of \(J \):

```python
sage: J.subs(x_0=Integer(1), y_0=Integer(2), z_0=Integer(1), x_1=Integer(0), y_1=Integer(0), z_1=Integer(0))
```

```
needs sage.rings.number_field
```

Ideal (0, 0) of Multivariate Polynomial Ring in x_0, x_1, y_0, y_1, z_0, z_1 over Rational Field

Example for relative number fields:

```python
sage: # needs sage.rings.number_field
sage: R.<x> = QQ[]
```

```python
sage: (x,)
```

```python
R._first_ngens(1)
```

```python
sage: K.<w> = NumberField(x^5 - Integer(2)); (w,)
```

```
sage: R.<x> = K[]
```

```python
sage: (x,)
```

```python
R._first_ngens(1)
```

```python
sage: L.<v> = K.extension(x^2 + Integer(1)); (v,)
```

```python
L._first_ngens(1)
```

```python
sage: I = S.ideal([y_0^2 - x_1^3 - 1])
```

```python
sage: I.weil_restriction()
```

```
Ideal (-x_0^3 + 3x_0x_1^2 + y_0^2 - y_1^2 - 1, -3x_0^2x_1 + x_1^3 + 2y_0y_1) of Multivariate Polynomial Ring in x_0, x_1, y_0, y_1 over Number Field in w with defining polynomial x^5 - 2
```

```python
>>> from sage.all import *
```

```python
>>> # needs sage.rings.number_field
```

```python
>>> R = QQ['x']; (x,)
```

```python
R._first_ngens(1)
```

```python
>>> K = NumberField(x**Integer(5) - Integer(2), names=('w',)); (w,)
```

```
K._first_ngens(1)
```

```python
>>> R = K['x']; (x,)
```

```
K._first_ngens(1)
```

```python
>>> L = K.extension(x**Integer(2) + Integer(1), names=('v',)); (v,)
```

```
L._first_ngens(1)
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

```python
>>> S = L['x', 'y']; (x, y) = S._first_ngens(2)
>>> I = S.ideal([y**Integer(2) - x**Integer(3) - Integer(1)])
>>> I.well_restriction()
Ideal (-x0^3 + 3*x0*x1^2 + y0^2 - y1^2 - 1, -3*x0^2*x1 + x1^3 + 2*y0*y1) of
Multivariate Polynomial Ring in x0, x1, y0, y1
over Number Field in w with defining polynomial x^5 - 2
```

Note: Based on a Singular implementation by Michael Brickenstein

class sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_macaulay2_repr
Bases: object

An ideal in a multivariate polynomial ring, which has an underlying Macaulay2 ring associated to it.

EXAMPLES:

```python
sage: R.<x,y,z,w> = PolynomialRing(ZZ, 4)
sage: I = ideal(x*y-z**2, y**2-w**2)
sage: I
Ideal (x*y - z^2, y^2 - w^2) of Multivariate Polynomial Ring in x, y, z, w over Integer Ring
```

class sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_magma_repr
Bases: object

class sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_quotient(ring, gens, coerce=True)

Bases: MPolynomialIdeal

An ideal in a quotient of a multivariate polynomial ring.

EXAMPLES:

```python
sage: Q.<x,y,z,w> = QQ[x,y,z,w].quotient([x*y-z**2, y**2-w**2])
sage: I = ideal(x + y**2 + z - 1)
sage: I
Ideal (w^2 + x + z - 1) of Quotient of Multivariate Polynomial Ring in x, y, z, w over Rational Field
by the ideal (x*y - z^2, y^2 - w^2)
```

```python
>>> from sage.all import *
```
\begin{verbatim}
>>> (x, y, z, w,) = Q._first_ngens(4)
>>> I = ideal(x + y**Integer(2) + z - Integer(1))
>>> I
Ideal (w^2 + x + z - 1) of Quotient
of Multivariate Polynomial Ring in x, y, z, w over Rational Field
by the ideal (x*y - z^2, y^2 - w^2)
\end{verbatim}

reduce

Reduce an element modulo a Gröbner basis for this ideal. This returns 0 if and only if the element is in this ideal. In any case, this reduction is unique up to monomial orders.

EXAMPLES:

\begin{verbatim}
sage: R.<T,U,V,W,X,Y,Z> = PolynomialRing(QQ, order='lex')
sage: I = R.ideal([T^2 + U^2 - 1, V^2 + W^2 - 1, X^2 + Y^2 + Z^2 - 1])
sage: Q.<t,u,v,w,x,y,z> = R.quotient(I)
sage: J = Q.ideal([u*v - x, u*w - y, t - z])
sage: J.reduce(t^2 - z^2)
0
sage: J.reduce(u^2)
-z^2 + 1
sage: t^2 - z^2 in J
True
sage: u^2 in J
False
\end{verbatim}

class sage.rings.polynomial.multi_polynomial_ideal.

MPolynomialIdeal_singular_base_repr

Bases: object

syzygy_module

Computes the first syzygy (i.e., the module of relations of the given generators) of the ideal.

EXAMPLES:

\begin{verbatim}
sage: R.<x,y> = PolynomialRing(QQ)
sage: f = 2*x^2 + y
sage: g = y
\end{verbatim}
sage: h = 2*f + g
sage: I = Ideal([f,g,h])

sage: M = I.syzygy_module(); M
[-2 -1 1]
[-y 2*x^2 + y 0]

sage: G = vector(I.gens())

sage: M*G
(0, 0)

>>> from sage.all import *

>>> R = PolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ngens(2)

>>> f = Integer(2)*x^Integer(2) + y

>>> g = y

>>> h = Integer(2)*f + g

>>> I = Ideal([f,g,h])

>>> M = I.syzygy_module(); M
[-2 -1 1]
[-y 2*x^2 + y 0]

>>> G = vector(I.gens())

>>> M*G
(0, 0)

ALGORITHM: Uses Singular’s syz command

class sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr

Bases: MPolynomialIdeal_singular_base_repr

An ideal in a multivariate polynomial ring, which has an underlying Singular ring associated to it.

associated_primes(algorithm='sy')

Return a list of the associated primes of primary ideals of which the intersection is \(I = \text{self} \).

An ideal \(Q \) is called primary if it is a proper ideal of the ring \(R \) and if whenever \(a b \in Q \) and \(a \notin Q \) then \(b^n \in Q \) for some \(n \in \mathbb{Z} \).

If \(Q \) is a primary ideal of the ring \(R \), then the radical ideal \(P \) of \(Q \), i.e. \(P = \{ a \in R, a^n \in Q \} \) for some \(n \in \mathbb{Z} \), is called the associated prime of \(Q \).

If \(I \) is a proper ideal of the ring \(R \) then there exists a decomposition in primary ideals \(Q_i \) such that

- their intersection is \(I \)
- none of the \(Q_i \) contains the intersection of the rest, and
- the associated prime ideals of \(Q_i \) are pairwise different.

This method returns the associated primes of the \(Q_i \).

INPUT:

- algorithm – string:
 - 'sy' – (default) use the Shimoyama-Yokoyama algorithm
 - 'gtz' – use the Gianni-Trager-Zacharias algorithm

OUTPUT: a list of associated primes

EXAMPLES:
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y - z^2) * R
sage: pd = I.associated_primes(); sorted(pd, key=str)
[Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field,
 Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field]

>>> from sage.all import *
>>> R = PolynomialRing(QQ, Integer(3), order='lex', names=('x', 'y', 'z')); (x, y, z) = R._first_ngens(3)
>>> p = z**Integer(2) + Integer(1); q = z**Integer(3) + Integer(2)
>>> I = (p*q**Integer(2), y - z**Integer(2)) * R
>>> pd = I.associated_primes(); sorted(pd, key=str)
[Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field,
 Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field]

ALGORITHM:
Uses Singular.

REFERENCES:

basis_is_groebner (singular=None)
Return True if the generators of this ideal (self.gens()) form a Groebner basis.
Let I be the set of generators of this ideal. The check is performed by trying to lift $Syz(LM(I))$ to $Syz(I)$ as I forms a Groebner basis if and only if for every element S in $Syz(LM(I))$:

$$S \ast G = \sum_{i=0}^{m} h_i g_i - G_0 > 0.$$

ALGORITHM:
Uses Singular.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: R.<a,b,c,d,e,f,g,h,i,j> = PolynomialRing(GF(127), 10)
sage: I = sage.rings.ideal.Cyclic(R, 4)
sage: I.basis_is_groebner()
False
sage: I2 = Ideal(I.groebner_basis())
sage: I2.basis_is_groebner()
True

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> R = PolynomialRing(GF(Integer(127)), Integer(10), names=('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'))
>>> (a, b, c, d, e, f, g, h, i, j) = R._first_ngens(10)
Polynomials, Release 10.4

>>> I = sage.rings.ideal.Cyclic(R, Integer(4))
>>> I.basis_is_groebner()
False

>>> I2 = Ideal(I.groebner_basis())
>>> I2.basis_is_groebner()
True

A more complicated example:

```
sage: R.<U6,U5,U4,U3,U2, u6,u5,u4,u3,u2, h> = PolynomialRing(GF(7583))
```

```
....: U6 + U5 + U4 + U3 + U2 - 3791*h,
....: U2*u2 - h^2, U3*u3 - h^2, U4*u4 - h^2,
....: U5*u4 + U5*u3 + U4*u3 + U5*u2 + U4*u2 + U3*u2 - 3791*U5*h
....: - 3791*U4*h - 3791*U3*h - 3791*U2*h - 2842*h^2,
....: U4*u5 + U3*u5 + U2*u5 + U3*u4 + U2*u4 + U2*u3 - 3791*U5*h
....: - 3791*U4*h - 3791*U3*h - 3791*U2*h - 2842*h^2,
....: U5*u5 - h^2, U4*U2*u3 + U5*U3*u2 + U4*U3*u2 + U3^2*u2 -
```

(continues on next page)
sage: Ideal(l).basis_is_groebner()
 # needs sage.rings.finite_rings
False
sage: gb = Ideal(l).groebner_basis()
 # needs sage.rings.finite_rings
sage: Ideal(gb).basis_is_groebner()
 # needs sage.rings.finite_rings
True

>>> from sage.all import *
>>> R = PolynomialRing(GF(Integer(7583)), names=('U6', 'U5', 'U4', 'U3', 'U2',
 'u6', 'u5', 'u4', 'u3', 'u2', 'h',)); (U6, U5, U4, U3, U2, u6, u5, u4, u3,
 u2, h,) = R._first_ngens(11)
 # needs sage.rings.finite_rings
>>> l = [u6 + u5 + u4 + u3 + u2 - Integer(3791)*h,
 ... # needs sage.rings.finite_rings
 ... U6 + U5 + U4 + U3 + U2 - Integer(3791)*h,
 ... U2*u2 - h**Integer(2),
 ... U3*u3 + U4*u4 + U5*u5 - U3**Integer(2)*h,
 ... U4**Integer(2)*u4**Integer(2) + U5**Integer(2)*U4**Integer(2) +
 ... U5*U4**Integer(2)*U3**Integer(2) - Integer(3791)*U5**Integer(2)*U4*h
 ... + u4**Integer(2)*h**Integer(2) + u5*u3**Integer(2)*h +
 ... U5*u4**h**h**Integer(2)
 ...]
 (continues on next page)
Ideal(l).basis_is_groebner() # needs sage.rings.finite_rings False
Polynomials, Release 10.4

```python
>>> gb = Ideal(l).groebner_basis()
# needs sage.rings.finite_rings
>>> Ideal(gb).basis_is_groebner()
# needs sage.rings.finite_rings
True
```

Note: From the Singular Manual for the reduce function we use in this method: ‘The result may have no meaning if the second argument (self) is not a standard basis’. I (malb) believe this refers to the mathematical fact that the results may have no meaning if self is no standard basis, i.e., Singular doesn’t ‘add’ any additional ‘nonsense’ to the result. So we may actually use reduce to determine if self is a Groebner basis.

complete_primary_decomposition()
A decorator that creates a cached version of an instance method of a class.

Note: For proper behavior, the method must be a pure function (no side effects). Arguments to the method must be hashable or transformed into something hashable using `key` or they must define `sage.structure.sage_object.SageObject._cache_key()`.

EXAMPLES:

```python
sage: class Foo():
....:     @cached_method
....:     def f(self, t, x=2):
....:         print('computing')
....:         return t**x
sage: a = Foo()
```

```
>>> a = Foo()
```

The example shows that the actual computation takes place only once, and that the result is identical for equivalent input:

```python
sage: res = a.f(3, 2); res
computing
9
sage: a.f(t = 3, x = 2) is res
True
sage: a.f(3) is res
True
```

```
>>> from sage.all import *
>>> class Foo():
...     @cached_method
...     def f(self, t, x=Integer(2)):
...         print('computing')
...         return t**x
>>> a = Foo()
```

```
>>> from sage.all import *
```

```python
sage: res = a.f(3, 2); res
computing
9
sage: a.f(t=Integer(3), x=Integer(2)) is res
True
sage: a.f(3) is res
True
```
Note, however, that the CachedMethod is replaced by a CachedMethodCaller or CachedMethodCallerNoArgs as soon as it is bound to an instance or class:

```python
sage: P.<a,b,c,d> = QQ[]
sage: I = P*[a,b]
sage: type(I._class_.gens)
<class 'sage.misc.cachefunc.CachedMethodCallerNoArgs'>
```

So, you would hardly ever see an instance of this class alive.

The parameter key can be used to pass a function which creates a custom cache key for inputs. In the following example, this parameter is used to ignore the algorithm keyword for caching:

```python
sage: class A():
    ... def _f_normalize(self, x, algorithm):
    ...     return x
    ...
    ... @cached_method(key=_f_normalize)
    ... def f(self, x, algorithm='default'): return x
sage: a = A()
sage: a.f(1, algorithm="default") is a.f(1) is a.f(1, algorithm="algorithm")
True
```

The parameter do_pickle can be used to enable pickling of the cache. Usually the cache is not stored when pickling:

```python
sage: class A():
    ... @cached_method
    ... def f(self, x):
    ...     return None
sage: import __main__

sage: __main__.A = A
sage: a = A()
sage: a.f(1)
sage: len(a.f.cache)
1
sage: b = loads(dumps(a))
sage: len(b.f.cache)
0
```
When `do_pickle` is set, the pickle contains the contents of the cache:

```plaintext
sage: class A():
.....:     @cached_method(do_pickle=True)
.....:     def f(self, x): return None
sage: __main__.A = A
sage: a = A()
>>> a.f(1)
>>> len(a.f.cache)
1
>>> b = loads(dumps(a))
>>> len(b.f.cache)
1
```

Cached methods cannot be copied like usual methods, see Issue #12603. Copying them can lead to very surprising results:

```plaintext
sage: class A:
.....:     @cached_method
.....:     def f(self):
.....:         return 1
sage: class B:
.....:     g=A.f
.....:     def f(self):
.....:         return 2
sage: b=B()
sage: b.f()
2
```

(continues on next page)
... @cached_method
... def f(self):
... return Integer(1)

>>> class B:
... g=A.f
... def f(self):
... return Integer(2)

>>> b=B()
>>> b.f()
2
>>> b.g()
1
>>> b.f()
1

dimension (singular=None)

The dimension of the ring modulo this ideal.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(GF(32003), order='degrevlex') # needs sage.rings.finite_rings
sage: I = ideal(x^2 - y, x^3) # needs sage.rings.finite_rings
sage: I.dimension() # needs sage.rings.finite_rings
1

>>> from sage.all import *

P = PolynomialRing(GF(Integer(32003)), order='degrevlex', names=('x', 'y', 'z',))
(x, y, z,) = P._first_ngens(3)
needs sage.rings.finite_rings
I = ideal(x**Integer(2) - y, x**Integer(3))
needs sage.rings.finite_rings
I.dimension() # needs sage.rings.finite_rings
1

If the ideal is the total ring, the dimension is −1 by convention.

For polynomials over a finite field of order too large for Singular, this falls back on a toy implementation of Buchberger to compute the Groebner basis, then uses the algorithm described in Chapter 9, Section 1 of Cox, Little, and O’Shea’s “Ideals, Varieties, and Algorithms”.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: R.<x,y> = PolynomialRing(GF(2147483659^2), order='lex')
sage: I = R.ideal([x*y, x*y + 1])
sage: I.dimension()

Polynomials, Release 10.4

(continued from previous page)

verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back... → to very slow toy implementation.
-1
sage: I = ideal([x*(x*y+1), y*(x*y+1)])
sage: I.dimension()
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back... → to very slow toy implementation.
1
sage: I = R.ideal([x^3*y, x*y^2])
sage: I.dimension()
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back... → to very slow toy implementation.
1
sage: R.<x,y> = PolynomialRing(GF(2147483659^2), order='lex')
sage: I = R.ideal(0)
sage: I.dimension()
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back... → to very slow toy implementation.
2

>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> R = PolynomialRing(GF(Integer(2147483659)**Integer(2)), order='lex',
→ names=('x', 'y')); (x, y,) = R._first_ngens(2)
>>> I = R.ideal([x*y, x*y + Integer(1)])
>>> I.dimension()
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back... → to very slow toy implementation.
-1
>>> I=ideal([x*(x*y+Integer(1)), y*(x*y+Integer(1))])
>>> I.dimension()
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back... → to very slow toy implementation.
1
>>> I = R.ideal([x**Integer(3)*y, x*y**Integer(2)])
>>> I.dimension()
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back... → to very slow toy implementation.
1
>>> R = PolynomialRing(GF(Integer(2147483659)**Integer(2)), order='lex',
→ names=('x', 'y')); (x, y,) = R._first_ngens(2)
>>> I = R.ideal(Integer(0))
>>> I.dimension()
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back... → to very slow toy implementation.
2

ALGORITHM:

Uses Singular, unless the characteristic is too large.

Note: Requires computation of a Groebner basis, which can be a very expensive operation.

elimination_ideal (variables, algorithm=None, *args, **kwds)

Return the elimination ideal of this ideal with respect to the variables given in variables.
INPUT:
• `variables` - a list or tuple of variables in `self.ring()`
• `algorithm` - determines the algorithm to use, see below for available algorithms.

ALGORITHMS:
• `'libsingular:eliminate'` - libSingular's `eliminate` command (default)
• `'giac:eliminate'` - Giac's `eliminate` command (if available)

If only a system is given - e.g. `'giac'` - the default algorithm is chosen for that system.

EXAMPLES:

```
sage: R.<x,y,t,s,z> = PolynomialRing(QQ,5)
sage: I = R * [x - t, y - t^2, z - t^3, s - x + y^3]
sage: J = I.elimination_ideal([t, s]); J
Ideal (y^2 - x*z, x*y - z, x^2 - y)
of Multivariate Polynomial Ring in x, y, t, s, z over Rational Field
```

```
>>> from sage.all import *

R = PolynomialRing(QQ,Integer(5), names=('x', 'y', 't', 's', 'z,)); (x,␣
˓→y, t, s, z,) = R._first_ngens(5)
>>> I = R * [x - t, y - t**Integer(2), z - t**Integer(3), s - x +␣
˓→y**Integer(3)
>>> J = I.elimination_ideal([t, s]); J
Ideal (y^2 - x*z, x*y - z, x^2 - y)
of Multivariate Polynomial Ring in x, y, t, s, z over Rational Field
```

You can use Giac to compute the elimination ideal:

```
sage: print("possible output from giac", flush=True); I.elimination_ideal([t,␣
˓→s], algorithm="giac") == J
possible output...
True
```

```
>>> from sage.all import *

>>> print("possible output from giac", flush=True); I.elimination_ideal([t,␣
˓→s], algorithm="giac") == J
possible output...
True
```

The list of available Giac options is provided at `sage.libs.giac.groebner_basis()`.

ALGORITHM:
Uses Singular, or Giac (if available).

Note: Requires computation of a Groebner basis, which can be a very expensive operation.

free_resolution (*args, **kwds*)

Return a free resolution of `self`.

For input options, see `FreeResolution`.

3.1. Multivariate Polynomials and Polynomial Rings 645
```python
sage: R.<x,y> = PolynomialRing(QQ)
sage: f = 2*x^2 + y
sage: g = y
sage: h = 2*f + g
sage: I = R.ideal([f,g,h])
sage: res = I.free_resolution()
sage: res
S^1 <-- S^2 <-- S^1 <-- 0
sage: ascii_art(res.chain_complex())
[ -x^2 ]
[ y x^2 ]
[ y ]
0 <-- C_0 <------ C_1 <------ C_2 <-- 0
```

```python
sage: q = ZZ['q'].fraction_field().gen()
sage: R.<x,y,z> = q.parent()

sage: I = R.ideal([x^2+y^2+z^2, x*y*z^4])
sage: I.free_resolution()
NotImplementedError: the ring must be a polynomial ring using Singular
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> f = Integer(2)*x**Integer(2) + y
>>> g = y

>>> h = Integer(2)*f + g
>>> I = R.ideal([f,g,h])
>>> res = I.free_resolution()
```

```python
>>> ascii_art(res.chain_complex())
[ -x^2 ]
[ y x^2 ]
[ y ]
0 <-- C_0 <------ C_1 <------ C_2 <-- 0
```

```python
>>> q = ZZ['q'].fraction_field().gen()
>>> R = q.parent()

>>> I = R.ideal([x**Integer(2)+y**Integer(2)+z**Integer(2), x*y*z**Integer(4)])
>>> I.free_resolution()
NotImplementedError: the ring must be a polynomial ring using Singular
```

```python
genus()
```

A decorator that creates a cached version of an instance method of a class.

Note: For proper behavior, the method must be a pure function (no side effects). Arguments to the method must be hashable or transformed into something hashable using key or they must define `sage.structure.sage_object.SageObject._cache_key()`.

EXAMPLES:

```python
sage: class Foo():
    ....:     @cached_method
```

(continues on next page)
The example shows that the actual computation takes place only once, and that the result is identical for equivalent input:

```python
sage: res = a.f(3, 2); res
computing
9
sage: a.f(t = 3, x = 2) is res
True
sage: a.f(3) is res
True
```

Note, however, that the `CachedMethod` is replaced by a `CachedMethodCaller` or `CachedMethodCallerNoArgs` as soon as it is bound to an instance or class:

```python
sage: type(I.__class__.gens)
<class 'sage.misc.cachefunc.CachedMethodCallerNoArgs'>
```

So, you would hardly ever see an instance of this class alive.

The parameter `key` can be used to pass a function which creates a custom cache key for inputs. In the following example, this parameter is used to ignore the `algorithm` keyword for caching:

```python
sage: class A:
    ....:     def _f_normalize(self, x, algorithm):
    ....:         return x
    ....:     @cached_method(key=_f_normalize)
```

3.1. Multivariate Polynomials and Polynomial Rings

647
The parameter `do_pickle` can be used to enable pickling of the cache. Usually the cache is not stored when pickling:

```
sage: class A():
    ....:     @cached_method
    ....:     def f(self, x):
    ....:         return None
sage: __main__.A = A
sage: a = A()
sage: a.f(1)
sage: len(a.f.cache)
1
sage: b = loads(dumps(a))
sage: len(b.f.cache)
0
```

When `do_pickle` is set, the pickle contains the contents of the cache:

```
sage: class A():
    ....:     @cached_method(do_pickle=True)
    ....:     def f(self, x):
    ....:         return None
sage: __main__.A = A
sage: a = A()
sage: a.f(1)
sage: len(a.f.cache)
1
sage: b = loads(dumps(a))
```
from sage.all import *

class A:
 @cached_method(do_pickle=True)
 def f(self, x):
 return None

__main__.A = A

a = A()
a.f(Integer(1))
len(a.f.cache)
1

b = loads(dumps(a))
len(b.f.cache)
1

Cached methods cannot be copied like usual methods, see Issue #12603. Copying them can lead to very surprising results:

class A:
 @cached_method
 def f(self):
 return 1

class B:
 g=A.f
 def f(self):
 return 2

b=B()
b.f() 2
b.g() 1
b.f() 1

from sage.all import *

class A:
 @cached_method
 def f(self):
 return Integer(1)

class B:
 g=A.f
 def f(self):
 return Integer(2)

b=B()
b.f() 2
b.g() 1
b.f() 1

graded_free_resolution(*args, **kwds)

Return a graded free resolution of self.
For input options, see GradedFreeResolution.

EXAMPLES:

```
sage: R.<x,y> = PolynomialRing(QQ)
sage: f = 2*x^2 + y^2
sage: g = y^2
sage: h = 2*f + g
sage: I = R.ideal([f,g,h])
sage: I.graded_free_resolution(shifts=[1])
S(-1) <-- S(-3)⊕S(-3) <-- S(-5) <-- 0
sage: f = 2*x^2 + y
sage: g = y
sage: h = 2*f + g
sage: I = R.ideal([f,g,h])
sage: I.graded_free_resolution(degrees=[1,2])
S(0) <-- S(-2)⊕S(-2) <-- S(-4) <-- 0
sage: q = ZZ['q'].fraction_field().gen()
sage: R.<x,y,z> = q.parent()
```

```
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> f = Integer(2)*x**Integer(2) + y**Integer(2)
>>> g = y**Integer(2)
>>> h = Integer(2)*f + g
>>> I = R.ideal([f,g,h])
>>> I.graded_free_resolution(shifts=[Integer(1)])
S(-1) <-- S(-3)⊕S(-3) <-- S(-5) <-- 0
>>> f = Integer(2)*x**Integer(2) + y
>>> g = y
>>> h = Integer(2)*f + g
>>> I = R.ideal([f,g,h])
>>> I.graded_free_resolution(degrees=[Integer(1),Integer(2)])
S(0) <-- S(-2)⊕S(-2) <-- S(-4) <-- 0
>>> q = ZZ['q'].fraction_field().gen()
```

```
>>> R = q.parent()('[x, y, z]'); (x, y, z,) = R._first_ngens(3)
>>> I = R.ideal([x**Integer(2)+y**Integer(2)+z**Integer(2),
               x*y*z**Integer(4)])
>>> I.graded_free_resolution()
Traceback (most recent call last):
...     NotImplementedError: the ring must be a polynomial ring using Singular
```

hilbert_numerator (grading=’None, algorithm=’sage’)

Return the Hilbert numerator of this ideal.

INPUT:

- grading – (optional) a list or tuple of integers
- algorithm – (default: ’sage’) must be either ’sage’ or ’singular’
Let I (which is self) be a homogeneous ideal and $R = \bigoplus_d R_d$ (which is self.ring()) be a graded commutative algebra over a field K. Then the Hilbert function is defined as $H(d) = \dim_K R_d$ and the Hilbert series of I is defined as the formal power series $HS(t) = \sum_{d=0}^{\infty} H(d)t^d$.

This power series can be expressed as $HS(t) = Q(t)/(1 - t)^n$ where $Q(t)$ is a polynomial over Z and n the number of variables in R. This method returns $Q(t)$, the numerator; hence the name, hilbert_numerator. An optional grading can be given, in which case the graded (or weighted) Hilbert numerator is given.

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: I = Ideal([x^3*y^2 + 3*x^2*y^2*z + y^3*z^2 + z^5])
sage: I.hilbert_numerator()
# needs sage.libs.flint
-t^5 + 1
sage: R.<a,b> = PolynomialRing(QQ)
sage: J = R.ideal([a^2*b, a*b^2])
sage: J.hilbert_numerator()
# needs sage.libs.flint
t^4 - 2*t^3 + 1
sage: J.hilbert_numerator(grading=(10,3))
# needs sage.libs.flint
t^26 - t^23 - t^16 + 1
```

```python
>>> from sage.all import *
>>> P = PolynomialRing(QQ, names=(x, y, z,)); (x, y, z,) = P._first_ngens(3)
>>> I = Ideal([x**Integer(3)*y**Integer(2) + Integer(3)*x**Integer(2)*y**Integer(2)*z + y**Integer(3)*z**Integer(2) + z**5])
>>> I.hilbert_numerator()
# needs sage.libs.flint
-t^5 + 1
>>> R = PolynomialRing(QQ, names=('a', 'b',)); (a, b,) = R._first_ngens(2)
>>> J = R.ideal([a**Integer(2)*b, a*b**Integer(2)])
>>> J.hilbert_numerator()
# needs sage.libs.flint
t^4 - 2*t^3 + 1
>>> J.hilbert_numerator(grading=(Integer(10),Integer(3))) # needs sage.libs.flint
-t^26 + t^23 - t^16 + 1
```

The `hilbert_polynomial(algorithm='sage')` method returns the Hilbert polynomial of this ideal.

INPUT:

- `algorithm` - (default: 'sage') must be either 'sage' or 'singular'

Let I (which is self) be a homogeneous ideal and $R = \bigoplus_d R_d$ (which is self.ring()) be a graded commutative algebra over a field K. The Hilbert polynomial is the unique polynomial $HP(t)$ with rational coefficients such that $HP(d) = \dim_K R_d$ for all but finitely many positive integers d.

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: I = Ideal([x^3*y^2 + 3*x^2*y^2*z + y^3*z^2 + z^5])
sage: I.hilbert_polynomial()
#...
```

(continues on next page)
needs sage.libs.flint
5*t - 5

>>> from sage.all import *
>>> P = PolynomialRing(QQ, names=('x', 'y', 'z')); (x, y, z) = P._first_ngens(3)
>>> I = Ideal([x**Integer(3)*y**Integer(2) + Integer(3)*x**Integer(2)*y**Integer(2)*z + y**Integer(3)*z**Integer(2) + z**Integer(5)])
>>> I.hilbert_polynomial() # needs sage.libs.flint
5*t - 5

Of course, the Hilbert polynomial of a zero-dimensional ideal is zero:

sage: J0 = Ideal([x^3*y^2 + 3*x^2*y^2*z + y^3*z^2 + z^5,
....: y^3 - 2*x*z^2 + x*y, x^4 + x*y - y^2*z])
sage: J = P*[m.lm() for m in J0.groebner_basis()]
sage: J.dimension() # needs sage.libs.flint
0

It is possible to request a computation using the Singular library:

sage: I.hilbert_polynomial(algorithm='singular') == I.hilbert_polynomial() # needs sage.libs.flint
True

sage: J.hilbert_polynomial(algorithm='singular') == J.hilbert_polynomial() # needs sage.libs.flint
True

Here is a bigger example:
Polynomials, Release 10.4

```python
sage: n = 4; m = 11; P = PolynomialRing(QQ, n * m, "x"); x = P.gens()
sage: M = Matrix(n, x)
sage: Minors = P.ideal(M.minors(2))
sage: hp = Minors.hilbert_polynomial(); hp
# needs sage.libs.flint
1/21772800*t^13 + 61/21772800*t^12 + 1661/21772800*t^11
+ 26681/21772800*t^10 + 93841/7257600*t^9 + 685421/7257600*t^8
+ 1524809/3110400*t^7 + 39780323/21772800*t^6 + 6638071/1360800*t^5
+ 12509761/1360800*t^4 + 2689031/226800*t^3 + 1494509/151200*t^2
+ 12001/2520*t + 1
```

Because Singular uses 32-bit integers, the above example would fail with Singular. We don’t test it here, as it has a side-effect on other tests that is not understood yet (see Issue #26300):

```python
sage: Minors.hilbert_polynomial(algorithm='singular')  # not tested
Traceback (most recent call last):
  ...
RuntimeError: error in Singular function call 'hilbPoly':
  int overflow in hilb 1
error occurred in or before poly.lib::hilbPoly line 58: '    intvec v=hilb(I, 2);'
expected intvec-expression. type 'help intvec';
```

Note that in this example, the Hilbert polynomial gives the coefficients of the Hilbert-Poincaré series in all degrees:

```python
sage: P = PowerSeriesRing(QQ, 't', default_prec=50)
sage: hs = Minors.hilbert_series()   # needs sage.libs.flint
sage: list(P(hs.numerator()) / P(hs.denominator())) == [hp(t=k) for k in range(50)]
True
```

3.1. Multivariate Polynomials and Polynomial Rings 653
hilbert_series (grading=None, algorithm='sage')

Return the Hilbert series of this ideal.

INPUT:

- grading – (optional) a list or tuple of integers
- algorithm – (default: 'sage') must be either 'sage' or 'singular'

Let I (which is self) be a homogeneous ideal and $R = \bigoplus_d R_d$ (which is self.ring()) be a graded commutative algebra over a field K. Then the Hilbert function is defined as $H(d) = \dim_K R_d$ and the Hilbert series of I is defined as the formal power series $HS(t) = \sum_{d=0}^{\infty} H(d) t^d$.

This power series can be expressed as $HS(t) = Q(t)/(1 - t)^n$ where $Q(t)$ is a polynomial over \mathbb{Z} and n the number of variables in R. This method returns $Q(t)/(1 - t)^n$, normalised so that the leading monomial of the numerator is positive.

An optional grading can be given, in which case the graded (or weighted) Hilbert series is given.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: I = Ideal([x^3*y^2 + 3*x^2*y^2*z + y^3*z^2 + z^5])
sage: I.hilbert_series(grading=(10,3))
# needs sage.libs.flint
(t^11 + t^8 - t^6 - t^5 - t^4 - t^3 - t^2 - t - 1)/(t^2 - 1)
sage: K = R.ideal([a^2*b^3, a*b^4 + a^3*b^2])
sage: K.hilbert_series(grading=[2,1])
# needs sage.libs.flint
(2*t^7 - t^6 - t^4 - t^2 - 1)/(t - 1)
```
integral_closure\((p=0, r=True, singular=None) \)

Let \(I = \text{self} \).

Return the integral closure of \(I, \ldots, I^p \), where \(sI \) is an ideal in the polynomial ring \(R = k[x(1), \ldots, x(n)] \). If \(p \) is not given, or \(p = 0 \), compute the closure of all powers up to the maximum degree in \(t \) occurring in the closure of \(R[I^t] \) (so this is the last power whose closure is not just the sum/product of the smaller). If \(r \) is given and \(r \) is True, \(I \).integral_closure() starts with a check whether \(I \) is already a radical ideal.

INPUT:

- \(p \) – powers of \(I \) (default: 0)
- \(r \) – check whether self is a radical ideal first (default: True)

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: I = ideal([x^2, x*y^4, y^5])
sage: I.integral_closure()
[x^2, x*y^4, y^5, x*y^3]
```

```
>>> from sage.all import *
>>> R = QQ['x, y']; (x, y) = R._first_ngens(2)
>>> I = ideal([x**Integer(2), x*y**Integer(4), y**Integer(5)])
>>> I.integral_closure()
[x^2, x*y^4, y^5, x*y^3]
```

ALGORITHM:

Uses libSINGULAR.

interreduced_basis()

If this ideal is spanned by \((f_1, \ldots, f_n) \), return \((g_1, \ldots, g_s) \) such that:
• \((f_1, \ldots, f_n) = (g_1, \ldots, g_s)\)
• \(LT(g_i) \neq LT(g_j)\) for all \(i \neq j\)
• \(LT(g_i)\) does not divide \(m\) for all monomials \(m\) of \(\{g_1, \ldots, g_{i-1}, g_{i+1}, \ldots, g_s\}\)
• \(LC(g_i) = 1\) for all \(i\) if the coefficient ring is a field.

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: I = Ideal([z*x + y^3, z + y^3, z + x*y])
sage: I.interreduced_basis()
[y^3 + z, x*y + z, x*z - z]
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x', 'y', 'z')); (x, y, z) = R._first_ngens(3)
>>> I = Ideal([z*x + y**Integer(3), z + y**Integer(3), z + x*y])
>>> I.interreduced_basis()
[y^3 + z, x*y + z, x*z - z]
```

Note that tail reduction for local orderings is not well-defined:

```python
sage: R.<x,y,z> = PolynomialRing(QQ,order='negdegrevlex')
sage: I = Ideal([z*x + y^3, z + y^3, z + x*y])
sage: I.interreduced_basis()
[z + x*y, x*y - y^3, x^2*y - y^3]
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ,order='negdegrevlex', names=('x', 'y', 'z')); (x, y, z) = R._first_ngens(3)
>>> I = Ideal([z*x + y**Integer(3), z + y**Integer(3), z + x*y])
>>> I.interreduced_basis()
[z + x*y, x*y - y^3, x^2*y - y^3]
```

A fixed error with nonstandard base fields:

```python
sage: R.<t> = QQ['t']
sage: K.<x,y> = R.fraction_field()\['x', y']
sage: I = t*x * K
sage: I.interreduced_basis()
[x]
```

```python
>>> from sage.all import *
>>> R = QQ['t']; (t,) = R._first_ngens(1)
>>> K = R.fraction_field()\['x', y']; (x, y) = K._first_ngens(2)
>>> I = t*x * K
>>> I.interreduced_basis()
[x]
```

The interreduced basis of 0 is 0:

```python
sage: P.<x,y,z> = GF(2)[]
sage: Ideal(P(0)).interreduced_basis()
[0]
```
Polynomials, Release 10.4

>>> from sage.all import *
>>> P = GF(Integer(2))['x, y, z']; (x, y, z,) = P._first_ngens(3)
>>> Ideal(P(Integer(0))).interreduced_basis()
[0]

ALGORITHM:

Uses Singular's interred command or sage.rings.polynomial.toy_buchberger.
inter_reduction() if conversion to Singular fails.

intersection(*others)

Return the intersection of the arguments with this ideal.

EXAMPLES:

 sage: R.<x,y> = PolynomialRing(QQ, 2, order='lex')
 sage: I = x*R
 sage: J = y*R
 sage: I.intersection(J)
 Ideal (x*y) of Multivariate Polynomial Ring in x, y over Rational Field

 >>> from sage.all import *
 >>> R = PolynomialRing(QQ, Integer(2), order='lex', names=('x', 'y',)); (x, y, →) = R._first_ngens(2)
 >>> I = x*R
 >>> J = y*R
 >>> I.intersection(J)
 Ideal (x*y) of Multivariate Polynomial Ring in x, y over Rational Field

The following simple example illustrates that the product need not equal the intersection.

 sage: I = (x^2, y) * R
 sage: J = (y^2, x) * R
 sage: K = I.intersection(J); K
 Ideal (y^2, x*y, x^2) of Multivariate Polynomial Ring in x, y over Rational␣ → Field
 sage: IJ = I*J; IJ
 Ideal (x^2*y^2, x^3, y^3, x*y)
 of Multivariate Polynomial Ring in x, y over Rational Field
 sage: IJ == K
 False

 >>> from sage.all import *
 >>> I = (x**Integer(2), y) * R
 >>> J = (y**Integer(2), x) * R
 >>> K = I.intersection(J); K
 Ideal (y^2, x*y, x^2) of Multivariate Polynomial Ring in x, y over Rational␣ → Field
 >>> IJ = I*J; IJ
 Ideal (x^2*y^2, x^3, y^3, x*y)
 of Multivariate Polynomial Ring in x, y over Rational Field
 >>> IJ == K
 False

Intersection of several ideals:
```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: I1 = x * R
sage: I2 = y * R
sage: I3 = (x, y) * R
sage: I4 = (x^2 + x*y*z, y^2 - z^3*y, z^3 + y^5*x*z) * R
sage: I1.intersection(I2, I3, I4).groebner_basis()
[x^2*y + x*y*z^4, x*y^2 - x*y*z^3, x*y*z^20 - x*y*z^3]
```

The ideals must share the same ring:

```python
sage: R2.<x,y> = PolynomialRing(QQ, 2, order='lex')
sage: R3.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: I2 = x*R2
sage: I3 = x*R3
sage: I2.intersection(I3)
Traceback (most recent call last):
  ...  
TypeError: Intersection is only available for ideals of the same ring.
```

```python
>>> from sage.all import *

>>> R = PolynomialRing(QQ, Integer(3), order='lex', names=('x', 'y', 'z'));
→ (x, y, z) = R._first_ngens(3)
>>> I1 = x * R
>>> I2 = y * R
>>> I3 = (x, y) * R
>>> I4 = (x**Integer(2) + x*y*z, y**Integer(2) - z**Integer(3)*y,
→ z**Integer(3) + y**Integer(5)*x*z) * R
>>> I1.intersection(I2, I3, I4).groebner_basis()
[x^2*y + x*y*z^4, x*y^2 - x*y*z^3, x*y*z^20 - x*y*z^3]
```

is_prime (**kwds)**

Return True if this ideal is prime.

INPUT:

- keyword arguments are passed on to complete_primary_decomposition(); in this way you can specify the algorithm to use.

EXAMPLES:

```python
sage: R.<x, y> = PolynomialRing(QQ, 2)
sage: I = (x^2 - y^2 - 1) * R
sage: I.is_prime()
True
sage: (I^2).is_prime()
(continues on next page)
```
>>> from sage.all import *

>>> R = PolynomialRing(QQ, Integer(2), names=('x', 'y')); (x, y) = R._first_ngens(2)
>>> I = (x**Integer(2) - y**Integer(2) - Integer(1)) * R
>>> I.is_prime()
True
>>> (I**Integer(2)).is_prime()
False

The following is Issue #5982. Note that the quotient ring is not recognized as being a field at this time, so the fraction field is not the quotient ring itself:

sage: Q = R.quotient(I); Q
Quotient of Multivariate Polynomial Ring in x, y over Rational Field
by the ideal (x^2 - y^2 - 1)
sage: Q.fraction_field()
Fraction Field of
Quotient of Multivariate Polynomial Ring in x, y over Rational Field
by the ideal (x^2 - y^2 - 1)

minimal_associated_primes()

OUTPUT:

- list — a list of prime ideals

EXAMPLES:
sage: R.<x,y,z> = PolynomialRing(QQ, 3, 'xyz')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y - z^2) * R
sage: sorted(I.minimal_associated_primes(), key=str)
[Ideal (z^2 + 1, -z^2 + y)
 of Multivariate Polynomial Ring in x, y, z over Rational Field,
 Ideal (z^3 + 2, -z^2 + y)
 of Multivariate Polynomial Ring in x, y, z over Rational Field]

ALGORITHM:
Uses Singular.

normal_basis\(\text{(degree=None, algorithm='libsingular', singular=None)}\)

Return a vector space basis of the quotient ring of this ideal.

INPUT:
- • degree – integer (default: None)
- • algorithm – string (default: "libsingular"); if not the default, this will use the kbase() or weightKB() command from Singular
- • singular – the singular interpreter to use when algorithm is not "libsingular" (default: the default instance)

OUTPUT:
Monomials in the basis. If degree is given, only the monomials of the given degree are returned.

EXAMPLES:

sage: R.<x,y,z> = PolynomialRing(QQ)
sage: I = R.ideal(x^2 + y^2 + z^2 - 4, x^2 + 2*y^2 - 5, x*z - 1)
sage: I.normal_basis()
y*z^2, z^2, y*z, z, x*y, y, x, 1
sage: I.normal_basis(algorithm='singular')
y*z^2, z^2, y*z, z, x*y, y, x, 1

>>> from sage.all import *
>>> R = PolynomialRing(QQ, Integer(3), 'xyz', names=('x', 'y', 'z',)); (x, y, z) = R._first_ngens(3)
>>> p = z**Integer(2) + Integer(1); q = z**Integer(3) + Integer(2)
>>> I = (p*q**Integer(2), y - z**Integer(2)) * R
>>> sorted(I.minimal_associated_primes(), key=str)
[Ideal (z^2 + 1, -z^2 + y)
 of Multivariate Polynomial Ring in x, y, z over Rational Field,
 Ideal (z^3 + 2, -z^2 + y)
 of Multivariate Polynomial Ring in x, y, z over Rational Field]
The result can be restricted to monomials of a chosen degree, which is particularly useful when the quotient ring is not finite-dimensional as a vector space.

```python
sage: J = R.ideal(x^2 + y^2 + z^2 - 4, x^2 + 2*y^2 - 5)
sage: J.dimension()
1

sage: [J.normal_basis(d) for d in (0..3)]
[[1], [z, y, x], [z^2, y*z, x*z, x*y], [z^3, y*z^2, x*z^2, x*y*z]]
```

```python
>>> from sage.all import *

>>> from sage.all import *
>>> J = R.ideal(x**Integer(2) + y**Integer(2) + z**Integer(2) - Integer(4),...
˓→x**Integer(2) + Integer(2)*y**Integer(2) - Integer(5))

>>> J.dimension()
1

>>> [J.normal_basis(d, algorithm='singular') for d in (0..3)]
[[1], [z, y, x], [z^2, y*z, x*z, x*y], [z^3, y*z^2, x*z^2, x*y*z]]
```

In case of a polynomial ring with a weighted term order, the degree of the monomials is taken with respect to the weights.

```python
sage: T = TermOrder('wdegrevlex', (1, 2, 3))
sage: R.<x,y,z> = PolynomialRing(QQ, order=T)
sage: B = R.ideal(x*y^2 + x^5, z*y + x^3*y).normal_basis(9); B
[x^2*y^2*z, x^3*z^2, x*y*z^2, z^3]

sage: all(f.degree() == 9 for f in B)
True
```

```python
>>> from sage.all import *

>>> T = TermOrder('wdegrevlex', (Integer(1), Integer(2), Integer(3)))

>>> R = PolynomialRing(QQ, order=T, names=('x', 'y', 'z',)); (x, y, z,)
˓→first_ngens(3)

>>> B = R.ideal(x*y**Integer(2) + x**Integer(5), z*y + x**Integer(3)*y).
˓→normal_basis(Integer(9)); B
[x^2*y^2*z, x^3*z^2, x*y*z^2, z^3]

>>> all(f.degree() == Integer(9) for f in B)
True
```

```python
plot (singular=None)
```

If you somehow manage to install surf, perhaps you can use this function to implicitly plot the real zero locus of this ideal (if principal).

INPUT:

- `self` – must be a principal ideal in 2 or 3 vars over `Q`.

EXAMPLES:

Implicit plotting in 2-d:

```python
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: I = R.ideal([y^3 - x^2])
sage: I.plot()  # cusp
```

(continues on next page)
Graphics object consisting of 1 graphics primitive

```python
sage: I = R.ideal([y^2 - x^2 - 1])
sage: I.plot() # hyperbola
```

Graphics object consisting of 1 graphics primitive

```python
sage: I = R.ideal([y^2 + x^2*(1/4) - 1])
sage: I.plot() # ellipse
```

Graphics object consisting of 1 graphics primitive

```python
sage: I = R.ideal([y^2-(x^2-1)*(x-2)])
sage: I.plot() # elliptic curve
```

⚠️ Note: The output of the plots is not shown here.

Implicit plotting in 3-d:

```python
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: I = R.ideal([y^2 + x^2*(1/4) - z])
sage: I.plot() # a cone; optional - surf
```

```python
sage: I = R.ideal([y^2 + z^2*(1/4) - x])
sage: I.plot() # same code, from a different angle; optional - surf
```

```python
sage: I = R.ideal([x^2*y^2+x^2*z^2+y^2*z^2-16*x*y*z])
sage: I.plot() # Steiner surface; optional - surf
```

AUTHORS:

- David Joyner (2006-02-12)

primary_decomposition(algorithm='sy')

Return a list of primary ideals such that their intersection is self.
An ideal Q is called primary if it is a proper ideal of the ring R, and if whenever $ab \in Q$ and $a \not\in Q$, then $b^n \in Q$ for some $n \in \mathbb{Z}$.

If Q is a primary ideal of the ring R, then the radical ideal P of Q (i.e., the ideal consisting of all $a \in R$ with $a^n \in Q$ for some $n \in \mathbb{Z}$), is called the associated prime of Q.

If I is a proper ideal of a Noetherian ring R, then there exists a finite collection of primary ideals Q_i such that the following hold:

- the intersection of the Q_i is I;
- none of the Q_i contains the intersection of the others;
- the associated prime ideals of the Q_i are pairwise distinct.

INPUT:

- `algorithm` -- string:
 - `'sy'` – (default) use the Shimoyama-Yokoyama algorithm
 - `'gtz'` – use the Gianni-Trager-Zacharias algorithm

OUTPUT:

- a list of primary ideals Q_i forming a primary decomposition of `self`.

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y - z^2) * R
sage: pd = I.primary_decomposition(); sorted(pd, key=str)
[Ideal (z^2 + 1, y + 1)
of Multivariate Polynomial Ring in x, y, z over Rational Field,
Ideal (z^6 + 4*z^3 + 4, y - z^2)
of Multivariate Polynomial Ring in x, y, z over Rational Field]
```

```python
>>> from sage.all import *
>>> from functools import reduce
```

```python
reduce(lambda Qi, Qj: Qi.intersection(Qj), pd) == I
True
```

ALGORITHM:

Uses Singular.
REFERENCES:

primary_decomposition_complete()

A decorator that creates a cached version of an instance method of a class.

Note: For proper behavior, the method must be a pure function (no side effects). Arguments to the method must be hashable or transformed into something hashable using key or they must define sage.structure.sage_object.SageObject._cache_key().

EXAMPLES:

```
sage: class Foo():
....:     @cached_method
....:     def f(self, t, x=2):
....:         print('computing')
....:         return t**x
sage: a = Foo()

>>> from sage.all import *
>>> class Foo():
...     @cached_method
...     def f(self, t, x=Integer(2)):
...         print('computing')
...         return t**x
>>> a = Foo()
```

The example shows that the actual computation takes place only once, and that the result is identical for equivalent input:

```
sage: res = a.f(3, 2); res
computing
9
sage: a.f(t = 3, x = 2) is res
True
sage: a.f(3) is res
True
```

Note, however, that the CachedMethod is replaced by a CachedMethodCaller or CachedMethodCallerNoArgs as soon as it is bound to an instance or class:

```
sage: P.<a,b,c,d> = QQ[]
sage: I = P*[a,b]
sage: type(I.__class___.gens)
<class 'sage.misc.cachefunc.CachedMethodCallerNoArgs'>
```
Polynomials, Release 10.4

>>> from sage.all import *
>>> P = QQ['a, b, c, d']; (a, b, c, d,) = P._first_ngens(4)
>>> I = P*[a,b]
>>> type(I.__class__.gens)
<class 'sage.misc.cachefunc.CachedMethodCallerNoArgs'>

So, you would hardly ever see an instance of this class alive.

The parameter key can be used to pass a function which creates a custom cache key for inputs. In the following example, this parameter is used to ignore the algorithm keyword for caching:

```
sage: class A():
    ....: def _f_normalize(self, x, algorithm):
    ....:     return x
    ....:  @cached_method(key=_f_normalize)
    ....: def f(self, x, algorithm='default'): return x
sage: a = A()
sage: a.f(1, algorithm='default') is a.f(1) is a.f(1, algorithm='algorithm')
True
```

The parameter do_pickle can be used to enable pickling of the cache. Usually the cache is not stored when pickling:

```
sage: class A():
    ....: @cached_method
    ....: def f(self, x):
    ....:     return None
sage: import __main__

sage: __main__.A = A()
sage: len(a.f.cache)
1
sage: b = loads(dumps(a))
sage: len(b.f.cache)
0
```

(continues on next page)
When `do_pickle` is set, the pickle contains the contents of the cache:

```python
sage: class A:
    ....: @cached_method(do_pickle=True)
    ....: def f(self, x): return None
sage: __main__.A = A
sage: a = A()
sage: a.f(1)
sage: len(a.f.cache)
1
sage: b = loads(dumps(a))
sage: len(b.f.cache)
1
```

Cached methods cannot be copied like usual methods, see Issue #12603. Copying them can lead to very surprising results:

```python
sage: class A:
    ....: @cached_method
    ....: def f(self):
    ....:     return 1
sage: class B:
    ....: g=A.f
    ....: def f(self):
    ....:     return 2
sage: b=B()
sage: b.f()
2
sage: b.g()
1
sage: b.f()
1
```

```python
>>> from sage.all import *
>>> class A:
... @cached_method
... def f(self):
...     return Integer(1)
>>> class B:
...
```
quotient \((J)\)

Given ideals \(I = \text{self}\) and \(J\) in the same polynomial ring \(P\), return the ideal quotient of \(I\) by \(J\) consisting of the polynomials \(a\) of \(P\) such that \(\{aJ \subset I\}\).

This is also referred to as the colon ideal \((I:J)\).

INPUT:

- \(J\) – multivariate polynomial ideal

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: R.<x,y,z> = PolynomialRing(GF(181), 3)
sage: I = Ideal([x^2 + x*y*z, y^2 - z^3*y, z^3 + y^5*x*z])
sage: J = Ideal([x])
sage: Q = I.quotient(J)
sage: y*z + x in I
False
sage: x in J
True
sage: x * (y*z + x) in I
True
```

radical()

The radical of this ideal.

EXAMPLES:

This is an obviously not radical ideal:
Polynomials, Release 10.4

```python
sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: I = (x^2, y^3, (x*z)^4 + y^3 + 10*x^2) * R
sage: I.radical()
Ideal (y, x) of Multivariate Polynomial Ring in x, y, z over Rational Field
```

That the radical is correct is clear from the Groebner basis.

```python
sage: I.groebner_basis()
[y^3, x^2]
```

This is the example from the Singular manual:

```python
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y - z^2) * R
sage: I.radical()
Ideal (z^2 - y, y^2*z + y*z + 2*y + 2)
```

Note: From the Singular manual: A combination of the algorithms of Krick/Logar and Kemper is used. Works also in positive characteristic (Kempers algorithm).

```python
sage: # needs sage.rings.finite_rings
sage: R.<x,y,z> = PolynomialRing(GF(37), 3)
sage: p = z^2 + 1; q = z^3 + 2
sage: I = (p*q^2, y - z^2) * R
sage: I.radical()
Ideal (z^2 - y, y^2*z + y*z + 2*y + 2)
```

(continues on next page)
Polynomials, Release 10.4

>>> I = (p*q**Integer(2), y - z**Integer(2)) * R
>>> I.radical()
Ideal (z^2 - y, y^2*z + y*z + 2*y + 2)
of Multivariate Polynomial Ring in x, y, z over Finite Field of size 37

saturation(other)

Return the saturation (and saturation exponent) of the ideal self with respect to the ideal other.

INPUT:

- other – another ideal in the same ring

OUTPUT: a pair (ideal, integer)

EXAMPLES:

```
sage: R.<x, y, z> = QQ[]
sage: I = R.ideal(x^5*z^3, x*y*z, y*z^4)
sage: J = R.ideal(z)
sage: I.saturation(J)
(Ideal (y, x^5) of Multivariate Polynomial Ring in x, y, z over Rational Field, 4)
```

syzygy_module()

Computes the first syzygy (i.e., the module of relations of the given generators) of the ideal.

EXAMPLES:

```
sage: R.<x,y> = PolynomialRing(QQ)
sage: f = 2*x^2 + y
sage: g = y
sage: h = Integer(2)*f + g
sage: I = Ideal([f,g,h])
sage: M = I.syzygy_module(); M
[-2 -1 1]
[-y 2*x^2 + y 0]
sage: G = vector(I.gens())
sage: M*G
(0, 0)
```

```python
from sage.all import *
```

```python
R = PolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ngens(2)
sage: f = Integer(2)*x**Integer(2) + y
g = y
h = Integer(2)*f + g
I = Ideal([f,g,h])
M = I.syzygy_module(); M
```

(continues on next page)
Polynomials, Release 10.4

ALGORITHM:
Uses Singular’s syz command.

transformed_basis \(\text{algorithm} = \text{'gwalk'}, \text{other} = \text{None}, \text{singular} = \text{None} \)
Return a lex or other Groebner Basis for this ideal.

INPUT:

- \text{algorithm} – see below for options.
- \text{other} – only valid for \text{algorithm} = \text{'fglm'}: if provided, conversion will be performed to this ring. Otherwise a lex Groebner basis will be returned.

ALGORITHMS:

- \text{"fglm"} – FGLM algorithm. The input ideal must be given with a reduced Groebner Basis of a zero-dimensional ideal
- \text{"gwalk"} – Groebner Walk algorithm (default)
- \text{"awalk1"} – ‘first alternative’ algorithm
- \text{"awalk2"} – ‘second alternative’ algorithm
- \text{"twalk"} – Tran algorithm
- \text{"fwalk"} – Fractal Walk algorithm

EXAMPLES:

```python
>>> from sage.all import *
```

```python
R.<x,y,z> = PolynomialRing(QQ,3)
sage: I = Ideal([y^3+x^2,x^2*y+x^2, x^3-x^2, z^4-x^2-y])
sage: I = Ideal(I.groebner_basis())
sage: S.<z,x,y> = PolynomialRing(QQ,3,order='lex')
sage: J = Ideal(I.transformed_basis('fglm',S))
sage: J
Ideal (z^4 + y^3 - y, x^2 + y^3, x*y^3 - y^3, y^4 + y^3)
of Multivariate Polynomial Ring in z, x, y over Rational Field
```

```python
R.<z,y,x> = PolynomialRing(GF(32003), 3, order='lex')
sage: I = Ideal([y^3 + x*y*z + y^2*z + x*z^3, 3 + x*y + x^2*y + y^2*z])
```

(continues on next page)
sage: I.transformed_basis('gwalk')
needs sage.rings.finite_rings

\[z^*y^2 + y^*x^2 + y^*x + 3, \]
\[z^*x + 8297*y^8*x^2 + 8297*y^8*x + 3565*y^7 - 8297*y^6*x^4 + 15409*y^6*x^3 \]
\[- 8297*y^6*x^2 - 8297*y^5*x^5 + 15409*y^5*x^4 - 8297*y^5*x^3 + 3565*y^5*x^2 \]
\[+ 3565*y^5*x + 3565*y^4*x^3 + 3565*y^4*x^2 - 10668*y^4 - 10668*y^3*x \]
\[- 8297*y^2*x^9 - 1185*y^2*x^8 + 14224*y^2*x^7 - 1185*y^2*x^6 - 8297*y^2*x^5 \]
\[- 14223*y*x^7 - 10666*y*x^6 - 10666*y*x^5 - 14223*y*x^4 + x^5 + 2*x^4 + x^3, \]
\[y^9 - y^7*x^2 - y^7*x - y^6*x^3 - y^6*x^2 - 3*y^6 - 3*y^5*x - y^3*x^7 \]
\[- 3*y^3*x^6 - 3*y^3*x^5 - y^3*x^4 - 9*y^2*x^5 - 18*y^2*x^4 - 9*y^2*x^3 \]
\[- 27*y*x^3 - 27*y*x^2 - 27*x \]

ALGORITHM:

Uses Singular.

\texttt{triangular_decomposition(algorithm=None, singular=None)}

Decompose zero-dimensional ideal self into triangular sets.

This requires that the given basis is reduced w.r.t. to the lexicographical monomial ordering. If the basis of self does not have this property, the required Groebner basis is computed implicitly.

INPUT:

- \texttt{algorithm} – string or None (default: None)

ALGORITHMS:

- "\texttt{singular:triangL}" – decomposition of self into triangular systems (Lazard).

OUTPUT: a list \(T \) of lists \(t \) such that the variety of \(t \) is the union of the varieties of \(t \) in \(L \) and each \(t \) is in triangular form.

EXAMPLES:
sage: P.<e,d,c,b,a> = PolynomialRing(QQ, 5, order='lex')
sage: I = sage.rings.ideal.Cyclic(P)
sage: GB = Ideal(I.groebner_basis('libsingular:stdfglm'))
sage: GB.triangular_decomposition('singular:triangLfak')
[Ideal (a - 1, b - 1, c - 1, d^2 + 3*d + 1, e + d + 3) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a - 1, b - 1, c^2 + 3*c + 1, d + c + 3, e - 1) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a - 1, b^2 + 3*b + 1, c + b + 3, d - 1, e - 1) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a - 1, b^3 + b^2 + b + 1, -c + b^2, -d + b^3, e + b^3 + b^2 + b + 1) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a - 1, b^4 + 3*a + 1, c - 1, d - 1, e + a + 3) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^2 + 3*a + 1, b - 1, c - 1, d - 1, e + a + 3) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^2 + 3*a + 1, b + a + 3, c - 1, d - 1, e - 1) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^4 + 4*a^3 + 6*a^2 + a + 1,
 -11*b^2 + 6*b*a^3 - 26*b*a^2 + 41*b*a - 4*b - 8*a^3 + 31*a^2 - 40*a - 24,
 11*c + 3*a^3 - 13*a^2 + 26*a - 2, 11*d + 3*a^3 - 13*a^2 + 26*a - 2,
 -11*e - 11*b + 6*a^3 - 26*a^2 + 41*a - 4) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^4 + a^3 + a^2 + a + 1, b - 1, c + a^3 + a^2 + a + 1, -d + a^3, -e + a^2) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^4 + 3*a^3 + a^2 + a + 1, b - a, c - a, d^2 + 3*d*a + a^2, e + d + 3*a) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^4 + a^3 + a^2 + a + 1, b - c^2 + 3*c*a + a^2, d + c + 3*a, e - a) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^4 + a^3 + a^2 + a + 1, b^2 + 3*b*a + a^2, c + b + 3*a, d - a, e - a) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^4 + a^3 + a^2 + a + 1, b^3 + b^2*a + b^2 + b*a^2 + b*a + b^2,
 c + b^2*a^3 + b^2*a^2 + b^2*a + b^2,
 -d + b^2*a^2 + b^2*a + b^2 + b*a^2 + b*a + a^2,
 -e + b^2*a^3 - b*a^2 - b*a - b - a^2 - a) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
Ideal (a^4 + a^3 + 6*a^2 - 4*a + 1,
 -11*b^2 + 6*b*a^3 + 10*b*a^2 + 39*b*a + 2*b + 16*a^3 + 23*a^2 + 104*a - 24,
 11*c + 3*a^3 + 5*a^2 + 25*a + 1, 11*d + 3*a^3 + 5*a^2 + 25*a + 1,
 -11*e - 11*b + 6*a^3 + 10*a^2 + 39*a + 2) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field]

sage: R.<x1,x2> = PolynomialRing(QQ, 2, order='lex')
sage: f1 = 1/2*((x1^2 + 2*x1 - 4)*x2^2 + 2*(x1^2 + x1)*x2 + x1^2)
sage: f2 = 1/2*((x1^2 + 2*x1 + 1)*x2^2 + 2*(x1^2 + x1)*x2 - 4*x1^2)
sage: I = Ideal(f1,f2)
sage: I.triangular_decomposition()
[Ideal (x2, x1^2) of Multivariate Polynomial Ring in x1, x2 over Rational Field,
Ideal (x2, x1^2) of Multivariate Polynomial Ring in x1, x2 over Rational Field]
Ideal \((x_2^2, x_1^2)\) of Multivariate Polynomial Ring in \(x_1\), \(x_2\) over Rational Field,

Ideal \((x_2^4 + 4x_2^3 - 6x_2^2 - 20x_2 + 5, 8x_1 - x_2^3 + x_2^2 + 13x_2 - 5)\) of Multivariate Polynomial Ring in \(x_1\), \(x_2\) over Rational Field

```python
>>> from sage.all import *

>>> P = PolynomialRing(QQ, Integer(5), order='lex', names=('e', 'd', 'c', 'b', 'a',)); (e, d, c, b, a,)

>>> I = sage.rings.ideal.Cyclic(P)

>>> GB = Ideal(I.groebner_basis(libsingular:stdfglm))

>>> GB.triangular_decomposition(singular:triangLfak)

[ Ideal (a - 1, b - 1, c - 1, d^2 + 3*d + 1, e + d + 3) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
  Polynomial Ring in e, d, c, b, a over Rational Field,
  Ideal (a - 1, b^2 + 3*b + 1, c + b + 3, d - 1, e - 1) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
  Polynomial Ring in e, d, c, b, a over Rational Field,
  Ideal (a - 1, b^4 + 3*b^3 + b^2 + b + 1, -c + b^2, -d + b^3, e + b^3 + b^2 + b + 1) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
  Polynomial Ring in e, d, c, b, a over Rational Field,
  Ideal (a^2 + 3*a + 1, b - 1, c - 1, d - 1, e + a + 3) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
  Polynomial Ring in e, d, c, b, a over Rational Field,
  Ideal (a - 1, b + a + 3, c - 1, d - 1, e - 1) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
  Polynomial Ring in e, d, c, b, a over Rational Field,
  Ideal (a^4 - 4*a^3 + 6*a^2 + a + 1,
      -11*b^2 + 6*b*a^3 - 26*b*a^2 + 41*b*a - 4*b - 8*a^3 + 31*a^2 - 40*a - 24,
      11*c + 3*a^3 - 13*a^2 + 26*a - 2, 11*d + 3*a^3 - 13*a^2 + 26*a - 2,
      -11*e - 11*b + 6*a^3 - 26*a^2 + 41*a - 4) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
  Polynomial Ring in e, d, c, b, a over Rational Field,
  Ideal (a^4 + a^3 + a^2 + a + 1,
      -b - 1, c + a^3 + a^2 + a + 1, -d - a^3, -c + a^2) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
  Polynomial Ring in e, d, c, b, a over Rational Field,
  Ideal (a^4 + a^3 + a^2 + a + 1,
      b^2 + 3*b^2*a + a^2, c + b + 3*a, d - a, e - a) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
  Polynomial Ring in e, d, c, b, a over Rational Field,
  Ideal (a^4 + a^3 + a^2 + a + 1,
      b^3 + b^2*a + b^2 + b*a^2 + b*a + b + a^3 + a^2 + a + 1,
      c + b^2*a^3 + b^2*a^2 + b^2*a + b^2,
      -d + b^2*a^2 + b^2*a + b^2 + b*a^2 + b*a + a^2,
      -e + b^2*a^3 - b*a^2 - b*a - b - a^2 - a) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
  Polynomial Ring in e, d, c, b, a over Rational Field,
  Ideal (a^4 + a^3 + a^2 + a + 1,
      -b^2 + 6*b*a^3 + 10*b*a^2 + 39*b*a + 2*b + 16*a^3 + 23*a^2 + 104*a - 24,
      11*c + 3*a^3 + 5*a^2 + 25*a + 1, 11*d + 3*a^3 + 5*a^2 + 25*a + 1,
      -11*e - 11*b + 6*a^3 + 10*a^2 + 39*a + 2) of Multivariate Polynomial Ring in e, d, c, b, a over Rational Field,
  Polynomial Ring in e, d, c, b, a over Rational Field]

>>> R = PolynomialRing(QQ, Integer(2), order='lex', names=('x1', 'x2',)); (x1,
.. code-block::

    x2,) = R._first_ngens(2)
    >>> f1 = Integer(1)/Integer(2)*((x1**Integer(2) + Integer(2)*x1 -
    ... Integer(4))*x2**Integer(2) + Integer(2)*(x1**Integer(2) + x1)*x2 +
    ... x1**Integer(2))
    >>> f2 = Integer(1)/Integer(2)*((x1**Integer(2) + Integer(2)*x1 +
    ... Integer(1))*x2**Integer(2) + Integer(2)*(x1**Integer(2) + x1)*x2 -
    ... Integer(4)*x1**Integer(2))
    >>> I = Ideal(f1,f2)
    >>> I.triangular_decomposition()
    [Ideal (x2, x1^2) of Multivariate Polynomial Ring in x1, x2 over Rational...
    ... Field, Ideal (x2, x1^2) of Multivariate Polynomial Ring in x1, x2 over Rational...
    ... Field, Ideal (x2, x1^2) of Multivariate Polynomial Ring in x1, x2 over Rational...
    ... Field, Ideal (x2^4 + 4*x2^3 - 6*x2^2 - 20*x2 + 5, 8*x1 - x2^3 + x2^2 + 13*x2 - 5)
    of Multivariate Polynomial Ring in x1, x2 over Rational Field]

.. _triangular-decomposition:

variety (``ring=None``)

Return the variety of this ideal.

Given a zero-dimensional ideal :math:`I (= \text{self})` of a polynomial ring :math:`P` whose order is lexicographic, return the variety of :math:`I` as a list of dictionaries with (variable, value) pairs. By default, the variety of the ideal over its coefficient field :math:`K` is returned; :math:`\text{ring}` can be specified to find the variety over a different ring.

These dictionaries have cardinality equal to the number of variables in :math:`P` and represent assignments of values to these variables such that all polynomials in :math:`I` vanish.

If :math:`\text{ring}` is specified, then a triangular decomposition of :math:`\text{self}` is found over the original coefficient field :math:`K`; then the triangular systems are solved using root-finding over :math:`\text{ring}`. This is particularly useful when :math:`K` is :math:`\mathbb{Q}` (to allow fast symbolic computation of the triangular decomposition) and :math:`\text{ring}` is :math:`\mathbb{R}`, :math:`\mathbb{C}`, or :math:`\mathbb{Q}\overline{\mathbb{Q}}` (to compute the whole real or complex variety of the ideal).

Note that with :math:`\text{ring}=\mathbb{R}` or :math:`\mathbb{C}`, computation is done numerically and potentially inaccurately; in particular, the number of points in the real variety may be miscomputed. With :math:`\text{ring}=\mathbb{A}` or :math:`\mathbb{Q}\overline{\mathbb{Q}}`, computation is done exactly (which may be much slower, of course).

**INPUT:**

- :math:`\text{ring}` – return roots in the :math:`\text{ring}` instead of the base ring of this ideal (default: None)
- :math:`\text{algorithm}` – algorithm or implementation to use; see below for supported values
- :math:`\text{proof}` – return a provably correct result (default: True)

**EXAMPLES:**

.. code-block::

    # needs sage.rings.finite_rings
    sage: K.<w> = GF(27)  # this example is from the MAGMA handbook
    sage: P.<x, y> = PolynomialRing(K, 2, order='lex')
    sage: I = Ideal([x^8 + y + 2, y^6 + x*y^5 + x^2])
    sage: I = Ideal(I.groebner_basis()); I
    Ideal (x - y^47 - y^45 + y^44 - y^41 - y^39 - y^38 - y^37 - y^36
    + y^35 - y^34 - y^33 + y^32 - y^31 + y^30 + y^28 + y^27 + y^26
    + y^25 - y^23 + y^22 + y^21 - y^19 - y^18 - y^16 + y^15 + y^13
    + y^12 - y^10 + y^9 + y^8 + y^7 - y^6 + y^4 + y^3 + y^2 + y - 1,
    y^48 + y^41 - y^40 + y^37 - y^36 - y^33 + y^32 - y^29 + y^28
    - y^25 + y^24 + y^2 + y + 1)
    of Multivariate Polynomial Ring in x, y over Finite Field in w of size 3^3

(continues on next page)
However, we only account for solutions in the ground field and not in the algebraic closure:

\[
\text{sage: } I = I\text{.vector_space_dimension()}
\]

Here we compute the points of intersection of a hyperbola and a circle, in several fields:

\[
\text{sage: } K, <x, y> = \text{PolynomialRing}(\mathbb{Q}, 2, \text{order='lex'})
\]

\[
\text{sage: } I = \text{Ideal}([x^2 - 1, (x-2)^2 + (y-1)^2 - 1])
\]

\[
\text{sage: } I = \text{Ideal}(I\text{.groebner_basis()}); I
\]

\[
\text{Ideal } (x + y^3 - 2*y^2 + 4*y - 4, y^4 - 2*y^3 + 4*y^2 - 4*y + 1)
\]

of Multivariate Polynomial Ring in x, y over Rational Field

\[
\text{>>> from sage.all import *}
\]

\[
\text{>>> K = PolynomialRing(QQ, Integer(2), order='lex', names=('x', 'y')); (x, y,}
\]

\[
\text{(continues on next page)}
\]
These two curves have one rational intersection:

\[
\text{sage: } I.\text{variety()}
\]
\[
[(y: 1, x: 1)]
\]

There are two real intersections:

\[
\text{sage: } \text{sorted}(I.\text{variety(ring=RR)}, \text{key}=\text{str})
\]
\[
[(y: 0.3611030805286474?, x: 2.769292354238632?),
(y: 1.0000000000000000000, x: 1.0000000000000000000)]
\]

and a total of four intersections:

\[
\text{sage: } \text{sorted}(I.\text{variety(ring=CC)}, \text{key}=\text{str})
\]
\[
[(y: 0.3194484597356763? + 1.633170240915238?*I,
 x: 0.115353822880682? - 0.5897428050222055?*I),
(y: 0.3194484597356763? - 1.633170240915238?*I,
 x: 0.115353822880682? + 0.5897428050222055?*I),
(y: 0.3611030805286474?, x: 2.769292354238632?),
(y: 1.0000000000000000000, x: 1.0000000000000000000)]
\]

(continues on next page)
We can also use the optional package msolve to compute the variety. See msolve for more information.

```python
sage: I.variety(RBF, algorithm='msolve', proof=False) # optional - msolve
{(x: [2.76929235423863 +/- 2.08e-15], y: [0.361103080528647 +/- 4.53e-16]),
 (x: 1.000000000000000, y: 1.000000000000000)}
```

Computation over floating point numbers may compute only a partial solution, or even none at all. Notice that x values are missing from the following variety:

```python
sage: R.<x,y> = CC[]
sage: I = ideal([x**Integer(2)+y**Integer(2)-Integer(1),x*y-Integer(1)])
sage: sorted(I.variety(), key=str)
```

This is due to precision error, which causes the computation of an intermediate Groebner basis to fail.

3.1. Multivariate Polynomials and Polynomial Rings
If the ground field’s characteristic is too large for Singular, we resort to a toy implementation:

```python
sage: # needs sage.rings.finite_rings
sage: R.<x,y> = PolynomialRing(GF(2147483659^3), order='lex')
sage: I = ideal([x^3 - 2*y^2, 3*x + y^4])
sage: I.variety()
verbose 0 (...: multi_polynomial_ideal.py, groebner_basis) Warning: falling back to very slow toy implementation.
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back to very slow toy implementation.
verbose 0 (...: multi_polynomial_ideal.py, variety) Warning: falling back to very slow toy implementation.
[{y: 0, x: 0}]
```

The dictionary expressing the variety will be indexed by generators of the polynomial ring after changing to the target field. But the mapping will also accept generators of the original ring, or even generator names as strings, when provided as keys:

```python
>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> R = PolynomialRing(GF(Integer(2147483659)**Integer(3)), order='lex',
... names=('x', 'y')); (x, y,) = R._first_ngens(2)
>>> I = ideal([x**Integer(3) - Integer(2)*y**Integer(2), Integer(3)*x +
... y**Integer(4)])
>>> I.variety()
verbose 0 (...: multi_polynomial_ideal.py, groebner_basis) Warning: falling back to very slow toy implementation.
verbose 0 (...: multi_polynomial_ideal.py, dimension) Warning: falling back to very slow toy implementation.
verbose 0 (...: multi_polynomial_ideal.py, variety) Warning: falling back to very slow toy implementation.
[{y: 0, x: 0}]
```

The dictionary expressing the variety will be indexed by generators of the polynomial ring after changing to the target field. But the mapping will also accept generators of the original ring, or even generator names as strings, when provided as keys:

```python
sage: # needs sage.rings.number_field
sage: K.<x,y> = QQ[]
sage: I = ideal([x^2 + 2*y - 5, x + y + 3])
sage: v = I.variety(AA)[0]; v[x], v[y]
(4.464101615137755?, -7.464101615137755?)
```

```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> K = QQ['x', 'y']; (x, y,) = K._first_ngens(2)
>>> I = ideal([x**Integer(2) + Integer(2)*y - Integer(5), x + y + Integer(3)])
>>> v = I.variety(AA)[Integer(0)]; v[x], v[y]
(4.464101615137755?, -7.464101615137755?)
```

```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> K = QQ['x', 'y']; (x, y,) = K._first_ngens(2)
>>> I = ideal([x**Integer(2) + Integer(2)*y - Integer(5), x + y + Integer(3)])
>>> v = I.variety(AA)[Integer(0)]; v[x], v[y]
(4.464101615137755?, -7.464101615137755?)
```
msolve also works over finite fields:

```python
sage: R.<x, y> = PolynomialRing(GF(536870909), 2, order='lex') # needs sage.rings.finite_rings
sage: I = Ideal([x^2 - 1, y^2 - 1]) # needs sage.rings.finite_rings
sage: sorted(I.variety(algorithm='msolve', proof=False), key=str) # optional - msolve,
....:
 proof=False),
....:
 key=str)
{x: 1, y: 1},
{x: 1, y: 536870908},
{x: 536870908, y: 1},
{x: 536870908, y: 536870908}
```

but may fail in small characteristic, especially with ideals of high degree with respect to the characteristic:

```python
sage: R.<x, y> = PolynomialRing(GF(3), 2, order='lex')
sage: I = Ideal([x^2 - 1, y^2 - 1])
sage: I.variety(algorithm='msolve', proof=False) # optional - msolve
Traceback (most recent call last):
...:
NotImplementedError: characteristic 3 too small
```

**Algorithm:**

- With `algorithm = "triangular_decomposition"` (default), uses triangular decomposition, via Singular if possible, falling back on a toy implementation otherwise.
- With `algorithm = "msolve"`, uses the optional package msolve. Note that msolve uses heuristics and therefore requires setting the `proof` flag to `False`. See `msolve` for more information.

**vector_space_dimension()**

Return the vector space dimension of the ring modulo this ideal. If the ideal is not zero-dimensional, a `TypeError` is raised.
ALGORITHM:
Uses Singular.

EXAMPLES:

```python
sage: R.<u,v> = PolynomialRing(QQ)
sage: g = u^4 + v^4 + u^3 + v^3
sage: I = ideal(g) + ideal(g.gradient())
```

```python
sage: I.dimension() 0
sage: I.vector_space_dimension() 4
```

```python
>>> from sage.all import *

>>> R = PolynomialRing(QQ, names=('u', 'v',)); (u, v,) = R._first_ngens(2)
```

```python
>>> g = u**Integer(4) + v**Integer(4) + u**Integer(3) + v**Integer(3)
```

```python
>>> I = ideal(g) + ideal(g.gradient())
```

```python
>>> I.dimension() 0
>>> I.vector_space_dimension() 4
```

When the ideal is not zero-dimensional, we return infinity:

```python
sage: R.<x,y> = PolynomialRing(QQ)
sage: I = R.ideal(x)
```

```python
sage: I.dimension() 1
sage: I.vector_space_dimension() +Infinity
```

```python
>>> from sage.all import *

>>> R = PolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ngens(2)
```

```python
>>> I = R.ideal(x)
```

```python
>>> I.dimension() 1
>>> I.vector_space_dimension() +Infinity
```

Due to integer overflow, the result is correct only modulo $2^{32}$, see Issue #8586:

```python
sage: P.<x,y,z> = PolynomialRing(GF(32003), 3)
```

```python
needs sage.rings.finite_rings
sage: sage.rings.ideal.FieldIdeal(P).vector_space_dimension() # known bug, needs sage.rings.finite_rings
```

```python
32777216864027
```

```python
>>> from sage.all import *

>>> P = PolynomialRing(Integer(32003)), Integer(3), names=('x', 'y', 'z',
```

```python
needs sage.rings.finite_rings
>>> sage.rings.ideal.FieldIdeal(P).vector_space_dimension() # known bug, needs sage.rings.finite_rings
```

```python
32777216864027
```

```
```
Bases: `MPolynomialIdeal_singular_repr`, `Ideal_nc`

Creates a non-commutative polynomial ideal.

**INPUT:**

- `ring` - the g-algebra to which this ideal belongs
- `gens` - the generators of this ideal
- `coerce` (optional - default: `True`) - generators are coerced into the ring before creating the ideal
- `side` - optional string, either "left" (default) or "twosided"; defines whether this ideal is left of two-sided.

**EXAMPLES:**

```sage
sage: # needs sage.combinat sage.modules
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)

sage: H = A.g_algebra({y*x: x*y-z, z*x: x*z+2*x, z*y: y*z-2*y})

sage: H.inject_variables()
Defining x, y, z

sage: I = H.ideal([y^2, x^2, z^2 - H.one()],
 # indirect doctest
 coerce=False)

sage: I
random
Left Ideal (y^2, x^2, z^2 - 1) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}

sage: sorted(I.gens(), key=str)
x^2, y^2, z^2 - 1

sage: H.ideal([y^2, x^2, z^2 - H.one()], side="twosided")
random
Twosided Ideal (y^2, x^2, z^2 - 1) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}

sage: sorted(H.ideal([y^2, x^2, z^2 - H.one()], side="twosided").gens(),
 key=str)
x^2, y^2, z^2 - 1

sage: H.ideal([y^2, x^2, z^2 - H.one()], side="right")
Traceback (most recent call last):
...
ValueError: Only left and two-sided ideals are allowed.
```

```python
>>> from sage.all import *
>>> # needs sage.combinat sage.modules
>>> A = FreeAlgebra(QQ, Integer(3), names=('x', 'y', 'z')); (x, y, z,) = A._first_ngens(3)
>>> H = A.g_algebra({y*x: x*y-z, z*x: x*z+Integer(2)*x, z*y: y*z-Integer(2)*y})
>>> H.inject_variables()
Defining x, y, z

>>> I = H.ideal([y**Integer(2), x**Integer(2), z**Integer(2) - H.one()], # indirect doctest
 coerce=False)

>>> I
random
Left Ideal (y^2, x^2, z^2 - 1) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}

>>> sorted(I.gens(), key=str)
x^2, y^2, z^2 - 1

>>> H.ideal([y**Integer(2), x**Integer(2), z**Integer(2) - H.one()], side="twosided")
random
Twosided Ideal (y^2, x^2, z^2 - 1) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}

>>> sorted(H.ideal([y**Integer(2), x**Integer(2), z**Integer(2) - H.one()], side="twosided").gens(),
 key=str)
x^2, y^2, z^2 - 1

>>> H.ideal([y**Integer(2), x**Integer(2), z**Integer(2) - H.one()], side="right")
Traceback (most recent call last):
...
ValueError: Only left and two-sided ideals are allowed.
```
Polynomials, Release 10.4

˓→"twosided") # random
Twosided Ideal (y^2, x^2, z^2 - 1) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,
ncrel axioms: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}
>>> sorted(H.ideal([y**Integer(2), x**Integer(2), z**Integer(2) - H.one()]), side="twosided").gens(),
...   key=str)
[x^2, y^2, z^2 - 1]
>>> H.ideal([y**Integer(2), x**Integer(2), z**Integer(2) - H.one()], side="right")
 Traceback (most recent call last):
...
ValueError: Only left and two-sided ideals are allowed.

elimination_ideal (variables)

Return the elimination ideal of this ideal with respect to the variables given in variables.

EXAMPLES:

sage: # needs sage.combinat sage.modules
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x: x*y-z, z*x: x*z+2*x, z*y: y*z-2*y})
sage: H.inject_variables()
Defining x, y, z
sage: I = H.ideal([y^2, x^2, z^2 - H.one()], coerce=False)
sage: I.elimination_ideal([x, z])
Left Ideal (y^2) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,
ncrel axioms: {...}

sage: J = I.twostd(); J
Twosided Ideal (z^2 - 1, y*z - y, x*z + x, y^2, 2*x*y - z - 1, x^2) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,
ncrel axioms: {...}

sage: J.elimination_ideal([x, z])
Twosided Ideal (y^2) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,
ncrel axioms: {...}

>>> from sage.all import *
>>> # needs sage.combinat sage.modules
>>> A = FreeAlgebra(QQ, Integer(3), names=('x', 'y', 'z',)); (x, y, z) = A._first_ngens()

>>> H = A.g_algebra({y*x: x*y-z, z*x: x*z+Integer(2)*x, z*y: y*z-Integer(2)*y})

>>> H.inject_variables()
Defining x, y, z

>>> I = H.ideal([y**Integer(2), x**Integer(2), z**Integer(2) - H.one()],
...   coerce=False)

>>> I.elimination_ideal([x, z])
Left Ideal (y^2) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,
ncrel axioms: {...}

>>> J = I.twostd(); J
Twosided Ideal (z^2 - 1, y*z - y, x*z + x, y^2, 2*x*y - z - 1, x^2) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,
ncrel axioms: {...}

>>> J.elimination_ideal([x, z])

(continues on next page)
Twosided Ideal \((y^2)\) of  
Noncommutative Multivariate Polynomial Ring in \(x, y, z\) over Rational Field,  
n\(c\)-relations: \{…\}

**ALGORITHM:** Uses Singular’s `eliminate` command

**reduce** \((p)\)

Reduce an element modulo a Groebner basis for this ideal.

It returns 0 if and only if the element is in this ideal. In any case, this reduction is unique up to monomial orders.

**EXAMPLES:**

```sage
sage: # needs sage.combinat sage.modules
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H.<x,y,z> = A.g_algebra({y*x: x*y-z, z*x: x*z+2*x, z*y: y*z-2*y})
sage: I = H.ideal([y^2, x^2, z^2 - H.one()],
...: coerce=False, side='twosided')
sage: Q = H.quotient(I); Q #random
Quotient of
Noncommutative Multivariate Polynomial Ring in \(x, y, z\) over Rational Field,
n\(c\)-relations: \{z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z\}
by the ideal \((y^2, x^2, z^2 - 1)\)
sage: Q.2^2 == Q.one() # indirect doctest
True
```

Here, we see that the relation that we just found in the quotient is actually a consequence of the given relations:

```sage
sage: H.2^2 - H.one() in I.std().gens() # indirect doctest
True
```

Here is the corresponding direct test:

```sage
>>> from sage.all import *
>>> # needs sage.combinat sage.modules
>>> A = FreeAlgebra(QQ, Integer(3), names=('x', 'y', 'z',)); (x, y, z,) = A._first_ngens(3)
>>> H = A.g_algebra({y*x: x*y-z, z*x: x*z+Integer(2)*x, z*y: y*z-Integer(2)*y},
... names=('x', 'y', 'z',)); (x, y, z,) = H._first_ngens(3)
>>> I = H.ideal([y**Integer(2), x**Integer(2), z**Integer(2) - H.one()],
... coerce=False, side='twosided')
>>> Q = H.quotient(I); Q #random
Quotient of
Noncommutative Multivariate Polynomial Ring in \(x, y, z\) over Rational Field,
n\(c\)-relations: \{z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z\}
by the ideal \((y^2, x^2, z^2 - 1)\)
>>> Q.gen(2)**Integer(2) == Q.one() # indirect doctest
True
```

```sage
>>> from sage.all import *
>>> # needs sage.combinat sage.modules
>>> H.gen(2)**Integer(2) - H.one() in I.std().gens() # needs sage.combinat sage.modules
True
```
res (length)

Compute the resolution up to a given length of the ideal.

NOTE:

Only left syzygies can be computed. So, even if the ideal is two-sided, then the resolution is only one-sided. In that case, a warning is printed.

EXAMPLES:

```
sage: from sage.all import *
sage: I.reduce(z**Integer(2))
needs sage.combinat sage.modules
```

std()

Compute a GB of the ideal. It is two-sided if and only if the ideal is two-sided.

EXAMPLES:

```
sage: I.std() # random
Left Ideal (z^2 - 1, y*z - y, x*z + x, y^2, 2*x*y - z - 1, x^2) of Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field, nc-relations: (z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z)
sage: sorted(I.std().gens(), key=str)
[2*x*y - z - 1, x*z + x, x^2, y*z - y, y^2, z^2 - 1]
```
A = FreeAlgebra(QQ, Integer(3), names=('x', 'y', 'z')); (x, y, z) = A._first_ngens(3)
H = A.g_algebra({y*x: x*y-z, z*x: x*z+Integer(2)*x, z*y: y*z-Integer(2)*y})
H.inject_variables()
I = H.ideal([y**Integer(2), x**Integer(2), z**Integer(2) - H.one()],
coerce=False)
I.std() #random
Left Ideal (z^2 - 1, y*z - y, x*z + x, y^2, 2*x*y - z - 1, x^2) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,
crrelations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}
sorted(I.std().gens(), key=str)
[2*x*y - z - 1, x*z + x, x^2, y*z - y, y^2, z^2 - 1]

If the ideal is a left ideal, then \texttt{std()} returns a left Groebner basis. But if it is a two-sided ideal, then the output of \texttt{std()} and \texttt{twostd()} coincide:

\begin{verbatim}
sage: JL = H.ideal([x^3, y^3, z^3 - Integer(4)*z])
sage: JL #random
Left Ideal (x^3, y^3, z^3 - 4*z) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,
crrelations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}
sage: sorted(JL.gens(), key=str)
[x^3, y^3, z^3 - 4*z]
sage: JL.std() # random
[2*x*y*z - z^2 - 2*z, x*z^2 + 2*x*z, y^2*z - 2*y*z, x^2*y - x*z - 2*x, x^3]}
sage: JT = H.ideal([x^3, y^3, z^3 - 4*z], side='twosided')
sage: JT #random
Twosided Ideal (x^3, y^3, z^3 - 4*z) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,
crrelations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}
sage: sorted(JT.gens(), key=str)
[x^3, y^3, z^3 - 4*z]
sage: JT.std() # random
Twosided Ideal (x^3 - 4*z, y*z^2 - 2*y*z, x*z^2 + 2*x*z, y^2 - 2*x*y, 2*x*y^z - z^2 - 2*z, x^2*z + 2*x^2, y^3, x*y^2 - y*z, x^2*y - x*z - 2*x, x^3) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,
crrelations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}
sage: sorted(JT.std().gens(), key=str)
[2*x*y*z - z^2 - 2*z, x*y^2 - y*z, x*z^2 + 2*x*z, y^2*z - 2*y*z, x^2*y - x*z - 2*x, x^2*z + 2*x^2, x^3, y*z^2 - 2*y*z, y^2*z - 2*y^2, y^3, z^3 - 4*z]
sage: JT.std() == JL.twostd()
True
\end{verbatim}
Polynomials, Release 10.4

>>> JL #random
Left Ideal (x^3, y^3, z^3 - 4*z) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,
nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}

>>> sorted(JL.gens(), key=str)
[x^3, y^3, z^3 - 4*z]

>>> JL.std() # random
Left Ideal (z^3 - 4*z, y*z^2 - 2*y*z, 
x*z^2 + 2*x*z, 2*x*y*z - z^2 - 2*z, y^3, x^3) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,
nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}

>>> sorted(JL.std().gens(), key=str)
[2*x*y*z - z^2 - 2*z, x*z^2 + 2*x*z, x^3, y*z^2 - 2*y*z, y^3, z^3 - 4*z]

>>> JT = H.ideal([x**Integer(3), y**Integer(3), z**Integer(3) - Integer(4)*z],
                side=twosided)

>>> JT
Twosided Ideal (x^3, y^3, z^3 - 4*z) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,
nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}

>>> sorted(JT.gens(), key=str)
[x^3, y^3, z^3 - 4*z]

>>> JT.std() # random
Twosided Ideal (z^3 - 4*z, y*z^2 - 2*y*z, 
x*z^2 + 2*x*z, 2*x*y*z - y*z - 2*z, y^2 - x*y, x^2*z + 2*x^2, 
y^3, x*y^2 + y*z, x^2*y - x*z - 2*x, x^3) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field,
nc-relations: {z*x: x*z + 2*x, z*y: y*z - 2*y, y*x: x*y - z}

>>> sorted(JT.std().gens(), key=str)
[2*x*y*z - z^2 - 2*z, x^2*z + 2*x*z, y^2 - x*y, x^2*y - x*z - 2*x, 
x^2*z + 2*x^2, x^3, y*z^2 - 2*y*z, y^2*z - 2*y^2, y^3, z^3 - 4*z]

>>> JT.std() == JL.twostd()
True

ALGORITHM: Uses Singular’s std command

syzygy_module()
Compute the first syzygy (i.e., the module of relations of the given generators) of the ideal.

NOTE:
Only left syzygies can be computed. So, even if the ideal is two-sided, then the syzygies are only one-sided.
In that case, a warning is printed.

EXAMPLES:

sage: # needs sage.combinat sage.modules
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x: x*y-z, z*x: x*z+2*x, z*y: y*z-2*y})
sage: H.inject_variables()
Defining x, y, z
sage: I = H.ideal([y^2, x^2, z^2-H.one()], coerce=False)
sage: G = vector(I.gens()); G
...: UserWarning: You are constructing a free module
...: over a noncommutative ring. Sage does not have a concept
...: of left/right and both sided modules, so be careful.
...: It's also not guaranteed that all multiplications are
...: done from the right side.
...: UserWarning: You are constructing a free module

(continues on next page)
over a noncommutative ring. Sage does not have a concept of left/right and both sided modules, so be careful. It’s also not guaranteed that all multiplications are done from the right side.

\[(y^2, x^2, z^2 - 1)\]

```
sage: M = I.syzygy_module(); M

[-z^2 - 8*z - 15
 0
 y^2]
[0
 -z^2 + 8*z - 15
 x^2]
[x^2*z^2 + 8*x^2]
 -y^2*z^2 + 7*y^3*z - 12*y^3
 6*y*z^2]
[x^3*z^2 + 7*x^3
 -x*y^2*z^2 + 9*x*y^2*z - 6*x*y^3 + 20*x*y^2 - y^2*z^2 + 9*x^2*y^2 - 20*x*y^2 + 320*y
 52*y*z^2 - 224*y^2 + 320*y
 -6*x*z^2]
[x^2*y^2*z + 4*x^2*y^2 - 8*x*y*z^2 - 48*x*y*z + 12*z^3 - 64*x*y + 108*z^2 + 312*z + 288
 -y^4*z + 4*y^4 + 4*y^4
 0]
[2*x^3*y*z + 8*x^3*y + 9*x^2*z^2 + 8*x*y^2*z - 15*y^2*z^2
 -4*x*y^2*z + 2*z^2 + 2*z]
[x^2*y*z^2 + 9*x^2*y*z - 6*x*y^3 + 20*x*y^2 - y^2*z^2 + 9*x^2*y^2 - 20*x*y^2 + 320*y
 52*y*z^2 - 224*y^2 + 320*y
 -6*x*z^2]
[x^2*y^2*z + 4*x^2*y^2 - 8*x*y*z^2 - 48*x*y*z + 12*z^3 - 64*x*y + 108*z^2 + 312*z + 288
 -y^4*z + 4*y^4 + 4*y^4
 0]
[x^3*y^2*z + 4*x^3*y^2 + 18*x^2*y*z - 36*x*z^3 + 66*x^2*y - 432*x*z^2 - 1656*x*z - 2052*x
 -x*y^4*z + 4*x*y^4 - 48*y*z^2 + 36*y*z]
```

```
sage: M*G

needs sage.combinat sage.modules
```

```python
>>> from sage.all import *

needs sage.combinat sage.modules

>>> A = FreeAlgebra(QQ, Integer(3), names=('x', 'y', 'z',)); (x, y, z,) = A._first_ngens(3)

>>> H = A.g_algebra({'y'*x: x*y-z, z*x: x*z+Integer(2)*x, z*y: y*z-Integer(2)*y})

>>> H.inject_variables()

Defining x, y, z
```

```
sage: M*G

needs sage.combinat sage.modules
```

(continues on next page)
\begin{verbatim}
>>> G = vector(I.gens()); G
Warning: You are constructing a free module over a noncommutative ring. Sage does not have a concept of left/right and both sided modules, so be careful. It's also not guaranteed that all multiplications are done from the right side.

>>> M = I.syzygy_module(); M
\begin{verbatim}
[ -z^2 + 8*z - 15
  y^2 ]
[ 0
  -z^2 + 8*z - 15
  x^2 ]
[ 2*z + 15*x^2
  -y^2*z^2 + 7*y^2*z - 12*y^3
  6*y^2*z^2 ]
[ 3*z + 12*x^3
  -x*y^2*z^2 + 9*x*y^2*z - 6*x^2*y^3 + 20*x^2*y - 72*z*y^2 - 15
  -y^3*z^2 + 8*y^2*z - 12*y^3
  6*z^3*y^2 + 7*z^2*y^3
  x^2*y^2*z + 4*x*y^2*z - 8*x*y^2*z - 64*x*y + 108*z^2 + 288
  -y^4*z + 4*y^4
  0 ]
[ 2*x^3*y*z + 8*x^3*y + 9*x^2*z + 195*x*y^2
  -2*x*y^3*z + 8*x*y^3 - 12*y^4
  -x^3*y^2 + 9*x^2*y^2 - 195*x*y^2
  -36*x*y^2 + 24*x^2 + 18*y^2 ]
[ x^4 + 4*x^4
  -x^2*y^2*z + 4*x^2*y^2 - 4*x*y^2 + 32*x*y^2 + 32*x*y^2 + 6*z^3
  64*x*y^2 + 66*z^2 - 240*z + 288
  -y^3*z^2 + 8*y^3*z - 114*y^3
  48*y^3*z^2 - 36*y^2*z ]
>>> M*G
\end{verbatim}
\end{verbatim}
ALGORITHM: Uses Singular's syz command
twostd()
Compute a two-sided GB of the ideal (even if it is a left ideal).

**EXAMPLES:**

```python
sage: # needs sage.combinat sage.modules
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H = A.g_algebra({y*x: x*y-z, z*x: x*z+2*x, z*y: y*z-2*y})
sage: H.inject_variables()
Defining x, y, z
sage: I = H.ideal([y^2, x^2, z^2 - H.one()], coerce=False)
sage: I.twostd()
Twosided Ideal (z^2 - 1, y*z - y, x*z + x, y^2, 2*x*y - z - 1, x^2) of
Noncommutative Multivariate Polynomial Ring in x, y, z over Rational Field...
sage: sorted(I.twostd().gens(), key=str)
[2*x*y - z - 1, x*z + x, x^2, y*z - y, y^2, z^2 - 1]
```

**ALGORITHM:** Uses Singular's `twostd` command

```python
class sage.rings.polynomial.multi_polynomial_ideal.RequireField(f)
Bases: MethodDecorator

Decorator which throws an exception if a computation over a coefficient ring which is not a field is attempted.

Note: This decorator is used automatically internally so the user does not need to use it manually.
```

```python
sage.rings.polynomial.multi_polynomial_ideal.is_MPolynomialIdeal(x)
Return True if the provided argument x is an ideal in a multivariate polynomial ring.

INPUT:

• x – an arbitrary object

EXAMPLES:

```python
sage: from sage.rings.polynomial.multi_polynomial_ideal import is_MPolynomialIdeal
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: I = [x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y + 2*y*z - y]

>>> from sage.all import *
>>> from sage.rings.polynomial.multi_polynomial_ideal import is_MPolynomialIdeal
(continues on next page)
```
Sage distinguishes between a list of generators for an ideal and the ideal itself. This distinction is inconsistent with Singular but matches Magma’s behavior.

```python
sage: is_MPolynomialIdeal(I)
False
```

```python
>>> from sage.all import *
```

```python
>>> is_MPolynomialIdeal(I)
False
```

```python
sage: I = Ideal(I)
```

```python
sage: is_MPolynomialIdeal(I)
True
```

```python
>>> from sage.all import *
```

```python
>>> I = Ideal(I)
```

```python
>>> is_MPolynomialIdeal(I)
True
```

Sage distinguishes between a list of generators for an ideal and the ideal itself. This distinction is inconsistent with Singular but matches Magma’s behavior.

```
3.1.7 Polynomial Sequences

We call a finite list of polynomials a Polynomial Sequence. Polynomial sequences in Sage can optionally be viewed as consisting of various parts or sub-sequences. These kind of polynomial sequences which naturally split into parts arise naturally for example in algebraic cryptanalysis of symmetric cryptographic primitives. The most prominent examples of these systems are: the small scale variants of the AES [CMR2005] (cf. `sage.crypto.mq.sr.SR()`) and Flurry/Curry [BPW2006]. By default, a polynomial sequence has exactly one part.

AUTHORS:

- Martin Albrecht (2007ff): initial version
- Martin Albrecht (2009): refactoring, clean-up, new functions
- Martin Albrecht (2011): refactoring, moved to sage.rings.polynomial
- Alex Raichev (2011-06): added algebraic_dependence()
- Charles Bouillaguet (2013-1): added solve()

EXAMPLES:

As an example consider a small scale variant of the AES:
```
sage: sr = mq.SR(2, 1, 2, 4, gf2=True, polybori=True)
```

(continues on next page)
We can construct a polynomial sequence for a random plaintext-ciphertext pair and study it:

```
sage: set_random_seed(1)
sage: while True: # workaround (see :issue:`31891`)
 try:
 F, s = sr.polynomial_system()
 break
 except ZeroDivisionError:
 pass

sage: F
```

Polynomial Sequence with 112 Polynomials in 64 Variables

```
sage: r2 = F.part(2); r2
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

```python
>>> from sage.all import *
>>> set_random_seed(Integer(1))
>>> while True: # workaround (see :issue:A31891A) #
... try:
... F, s = sr.polynomial_system()
... break
... except ZeroDivisionError:
... pass
>>> F # needs sage.rings.polynomial.pbori
Polynomial Sequence with 112 Polynomials in 64 Variables
```

```python
>>> r2 = F.part(Integer(2)); r2 # needs sage.rings.polynomial.pbori
(100 + k100 + x100 + x102 + x103,
 w201 + k101 + x100 + x101 + x103 + 1,
 w202 + k102 + x100 + x101 + x102 + 1,
 w203 + k103 + x101 + x102 + x103,
 w210 + k110 + x110 + x112 + x113,
 w211 + k111 + x110 + x111 + x113 + 1,
 w212 + k112 + x110 + x111 + x112 + 1,
 w213 + k113 + x111 + x112 + x113,
 x100*w100 + x100*w103 + x101*w102 + x102*w101 + x103*w100,
 x100*w100 + x101*w101 + x101*w100 + x102*w102 + x103*w101,
 x100*w101 + x101*w102 + x101*w100 + x102*w101 + x102*w100 + x103*w102,
 x100*w100 + x100*w102 + x100*w103 + x101*w100 + x101*w101 + x102*w102 + x103*w100 +
 x100,
 x100*w101 + x100*w103 + x101*w101 + x101*w102 + x102*w100 + x102*w103 + x103*w101 +
 x101,
 x100*w100 + x100*w102 + x101*w100 + x101*w102 + x101*w103 + x102*w100 + x102*w101 +
 x103*w101 +
 x101,
 x100*w101 + x100*w102 + x101*w101 + x101*w102 + x102*w100 + x102*w101 + x102*w100 +
 x103*w101 +
 x102, x100*w100 + x101*w100 + x101*w103 + x102*w101 + x103*w103 + x103,
 x100*w100 + x100*w101 + x100*w103 + x101*w101 + x102*w100 + x102*w102 + x103*w100 +
 x100,
 x100*w102 + x101*w100 + x101*w103 + x102*w101 + x103*w100 + x103*w102 +
 x101,
 x100*w100 + x100*w101 + x100*w102 + x101*w102 + x102*w100 + x102*w101 + x102*w103 +
 x103*w101 +
 x103, x100*w101 + x101*w100 + x101*w102 + x102*w100 + x102*w102 + x103*w101 +
 x100,
 x100*w100 + x101*w100 + x101*w102 + x102*w100 + x103*w103 + w100,
 x100*w102 + x101*w101 + x101*w103 + x102*w100 + x102*w100 + x103*w103 + w103,
 x100*w102 + x101*w101 + x102*w100 + x103*w103 + 1,
```

(continues on next page)
We separate the system in independent subsystems:

```
sage: C = Sequence(r2).connected_components(); C
#---
--needs sage.rings.polynomial.pbori
[[w200 + k100 + x100 + x102 + x103,
 w201 + k101 + x100 + x101 + x103 + 1,
 w202 + k102 + x100 + x101 + x102 + 1,
 w203 + k103 + x101 + x102 + x103,
 x100*w100 + x100*w103 + x101*w102 + x102*w101 + x103*w100,
 x100*w100 + x101*w101 + x101*w102 + x102*w101 + x103*w100,
 x100*w100 + x100*w101 + x101*w100 + x101*w103 + x102*w102 + x103*w101,
 x100*w101 + x100*w102 + x101*w101 + x101*w103 + x102*w100 + x102*w103 + x103*w102,
 x100*w100 + x100*w102 + x100*w103 + x101*w100 + x101*w101 + x102*w102 + x103*w100 +
 x100,
 x100*w101 + x100*w103 + x101*w101 + x101*w102 + x102*w100 + x102*w103 + x103*w101 +
 x101,
 x100*w100 + x100*w102 + x101*w100 + x101*w103 + x102*w100 + x102*w101 + x103*w102 +
 x103*w102 + x102,
 x100*w100 + x100*w101 + x100*w103 + x101*w100 + x101*w102 + x102*w100 + x102*w101 +
 x103*w103 + 1],
[w210 + k110 + x110 + x112 + x113,
 w211 + k111 + x110 + x111 + x113 + 1,
 w212 + k112 + x110 + x111 + x112 + 1,
 w213 + k113 + x111 + x112 + x113,
 x110*w110 + x110*w113 + x111*w112 + x112*w111 + x113*w110,
 x110*w110 + x110*w111 + x111*w110 + x111*w113 + x112*w112 + x113*w111,
 x110*w111 + x110*w112 + x111*w110 + x111*w113 + x112*w110 + x112*w113 + x113*w112,
 x110*w110 + x110*w112 + x110*w113 + x111*w110 + x111*w111 + x112*w112 + x113*w110 +
 x110,
 x110*w111 + x110*w113 + x111*w111 + x111*w112 + x112*w110 + x112*w113 + x113*w111 +
 x111,
 x110*w110 + x110*w112 + x110*w113 + x111*w110 + x111*w111 + x112*w112 + x113*w110 +
 x110*w112 + x111*w111 + x111*w112 + x112*w110 + x112*w113 + x113*w111 +
 x112,
 x110*w111 + x110*w113 + x111*w111 + x111*w112 + x112*w110 + x112*w113 + x113*w112 +
 x113,
 x110*w112 + x111*w111 + x111*w112 + x112*w110 + x112*w113 + x113*w112 + x114*w113 + 1)
```
\[ \begin{align*} &-x^{113}*w^{112} + x^{112}, \\
&\quad x^{110}*w^{111} + x^{110}*w^{112} + x^{111}*w^{110} + x^{111}*w^{113} + x^{112}*w^{111} + x^{112}*w^{112} + x^{113}*w^{110} + \\
&\quad x^{110}*w^{110} + x^{110}*w^{111} + x^{111}*w^{111} + x^{111}*w^{112} + x^{112}*w^{111} + x^{112}*w^{112} + x^{113}*w^{110} + \\
&\quad -w^{110}, \\
&\quad x^{110}*w^{110} + x^{110}*w^{111} + x^{111}*w^{110} + x^{111}*w^{112} + x^{112}*w^{110} + x^{112}*w^{111} + x^{113}*w^{110} + \\
&\quad -w^{111}, \\
&\quad x^{113}*w^{111} + w^{112}, \\
&\quad x^{110}*w^{110} + x^{110}*w^{111} + x^{111}*w^{112} + x^{112}*w^{110} + x^{112}*w^{111} + x^{113}*w^{113} + w^{113}, \\
&\quad x^{110}*w^{112} + x^{111}*w^{111} + x^{112}*w^{110} + x^{113}*w^{113} + 1 \} \end{align*} \]

\textbf{sage: } \text{C[0].groebner_basis()} \\
\# needs sage.rings.polynomial.pbori

\text{Polynomial Sequence with 30 Polynomials in 16 Variables}

\text{from sage.all import *}

\text{C = Sequence(r2).connected_components(); C} \\
\# needs sage.rings.polynomial.pbori

\[
\begin{align*}
&w^{200} + k^{100} + x^{100} + x^{102} + x^{103}, \\
&w^{201} + k^{101} + x^{100} + x^{101} + x^{103} + 1, \\
&w^{202} + k^{102} + x^{100} + x^{101} + x^{102} + 1, \\
&w^{203} + k^{103} + x^{101} + x^{102} + x^{103}, \\
&w^{100}*w^{100} + w^{100}*w^{103} + w^{101}*w^{102} + x^{102}*w^{101} + x^{103}*w^{100}, \\
&w^{100}*w^{101} + w^{100}*w^{101} + w^{101}*w^{100} + x^{102}*w^{102} + x^{103}*w^{101}, \\
&w^{100}*w^{101} + w^{100}*w^{102} + w^{101}*w^{100} + x^{101}*w^{101} + x^{102}*w^{100} + x^{102}*w^{103} + x^{103}*w^{102}, \\
&w^{100}*w^{100} + w^{100}*w^{102} + w^{100}*w^{103} + w^{101}*w^{100} + w^{101}*w^{101} + w^{102}*w^{102} + w^{103}*w^{100} + \ldots \\
&-w^{100}, \\
&w^{100}*w^{101} + w^{100}*w^{103} + w^{101}*w^{101} + w^{101}*w^{102} + w^{102}*w^{100} + w^{102}*w^{103} + w^{103}*w^{101} + \ldots \\
&-w^{101}, \\
&w^{100}*w^{100} + w^{100}*w^{102} + w^{101}*w^{100} + w^{101}*w^{102} + w^{101}*w^{103} + w^{102}*w^{100} + w^{102}*w^{101} + w^{102}*w^{101} + \ldots \\
&w^{103}*w^{102} + w^{102}, \\
&w^{100}*w^{101} + w^{101}*w^{100} + w^{101}*w^{102} + w^{102}*w^{100} + w^{103}*w^{100} + w^{103}*w^{100} + w^{103}*w^{100} + \ldots \\
&-w^{100}, \\
&w^{100}*w^{102} + w^{101}*w^{100} + w^{101}*w^{103} + w^{102}*w^{101} + w^{103}*w^{100} + w^{103}*w^{102} + w^{103}*w^{100} + \ldots \\
&w^{101}, \\
&w^{100}*w^{100} + w^{100}*w^{101} + w^{100}*w^{102} + w^{101}*w^{102} + w^{102}*w^{100} + w^{102}*w^{101} + w^{102}*w^{100} + w^{103}*w^{103} + \ldots \\
&w^{103}*w^{101} + w^{102}, \\
&w^{100}*w^{101} + w^{101}*w^{100} + w^{101}*w^{102} + w^{102}*w^{100} + w^{103}*w^{101} + w^{103}*w^{103} + w^{103}, \\
&w^{100}*w^{102} + w^{101}*w^{101} + w^{102}*w^{100} + w^{103}*w^{103} + \ldots \end{align*}
\]

\text{from sage.all import *}

\text{C = Sequence(r2).connected_components(); C} \\
\# needs sage.rings.polynomial.pbori

\text{Polynomial Sequence with 30 Polynomials in 16 Variables}
and compute the coefficient matrix:

```python
sage: A, v = Sequence(r2).coefficients_monomials() # needs sage.rings.polynomial.pbori
sage: A.rank() # needs sage.rings.polynomial.pbori
32
```

Using these building blocks we can implement a simple XL algorithm easily:

```python
sage: sr = mq.SR(1,1,1,4, gf2=True, polybori=True, order=lex) # needs sage.rings.polynomial.pbori
sage: while True: # workaround (see :issue:`A31891A`) # needs sage.rings.polynomial.pbori
 try:
 F, s = sr.polynomial_system()
 break
 except ZeroDivisionError:
 pass
sage: monomials = [a*b for a in F.variables() for b in F.variables() if a < b]
len(monomials)
190
```

```python
sage: F2 = Sequence(map(mul, cartesian_product_iterator((monomials, F))))
sage: A, v = F2.coefficients_monomials(sparse=False)
sage: A.echelonize()
sage: A
6840 x 4474 dense matrix over Finite Field of size 2...
sage: A.rank()
4056
```

```python
sage: A[4055] * v
k001*k003
```

```python
>>> from sage.all import *
```

(continues on next page)
F, s = sr.polynomial_system()
break
except ZeroDivisionError:
    pass

# needs sage.rings.polynomial.pbori
monomials = [a*b for a in F.variables() for b in F.variables() if a < b]
len(monomials)
190
F2 = Sequence(map(mul, cartesian_product_iterator((monomials, F))))
A, v = F2.coefficients_monomials(sparse=False)
A.echelonize()
A

Note: In many other computer algebra systems (cf. Singular) this class would be called Ideal but an ideal is a very distinct object from its generators and thus this is not an ideal in Sage.

Classes

sage.rings.polynomial.multi_polynomial_sequence PolynomialSequence(arg1,
    arg2=None, immutable=False, cr=False, cr_str=None)

Construct a new polynomial sequence object.

INPUT:

- arg1 – a multivariate polynomial ring, an ideal or a matrix
- arg2 – an iterable object of parts or polynomials (default: None)
  - immutable – if True the sequence is immutable (default: False)
  - cr – print a line break after each element (default: False)
  - cr_str – print a line break after each element if ‘str’ is called (default: None)

EXAMPLES:

sage: P.<a,b,c,d> = PolynomialRing(GF(127), 4)
sage: I = sage.rings.ideal.Katsura(P)  
˓→needs sage.libs.singular

>>> from sage.all import *
>>> P = PolynomialRing(GF(Integer(127)), Integer(4), names=('a', 'b', 'c', 'd',));
˓→(a, b, c, d,) = P._first_ngens(4)
>>> I = sage.rings.ideal.Katsura(P)  
˓→needs sage.libs.singular
If a list of tuples is provided, those form the parts:

```python
sage: F = Sequence([I.gens(), I.gens()], I.ring()); F # indirect doctest

[\begin{align*}
& a + 2b + 2c + 2d - 1, \\
& a^2 + 2b^2 + 2c^2 + 2d^2 - a, \\
& 2a*b + 2b*c + 2c*d - b, \\
& b^2 + 2a*c + 2b*d - c, \\
& a + 2b + 2c + 2d - 1, \\
& a^2 + 2b^2 + 2c^2 + 2d^2 - a, \\
& 2a*b + 2b*c + 2c*d - b, \\
& b^2 + 2a*c + 2b*d - c
\end{align*}]
```

If an ideal is provided, the generators are used:

```python
sage: Sequence(I) # needs sage.libs.singular

[\begin{align*}
& a + 2b + 2c + 2d - 1, \\
& a^2 + 2b^2 + 2c^2 + 2d^2 - a, \\
& 2a*b + 2b*c + 2c*d - b, \\
& b^2 + 2a*c + 2b*d - c, \\
& a + 2b + 2c + 2d - 1, \\
& a^2 + 2b^2 + 2c^2 + 2d^2 - a, \\
& 2a*b + 2b*c + 2c*d - b, \\
& b^2 + 2a*c + 2b*d - c
\end{align*}]
```

If a list of polynomials is provided, the system has only one part:

```python
sage: F = Sequence(I.gens(), I.ring()); F # indirect doctest

[\begin{align*}
& a + 2b + 2c + 2d - 1, \\
& a^2 + 2b^2 + 2c^2 + 2d^2 - a, \\
& 2a*b + 2b*c + 2c*d - b, \\
& b^2 + 2a*c + 2b*d - c
\end{align*}]
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

```python
>>> from sage.all import *
>>> I = sage.rings.ideal.ideal((x^2, y^2, z^2), QQ)
>>> F = Sequence(I.gens(), I.ring()); F
[a + 2*b + 2*c + 2*d - 1,
 a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
 2*a*b + 2*b*c + 2*c*d - b,
 b^2 + 2*a*c + 2*b*d - c]
>>> F.nparts()
1
```

We test that the ring is inferred correctly:

```python
sage: P.<x,y,z> = GF(2)[]
```

```python
sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence
sage: PolynomialSequence([1,x,y]).ring()
Multivariate Polynomial Ring in x, y, z over Finite Field of size 2
```

```python
sage: PolynomialSequence([[1,x,y], [0]]).ring()
Multivariate Polynomial Ring in x, y, z over Finite Field of size 2
```

```python
>>> from sage.all import *
```

```python
>>> P = GF(Integer(2))[x, y, z]; (x, y, z,) = P._first_ngens(3)
>>> from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence
>>> PolynomialSequence([[Integer(1),x,y]], [Integer(0)]).ring()
Multivariate Polynomial Ring in x, y, z over Finite Field of size 2
```

```python
class sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic(parts, ring, immutable=False, cr=False, cr_str=None)
```

Bases: Sequence_generic

Construct a new system of multivariate polynomials.

INPUT:

- part -- a list of lists with polynomials
- ring -- a multivariate polynomial ring
- immutable -- if True the sequence is immutable (default: False)
- cr -- print a line break after each element (default: False)
- cr_str -- print a line break after each element if 'str' is called (default: None)

EXAMPLES:
sage: P.<a,b,c,d> = PolynomialRing(GF(127), 4)
sage: I = sage.rings.ideal.Katsura(P)  # indirect doctest
→ needs sage.libs.singular
sage: Sequence([I.gens()], I.ring())  # indirect doctest  # needs sage.libs.singular
[a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]

If an ideal is provided, the generators are used.:

sage: Sequence(I)  # indirect doctest
→ needs sage.libs.singular
[a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]

If a list of polynomials is provided, the system has only one part.:

sage: Sequence(I.gens(), I.ring())  # indirect doctest
→ needs sage.libs.singular
[a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]

algebraic_dependence()  
Returns the ideal of annihilating polynomials for the polynomials in self, if those polynomials are algebraically dependent. Otherwise, returns the zero ideal.

OUTPUT:
If the polynomials \( f_1, \ldots, f_r \) in self are algebraically dependent, then the output is the ideal \( \{ F \in K[T_1, \ldots, T_r] : F(f_1, \ldots, f_r) = 0 \} \) of annihilating polynomials of \( f_1, \ldots, f_r \). Here \( K \) is the coefficient ring of polynomial ring of \( f_1, \ldots, f_r \) and \( T_1, \ldots, T_r \) are new indeterminates. If \( f_1, \ldots, f_r \) are algebraically independent, then the output is the zero ideal in \( K[T_1, \ldots, T_r] \).
### EXAMPLES:

```
sage: # needs sage.libs.singular
sage: R.<x,y> = PolynomialRing(QQ)
sage: S = Sequence([x, x*y])
sage: I = S.algebraic_dependence(); I
Ideal (0) of Multivariate Polynomial Ring in T0, T1 over Rational Field

>>> from sage.all import *

>>> # needs sage.libs.singular

>>> R = PolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> S = Sequence([x, x*y])
>>> I = S.algebraic_dependence(); I
Ideal (0) of Multivariate Polynomial Ring in T0, T1 over Rational Field

sage: # needs sage.libs.singular
sage: R.<x,y> = PolynomialRing(QQ)
sage: S = Sequence([x, (x^2 + y^2 - 1)^2, x*y - 2])
sage: I = S.algebraic_dependence(); I
Ideal (16 + 32*T2 - 8*T0^2 + 24*T2^2 - 8*T0^2*T2 + 8*T2^3 + 9*T0^4 - 2*T0^2*T2^2 + 2*T0^4*T1 + 8*T0^4*T2 - 2*T0^6 + 2*T0^4*T2^2 + T0^8)
of Multivariate Polynomial Ring in T0, T1, T2 over Rational Field

sage: [F(S) for F in I.gens()]
[0]

>>> from sage.all import *

>>> # needs sage.libs.singular

>>> R = PolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ngens(2)

>>> S = Sequence([x, (x^2 + y^2 - 1)^2, x*y - 2])

>>> I = S.algebraic_dependence(); I

Ideal (16 + 32*T2 - 8*T0^2 + 24*T2^2 - 8*T0^2*T2 + 8*T2^3 + 9*T0^4 - 2*T0^2*T2^2 + 2*T0^4*T1 + 8*T0^4*T2 - 2*T0^6 + 2*T0^4*T2^2 + T0^8)
of Multivariate Polynomial Ring in T0, T1, T2 over Rational Field

>>> [F(S) for F in I.gens()]
[0]
```

```
sage: # needs sage.libs.singular
sage: R.<x,y> = PolynomialRing(GF(7))
sage: S = Sequence([x, (x^2 + y^2 - 1)^2, x*y - 2])
sage: I = S.algebraic_dependence(); I
Ideal (2 - 3*T2 - T0^2 + 3*T2^2 - T0^2*T2 + T2^3 + 2*T0^4 - 2*T0^2*T2^2 + T2^4 - T0^4*T1 + T0^4*T2 - 2*T0^6 + 2*T0^4*T2^2 + T0^8)
of Multivariate Polynomial Ring in T0, T1, T2 over Finite Field of size 7

sage: [F(S) for F in I.gens()]
[0]
```

```
>>> from sage.all import *

>>> # needs sage.libs.singular

>>> R = PolynomialRing(GF(Integer(7)), names=('x', 'y',)); (x, y,) = R._first_ngens(2)

>>> S = Sequence([x, (x**Integer(2) + y**Integer(2) - Integer(1))**Integer(2), x*y - Integer(2)])

>>> I = S.algebraic_dependence(); I

Ideal (2 - 3*T2 - T0^2 + 3*T2^2 - T0^2*T2 + T2^3 + 2*T0^4 - 2*T0^2*T2^2 + T2^4 - T0^4*T1 + T0^4*T2 - 2*T0^6 + 2*T0^4*T2^2 + T0^8)
of Multivariate Polynomial Ring in T0, T1, T2 over Finite Field of size 7

sage: [F(S) for F in I.gens()]
[0]
```

(continues on next page)
Ideal \( (2 - 3*T2 - T0^2 + 3*T2^2 - T0^2*T2 + T2^3 + 2*T0^4 - 2*T0^2*T2^2 + T2^4 - T0^4*T1 + T0^4*T2 - 2*T0^6 + 2*T0^4*T2^2 + T0^8) \)
of Multivariate Polynomial Ring in T0, T1, T2 over Finite Field of size 7

>>> [F(S) for F in I.gens()]
[0]

**Note:** This function’s code also works for sequences of polynomials from a univariate polynomial ring, but I don’t know where in the Sage codebase to put it to use it to that effect.

**AUTHORS:**

- Alex Raichev (2011-06-22)

**coefficient_matrix** *(sparse=True)*

Return tuple \((A, v)\) where \(A\) is the coefficient matrix of this system and \(v\) the matching monomial vector.

Thus value of \(A[i,j]\) corresponds the coefficient of the monomial \(v[j]\) in the \(i\)-th polynomial in this system.

Monomials are order w.r.t. the term ordering of \(\text{self.ring()}\) in reverse order, i.e. such that the smallest entry comes last.

**INPUT:**

- **sparse** – construct a sparse matrix (default: True)

**EXAMPLES:**

```plaintext
sage: # needs sage.libs.singular
sage: P.<a,b,c,d> = PolynomialRing(GF(127), 4)
sage: I = sage.rings.ideal.Katsura(P)
sage: I.gens()
[a + 2*b + 2*c + 2*d - 1,
a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
2*a*b + 2*b*c + 2*c*d - b,
b^2 + 2*a*c + 2*b*d - c]
sage: F = Sequence(I)
sage: A, v = F.coefficient_matrix()

doctest:warning...
DeprecationWarning: the function coefficient_matrix is deprecated; use coefficients_monomials instead
See https://github.com/sagemath/sage/issues/37035 for details.
sage: A
[0 0 0 0 0 0 0 0 0 1 2 2 2 126]
[1 0 2 0 0 0 2 126 0 0 0 0 0]
[0 2 0 0 2 0 0 2 0 0 0 126 0 0]
[0 0 1 2 0 0 2 0 0 0 0 0 126 0]
sage: v
[a^2]
[a*b]
[b^2]
[a*c]
[b*c]
[c^2]
[b*d]
[c*d]
[d^2]
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

```
 sage: A*v
 [a + 2*b + 2*c + 2*d - 1]
 [a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a]
 [2*a*b + 2*b*c + 2*c*d - b]
 [b^2 + 2*a*c + 2*b*d - c]

>>> from sage.all import *

>>> # needs sage.libs.singular

>>> P = PolynomialRing(GF(Integer(127)), Integer(4), names=('a', 'b', 'c', 'd'))

>>> (a, b, c, d) = P._first_ngens(4)

>>> I = sage.rings.ideal.Katsura(P)

>>> I.gens()
[a + 2*b + 2*c + 2*d - 1,
 a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
 2*a*b + 2*b*c + 2*c*d - b,
 b^2 + 2*a*c + 2*b*d - c]

>>> F = Sequence(I)

>>> A, v = F.coefficient_matrix()
doctest:warning...
DeprecationWarning: the function coefficient_matrix is deprecated; use coefficients_monomials instead
See https://github.com/sagemath/sage/issues/37035 for details.

>>> A
[0 0 0 0 0 0 0 0 1 2 2 2 126]
[1 0 2 0 0 2 0 0 2 126 0 0 0]
[0 2 0 0 2 0 0 2 0 126 0 0 0]
[0 0 1 2 0 0 2 0 0 0 126 0 0]

>>> v
[a^2]
[a*b]
[b^2]
[a*c]
[b*c]
[c^2]
[b*d]
[c*d]
[d^2]
[a]
[b]
[c]
[d]
[1]

>>> A*v
[a + 2*b + 2*c + 2*d - 1]
[a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a]
[2*a*b + 2*b*c + 2*c*d - b]
[b^2 + 2*a*c + 2*b*d - c]
```

**coefficients_monomials** *(order=None, sparse=True)*

Return the matrix of coefficients $A$ and the matching vector of monomials $v$, such that $A*v = \text{vector}(self)$. **coefficients_monomials** *(order=None, sparse=True)*

Return the matrix of coefficients $A$ and the matching vector of monomials $v$, such that $A*v = \text{vector}(self)$.
Thus value of $A[i,j]$ corresponds the coefficient of the monomial $v[j]$ in the $i$-th polynomial in this system.

Monomials are ordered w.r.t. the term ordering of `order` if given; otherwise, they are ordered w.r.t. `self.ring()` in reverse order, i.e., such that the smallest entry comes last.

**INPUT:**

- `sparse` – construct a sparse matrix (default: True)
- `order` – a list or tuple specifying the order of monomials (default: None)

**EXAMPLES:**

```python
sage: # needs sage.libs.singular
sage: P.<a,b,c,d> = PolynomialRing(GF(127), 4)
sage: I = sage.rings.ideal.Katsura(P)
sage: I.gens()
[a + 2*b + 2*c + 2*d - 1,
a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
2*a*b + 2*b*c + 2*c*d - b,
b^2 + 2*a*c + 2*b*d - c]
sage: F = Sequence(I)
sage: A,v = F.coefficients_monomials()
sage: A
[[0 0 0 0 0 0 0 0 0 1 2 2 2 126],
[1 0 2 0 0 2 0 0 2 126 0 0 0 0],
[0 2 0 0 2 0 0 2 0 0 126 0 0 0],
[0 0 1 2 0 0 2 0 0 0 0 126 0 0]]
sage: v
(a^2, a*b, b^2, a*c, b*c, c^2, b*d, c*d, d^2, a, b, c, d, 1)
sage: A*v
(a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c)
```

```python
>>> from sage.all import *
>>> # needs sage.libs.singular
>>> P = PolynomialRing(GF(Integer(127)), Integer(4), names=('a', 'b', 'c', 'd'))
>>> I = sage.rings.ideal.Katsura(P)
>>> I.gens()
[a + 2*b + 2*c + 2*d - 1,
a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
2*a*b + 2*b*c + 2*c*d - b,
b^2 + 2*a*c + 2*b*d - c]
>>> F = Sequence(I)
>>> A,v = F.coefficients_monomials()
>>> A
[[0 0 0 0 0 0 0 0 0 1 2 2 2 126],
[1 0 2 0 0 2 0 0 2 126 0 0 0 0],
[0 2 0 0 2 0 0 2 0 0 126 0 0 0],
[0 0 1 2 0 0 2 0 0 0 0 126 0 0]]
>>> v
(a^2, a*b, b^2, a*c, b*c, c^2, b*d, c*d, d^2, a, b, c, d, 1)
>>> A*v
(a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c)
```

`connected_components()`

Split the polynomial system in systems which do not share any variables.
EXAMPLES:

As an example consider one part of AES, which naturally splits into four subsystems which are independent:

```python
sage: # needs sage.rings.polynomial.pbori
sage: sr = mq.SR(2, 4, 4, 8, gf2=True, polybori=True)
sage: while True: # workaround (see :issue:`A31891A`)
...: try:
...: F, s = sr.polynomial_system()
...: break
...: except ZeroDivisionError:
...: pass
sage: Fz = Sequence(F.part(2))
sage: Fz.connected_components()
[Polynomial Sequence with 128 Polynomials in 128 Variables, Polynomial Sequence with 128 Polynomials in 128 Variables, Polynomial Sequence with 128 Polynomials in 128 Variables, Polynomial Sequence with 128 Polynomials in 128 Variables]
```

```python
>>> from sage.all import *
>>> # needs sage.rings.polynomial.pbori
>>> sr = mq.SR(Integer(2), Integer(4), Integer(4), Integer(8), gf2=True, polybori=True)
>>> while True: # workaround (see :issue:`A31891A`)
... try:
... F, s = sr.polynomial_system()
... break
... except ZeroDivisionError:
... pass

>>> Fz = Sequence(F.part(Integer(2)))

>>> Fz.connected_components()
[Polynomial Sequence with 128 Polynomials in 128 Variables, Polynomial Sequence with 128 Polynomials in 128 Variables, Polynomial Sequence with 128 Polynomials in 128 Variables, Polynomial Sequence with 128 Polynomials in 128 Variables]
```

connection_graph()  

Return the graph which has the variables of this system as vertices and edges between two variables if they appear in the same polynomial.

EXAMPLES:

```python
sage: # needs sage.rings.polynomial.pbori
sage: B.<x,y,z> = BooleanPolynomialRing()
sage: F = Sequence([x*y + y + 1, z + 1])
sage: G = F.connection_graph(); G
Graph on 3 vertices
sage: G.is_connected()
False
sage: F = Sequence([x])
sage: F.connection_graph()
Graph on 1 vertex
```

```python
>>> from sage.all import *
>>> # needs sage.rings.polynomial.pbori
>>> B = BooleanPolynomialRing(names=('x', 'y', 'z',)); (x, y, z,) = B._first_ngens(3)
>>> F = Sequence([x*y + y + Integer(1), z + Integer(1)])
```

(continues on next page)
>>> G = F.connection_graph(); G
Graph on 3 vertices
>>> G.is_connected()
False
>>> F = Sequence([x])
>>> F.connection_graph()
Graph on 1 vertex

\textbf{groebner\_basis} (*args, **kwargs)

Compute and return a Groebner basis for the ideal spanned by the polynomials in this system.

\textbf{INPUT:}

- \texttt{args} – list of arguments passed to \texttt{MPolynomialIdeal.groebner\_basis} call
- \texttt{kwargs} – dictionary of arguments passed to \texttt{MPolynomialIdeal.groebner\_basis} call

\textbf{EXAMPLES:}

```
sage: # needs sage.rings.polynomial.pbori
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F, s = sr.polynomial_system()
sage: gb = F.groebner_basis()
sage: Ideal(gb).basis_is_groebner()
True
```

```
>>> from sage.all import *
>>> # needs sage.rings.polynomial.pbori
>>> sr = mq.SR(allow_zero_inversions=True)
>>> F, s = sr.polynomial_system()
>>> gb = F.groebner_basis()
>>> Ideal(gb).basis_is_groebner()
True
```

\textbf{ideal}()

Return ideal spanned by the elements of this system.

\textbf{EXAMPLES:}

```
sage: # needs sage.rings.polynomial.pbori
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F, s = sr.polynomial_system()
sage: P = F.ring()
sage: I = F.ideal()
sage: J = I.elimination_ideal(P.gens()[4:-4])
sage: J <= I
True
sage: set(J.gens().variables()).issubset(P.gens()[:4] + P.gens()[-4:])
True
```

```
>>> from sage.all import *
>>> # needs sage.rings.polynomial.pbori
>>> sr = mq.SR(allow_zero_inversions=True)
>>> F, s = sr.polynomial_system()
>>> P = F.ring()
>>> I = F.ideal()
>>> J = I.elimination_ideal(P.gens()[Integer(4):-Integer(4)])
```

(continues on next page)
is_groebner (singular=Singular)

Returns True if the generators of this ideal (self.gens()) form a Groebner basis.

Let \( I \) be the set of generators of this ideal. The check is performed by trying to lift \( \text{Syz}(LM(I)) \) to \( \text{Syz}(I) \) as \( I \) forms a Groebner basis if and only if for every element \( S \) in \( \text{Syz}(LM(I)) \):

\[
S \ast G = \sum_{i=0}^{m} h_i g_i \rightarrow G 0.
\]

EXAMPLES:

```python
sage: # needs sage.libs.singular
sage: R.<a,b,c,d,e,f,g,h,i,j> = PolynomialRing(GF(127), 10)
sage: I = sage.rings.ideal.Cyclic(R, 4)
sage: I.basis.is_groebner()
False
sage: I2 = Ideal(I.groebner_basis())
sage: I2.basis.is_groebner()
True
```

maximal_degree()

Return the maximal degree of any polynomial in this sequence.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(GF(7))
```

```python
sage: F = Sequence([x*y + x, x])
sage: F.maximal_degree()
2
```

```python
sage: P.<x,y,z> = PolynomialRing(GF(7))
```

```python
sage: F = Sequence([], universe=P)
```

```python
sage: F.maximal_degree()
-1
```

```python
>>> from sage.all import *
>>> # needs sage.libs.singular
>>> R = PolynomialRing(GF(Integer(127)), Integer(10), names=('a', 'b', 'c', 'd ', 'e', 'f', 'g', 'h', 'i', 'j'))
```

```python
>>> I = sage.rings.ideal.Cyclic(R, Integer(4))
```

```python
>>> I.basis.is_groebner()
False
```

```python
>>> I2 = Ideal(I.groebner_basis())
```

```python
>>> I2.basis.is_groebner()
True
```
monomials()

Return an unordered tuple of monomials in this polynomial system.

EXAMPLES:

```
sage: sr = mq.SR(allow_zero_inversions=True) # needs sage.rings.polynomial.pbori
sage: F, s = sr.polynomial_system() # needs sage.rings.polynomial.pbori
sage: len(F.monomials()) # needs sage.rings.polynomial.pbori
49
```

nmonomials()

Return the number of monomials present in this system.

EXAMPLES:

```
sage: sr = mq.SR(allow_zero_inversions=True) # needs sage.rings.polynomial.pbori
sage: F, s = sr.polynomial_system() # needs sage.rings.polynomial.pbori
sage: F.nmonomials() # needs sage.rings.polynomial.pbori
49
```

nparts()

Return number of parts of this system.

EXAMPLES:
Polynomials, Release 10.4

```python
sage: sr = mq.SR(allow_zero_inversions=True)
needs sage.rings.polynomial.pbori
sage: F, s = sr.polynomial_system()
needs sage.rings.polynomial.pbori
sage: F.nparts()
needs sage.rings.polynomial.pbori
4
```

```python
>>> from sage.all import *

>>> sr = mq.SR(allow_zero_inversions=True)
needs sage.rings.polynomial.pbori
>>> F, s = sr.polynomial_system()
needs sage.rings.polynomial.pbori
>>> F.nparts()
needs sage.rings.polynomial.pbori
4
```

```python
4
```

### nvariables()

Return number of variables present in this system.

**EXAMPLES:**

```python
sage: sr = mq.SR(allow_zero_inversions=True)
needs sage.rings.polynomial.pbori
sage: F, s = sr.polynomial_system()
sage: F.nvariables()
needs sage.rings.polynomial.pbori
20
```

```python
>>> from sage.all import *

>>> sr = mq.SR(allow_zero_inversions=True)
>>> F, s = sr.polynomial_system()
>>> F.nvariables()
20
```

### part(i)

Return i-th part of this system.

**EXAMPLES:**

```python
sage: # needs sage.rings.polynomial.pbori
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F, s = sr.polynomial_system()
sage: R0 = F.part(1)
sage: R0
(k000^2 + k001, k001^2 + k002, k002^2 + k000)
```

```python
>>> from sage.all import *

>>> sr = mq.SR(allow_zero_inversions=True)
>>> F, s = sr.polynomial_system()
>>> R0 = F.part(Integer(1))
```

(continues on next page)
parts()

Return a tuple of parts of this system.

EXAMPLES:

```python
sage: # needs sage.rings.polynomial.pbori
sage: sr = mq.SR(allow_zero_inversions=True)
sage: F, s = sr.polynomial_system()
sage: l = F.parts()
sage: len(l)
4
```

reduced()

If this sequence is \((f_1,\ldots,f_n)\) then this method returns \((g_1,\ldots,g_s)\) such that:

- \((f_1,\ldots,f_n) = (g_1,\ldots,g_s)\)
- \(LT(g_i) \neq LT(g_j)\) for all \(i \neq j\)
- \(LT(g_i)\) does not divide \(m\) for all monomials \(m\) of \(\{g_1,\ldots,g_i-1,g_i+1,\ldots,g_s\}\)
- \(LC(g_i) = 1\) for all \(i\) if the coefficient ring is a field.

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: F = Sequence([z*x+y^3,z+y^3,z+x*y])
sage: F.reduced()
[y^3 + z, x*y + z, x*z - z]
```

Note that tail reduction for local orderings is not well-defined:

```python
sage: R.<x,y,z> = PolynomialRing(QQ,order='negdegrevlex')
sage: F = Sequence([z*x+y^3,z+y^3,z+x*y])
sage: F.reduced()
[z + x*y, x*y - y^3, x^2*y - y^3]
```
\[ y, z \) \) = \) \text{R}._\text{first}_\text{ngens}(3) \)
\[ F = \text{Sequence([}z\cdot x+y**\text{Integer}(3),z+y**\text{Integer}(3),z+x\cdot y\]) \]
\[ F.\text{reduced}() \]
\[ [z + x\cdot y, x\cdot y - y^3, x^2\cdot y - y^3] \]

A fixed error with nonstandard base fields:

\[
\begin{align*}
\text{sage: } & \text{R}._t=\text{QQ['}t'\text{'] } \\
\text{sage: } & \text{K}._x,y=\text{R}.\text{fraction_field()}['x,y'] \\
\text{sage: } & \text{I}=t\cdot x\cdot K \\
\text{sage: } & \text{I}.\text{basis}.\text{reduced}() \\
& \text{[}x\text{]} \\
\end{align*}
\]

The interreduced basis of 0 is 0:

\[
\begin{align*}
\text{sage: } & \text{P}._{x,y,z}=\text{GF}(2)[] \\
\text{sage: } & \text{Sequence([P(0)])}.\text{reduced}() \\
& \text{[]} \\
\end{align*}
\]

Leading coefficients are reduced to 1:

\[
\begin{align*}
\text{sage: } & \text{P}._{x,y} = \text{QQ[]} \\
\text{sage: } & \text{Sequence([}2\cdot x, y\])}.\text{reduced}() \\
& \text{[}x, y\text{]} \\
\text{sage: } & \text{P}._{x,y} = \text{CC[]} \\
\text{sage: } & \text{Sequence([}2\cdot x, y\])}.\text{reduced}() \\
& \text{[}x, y\text{]} \\
\end{align*}
\]

ALGORITHM:

Uses Singular’s interred command or \text{sage.rings.polynomial.toy_buchberger.inter_reduction()} if conversion to Singular fails.
ring()  
Return the polynomial ring all elements live in.

EXAMPLES:

```
sage: sr = mq.SR(allow_zero_inversions=True, gf2=True, order='block') # needs sage.rings.polynomial.pbori
sage: F, s = sr.polynomial_system() # needs sage.rings.polynomial.pbori
sage: print(F.ring().repr_long()) # needs sage.rings.polynomial.pbori
Polynomial Ring
Base Ring : Finite Field of size 2
Size : 20 Variables
Block 0 : Ordering : deglex
 Names : k100, k101, k102, k103, x100, x101, x102, x103, w100, w101, w102, w103, s000, s001, s002, s003
Block 1 : Ordering : deglex
 Names : k000, k001, k002, k003
```

```
>>> from sage.all import *
>>> sr = mq.SR(allow_zero_inversions=True, gf2=True, order='block') # needs sage.rings.polynomial.pbori
>>> F, s = sr.polynomial_system(); F # needs sage.rings.polynomial.pbori
Polynomial Sequence with 40 Polynomials in 20 Variables
>>> F = F.subs(s); F # needs sage.rings.polynomial.pbori
Polynomial Sequence with 40 Polynomials in 16 Variables
```

subs (*args, **kwargs)

Substitute variables for every polynomial in this system and return a new system. See MPolynomial.subs() for calling convention.

INPUT:

- *args – arguments to be passed to MPolynomial.subs()
- **kwargs – keyword arguments to be passed to MPolynomial.subs()

EXAMPLES:

```
sage: sr = mq.SR(allow_zero_inversions=True) # needs sage.rings.polynomial.pbori
sage: F, s = sr.polynomial_system(); F # needs sage.rings.polynomial.pbori
Polynomial Sequence with 40 Polynomials in 20 Variables
sage: F = F.subs(s); F # needs sage.rings.polynomial.pbori
Polynomial Sequence with 40 Polynomials in 16 Variables
```
universe()

Return the polynomial ring all elements live in.

EXAMPLES:

```python
sage: sr = mq.SR(allow_zero_inversions=True, gf2=True, order='block') #...
needs sage.rings.polynomial.pbori
sage: F, s = sr.polynomial_system()
needs sage.rings.polynomial.pbori
sage: print(F.ring().repr_long()) #...
needs sage.rings.polynomial.pbori
Polynomial Ring
Base Ring : Finite Field of size 2
 Size : 20 Variables
 Block 0 : Ordering : deglex
 Name : k100, k101, k102, k103, x100, x101, x102, x103, ...,
 w101, w102, w103, s000, s001, s002, s003
 Block 1 : Ordering : deglex
 Name : k000, k001, k002, k003
```

variables()

Return all variables present in this system. This tuple may or may not be equal to the generators of the ring of this system.

EXAMPLES:

```python
sage: sr = mq.SR(allow_zero_inversions=True) #...
needs sage.rings.polynomial.pbori
sage: F, s = sr.polynomial_system() #...
needs sage.rings.polynomial.pbori
sage: F.variables()[:10] #...
```

(continues on next page)
needs sage.rings.polynomial.pbori
(k003, k002, k001, k000, s003, s002, s001, s000, w103, w102)

>>> from sage.all import *
>>> sr = mq.SR(allow_zero_inversions=True)  
# needs sage.rings.polynomial.pbori
>>> F,s = sr.polynomial_system()  
# needs sage.rings.polynomial.pbori
>>> F.variables()[:Integer(10)]  
# needs sage.rings.polynomial.pbori
(k003, k002, k001, k000, s003, s002, s001, s000, w103, w102)

class sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence\_gf2 (parts, ring, immutable=False, cr=False, cr\_str=None)

Bases: PolynomialSequence\_generic

Polynomial Sequences over \( \mathbb{F}_2 \).

\textbf{coefficients\_monomials} \,(order=\text{None}, \text{sparse=True})

Return the matrix of coefficients \( A \) and the matching vector of monomials \( v \), such that \( A \cdot v = \text{vector}(\text{self}) \).

Thus value of \( A[i, j] \) corresponds the coefficient of the monomial \( v[j] \) in the \( i \)-th polynomial in this system.

Monomials are ordered w.r.t. the term ordering of \( \text{order} \) if given; otherwise, they are ordered w.r.t. \( \text{self.ring()} \) in reverse order, i.e., such that the smallest entry comes last.

\textbf{INPUT}:

- \texttt{sparse} – construct a sparse matrix (default: True)
- \texttt{order} – a list or tuple specifying the order of monomials (default: None)

\textbf{EXAMPLES}:

```
sage: # needs sage.rings.polynomial.pbori
sage: B.<x,y,z> = BooleanPolynomialRing()
sage: F = Sequence([x*y + y + 1, z + 1])
sage: A, v = F.coefficients_monomials()
sage: A
[1 1 0 1]
[0 0 1 1]
sage: v
(x*y, y, z, 1)
sage: A*v
(x*y + y + 1, z + 1)
```

```python
>>> from sage.all import *
>>> # needs sage.rings.polynomial.pbori
>>> B = BooleanPolynomialRing(names=('x', 'y', 'z')); (x, y, z) = B._first_ngens(3)
>>> F = Sequence([x*y + y + Integer(1), z + Integer(1)])
```
eliminate_linear_variables (maxlength=+Infinity, skip=None, return_reductors=False,
use_polybori=False)

Return a new system where linear leading variables are eliminated if the tail of the polynomial has length at most maxlength.

INPUT:

- **maxlength** – an optional upper bound on the number of monomials by which a variable is replaced.
  If `maxlength==+Infinity` then no condition is checked. (default: `+Infinity`).

- **skip** – an optional callable to skip eliminations. It must accept two parameters and return either `True` or `False`. The two parameters are the leading term and the tail of a polynomial (default: `None`).

- **return_reductors** – if `True` the list of polynomials with linear leading terms which were used for reduction is also returned (default: `False`).

- **use_polybori** – if `True` then `polybori.ll.eliminate` is called. While this is typically faster than what is implemented here, it is less flexible (skip is not supported) and may increase the degree (default: `False`).

OUTPUT:

With **return_reductors=True**, a pair of sequences of boolean polynomials are returned, along with the promises that:

1. The union of the two sequences spans the same boolean ideal as the argument of the method
2. The second sequence only contains linear polynomials, and it forms a reduced groebner basis (they all have pairwise distinct leading variables, and the leading variable of a polynomial does not occur anywhere in other polynomials).
3. The leading variables of the second sequence do not occur anywhere in the first sequence (these variables have been eliminated).

With **return_reductors=False**, only the first sequence is returned.

EXAMPLES:

```python
sage: # needs sage.rings.polynomial.pbori
sage: B.<a,b,c,d> = BooleanPolynomialRing()
```

```python
sage: F = Sequence([c + d + b + 1, a + c + d, a*b + c, b*c*d + c])
sage: F.eliminate_linear_variables() # everything vanishes
[]
sage: F.eliminate_linear_variables(maxlength=2)
[b + c + d + 1, b*c + b*d + c, b*c*d + c]
sage: F.eliminate_linear_variables(skip=lambda lm, tail: str(lm)=='a')
[a + c + d, a*c + a*d + a + c, c*d + c]
```

```python
>>> from sage.all import *
>>> # needs sage.rings.polynomial.pbori
```
Polynomials, Release 10.4

(continued from previous page)

```python
>>> B = BooleanPolynomialRing(names=('a', 'b', 'c', 'd')); (a, b, c, d,) = B._first_ngens(4)
>>> F = Sequence([c + d + b + Integer(1), a + c + d, a*b + c, b*c*d + c])
>>> F.eliminate_linear_variables() # everything vanishes
[]
>>> F.eliminate_linear_variables(maxlength=Integer(2))
[b + c + d + 1, b*c + b*d + c, b*c*d + c]
>>> F.eliminate_linear_variables(skip=lambda lm, tail: str(lm) == 'a')
[a + c + d, a*c + a*d + a + c, c*d + c]
```

The list of reductors can be requested by setting `return_reductors` to `True`:

```python
sage: # needs sage.rings.polynomial.pborei
sage: B.<a,b,c,d> = BooleanPolynomialRing()
```

```python
sage: F = Sequence([a + b + d, a + b + c])
```

```python
sage: F, R = F.eliminate_linear_variables(return_reductors=True)
```

```python
sage: F
[]
```

```python
sage: R
[a + b + d, c + d]
```

If the input system is detected to be inconsistent then `[1]` is returned, and the list of reductors is empty:

```python
sage: # needs sage.rings.polynomial.pborei
sage: R.<x,y,z> = BooleanPolynomialRing()
```

```python
sage: S = Sequence([x*y*z + x*y + z*y + x*z, x + y + z + 1, x + y + z])
```

```python
sage: S.eliminate_linear_variables()
[1]
```

```python
sage: R.<x,y,z> = BooleanPolynomialRing()
```

```python
sage: S = Sequence([x*y*z + x*y + z*y + x*z, x + y + z + 1, x + y + z])
```

```python
sage: S.eliminate_linear_variables(return_reductors=True)
([1], [])
```

```python
>>> from sage.all import *
```

```python
>>> # needs sage.rings.polynomial.pborei
>>> B = BooleanPolynomialRing(names=('a', 'b', 'c', 'd')); (a, b, c, d,) = B._first_ngens(4)
>>> F = Sequence([c + d + b + Integer(1), a + c + d, a*b + c, b*c*d + c])
>>> F.eliminate_linear_variables() # everything vanishes
[]
>>> F.eliminate_linear_variables(maxlength=Integer(2))
[b + c + d + 1, b*c + b*d + c, b*c*d + c]
>>> F.eliminate_linear_variables(skip=lambda lm, tail: str(lm) == 'a')
[a + c + d, a*c + a*d + a + c, c*d + c]
```

```python
sage: # needs sage.rings.polynomial.pborei
sage: B.<a,b,c,d> = BooleanPolynomialRing()
```

```python
sage: F = Sequence([a + b + d, a + b + c])
```

```python
sage: F, R = F.eliminate_linear_variables(return_reductors=True)
```

```python
sage: F
[]
```

```python
sage: R
[a + b + d, c + d]
```

If the input system is detected to be inconsistent then `[1]` is returned, and the list of reductors is empty:

```python
sage: # needs sage.rings.polynomial.pborei
sage: R.<x,y,z> = BooleanPolynomialRing()
```

```python
sage: S = Sequence([x*y*z + x*y + z*y + x*z, x + y + z + 1, x + y + z])
```

```python
sage: S.eliminate_linear_variables()
[1]
```

```python
sage: R.<x,y,z> = BooleanPolynomialRing()
```

```python
sage: S = Sequence([x*y*z + x*y + z*y + x*z, x + y + z + 1, x + y + z])
```

```python
sage: S.eliminate_linear_variables(return_reductors=True)
([1], [])
```

```python
>>> from sage.all import *
```

```python
>>> # needs sage.rings.polynomial.pborei
>>> B = BooleanPolynomialRing(names=('a', 'b', 'c', 'd')); (a, b, c, d,) = B._first_ngens(4)
>>> F = Sequence([c + d + b + Integer(1), a + c + d, a*b + c, b*c*d + c])
>>> F.eliminate_linear_variables() # everything vanishes
[]
>>> F.eliminate_linear_variables(maxlength=Integer(2))
[b + c + d + 1, b*c + b*d + c, b*c*d + c]
>>> F.eliminate_linear_variables(skip=lambda lm, tail: str(lm) == 'a')
[a + c + d, a*c + a*d + a + c, c*d + c]
```

3.1. Multivariate Polynomials and Polynomial Rings 715
Note: This is called “massaging” in [BCJ2007].

reduced()
If this sequence is \( f_1, \ldots, f_n \), return \( g_1, \ldots, g_s \) such that:

- \((f_1, \ldots, f_n) = (g_1, \ldots, g_s)\)
- \(LT(g_i) \neq LT(g_j)\) for all \( i \neq j \)
- \(LT(g_i)\) does not divide \( m \) for all monomials \( m \) of \( g_1, \ldots, g_i-1, g_i+1, \ldots, g_s \)

EXAMPLES:

```python
sage: # needs sage.rings.polynomial.pbori
sage: sr = mq.SR(1, 1, 1, 4, gf2=True, polybori=True)

sage: while True:
 ... try:
 ... F, s = sr.polynomial_system()
 ... break
 ... except ZeroDivisionError:
 ... pass

sage: g = F.reduced()

sage: len(g) == len(set(gi.lt() for gi in g))
True

sage: for i in range(len(g)):
 ... for j in range(len(g)):
 ... if i == j:
 ... continue
 ... for t in list(g[j]):
 ... assert g[i].lt() not in t.divisors()
```

```python
>>> from sage.all import *
>>> # needs sage.rings.polynomial.pbori
>>> sr = mq.SR(Integer(1), Integer(1), Integer(1), Integer(4), gf2=True, polybori=True)

>>> while True:
 ... try:
 ... F, s = sr.polynomial_system()
 ... break
 ... except ZeroDivisionError:
 ... pass

>>> g = F.reduced()

>>> len(g) == len(set(gi.lt() for gi in g))
True

>>> for i in range(len(g)):
 ... for j in range(len(g)):
 ... if i == j:
 ... continue
 ... for t in list(g[j]):
 ... assert g[i].lt() not in t.divisors()
```

solve(algorithm='polybori', n=1, eliminate_linear_variables=True, verbose=False, **kwds)
Find solutions of this boolean polynomial system.

This function provides a unified interface to several algorithms dedicated to solving systems of boolean equations. Depending on the particular nature of the system, some might be much faster than some others.

INPUT:
• self – a sequence of boolean polynomials

• algorithm – the method to use. Possible values are polybori, sat and exhaustive_search. (default: polybori, since it is always available)

• n – number of solutions to return. If n == +Infinity then all solutions are returned. If n < ∞ then n solutions are returned if the equations have at least n solutions. Otherwise, all the solutions are returned. (default: 1)

• eliminate_linear_variables – whether to eliminate variables that appear linearly. This reduces the number of variables (makes solving faster a priori), but is likely to make the equations denser (may make solving slower depending on the method).

• verbose – whether to display progress and (potentially) useful information while the computation runs. (default: False)

EXAMPLES:

Without argument, a single arbitrary solution is returned:

```
sage: # needs sage.rings.polynomial.pbori
sage: from sage.doctest.fixtures import reproducible_repr
sage: R.<x,y,z> = BooleanPolynomialRing()
sage: S = Sequence([x*y + z, y*z + x, x + y + z + 1])
sage: sol = S.solve()
sage: print(reproducible_repr(sol))

{{x: 0, y: 1, z: 0}}
```

We check that it is actually a solution:

```
sage: S.subs(sol[0]) # needs sage.rings.polynomial.pbori
[0, 0, 0]
```

We obtain all solutions:

```
sage: sols = S.solve(n=Infinity) # needs sage.rings.polynomial.pbori
sage: print(reproducible_repr(sols)) # needs sage.rings.polynomial.pbori

[{{x: 0, y: 1, z: 0}, {x: 1, y: 1, z: 1}}]
sage: [S.subs(x) for x in sols] # needs sage.rings.polynomial.pbori

[[0, 0, 0], [0, 0, 0]]
```
We can force the use of exhaustive search if the optional package FES is present:

```python
sage: sol = S.solve(algorithm='exhaustive_search') # optional - fes
--> needs sage.rings.polynomial.pbori
sage: print(reproducible_repr(sol)) # optional - fes
--> needs sage.rings.polynomial.pbori
[{x: 1, y: 1, z: 1}]
```

And we may use SAT-solvers if they are available:

```python
sage: sol = S.solve(algorithm='sat') # optional - pycryptosat
--> needs sage.rings.polynomial.pbori
sage: print(reproducible_repr(sol)) # optional - pycryptosat
--> needs sage.rings.polynomial.pbori
[{x: 0, y: 1, z: 0}]
```
Bases: \texttt{PolynomialSequence\_generic}  
PolynomialSequence over \( \mathbb{F}_{2^e} \), i.e. extensions over \( \mathbb{F}_2 \).

\texttt{weil\_restriction()}  

Project this polynomial system to \( \mathbb{F}_2 \).

That is, compute the Weil restriction of scalars for the variety corresponding to this polynomial system and express it as a polynomial system over \( \mathbb{F}_2 \).

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(2^2)
sage: P.<x,y> = PolynomialRing(k, 2)
sage: a = P.base_ring().gen()
sage: F = Sequence([x*y + 1, a*x + 1], P)
sage: F2 = F.weil_restriction()
sage: F2
[x0*y0 + x1*y1 + 1, x1*y0 + x0*y1 + x1*y1, x1 + 1, x0 + x1, x0^2 + x0, x1^2 + x1, y0^2 + y0, y1^2 + y1]
```

Another bigger example for a small scale AES:

```python
sage: # needs sage.rings.polynomial.pbori
sage: sr = mq.SR(1, 1, 1, 4, gf2=False)
sage: while True: # workaround (see :issue:`31891`)
... try:
... F, s = sr.polynomial_system()
... break
... except ZeroDivisionError:
... pass
sage: F
Polynomial Sequence with 40 Polynomials in 20 Variables
sage: F2 = F.weil_restriction(); F2
Polynomial Sequence with 240 Polynomials in 80 Variables
```

(continues on next page)
sage.rings.polynomial.multi_polynomial_sequence.is_PolynomialSequence(F)

Return True if F is a PolynomialSequence.

INPUT:

• F – anything

EXAMPLES:

```python
sage: P.<x,y> = PolynomialRing(QQ)
sage: I = [(x^2 + y^2), (x^2 - y^2)]
sage: F = Sequence(I, P); F
[x^2 + y^2, x^2 - y^2]

sage: from sage.rings.polynomial.multi_polynomial_sequence import is_PolynomialSequence
sage: is_PolynomialSequence(F)
True
```

```python
>>> from sage.all import *

P = PolynomialRing(QQ, names=('x', 'y',)); (x, y,) = P._first_ngens(2)
I = [(x**Integer(2) + y**Integer(2)), (x**Integer(2) - y**Integer(2))]
F = Sequence(I, P); F
[x^2 + y^2, x^2 - y^2]

>>> from sage.rings.polynomial.multi_polynomial_sequence import is_PolynomialSequence
>>> is_PolynomialSequence(F)
True
```

### 3.1.8 Multivariate Polynomials via libSINGULAR

This module implements specialized and optimized implementations for multivariate polynomials over many coefficient rings, via a shared library interface to SINGULAR. In particular, the following coefficient rings are supported by this implementation:

• the rational numbers \( \mathbb{Q} \),
• the ring of integers \( \mathbb{Z} \),
• \( \mathbb{Z}/n\mathbb{Z} \) for any integer \( n \),
• finite fields \( \mathbb{F}_p^\alpha \) for \( p \) prime and \( n > 0 \),
• and absolute number fields \( \mathbb{Q}(\alpha) \).

EXAMPLES:

We show how to construct various multivariate polynomial rings:
```
sage: P.<x,y,z> = QQ[]
sage: P
Multivariate Polynomial Ring in x, y, z over Rational Field

sage: f = 27/113 * x^2 + y*z + 1/2; f
27/113*x^2 + y*z + 1/2

sage: P.term_order()
Degree reverse lexicographic term order

sage: P = PolynomialRing(GF(127), 3, names='abc', order='lex'); P
Multivariate Polynomial Ring in a, b, c over Finite Field of size 127

sage: a,b,c = P.gens()
sage: f = 57 * a^2*b + 43 * c + 1; f
57*a^2*b + 43*c + 1

sage: P.term_order()
Lexicographic term order

sage: z = QQ['z'].0

sage: K.<s> = NumberField(z^2 - 2) # needs sage.rings.number_field

sage: P.<x,y> = PolynomialRing(K, 2) # needs sage.rings.number_field

sage: 1/2*s*x^2 + (3/4*s)
(1/2*s)*x^2 + (3/4*s)

sage: P.<x,y,z> = ZZ[]; P
Multivariate Polynomial Ring in x, y, z over Integer Ring

sage: P.<x,y,z> = Zmod(2^10)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 1024

sage: P.<x,y,z> = Zmod(3^10)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 59049

sage: P.<x,y,z> = Zmod(2^100)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 1267650600228229401496703205376

sage: P.<x,y,z> = Zmod(2521352)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 2521352

sage: type(P)
<class 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular'>

sage: P.<x,y,z> = Zmod(25213521351515232)[]; P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 25213521351515232

sage: type(P)
<class 'sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_with_category'>

>>> from sage.all import *
>>> P = QQ['x, y, z']; (x, y, z,) = P._first_ngens(3)
>>> P
Multivariate Polynomial Ring in x, y, z over Rational Field
```

3.1. Multivariate Polynomials and Polynomial Rings 721
Polynomials, Release 10.4

>>> f = Integer(27)/Integer(113) * x**Integer(2) + y*z + Integer(1)/Integer(2); f
27/113*x^2 + y*z + 1/2

>>> P.term_order()
Degree reverse lexicographic term order

>>> P = PolynomialRing(GF(Integer(127)), Integer(3), names='abc', order='lex'); P
Multivariate Polynomial Ring in a, b, c over Finite Field of size 127

>>> a,b,c = P.gens()

>>> f = Integer(57) * a**Integer(2)*b + Integer(43) * c + Integer(1); f
57*a^2*b + 43*c + 1

>>> P.term_order()
Lexicographic term order

>>> z = QQ['z'].gen(0)

>>> K = NumberField(z**Integer(2) - Integer(2), names=('s',)); (s,) = K._first_ngens(1)

>>> P = PolynomialRing(K, Integer(2), names=('x', 'y',)); (x, y,) = P._first_ngens(2)

>>> Integer(1)/Integer(2)*s*x**Integer(2) + Integer(3)/Integer(4)*s
(1/2*s)*x^2 + (3/4*s)

>>> P = ZZ[['x, y, z]]; (x, y, z,) = P._first_ngens(3); P
Multivariate Polynomial Ring in x, y, z over Integer Ring

>>> P = Zmod(Integer(2)**Integer(10))['x, y, z']; (x, y, z,) = P._first_ngens(3); P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 1024

>>> P = Zmod(Integer(3)**Integer(10))['x, y, z']; (x, y, z,) = P._first_ngens(3); P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 59049

>>> P = Zmod(Integer(2521352))['x, y, z']; (x, y, z,) = P._first_ngens(3); P
Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 2521352

We construct the Frobenius morphism on \( F_5[x, y, z] \) over \( F_5 \):

```
sage: R.<x,y,z> = PolynomialRing(GF(5), 3)
sage: frob = R.hom([x^5, y^5, z^5])
sage: frob(x^2 + 2*y - z^4)
-z^20 + x^10 + 2*y^5
needs sage.rings.finite_rings
```

(continues on next page)
sage: (x^5 + 2*y^5)^3
˓→ needs sage.rings.finite_rings
x^15 + x^10*y^5 + 2*x^5*y^10 - 2*y^15

>>> from sage.all import *

>>> R = PolynomialRing(GF(Integer(5)), Integer(3), names=('x', 'y', 'z',)); (x, y, z,)
˓→ = R._first_ngens(3)
>>> frob = R.hom([x**Integer(5), y**Integer(5), z**Integer(5)])

>>> frob(x**Integer(2) + Integer(2)*y - z**Integer(4))
˓→
-2*z^20 + x^10 + 2*y^5

>>> frob((x + Integer(2)*y)**Integer(3))
˓→
# needs sage.rings.finite_rings
x^15 + x^10*y^5 + 2*x^5*y^10 - 2*y^15

>>> (x**Integer(5) + Integer(2)*y**Integer(5))**Integer(3)
˓→
# needs sage.rings.finite_rings
x^15 + x^10*y^5 + 2*x^5*y^10 - 2*y^15

We make a polynomial ring in one variable over a polynomial ring in two variables:

sage: R.<x, y> = PolynomialRing(QQ, 2)
sage: S.<t> = PowerSeriesRing(R)
sage: t*(x+y)
(x + y)*t

>>> from sage.all import *

>>> R = PolynomialRing(QQ, Integer(2), names=('x, y',)); (x, y,)
˓→ = R._first_ngens(2)
>>> S = PowerSeriesRing(R, names=('t',)); (t,)
˓→ = S._first_ngens(1)

>>> t*(x+y)
(x + y)*t

Todo: Implement Real, Complex coefficient rings via libSINGULAR

AUTHORS:
- Martin Albrecht (2007-01): initial implementation
- Joel Mohler (2008-01): misc improvements, polishing
- Martin Albrecht (2008-08): added \( \mathbb{Q}(a) \) and \( \mathbb{Z} \) support
- Simon King (2009-04): improved coercion
- Martin Albrecht (2009-05): added \( \mathbb{Z}/n\mathbb{Z} \) support, refactoring
- Martin Albrecht (2009-06): refactored the code to allow better re-use
- Simon King (2011-03): use a faster way of conversion from the base ring.
- Volker Braun (2011-06): major cleanup, refcount singular rings, bugfixes.

class
sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular
    Bases: MPolynomialRing_base

Construct a multivariate polynomial ring subject to the following conditions:

INPUT:
• **base_ring** – base ring (must be either GF(q), ZZ, ZZ/nZZ, QQ or absolute number field)
  
• **n** – number of variables (must be at least 1)

• **names** – names of ring variables, may be string of list/tuple

• **order** – term order (default: `degrevlex`)

**EXAMPLES:**

```python
sage: P.<x,y,z> = QQ[]; P
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: f = 27/113 * x^2 + y*z + 1/2; f
27/113*x^2 + y*z + 1/2
sage: P.term_order()
Degree reverse lexicographic term order
sage: P = PolynomialRing(GF(127), 3, names='abc', order='lex'); P
Multivariate Polynomial Ring in a, b, c over Finite Field of size 127
sage: a,b,c = P.gens()
```

```python
sage: f = 57*a^2*b + 43 * c + 1; f
57*a^2*b + 43*c + 1
sage: P.term_order()
Lexicographic term order
```

```python
sage: z = QQ['z'].0
sage: K.<s> = NumberField(z^2 - 2) # needs sage.rings.number_field
```
\[ \text{sage: } P.<x,y,z> = \text{PolynomialRing(Integer}(2^{32}), \text{order='lex'}) \]
\[ \text{sage: } P(2^{32}-1) \]
\[ 4294967295 \]

\[ \text{from sage.all import } * \]
\[ P = \text{PolynomialRing}(\text{GF}([27]), \text{Integer}(3), \text{names='abc'}, \text{order='lex'}); P \]
\[ \text{Multivariate Polynomial Ring in a, b, c over Finite Field of size 127} \]
\[ a, b, c = P._\text{gens}() \]
\[ f = \text{Integer}(57) * a^{\text{Integer}(2)} * b + \text{Integer}(43) * c + \text{Integer}(1); f \]
\[ 57*a^2*b + 43*c + 1 \]

\[ z = \text{QQ['z'].gen}(0) \]
\[ K = \text{NumberField}(z^{\text{Integer}(2)} - \text{Integer}(2), \text{name}=('s',)); (s,) = K._\text{first_}
\[ \text{ngens}(1) \# \text{needs sage.rings.number_field} \]
\[ P = \text{PolynomialRing}(K, \text{Integer}(2), \text{names=('x', 'y',))}; (x, y) = P._\text{first_}
\[ \text{ngens}(2) \# \text{needs sage.rings.number_field} \]
\[ \text{Integer}(1)/\text{Integer}(2) * s * x^{\text{Integer}(2)} + \text{Integer}(3)/\text{Integer}(4) * s \]
\[ # \text{needs sage.rings.number_field} \]
\[ (1/2)*s)*x^2 + (3/4)*s \]

\[ P = \text{ZZ['x', 'y', 'z']}; (x, y, z,) = P._\text{first_}\text{ngens}(3); P \]
\[ \text{Multivariate Polynomial Ring in x, y, z over Integer Ring} \]

\[ P = \text{Zmod(Integer}(2) ** \text{Integer}(10))[\text{'x', 'y', 'z'}]; (x, y, z,) = P._\text{first_}\text{ngens}(3); \]
\[ P \]
\[ \text{Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 1024} \]

\[ P = \text{Zmod(Integer}(3) ** \text{Integer}(10))[\text{'x', 'y', 'z'}]; (x, y, z,) = P._\text{first_}\text{ngens}(3); \]
\[ P \]
\[ \text{Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 59049} \]

\[ P = \text{Zmod(Integer}(2) ** \text{Integer}(100))[\text{'x', 'y', 'z'}]; (x, y, z,) = P._\text{first_}\text{ngens}(3); \]
\[ P \]
\[ \text{Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 1267650600228229401496703205376} \]

\[ P = \text{Zmod(Integer}(2521352))['x', 'y', 'z']; (x, y, z,) = P._\text{first_}\text{ngens}(3); P \]
\[ \text{Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 2521352} \]
\[ \text{type}(P) \]
\[ <\text{class } 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_}
\[ \text{libsingular'>} \]
\[ P = \text{Zmod(Integer}(25213521351515232))['x', 'y', 'z']; (x, y, z,) = P._\text{first_}
\[ \text{ngens}(3); P \]
\[ \text{Multivariate Polynomial Ring in x, y, z over Ring of integers modulo 25213521351515232} \]
Polynomials, Release 10.4

Ring of integers modulo 2513521351515232

```
>>> type(P)
<class 'sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_with_category'>

>>> P = PolynomialRing(Integers(Integer(2)**Integer(32)), order='lex', names=('x', 'y', 'z')); (x, y, z) = P._first_ngens(3)

4294967295
```

Element

- **alias of MPolynomial_libsingular**

**gen**(n=0)

Returns the n-th generator of this multivariate polynomial ring.

**INPUT:**

- n – an integer \(\geq 0\)

**EXAMPLES:**

```
sage: P.<x,y,z> = QQ[]
sage: P.gen(), P.gen(1)
(x, y)
sage: P = PolynomialRing(GF(127), 1000, 'x')
sage: P.gen(500)
x500
sage: P.<SAGE,SINGULAR> = QQ[] # weird names
sage: P.gen(1)
SINGULAR
```

```
>>> from sage.all import *
>>> P = QQ['x, y, z']; (x, y, z) = P._first_ngens(3)
>>> P.gen(), P.gen(Integer(1))
(x, y)
>>> P = PolynomialRing(GF(Integer(127)), Integer(1000), 'x')
>>> P.gen(Integer(500))
x500
>>> P = QQ['SAGE, SINGULAR']; (SAGE, SINGULAR,) = P._first_ngens(2) # weird names
>>> P.gen(Integer(1))
SINGULAR
```

**ideal**(\(*\text{gens}\), \(*\text{kwds}\))

Create an ideal in this polynomial ring.

**INPUT:**

- *gens – list or tuple of generators (or several input arguments)*
- **coerce** – bool (default: True); this must be a keyword argument. Only set it to False if you are certain that each generator is already in the ring.

**EXAMPLES:**
monomial_all_divisors(t)
Return a list of all monomials that divide t.

Coefficients are ignored.

INPUT:
- t – a monomial

OUTPUT:
a list of monomials

EXAMPLES:

sage: P.<x,y,z> = QQ[]
sage: P.monomial_all_divisors(x^2*z^3)
[x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, z^3, x*z^3, x^2*z^3]

ALGORITHM: addwithcarry idea by Toon Segers

monomial_divides(a, b)
Return False if a does not divide b and True otherwise.

Coefficients are ignored.

INPUT:
- a – monomial
- b – monomial
EXAMPLES:

```sage
sage: P.<x,y,z> = QQ[]
sage: P.monomial_divides(x*y*z, x^3*y^2*z^4)
True
sage: P.monomial_divides(x^3*y^2*z^4, x*y*z)
False
```

```python
>>> from sage.all import *

>>> P = QQ['x, y, z']; (x, y, z,) = P._first_ngens(3)

>>> P.monomial_divides(x*y*z, x^Integer(3)*y^Integer(2)*z^Integer(4))
True

>>> P.monomial_divides(x^Integer(3)*y^Integer(2)*z^Integer(4), x*y*z)
False
```

`monomial_lcm(f, g)`

LCM for monomials. Coefficients are ignored.

**INPUT:**
- `f` – monomial
- `g` – monomial

**EXAMPLES:**

```sage
sage: P.<x,y,z> = QQ[]
sage: P.monomial_lcm(3/2*x*y,x)
x*y
```

```python
>>> from sage.all import *

>>> P = QQ['x, y, z']; (x, y, z,) = P._first_ngens(3)

>>> P.monomial_lcm(Integer(3)/Integer(2)*x*y,x)
x*y
```

`monomial_pairwise_prime(g, h)`

Return `True` if `h` and `g` are pairwise prime. Both are treated as monomials.

Coefficients are ignored.

**INPUT:**
- `h` – monomial
- `g` – monomial

**EXAMPLES:**

```sage
sage: P.<x,y,z> = QQ[]
sage: P.monomial_pairwise_prime(x^2*z^3, y^4)
True

sage: P.monomial_pairwise_prime(1/2*x^3*y^2, 3/4*y^3)
False
```

```python
>>> from sage.all import *

>>> P = QQ['x, y, z']; (x, y, z,) = P._first_ngens(3)

>>> P.monomial_pairwise_prime(x**Integer(2)*z**Integer(3), y**Integer(4))
True
```

(continues on next page)
monomial_quotient \((f, g, \text{coeff=}\text{False})\)

Return \(f/g\), where both \(f\) and \(g\) are treated as monomials.

Coefficients are ignored by default.

**INPUT:**

- \(f\) – monomial
- \(g\) – monomial
- \(\text{coeff}\) – divide coefficients as well (default: False)

**EXAMPLES:**

```
sage: P.<x,y,z> = QQ[]
sage: P.monomial_quotient(3/2*x*y,x)
y
sage: P.monomial_quotient(3/2*x*y,x,coeff=True)
3/2*y
```

Note, that \(\mathbb{Z}\) behaves different if \(\text{coeff=}\text{True}::

```
sage: P.monomial_quotient(2*x,3*x)
1
sage: P.<x,y> = PolynomialRing(ZZ)
sage: P.monomial_quotient(2*x,3*x,coeff=True)
Traceback (most recent call last):
... ArithmeticError: Cannot divide these coefficients.
```

```
sage: from sage.all import *
```
**Warning:** Assumes that the head term of \( f \) is a multiple of the head term of \( g \) and return the multiplicant \( m \). If this rule is violated, funny things may happen.

### monomial\_reduce \((f, G)\)

Try to find \( g \) in \( G \) where \( g.lm() \) divides \( f \). If found \((f.lm, g)\) is returned, \((0, 0)\) otherwise, where \( f.lm = f/g.lm() \).

It is assumed that \( G \) is iterable and contains only elements in this polynomial ring.

Coefficients are ignored.

**INPUT:**
- \( f \) – monomial
- \( G \) – list/set of \( mpolynomials \)

**EXAMPLES:**

```python
sage: P.<x,y,z> = QQ[]
sage: f = x*y^2
sage: G = [3/2*x^3 + y^2 + 1/2, 1/4*x*y + 2/7, 1/2]
sage: P.monomial_reduce(f,G)
(y, 1/4*x*y + 2/7)
```

```python
>>> from sage.all import *
>>> P = QQ['x, y, z']; (x, y, z,) = P._first_ngens(3)
>>> f = x*y**Integer(2)
>>> G = [Integer(3)/Integer(2)*x**Integer(3) + y**Integer(2) + Integer(1)/Integer(2), Integer(1)/Integer(4)*x*y + Integer(2)/Integer(7), Integer(1)/Integer(2)]
>>> P.monomial_reduce(f,G)
(y, 1/4*x*y + 2/7)
```

### ngens ()

Returns the number of variables in this multivariate polynomial ring.

**EXAMPLES:**

```python
sage: P.<x,y> = QQ[]
sage: P.ngens()
2
```

```python
sage: k.<a> = GF(2^16)
from needs sage_rings_finite_rings
sage: P = PolynomialRing(k, 1000, 'x')
from needs sage_rings_finite_rings
sage: P.ngens()
1000
```

```python
>>> from sage.all import *
>>> P = QQ['x, y']; (x, y,) = P._first_ngens(2)
>>> P.ngens()
2
```

```python
>>> k = GF(Integer(2)**Integer(16), names=('a',)); (a,) = k._first_ngens(1)#... (continues on next page)
```
class sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular
    Bases: MPolynomial_libsingular

    A multivariate polynomial implemented using libSINGULAR.

    add_m_mul_q(m, q)
    Return self + m*q, where m must be a monomial and q a polynomial.

    INPUT:
    • m – a monomial
    • q – a polynomial

    EXAMPLES:

    sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: x.add_m_mul_q(y,z)
y*z + x

    coefficient(degrees)
    Return the coefficient of the variables with the degrees specified in the python dictionary degrees. Mathematically, this is the coefficient in the base ring adjoined by the variables of this ring not listed in degrees. However, the result has the same parent as this polynomial.

    This function contrasts with the function monomial_coefficient which returns the coefficient in the base ring of a monomial.

    INPUT:
    • degrees – Can be any of: - a dictionary of degree restrictions - a list of degree restrictions (with None in the unrestricted variables) - a monomial (very fast, but not as flexible)

    OUTPUT: element of the parent of this element.

    Note: For coefficients of specific monomials, look at monomial_coefficient().

    EXAMPLES:

    sage: R.<x,y> = QQ[]
sage: f=x*y+y+5
sage: f.coefficient({x:0,y:1})
1
sage: f.coefficient({x:0})
y + 5
sage: f=(1+y+y^2)*(1+x+x^2)

sage: f.coefficient({x:0})
y^2 + y + 1
sage: f.coefficient({0,None})
y^2 + y + 1
sage: f.coefficient(x)
y^2 + y + 1

```python
>>> from sage.all import *
```  
```python
>>> R = QQ[x, y]; (x, y,) = R._first_ngens(2)
```  
```python
>>> f=x*y+y+Integer(5)
```  
```python
>>> f.coefficient({x:Integer(0),y:Integer(1)})
1
```  
```python
>>> f.coefficient({x:Integer(0)})
y + 5
```  
```python
>>> f=(Integer(1)+y+y**Integer(2))*(Integer(1)+x+x**Integer(2))
```  
```python
>>> f.coefficient({x:Integer(0)})
y^2 + y + 1
```  
```python
>>> f.coefficient([Integer(0),None])
y^2 + y + 1
```  
```python
>>> f.coefficient(x)
y^2 + y + 1
```  
Note that exponents have all variables specified:

```python
sage: x.coefficient(x.exponents()[0])
1
sage: f.coefficient([1,0])
1
sage: f.coefficient((x:1,y:0))
1
```  
```python
>>> from sage.all import *
```  
```python
>>> x.coefficient(x.exponents()[Integer(0)])
1
```  
```python
>>> f.coefficient([Integer(1),Integer(0)])
1
```  
```python
>>> f.coefficient({x:Integer(1),y:Integer(0)})
1
```  
Be aware that this may not be what you think! The physical appearance of the variable x is deceiving – particularly if the exponent would be a variable.

```python
sage: f.coefficient(x^0) # outputs the full polynomial
x^2*y^2 + x^2*y + x*y^2 + x^2 + x*y + y^2 + x + y + 1
```  
```python
sage: R.<x,y> = GF(389)[]
```  
```python
sage: f = x*y + 5
```  
```python
sage: c = f.coefficient({x:0, y:0}); c
5
```  
```python
sage: parent(c)
Multivariate Polynomial Ring in x, y over Finite Field of size 389
```  
```python
>>> from sage.all import *
```
AUTHOR:

• Joel B. Mohler (2007.10.31)

coefficients()

Return the nonzero coefficients of this polynomial in a list. The returned list is decreasingly ordered by the
term ordering of the parent.

EXAMPLES:

sage: R.<x,y,z> = PolynomialRing(QQ, order='degrevlex')  
sage: f=23*x^6*y^7 + x^3*y+6*x^7*z  
sage: f.coefficients()  
[23, 6, 1]

sage: R.<x,y,z> = PolynomialRing(QQ, order='lex')  
sage: f=23*x^6*y^7 + x^3*y+6*x^7*z  
sage: f.coefficients()  
[6, 23, 1]

AUTHOR:

• Didier Deshommess

constant_coefficient()

Return the constant coefficient of this multivariate polynomial.

EXAMPLES:

sage: P.<x, y> = QQ[]  
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5  
sage: f.constant_coefficient()  
5

sage: f = 3*x^2

(continues on next page)
sage: f.constant_coefficient()
0

>>> from sage.all import *

>>> P = QQ['x, y']; (x, y,) = P._first_ngens(2)

>>> f = Integer(3)*x**Integer(2) - Integer(2)*y +
Integer(7)*x**Integer(2)*y**Integer(2) + Integer(5)

>>> f.constant_coefficient()
5

>>> f = Integer(3)*x**Integer(2)

>>> f.constant_coefficient()
0

**degree** \((x=None, \text{std\_grading}=False)\)

Return the degree of this polynomial.

**INPUT:**

- \(x\) – (default: None) a generator of the parent ring

**OUTPUT:**

If \(x\) is None, return the total degree of self. Note that this result is affected by the weighting given to the generators of the parent ring. Otherwise, if \(x\) is (or is coercible to) a generator of the parent ring, the output is the maximum degree of \(x\) in self. This is not affected by the weighting of the generators.

**EXAMPLES:**

sage: R.<x, y> = QQ[]
sage: f = y^2 - x^9 - x
sage: f.degree(x)
9
sage: f.degree(y)
2
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(x)
3
sage: (y^10*x - 7*x^2*y^5 + 5*x^3).degree(y)
10

```python
>>> from sage.all import *

>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)

>>> f = y**Integer(2) - x**Integer(9) - x

>>> f.degree(x)
9

>>> f.degree(y)
2

>>> (y**Integer(10)*x - Integer(7)*x**Integer(2)*y**Integer(5) +
Integer(5)*x**Integer(3)).degree(x)
3

>>> (y**Integer(10)*x - Integer(7)*x**Integer(2)*y**Integer(5) +
Integer(5)*x**Integer(3)).degree(y)
10
```

When the generators have a grading (weighting) then the total degree respects this, but the degree for a given generator is unaffected:
Polynomials, Release 10.4

sage: T = TermOrder("wdegrevlex", (2, 3))
sage: R.<x, y> = PolynomialRing(QQ, order=T)
sage: f = x**2 * y + y**4
sage: f.degree()
12
sage: f.degree(x)
2
sage: f.degree(y)
4

The term ordering of the parent ring determines the grading of the generators.

sage: T = TermOrder("wdegrevlex", (1,2,3,4))
sage: R = PolynomialRing(QQ, order=T, names=('x', 'y', 'z'))

The matrix term ordering determines the grading of the generators by the first row of the matrix.

sage: m = matrix(3, [3,2,1,1,1,0,1,0,0])
sage: m
[3 2 1]
[1 1 0]
[1 0 0]
sage: R.<x,y,z> = PolynomialRing(QQ, order=TermOrder(m))
sage: x.degree(), y.degree(), z.degree()
(3, 2, 1)
sage: f = x**3*y + x*z^4
sage: f.degree() 
11

A matrix term ordering determines the grading of the generators by the first row of the matrix.

sage: m = matrix(Integer(3), [Integer(3),Integer(2),Integer(1),Integer(1),
                        Integer(1),Integer(0),Integer(1),Integer(0),Integer(0)])

(continues on next page)
Polynomials, Release 10.4

```python
>>> R = PolynomialRing(QQ, order=TermOrder(m), names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3)
>>> x.degree(), y.degree(), z.degree()
(3, 2, 1)
>>> f = x**Integer(3)*y + x*z**Integer(4)
>>> f.degree()
11
```

If the first row contains zero, the grading becomes the standard one.

```
sage: m = matrix(3, [3,0,1,1,1,0,1,0,0])
sage: m
[3 0 1]
[1 1 0]
[1 0 0]
sage: R.<x,y,z> = PolynomialRing(QQ, order=TermOrder(m))
sage: x.degree(), y.degree(), z.degree()
(1, 1, 1)
sage: f = x^3*y + x*z^4
sage: f.degree()
5
```

To get the degree with the standard grading regardless of the term ordering of the parent ring, use `std_grading=True`.

```
sage: f.degree(std_grading=True)
5
```

```python
>>> from sage.all import *
>>> m = matrix(Integer(3), [Integer(3),Integer(0),Integer(1),Integer(1),
 Integer(1),Integer(0),Integer(1),Integer(0),Integer(0)])
>>> m
[3 0 1]
[1 1 0]
[1 0 0]
>>> R = PolynomialRing(QQ, order=TermOrder(m), names=('x', 'y', 'z',)); (x, y, z,) = R._first_ngens(3)
>>> x.degree(), y.degree(), z.degree()
(1, 1, 1)
>>> f = x**Integer(3)*y + x*z**Integer(4)
>>> f.degree()
5
```

degrees()

Returns a tuple with the maximal degree of each variable in this polynomial. The list of degrees is ordered by the order of the generators.

EXAMPLES:

```
sage: R.<y0,y1,y2> = PolynomialRing(QQ, 3)
sage: q = 3*y0*y1*y2; q
3*y0*y1^2*y2
```

(continues on next page)
dict()

Return a dictionary representing self. This dictionary is in the same format as the generic MPolynomial: The dictionary consists of ETuple:coefficient pairs.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: f=2*x*y^3*z^2 + 1/7*x^2 + 2/3
sage: f.dict()
{(0, 0, 0): 2/3, (1, 3, 2): 2, (2, 0, 0): 1/7}
```

divides(other)

Return True if this polynomial divides other.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: p = 3*x*y + 2*y*z + x*z
sage: q = x + y + z + 1
sage: r = p * q
sage: p.divides(r)
True
sage: q.divides(p)
False
sage: r.divides(0)
True
sage: R.zero().divides(r)
True
sage: R.zero().divides(0)
True
```

```python
>>> from sage.all import *

>>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)
```

(continues on next page)
polynomials, release 10.4

>>> p = Integer(3)*x*y + Integer(2)*y*z + x*z
>>> q = x + y + z + Integer(1)
>>> r = p * q
>>> p.divides(r)
True
>>> q.divides(p)
False
>>> r.divides(Integer(0))
True
>>> R.zero().divides(r)
False
>>> R.zero().divides(Integer(0))
True

exponents (as_ETuples=True)
Return the exponents of the monomials appearing in this polynomial.

INPUT:

- as_ETuples – (default: True) if True returns the result as a list of ETuples, otherwise returns a list of tuples

EXAMPLES:

sage: R.<a,b,c> = QQ[]
sage: f = a^3 + b + 2*b^2
sage: f.exponents()
[(3, 0, 0), (0, 2, 0), (0, 1, 0)]
sage: f.exponents(as_ETuples=False)
[(3, 0, 0), (0, 2, 0), (0, 1, 0)]

factor (proof=None)
Return the factorization of this polynomial.

INPUT:

- proof – ignored.

EXAMPLES:

sage: R.<x, y> = QQ[]
sage: f = (x^3 + 2*y^2*x) * (x^2 + x + 1); f
x^5 + 2*x^3*y^2 + x^4 + 2*x^2*y^2 + x^3 + 2*x*y^2
sage: F = f.factor(); F
x * (x^2 + x + 1) * (x^2 + 2*y^2)
Next we factor the same polynomial, but over the finite field of order 3.:

\[
\begin{align*}
\text{sage: } & \quad R.<x, y> = GF(3)[] \\
\text{sage: } & \quad f = (x^3 + 2*y^2*x) * (x^2 + x + 1); f \\
\text{sage: } & \quad x^5 - x^3*y^2 + x^4 - x^2*y^2 + x^3 - x*y^2 \\
\text{sage: } & \quad F = f.factor(); F \\
\text{sage: } & \quad (-1) * x * (-x + y) * (x + y) * (x - 1)^2
\end{align*}
\]

Next we factor a polynomial, but over a finite field of order 9.:

\[
\begin{align*}
\text{sage: } & \quad K.<a> = GF(3^2) \\
\text{sage: } & \quad R.<x, y> = K[] \\
\text{sage: } & \quad f = (x^3 + 2*a*y^2*x) * (x^2 + x + 1); f \\
\text{sage: } & \quad x^5 + (-a)*x^3*y^2 + x^4 + (-a)*x^2*y^2 + x^3 + (-a)*x*y^2 \\
\text{sage: } & \quad F = f.factor(); F \\
\text{sage: } & \quad (-a) * x * (x - 1)^2 * ((-a + 1)*x^2 + y^2)
\end{align*}
\]

Next we factor a polynomial over a number field.:

\[
\begin{align*}
\text{sage: } & \quad K.<s> = NumberField(p^3 - 2) \\
\text{sage: } & \quad KXY.<x,y> = K[] \\
\text{sage: } & \quad factor(x^3 - 2*y^3) \\
\text{sage: } & \quad (x + (-s)*y) * (x^2 + s*x*y + (s^2)*y^2)
\end{align*}
\]
sage: k.factor()
((s^2 + 2/3)) * (x + s*y)^2 * (x + (-s)*y)^5 * (x^2 + s*x*y + (s^2)*y^2)^5

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> p = polygen(ZZ, 'p')
>>> K = NumberField(p**Integer(3) - Integer(2), names=('s',)); (s,) = K._
˓→first_ngens(1)
>>> KXY = K['x', 'y']; (x, y,) = KXY._first_ngens(2)
>>> factor(x**Integer(3) - Integer(2)*y**Integer(3))
(x + (-s)*y) * (x^2 + s*x*y + (s^2)*y^2)
>>> k = (x**Integer(3)-
˓→Integer(2)/Integer(3) + s**Integer(2))
>>> k.factor()
((s^2 + 2/3)) * (x + s*y)^2 * (x + (-s)*y)^5 * (x^2 + s*x*y + (s^2)*y^2)^5

This shows that issue Issue #2780 is fixed, i.e. that the unit part of the factorization is set correctly:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, x)
...<ipython-input-1-36f925c86459>

sage: K.<a> = NumberField(x^2 + 1)
...<ipython-input-1-36f925c86459>

sage: R.<y, z> = PolynomialRing(K)
...<ipython-input-1-36f925c86459>

sage: f = 2*y^2 + 2*z^2
...<ipython-input-1-36f925c86459>

sage: F = f.factor(); F.unit()
2

Another example:

sage: R.<x,y,z> = GF(32003)[]
...<ipython-input-1-36f925c86459>

sage: f = 9*(x-1)^2*(y+z)
...<ipython-input-1-36f925c86459>

sage: p = (4*v^4*u^2 - 16*v^2*u^4 + 16*u^6 - 4*v^4*u + 8*v^2*u^3 + v^4)
...<ipython-input-1-36f925c86459>

sage: p.factor()
(-2*v^2*u + 4*u^3 + v^2)^2

sage: F = f.factor(); F
(-2) * (c - d) * (-b + c) * (b - d) * (-a + c) * (a - d)

sage: F[0][0]
Polynomials, Release 10.4

(continued from previous page)

c - d

```python
sage: F.unit()
-2
```

```python
>>> from sage.all import *

>>> R = GF(Integer(32003))[x, y, z]; (x, y, z,) = R._first_ngens(3) # needs sage.rings.finite_rings

>>> f = Integer(9)*(x-Integer(1))**Integer(2)*(y+z) # needs sage.rings.finite_rings

>>> f.factor()

(9) * (y + z) * (x - 1)^2
```

```python
>>> R = QQ[x, w, v, u]; (x, w, v, u,) = R._first_ngens(4) # needs sage.rings.finite_rings

>>> p = (Integer(4)*v**Integer(4)*u**Integer(2) - Integer(16)*v**Integer(2)*u**Integer(4) + Integer(16)*u**Integer(6) - Integer(4)*v**Integer(4)*u + Integer(8)*v**Integer(2)*u**Integer(3) + v**Integer(4))

>>> p.factor()

(-2*v^2*u + 4*u^3 + v^2)^2
```

```python
>>> R = QQ['x', 'w', 'v', 'u']; (x, w, v, u,) = R._first_ngens(4)

>>> f = (-Integer(2)) * (a - d) * (-a + b) * (b - d) * (a - c) * (b - c) * (c - d)

>>> F = f.factor(); F

(-2) * (c - d) * (-b + c) * (b - d) * (-a + c) * (-a + b) * (a - d)
```

```python
>>> F[Integer(0)][Integer(0)]

c - d

>>> F.unit()

-2
```

Constant elements are factorized in the base rings.

```python
sage: P.<x,y> = ZZ[]

sage: P(2^3*7).factor()

2^3 * 7
```

```python
sage: P.<x,y> = GF(2)[]

sage: P(1).factor()

1
```

```python
>>> from sage.all import *

>>> P = ZZ['x', y']; (x, y,) = P._first_ngens(2)

>>> P(Integer(2)**Integer(3)*Integer(7)).factor()

2^3 * 7
```

```python
>>> P = GF(Integer(2))['x', y]; (x, y,) = P._first_ngens(2)

>>> P(Integer(1)).factor()

1
```

Factorization for finite prime fields with characteristic > 2^{29} is not supported

```python
sage: q = 1073741789

sage: T.<aa, bb> = PolynomialRing(GF(q)) # needs sage.rings.finite_rings

sage: f = aa^2 + 12124343*bb*aa + 32434598*bb^2 # needs sage.rings.finite_rings

sage: f.factor()

```

(continues on next page)
Traceback (most recent call last):
...
NotImplementedError: Factorization of multivariate polynomials over prime fields with characteristic > 2^29 is not implemented.

```python
>>> from sage.all import *
>>> q = Integer(1073741789)
>>> T = PolynomialRing(GF(q), names=('aa', 'bb',)); (aa, bb,) = T._first_ngens(2) # needs sage.rings.finite_rings
>>> f = aa**Integer(2) + Integer(12124343)*bb*aa + Integer(32434598)*bb**Integer(2) # needs sage.rings.finite_rings
>>> f.factor() # needs sage.rings.finite_rings
Traceback (most recent call last):
...
NotImplementedError: Factorization of multivariate polynomials over prime fields with characteristic > 2^29 is not implemented.
```

Factorization over the integers is now supported, see Issue #17840:

```python
sage: P.<x,y> = PolynomialRing(ZZ)
sage: f = 12 * (3*x*y + 4) * (5*x - 2) * (2*y + 7)**2
sage: f.factor()
2^2 * 3 * (2*y + 7)^2 * (5*x - 2) * (3*x*y + 4)
sage: g = -12 * (x^2 - y^2)
sage: g.factor()
(-1) * 2^2 * 3 * (x - y) * (x + y)
sage: factor(-4*x*y - 2*x + 2*y + 1)
(-1) * (2*y + 1) * (2*x - 1)
```

Factorization over non-integral domains is not supported

```python
sage: R.<x,y> = PolynomialRing(Zmod(4))
sage: f = (2*x + 1) * (x^2 + x + 1)
sage: f.factor()
Traceback (most recent call last):
...
NotImplementedError: Factorization of multivariate polynomials over Ring of integers modulo 4 is not implemented.
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

```python
>>> f = (Integer(2)*x + Integer(1)) * (x**Integer(2) + x + Integer(1))
>>> f.factor()
Traceback (most recent call last):
...
NotImplementedError: Factorization of multivariate polynomials over Ring of integers modulo 4 is not implemented.
```

\texttt{gcd}(\text{right, algorithm=\text{None}, **\text{kwds}})

Return the greatest common divisor of self and right.

INPUT:

- right – polynomial
- algorithm - 'ezgcd' – EZGCD algorithm - 'modular' – multi-modular algorithm (default)
- **kwds – ignored

EXAMPLES:

```python
sage: P.<x,y,z> = QQ[]
sage: f = (x*y*z)^6 - 1
sage: g = (x*y*z)^4 - 1
sage: f.gcd(g)
x^2*y^2*z^2 - 1
sage: R.<x,y> = QQ[]
sage: f = (x^3 + 2*y^2*x)^2
sage: g = x^2*y^2
sage: f.gcd(g)
x^2
```

We compute a gcd over a finite field:

```python
sage: # needs sage.rings.finite_rings
sage: F.<u> = GF(31^2)
sage: R.<x,y,z> = F[]
sage: p = x^3 + (1+u)*y^3 + z^3
sage: q = p^3 * (x - y + z*u)
```

(continues on next page)
sage: gcd(p,q)
x^3 + (u + 1)*y^3 + z^3
sage: gcd(p,q)  # yes, twice -- tests that singular ring is properly set.
x^3 + (u + 1)*y^3 + z^3

We compute a gcd over a number field:

sage: # needs sage.rings.number_field
sage: x = polygen(QQ)
sage: F.<u> = NumberField(x^3 - 2)
sage: R.<x,y,z> = F[
]
sage: p = x^3 + (1+u)*y^3 + z^3
sage: q = p^3 * (x - y + z*u)
sage: gcd(p,q)
x^3 + (u + 1)*y^3 + z^3

**global_height** *(prec=None)*

Return the (projective) global height of the polynomial.

This returns the absolute logarithmic height of the coefficients thought of as a projective point.

**INPUT:**

- *prec* – desired floating point precision (default: default *RealField* precision).

**OUTPUT:** A real number.

**EXAMPLES:**

sage: R.<x,y> = PolynomialRing(QQ)
sage: f = 3*x^3 + 2*x*y^2
sage: exp(f.global_height())
3.00000000000000
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> f = Integer(3)*x**Integer(3) + Integer(2)*x*y**Integer(2)
>>> exp(f.global_height())
# 3.00000000000000

sage: K.<k> = CyclotomicField(3)
sage: R.<x,y> = PolynomialRing(K, sparse=True)
sage: f = k*x*y + 1
sage: exp(f.global_height())
1.00000000000000

>>> from sage.all import *

# needs sage.rings.number_field

K = CyclotomicField(Integer(3), names=('k',)); (k,) = K._first_ngens(1)
R = PolynomialRing(K, sparse=True, names=('x', 'y',)); (x, y,) = R._first_ngens(2)
f = k*x*y + Integer(1)
>>> exp(f.global_height())
1.00000000000000

Scalings should not change the result:

sage: R.<x,y> = PolynomialRing(QQ)
sage: f = 1/25*x^2 + 25/3*x*y + y^2
sage: f.global_height()
# 6.43775164973640

sage: g = 100 * f
sage: g.global_height()
# 6.43775164973640

sage: R.<x> = PolynomialRing(QQ)
sage: K.<k> = NumberField(x^2 + 5)
sage: T.<t,w> = PolynomialRing(K)
sage: f = 1/1331 * t^2 + 5 * w + 7
sage: f.global_height()
# 9.13959596745043

3.1. Multivariate Polynomials and Polynomial Rings 745
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> K = NumberField(x**Integer(2) + Integer(5), names=('k',)); (k,) = K._first_ngens(1)
>>> T = PolynomialRing(K, names=('t', 'w',)); (t, w,) = T._first_ngens(2)
>>> f = Integer(1)/Integer(1331) * t**Integer(2) + Integer(5) * w + Integer(7)
>>> f.global_height()
9.13959596745043

sage: R.<x,y> = QQ[]
sage: f = 1/123*x*y + 12
sage: f.global_height(prec=2) # needs sage.symbolic
8.0

>>> from sage.all import *
>>> P = PolynomialRing(QQ,Integer(3), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3)
>>> f = x*y + Integer(1)
>>> f.gradient()
[y, x, 0]

hamming_weight()

Return the number of non-zero coefficients of this polynomial.

This is also called weight,hamming_weight() or sparsity.

EXAMPLES:
```python
sage: R.<x, y> = ZZ[]
sage: f = x^3 - y
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x+y)^100
sage: f.number_of_terms()
101
```

The method `hamming_weight()` is an alias:

```python
sage: f.hamming_weight()
101
```

```python
>>> from sage.all import *
>>> R = ZZ['x', 'y']; (x, y,) = R._first_ngens(2)
>>> f = x**Integer(3) - y
>>> f.number_of_terms()
2
>>> R(Integer(0)).number_of_terms()
0
>>> f = (x+y)**Integer(100)
>>> f.number_of_terms()
101
```

**in_subalgebra** *(J, algorithm='algebra_containment')*

Return whether this polynomial is contained in the subalgebra generated by J

**INPUT:**

- J – list of elements of the parent polynomial ring

- algorithm – can be "algebra_containment" (the default), "inSubring", or "groebner".
  - "algebra_containment": use Singular's `algebra_containment` function, https://www.singular.uni-kl.de/Manual/4-2-1/sing_1247.htm#SEC1328. The Singular documentation suggests that this is frequently faster than the next option.
  - "groebner": use the algorithm described in Singular's documentation, but within Sage: if the subalgebra generators are $y_1, ..., y_m$, then create a new polynomial algebra with the old generators along with new ones: $z_1, ..., z_m$. Create the ideal $(z_1 - y_1, ..., z_m - y_m)$, and reduce the polynomial modulo this ideal. The polynomial is contained in the subalgebra if and only if the remainder involves only the new variables $z_i$.

**EXAMPLES:**

```python
sage: P.<x,y,z> = QQ[]
sage: J = [x^2 + y^2, x^2 + z^2]
sage: (y^2).in_subalgebra(J)
```
Polynomials, Release 10.4

(continued from previous page)

```python
False
sage: a = (x^2 + y^2) * (x^2 + z^2)
sage: a.in_subalgebra(J, algorithm='inSubring')
True
sage: (a^2).in_subalgebra(J, algorithm='groebner')
True
sage: (a + a^2).in_subalgebra(J)
True

>>> from sage.all import *

>>> P = QQ['x', 'y', 'z']; (x, y, z) = P._first_ngens(3)
>>> J = [x**Integer(2) + y**Integer(2), x**Integer(2) + z**Integer(2)]
>>> (y**Integer(2)).in_subalgebra(J)
False
>>> a = (x**Integer(2) + y**Integer(2)) * (x**Integer(2) + z**Integer(2))
>>> a.in_subalgebra(J, algorithm='inSubring')
True
>>> (a**Integer(2)).in_subalgebra(J, algorithm='groebner')
True
>>> (a + a**Integer(2)).in_subalgebra(J)
True
```

integral (var)

Integrate this polynomial with respect to the provided variable.

One requires that \( Q \) is contained in the ring.

INPUT:

- variable – the integral is taken with respect to variable

EXAMPLES:

```python
sage: R.<x, y> = PolynomialRing(QQ, 2)
sage: f = 3*x^3*y^2 + 5*y^2 + 3*x + 2
sage: f.integral(x)
3/4*x^4*y^2 + 5*x*y^2 + 3/2*x^2 + 2*x

sage: f.integral(y)
x^3*y^3 + 5/3*y^3 + 3*x*y + 2*y
```

```python
>>> from sage.all import *

>>> R = PolynomialRing(QQ, Integer(2), names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> f = Integer(3)*x**Integer(3)*y**Integer(2) + Integer(5)*y**Integer(2) +...
 Integer(3)*x + Integer(2)
>>> f.integral(x)
3/4*x^4*y^2 + 5*x*y^2 + 3/2*x^2 + 2*x

>>> f.integral(y)
x^3*y^3 + 5/3*y^3 + 3*x*y + 2*y
```

Check that Issue #15896 is solved:

```python
sage: s = x+y
sage: s.integral(x)+x
1/2*x^2 + x*y + x

sage: s.integral(x)*s
1/2*x^3 + 3/2*x^2*y + x*y^2
```

Chapter 3. Multivariate Polynomials
```python
>>> from sage.all import *
>>> s = x+y
>>> s.integral(x)+x
1/2*x^2 + x*y + x
>>> s.integral(x)*s
1/2*x^3 + 3/2*x^2*y + x*y^2
```

**inverse_of_unit()**

Return the inverse of this polynomial if it is a unit.

**Examples:**

```python
sage: R.<x,y> = QQ[]
sage: x.inverse_of_unit()
Traceback (most recent call last):
...
ArithmeticError: Element is not a unit.
sage: R(1/2).inverse_of_unit()
2
```

```python
>>> from sage.all import *
>>> R = QQ['x', 'y']; (x, y,) = R._first_ngens(2)
>>> x.inverse_of_unit()
Traceback (most recent call last):
...
ArithmeticError: Element is not a unit.
>>> R(Integer(1)/Integer(2)).inverse_of_unit()
2
```

**is_constant()**

Return True if this polynomial is constant.

**Examples:**

```python
sage: P.<x,y,z> = PolynomialRing(GF(127))
sage: x.is_constant()
False
sage: P(1).is_constant()
True
```

```python
>>> from sage.all import *
>>> P = PolynomialRing(GF(Integer(127)), names=('x', 'y', 'z'),); (x, y, z,) -= P._first_ngens(3)
>>> x.is_constant()
False
>>> P(Integer(1)).is_constant()
True
```

**is_homogeneous()**

Return True if this polynomial is homogeneous.

**Examples:**

```python
sage: P.<x,y> = PolynomialRing(RationalField(), 2)
sage: (x+y).is_homogeneous()
(continues on next page)
```

3.1. Multivariate Polynomials and Polynomial Rings
True

sage: (x.parent()(0)).is_homogeneous()
True
sage: (x+y^2).is_homogeneous()
False
sage: (x^2 + y^2).is_homogeneous()
True
sage: (x^2 + y^2*x).is_homogeneous()
False
sage: (x^2*y + y^2*x).is_homogeneous()
True

>>> from sage.all import *

>>> P = PolynomialRing(RationalField(), Integer(2), names=('x', 'y', )); (x, y, ˓→) = P._first_ngens(2)

>>> (x+y).is_homogeneous()
True
>>> (x.parent()(Integer(0))).is_homogeneous()
True
>>> (x+y**Integer(2)).is_homogeneous()
False
>>> (x**Integer(2) + y**Integer(2)).is_homogeneous()
True
>>> (x**Integer(2) + y**Integer(2)*x).is_homogeneous()
False
>>> (x**Integer(2)*y + y**Integer(2)*x).is_homogeneous()
True

is_monomial()

Return True if this polynomial is a monomial. A monomial is defined to be a product of generators with
coefficient 1.

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ)
sage: x.is_monomial()
True
sage: (2*x).is_monomial()
False
sage: (x*y).is_monomial()
True
sage: (x*y + x).is_monomial()
False
sage: P(2).is_monomial()
False
sage: P.zero().is_monomial()
False

>>> from sage.all import *

>>> P = PolynomialRing(QQ, names=('x', 'y', 'z', )); (x, y, z, ) = P._first_ ˓→ngens(3)

>>> x.is_monomial()
True
>>> (Integer(2)*x).is_monomial()
False
>>> (x*y).is_monomial()

(continues on next page)
True
>>> (x*y + x).is_monomial()
False
>>> P(Integer(2)).is_monomial()
False
>>> P.zero().is_monomial()
False

is_squarefree()

Return True if this polynomial is square free.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: f= x^2 + 2*x*y + 1/2*z
sage: f.is_squarefree()
True
sage: h = f^2
sage: h.is_squarefree()
False
```

```python
>>> from sage.all import *
```

```python
>>> P = PolynomialRing(QQ, names=(x, y, z,)); (x, y, z,) = P._first_
˓→ngens(3)
>>> f= x**Integer(2) + Integer(2)*x*y + Integer(1)/Integer(2)*z
>>> f.is_squarefree()
True
>>> h = f**Integer(2)
>>> h.is_squarefree()
False
```

is_term()

Return True if self is a term, which we define to be a product of generators times some coefficient, which need not be 1.

Use is_monomial() to require that the coefficient be 1.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: x.is_term()
True
sage: (2*x).is_term()
True
sage: (x*y).is_term()
True
sage: (x*y + x).is_term()
False
sage: P(2).is_term()
True
sage: P.zero().is_term()
False
```

```python
>>> from sage.all import *
```

```python
>>> P = PolynomialRing(QQ, names=('x', 'y', 'z',)); (x, y, z,) = P._first_
˓→ngens(3)
```
is_univariate()
Return True if self is a univariate polynomial, that is if self contains only one variable.

EXAMPLES:

```python
sage: P.<x,y,z> = GF(2)[]
sage: f = x^2 + 1
sage: f.is_univariate()
True
sage: f = y*x^2 + 1
sage: f.is_univariate()
False
sage: f = P(0)
```

is_zero()
Return True if this polynomial is zero.

EXAMPLES:

```python
sage: P.<x,y> = PolynomialRing(QQ)
sage: x.is_zero()
False
sage: (x - x).is_zero()
True
```
iterator_exp_coeff(as_ETuples=True)

Iterate over self as pairs of ((E)Tuple, coefficient).

INPUT:

• as_ETuples – (default: True) if True iterate over pairs whose first element is an ETuple, otherwise as a tuples

EXAMPLES:

```python
sage: R.<a,b,c> = QQ[]
sage: f = a*c^3 + a^2*b + 2*b^4
def

```

lc()

Leading coefficient of this polynomial with respect to the term order of self.parent().

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(GF(7), 3, order='lex')
sage: f = x*y^2 + 2*y^3*z^4
def
```
Polynomials, Release 10.4

lcm(g)
Return the least common multiple of self and g.

EXAMPLES:

```
sage: P.<x,y,z> = QQ[]
sage: p = (x+y)*(y+z)
sage: q = (z^4+2)*(y+z)
sage: lcm(p,q)
x*y*z^4 + y^2*z^4 + x*z^5 + y*z^5 + 2*x*y + 2*y^2 + 2*x*z + 2*y*z
```

```
sage: P.<x,y,z> = ZZ[]
sage: p = 2*(x+y)*(y+z)
sage: q = 3*(z^4+2)*(y+z)
sage: lcm(p,q)
6*x*y*z^4 + 6*y^2*z^4 + 6*x*z^5 + 6*y*z^5 + 12*x*y + 12*y^2 + 12*x*z + 12*y*z
```

```
sage: # needs sage.rings.finite_rings
sage: w = polygen(ZZ, 'w')
sage: r.<x,y> = PolynomialRing(NumberField(w^4 + 1, 'a'), 2)
sage: a = r.base_ring().0
sage: f = (a^2+a)*x^2*y + (a^4+a^3+a)*y + a^5
sage: f.lcm(x^4)
(a^2 + a)*x^6*y + (a^3 + a - 1)*x^4*y + (-a)*x^4
```

```
sage: # needs sage.rings.number_field
sage: w = polygen(ZZ, 'w')
sage: r.<x,y> = PolynomialRing(NumberField(w^4 + 1, 'a'), 2)
sage: a = r.base_ring().0
sage: f = (a^2+a)*x^2*y + (a^4+a^3+a)*y + a^5
sage: f.lcm(x^4)
(a^2 + a)*x^6*y + (a^3 + a - 1)*x^4*y + (-a)*x^4
```

```
>>> from sage.all import *
>>> P = QQ['x, y, z']; (x, y, z,) = P._first_ngens(3)
>>> p = (x+y)*(y+z)
>>> q = (z**Integer(4)+Integer(2))*(y+z)
>>> lcm(p,q)
x*y*z^4 + y^2*z^4 + x*z^5 + y*z^5 + 2*x*y + 2*y^2 + 2*x*z + 2*y*z
```

```
>>> P = ZZ['x, y, z']; (x, y, z,) = P._first_ngens(3)
>>> p = Integer(2)*(x+y)*(y+z)
>>> q = Integer(3)*(z**Integer(4)+Integer(2))*(y+z)
>>> lcm(p,q)
6*x*y*z^4 + 6*y^2*z^4 + 6*x*z^5 + 6*y*z^5 + 12*x*y + 12*y^2 + 12*x*z + 12*y*z
```

```
>>> # needs sage.rings.finite_rings
```
\[
\begin{align*}
\texttt{r} & = \text{PolynomialRing}(\text{GF}(\text{Integer}(2)**\text{Integer}(8), \ 'a'\)), \ \text{Integer}(2), \ \text{names}=('x' \rightarrow 'x', \ 'y')); \ (x, \ y,) = r._\text{first}\_\text{ngens}(2) \\
\texttt{a} & = \text{r}.\text{base}\_\text{ring}().\text{gen}(0) \\
\texttt{f} & = (\text{a}**\text{Integer}(2)+\text{a})*x**\text{Integer}(2)*y + (\text{a}**\text{Integer}(4)+\text{a}**\text{Integer}(3)+\text{a})*y \\
\text{\quad} \rightarrow \text{a}**\text{Integer}(5) \\
\texttt{f.\text{lcm}(x**\text{Integer}(4))} & = (\text{a}^2 + \text{a})*x^6*y + (\text{a}^4 + \text{a}^3 + \text{a})*x^4*y + (\text{a}^5)*x^4 \\
\texttt{# needs sage.rings.number_field} \\
\texttt{w} & = \text{polygen}(\text{ZZ}, \ 'w') \\
\texttt{r} & = \text{PolynomialRing}(\text{NumberField}(\text{w}**\text{Integer}(4) + \text{Integer}(1), \ 'a'), \rightarrow \text{Integer}(2), \ \text{names}=('x', \ 'y')); \ (x, \ y,) = r._\text{first}\_\text{ngens}(2) \\
\texttt{a} & = \text{r}.\text{base}\_\text{ring}().\text{gen}(0) \\
\texttt{f} & = (\text{a}**\text{Integer}(2)+\text{a})*x**\text{Integer}(2)*y + (\text{a}**\text{Integer}(4)+\text{a}**\text{Integer}(3)+\text{a})*y \\
\text{\quad} \rightarrow \text{a}**\text{Integer}(5) \\
\texttt{f.\text{lcm}(x**\text{Integer}(4))} & = (\text{a}^2 + \text{a})*x^6*y + (\text{a}^4 + \text{a}^3 + \text{a} - 1)*x^4*y + (-\text{a})*x^4 \\
\end{align*}
\]

This function \( \text{lcm} \) computes the least common multiple of two polynomials.

### lift(I)

Given an ideal \( I = (f_1, \ldots, f_r) \) and some \( g \) \( (== \text{self}) \) in \( I \), find \( s_1, \ldots, s_r \) such that \( g = s_1 f_1 + \ldots + s_r f_r \).

A ValueError exception is raised if \( g \) \( (== \text{self}) \) does not belong to \( I \).

**EXAMPLES:**

```python
sage: A.<x,y> = PolynomialRing(QQ,2,order='degrevlex')
sage: I = A.ideal([x^10 + x^9*y^2, y^8 - x^2*y^7])
sage: f = x*y^13 + y^12
sage: M = f.lift(I)
sage: M
[y^7, x^7*y^2 + x^8 + x^5*y^3 + x^6*y + x^3*y^4 + x^4*y^2 + x*y^5 + x^2*y^3 +
 \quad + x*y^4]
sage: sum(map(mul , zip(M, I.gens()))) == f
True
```

Check that Issue #13671 is fixed:

```python
sage: A.<x1,x2> = QQ[]
sage: I = A.ideal(x2**2 + x1 - 2, x1**2 - 1)
sage: f = I.gen(0) + x2*I.gen(1)
sage: f.lift(I)
[1, x2]
sage: (f+1).lift(I)
```

(continues on next page)
Traceback (most recent call last):
  ... 
ValueError: polynomial is not in the ideal

>>> from sage.all import *
>>> R = QQ['x1, x2']; (x1, x2,) = R._first_ngens(2)
>>> I = R.ideal(x2**2 + x1 - 2, x1**2 - 1)
>>> f = I.gen(0) + x2*I.gen(1)
>>> f.lift(I)
[1, x2]
>>> (f+1).lift(I)
Traceback (most recent call last):
  ... 
ValueError: polynomial is not in the ideal

Check that we can work over the integers:

sage: R.<x1,x2> = ZZ[]
sage: I = R.ideal(x2**2 + x1 - 2, x1**2 - 1)
sage: f = I.gen(0) + x2*I.gen(1)
sage: f.lift(I)
[1, x2]
sage: (f+1).lift(I)
Traceback (most recent call last):
  ... 
ValueError: polynomial is not in the ideal

sage: A.<x,y> = PolynomialRing(ZZ, 2, order='degrevlex')
sage: I = A.ideal([x**10 + x**9*y**2, y**8 - x**2*y**7 ])
sage: f = x*y^13 + y^12
sage: M = f.lift(I)
sage: M
[y^7, x^7*y^2 + x^8 + x^5*y^3 + x^6*y + x^3*y^4 + x^4*y^2 + x*y^5 + x^2*y^3 +...
˓→y^4]

lm()

Returns the lead monomial of self with respect to the term order of self.parent(). In Sage a mono-
Polynomials, Release 10.4

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(GF(7), 3, order='lex')
sage: f = x^1*y^2 + y^3*z^4
sage: f.lm()
x*y^2
sage: f = x^3*y^2*z^4 + x^3*y^2*z^1
sage: f.lm()
x^3*y^2*z^4
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='deglex')
sage: f = x^1*y^2*z^3 + x^3*y^2*z^0
sage: f.lm()
x*y^2*z^3
sage: f = x^3*y^2*z^4 + x^1*y^1*z^5
sage: f.lm()
x^3*y^2*z^4
sage: R.<x,y,z> = PolynomialRing(GF(127), 3, order='degrevlex')
sage: f = x^1*y^5*z^2 + x^4*y^1*z^3
sage: f.lm()
x*y^5*z^2
sage: f = x^4*y^7*z^1 + x^4*y^2*z^3
sage: f.lm()
x^4*y^7*z
```

(continues on next page)
**local_height** (*v, prec=None*)

Return the maximum of the local height of the coefficients of this polynomial.

**INPUT:**

- *v* – a prime or prime ideal of the base ring.
- *prec* – desired floating point precision (default: default `RealField` precision).

**OUTPUT:** a real number.

**EXAMPLES:**

```sage
sage: R.<x,y> = PolynomialRing(QQ)
sage: f = 1/1331*x^2 + 1/4000*y^2
sage: f.local_height(1331)
7.19368581839511

sage: from sage.all import *

>>> R = PolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ngens(2)

>>> f = Integer(1)/Integer(1331)*x**Integer(2) + Integer(1)/Integer(4000)*y**Integer(2)

>>> f.local_height(Integer(1331))
7.19368581839511
```

```sage
sage: # needs sage.rings.number_field
sage: R.<x> = QQ[]
sage: K.<k> = NumberField(x^2 - 5)
sage: T.<t,w> = K[

>>> from sage.all import *

>>> R = QQ['x']; (x,) = R._first_ngens(1)

>>> K = NumberField(x**Integer(2) - Integer(5), names=('k',)); (k,) = K._

>>> T = K['t, w']; (t, w,) = T._first_ngens(2)

>>> f = Integer(1)/Integer(3)*t*w + Integer(3)

>>> f.local_height(I)
1.09861228866811
```

```sage
sage: R.<x,y> = QQ[]
sage: f = 1/2*x*y + 2

>>> from sage.all import *

>>> R = QQ['x', 'y']; (x, y,) = R._first_ngens(2)

>>> f = Integer(1)/Integer(2)*x*y + Integer(2)
```

(continues on next page)
local_height_arch \( i, \text{prec}=\text{None} \)

Return the maximum of the local height at the \( i \)-th infinite place of the coefficients of this polynomial.

**INPUT:**

- \( i \) – an integer.

- \( \text{prec} \) – desired floating point precision (default: default \texttt{RealField} precision).

**OUTPUT:** a real number.

**EXAMPLES:**

```python
sage: R.<x,y> = PolynomialRing(QQ)
sage: f = 210*x*y
sage: f.local_height_arch(0)
5.34710753071747
```

```python
>>> from sage.all import *
```

```python
R = PolynomialRing(QQ, names=('x', 'y')); (x, y) = R._first_ngens(2)
>>> f = 210*x*y
>>> f.local_height_arch(Integer(0))
5.34710753071747
```

```python
sage: R.<x> = QQ[]
sage: K.<k> = NumberField(x^2 - 5)
sage: T.<t,w> = K[]
sage: f = 1/2*t*w + 3
sage: f.local_height_arch(1, prec=Integer(52))
1.09861228866811
```

```python
>>> from sage.all import *
```

```python
needs sage.rings.number_field
R.<x> = QQ[]
sage: K.<x> = NumberField(x^2 - 5)
sage: T.<t,w> = K[]
sage: f = 1/2*t*w + 3
Sage: f.local_height_arch(Integer(0), prec=Integer(52))
1.09861228866811
```

```python
sage: R.<x,y> = QQ[]
sage: f = 1/2*x*y + 3
sage: f.local_height_arch(0, prec=Integer(2))
1.0
```

```python
>>> from sage.all import *
```

```python
R = QQ[x, y]; (x, y,) = R._first_ngens(2)
>>> f = Integer(1)/Integer(2)*x*y + Integer(3)
>>> f.local_height_arch(Integer(0), prec=Integer(2))
1.0
```
Leading term of this polynomial. In Sage a term is a product of variables in some power and a coefficient.

EXAMPLES:

```
sage: R.<x,y,z> = PolynomialRing(GF(7), 3, order='lex')
sage: f = 3*x^1*y^2 + 2*y^3*z^4
sage: f.lt()
3*x*y^2
```

```
sage: f = 5*x^3*y^2*z^4 + 4*x^3*y^2*z^1
sage: f.lt()
-2*x^3*y^2*z^4
```

```
>>> from sage.all import *

>>> R = PolynomialRing(GF(Integer(7)), Integer(3), order='lex', names=('x', 'y', 'z')); (x, y, z) = R._first_ngens(3)
>>> f = Integer(3)*x**Integer(1)*y**Integer(2) +
 Integer(2)*y**Integer(3)*z**Integer(4)
>>> f.lt()
3*x*y^2

>>> f = Integer(5)*x**Integer(3)*y**Integer(2)*z**Integer(4) +
 Integer(4)*x**Integer(4)*y**Integer(3)*z**Integer(2)*z**Integer(1)
>>> f.lt()
-2*x^3*y^2*z^4
```

```
monomial_coefficient (mon)
```

Return the coefficient in the base ring of the monomial mon in self, where mon must have the same parent as self.

This function contrasts with the function coefficient which returns the coefficient of a monomial viewing this polynomial in a polynomial ring over a base ring having fewer variables.

INPUT:

• mon – a monomial

OUTPUT:

coefficient in base ring

See also:

For coefficients in a base ring of fewer variables, look at coefficient.

EXAMPLES:

```
sage: P.<x,y> = QQ[]
The parent of the return is a member of the base ring.
sage: f = 2 * x * y
sage: c = f.monomial_coefficient(x*y); c
2
sage: c.parent()
Rational Field
sage: f = y^2 + y^2*x - x^9 - 7*x + 5*x*y
sage: f.monomial_coefficient(y^2)
1
```

(continues on next page)
sage: f.monomial_coefficient(x*y)
5
sage: f.monomial_coefficient(x^9)
-1
sage: f.monomial_coefficient(x^10)
0

```python
>>> from sage.all import *
...
>>> P = QQ['x, y']; (x, y,) = P._first_ngens(2)

The parent of the return is a member of the base ring.
```  
```python
>>> f = Integer(2) * x * y
>>> c = f.monomial_coefficient(x*y); c
2
>>> c.parent()
Rational Field
```  
```python
>>> f = y**Integer(2) + y**Integer(2)*x - x**Integer(9) - Integer(7)*x + Integer(5)*x*y
```
```python
>>> f.monomial_coefficient(y**Integer(2))
1
>>> f.monomial_coefficient(x*y)
5
>>> f.monomial_coefficient(x**Integer(9))
-1
>>> f.monomial_coefficient(x**Integer(10))
0
```

**monomials()**

Return the list of monomials in self. The returned list is decreasingly ordered by the term ordering of `self`. `parent()`.

**EXAMPLES:**

```python
sage: P.<x,y,z> = QQ[]
sage: f = x + 3/2*y*z^2 + 2/3
sage: f.monomials()
[y*z^2, x, 1]
sage: f = P(3/2)
sage: f.monomials()
[1]
```

```python
>>> from sage.all import *
...
>>> P = QQ['x, y, z']; (x, y, z,) = P._first_ngens(3)
```  
```python
>>> f = x + Integer(3)/Integer(2)*y*z**2 + Integer(2)/Integer(3)
```  
```python
>>> f.monomials()
[y*z^2, x, 1]
>>> f = P(Integer(3)/Integer(2))
>>> f.monomials()
[1]
```

**number_of_terms()**

Return the number of non-zero coefficients of this polynomial.

This is also called weight, `hamming_weight()` or sparsity.

**EXAMPLES:**
Polynomials, Release 10.4

```
sage: R.<x, y> = ZZ[]
sage: f = x^3 - y
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x+y)^100
sage: f.number_of_terms()
101

>>> from sage.all import *

>>> R = ZZ['x, y']; (x, y,) = R._first_ngens(2)

>>> f = x**Integer(3) - y

>>> f.number_of_terms()
2

>>> R(Integer(0)).number_of_terms()
0

>>> f = (x+y)**Integer(100)

>>> f.number_of_terms()
101
```

The method `hamming_weight()` is an alias:

```
sage: f.hamming_weight()
101
```

```
from sage.all import *

R = ZZ['x, y']; (x, y,) = R._first_ngens(2)

f = x**Integer(3) - y

f.hamming_weight()
101
```

`numerator()`

Return a numerator of self computed as `self * self.denominator`

If the base_field of self is the Rational Field then the numerator is a polynomial whose `base_ring` is the `Integer Ring`, this is done for compatibility to the univariate case.

**Warning:** This is not the numerator of the rational function defined by self, which would always be self since self is a polynomial.

**EXAMPLES:**

First we compute the numerator of a polynomial with integer coefficients, which is of course self.

```
sage: R.<x, y> = ZZ[]
sage: f = x^3 + 17*y + 1
sage: f.numerator()
x^3 + 17*y + 1
sage: f == f.numerator()
True
```

```
from sage.all import *

R = ZZ['x, y']; (x, y,) = R._first_ngens(2)

f = x**Integer(3) + Integer(17)*y + Integer(1)

f.numerator()
```

(continues on next page)
Next we compute the numerator of a polynomial with rational coefficients.

```python
sage: R.<x,y> = PolynomialRing(QQ)
sage: f = (1/17)*x^19 - (2/3)*y + 1/3; f
1/17*x^19 - 2/3*y + 1/3
sage: f.numerator()
3*x^19 - 34*y + 17
sage: f == f.numerator()
False
sage: f.numerator().base_ring()
Integer Ring
```

We check that the computation of numerator and denominator is valid.

```python
sage: K=QQ['x,y']
sage: f=K.random_element()
sage: f.numerator() / f.denominator() == f
True
```

The following tests against a bug fixed in Issue #11780:

```python
sage: P.<foo,bar> = ZZ[]
sage: Q.<foo,bar> = QQ[]
sage: f = Q.random_element()
sage: f.numerator().parent() is P
True
```

```python
sage: P = ZZ['foo, bar']; (foo, bar) = P._first_ngens(2)
sage: Q = QQ['foo, bar']; (foo, bar) = Q._first_ngens(2)
sage: f = Q.random_element()
sage: f.numerator().parent() is P
True
```
nvariables()

Return the number variables in this polynomial.

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(GF(127))
sage: f = x*y + z
sage: f.nvariables()
3
sage: f = x + y
sage: f.nvariables()
2
```

quo_rem(right)

Return quotient and remainder of self and right.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: f = y*x^2 + x + 1
sage: f.quo_rem(x)
(x*y + 1, 1)
sage: f.quo_rem(y)
(x^2, x + 1)

sage: R.<x,y> = ZZ[
```
reduce (/)

Return a remainder of this polynomial modulo the polynomials in I.

INPUT:

• I – an ideal or a list/set/iterable of polynomials.

OUTPUT:

A polynomial r such that:

• self – r is in the ideal generated by I.
• No term in r is divisible by any of the leading monomials of I.

The result r is canonical if:

• I is an ideal, and Sage can compute a Groebner basis of it.
• I is a list/set/iterable that is a (strong) Groebner basis for the term order of self. (A strong Groebner basis is such that for every leading term t of the ideal generated by I, there exists an element g of I such that the leading term of g divides t.)

The result r is implementation-dependent (and possibly order-dependent) otherwise. If I is an ideal and no Groebner basis can be computed, its list of generators I.gens() is used for the reduction.

EXAMPLES:

```
sage: P.<x,y,z> = QQ[]
sage: f1 = -2 * x^2 + x^3
sage: f2 = -2 * y + x*y
sage: f3 = -x^2 + y^2
sage: F = Ideal([f1,f2,f3])
sage: g = x*y - 3*x*y^2
sage: g.reduce(F)
-6*y^2 + 2*y
sage: g.reduce(F.gens())
-6*y^2 + 2*y
```

```
>>> from sage.all import *
>>> P = QQ['x, y, z']; (x, y, z) = P._first_ngens(3)
>>> f1 = -Integer(2) * x**Integer(2) + x**Integer(3)
>>> f2 = -Integer(2) * y + x*y
>>> f3 = -x**Integer(2) + y**Integer(2)
>>> F = Ideal([f1,f2,f3])
>>> g = x*y - Integer(3)*x*y**Integer(2)
>>> g.reduce(F)
-6*y^2 + 2*y
>>> g.reduce(F.gens())
-6*y^2 + 2*y
```

Z is also supported.

```
sage: P.<x,y,z> = ZZ[]
sage: f1 = -2 * x^2 + x^3
sage: f2 = -2 * y + x*y
```

sage: f3 = -x^2 + y^2
sage: F = Ideal([f1,f2,f3])
sage: g = x*y - 3*x*y^2
sage: g.reduce(F)
-6*y^2 + 2*y
sage: g.reduce(F.gens())
-6*y^2 + 2*y
sage: f = 3*x
sage: f.reduce([2*x,y])
x

The reduction is not canonical when \( I \) is not a Groebner basis:

sage: A.<x,y> = QQ[]
sage: (x+y).reduce([x+y, x-y])
2*y
sage: (x+y).reduce([x-y, x+y])
0

resultant \((other, variable=None)\)

Compute the resultant of this polynomial and the first argument with respect to the variable given as the second argument.

If a second argument is not provided, the first variable of the parent is chosen.

INPUT:

- \( other \) – polynomial
- \( variable \) – optional variable (default: None)

EXAMPLES:
sage: P.<x,y> = PolynomialRing(QQ,2)
sage: a = x+y
sage: b = x^3-y^3
sage: c = a.resultant(b); c
-2*y^3
sage: d = a.resultant(b,y); d
2*x^3

The SINGULAR example:

sage: R.<x,y,z> = PolynomialRing(GF(32003),3)
sage: f = 3 * (x+2)^3 + y
sage: g = x + y + z
sage: f.resultant(g, x)
3*y^2*z + 9*y^2 + 9*y*z^2 + 3*z^3 - 18*y^2 - 36*y*z - 18*z^2 + 35*y + 36*z - 24

Resultants are also supported over the Integers:

sage: R.<x,y,a,b,u> = PolynomialRing(ZZ, 5, order='lex')
sage: r = (x^4*y^2 + x^2*y - y).resultant(x*y - y*a - x*b + a*b + u, x)

(continues on next page)
Polynomials, Release 10.4

>>> r = (x**Integer(4)*y**Integer(2) + x**Integer(2)*y - y).resultant(x*y - a*b + a*b + u, x)
>>> r
y^6*a^4 - 4*y^5*a^4*b - 4*y^5*a^3*u + y^5*a^2 - y^5 + 6*y^4*a^4*b^2 + 12*y^3*a^3*b^2 + 3 - 12*y^3*a^3*b^2*u + 6*y^3*a^2*b^2 - 12*y^3*a^2*b*u^2 + 6*y^3*a*b*u - 4*y^3*a*u^3 - 6*y^3*b^2 + y^3*u^2 + y^2*a^4*b^4 + 4*y^2*a^3*b^3*u + 4*y^2*a^2*b^2 - 2*y^2*a*b*u^2 + 4*y^2*b^3 - 2*y^2*b*u^2 + 2*y*b^2 + y*b^2*u^2 + y*a^2*b^4 + 2*y*a*b^3*u - y*b^4 + y*b^2*u^2

sub_m_mul_q (m, q)

Return self - m*q, where m must be a monomial and q a polynomial.

INPUT:

- m – a monomial
- q – a polynomial

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: x.sub_m_mul_q(y, z)
- y*z + x

subs (fixed=None, **kw)

Fixes some given variables in a given multivariate polynomial and returns the changed multivariate polynomials. The polynomial itself is not affected. The variable,value pairs for fixing are to be provided as dictionary of the form {variable:value}.

This is a special case of evaluating the polynomial with some of the variables constants and the others the original variables, but should be much faster if only few variables are to be fixed.

INPUT:

- fixed – (optional) dict with variable:value pairs
- **kw – names parameters

OUTPUT: a new multivariate polynomial

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: f = x^2 + y + x^2*y^2 + 5
sage: f(5, y)
25*y^2 + y + 30
sage: f.subs({x: 5})
25*y^2 + y + 30
sage: f.subs(x=5)
25*y^2 + y + 30
sage: P.<x,y,z> = PolynomialRing(GF(2), 3)

(continues on next page)
The parameters are substituted in order and without side effects:

```python
sage: R.<x,y>=QQ[]
sage: g=x+y
sage: g.subs({x:x+1,y:x*y})
x*y + x + 1
sage: g.subs({x:x+1}).subs({y:x*y})
x*y + x + 1
sage: g.subs({y:x*y}).subs({x:x+1})
x*y + x + y + 1
```
```python
>>> from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> g=x+y
>>> g.subs({x:x+Integer(1),y:x*y})
x*y + x + 1
>>> g.subs({x:x+Integer(1)}).subs({y:x*y})
x*y + x + 1
>>> g.subs({y:x*y}).subs({x:x+Integer(1)})
x*y + x + y + 1
```

```
R.<x,y> = QQ[]
f = x + 2*y
f.subs(x=y,y=x)
2*y + x
```

```
total_degree (std_grading=False)
```

Return the total degree of `self`, which is the maximum degree of all monomials in `self`.

**EXAMPLES:**

```python
>>> R.<x,y,z> = QQ[]
f = 2*x*y^3*z^2
f.total_degree()
6
```

```python
>>> f = 4*x^2*y^2*z^3
f.total_degree()
7
```

```python
>>> f = 99*x^6*y^3*z^9
f.total_degree()
18
```

```python
>>> f = x^y^3*z^6+3*x^2
f.total_degree()
10
```

```python
>>> f = z^3+8*x^4*y^5*z
f.total_degree()
10
```

```python
>>> f = z^9+10*x^4+y^8*x^2
f.total_degree()
10
```

```python
>>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)
f = Integer(2)*x*y**Integer(3)*z**Integer(2)
f.total_degree()
6
```

```python
>>> f = Integer(4)*x**Integer(2)*y**Integer(3)*z**Integer(2)
f.total_degree()
7
```

```python
>>> f = Integer(99)*x**Integer(6)*y**Integer(3)*z**Integer(9)
f.total_degree()
(continues on next page)
```
A matrix term ordering changes the grading. To get the total degree using the standard grading, use `std_grading=True`:

```python
sage: tord = TermOrder(matrix(3, [3,2,1,1,1,0,1,0,0]))
sage: tord
Matrix term order with matrix
3 2 1
1 1 0
1 0 0
sage: R.<x,y,z> = PolynomialRing(QQ, order=tord)
sage: f = x^2*y
sage: f.total_degree() 8
sage: f.total_degree(std_grading=True)
3
```

```python
>>> from sage.all import *
```

```python
>>> tord = TermOrder(matrix(Integer(3), [Integer(3),Integer(2),Integer(1),
- Integer(1),Integer(1),Integer(0),Integer(1),Integer(0),Integer(0)]))
```

```python
>>> R = PolynomialRing(QQ, order=tord, names=('x', 'y', 'z',)); (x, y, z,)
- R._first_ngens(3)
>>> f = x^2*Integer(2)*y
>>> f.total_degree() 8
>>> f.total_degree(std_grading=True)
3
```

`univariate_polynomial(R=None)`

Returns a univariate polynomial associated to this multivariate polynomial.

**INPUT:**

- `R` – (default: `None`) `PolynomialRing`

If this polynomial is not in at most one variable, then a `ValueError` exception is raised. This is checked using the `is_univariate()` method. The new Polynomial is over the same base ring as the given `MPolynomial` and in the variable `x` if no ring `R` is provided.

**EXAMPLES:**

3.1. Multivariate Polynomials and Polynomial Rings
sage: R.<x, y> = QQ[]
sage: f = 3*x^2 - 2*y + 7*x^2*y^2 + 5
sage: f.univariate_polynomial()
Traceback (most recent call last):
  ...TypeError: polynomial must involve at most one variable
sage: g = f.subs({x:10}); g
700*y^2 - 2*y + 305
sage: g.univariate_polynomial()
700*y^2 - 2*y + 305
sage: g.univariate_polynomial(PolynomialRing(QQ,z))
700*z^2 - 2*z + 305

```python
>>> from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> f = Integer(3)*x**Integer(2) - Integer(2)*y + Integer(7)*x**Integer(2)*y**Integer(2) + Integer(5)
>>> f.univariate_polynomial()
Traceback (most recent call last):
 ...TypeError: polynomial must involve at most one variable
>>> g = f.subs({x:Integer(10)}); g
700*y^2 - 2*y + 305
>>> g.univariate_polynomial()
700*y^2 - 2*y + 305
>>> g.univariate_polynomial(PolynomialRing(QQ,'z'))
700*z^2 - 2*z + 305
```

Here's an example with a constant multivariate polynomial:

```python
sage: g = R(1)
sage: h = g.univariate_polynomial(); h
1
sage: h.parent()
Univariate Polynomial Ring in x over Rational Field
```

```python
>>> from sage.all import *
>>> g = R(Integer(1))
>>> h = g.univariate_polynomial(); h
1
>>> h.parent()
Univariate Polynomial Ring in x over Rational Field
```

**variable** *(i=0)*

Return the *i*-th variable occurring in *self*. The index *i* is the index in *self.variables()*.

**EXAMPLES:**

```python
sage: P.<x,y,z> = GF(2)[]
sage: f = x*z^2 + z + 1
sage: f.variables()
(x, z)
sage: f.variable(1)
z
```
```python
>>> from sage.all import *
>>> P = GF(Integer(2))['x, y, z']; (x, y, z,) = P._first_ngens(3)
>>> f = x*z**Integer(2) + z + Integer(1)
>>> f.variables()
(x, z)
>>> f.variable(Integer(1))
z
```

```python
sage: P.<x,y,z> = GF(2)[]
sage: f = x*z^2 + z + 1
sage: f.variables()
(x, z)
```

```python
sage.rings.polynomial.multi_polynomial_libsingular.unpickle_MPolynomialRing_libsingular(base_ring, names, term_order)
```

---

#### variables()  
Return a tuple of all variables occurring in self.

**EXAMPLES:**

```python
sage: P.<x,y,z> = GF(2)[]
sage: f = x*z^2 + z + 1
sage: f.variables()
(x, z)
```

```python
sage.rings.polynomial.multi_polynomial_libsingular.unpickle_MPolynomialRing_libsingular(R, d)
```

---

Deserialize an MPolynomial_libsingular object

**INPUT:**

- `R` – the base ring
- `d` – a Python dictionary as returned by `MPolynomial_libsingular.dict()`

**EXAMPLES:**

```python
sage: P.<x,y> = PolynomialRing(QQ)
sage: loads(dumps(P)) == P # indirect doctest
True
```

```python
sage: loads(dumps(x)) == x # indirect doctest
True
```

---

**3.1. Multivariate Polynomials and Polynomial Rings**

773
3.1.9 Direct low-level access to SINGULAR’s Groebner basis engine via libSINGULAR

AUTHOR:

• Martin Albrecht (2007-08-08): initial version

EXAMPLES:

```python
>>> from sage.all import *
>>> P = PolynomialRing(QQ, names=('x', 'y',)) ; (x, y,) = P._first_ngens(2)
>>> loads(dumps(x)) == x # indirect doctest
True
```

```python
sage: x,y,z = QQ['x,y,z'].gens()
sage: I = ideal(x^5 + y^4 + z^3 - 1, x^3 + y^3 + z^2 - 1)
sage: I.groebner_basis('libsingular:std')
[y^6 + x*y^4 + 2*y^3*z^2 + x*z^3 + z^4 - 2*y^3 - 2*z^2 - x + 1,
x^2*y^3 - y^4 + x^2*z^2 - z^3 - x^2 + 1, x^3 + y^3 + z^2 - 1]
```

```python
sage: R.<x,y,z,t,u,v> = QQ['x,y,z,t,u,v'].gens()
sage: I = sage.rings.ideal.Cyclic(R,Integer(6))
sage: B = I.groebner_basis('libsingular:std')
sage: len(B)
45
```

We compute a Groebner basis for cyclic 6, which is a standard benchmark and test ideal:

```python
>>> from sage.all import *
>>> R = QQ['x,y,z,t,u,v']; (x, y, z, t, u, v,) = R._first_ngens(6)
>>> I = sage.rings.ideal.Cyclic(R,Integer(6))
>>> B = I.groebner_basis('libsingular:std')
>>> len(B)
45
```

Two examples from the Mathematica documentation (done in Sage):

• We compute a Groebner basis:

```python
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: ideal(x^2 - 2*y^2, x*y - 3).groebner_basiss('libsingular:slimgb')
[x - 2/3*y^3, y^4 - 9/2]
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, order='lex', names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> ideal(x**Integer(2) - Integer(2)*y**Integer(2), x*y - Integer(3)).groebner_...
```

(continues on next page)
We show that three polynomials have no common root:

```
sage: R.<x,y> = QQ[]
sage: ideal(x+y, x^2 - 1, y^2 - 2*x).groebner_basis('libsingular:slimgb')
```

```
[0]
```

```
>>> from sage.all import *

>>>
R = QQ['x', 'y']; (x, y,) = R._first_ngens(2)
>>> ideal(x+y, x**Integer(2) - Integer(1), y**Integer(2) - Integer(2)*x).groebner_basis('libsingular:slimgb')
```

```
[0]
```

"""sage.rings.polynomial.multi_polynomial_ideal_libsingular.interred_libsingular(I)"

SINGULAR's `interred()` command.

INPUT:

- `I` — a Sage ideal

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(ZZ)
sage: I = ideal(x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1)
sage: I.interreduced_basis()
```

```
[y*z^2 - 81*x*y - 9*y - z, z^3 - x, x^2 - 3*y, 9*y^2 - y*z + 1]
```

```
>>> from sage.all import *

>>>
P = PolynomialRing(ZZ, names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3)
>>> I = ideal(x**Integer(2) - Integer(3)*y, y**Integer(3) - x*y, z**Integer(3) - x, x**Integer(4) - y*z + Integer(1))
>>> I.interreduced_basis()
```

```
[y*z^2 - 81*x*y - 9*y - z, z^3 - x, x^2 - 3*y, y^2 - 1/9*y*z + 1/9]
```

```
>>> P = PolynomialRing(QQ, names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3)
>>> I = ideal(x**Integer(2) - Integer(3)*y, y**Integer(3) - x*y, z**Integer(3) - x, x**Integer(4) - y*z + Integer(1))
>>> I.interreduced_basis()
```

```
[y*z^2 - 81*x*y - 9*y - z, z^3 - x, x^2 - 3*y, y^2 - 1/9*y*z + 1/9]
```

"""sage.rings.polynomial.multi_polynomial_ideal_libsingular.kbase_libsingular(I, degree=None)"

SINGULAR's `kbase()` algorithm.

INPUT:

- `I` — a groebner basis of an ideal
- `degree` — integer (default: None); if not None, return only the monomials of the given degree
OUTPUT:

Computes a vector space basis (consisting of monomials) of the quotient ring by the ideal, resp. of a free module by the module, in case it is finite dimensional and if the input is a standard basis with respect to the ring ordering. If the input is not a standard basis, the leading terms of the input are used and the result may have no meaning.

With two arguments: computes the part of a vector space basis of the respective quotient with degree of the monomials equal to the second argument. Here, the quotient does not need to be finite dimensional.

EXAMPLES:

```
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: I = R.ideal(x^2-2*y^2, x*y-3)
sage: I.normal_basis() # indirect doctest
[y^3, y^2, y, 1]
sage: J = R.ideal(x^2-2*y^2)
sage: [J.normal_basis(d) for d in (0..4)] # indirect doctest
[[1], [y, x], [y^2, x*y], [y^3, x*y^2], [y^4, x*y^3]]

>>> from sage.all import *

>>> R = PolynomialRing(QQ, order='lex', names=('x', 'y',)); (x, y,) = R._first_˓→ngens(2)
>>> I = R.ideal(x**Integer(2)-Integer(2)*y**Integer(2), x*y-Integer(3))
>>> I.normal_basis() # indirect doctest
[y^3, y^2, y, 1]
>>> J = R.ideal(x**Integer(2)-Integer(2)*y**Integer(2))
>>> [J.normal_basis(d) for d in (ellipsis_iter(Integer(0),Ellipsis,Integer(4)))]
˓→# indirect doctest
[[1], [y, x], [y^2, x*y], [y^3, x*y^2], [y^4, x*y^3]]
```

sage.rings.polynomial.multi_polynomial_ideal_libsingular.slimgb_libsingular(I)
SINGULAR’s slimgb() algorithm.

INPUT:

• I – a Sage ideal

sage.rings.polynomial.multi_polynomial_ideal_libsingular.std_libsingular(I)
SINGULAR’s std() algorithm.

INPUT:

• I – a Sage ideal

3.1.10 Solution of polynomial systems using msolve

msolve is a multivariate polynomial system solver based on Gröbner bases.

This module provide implementations of some operations on polynomial ideals based on msolve.

Note that the optional package msolve must be installed.

See also:

• sage.features.msolve
  • sage.rings.polynomial.multi_polynomial_ideal
sage.rings.polynomial.msolve.groebner_basis_degrevlex(ideal, proof=True)

Compute a degrevlex Gröbner basis using msolve

EXAMPLES:

```python
sage: from sage.rings.polynomial.msolve import groebner_basis_degrevlex
sage: R.<a,b,c> = PolynomialRing(GF(101), 3, order='lex')
sage: I = sage.rings.ideal.Katsura(R,3)
sage: gb = groebner_basis_degrevlex(I); gb
[a + 2*b + 2*c - 1, b*c - 19*c^2 + 10*b + 40*c, b^2 - 41*c^2 + 20*b - 20*c, c^3 + 28*c^2 - 37*b + 13*c]
sage: gb.universe() is R # optional - msolve
False
sage: gb.universe().term_order() # optional - msolve
Degree reverse lexicographic term order
sage: ideal(gb).transformed_basis(other_ring=R) # optional - msolve
[c^4 + 38*c^3 - 6*c^2 - 6*c, 30*c^3 + 32*c^2 + b - 14*c, a + 2*b + 2*c - 1]
```

Gröbner bases over the rationals require proof = False:

```python
sage: R.<x, y> = PolynomialRing(QQ, 2)
sage: I = Ideal([x*y - 1, (x-2)^2 + (y-1)^2 - 1])
sage: I.groebner_basis(algorithm='msolve') # optional - msolve
Traceback (most recent call last):
 ... ValueError: msolve relies on heuristics; please use proof=False
sage: I.groebner_basis(algorithm='msolve', proof=False) # optional - msolve
[x*y - 1, x^2 + y^2 - 4*x - 2*y + 4, y^3 - 2*y^2 + x + 4*y - 4]
```
sage.rings.polynomial.msolve.variety (ideal, ring, proof)

Compute the variety of a zero-dimensional ideal using msolve.

Part of the initial implementation was loosely based on the example interfaces available as part of msolve, with the authors' permission.

EXAMPLES:

```python
sage: from sage.rings.polynomial.msolve import variety
sage: p = 536870909
sage: R.<x, y> = PolynomialRing(GF(p), 2, order='lex')
sage: I = Ideal([x*y - 1, (x-2)^2 + (y-1)^2 - 1])
sage: sorted(variety(I, GF(p^2), proof=False), key=str) # optional - msolve
 [(x: 1, y: 1),
 {x: 254228855*z2 + 114981228, y: 232449571*z2 + 402714189},
 {x: 267525699, y: 473946006},
 {x: 282642054*z2 + 154363985, y: 304421338*z2 + 197081624}]
```

3.1.11 Generic data structures for multivariate polynomials

This module provides an implementation of a generic data structure `PolyDict` and the underlying arithmetic for multi-variate polynomial rings. It uses a sparse representation of polynomials encoded as a Python dictionary where keys are exponents and values coefficients.

\[ \text{keys: } (e_1,\ldots,e_r) \Rightarrow c_1 \times x_1^{e_1} \times \cdots \times x_r^{e_r} + \ldots \]

The exponent \((e_1,\ldots,e_r)\) in this representation is an instance of the class `ETuple`.

AUTHORS:

• William Stein
• David Joyner
• Martin Albrecht (`ETuple`)
• Joel B. Mohler (2008-03-17) – ETuple rewrite as sparse C array

```python
class sage.rings.polynomial.polydict.ETuple
 Bases: object
```

778 Chapter 3. Multivariate Polynomials
Representation of the exponents of a polydict monomial. If \((0,0,3,0,5)\) is the exponent tuple of \(x_2^3*x_4^5\) then this class only stores \(\{2:3, 4:5\}\) instead of the full tuple. This sparse information may be obtained by provided methods.

The index/value data is all stored in the _data C int array member variable. For the example above, the C array would contain \(2,3,4,5\). The indices are interlaced with the values.

This data structure is very nice to work with for some functions implemented in this class, but tricky for others. One reason that I really like the format is that it requires a single memory allocation for all of the values. A hash table would require more allocations and presumably be slower. I didn’t benchmark this question (although, there is no question that this is much faster than the prior use of python dicts).

**combine_to_positives\((\text{other})\)**

Given a pair of ETuples (self, other), returns a triple of ETuples (a, b, c) so that self = a + b, other = a + c and b and c have all positive entries.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([-2, 1, -5, 3, 1, 0])
sage: f = ETuple([1, -3, -3, 4, 0, 2])
sage: e.combine_to_positives(f)
((-2, -3, -5, 3, 0, 0), (0, 4, 0, 0, 1, 0), (3, 0, 2, 1, 0, 2))
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import ETuple
>>> e = ETuple([Integer(-2), Integer(1), Integer(-5), Integer(3), Integer(-1), Integer(0)])
>>> f = ETuple([Integer(1), Integer(-3), Integer(-3), Integer(4), Integer(0), Integer(2)])
>>> e.combine_to_positives(f)
((-2, -3, -5, 3, 0, 0), (0, 4, 0, 0, 1, 0), (3, 0, 2, 1, 0, 2))
```

**common_nonzero_positions\((\text{other}, \text{sort=False})\)**

Returns an optionally sorted list of non zero positions either in self or other, i.e. the only positions that need to be considered for any vector operation.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1, 0, 2])
sage: f = ETuple([0, 0, 1])
sage: e.common_nonzero_positions(f)
{0, 2}
sage: e.common_nonzero_positions(f, sort=True)
[0, 2]
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import ETuple
>>> e = ETuple([Integer(1), Integer(0), Integer(2)])
>>> f = ETuple([Integer(0), Integer(0), Integer(1)])
>>> e.common_nonzero_positions(f)
{0, 2}
>>> e.common_nonzero_positions(f, sort=True)
[0, 2]
```

**divide_by_gcd\((\text{other})\)**

Returns self / gcd(self, other).
The entries of the result are the maximum of 0 and the difference of the corresponding entries of \( \text{self} \) and \( \text{other} \).

**divide_by_var** \((\text{pos})\)

Return division of \( \text{self} \) by the variable with index \( \text{pos} \).

If \( \text{self}[\text{pos}] == 0 \) then a \texttt{ArithmeticError} is raised. Otherwise, an \textit{ETuple} is returned that is zero in position \( \text{pos} \) and coincides with \( \text{self} \) in the other positions.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1, 2, 0, 1])
sage: e.divide_by_var(0)
(0, 2, 0, 1)
sage: e.divide_by_var(1)
(1, 1, 0, 1)
sage: e.divide_by_var(3)
(1, 2, 0, 0)
sage: e.divide_by_var(2)
Traceback (most recent call last):
 ... ArithmeticError: not divisible by this variable
``` 

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import ETuple

>>> e = ETuple([Integer(1), Integer(2), Integer(0), Integer(1)])

>>> e.divide_by_var(Integer(0))
(0, 2, 0, 1)

>>> e.divide_by_var(Integer(1))
(1, 1, 0, 1)

>>> e.divide_by_var(Integer(3))
(1, 2, 0, 0)

>>> e.divide_by_var(Integer(2))
Traceback (most recent call last):
 ... ArithmeticError: not divisible by this variable
```

**divides** \((\text{other})\)

Return whether \( \text{self} \) divides \( \text{other} \), i.e., no entry of \( \text{self} \) exceeds that of \( \text{other} \).

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: ETuple([1, 1, 0, 1, 0]).divides(ETuple([2, 2, 2, 2, 2]))
True

sage: ETuple([0, 3, 0, 1, 0]).divides(ETuple([2, 2, 2, 2, 2]))
False

sage: ETuple([0, 3, 0, 1, 0]).divides(ETuple([0, 3, 2, 2, 2]))
True

sage: ETuple([0, 0, 0, 0, 0]).divides(ETuple([2, 2, 2, 2, 2]))
True

False

True
```
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import ETuple
>>> ETuple([Integer(1), Integer(1), Integer(0), Integer(1), Integer(0)]).divides(ETuple([Integer(2), Integer(2), Integer(2), Integer(2),
    Integer(2)]))
True
>>> ETuple([Integer(0), Integer(3), Integer(0), Integer(1), Integer(0)]).divides(ETuple([Integer(2), Integer(2), Integer(2), Integer(2),
    Integer(2)]))
False
>>> ETuple([Integer(0), Integer(3), Integer(0), Integer(1), Integer(0)]).divides(ETuple([Integer(0), Integer(3), Integer(2), Integer(2),
    Integer(2)]))
True
>>> ETuple([Integer(0), Integer(0), Integer(0), Integer(0), Integer(0)]).divides(ETuple([Integer(2), Integer(2), Integer(2), Integer(2),
    Integer(2)]))
True
>>> ETuple({Integer(104): Integer(18), Integer(256): Integer(25),
    Integer(314): Integer(78)}, length=400).divides(ETuple({Integer(104):
    Integer(19), Integer(105): Integer(20), Integer(106): Integer(21)},
    length=400))
False
>>> ETuple({Integer(104): Integer(18), Integer(256): Integer(25),
    Integer(314): Integer(78)}, length=400).divides(ETuple({Integer(104):
    Integer(19), Integer(105): Integer(20), Integer(106): Integer(21),
    Integer(255): Integer(2), Integer(256): Integer(25), Integer(312):
    Integer(5), Integer(314): Integer(79), Integer(315): Integer(28)},
    length=400))
True

**dotprod** (other)

Return the dot product of this tuple by other.

**EXAMPLES:**

```
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1, 0, 2])
Example: e = ETuple([1, 0, 2])
Example: e = ETuple([0, 1, 1])
Example: e = ETuple([1, 1, -1])
Example: e = ETuple([0, -2, 1])
Example: e = ETuple([1, 1, -1])
Example: e = ETuple([0, -2, 1])
Example: e = ETuple([1, 1, -1])
Example: e = ETuple([0, -2, 1])
Example: e = ETuple([1, 1, -1])
Example: e = ETuple([0, -2, 1])
Dot product:
Example: dotprod(e, f)
Dot product:
```
**eadd*(other)*

Return the vector addition of *self* with *other*.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polydict import ETuple
global eadd

sage: e = ETuple([1, 0, 2])
sage: f = ETuple([0, 1, 1])
sage: e.eadd(f)
(1, 1, 3)
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import ETuple
>>>
e = ETuple([Integer(1), Integer(0), Integer(2)])
>>>
f = ETuple([Integer(0), Integer(1), Integer(1)])
>>>
e.eadd(f)
(1, 1, 3)
```

Verify that Issue #6428 has been addressed:

```python
sage: # needs sage.libs.singular
sage: R.<y, z> = Frac(QQ['x'])[]
sage: type(y)
<class sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular>
sage: y^(2^32)
Traceback (most recent call last):
...
OverflowError: exponent overflow (...)

OverflowError: Python int too large to convert to C unsigned long
```

```python
>>> from sage.all import *
>>> # needs sage.libs.singular
>>> R = Frac(QQ['x'])[y, z]; (y, z,) = R._first_ngens(2)
>>> type(y)
<class sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular>
>>> y**(Integer(2)**Integer(32))
Traceback (most recent call last):
...
OverflowError: exponent overflow (...)

OverflowError: Python int too large to convert to C unsigned long
```

**eadd_p*(other, pos)*

Add *other* to *self* at position *pos*.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polydict import ETuple

sage: e = ETuple([1, 0, 2])
sage: e.eadd_p(5, 1)
(1, 5, 2)
sage: e = ETuple([0]*7)
sage: e.eadd_p(5, 4)
(0, 0, 0, 5, 0, 0, 0)
sage: ETuple([0,1]).eadd_p(1, 0) == ETuple([1,1])
(continues on next page)
```

(continues on next page)
True

```python
sage: e = ETuple([0, 1, 0])
sage: e.eadd_p(0, 0).nonzero_positions()
[1]
sage: e.eadd_p(0, 1).nonzero_positions()
[1]
sage: e.eadd_p(0, 2).nonzero_positions()
[1]
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import ETuple
>>>
e = ETuple([Integer(1), Integer(0), Integer(2)])
>>>
e.eadd_p(Integer(5), Integer(1))
(1, 5, 2)
>>>
e = ETuple([Integer(0)]*Integer(7))
>>>
e.eadd_p(Integer(5), Integer(4))
(0, 0, 0, 0, 5, 0, 0)
```

```python
>>> ETuple([Integer(0),Integer(1)]).eadd_p(Integer(1), Integer(0)) == ETuple([Integer(1),Integer(1)])
True
```

```python
eadd_scaled (other, scalar)
Vector addition of self with scalar * other.
```

```python
sage: from sage.rings.polynomial.polydict import ETuple
e = ETuple([1, 0, 2])
f = ETuple([0, 1, 1])
e.eadd_scaled(f, 3)
(1, 3, 5)
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import ETuple
e = ETuple([Integer(1), Integer(0), Integer(2)])
f = ETuple([Integer(0), Integer(1), Integer(1)])
e.eadd_scaled(f, Integer(3))
(1, 3, 5)
```

```python
emax (other)
Vector of maximum of components of self and other.
```

```python
sage: from sage.rings.polynomial.polydict import ETuple
e = ETuple([1, 0, 2])
```

(continues on next page)
emin(other)

Vector of minimum of components of self and other.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([Integer(1), Integer(0), Integer(2)])
sage: f = ETuple([Integer(0), Integer(1), Integer(1)])
sage: e.emin(f)
(0, 0, 1)
```

```python
sage: e = ETuple([Integer(1), Integer(0), -Integer(1)])
sage: f = ETuple([Integer(0), -Integer(2), Integer(1)])
sage: e.emin(f)
(0, -2, -1)
```
emul (factor)
Scalar Vector multiplication of self.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1, 0, 2])
sage: e.emul(2)
(2, 0, 4)
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import ETuple
>>> e = ETuple([Integer(1), Integer(0), Integer(2)])
>>> e.emul(Integer(2))
(2, 0, 4)
```

escalar_div (n)
Divide each exponent by n.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: ETuple([1, 0, 2]).escalar_div(2)
(0, 0, 1)
sage: ETuple([0, 3, 12]).escalar_div(3)
(0, 1, 4)
sage: ETuple([1, 5, 2]).escalar_div(0)
Traceback (most recent call last):
...
ZeroDivisionError
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import ETuple
>>> ETuple([Integer(1), Integer(0), Integer(2)]).escalar_div(Integer(2))
(0, 0, 1)
>>> ETuple([Integer(0), Integer(3), Integer(12)]).escalar_div(Integer(3))
(0, 1, 4)
>>> ETuple([Integer(1), Integer(5), Integer(2)]).escalar_div(Integer(0))
Traceback (most recent call last):
...
ZeroDivisionError
```

esub (other)
Vector subtraction of self with other.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1, 0, 2])
sage: f = ETuple([0, 1, 1])
sage: e.esub(f)
(1, -1, 1)
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import ETuple
>>> e = ETuple([Integer(1), Integer(0), Integer(2)])
>>> f = ETuple([Integer(0), Integer(1), Integer(1)])
>>> e.esub(f)
(1, -1, 1)
```
Polynomials, Release 10.4

(continued from previous page)

>>> e = ETuple([Integer(1), Integer(0), Integer(2)])
>>> f = ETuple([Integer(0), Integer(1), Integer(1)])
>>> e.esub(f)
(1, -1, 1)

**is_constant()**

Return if all exponents are zero in the tuple.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1, 0, 2])
```

```python
sage: e.is_constant()
False
```

```python
sage: e = ETuple([0, 0])
```

```python
sage: e.is_constant()
True
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import ETuple

```python
>>> e = ETuple([Integer(1), Integer(0), Integer(2)])
```

```python
>>> e.is_constant()
False
```

```python
>>> e = ETuple([Integer(0), Integer(0)])
```

```python
>>> e.is_constant()
True
```

is_multiple_of(n)

Test whether each entry is a multiple of n.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: ETuple([0, 0]).is_multiple_of(3)
True
```

```python
sage: ETuple([0, 3, 12, 0, 6]).is_multiple_of(3)
True
```

```python
sage: ETuple([0, 0, 2]).is_multiple_of(3)
False
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import ETuple

```python
>>> ETuple([Integer(0), Integer(0)]).is_multiple_of(Integer(3))
True
```

```python
>>> ETuple([Integer(0), Integer(12), Integer(0), Integer(6)]).is_multiple_of(Integer(3))
True
```

```python
>>> ETuple([Integer(0), Integer(0), Integer(2)]).is_multiple_of(Integer(3))
False
```

**nonzero_positions(sort=False)**

Return the positions of non-zero exponents in the tuple.

**INPUT:**

```
• sort – (default: False) if True a sorted list is returned; if False an unsorted list is returned

EXAMPLES:

```
sage: from sage.rings.polynomial.polydict import ETuple
e = ETuple([1, 0, 2])
sage: e(nonzero_positions())
[0, 2]
```

```
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import ETuple
>>> e = ETuple([Integer(1), Integer(0), Integer(2)])
>>> e(nonzero_positions())
[0, 2]
```

\textbf{nonzero_values} (sort=True)

Return the non-zero values of the tuple.

INPUT:

• sort – (default: True) if True the values are sorted by their indices; otherwise the values are returned unsorted

EXAMPLES:

```
sage: from sage.rings.polynomial.polydict import ETuple
e = ETuple([2, 0, 1])
sage: e.nonzero_values()
[2, 1]
f = ETuple([0, -1, 1])
sage: f.nonzero_values(sort=True)
[-1, 1]
```

```
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import ETuple
>>> e = ETuple([Integer(2), Integer(0), Integer(1)])
>>> e(nonzero_values())
[2, 1]
>>> f = ETuple([Integer(0), -Integer(1), Integer(1)])
>>> f.nonzero_values(sort=True)
[-1, 1]
```

\textbf{reversed}()

Return the reversed ETuple of self.

EXAMPLES:

```
sage: from sage.rings.polynomial.polydict import ETuple
e = ETuple([1, 2, 3])
e = ETuple().reversed()
(3, 2, 1)
```

```
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import ETuple
>>> e = ETuple([Integer(1), Integer(2), Integer(3)])
>>> e.reversed()
(3, 2, 1)
```
sparse_iter()

Iterator over the elements of self where the elements are returned as (i, e) where i is the position of e in the tuple.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import ETuple
sage: e = ETuple([1, 0, 2, 0, 3])
sage: list(e.sparse_iter())
[(0, 1), (2, 2), (4, 3)]
```

unweighted_degree()

Return the sum of entries.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import ETuple
e = ETuple([Integer(1), Integer(0), Integer(2), Integer(0), Integer(3)])
list(e.sparse_iter())
[(0, 1), (2, 2), (4, 3)]
```

unweighted_quotient_degree(other)

Return the degree of self divided by its gcd with other.

It amounts to counting the non-negative entries of self.esub(other).

weighted_degree(w)

Return the weighted sum of entries.

INPUT:

• w – tuple of non-negative integers

EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import ETuple
e = ETuple([Integer(1), Integer(0), Integer(2), Integer(0)])
e.weighted_degree((1, 2, 3, 4, 5))
11
e = ETuple([-Integer(1), Integer(1)])
e.weighted_degree((1, 2))
1
```
Traceback (most recent call last):
...
ValueError: w must be of the same length as the ETuple

>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import ETuple
>>> e = ETuple([Integer(1), Integer(1), Integer(0), Integer(2), Integer(0)])
>>> e.weighted_degree((Integer(1), Integer(2), Integer(3), Integer(4),
→ Integer(5)))
11
>>> ETuple([-Integer(1), Integer(1)]).weighted_degree((Integer(1),
→ Integer(2)))
1
>>> ETuple([Integer(1), Integer(0)]).weighted_degree((Integer(1), Integer(2),
→ Integer(3)))
Traceback (most recent call last):
...
ValueError: w must be of the same length as the ETuple

weighted_quotient_degree (other, w)
Return the weighted degree of self divided by its gcd with other.

EXAMPLES:

sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(1, 0): 1, (1, 1): -2})
>>> f = PolyDict({(Integer(1), Integer(0)): Integer(1), (Integer(1),
→ Integer(1)): -Integer(2)})
>>> f.apply_map(lambda x: x**2)
PolyDict with representation {((1, 0): 1, (1, 1): 4}
Polynomials, Release 10.4

coefficient (mon)
Return a polydict that defines a polynomial in 1 less number of variables that gives the coefficient of mon in this polynomial.

The coefficient is defined as follows. If f is this polynomial, then the coefficient is the sum T/mon where the sum is over terms T in f that are exactly divisible by mon.

coefficients()
Return the coefficients of self.

EXAMPLES:

```python
>>> from sage.rings.polynomial.polydict import PolyDict
>>> f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4})
>>> sorted(f.coefficients())
[2, 3, 4]
```

coerce_coefficients (A)
Coerce the coefficients in the parent A

EXAMPLES:

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import PolyDict
>>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)})
>>> sorted(f.coefficients())
[2, 3, 4]
```
degree ($x=None$)

Return the total degree or the maximum degree in the variable x.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4})
sage: f.degree()
5
sage: f.degree(PolyDict({(1, 0): 1}))
2
sage: f.degree(PolyDict({(0, 1): 1}))
3
```

derivative (x)

Return the derivative of self with respect to x

EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4})
sage: f.derivative(PolyDict({(1, 0): 1}))
PolyDict with representation {(0, 2): 3, (1, 1): 8, (1, 3): 4}
sage: f.derivative(PolyDict({(0, 1): 1}))
PolyDict with representation {(1, 1): 6, (2, 0): 4, (2, 2): 6}
sage: PolyDict({(-1,): 1}).derivative(PolyDict({(1,): 1}))
PolyDict with representation {(-2,): -1}
sage: PolyDict({(-2,): 1}).derivative(PolyDict({(1,): 1}))
PolyDict with representation {(-3,): -2}
sage: PolyDict({}).derivative(PolyDict({(1, 1): 1}))
Traceback (most recent call last):
  ...
ValueError: x must be a generator
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

\[
\text{PolyDict} \text{ with representation } \{(-2,): -1\}
\]

\[
\text{PolyDict} \text{ with representation } \{(-3,): -2\}
\]

\[
\text{PolyDict} \text{ with representation } \{(0, 1): 1\}
\]

\[
\text{PolyDict} \text{ with representation } \{(0, 1): 1\}
\]

derivative_i (i)

Return the derivative of self with respect to the i-th variable.

EXAMPLES:

\[
sage: \text{from sage.rings.polynomial.polydict import PolyDict}
\]
\[
sage: \text{PolyDict} \{(1, 1): 1\}.\text{derivative_i}(0)
\]

\[
\text{PolyDict} \text{ with representation } \{(0, 1): 1\}
\]

\[
\text{from sage.all import *}
\]
\[
\text{from sage.rings.polynomial.polydict import PolyDict}
\]
\[
\text{PolyDict} \{(1, 1): 1\}.\text{derivative_i}(0)
\]

\[
\text{PolyDict} \text{ with representation } \{(0, 1): 1\}
\]

dict()

Return a copy of the dict that defines self.

EXAMPLES:

\[
sage: \text{from sage.rings.polynomial.polydict import PolyDict}
\]
\[
sage: f = \text{PolyDict} \{(2, 3): 2, (1, 2): 3, (2, 1): 4\}
\]
\[
f.\text{dict}()
\]

\[
\{(1, 2): 3, (2, 1): 4, (2, 3): 2\}
\]

\[
\text{from sage.all import *}
\]
\[
\text{from sage.rings.polynomial.polydict import PolyDict}
\]
\[
f = \text{PolyDict} \{(\text{Integer}(2), \text{Integer}(3)): \text{Integer}(2), (\text{Integer}(1), \rightarrow\text{Integer}(2)): \text{Integer}(2), (\text{Integer}(1), \rightarrow\text{Integer}(3)): \text{Integer}(3), (\text{Integer}(2), \text{Integer}(1)): \text{Integer}(4)\}
\]
\[
f.\text{dict}()
\]

\[
\{(1, 2): 3, (2, 1): 4, (2, 3): 2\}
\]

exponents()

Return the exponents of self.

EXAMPLES:

\[
sage: \text{from sage.rings.polynomial.polydict import PolyDict}
\]
\[
sage: f = \text{PolyDict} \{(2, 3): 2, (1, 2): 3, (2, 1): 4\}
\]
\[
sage: \text{sorted}(f.\text{exponents}())
\]

\[
\[(1, 2), (2, 1), (2, 3)\]
\]

\[
\text{from sage.all import *}
\]
\[
\text{from sage.rings.polynomial.polydict import PolyDict}
\]
\[
f = \text{PolyDict} \{(\text{Integer}(2), \text{Integer}(3)): \text{Integer}(2), (\text{Integer}(1), \rightarrow\text{Integer}(2)): \text{Integer}(2), (\text{Integer}(1), \rightarrow\text{Integer}(3)): \text{Integer}(3), (\text{Integer}(2), \text{Integer}(1)): \text{Integer}(4)\}
\]
\[
sage: \text{sorted}(f.\text{exponents}())
\]

\[
\[(1, 2), (2, 1), (2, 3)\]
\]

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

```python
>>> sorted(f.exponents())
[(1, 2), (2, 1), (2, 3)]
```

get *(e, default=None)*

Return the coefficient of the ETuple e if present and default otherwise.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import PolyDict, ETuple
sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4})
sage: f.get(ETuple([1,2]))
3
sage: f.get(ETuple([1,1]), 'hello')
'hello'
```

homogenize *(var)*

Return the homogeneization of self by increasing the degree of the variable var.

EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(0, 0): 1, (2, 1): 3, (1, 1): 5})
sage: f.homogenize(0)
PolyDict with representation {(2, 1): 8, (3, 0): 1}
sage: f.homogenize(1)
PolyDict with representation {(0, 3): 1, (1, 2): 5, (2, 1): 3}
```

integral *(x)*

Return the integral of self with respect to x

EXAMPLES:

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import PolyDict
>>> f = PolyDict({(Integer(0), Integer(0)): Integer(0), (Integer(2), Integer(1)): Integer(2), (Integer(1), Integer(1)): Integer(3)})
>>> f.homogenize(Integer(0))
PolyDict with representation {(2, 1): 8, (3, 0): 1}
```

3.1. Multivariate Polynomials and Polynomial Rings 793
```python
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4})
sage: f.integral(PolyDict({(1, 0): 1}))
PolyDict with representation {(1, 3): 1, (2, 2): 2, (2, 4): 1/2}
sage: PolyDict({(-1,): 1}).integral(PolyDict({(1,): 1}))
Traceback (most recent call last):
  ... ArithmeticError: integral of monomial with exponent -1
sage: PolyDict({(-2,): 1}).integral(PolyDict({(1,): 1}))
PolyDict with representation {(-1,): -1}
sage: PolyDict({}).integral(PolyDict({(1, 1): 1}))
Traceback (most recent call last):
  ... ValueError: x must be a generator
```

integral_i(i)
Return the derivative of self with respect to the i-th variable.

EXAMPLES:
```python
sage: from sage.rings.polynomial.polydict import PolyDict
sage: PolyDict({(1, 1): 1}).integral_i(0)
PolyDict with representation {(2, 1): 1/2}
```

is_constant()
Return whether this polynomial is constant.

EXAMPLES:
```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import PolyDict
>>> PolyDict({(Integer(1), Integer(1)): Integer(1)}).integral_i(Integer(0))
PolyDict with representation {(2, 1): 1/2}
>>> PolyDict({(-Integer(1),): Integer(1)}).integral_i(-Integer(1)))
Traceback (most recent call last):
  ... ArithmeticError: integral of monomial with exponent -1
>>> PolyDict({(-Integer(1),): Integer(1)}).integral_i(PolyDict({(-Integer(1),): Integer(1)}))
PolyDict with representation {(-1,): -1}
>>> PolyDict({}).integral(PolyDict({(Integer(1), Integer(1)): Integer(1)}))
Traceback (most recent call last):
  ... ValueError: x must be a generator
```
\begin{verbatim}
sage: from sage.rings.polynomial.polydict import PolyDict
define_polydict:
 f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4})
sage: f.is_constant() False
g = PolyDict({(0, 0): 2})
sage: g.is_constant() True

>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import PolyDict

>>> define_polydict:
 PolyDict({}).is_homogeneous() True
 PolyDict({(Integer(1), Integer(2)): Integer(1), (Integer(0), Integer(3)): -Integer(2)}).is_homogeneous() True
 PolyDict({(Integer(1), Integer(0)): Integer(1), (Integer(1), Integer(2)): Integer(3)}).is_homogeneous() False

>>> define_polydict:
 PolyDict({}).is_homogeneous() True
 PolyDict({(Integer(1), Integer(2)): Integer(1), (Integer(0), Integer(3)): -Integer(2)}).is_homogeneous() True
 PolyDict({(Integer(1), Integer(0)): Integer(1), (Integer(1), Integer(2)): Integer(3)}).is_homogeneous() False

latex\text{(vars, atomic_exponents=True, atomic_coefficients=True, sortkey=None)}

Return a nice polynomial \text{latex} representation of this \text{PolyDict}, where the \text{vars} are substituted in.

INPUT:

\begin{itemize}
 \item \text{vars} – list
 \item \text{atomic_exponents} – bool (default: True)
 \item \text{atomic_coefficients} – bool (default: True)
\end{itemize}
\end{verbatim}
EXAMPLES:

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4})
sage: f.latex(['a', 'WW'])
'2 a^{2} WW^{3} + 4 a^{2} WW + 3 a WW^{2}'
```

```
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import PolyDict
>>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1),...
    Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)})
>>> f.latex(['a', 'WW'])
'2 a^{2} WW^{3} + 4 a^{2} WW + 3 a WW^{2}'
```

lcmt (greater_etuple)

Provides functionality of lc, lm, and lt by calling the tuple compare function on the provided term order T.

INPUT:

- `greater_etuple` - a term order

list ()

Return a list that defines self.

EXAMPLES:

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4})
sage: sorted(f.list())
[[2, [2, 3]], [3, [1, 2]], [4, [2, 1]]]
```

```
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import PolyDict
>>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1),...
    Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)})
>>> sorted(f.list())
[[2, [2, 3]], [3, [1, 2]], [4, [2, 1]]]
```

max_exp ()

Returns an ETuple containing the maximum exponents appearing. If there are no terms at all in the PolyDict, it returns None.

The `nvars` parameter is necessary because a PolyDict doesn’t know it from the data it has (and an empty PolyDict offers no clues).

EXAMPLES:

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4})
sage: f.max_exp()
(2, 3)
sage: PolyDict({}).max_exp()  # returns None
```

```
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import PolyDict
>>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1),...
    Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)})
>>> sorted(f.list())
```

(continues on next page)
min_exp()

Returns an ETuple containing the minimum exponents appearing. If there are no terms at all in the PolyDict, it returns None.

The nvars parameter is necessary because a PolyDict doesn’t know it from the data it has (and an empty PolyDict offers no clues).

EXAMPLES:

```python
>>> from sage.rings.polynomial.polydict import PolyDict
>>> f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4})
>>> f.min_exp()
(1, 1)
>>> PolyDict({}).min_exp()  # returns None
```

monomial_coefficient(mon)

Return the coefficient of the monomial mon.

INPUT:

• mon – a PolyDict with a single key

EXAMPLES:

```python
>>> from sage.all import *  
>>> from sage.rings.polynomial.polydict import PolyDict
>>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)})
>>> f.monomial_coefficient(PolyDict({(Integer(2),Integer(1)):Integer(1)}).dict())
```

poly_repr (vars, atomic_exponents=True, atomic_coefficients=True, sortkey=None)

Return a nice polynomial string representation of this PolyDict, where the vars are substituted in.

INPUT:

• vars – list
• atomic_exponents – bool (default: True)
• atomic_coefficients – bool (default: True)

EXAMPLES:

```
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2,3):2, (1,2):3, (2,1):4})
sage: f.poly_repr(['a', 'WW'])
'2*a^2*WW^3 + 4*a^2*WW + 3*a*WW^2'
```

>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import PolyDict
>>>
```
f = PolyDict({(Integer(2), Integer(3)):Integer(2), (Integer(1), Integer(2)):Integer(3), (Integer(2), Integer(1)):Integer(4)})
>>> f.poly_repr(['a', 'WW'])
'2*a^2*WW^3 + 4*a^2*WW + 3*a*WW^2'
```

We check to make sure that when we are in characteristic two, we don’t put negative signs on the generators.

```
sage: Integers(2)['x, y'].gens()
(x, y)
```

```
>>> from sage.all import *
>>> Integers(Integer(2))['x, y'].gens()
(x, y)
```

We make sure that intervals are correctly represented.

```
sage: f = PolyDict({(2, 3): RIF(1/2,3/2), (1, 2): RIF(-1,1)})
# needs sage.rings.real_interval_field
sage: f.poly_repr(['x', 'y'])
'1.?*x^2*y^3 + 0.?*x*y^2'
```

```
>>> from sage.all import *
>>> f = PolyDict({(Integer(2), Integer(3)): RIF(Integer(1)/Integer(2), Integer(3)/2), (Integer(1), Integer(2)): RIF(-Integer(1), Integer(2)), (Integer(2), Integer(1)): RIF(-Integer(1), Integer(1))})
# needs sage.rings.real_interval_field
>>> f.poly_repr(['x', 'y'])
'1.?*x^2*y^3 + 0.?*x*y^2'
```

polynomial_coefficient (degrees)

Return a polydict that defines the coefficient in the current polynomial viewed as a tower of polynomial extensions.

INPUT:

• degrees – a list of degree restrictions; list elements are None if the variable in that position should be unrestricted

EXAMPLES:
```python
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4})
PolyDict with representation {(0, 1): 4, (0, 3): 2}
sage: f.polynomial_coefficient([2, None])
PolyDict with representation {(0, 1): 4, (0, 3): 2}
```

```python
remove_zeros (zero_test=None)
Remove the entries with zero coefficients.

INPUT:

- zero_test – optional function that performs test to zero of a coefficient

EXAMPLES:

```python
sage: from sage.rings.polynomial.polydict import PolyDict
sage: f = PolyDict({(2, 3):0})
PolyDict with representation {(2, 3): 0}
sage: f.remove_zeros()
PolyDict with representation {} (continues on next page)
```
\[ \text{rich_compare}(\text{other, op, sortkey=None}) \]

Compare two PolyDict's using a specified term ordering `sortkey`.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polydict import PolyDict
case: from sage.structure.richcmp import op_EQ, op_NE, op_LT
case: p1 = PolyDict((0,): 1)
case: p2 = PolyDict((0,): 2)
case: O = TermOrder()
case: p1.rich_compare(PolyDict((0,): 1), op_EQ, O.sortkey)
True
case: p1.rich_compare(p2, op_EQ, O.sortkey)
False
case: p1.rich_compare(p2, op_NE, O.sortkey)
True
case: p1.rich_compare(p2, op_LT, O.sortkey)
True
case: p3 = PolyDict((3, 2, 4): 1, (3, 2, 5): 2)
case: p4 = PolyDict((3, 2, 4): 1, (3, 2, 3): 2)
case: p3.rich_compare(p4, op_LT, O.sortkey)
False
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import PolyDict
>>> from sage.structure.richcmp import op_EQ, op_NE, op_LT
>>> p1 = PolyDict((Integer(0),): Integer(1))
>>> p2 = PolyDict((Integer(0),): Integer(2))
>>> O = TermOrder()
>>> p1.rich_compare(PolyDict((Integer(0),): Integer(1)), op_EQ, O.sortkey)
True
>>> p1.rich_compare(p2, op_EQ, O.sortkey)
False
>>> p1.rich_compare(p2, op_NE, O.sortkey)
True
>>> p1.rich_compare(p2, op_LT, O.sortkey)
True
>>> p3 = PolyDict((Integer(3), Integer(2), Integer(4)): Integer(1),
 Integer(3), Integer(2), Integer(5)): Integer(2))
>>> p4 = PolyDict((Integer(3), Integer(2), Integer(4)): Integer(1),
 Integer(3), Integer(2), Integer(3)): Integer(2))
>>> p3.rich_compare(p4, op_LT, O.sortkey)
False
```

\[ \text{scalar_lmult}(s) \]

Return the left scalar multiplication of `self` by `s`.

**EXAMPLES:**
sage: from sage.rings.polynomial.polydict import PolyDict

sage: x, y = FreeMonoid(2, 'x, y').gens()  # a strange object to live in a...
  →polydict, but non-commutative!  # needs sage.combinat
sage: f = PolyDict({(2, 3): x})  #...
  →needs sage.combinat
sage: f.scalar_lmult(y)
  →needs sage.combinat
PolyDict with representation {(2, 3): y*x}

sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4})

sage: f.scalar_lmult(-2)
PolyDict with representation {(1, 2): -6, (2, 1): -8, (2, 3): -4}

sage: f.scalar_lmult(RIF(-1, 1))  #...
  →needs sage.rings.real_interval_field
PolyDict with representation {(1, 2): 0.?e1, (2, 1): 0.?e1, (2, 3): 0.?e1}

>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import PolyDict

>>> x, y = FreeMonoid(Integer(2), 'x, y').gens()  # a strange object to live...
  →in a polydict, but non-commutative!  # needs sage.combinat
>>> f = PolyDict({(Integer(2), Integer(3)): x})  #...
  →needs sage.combinat
>>> f.scalar_lmult(y)  #needs sage.combinat

PolyDict with representation {(2, 3): y*x}

>>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1),
  →Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)})

>>> f.scalar_lmult(-Integer(2))
PolyDict with representation {(1, 2): -6, (2, 1): -8, (2, 3): -4}

>>> f.scalar_lmult(RIF(-Integer(1), Integer(1)))
  →# needs sage.rings.real_interval_field
PolyDict with representation {(1, 2): 0.?e1, (2, 1): 0.?e1, (2, 3): 0.?e1}

**scalar_rmult (s)**

Return the right scalar multiplication of self by s.

**EXAMPLES:**

sage: from sage.rings.polynomial.polydict import PolyDict

sage: x, y = FreeMonoid(2, 'x, y').gens()  # a strange object to live in a...
  →polydict, but non-commutative!  # needs sage.combinat
sage: f = PolyDict({(2, 3): x})  #...
  →needs sage.combinat
sage: f.scalar_rmult(y)
  →needs sage.combinat
PolyDict with representation {(2, 3): x*y}

sage: f = PolyDict({(2, 3): 2, (1, 2): 3, (2, 1): 4})

sage: f.scalar_rmult(-2)
PolyDict with representation {(1, 2): -6, (2, 1): -8, (2, 3): -4}

sage: f.scalar_rmult(RIF(-1, 1))  #...
  →needs sage.rings.real_interval_field
PolyDict with representation {(1, 2): 0.?e1, (2, 1): 0.?e1, (2, 3): 0.?e1}

3.1. Multivariate Polynomials and Polynomial Rings
term_lmult \( (exponent, s) \)

Return this element multiplied by \( s \) on the left and with exponents shifted by \( exponent \).

INPUT:

- \( exponent \) – a \text{ETuple}
- \( s \) – a scalar

EXAMPLES:

\[
\text{sage: from sage.rings.polynomial.polydict import ETuple, PolyDict}
\]

\[
\text{sage: x, y = FreeMonoid(2, 'x, y').gens() \# a strange object to live in a polydict, but non-commutative! \# needs sage.combinat}
\]

\[
\text{sage: f = PolyDict({(2, 3): x}) \# needs sage.combinat}
\]

\[
\text{sage: f.scalar_rmult(y)} \# needs sage.combinat}
\]

PolyDict with representation \{(2, 3): x*y\}

\[
\text{sage: f = PolyDict({(Integer(2), Integer(3)):Integer(2), (Integer(1), Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4)})}
\]

\[
\text{sage: f.scalar_rmult(-Integer(2))}
\]

PolyDict with representation \{(1, 2): -6, (2, 1): -8, (2, 3): -4\}

\[
\text{sage: f.scalar_rmult(RIF(-Integer(1),Integer(1)))}
\]

PolyDict with representation \{(1, 2): 0.?e1, (2, 1): 0.?e1, (2, 3): 0.?e1\}

(continues on next page)
term_rmult(exponent, s)

Return this element multiplied by s on the right and with exponents shifted by exponent.

INPUT:
- exponent – a ETuple
- s – a scalar

EXAMPLES:

```python
given code blocks...
```

3.1. Multivariate Polynomials and Polynomial Rings 803
sage: PolyDict({}).degree()
-1

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import PolyDict

>>> f = PolyDict({(Integer(2), Integer(3)): Integer(2), (Integer(1),... Integer(2)): Integer(3), (Integer(2), Integer(1)): Integer(4))}
>>> f.total_degree()
5
>>> f.total_degree((Integer(3), Integer(1)))
9
>>> PolyDict({}).degree()
-1
```

`sage.rings.polynomial.polydict.gen_index(x)`

Return the index of the variable represented by `x` or `-1` if `x` is not a monomial of degree one.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polydict import PolyDict, gen_index
sage: gen_index(PolyDict({(1, 0): 1}))
0
sage: gen_index(PolyDict({(0, 1): 1}))
1
sage: gen_index(PolyDict({}))
-1
```

`sage.rings.polynomial.polydict.make_ETuple(data, length)`

Ensure support for pickled data from older sage versions.

`sage.rings.polynomial.polydict.make_PolyDict(data)`

Ensure support for pickled data from older sage versions.

`sage.rings.polynomial.polydict.monomial_exponent(p)`

Return the unique exponent of `p` if it is a monomial or raise a `ValueError`.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.polydict import PolyDict, monomial_exponent
sage: monomial_exponent(PolyDict({(2, 3): 1}))
(2, 3)
sage: monomial_exponent(PolyDict({(2, 3): 3}))
Traceback (most recent call last):
...
ValueError: not a monomial
```

(continues on next page)
>>> from sage.all import *
>>> from sage.rings.polynomial.polydict import PolyDict, monomial_exponent

>>> monomial_exponent(PolyDict({(Integer(2), Integer(3)): Integer(1)}))
(2, 3)
>>> monomial_exponent(PolyDict({(Integer(2), Integer(3)): Integer(3)}))
Traceback (most recent call last):
  ...  
ValueError: not a monomial
>>> monomial_exponent(PolyDict({(Integer(1), Integer(0)): Integer(1), (Integer(0),
→ Integer(1)): Integer(1)}))
Traceback (most recent call last):
  ...  
ValueError: not a monomial

3.1.12 Compute Hilbert series of monomial ideals

This implementation was provided at Issue #26243 and is supposed to be a way out when Singular fails with an int overflow, which will regularly be the case in any example with more than 34 variables.

```python
class sage.rings.polynomial.hilbert.Node
 Bases: object

 A node of a binary tree

 It has slots for data that allow to recursively compute the first Hilbert series of a monomial ideal.

sage.rings.polynomial.hilbert.first_hilbert_series(I, grading=None, return_grading=False)
```

Return the first Hilbert series of the given monomial ideal.

**INPUT:**

- $I$ – a monomial ideal (possibly defined in singular)
- grading – (optional) a list or tuple of integers used as degree weights
- return_grading – (default: False) whether to return the grading

**OUTPUT:**

A univariate polynomial, namely the first Hilbert function of $I$, and if return_grading==True also the grading used to compute the series.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.hilbert import first_hilbert_series

sage: # needs sage.libs.singular
sage: R = singular.ring(0, '(x,y,z)','dp')

sage: I = singular.ideal(['x^2','y^2','z^2'])

sage: first_hilbert_series(I)
-t^6 + 3*t^4 - 3*t^2 + 1

sage: first_hilbert_series(I, return_grading=True)
(-t^6 + 3*t^4 - 3*t^2 + 1, (1, 1, 1))

sage: first_hilbert_series(I, grading=(1,2,3))
-t^12 + t^10 + t^8 - t^4 - t^2 + 1
```
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.hilbert import first_hilbert_series

>>> # needs sage.libs.singular
>>> R = singular.ring(Integer(0), '(x,y,z)', 'dp')
>>> I = singular.ideal(['x^2', 'y^2', 'z^2'])
>>> first_hilbert_series(I)
-t^6 + 3*t^4 - 3*t^2 + 1
>>> first_hilbert_series(I, return_grading=True)
(-t^6 + 3*t^4 - 3*t^2 + 1, (1, 1, 1))
>>> first_hilbert_series(I, grading=(Integer(1), Integer(2), Integer(3)))
-t^12 + t^10 + t^8 - t^4 - t^2 + 1

sage.rings.polynomial.hilbert.hilbert_poincare_series(I, grading=None)

Return the Hilbert Poincaré series of the given monomial ideal.

INPUT:

- `I` – a monomial ideal (possibly defined in Singular)
- `grading` – (optional) a tuple of degree weights

EXAMPLES:

```python
sage: # needs sage.libs.singular
sage: from sage.rings.polynomial.hilbert import hilbert_poincare_series
sage: R = PolynomialRing(QQ, 'x', 9)
sage: I = [m.lm() for m in ((matrix(R, 3, R.gens())^2).list() * R).groebner_basis()] * R
sage: hilbert_poincare_series(I)
(t^7 - 3*t^6 + 2*t^5 + 2*t^4 - 2*t^3 + 6*t^2 + 5*t + 1)/(t^4 - 4*t^3 + 6*t^2 - 4*t + 1)

sage: hilbert_poincare_series((R * R.gens())^2, grading=range(1,10))
t^9 + t^8 + t^7 + t^6 + t^5 + t^4 + t^3 + t^2 + t + 1
```

The following example is taken from Issue #20145:

```python
sage: # needs sage.libs.singular
sage: from sage.rings.polynomial.hilbert import first_hilbert_series
sage: m=11; P = PolynomialRing(QQ, 'x'); x = P.gens(); M = Matrix(m, P)

The following example is taken from Issue #20145:

```
3.1.13 Class to flatten polynomial rings over polynomial ring

For example $\mathbb{Q}[a', b'], [x', y']$ flattens to $\mathbb{Q}[a', b', x', y']$.

EXAMPLES:

```python
sage: R = QQ['x']['y']['s','t']['X']
sage: from sage.rings.polynomial.flatten import FlatteningMorphism
sage: phi = FlatteningMorphism(R); phi
Flattening morphism:
    From: Univariate Polynomial Ring in X
    over Multivariate Polynomial Ring in s, t
    over Univariate Polynomial Ring in y
    over Univariate Polynomial Ring in x over Rational Field
    To: Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
sage: phi('x*y*s + t*X').parent()
Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
```

Authors:

Vincent Delecroix, Ben Hutz (July 2016): initial implementation

```
class sage.rings.polynomial.flatten.FlatteningMorphism(domain)
    Bases: Morphism

    EXAMPLES:
    ```
Polynomials, Release 10.4

```python
sage: R = QQ['a','b']['x','y','z']['t1','t2']
sage: from sage.rings.polynomial.flatten import FlatteningMorphism
sage: f = FlatteningMorphism(R)
sage: f.codomain()
Multivariate Polynomial Ring in a, b, x, y, z, t1, t2 over Rational Field
sage: p = R('(a+b)*x + (a^2-b)*t2*(z+y)')
sage: f(p)
a^2*y*t2 + a^2*z*t2 - b*y*t2 - b*z*t2 + a*x + b*x
sage: f(p).parent()
Multivariate Polynomial Ring in a, b, x, y, z, t1, t2 over Rational Field
```

Also works when univariate polynomial ring are involved:

```python
sage: R = QQ['x']['y']['s','t']['X']
sage: from sage.rings.polynomial.flatten import FlatteningMorphism
sage: f = FlatteningMorphism(R)
sage: f.codomain()
Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
sage: p = R('(x^2 + 1) + (x+2)*y + x*y^3)*(s+t) + x*y*X')
sage: f(p)
x*y^3*s + x*y^3*t + x^2*s + x*y*s + x^2*t + x*y*t + x*y*X + 2*y*s + 2*y*t + s + t
sage: f(p).parent()
Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
```

```python
>>> from sage.all import *
```
Return the inverse of this flattening morphism.

This is the same as calling `section()`.

EXAMPLES:

```python
sage: f = QQ['x,y'][u,v].flattening_morphism()
sage: f.inverse()
Unflattening morphism:
    From: Multivariate Polynomial Ring in x, y, u, v over Rational Field
    To:  Multivariate Polynomial Ring in u, v
cover Multivariate Polynomial Ring in x, y over Rational Field
```

```python
>>> from sage.all import *

>>> f = QQ['x,y'][u,v].flattening_morphism()
>>> f.inverse()
Unflattening morphism:
    From: Multivariate Polynomial Ring in x, y, u, v over Rational Field
    To:  Multivariate Polynomial Ring in u, v
cover Multivariate Polynomial Ring in x, y over Rational Field
```

`section()`

Inverse of this flattening morphism.

EXAMPLES:

```python
sage: R = QQ['a','b','c'][x,y,z]
sage: from sage.rings.polynomial.flatten import FlatteningMorphism
sage: h = FlatteningMorphism(R)
sage: h.section()
Unflattening morphism:
    From: Multivariate Polynomial Ring in a, b, c, x, y, z over Rational Field
    To:  Multivariate Polynomial Ring in x, y, z
cover Multivariate Polynomial Ring in a, b, c over Rational Field
```

```python
>>> from sage.all import *

>>> R = QQ['a','b','c'][x,y,z]
>>> from sage.rings.polynomial.flatten import FlatteningMorphism

>>> h = FlatteningMorphism(R)

>>> h.section()
Unflattening morphism:
    From: Multivariate Polynomial Ring in a, b, c, x, y, z over Rational Field
    To:  Multivariate Polynomial Ring in x, y, z
cover Multivariate Polynomial Ring in a, b, c over Rational Field
```

```python
sage: R = ZZ['a']['b']['c']
sage: from sage.rings.polynomial.flatten import FlatteningMorphism
sage: FlatteningMorphism(R).section()
Unflattening morphism:
    From: Multivariate Polynomial Ring in a, b, c over Integer Ring
    To:  Univariate Polynomial Ring in c over Univariate Polynomial Ring in b
cover Univariate Polynomial Ring in a over Integer Ring
```

```python
>>> from sage.all import *

>>> R = ZZ['a']['b']['c']
>>> from sage.rings.polynomial.flatten import FlatteningMorphism

>>> FlatteningMorphism(R).section()
```

(continues on next page)
Unflattening morphism:
From: Multivariate Polynomial Ring in a, b, c over Integer Ring
To: Univariate Polynomial Ring in c over Univariate Polynomial Ring in b
over Univariate Polynomial Ring in a over Integer Ring

class sage.rings.polynomial.flatten.FractionSpecializationMorphism(domain, D)

Bases: Morphism

A specialization morphism for fraction fields over (stacked) polynomial rings

class sage.rings.polynomial.flatten.SpecializationMorphism(domain, D)

Bases: Morphism

Morphisms to specialize parameters in (stacked) polynomial rings

EXAMPLES:

```python
sage: R.<c> = PolynomialRing(QQ)
sage: S.<x,y,z> = PolynomialRing(R)
sage: D = dict({c:1})
sage: from sage.rings.polynomial.flatten import SpecializationMorphism
sage: f = SpecializationMorphism(S, D)
sage: g = f(x^2 + c*y^2 - z^2); g
x^2 + y^2 - z^2
sage: g.parent()
Multivariate Polynomial Ring in x, y, z over Rational Field
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('c',)); (c,) = R._first_ngens(1)
>>> S = PolynomialRing(R, names=('x', 'y', 'z')); (x, y, z,) = S._first_ngens(3)
>>> D = dict({c:Integer(1)})
>>> from sage.rings.polynomial.flatten import SpecializationMorphism

```

```python
sage: R.<c> = PolynomialRing(QQ)
sage: S.<z> = PolynomialRing(R)
sage: from sage.rings.polynomial.flatten import SpecializationMorphism
sage: xi = SpecializationMorphism(S, {c:0}); xi
Specialization morphism:
From: Univariate Polynomial Ring in z
over Univariate Polynomial Ring in c over Rational Field
To: Univariate Polynomial Ring in z over Rational Field
sage: xi(z^2+c)
z^2
```

```python
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('c',)); (c,) = R._first_ngens(1)
>>> S = PolynomialRing(R, names=('z',)); (z,) = S._first_ngens(1)
>>> from sage.rings.polynomial.flatten import SpecializationMorphism
>>> xi = SpecializationMorphism(S, {c:Integer(0)}); xi
Specialization morphism:
From: Univariate Polynomial Ring in z
over Univariate Polynomial Ring in c over Rational Field
To: Univariate Polynomial Ring in z over Rational Field
```
over Univariate Polynomial Ring in c over Rational Field
To: Univariate Polynomial Ring in z over Rational Field

```python
>>> xi(z**Integer(2)+c)
z^2
```

```python
sage: R1.<u,v> = PolynomialRing(QQ)
sage: R2.<a,b,c> = PolynomialRing(R1)
sage: S.<x,y,z> = PolynomialRing(R2)
sage: D = dict({a:1, b:2, x:0, u:1})
sage: from sage.rings.polynomial.flatten import SpecializationMorphism
sage: xi = SpecializationMorphism(S, D); xi
Specialization morphism:
  From: Multivariate Polynomial Ring in x, y, z
         over Multivariate Polynomial Ring in a, b, c
         over Multivariate Polynomial Ring in u, v over Rational Field
To: Multivariate Polynomial Ring in y, z over Univariate Polynomial Ring in c
         over Univariate Polynomial Ring in v over Rational Field

```python
sage: xi(a*(x*z+y^2)*u+b*v*u*(x*z+y^2)*y^2*c+c*y^2*z^2)
2*v*c*y^4 + c*y^2*z^2 + y^2
```
3.1.14 Monomials

sage.rings.monomials.monomials(v, n)

Given two lists v and n, of exactly the same length, return all monomials in the elements of v, where variable i (i.e., v[i]) in the monomial appears to degree strictly less than n[i].

INPUT:

• v – list of ring elements
• n – list of integers

EXAMPLES:

```python
sage: monomials([x], [3]) # needs sage.symbolic
[1, x, x^2]
sage: R.<x,y,z> = QQ[]
sage: monomials([x,y], [5,5])
[1, y, y^2, y^3, y^4, x, x*y, x*y^2, x*y^3, x*y^4, x^2, x^2*y, x^2*y^2, x^2*y^3, x^2*y^4, x^3, x^3*y, x^3*y^2, x^3*y^3, x^3*y^4, x^4, x^4*y, x^4*y^2, x^4*y^3, x^4*y^4]
sage: monomials([x,y,z], [2,3,2])
[1, z, y, y*z, y^2, y^2*z, x, x*z, x*y, x*y*z, x*y^2, x*y^2*z]
```
3.2 Classical Invariant Theory

3.2.1 Classical Invariant Theory

This module lists classical invariants and covariants of homogeneous polynomials (also called algebraic forms) under the action of the special linear group. That is, we are dealing with polynomials of degree \( d \) in \( n \) variables. The special linear group \( SL(n, \mathbb{C}) \) acts on the variables \((x_1, \ldots, x_n)\) linearly,

\[
(x_1, \ldots, x_n)^t \rightarrow A(x_1, \ldots, x_n)^t, \quad A \in SL(n, \mathbb{C})
\]

The linear action on the variables transforms a polynomial \( p \) generally into a different polynomial \( gp \). We can think of it as an action on the space of coefficients in \( p \). An invariant is a polynomial in the coefficients that is invariant under this action. A covariant is a polynomial in the coefficients and the variables \((x_1, \ldots, x_n)\) that is invariant under the combined action.

For example, the binary quadratic \( p(x, y) = ax^2 + bxy + cy^2 \) has as its invariant the discriminant \( disc(p) = b^2 - 4ac \). This means that for any \( SL(2, \mathbb{C}) \) coordinate change

\[
\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \quad \alpha \delta - \beta \gamma = 1
\]

the discriminant is invariant, \( disc(p(x', y')) = disc(p(x, y)) \).

To use this module, you should use the factory object \textit{invariant} \_theory. For example, take the quartic:

```
sage: R.<x,y> = QQ[]
sage: q = x^4 + y^4
sage: quartic = invariant_theory.binary_quartic(q); quartic
Binary quartic with coefficients (1, 0, 0, 1)
```

One invariant of a quartic is known as the Eisenstein D-invariant. Since it is an invariant, it is a polynomial in the coefficients (which are integers in this example):

```
sage: quartic.EisensteinD()
1
```
One example of a covariant of a quartic is the so-called g-covariant (actually, the Hessian). As with all covariants, it is a polynomial in $x$, $y$ and the coefficients:

```python
sage: quartic.g_covariant()
-x^2*y^2
```

As usual, use tab completion and the online help to discover the implemented invariants and covariants.

In general, the variables of the defining polynomial cannot be guessed. For example, the zero polynomial can be thought of as a homogeneous polynomial of any degree. Also, since we also want to allow polynomial coefficients we cannot just take all variables of the polynomial ring as the variables of the form. This is why you will have to specify the variables explicitly if there is any potential ambiguity. For example:

```python
sage: invariant_theory.binary_quartic(R.zero(), [x,y])
Binary quartic with coefficients (0, 0, 0, 0, 0)

sage: invariant_theory.binary_quartic(x^4, [x,y])
Binary quartic with coefficients (0, 0, 0, 0, 1)

sage: R.<x,y,t> = QQ[]

sage: invariant_theory.binary_quartic(x^4 + y^4 + t*x^2*y^2, [x,y])
Binary quartic with coefficients (1, 0, t, 0, 1)
```

Finally, it is often convenient to use inhomogeneous polynomials where it is understood that one wants to homogenize them. This is also supported, just define the form with an inhomogeneous polynomial and specify one less variable:

```python
sage: R.<x,t> = QQ[]

sage: invariant_theory.binary_quartic(x^4 + 1 + t*x^2, [x])
Binary quartic with coefficients (1, 0, t, 0, 1)
```

REFERENCES:

Chapter 3. Multivariate Polynomials
class sage.rings.invariants.invariant_theory.AlgebraicForm(n, d, polynomial, *args, **kwds)

Bases: FormsBase

The base class of algebraic forms (i.e. homogeneous polynomials).
You should only instantiate the derived classes of this base class.
Derived classes must implement coeffs() and scaled_coeffs()

INPUT:
• n – The number of variables.
• d – The degree of the polynomial.
• polynomial – The polynomial.
• *args – The variables, as a single list/tuple, multiple arguments, or None to use all variables of the polynomial.

Derived classes must implement the same arguments for the constructor.

EXAMPLES:

sage: from sage.rings.invariants.invariant_theory import AlgebraicForm
sage: R.<x,y> = QQ[]
sage: p = x^2 + y^2
sage: AlgebraicForm(2, 2, p).variables()
(x, y)
sage: AlgebraicForm(3, 2, p, None).variables()
(x, y, None)
sage: AlgebraicForm(2, 2, p, x, y).variables()
(x, y)

sage: from sage.rings.invariants.invariant_theory import AlgebraicForm
sage: R.<x,y,s,t> = QQ[]
sage: p = s*x^2 + t*y^2
sage: AlgebraicForm(2, 2, p, [x,y]).variables()
(x, y)
sage: AlgebraicForm(2, 2, p, x,y).variables()
(x, y)

sage: AlgebraicForm(3, 2, p, [x,y,None]).variables()
(x, y, None)
sage: AlgebraicForm(3, 2, p, x,y,None).variables()
(x, y, None)

sage: AlgebraicForm(2, 1, p, [x,y]).variables()
Traceback (most recent call last):
...
ValueError: polynomial is of the wrong degree
Polynomials, Release 10.4

```python
sage: AlgebraicForm(2, 2, x^2 + y, [x,y]).variables()
Traceback (most recent call last):
... ValueError: polynomial is not homogeneous
```

```python
>>> from sage.all import *
>>> from sage.rings.invariants.invariant_theory import AlgebraicForm
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> p = x**2 + y**2
>>> AlgebraicForm(Integer(2), Integer(2), p).variables()
(x, y)
>>> AlgebraicForm(Integer(2), Integer(2), p, None).variables()
(x, y, None)
>>> AlgebraicForm(Integer(3), Integer(2), p, None).variables()
(x, y, None)

>>> from sage.rings.invariants.invariant_theory import AlgebraicForm
>>> R = QQ['x, y, s, t']; (x, y, s, t,) = R._first_ngens(4)
>>> p = s*x^2 + t*y^2
>>> AlgebraicForm(Integer(2), Integer(2), p, [x,y]).variables()
(x, y)
>>> AlgebraicForm(Integer(2), Integer(2), p, x,y).variables()
(x, y)
>>> AlgebraicForm(Integer(3), Integer(2), p, [x,y,None]).variables()
(x, y, None)
>>> AlgebraicForm(Integer(3), Integer(2), p, x,y,None).variables()
(x, y, None)

>>> AlgebraicForm(Integer(1), Integer(2), p, [x,y]).variables()
Traceback (most recent call last):
... ValueError: polynomial is of the wrong degree

>>> AlgebraicForm(Integer(2), Integer(2), x**2 + y, [x,y]).variables()
Traceback (most recent call last):
... ValueError: polynomial is not homogeneous
```

**coefficients()**

Alias for coeffs().

See the documentation for coeffs() for details.

**EXAMPLES:**

```python
sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]
sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z
sage: q = invariant_theory.quadratic_form(p, x,y,z)
sage: q.coefficients()
(a, b, c, d, e, f)
sage: q.coeffs()
(a, b, c, d, e, f)
```

816 Chapter 3. Multivariate Polynomials
>>> from sage.all import *
>>> R = QQ['a, b, c, d, e, f, g, x, y, z']; (a, b, c, d, e, f, g, x, y, z,) = R._first_ngens(10)
>>> p = a*x**Integer(2) + b*y**Integer(2) + c*z**Integer(2) + d*x*y + e*x*z + f*y*z
>>> q = invariant_theory.quadratic_form(p, x,y,z)
>>> q.coefficients()
(a, b, c, d, e, f)
>>> q.coeffs()
(a, b, c, d, e, f)

form()

Return the defining polynomial.

OUTPUT:
The polynomial used to define the algebraic form.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4 + y^4)
sage: quartic.form()
x^4 + y^4

sage: from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> quartic = invariant_theory.binary_quartic(x**Integer(4) + y**Integer(4))
>>> quartic.form()
x^4 + y^4

homogenized (var='h')

Return form as defined by a homogeneous polynomial.

INPUT:

• var — either a variable name, variable index or a variable (default: 'h').

OUTPUT:
The same algebraic form, but defined by a homogeneous polynomial.

EXAMPLES:

sage: T.<t> = QQ[]

sage: quadratic = invariant_theory.binary_quadratic(t^2 + 2*t + 3)
sage: quadratic.Binary quadratic with coefficients (1, 3, 2)
sage: quadratic.homogenized()
Binary quadratic with coefficients (1, 3, 2)
sage: quadratic == quadratic.homogenized()
True
sage: quadratic.form()
t^2 + 2*t + 3
sage: quadratic.homogenized().form()
t^2 + 2*t*h + 3*h^2
sage: R.<x,y,z> = QQ[]
sage: quadratic = invariant_theory.ternary_quadratic(x^2 + 1, [x,y])
sage: quadratic.homogenized().form()
x^2 + h^2
sage: R.<x> = QQ[]
sage: quintic = invariant_theory.binary_quintic(x^4 + 1, x)
sage: quintic.homogenized().form()
x^4*h + h^5

>>> from sage.all import *
>>> T = QQ['t']; (t,) = T._first_ngens(1)
>>> quadratic = invariant_theory.binary_quadratic(t**Integer(2) + Integer(2)*t + Integer(3))
>>> quadratic
Binary quadratic with coefficients (1, 3, 2)
>>> quadratic.homogenized()
Binary quadratic with coefficients (1, 3, 2)
>>> quadratic == quadratic.homogenized()
True
>>> quadratic.form()
t^2 + 2*t + 3
>>> quadratic.homogenized().form()
t^2 + 2*t*h + 3*h^2

>>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)
>>> quadratic = invariant_theory.ternary_quadratic(x**Integer(2) + Integer(1), [x,y])
>>> quadratic.homogenized().form()
x^2 + h^2

polynomial()

Return the defining polynomial.

OUTPUT:

The polynomial used to define the algebraic form.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4 + y^4)
sage: quartic.form()
x^4 + y^4
sage: quartic.polynomial()
x^4 + y^4

>>> from sage.all import *
>>> R = QQ['x', 'y']; (x, y,) = R._first_ngens(2)
>>> quartic = invariant_theory.binary_quartic(x**Integer(4) + y**Integer(4))

(continues on next page)
transformed \((g)\)

Return the image under a linear transformation of the variables.

INPUT:

- \(g\) – a \(GL(n, C)\) matrix or a dictionary with the variables as keys. A matrix is used to define the linear transformation of homogeneous variables, a dictionary acts by substitution of the variables.

OUTPUT:

A new instance of a subclass of \texttt{AlgebraicForm} obtained by replacing the variables of the homogeneous polynomial by their image under \(g\).

EXAMPLES:

```python
>>> from sage.all import *
```

```python
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3 + 2*y^3 + 3*z^3 + 4*x*y*z)
sage: cubic.transformed({x: y, y: z, z: x}).form()
3*x^3 + y^3 + 4*x*y*z + 2*z^3
sage: cyc = matrix([[1,0,0], [0,1,0], [0,0,1]])
```

```python
sage: cubic.transformed(cyc) == cubic.transformed({x:y, y:z, z:x})
True
```

```python
sage: g = matrix(QQ, [[1, 0, 0], [-1, 1, -3], [-5, -5, 16]])
```

```python
sage: cubic.transformed(g)
Ternary cubic with coefficients (-356, -373, 12234, -1119, 3578, -1151, 3582, -11766, -11466, 7360)
```

```python
sage: cubic.transformed(g).transformed(g.inverse()) == cubic
True
```

\texttt{class} \ sage.rings.invariants.invariant_theory.BinaryQuartic\(n, d, \text{polynomial}, \ast\text{args})

\textbf{Bases:} \texttt{AlgebraicForm}

Invariant theory of a binary quartic.
You should use the \texttt{invariant\_theory} factory object to construct instances of this class. See \texttt{binary\_quartic()} for details.

\textbf{EisensteinD()} \\
One of the Eisenstein invariants of a binary quartic. \\
\textbf{OUTPUT:} \\
The Eisenstein D-invariant of the quartic.
\[
 f(x) = a_0 x_1^4 + 4 a_1 x_0 x_1^3 + 6 a_2 x_0^2 x_1^2 + 4 a_3 x_0^3 x_1 + a_4 x_0^4 \\
\Rightarrow D(f) = a_0 a_4 + 3 a_2^2 - 4 a_1 a_3
\]
\textbf{EXAMPLES:}
\begin{verbatim}
sage: R.<a0, a1, a2, a3, a4, x0, x1> = QQ[]
sage: f = a0*x1^4 + 4*a1*x0*x1^3 + 6*a2*x0^2*x1^2 + 4*a3*x0^3*x1 + a4*x0^4
sage: inv = invariant\_theory.binary\_quartic(f, x0, x1)
sage: inv.EisensteinD()
sage: from sage.all import * >>> R = QQ[a0, a1, a2, a3, a4, x0, x1]; (a0, a1, a2, a3, a4, x0, x1,) = R._first\_ngens(7)
>>> f = a0*x1**Integer(4) + Integer(4)*a1*x0*x1**Integer(3) + Integer(6)*a2*x0**Integer(2)*x1**Integer(2) + Integer(4)*a3*x0**Integer(3)*x1 + a4*x0**Integer(4)
>>> inv = invariant\_theory.binary\_quartic(f, x0, x1)
>>> inv.EisensteinD()
dominating
\end{verbatim}

\textbf{EisensteinE()} \\
One of the Eisenstein invariants of a binary quartic. \\
\textbf{OUTPUT:} \\
The Eisenstein E-invariant of the quartic.
\[
 f(x) = a_0 x_1^4 + 4 a_1 x_0 x_1^3 + 6 a_2 x_0^2 x_1^2 + 4 a_3 x_0^3 x_1 + a_4 x_0^4 \\
\Rightarrow E(f) = a_0 a_3^2 + a_2^3 a_4 - a_0 a_2 a_4 - 2 a_1 a_2 a_3 + a_2^3
\]
\textbf{EXAMPLES:}
\begin{verbatim}
sage: R.<a0, a1, a2, a3, a4, x0, x1> = QQ[]
sage: f = a0*x1^4 + 4*a1*x0*x1^3 + 6*a2*x0^2*x1^2 + 4*a3*x0^3*x1 + a4*x0^4
sage: inv = invariant\_theory.binary\_quartic(f, x0, x1)
sage: inv.EisensteinE()
sage: from sage.all import * >>> R = QQ[a0, a1, a2, a3, a4, x0, x1]; (a0, a1, a2, a3, a4, x0, x1,) = R._first\_ngens(7)
>>> f = a0*x1**Integer(4) + Integer(4)*a1*x0*x1**Integer(3) + Integer(6)*a2*x0**Integer(2)*x1**Integer(2) + Integer(4)*a3*x0**Integer(3)*x1 + a4*x0**Integer(4)
>>> inv = invariant\_theory.binary\_quartic(f, x0, x1)
>>> inv.EisensteinE()
dominating
\end{verbatim}
coeffs()

The coefficients of a binary quartic.

Given

\[ f(x) = a_0 x_1^4 + a_1 x_0 x_1^3 + a_2 x_0^2 x_1^2 + a_3 x_0^3 x_1 + a_4 x_0^4 \]

this function returns \( a = (a_0, a_1, a_2, a_3, a_4) \)

EXAMPLES:

```
sage: R.<a0, a1, a2, a3, a4, x0, x1> = QQ[]
sage: p = a0*x1^4 + a1*x1^3*x0 + a2*x1^2*x0^2 + a3*x1*x0^3 + a4*x0^4
sage: quartic = invariant_theory.binary_quartic(p, x0, x1)
sage: quartic.coeffs()
(a0, a1, a2, a3, a4)
sage: R.<a0, a1, a2, a3, a4, x> = QQ[]
sage: p = a0 + a1*x + a2*x^2 + a3*x^3 + a4*x^4
sage: quartic = invariant_theory.binary_quartic(p, x)
sage: quartic.coeffs()
(a0, a1, a2, a3, a4)
```

```
>>> from sage.all import *

>>> R = QQ['a0, a1, a2, a3, a4, x0, x1']; (a0, a1, a2, a3, a4, x0, x1,) = R._first_ngens(7)
>>> p = a0*x1**Integer(4) + a1*x1**Integer(3)*x0 + a2*x1**Integer(2)*x0**Integer(2) + a3*x1*x0**Integer(3) + a4*x0**Integer(4)
>>> quartic = invariant_theory.binary_quartic(p, x0, x1)
>>> quartic.coeffs()
(a0, a1, a2, a3, a4)
```

```
>>> R = QQ['a0, a1, a2, a3, a4, x']; (a0, a1, a2, a3, a4, x,) = R._first_ngens(6)
>>> p = a0 + a1*x + a2*x**Integer(2) + a3*x**Integer(3) + a4*x**Integer(4)
>>> quartic = invariant_theory.binary_quartic(p, x)
>>> quartic.coeffs()
(a0, a1, a2, a3, a4)
```


g_covariant()

The g-covariant of a binary quartic.

OUTPUT:

The g-covariant of the quartic.

\[ f(x) = a_0 x_1^4 + 4a_1 x_0 x_1^3 + 6a_2 x_0^2 x_1^2 + 4a_3 x_0^3 x_1 + a_4 x_0^4 \]

\[ \Rightarrow D(f) = \frac{1}{144} \left( \frac{\partial^2 f}{\partial x \partial y} \right) \]

EXAMPLES:

```
sage: R.<a0, a1, a2, a3, a4, x, y> = QQ[]
sage: p = a0*x^4 + 4*a1*x^3*y + 6*a2*x^2*y^2 + 4*a3*x*y^3 + a4*y^4
sage: inv = invariant_theory.binary_quartic(p, x, y)
sage: g = inv.g_covariant(); g
a1^2*x^4 - a0*a2*x^4 + 2*a1*a2*x^3*y - 2*a0*a3*x^3*y + 3*a2^2*x^2*y^2 - 2*a1*a3*x^2*y^2 - a0*a4*x^2*y^2 + 2*a2*a3*x*y^3
```

```
>>> from sage.all import *

>>> R = QQ['a0, a1, a2, a3, a4, x, y']; (a0, a1, a2, a3, a4, x, y,) = R._first_ngens(7)
>>> p = a0*x^4 + 4*a1*x^3*y + 6*a2*x^2*y^2 + 4*a3*x*y^3 + a4*y^4
>>> inv = invariant_theory.binary_quartic(p, x, y)
>>> g = inv.g_covariant(); g
a1^2*x^4 - a0*a2*x^4 + 2*a1*a2*x^3*y - 2*a0*a3*x^3*y + 3*a2^2*x^2*y^2 - 2*a1*a3*x^2*y^2 - a0*a4*x^2*y^2 + 2*a2*a3*x*y^3
```

(continues on next page)
The \( h \)-covariant of a binary quartic.

**OUTPUT:**

The \( h \)-covariant of the quartic.

\[
f(x) = a_0 x_1^4 + 4 a_1 x_0 x_1^3 + 6 a_2 x_0^2 x_1^2 + 4 a_3 x_0^3 x_1 + a_4 x_0^4
\]

\[
\Rightarrow D(f) = \frac{1}{144} \left( \frac{\partial^2 f}{\partial x_0 \partial x_1} \right)
\]

**EXAMPLES:**

```python
sage: h = inv.h_covariant(); h
-2*a1*a4*x*y^3 + a3^2*y^4 - a2*a4*y^4
sage: inv_inhomogeneous = invariant_theory.binary_quartic(p.subs(y=Integer(1)), x)
sage: inv_inhomogeneous.g_covariant()
a1^2*x^4 - a0*a2*x^4 + 2*a1*a2*x^3 - 2*a0*a3*x^3 + 3*a2^2*x^2
- 2*a1*a3*x^2 - a0*a4*x^2 + 2*a2*a3*x - 2*a1*a4*x + a3^2 - a2*a4
sage: g == Integer(1)/Integer(144) * (p.derivative(x,y)**Integer(2) - p.derivative(x,x)*p.derivative(y,y))
True
```
sage: inv_inhomogeneous.h_covariant()
-2*a1^3*x^6 + 3*a0*a1*a2*x^6 - a0^2*a3*x^6 - 6*a1^2*a2*x^5 + 9*a0*a2^2*x^5
- 2*a0*a1*a3*x^5 - a0^2*a4*x^5 - 10*a1^2*a3*x^4 + 15*a0*a2*a3*x^4
- 5*a0*a1*a4*x^4 + 10*a0*a3^2*x^3 - 10*a1^2*a4*x^3 + 10*a1*a3^2*x^2
- 15*a1*a2*a4*x^2 + 5*a0*a3*a4*x^2 + 6*a2*a3^2*x - 9*a2^2*a4*x
+ 2*a1*a3*a4*x + a0*a4^2*x + 2*a3^3 - 3*a2*a3*a4 + a1*a4^2

sage: g = inv.g_covariant()
sage: h == 1/8 * (p.derivative(x)*g.derivative(y) - p.derivative(y)*g.
derivative(x))
True

```python
>>> from sage.all import *
>>> R = QQ['a0, a1, a2, a3, a4, x, y']; (a0, a1, a2, a3, a4, x, y,) = R._first_ngens(7)
>>> p = a0*x**Integer(4) + Integer(4)*a1*x**Integer(3)*y +
 Integer(6)*a2*x**Integer(2)*y**Integer(2) + Integer(4)*a3*x*y**Integer(3) +
 a4*y**Integer(4)
>>> inv = invariant_theory.binary_quartic(p, x, y)
>>> h = inv.h_covariant(); h
-2*a1^3*x^6 + 3*a0*a1*a2*x^6 - a0^2*a3*x^6 - 6*a1^2*a2*x^5*y + 9*a0*a2^2*x^5*y
- 2*a0*a1*a3*x^5*y - a0^2*a4*x^5*y - 10*a1^2*a3*x^4*y^2 + 15*a0*a2*a3*x^4*y^2
- 5*a0*a1*a4*x^4*y^2 + 10*a0*a3^2*x^3*y^3 - 10*a1^2*a4*x^3*y^3
+ 10*a1*a3^2*x^2*y^4 - 15*a1*a2*a4*x^2*y^4 + 5*a0*a3*a4*x^2*y^4
+ 6*a2*a3^2*x^2*y^4 - 9*a2^2*a4*x*y^5 + 2*a1*a3*a4*x*y^5 + a0*a4^2*x*y^5
+ 2*a3^3*y^6 - 3*a2*a3*a4*y^6 + a1*a4^2*y^6

>>> inv_inhomogeneous = invariant_theory.binary_quartic(p.subs(y=Integer(1)),
 x)
>>> inv_inhomogeneous.h_covariant()
-2*a1^3*x^6 + 3*a0*a1*a2*x^6 - a0^2*a3*x^6 - 6*a1^2*a2*x^5 + 9*a0*a2^2*x^5
- 2*a0*a1*a3*x^5 - a0^2*a4*x^5 - 10*a1^2*a3*x^4 + 15*a0*a2*a3*x^4
- 5*a0*a1*a4*x^4 + 10*a0*a3^2*x^3 - 10*a1^2*a4*x^3 + 10*a1*a3^2*x^2
- 15*a1*a2*a4*x^2 + 5*a0*a3*a4*x^2 + 6*a2*a3^2*x - 9*a2^2*a4*x
+ 2*a1*a3*a4*x + a0*a4^2*x + 2*a3^3 - 3*a2*a3*a4 + a1*a4^2

>>> g = inv.g_covariant()
>>> h == Integer(1)/Integer(8) * (p.derivative(x)*g.derivative(y) - p.
derivative(y)*g.derivative(x))
True
```

**monomials()**

List the basis monomials in the form.

**OUTPUT:**

A tuple of monomials. They are in the same order as **coeffs()**.

**EXAMPLES:**

```python
sage: R.<x,y> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4 + y^4)
sage: quartic.monomials()
(y^4, x*y^3, x^2*y^2, x^3*y, x^4)
```

```python
>>> from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
```
The coefficients of a binary quartic.

Given

\[ f(x) = a_0 x_1^4 + 4 a_1 x_0 x_1^3 + 6 a_2 x_0^2 x_1^2 + 4 a_3 x_0^3 x_1 + a_4 x_0^4 \]

this function returns \( a = (a_0, a_1, a_2, a_3, a_4) \)

**EXAMPLES:**

```python
sage: R.<a0, a1, a2, a3, a4, x0, x1> = QQ[]

sage: quartic = a0*x1**Integer(4) + y**Integer(4)

sage: inv = invariant_theory.binary_quartic(quartic, x0, x1)

sage: inv.scaled_coeffs()
(a0, a1, a2, a3, a4)
```

```python
sage: from sage.all import *

R = QQ[‘a0, a1, a2, a3, a4, x’]; (a0, a1, a2, a3, a4, x,) = R._first_ngens(6)

quartic = a0 + Integer(4)*a1*x + Integer(6)*a2*x**2 + Integer(4)*a3*x**3 + a4*x**4

inv = invariant_theory.binary_quartic(quartic, x)

inv.scaled_coeffs()
(a0, a1, a2, a3, a4)
```

**class** `sage.rings.invariants.invariant_theory.BinaryQuintic(n, d, polynomial, *args)`

**Bases:** `AlgebraicForm`

Invariant theory of a binary quintic form.

You should use the `invariant_theory` factory object to construct instances of this class. See `binary_quintic()` for details.

**REFERENCES:**

For a description of all invariants and covariants of a binary quintic, see section 73 of [Cle1872].
A\_invariant()  
Return the invariant $A$ of a binary quintic.  

OUTPUT:  
The $A$-invariant of the binary quintic.  

EXAMPLES:  

```python  
 sage: R.<a0, a1, a2, a3, a4, a5, x0, x1> = QQ[]
sage: p = a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 + ...
 a5*x0^5
sage: quintic = invariant_theory.binary_quintic(p, x0, x1)
sage: quintic.A_invariant()
4/625*a2^2*a3^2 - 12/625*a1*a3^3 - 12/625*a2^3*a4
+ 38/625*a1*a2*a3*a4 + 6/125*a0*a3^2*a4 - 18/625*a1^2*a4^2
- 16/125*a0*a2*a4^2 + 6/125*a1*a2^2*a5 - 16/125*a1^2*a3*a5
- 2/25*a0*a2*a3*a5 + 4/5*a0*a1*a4*a5 - 2*a0^2*a5^2
```  

B\_invariant()  
Return the invariant $B$ of a binary quintic.  

OUTPUT:  
The $B$-invariant of the binary quintic.  

EXAMPLES:  

```python  
 sage: R.<a0, a1, a2, a3, a4, a5, x0, x1> = QQ[]
sage: p = a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 + ...
 a5*x0^5
sage: quintic = invariant_theory.binary_quintic(p, x0, x1)
sage: quintic.B_invariant()
1/1562500*a2^4*a3^4 - 3/781250*a1*a2^2*a3^5 + 9/1562500*a1^2*a3^6
- 3/781250*a2^5*a3*a4^2 + 37/1562500*a1*a2^3*a3^3*a4
- 57/1562500*a1^2*a2^2*a3^4*a4 + 3/3125000*a0*a2^2*a3^4*a4
...
 + 8/625*a0^2*a1^2*a4^2*a5^2 - 4/125*a0^3*a2*a4^2*a5^2 - 16/3125*a1^5*a5^3
 + 4/125*a0*a1^3*a2*a5^3 - 6/125*a0^2*a1*a2^2*a5^3
 - 4/125*a0^2*a1^2*a3*a5^3 + 2/25*a0^3*a2*a3*a5^3
```  

(continues on next page)
\[ \text{Polynomials, Release 10.4} \]

\[ \rightarrow a4 \times x1 \times x0^{\text{Integer}(4)} + a5 \times x0^{\text{Integer}(5)} \]

\[ \ggg \text{quintic = invariant\_theory\_binary\_quintic}(p, x0, x1) \]

\[ \ggg \text{quintic.B\_invariant()} \]

\[ \begin{align*}
1/1562500 \times a2^4 \times a3^4 & - 3/781250 \times a1^2 \times a3^5 + 9/1562500 \times a1^2 \times a3^6 \\
- 3/781250 \times a2^5 \times a3^2 \times a4 & + 37/1562500 \times a1 \times a2^3 \times a3^3 \times a4 \\
- 57/1562500 \times a1^2 \times a2^3 \times a3^4 \times a4 & + 3/312500 \times a0 \times a2^2 \times a3^4 \times a4 \\
\ldots
\end{align*} \]

\[ + 8/625 \times a0^2 \times a1^2 \times a4^2 \times a5^2 - 4/125 \times a0^3 \times a2^4 \times a5^2 - 16/3125 \times a1^5 \times a5^3 \\
+ 4/125 \times a0 \times a1^2 \times a2^5 \times a3 - 6/125 \times a0^2 \times a1^2 \times a2^2 \times a5^3 \\
- 4/125 \times a0 \times a1^2 \times a3 \times a5^3 + 2/25 \times a0^3 \times a2 \times a3 \times a5^3 \]

\[ C\_\text{invariant}() \]

Return the invariant \(C\) of a binary quintic.

**OUTPUT:**

The \(C\)-invariant of the binary quintic.

**EXAMPLES:**

```
sage: R.<a0, a1, a2, a3, a4, a5, x0, x1> = QQ[]
sage: p = a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 +
 → a5*x0^5
sage: quintic = invariant_theory.binary_quintic(p, x0, x1)
sage: quintic.C_invariant()
\begin{align*}
-3/1953125000 \times a2^6 \times a3^6 & + 27/1953125000 \times a1 \times a2^4 \times a3^7 \\
- 249/7812500000 \times a1^2 \times a2^2 \times a3^8 & - 3/78125000 \times a0 \times a2^3 \times a3^8 \\
+ 3/976562500 \times a1^3 \times a3^9 & + 27/156250000 \times a0 \times a1 \times a2 \times a3^9 \\
\ldots
\end{align*} \]

```

```
>>> from sage.all import *
>>> R = QQ['a0, a1, a2, a3, a4, a5, x0, x1']; (a0, a1, a2, a3, a4, a5, x0, x1, ...) = R._first_ngens(8)
>>> p = a0*x1^**Integer(5) + a1*x1^**Integer(4)*x0 +
 → a2*x1^**Integer(3)*x0**Integer(2) + a3*x1^**Integer(2)*x0**Integer(3) +
 → a4*x1^**Integer(4) + a5*x0**Integer(5)
>>> quintic = invariant_theory.binary_quintic(p, x0, x1)
>>> quintic.C_invariant()
\begin{align*}
-3/1953125000 \times a2^6 \times a3^6 & + 27/1953125000 \times a1 \times a2^4 \times a3^7 \\
- 249/7812500000 \times a1^2 \times a2^2 \times a3^8 & - 3/78125000 \times a0 \times a2^3 \times a3^8 \\
+ 3/976562500 \times a1^3 \times a3^9 & + 27/156250000 \times a0 \times a1 \times a2 \times a3^9 \\
\ldots
\end{align*} \]

```

\[ H\_\text{covariant}(\text{as\_form=False}) \]

Return the covariant \(H\) of a binary quintic.

**INPUT:**

\[ \cdot \text{as\_form} - \text{if } \text{as\_form} \text{ is False, the result will be returned as polynomial (default). If it is True, the result is returned as an object of the class } \text{AlgebraicForm}. \]

**OUTPUT:**
The $H$-covariant of the binary quintic as polynomial or as binary form.

**EXAMPLES:**

```
sage: R.<a0, a1, a2, a3, a4, a5, x0, x1> = QQ[]
sage: p = a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 +
 ...→ a5*x0^5
sage: quintic = invariant_theory.binary_quintic(p, x0, x1)
sage: quintic.H_covariant()
-2/25*a4^2*x0^6 + 1/5*a3*a5*x0^6 - 3/25*a3*a4*x0^5*x1
+ 3/5*a2*a5*x0^5*x1 - 3/25*a3^2*x0^4*x1^2 + 3/5*a2*a4*x0^4*x1^2
+ 6/5*a1*a5*x0^4*x1^2 - 4/25*a2*a3*x0^3*x1^3 + 14/25*a1*a4*x0^3*x1^3
+ 2*a0*a5*x0^3*x1^3 - 3/25*a2*a2*x0^2*x1^4 + 3/5*a1*a3*x0^2*x1^4
+ 6/5*a0*a4*x0^2*x1^4 - 3/25*a1*a2*x0*x1^5 + 3/5*a0*a3*x0*x1^5
- 2/25*a1^2*x1^6 + 1/5*a0*a2*x1^6
```

```
sage: quintic.H_covariant(as_form=True)
Binary sextic given by ...
```

```
>>> from sage.all import *
>>> R = QQ['a0, a1, a2, a3, a4, a5, x0, x1']; (a0, a1, a2, a3, a4, a5, x0, x1, ...
 ...→) = R._first_ngens(8)
>>> p = a0*x1^Integer(5) + a1*x1^Integer(4)*x0 +
 ...→ a2*x1^Integer(3)*x0^Integer(2) + a3*x1^Integer(2)*x0^Integer(2) +
 ...→ a4*x1^Integer(4) + a5*x0^Integer(5)
>>> quintic = invariant_theory.binary_quintic(p, x0, x1)
>>> quintic.H_covariant()
-2/25*a4^2*x0^6 + 1/5*a3*a5*x0^6 - 3/25*a3*a4*x0^5*x1
+ 3/5*a2*a5*x0^5*x1 - 3/25*a3^2*x0^4*x1^2 + 3/5*a2*a4*x0^4*x1^2
+ 6/5*a1*a5*x0^4*x1^2 - 4/25*a2*a3*x0^3*x1^3 + 14/25*a1*a4*x0^3*x1^3
+ 2*a0*a5*x0^3*x1^3 - 3/25*a2*a2*x0^2*x1^4 + 3/5*a1*a3*x0^2*x1^4
+ 6/5*a0*a4*x0^2*x1^4 - 3/25*a1*a2*x0*x1^5 + 3/5*a0*a3*x0*x1^5
- 2/25*a1^2*x1^6 + 1/5*a0*a2*x1^6
```

```
>>> quintic.H_covariant(as_form=True)
Binary sextic given by ...
```

```
R_invariant()
```

Return the invariant $R$ of a binary quintic.

**OUTPUT:**

The $R$-invariant of the binary quintic.

**EXAMPLES:**

```
sage: R.<a0, a1, a2, a3, a4, a5, x0, x1> = QQ[]
sage: p = a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 +
 ...→ a5*x0^5
sage: quintic = invariant_theory.binary_quintic(p, x0, x1)
sage: quintic.R_invariant()
3/390625000000*a1^2*a2^5*a3^11 - 3/976562500000*a0*a2^6*a3^11
- 51/781250000000*a1^3*a2^3*a3^12 + 27/976562500000*a0*a1^2*a2^4*a3^12
+ 27/1953125000000*a1^4*a2^a3^13 - 81/156250000000*a0*a1^2*a2^2*a3^13
+ 384/9765625*a0*a1^10*a5^7 - 192/390625*a0^2*a1^8*a2*a5^7
+ 192/78125*a0^3*a1^6*a2^2*a5^7 - 96/15625*a0^4*a1^4*a2^3*a5^7
+ 24/3125*a0^5*a1^2*a2^4*a5^7 - 12/3125*a0^6*a2^5*a5^7
```

3.2. Classical Invariant Theory
>>> from sage.all import *
>>> R = QQ['a0, a1, a2, a3, a4, a5, x0, x1']; (a0, a1, a2, a3, a4, a5, x0, x1, ...
   ) = R._first_ngens(8)
>>> p = a0*x1**Integer(5) + a1*x1**Integer(4)*x0 +
   a2*x1**Integer(3)*x0**Integer(2) + a3*x1**Integer(2)*x0**Integer(3) +
   a4*x1*x0**Integer(4) + a5*x0**Integer(5)
>>> quintic = invariant_theory.binary_quintic(p, x0, x1)
>>> quintic.R_invariant()
3/3906250000000*a1^2*a2^5*a3^11 - 3/976562500000*a0*a2^6*a3^11
- 51/781250000000*a1^3*a2^3*a3^12 + 27/976562500000*a0*a1^2*a4*a3^12
+ 27/1953125000000*a1^4*a2^2*a3^13 - 81/1562500000000*a0*a1^2*a2^2*a3^13
...
+ 384/9765625*a0*a1^10*a5^7 - 192/390625*a0^2*a1^8*a2*a5^7
+ 192/78125*a0^3*a1^6*a2^2*a5^7 - 96/15625*a0^4*a1^4*a2^3*a5^7
+ 24/3125*a0^5*a1^2*a2^4*a5^7 - 12/3125*a0^6*a2^5*a5^7

\textbf{T\_covariant} \texttt{(as\_form=False)}

Return the covariant $T$ of a binary quintic.

\textbf{INPUT:}

- \texttt{as\_form} – if \texttt{as\_form} is \texttt{False}, the result will be returned as polynomial (default). If it is \texttt{True} the result is returned as an object of the class \texttt{AlgebraicForm}.

\textbf{OUTPUT:}

The $T$-covariant of the binary quintic as polynomial or as binary form.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<a0, a1, a2, a3, a4, a5, x0, x1> = QQ[]
sage: p = a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 +
   a5*x0^5
sage: quintic = invariant_theory.binary_quintic(p, x0, x1)
sage: quintic.T_covariant()
2/125*a4^3*x0^9 - 3/50*a3*a4*a5*x0^9 + 1/10*a2*a5^2*x0^9
+ 9/250*a3*a4^2*x0^8*x1 - 3/25*a3^2*a5*x0^8*x1 + 1/50*a2*a4*a5*x0^8*x1
+ 2/5*a1*a5^2*x0^8*x1 + 3/250*a3^2*a4*x0^7*x1^2 + 8/125*a2*a4^2*x0^7*x1^2
11/25*a0*a1*a4*x0^2*x1^7 - a0^2*a5*x0^2*x1^7 - 9/250*a1^2*a2*x0*x1^8
+ 3/25*a0*a2^2*x0*x1^8 - 1/50*a0*a1^3*x0*x1^8 - 2/5*a0^2*a4*x0*x1^8
- 2/125*a1^3*x0^9 + 3/50*a0*a1^2*x1^9 - 1/10*a0^2*a3*x1^9
\end{verbatim}

\begin{verbatim}
sage: quintic.T_covariant(as\_form=True)
Binary nonic given by ...
\end{verbatim}

(continues on next page)
alpha_covariant (as_form=False)

Return the covariant $\alpha$ of a binary quintic.

INPUT:

- **as_form** — if `as_form` is `False`, the result will be returned as polynomial (default). If it is `True` the result is returned as an object of the class `AlgebraicForm`.

OUTPUT:

The $\alpha$-covariant of the binary quintic as polynomial or as binary form.

EXAMPLES:

```python
sage: R.<a0, a1, a2, a3, a4, a5, x0, x1> = QQ[]

sage: p = a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 +...
 + a5*x0^5

sage: quintic = invariant_theory.binary_quintic(p, x0, x1)

sage: quintic.alpha_covariant()

1/2500*a2^2*a3^3*x0 - 3/2500*a1*a3^4*x0 - 1/625*a2^3*a3*a4*x0 + 3/625*a1*a2*a3^2*a4*x0 + 3/625*a0*a3^3*a4*x0 + 2/625*a1*a2^2*a4^2*x0 - 6/625*a1^2*a3*a4^2*x0 - 12/625*a0*a2*a3*a4^2*x0 + 24/625*a0*a1*a4^3*x0...

arithmet ic_invariants ()

Return a set of generating arithmetic invariants of a binary quintic.
An arithmetic invariant is an invariant whose coefficients are integers for a general binary quintic. They are linear combinations of the Clebsch invariants, such that they still generate the ring of invariants.

OUTPUT:

The arithmetic invariants of the binary quintic. They are given by

\[
I_4 = 2^{-1} \cdot 5^4 \cdot A \\
I_8 = 5^5 \cdot (2^{-1} \cdot 47 \cdot A^2 - 2^2 \cdot B) \\
I_{12} = 5^{10} \cdot (2^{-1} \cdot 3 \cdot A^3 - 2^5 \cdot 3^{-1} \cdot C) \\
I_{18} = 2^8 \cdot 3^{-1} \cdot 5^{15} \cdot R
\]

where \(A, B, C\) and \(R\) are the `BinaryQuintic.clebsch_invariants()`.

EXAMPLES:

```python
sage: R.<x0, x1> = QQ[]
sage: p = 2*x1^5 + 4*x1^4*x0 + 5*x1^3*x0^2 + 7*x1^2*x0^3 - 11*x1*x0^4 + x0^5
sage: quintic = invariant_theory.binary_quintic(p, x0, x1)
sage: quintic.arithmetic_invariants()
{'I12': -1156502613073152, 'I18': -12712872348048797642752, 'I4': -138016, 'I8': 14164936192}
```

We can check that the coefficients of the invariants have no common divisor for a general quintic form:

```python
>>> from sage.all import *
>>> R = QQ['x0', 'x1']; (x0, x1, ) = R._first_ngens(2)
>>> p = Integer(2)*x1**Integer(5) + Integer(4)*x1**Integer(4)*x0 +
    Integer(5)*x1**Integer(3)*x0**Integer(2) +
    Integer(7)*x1**Integer(2)*x0**Integer(3) -
    Integer(11)*x1*x0**Integer(4) +
    x0**Integer(5)
>>> quintic = invariant_theory.binary_quintic(p, x0, x1)
>>> quintic.arithmetic_invariants()
{'I12': -1156502613073152, 'I18': -12712872348048797642752, 'I4': -138016, 'I8': 14164936192}
```

```python
sage: p = a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 + a5*x0^5
sage: quintic = invariant_theory.binary_quintic(p, x0, x1)
sage: invs = quintic.arithmetic_invariants()
>>> [invs[x].content() for x in invs]
[1, 1, 1, 1]
```

```python
>>> from sage.all import *
>>> R = QQ['a0, a1, a2, a3, a4, a5, x0, x1']; (a0, a1, a2, a3, a4, a5, x0, x1, ) = R._first_ngens(8)
>>> p = a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 + a5*x0^5
>>> quintic = invariant_theory.binary_quintic(p, x0, x1)
>>> invs = quintic.arithmetic_invariants()
>>> [invs[x].content() for x in invs]
[1, 1, 1, 1]
```
beta_covariant *(as_form=False)*

Return the covariant β of a binary quintic.

INPUT:

- **as_form** – if as_form is False, the result will be returned as polynomial (default). If it is True, the result is returned as an object of the class `AlgebraicForm`.

OUTPUT:

The β-covariant of the binary quintic as polynomial or as binary form.

EXAMPLES:

```python
sage: R.<a0, a1, a2, a3, a4, a5, x0, x1> = QQ[]
```

```python
sage: p = a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 + a5*x0^5
```

```python
sage: quintic = invariant_theory.binary_quintic(p, x0, x1)
```

```python
sage: quintic.beta_covariant()  # as_form=False
-1/62500*a2^3*a3^4*x0 + 9/125000*a1*a2*a3^5*x0 - 27/125000*a0*a3^6*x0
+ 13/62500*a2^4*a3^2*a4*x0 - 31/62500*a1*a2^2*a3^3*a4*x0
- 3/62500*a1^2*a3^4*a4*x0 + 27/15625*a0*a2*a3^4*a4*x0
...
```

```python
sage: quintic.beta_covariant(as_form=True)  # as_form=True
```

canonical_form *(reduce_gcd=False)*

Return a canonical representative of the quintic.

Given a binary quintic f with coefficients in a field K, returns a canonical representative of the $GL(2, \bar{K})$-orbit of the quintic, where \bar{K} is an algebraic closure of K. This means that two binary quintics f and g are $GL(2, \bar{K})$-equivalent if and only if their canonical forms are the same.

INPUT:

- **reduce_gcd** – If set to True, then a variant of this canonical form is computed where the coefficients are coprime integers. The obtained form is then unique up to multiplication by a unit. See also 3.2. Classical Invariant Theory 831.
binary_quintic_from_invariants()'.

OUTPUT:
A canonical $GL(2, \bar{K})$-equivalent binary quintic.

EXAMPLES:

```python
sage: R.<x0, x1> = QQ[]
sage: p = 2*x1^5 + 4*x1^4*x0 + 5*x1^3*x0^2 + 7*x1^2*x0^3 - 11*x1*x0^4 + x0^5
sage: f = invariant_theory.binary_quintic(p, x0, x1)
sage: g = matrix(QQ, [[11, 5], [7, 2]])
sage: gf = f.transformed(g)
sage: f.canonical_form() == gf.canonical_form()
True
sage: h = f.canonical_form(reduce_gcd=True)
sage: gcd(h.coeffs())
1
```

`clebsch_invariants` *(as_tuple=False)*

Return the invariants of a binary quintic as described by Clebsch.

The following invariants are returned: A, B, C and R.

OUTPUT:

The Clebsch invariants of the binary quintic.

EXAMPLES:

```python
>>> from sage.all import *
>>> R = QQ['x0, x1']; (x0, x1,) = R._first_ngens(2)
>>> p = Integer(2)*x1**Integer(5) + Integer(4)*x1**Integer(4)*x0 +
    Integer(5)*x1**Integer(3)*x0**Integer(2) +
    Integer(7)*x1**Integer(2)*x0**Integer(3) - Integer(11)*x1*x0**Integer(4) +
    x0**Integer(5)
>>> f = invariant_theory.binary_quintic(p, x0, x1)
>>> g = matrix(QQ, [[Integer(11), Integer(5)], [Integer(7), Integer(2)])
>>> gf = f.transformed(g)
>>> f.canonical_form() == gf.canonical_form()
True
>>> h = f.canonical_form(reduce_gcd=True)
>>> gcd(h.coeffs())
1
```

```python
sage: quintic = invariant_theory.binary_quintic(p, x0, x1)
sage: quintic.clebsch_invariants()
{'A': -276032/625, 'B': 4983526016/390625, 'C': -247056495846408/244140625, 'R': -148978972828696847376/30517578125}
sage: quintic.clebsch_invariants(as_tuple=True)
(-276032/625, 4983526016/390625, -247056495846408/244140625, -148978972828696847376/30517578125)
```
```python
>>> from sage.all import *

>>> R = QQ['x0, x1']; (x0, x1,) = R._first_ngens(2)

>>> p = Integer(2)*x1**Integer(5) + Integer(4)*x1**Integer(4)*x0 +
    → Integer(5)*x1**Integer(3)*x0**Integer(2) +
    → Integer(7)*x1**Integer(2)*x0**Integer(3) - Integer(11)*x1*x0**Integer(4) +
    → x0**Integer(5)

>>> quintic = invariant_theory.binary_quintic(p, x0, x1)

>>> quintic.clebsch_invariants()
{'A': -276032/625,
'B': 4983526016/390625,
'C': -247056495846408/244140625,
'R': -148978972828696847376/30517578125)

>>> quintic.clebsch_invariants(as_tuple=True)
(-276032/625,
4983526016/390625,
-247056495846408/244140625,
-148978972828696847376/30517578125)
```

coeffs()

The coefficients of a binary quintic.

Given

\[f(x) = a_0x_0^5 + a_1x_0x_1^4 + a_2x_0^2x_1^3 + a_3x_0^3x_1^2 + a_4x_0^4x_1 + a_5x_1^5 \]

this function returns \(a = (a_0, a_1, a_2, a_3, a_4, a_5) \)

EXAMPLES:

```python
sage: R.<a0, a1, a2, a3, a4, a5, x0, x1> = QQ[]

sage: p = a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 + a5*x0^5

sage: quintic = invariant_theory.binary_quintic(p, x0, x1)

sage: quintic.coeffs()
(a0, a1, a2, a3, a4, a5)
```

```python
>>> from sage.all import *

>>> R = QQ['a0, a1, a2, a3, a4, a5, x0, x1']; (a0, a1, a2, a3, a4, a5, x0, x1) = R._first_ngens(8)

>>> p = a0*x1**Integer(5) + a1*x1**Integer(4)*x0 +
    → a2*x1**Integer(3)*x0**Integer(2) + a3*x1**Integer(2)*x0**Integer(3) +
    → a4*x1*x0**Integer(4) + a5*x0**Integer(5)

>>> quintic = invariant_theory.binary_quintic(p, x0, x1)

>>> quintic.coeffs()
(a0, a1, a2, a3, a4, a5)
```
```
```
Polynomials, Release 10.4

```python
>>> quintic = invariant_theory.binary_quintic(p, x)
>>> quintic.coeffs()
(a0, a1, a2, a3, a4, a5)
```

delta_covariant (as_form=False)

Return the covariant \(\delta \) of a binary quintic.

INPUT:

- `as_form` – if `as_form` is `False`, the result will be returned as polynomial (default). If it is `True` the result is returned as an object of the class `AlgebraicForm`.

OUTPUT:

The \(\delta \)-covariant of the binary quintic as polynomial or as binary form.

EXAMPLES:

```python
sage: R.<a0, a1, a2, a3, a4, a5, x0, x1> = QQ[]
sage: p = a0*x1**5 + a1*x1**4*x0 + a2*x1**3*x0**2 + a3*x1**2*x0**3 + a4*x1*x0**4 +...
    + a5*x0**5
sage: quintic = invariant_theory.binary_quintic(p, x0, x1)
sage: quintic.delta_covariant()
sage: quintic.delta_covariant(as_form=True)
Binary monic given by ...
```

classmethod from_invariants (invariants, x, z, *args, **kwargs)

Construct a binary quintic from its invariants.

This function constructs a binary quintic whose invariants equal the ones provided as argument up to scaling.

INPUT:

- `invariants` (list):...
- `x`, `z` (variables):...
- `*args`, `**kwargs` (optional):...
• invariants – A list or tuple of invariants that are used to reconstruct the binary quintic.

OUTPUT:

A BinaryQuintic.

EXAMPLES:

```python
sage: R.<x,y> = QQ[

sage: from sage.rings.invariants.invariant_theory import BinaryQuintic

sage: BinaryQuintic.from_invariants([3,6,12], x, y)
Binary quintic with coefficients (0, 1, 0, 0, 1, 0)
```

```
>>> from sage.all import *

>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)

>>> from sage.rings.invariants.invariant_theory import BinaryQuintic

>>> BinaryQuintic.from_invariants([Integer(3),Integer(6),Integer(12)], x, y)
Binary quintic with coefficients (0, 1, 0, 0, 1, 0)
```

gamma_covariant (as_form=False)

Return the covariant \(\gamma \) of a binary quintic.

INPUT:

• as_form – if as_form is False, the result will be returned as polynomial (default). If it is True then the result is returned as an object of the class \(\text{AlgebraicForm} \).

OUTPUT:

The \(\gamma \)-covariant of the binary quintic as polynomial or as binary form.

EXAMPLES:

```python
sage: R.<a0, a1, a2, a3, a4, a5, x0, x1> = QQ[

sage: p = a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 +...

sage: quintic = invariant_theory.binary_quintic(p, x0, x1)

sage: quintic.gamma_covariant()
1/156250000*a2^5*a3^6*x0 - 3/62500000*a1*a2^3*a3^7*x0 + 27/312500000*a1^2*a2*a3^8*x0 + 27/312500000*a0*a2^2*a3^8*x0 - 81/312500000*a0*a1*a3^9*x0 - 19/312500000*a2^6*a3^4*a4*x0...

... - 32/3125*a0^2*a1^3*a2^2*a3^5^4*x1 + 6/625*a0^3*a1^2*a2^3*a3^5^4*x1 - 8/3125*a0^2*a1^4*a3^5^4*x1 + 8/625*a0^3*a1^2*a2^3*a3^5^4*x1 - 2/125*a0^4*a2^2*a3^5^4*x1

sage: quintic.gamma_covariant(as_form=True)
Binary monic given by ...
```

(continues on next page)
...
- 32/3125*a0^2*a1^3*a2^2*a5^4*x1 + 6/625*a0^3*a1*a2^3*a5^4*x1
- 8/3125*a0^2*a1^4*a3*a5^4*x1 + 8/625*a0^3*a1^2*a2*a3*a5^4*x1
- 2/125*a0^4*a2^2*a3*a5^4*x1

```
>>> quintic.gamma_covariant(as_form=True)
Binary monic given by ...
```

i_covariant (as_form=False)

Return the covariant i of a binary quintic.

INPUT:

- **as_form** – if `as_form` is `False`, the result will be returned as polynomial (default). If it is `True` the result is returned as an object of the class `AlgebraicForm`.

OUTPUT:

The i-covariant of the binary quintic as polynomial or as binary form.

EXAMPLES:

```
sage: from sage.all import *
sage: R = QQ['a0, a1, a2, a3, a4, a5, x0, x1']; (a0, a1, a2, a3, a4, a5, x0, x1, ...) = R._first_ngens(8)
sage: p = a0*x1**Integer(5) + a1*x1**Integer(4)*x0 + a2*x1**Integer(3)*x0**Integer(2) + a3*x1**Integer(2)*x0**Integer(3) + a4*x1*x0**Integer(4) + a5*x0**Integer(5)
sage: quintic = invariant_theory.binary_quintic(p, x0, x1)
sage: quintic.i_covariant()
3/50*a3^2*x0^2 - 4/25*a2*a4*x0^2 + 2/5*a1*a5*x0^2 + 1/25*a2*a3*x0*x1 - 6/25*a1*a4*x0*x1 + 2*a0*a5*x0*x1 + 3/50*a2^2*x1^2 - 4/25*a1*a3*x1^2 + 2/5*a0*a4*x1^2
```

```
>>> from sage.all import *
>>> R = QQ['a0, a1, a2, a3, a4, a5, x0, x1']; (a0, a1, a2, a3, a4, a5, x0, x1, ...) = R._first_ngens(8)
>>> p = a0*x1**Integer(5) + a1*x1**Integer(4)*x0 + a2*x1**Integer(3)*x0**Integer(2) + a3*x1**Integer(2)*x0**Integer(3) + a4*x1*x0**Integer(4) + a5*x0**Integer(5)
>>> quintic = invariant_theory.binary_quintic(p, x0, x1)
>>> quintic.i_covariant(as_form=True)
Binary quadratic given by ...
```

invariants (type='clebsch')

Return a tuple of invariants of a binary quintic.

INPUT:

- **type** – The type of invariants to return. The default choice is to return the Clebsch invariants.

OUTPUT:

The invariants of the binary quintic.
EXAMPLES:

```
sage: R.<x0, x1> = QQ[]
sage: p = 2*x1^5 + 4*x1^4*x0 + 5*x1^3*x0^2 + 7*x1^2*x0^3 - 11*x1*x0^4 + x0^5
sage: quintic = invariant_theory.binary_quintic(p, x0, x1)
sage: quintic.invariants()
(-276032/625, 4983526016/390625, -247056495846408/244140625, -148978972828696847376/30517578125)
sage: quintic.invariants('unknown')
Traceback (most recent call last):
... ValueError: unknown type of invariants unknown for a binary quintic
>>> from sage.all import *
>>> R = QQ['x0, x1']; (x0, x1,) = R._first_ngens(2)
>>> p = Integer(2)*x1**Integer(5) + Integer(4)*x1**Integer(4)*x0 +
    → Integer(5)*x1**Integer(3)*x0**Integer(2) +
    → Integer(7)*x1**Integer(2)*x0**Integer(3) - Integer(11)*x1*x0**Integer(4) +
    → x0**Integer(5)
>>> quintic = invariant_theory.binary_quintic(p, x0, x1)
>>> quintic.invariants()
(-276032/625, 4983526016/390625, -247056495846408/244140625, -148978972828696847376/30517578125)
>>> quintic.invariants('unknown')
Traceback (most recent call last):
... ValueError: unknown type of invariants unknown for a binary quintic
```

```
j_covariant (as_form=False)

Return the covariant \( j \) of a binary quintic.

INPUT:

- \( \text{as\_form} \) -- if \( \text{as\_form} \) is False, the result will be returned as polynomial (default). If it is True the result is returned as an object of the class \texttt{AlgebraicForm}.

OUTPUT:

The \( j \)-covariant of the binary quintic as polynomial or as binary form.

EXAMPLES:

```
sage: R.<a0, a1, a2, a3, a4, a5, x0, x1> = QQ[]
sage: p = a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 +
 → a5*x0^5
sage: quintic = invariant_theory.binary_quintic(p, x0, x1)
sage: quintic.j_covariant()
-3/500*a3^3*x0^3 + 3/125*a2*a3*a4*x0^3 - 6/125*a1*a4^2*x0^3
- 3/50*a2^2*a5*x0^3 + 3/25*a1*a3*a5*x0^3 - 3/500*a2*a3^2*x0^2*x1
+ 3/250*a2^2*a4*x0^2*x1 + 3/125*a1*a3*a4*x0^2*x1 - 6/25*a0*a4^2*x0^2*x1
- 3/25*a1^2*a5*x0^2*x1 + 3/5*a0*a3*a5*x0^2*x1 - 3/500*a2^2*a3*x0*x1^2
+ 3/250*a1*a3^2*x0*x1^2 - 3/125*a1*a2*a4*x0*x1^2 - 3/250*a0*a3*a4*x0*x1^2
+ 6/25*a1^2*a5*x0*x1^2 + 3/5*a0*a2*a5*x0*x1^2 + 3/250*a2^2*a3*x1^3
+ 3/125*a1*a2*a3*x1^3 - 3/50*a0*a3^2*x1^3 - 6/125*a1^2*a4*x1^3
+ 3/250*a0*a2*a4*x1^3
```
```
sage: quintic.j_covariant(as_form=True)
Binary cubic given by ...

```python
>>> from sage.all import *
>>> R = QQ['a0, a1, a2, a3, a4, a5, x0, x1']; (a0, a1, a2, a3, a4, a5, x0, x1) = R._first_ngens(8)
>>> p = a0*x1**Integer(5) + a1*x1**Integer(4)*x0 + a2*x1**Integer(3)*x0**Integer(2) + a3*x1**Integer(2)*x0**Integer(3) + a4*x1*x0**Integer(4) + a5*x0**Integer(5)
>>> quintic = invariant_theory.binary_quintic(p, x0, x1)
>>> quintic.j_covariant()
-3/500*a3**3*x0**3 + 3/125*a2*a3*a4*x0**3 - 6/125*a1*a4**2*x0**3
- 3/50*a2**2*a5*x0**3 + 3/25*a1*a3*a5*x0**3 - 3/500*a2**2*a3*x0**2*x1
+ 3/250*a2**2*a4*x0**2*x1 + 3/125*a1*a3*a4*x0**2*x1 - 6/25*a0*a4**2*x0**2*x1
- 3/25*a1*a2**2*a5*x0**2*x1 + 3/5*a0*a3*a5*x0**2*x1 - 3/500*a2**2*a3*x0**2*x1
+ 3/250*a1*a3**2*x0**2*x1 + 3/125*a1*a2*a4*x0**2*x1 - 25/3*a0*a3*a4*x0**2*x1
- 6/25*a1*a2**2*a5*x0**1*x2 + 3/5*a0*a2*a5*x0**1*x2 - 3/500*a2**3*x1**3
+ 3/125*a1*a2**2*a3*x1**3 - 3/50*a0*a3**2*x1**3 - 6/25*a1*a2**2*a3*x1**3
+ 3/25*a0*a2*a4*x1**3

```n

monomials()

List the basis monomials of the form.

This function lists a basis of monomials of the space of binary quintics of which this form is an element.

OUTPUT:

A tuple of monomials. They are in the same order as coeffs().

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: quintic = invariant_theory.binary_quintic(x^5 + y^5)
sage: quintic.monomials()
(y^5, x*y^4, x^2*y^3, x^3*y^2, x^4*y, x^5)

```n

```python
>>> from sage.all import *
>>> R = QQ['x', y']; (x, y) = R._first_ngens(2)
>>> quintic = invariant_theory.binary_quintic(x**Integer(5) + y**Integer(5))
>>> quintic.monomials()
(y^5, x*y^4, x^2*y^3, x^3*y^2, x^4*y, x^5)

```n

scaled_coeffs()

The coefficients of a binary quintic.

Given

\[f(x) = a_0x_1^5 + 5a_1x_0x_1^4 + 10a_2x_0^2x_1^3 + 10a_3x_0^3x_1^2 + 5a_4x_0^4x_1 + a_5x_1^5 \]

this function returns \(a = (a_0, a_1, a_2, a_3, a_4, a_5) \)

EXAMPLES:
tau_covariant (as_form=False)

Return the covariant \(\tau \) of a binary quintic.

INPUT:

- as_form – if as_form is False, the result will be returned as polynomial (default). If it is True the result is returned as an object of the class AlgebraicForm.

OUTPUT:

The \(\tau \)-covariant of the binary quintic as polynomial or as binary form.

EXAMPLES:

```python
sage: R.<a0, a1, a2, a3, a4, a5, x0, x1> = QQ[]
sage: p = a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 + a5*x0^5
sage: quintic = invariant_theory.binary_quintic(p, x0, x1)
sage: quintic.tau_covariant()
sage: quintic.tau_covariant() 1/62500*a2^2*a3^4*x0^2 - 3/62500*a1*a3^5*x0^2 - 1/15625*a2^3*a3^2*a4*x0^2 + 1/6250*a1*a2*a3^3*a4*x0^2 + 3/6250*a0*a3^4*a4*x0^2 - 1/31250*a2^4*a4^2*x0^2 - 2/125*a0*a1*a2^2*a4*a5*x1^2 - 4/125*a0*a1^2*a3*a4*a5*x1^2 + 2/25*a0^2*a2*a3*a4*a5*x1^2 - 8/625*a1^4*a5^2*x1^2
```


\[+ \frac{8}{125}a_0a_1^2a_2a_5^2x_1^2 - \frac{2}{25}a_0^2a_2^2a_5^2x_1^2 \]

\textit{sage: quintic.tau_covariant(as_form=True)}

Binary quadratic given by ...

>>> from sage.all import *

>>> R = QQ['a0, a1, a2, a3, a4, a5, x0, x1']; (a0, a1, a2, a3, a4, a5, x0, x1, →) = R._first_ngens(8)

>>> p = a0*x1**Integer(5) + a1*x1**Integer(4)*x0 + ...

>>> quintic = invariant_theory.binary_quintic(p, x0, x1)

>>> quintic.tau_covariant()

\[
\frac{1}{62500}a_2^2a_3^4x_0^2 - \frac{3}{125000}a_1a_3^5x_0^2 \\
+ \frac{3}{62500}a_0a_3^7x_0^2 - \frac{1}{125000}a_2a_3^7x_0^2 \\
+ \frac{2}{1250}a_0^2a_2^2a_5x_0^2 \cdot ...
\]

>>> quintic.tau_covariant(as_form=True)

Binary quadratic given by ...

\textit{theta_covariant (as_form=False)}

Return the covariant \(\theta \) of a binary quintic.

INPUT:

- \textit{as_form} – if \textit{as_form} is False, the result will be returned as polynomial (default). If it is True the result is returned as an object of the class \textit{AlgebraicForm}.

OUTPUT:

The \(\theta \)-covariant of the binary quintic as polynomial or as binary form.

EXAMPLES:

\textit{sage: R.<a0, a1, a2, a3, a4, a5, x0, x1> = QQ[]}

\textit{sage: p = a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 + ...

\textit{sage: quintic = invariant_theory.binary_quintic(p, x0, x1)

\textit{sage: quintic.theta_covariant()}

\[
-\frac{1}{625000}a_2^3a_3^5x_0^2 + \frac{9}{1250000}a_1a_2a_3^6x_0^2 \\
- \frac{27}{1250000}a_0a_3^7x_0^2 + \frac{3}{250000}a_2a_3^7x_0^2 \\
- \frac{7}{1250000}a_1a_2^2a_3^4a_4x_0^2 - \frac{3}{312500}a_1^2a_3^5a_4x_0^2 \\
+ \frac{6}{625}a_0^2a_2a_4a_5^2x_1^2 + \frac{24}{625}a_0^2a_2a_3a_4a_5^2x_1^2 \\
- \frac{12}{125}a_0^3a_2a_3a_4a_5^2x_1^2 + \frac{8}{625}a_1a_4a_5^3x_1^2 \\
- \frac{8}{125}a_0^2a_1^2a_2^2a_5^3x_1^2 + \frac{2}{25}a_0^3a_2^2a_5^3x_1^2 \\
\]

\textit{sage: quintic.theta_covariant(as_form=True)

Binary quadratic given by ...
Polynomials, Release 10.4

(continued from previous page)

```python
>>> p = a0*x1**Integer(5) + a1*x1**Integer(4)*x0 +
    a2*x1**Integer(3)*x0**Integer(2) + a3*x1**Integer(2)*x0**Integer(3) +
    a4*x1*x0**Integer(4) + a5*x0**Integer(5)
>>> quintic = invariant_theory.binary_quintic(p, x0, x1)
>>> quintic.theta_covariant()
-1/625000*a2^3*a3^5*x0^2 + 9/1250000*a1*a2*a3^6*x0^2
- 27/1250000*a0*a3^7*x0^2 + 3/250000*a2^4*a3^3*a4*x0^2
- 7/125000*a1*a2^2*a3^4*a4*x0^2 - 3/312500*a1^2*a3^5*a4*x0^2
...
+ 6/625*a0^2*a1*a2^2*a4*a5^2*x1^2 + 24/625*a0^2*a1^2*a3*a4*a5^2*x1^2
- 12/125*a0^3*a2*a3*a4*a5^2*x1^2 + 8/625*a0*a1^4*a5^3*x1^2
- 8/125*a0^2*a1^2*a2*a5^3*x1^2 + 2/25*a0^3*a2^2*a5^3*x1^2
>>> quintic.theta_covariant(as_form=True)
Binary quadratic given by ...
```

class sage.rings.invariants.invariant_theory.FormsBase(n, homogeneous, ring, variables)

Bases: SageObject

The common base class of AlgebraicForm and SeveralAlgebraicForms.

This is an abstract base class to provide common methods. It does not make much sense to instantiate it.

is_homogeneous()

Return whether the forms were defined by homogeneous polynomials.

OUTPUT:

Boolean. Whether the user originally defined the form via homogeneous variables.

EXAMPLES:

```python
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4 + y^4 + t*x^2*y^2, [x,y])
sage: quartic.is_homogeneous()
True
sage: quartic.form()
x^2*y^2*t + x^4 + y^4
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4 + 1 + t*x^2, [x])
sage: quartic.is_homogeneous()
False
sage: quartic.form()
x^4 + x^2*t + 1

>>> from sage.all import *
>>> R = QQ['x, y, t']; (x, y, t,) = R._first_ngens(3)
>>> quartic = invariant_theory.binary_quartic(x**Integer(4) + y**Integer(4) +
    t*x**Integer(2)*y**Integer(2), [x,y])
>>> quartic.is_homogeneous()
True
>>> quartic.form()
x^2*y^2*t + x^4 + y^4
```

(continues on next page)
ring()

Return the polynomial ring.

OUTPUT:

A polynomial ring. This is where the defining polynomial(s) live. Note that the polynomials may be homogeneous or inhomogeneous, depending on how the user constructed the object.

EXAMPLES:

```
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4 + y^4 + t*x^2*y^2, [x,y])
sage: quartic.ring()
Multivariate Polynomial Ring in x, y, t over Rational Field
```

```
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4 + 1 + t*x^2, [x])
sage: quartic.ring()
Multivariate Polynomial Ring in x, y, t over Rational Field
```

variables()

Return the variables of the form.

OUTPUT:

A tuple of variables. If inhomogeneous notation is used for the defining polynomial then the last entry will be None.

EXAMPLES:

```
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4 + y^4 + t*x^2*y^2, [x,y])
sage: quartic.variables()
(x, y)
```

```
sage: R.<x,y,t> = QQ[]
sage: quartic = invariant_theory.binary_quartic(x^4 + 1 + t*x^2, [x])
sage: quartic.variables()
(x, None)
```
class sage.rings.invariants.invariant_theory.InvariantTheoryFactory

Factory object for invariants of multilinear forms.

Use the invariant_theory object to construct algebraic forms. These can then be queried for invariant and covariants.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: invariant_theory.ternary_cubic(x^3 + y^3 + z^3)
Ternary cubic with coefficients (1, 1, 1, 0, 0, 0, 0, 0, 0, 0)
sage: invariant_theory.ternary_cubic(x^3 + y^3 + z^3).J_covariant()
x^6*y^3 - x^3*y^6 - x^6*z^3 + y^6*z^3 + x^3*z^6 - y^3*z^6

Reconstruct a binary form from the values of its invariants.

INPUT:

• degree – The degree of the binary form.

• invariants – A list or tuple of values of the invariants of the binary form.

• variables – A list or tuple of two variables that are used for the resulting form (only if as_form is True). If no variables are provided, two abstract variables x and z will be used.

• as_form – boolean. If False, the function will return a tuple of coefficients of a binary form.

OUTPUT:

A binary form or a tuple of its coefficients, whose invariants are equal to the given invariants up to a scaling.

EXAMPLES:

In the case of binary quadratics and cubics, the form is reconstructed based on the value of the discriminant. See also binary_quadratic_coefficients_from_invariants() and binary_cu-
bic_coefficients_from_invariants()). These methods will always return the same result if the discriminant is non-zero:

```
sage: discriminant = 1
sage: invariant_theory.binary_form_from_invariants(2, [discriminant])
Binary quadratic with coefficients (1, -1/4, 0)
sage: invariant_theory.binary_form_from_invariants(3, [discriminant], as_form=false)
(0, 1, -1, 0)
```

```
>>> from sage.all import *
>>> discriminant = Integer(1)
>>> invariant_theory.binary_form_from_invariants(Integer(2), [discriminant])
Binary quadratic with coefficients (1, -1/4, 0)
>>> invariant_theory.binary_form_from_invariants(Integer(3), [discriminant], as_form=false)
(0, 1, -1, 0)
```

For binary cubics, there is no class implemented yet, so as_form=True will yield an `NotImplementedError`:

```
sage: invariant_theory.binary_form_from_invariants(3, [discriminant])
Traceback (most recent call last):
  ...
NotImplementedError: no class for binary cubics implemented
```

```
>>> from sage.all import *
>>> discriminant = Integer(1)
>>> invariant_theory.binary_form_from_invariants(Integer(3), [discriminant])
Traceback (most recent call last):
  ...
NotImplementedError: no class for binary cubics implemented
```

For binary quintics, the three Clebsch invariants of the form should be provided to reconstruct the form. For more details about these invariants, see `clebsch_invariants()`:

```
sage: invariants = [1, 0, 0]
sage: invariant_theory.binary_form_from_invariants(5, invariants)
Binary quintic with coefficients (1, 0, 0, 0, 0, 1)
```

```
>>> from sage.all import *
>>> invariants = [Integer(1), Integer(0), Integer(0)]
>>> invariant_theory.binary_form_from_invariants(Integer(5), invariants)
Binary quintic with coefficients (1, 0, 0, 0, 0, 1)
```

An optional scaling argument may be provided in order to scale the resulting quintic. For more details, see `binary_quintic_coefficients_from_invariants()`:

```
sage: invariants = [3, 4, 7]
sage: invariant_theory.binary_form_from_invariants(5, invariants)
Binary quintic with coefficients (-37725479487783/1048576,
  565882192316745/8388608, 0, 10338676532693115/67108864,
  128494869409336238715/268435456, -23129076493685931687/2147483648)
sage: invariant_theory.binary_form_from_invariants(5, invariants, scaling='normalized')
Binary quintic with coefficients (24389/892616806656,
  4205/11019960576, 0, 1015/209952, -145/1296, -3/16)
```

(continues on next page)
Polynomials, Release 10.4

3.2. Classical Invariant Theory

The invariants can also be computed using the invariants of a given binary quintic. The resulting form has the same invariants up to scaling, is \(GL(2, \mathbb{Q}) \)-equivalent to the provided form and hence has the same canonical form (see \texttt{canonical_form()}):

\begin{verbatim}
from sage.all import *

R.<x0, x1> = QQ[]
p = 3*x1^5 + 6*x1^4*x0 + 3*x1^3*x0^2 + 4*x1^2*x0^3 - 5*x1*x0^4 + 4*x0^5
quintic = invariant_theory.binary_quintic(p, x0, x1)
invariants = quintic.clebsch_invariants(as_tuple=True)
newquintic = invariant_theory.binary_form_from_invariants(5, invariants, scaling='coprime')
newquintic

Binary quintic with coefficients (9592267437341790539005557/2441406250000000, 21492969228207625556323004064707/61035156250000000000, 11149651890347700974453304786783/76293945312500000, 12265077575189463383956488891202734239/47683715820312500000, 323996630945706528474286334593218447/11920928955078125000, 1504506503644608395841632538558481466127/14901161193847656250000)
quintic.canonical_form() == newquintic.canonical_form()
True
\end{verbatim}
For binary forms of other degrees, no reconstruction has been implemented yet. For forms of degree 6, see Issue #26462:

```python
sage: invariant_theory.binary_form_from_invariants(6, invariants)
Traceback (most recent call last):
...                 
NotImplementedError: no reconstruction for binary forms of degree 6
```

```python
>>> from sage.all import *

>>> invariant_theory.binary_form_from_invariants(Integer(6), invariants)
Traceback (most recent call last):
...                 
NotImplementedError: no reconstruction for binary forms of degree 6
```

binary_quadratic(*quadratic, *args*)

Invariant theory of a quadratic in two variables.

INPUT:

- *quadratic* – a quadratic form.
- *x, y* – the homogeneous variables. If *y* is `None`, the quadratic is assumed to be inhomogeneous.

REFERENCES:

- Wikipedia article Invariant_of_a_binary_form

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: invariant_theory.binary_quadratic(x^2 + y^2)
Binary quadratic with coefficients (1, 1, 0)
sage: T.<t> = QQ[]
sage: invariant_theory.binary_quadratic(t^2 + 2*t + 1, [t])
Binary quadratic with coefficients (1, 1, 2)
```

```python
>>> from sage.all import *

>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)

>>> invariant_theory.binary_quadratic(x**Integer(2) + y**Integer(2))
Binary quadratic with coefficients (1, 1, 0)
```

binary_quartic(*quartic, *args, **kwds*)

Invariant theory of a quartic in two variables.

The algebra of invariants of a quartic form is generated by invariants \(i, j\) of degrees 2, 3. This ring is naturally isomorphic to the ring of modular forms of level 1, with the two generators corresponding to the Eisenstein series \(E_4\) (see `EisensteinD()`) and \(E_6\) (see `EisensteinE()`). The algebra of covariants is generated by these two invariants together with the form \(f\) of degree 1 and order 4, the Hessian \(g\) (see...
Polynomials, Release 10.4

\(g_{\text{covariant}}()\) of degree 2 and order 4, and a covariant \(h\) (see \(h_{\text{covariant}}()\)) of degree 3 and order 6. They are related by a syzygy

\[jf^3 - gf^2i + 4g^3 + h^2 = 0 \]

of degree 6 and order 12.

INPUT:

- \(\text{quartic}\) – a quartic.
- \(x, y\) – the homogeneous variables. If \(y\) is \text{None}, the quartic is assumed to be inhomogeneous.

REFERENCES:

- Wikipedia article Invariant_of_a_binary_form

EXAMPLES:

```sage
R.<x,y> = QQ[]
quartic = invariant_theory.binary_quartic(x^4 + y^4)
quartic
```

Binary quartic with coefficients (1, 0, 0, 0, 1)

```sage
type(quartic)
```

<class 'sage.rings.invariants.invariant_theory.BinaryQuartic'>

```python
>>> from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> quartic = invariant_theory.binary_quartic(x**Integer(4) + y**Integer(4))
>>> quartic
Binary quartic with coefficients (1, 0, 0, 0, 1)
>>> type(quartic)
<class 'sage.rings.invariants.invariant_theory.BinaryQuartic'>
```

\(\text{binary_quintic}(\text{quintic}, *\text{args}, **\text{kwds})\)

Create a binary quintic for computing invariants.

A binary quintic is a homogeneous polynomial of degree 5 in two variables. The algebra of invariants of a binary quintic is generated by the invariants \(A\), \(B\) and \(C\) of respective degrees 4, 8 and 12 (see \(A_{\text{invariant}}()), B_{\text{invariant}}() and C_{\text{invariant}}()\).

INPUT:

- \(\text{quintic}\) – a homogeneous polynomial of degree five in two variables or a (possibly inhomogeneous) polynomial of degree at most five in one variable.
- \(*\text{args}\) – the two homogeneous variables. If only one variable is given, the polynomial \(\text{quintic}\) is assumed to be univariate. If no variables are given, they are guessed.

REFERENCES:

- Wikipedia article Invariant_of_a_binary_form
- [Cle1872]

EXAMPLES:

If no variables are provided, they will be guessed:

```sage
R.<x,y> = QQ[]
quintic = invariant_theory.binary_quintic(x^5 + y^5)
quintic
```

Binary quintic with coefficients (1, 0, 0, 0, 1)
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> quintic = invariant_theory.binary_quintic(x**Integer(5) + y**Integer(5))
>>> quintic
Binary quintic with coefficients (1, 0, 0, 0, 1)
```

If only one variable is given, the quintic is the homogenisation of the provided polynomial:

```python
sage: quintic = invariant_theory.binary_quintic(x^5 + y^5, x)
sage: quintic
Binary quintic with coefficients (y^5, 0, 0, 0, 1)
sage: quintic.is_homogeneous()
False
```

If the polynomial has three or more variables, the variables should be specified:

```python
sage: R.<x,y,z> = QQ[]
sage: quintic = invariant_theory.binary_quintic(x^5 + z*y^5)
Traceback (most recent call last):
...  ValueError: need 2 or 1 variables, got (x, y, z)
sage: quintic = invariant_theory.binary_quintic(x^5 + z*y^5, x, y)
```

```python
sage: type(quintic)
<class 'sage.rings.invariants.invariant_theory.BinaryQuintic'>
```

```python
>>> from sage.all import *
>>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)
>>> quintic = invariant_theory.binary_quintic(x**Integer(5) + z*y**Integer(5), x, y)
```

```python
sage: type(quintic)
<class 'sage.rings.invariants.invariant_theory.BinaryQuintic'>
```

inhomogeneous_quadratic_form (polynomial, *args)

Invariants of an inhomogeneous quadratic form.

INPUT:

- polynomial – an inhomogeneous quadratic form.
- *args – the variables as multiple arguments, or as a single list/tuple.
EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: quadratic = x^2 + 2*y^2 + 3*x*y + 4*x + 5*y + 6
sage: inv3 = invariant_theory.inhomogeneous_quadratic_form(quadratic)
sage: type(inv3)
<class 'sage.rings.invariants.invariant_theory.TernaryQuadratic'>
sage: inv4 = invariant_theory.inhomogeneous_quadratic_form(x^2 + y^2 + z^2)
sage: type(inv4)
<class 'sage.rings.invariants.invariant_theory.QuadraticForm'>
```

```
>>> from sage.all import *

>>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)

>>> quadratic = x**Integer(2) + Integer(2)*y**Integer(2) + Integer(3)*x*y +...
 -> Integer(4)*x + Integer(5)*y + Integer(6)

>>> inv3 = invariant_theory.inhomogeneous_quadratic_form(quadratic)

>>> type(inv3)
<class 'sage.rings.invariants.invariant_theory.TernaryQuadratic'>

>>> inv4 = invariant_theory.inhomogeneous_quadratic_form(x**Integer(2) +...
 -> y**Integer(2) + z**Integer(2))

>>> type(inv4)
<class 'sage.rings.invariants.invariant_theory.QuadraticForm'>
```

```
quadratic_form(polynomial, *args)

Invariants of a homogeneous quadratic form.

INPUT:

- polynomial -- a homogeneous or inhomogeneous quadratic form.
- *args -- the variables as multiple arguments, or as a single list/tuple. If the last argument is None, the cubic is assumed to be inhomogeneous.

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: quadratic = x^2 + y^2 + z^2
sage: inv = invariant_theory.quadratic_form(quadratic)
sage: type(inv)
<class 'sage.rings.invariants.invariant_theory.TernaryQuadratic'>

>>> from sage.all import *

>>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)

>>> quadratic = x**Integer(2) + y**Integer(2) + z**Integer(2)

>>> inv = invariant_theory.quadratic_form(quadratic)

>>> type(inv)
<class 'sage.rings.invariants.invariant_theory.TernaryQuadratic'>
```

If some of the ring variables are to be treated as coefficients you need to specify the polynomial variables:

```
sage: R.<x,y,z, a,b> = QQ[]
sage: quadratic = a*x^2 + b*y^2 + z^2 + 2*y*z
sage: invariant_theory.quadratic_form(quadratic, x,y,z)
Ternary quadratic with coefficients (a, b, 1, 0, 0, 2)

sage: invariant_theory.quadratic_form(quadratic, [x,y,z]) # alternate syntax
Ternary quadratic with coefficients (a, b, 1, 0, 0, 2)
```
Inhomogeneous quadratic forms (see also *inhomogeneous_quadratic_form*) can be specified by passing None as the last variable:

```python
>>> from sage.all import *
>>> R = QQ['x, y, z, a, b']; (x, y, z, a, b,) = R._first_ngens(5)
>>> invariant_theory.quadratic_form(quadratic, x,y,z)
Ternary quadratic with coefficients (a, b, 1, 0, 0, 2)
>>> invariant_theory.quadratic_form(quadratic, [x,y,z]) # alternate syntax
Ternary quadratic with coefficients (a, b, 1, 0, 0, 2)
```

**quaternary_biquadratic** (*quadratic1, quadratic2, *args, **kwds*)

Invariants of two quadratics in four variables.

**INPUT:**

- *quadratic1, quadratic2* – two polynomials. Either homogeneous quadratic in 4 homogeneous variables, or inhomogeneous quadratic in 3 variables.
- *w, x, y, z* – the variables. If *z* is None, the quadratics are assumed to be inhomogeneous.

**EXAMPLES:**

```python
sage: R.<w,x,y,z> = QQ[]
sage: q1 = w^2 + x^2 + y^2 + z^2
sage: q2 = w*x + y*z
sage: inv = invariant_theory.quaternary_biquadratic(q1, q2)
sage: type(inv)
<class 'sage.rings.invariants.invariant_theory.TwoQuaternaryQuadratics'>
```

```python
>>> from sage.all import *
>>> R = QQ['w, x, y, z']; (w, x, y, z,) = R._first_ngens(4)
>>> q1 = w**Integer(2) + x**Integer(2) + y**Integer(2) + z**Integer(2)
>>> q2 = w*x + y*z
>>> inv = invariant_theory.quaternary_biquadratic(q1, q2)
>>> type(inv)
<class 'sage.rings.invariants.invariant_theory.TwoQuaternaryQuadratics'>
```

Distance between two spheres [Sal1958], [Sal1965]

```python
sage: R.<x,y,z, a,b,c, r1,r2> = QQ[]
sage: S1 = -r1^2 + x^2 + y^2 + z^2
sage: S2 = -r2^2 + (x-a)^2 + (y-b)^2 + (z-c)^2
sage: inv = invariant_theory.quaternary_biquadratic(S1, S2, [x, y, z])
sage: inv.Delta_invariant()
-r1^2
sage: inv.Delta_prime_invariant()
(continues on next page)
```
quaternary_quadratic\( (\text{quadratic}, \,*\text{args}) \)

Invariant theory of a quadratic in four variables.

**INPUT:**

- \text{quadratic} – a quadratic form.

- \(w, x, y, z\) – the homogeneous variables. If \(z\) is \text{None}, the quadratic is assumed to be inhomogeneous.

**REFERENCES:**

- Wikipedia article Invariant_of_a_binary_form

**EXAMPLES:**

```python
sage: R.<w,x,y,z> = QQ[]
sage: invariant_theory.quaternary_quadratic(w^2 + x^2 + y^2 + z^2)
Quaternary quadratic with coefficients (1, 1, 1, 1, 0, 0, 0, 0, 0, 0)
```

```python
>>> from sage.all import *
>>> R = QQ[\'w, x, y, z\']; (w, x, y, z,) = R._first_ngens(4)
>>> invariant_theory.quaternary_quadratic(w**Integer(2) + x**Integer(2) + y**Integer(2) + z**Integer(2))
Quaternary quadratic with coefficients (1, 1, 1, 1, 0, 0, 0, 0, 0, 0)
```
ternary_biquadratic (quadratic1, quadratic2, *args, **kwds)

Invariants of two quadratics in three variables.

INPUT:

- quadratic1, quadratic2 – two polynomials. Either homogeneous quadratic in 3 homogeneous variables, or inhomogeneous quadratic in 2 variables.
- x, y, z – the variables. If z is None, the quadratics are assumed to be inhomogeneous.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: q1 = x^2 + y^2 + z^2
sage: q2 = x*y + y*z + x*z
sage: inv = invariant_theory.ternary_biquadratic(q1, q2)
sage: type(inv)
<class 'sage.rings.invariants.invariant_theory.TwoTernaryQuadratics'>
```

Distance between two circles:

```python
sage: R.<x,y, a,b, r1,r2> = QQ[]
sage: S1 = -r1^2 + x^2 + y^2
sage: S2 = -r2^2 + (x-a)^2 + (y-b)^2
sage: inv = invariant_theory.ternary_biquadratic(S1, S2, [x, y])
sage: inv.Delta_invariant()
-r1^2
sage: inv.Delta_prime_invariant()
-r2^2
sage: inv.Theta_invariant()
a^2 + b^2 - 2*r1^2 - r2^2
sage: inv.Theta_prime_invariant()
a^2 + b^2 - r1^2 - 2*r2^2
sage: inv.F_covariant()
-8*x^2*y*a^3 + 8*x*y*a^4 + 8*x^3*a^2*b - 16*x*y^2*a^2*b - 8*x^2*a^3*b + 8*y^2*a^3*b + 16*x^2*y*a*b^2 - 8*y^3*a*b^2 + 8*x*y^2*b^3 - 8*x^2*a*b^3 + 8*y^2*a*b^3 - 8*x*y*b^4 + 8*x^2*a*r1^2 - 8*y^2*a*r1^2 + 2*x^2*b*r1^2 + 2*y^2*b*r1^2 + r1^4 - 2*x^2*r2^2 - 2*y^2*r2^2 - 2*x*a*r2^2 + 2*y*b*r2^2 - 2*b^2*r2^2 + 2*r1^2*r2^2 + r2^4
sage: inv.J_covariant()
-8*x^2*y*a^3 + 8*x*y*a^4 + 8*x^3*a^2*b - 16*x*y^2*a^2*b - 8*x^2*a^3*b + 8*y^2*a^3*b + 16*x^2*y*a*b^2 - 8*y^3*a*b^2 + 8*x*y^2*b^3 - 8*x^2*a*b^3 + 8*y^2*a*b^3 - 8*x*y*b^4 + 8*x^2*a*r1^2 - 8*y*a^3*r1^2 - 8*x^2*a*b*r1^2 +
```

(continues on next page)
ternary_cubic(cubic, *args, **kwds)

Invariants of a cubic in three variables.

The algebra of invariants of a ternary cubic under $SL_3(C)$ is a polynomial algebra generated by two invariants $S$ (see $S_invariant()$) and $T$ (see $T_invariant()$) of degrees 4 and 6, called Aronhold invariants.

The ring of covariants is given as follows. The identity covariant $U$ of a ternary cubic has degree 1 and order 3. The Hessian $H$ (see $Hessian()$) is a covariant of ternary cubics of degree 3 and order 3. There is a covariant $\Theta$ (see $Theta_covariant()$) of ternary cubics of degree 8 and order 6 that vanishes on points $x$ lying on the Salmon conic of the polar of $x$ with respect to the curve and its Hessian curve. The Brioschi covariant $J$ (see $J_covariant()$) is the Jacobian of $U$, $\Theta$, and $H$ of degree 12, order 9. The algebra of covariants of a ternary cubic is generated over the ring of invariants by $U$, $\Theta$, $H$, and $J$, with a relation

\[
J^2 = 4\Theta^3 + TU^2\Theta^2 + \Theta(-4S^3U^4 + 2STU^3H - 72S^2U^2H^2 - 18TUH^3 + 108SUH^4 - 16S^4U^5H - 11S^2T^2U^4H^2 - 4T^2U^3H^3 + 54STU^2H^4 - 432S^2UH^5 - 27TH^6
\]

REFERENCES:
- Wikipedia article Ternary_cubic

INPUT:
- cubic – a homogeneous cubic in 3 homogeneous variables, or an inhomogeneous cubic in 2 variables.
- x, y, z – the variables. If z is None, the cubic is assumed to be inhomogeneous.
**EXAMPLES:**

```python
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3 + y^3 + z^3)
sage: type(cubic)
<class 'sage.rings.invariants.invariant_theory.TernaryCubic'>
```

```python
>> from sage.all import *
>>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)
>>> cubic = invariant_theory.ternary_cubic(x**Integer(3) + y**Integer(3) +
 -z**Integer(3))
>>> type(cubic)
<class 'sage.rings.invariants.invariant_theory.TernaryCubic'>
```

`ternary_quadratic(quadratic, *args, **kwds)`

Invariants of a quadratic in three variables.

**INPUT:**

- `quadratic` – a homogeneous quadratic in 3 homogeneous variables, or an inhomogeneous quadratic in 2 variables.
- `x, y, z` – the variables. If `z` is `None`, the quadratic is assumed to be inhomogeneous.

**REFERENCES:**

- Wikipedia article Invariant_of_a_binary_form

**EXAMPLES:**

```python
sage: R.<x,y,z> = QQ[]
sage: invariant_theory.ternary_quadratic(x^2 + y^2 + z^2)
Ternary quadratic with coefficients (1, 1, 1, 0, 0, 0)
```

```python
>>> from sage.all import *
>>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)
>>> invariant_theory.ternary_quadratic(x**Integer(2) + y**Integer(2) +
 -z**Integer(2))
>>> type(cubic)
<class 'sage.rings.invariants.invariant_theory.TernaryCubic'>
```

`ternary_quadratic(quadratic, *args, **kwds)`
class sage.rings.invariants.invariant_theory.QuadraticForm(n, d, polynomial, *args)

Bases: AlgebraicForm

Invariant theory of a multivariate quadratic form.

You should use the invariant_theory factory object to construct instances of this class. See quadratic_form() for details.

as_QuadraticForm()

Convert into a QuadraticForm.

OUTPUT:

Sage has a special quadratic forms subsystem. This method converts self into this QuadraticForm representation.

EXAMPLES:

```sage
sage: R.<x,y,z> = QQ[]
sage: p = x^2 + y^2 + z^2 + 2*x*y + 3*x*z
sage: quadratic = invariant_theory.ternary_quadratic(p)
sage: matrix(quadratic)
[1 1 3/2]
[1 1 0]
[3/2 0 1]
sage: quadratic.as_QuadraticForm()
Quadratic form in 3 variables over Multivariate Polynomial Ring in x, y, z over Rational Field with coefficients:
[1 2 3]
[* 1 0]
[* * 1]
sage: _.polynomial('X,Y,Z')
X^2 + 2*X*Y + Y^2 + 3*X*Z + Z^2
```

```python
>>> from sage.all import *
>>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)
>>> p = x**Integer(2) + y**Integer(2) + z**Integer(2) + Integer(2)*x*y + Integer(3)*x*z
>>> quadratic = invariant_theory.ternary_quadratic(p)
>>> matrix(quadratic)
[1 1 3/2]
[1 1 0]
[3/2 0 1]
>>> quadratic.as_QuadraticForm()
Quadratic form in 3 variables over Multivariate Polynomial Ring in x, y, z over Rational Field with coefficients:
[1 2 3]
[* 1 0]
[* * 1]
>>> _.polynomial('X,Y,Z')
X^2 + 2*X*Y + Y^2 + 3*X*Z + Z^2
```

coeffs()

The coefficients of a quadratic form.

Given

\[ f(x) = \sum_{0 \leq i < n} a_i x_i^2 + \sum_{0 \leq j < k < n} a_{jk} x_j x_k \]
this function returns \( a = (a_0, \ldots, a_n, a_{00}, a_{01}, \ldots, a_{n-1,n}) \)

**EXAMPLES:**

```
sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]
sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z
equation = invariant_theory.quadratic_form(p, x,y,z); inv
equation = invariant_theory.quadratic_form(p, x,y,z); inv
Ternary quadratic with coefficients (a, b, c, d, e, f)
sage: inv.coeffs()
(a, b, c, d, e, f)
sage: inv.scaled_coeffs()
(a, b, c, 1/2*d, 1/2*e, 1/2*f)
```

```
>>> from sage.all import *

>>> R = QQ['a, b, c, x, y, z']

>>> p = a*x^Integer(2) + b*y^Integer(2) + c*z^Integer(2) + d*x*y + e*x*z + f*y*z

>>> equation = invariant_theory.quadratic_form(p, x,y,z); inv
equation = invariant_theory.quadratic_form(p, x,y,z); inv
Ternary quadratic with coefficients (a, b, c, d, e, f)

>>> inv.coeffs()
(a, b, c, d, e, f)

>>> inv.scaled_coeffs()
(a, b, c, 1/2*d, 1/2*e, 1/2*f)
```

discriminant()

Return the discriminant of the quadratic form.

Up to an overall constant factor, this is just the determinant of the defining matrix, see `matrix()`. For a quadratic form in \( n \) variables, the overall constant is \( 2^{n-1} \) if \( n \) is odd and \((-1)^{n/2} 2^n\) if \( n \) is even.

**EXAMPLES:**

```
sage: R.<a,b,c, x,y> = QQ[]
sage: p = a*x^2 + b*x*y + c*y^2

sage: quadratic = invariant_theory.quadratic_form(p, x,y)
sage: quadratic.discriminant()
b^2 - 4*a*c

sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]

sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z

sage: quadratic = invariant_theory.quadratic_form(p, x,y,z)

sage: quadratic.discriminant()
4*a*b*c - c*d^2 - b*e^2 + d*e*f - a*f^2
```

```
>>> from sage.all import *

>>> R = QQ['a, b, c, x, y, z']; (a, b, c, x, y, z) = R._first_ngens(5)

>>> p = a*x^Integer(2) + b*x*y + c*y^Integer(2)

>>> quadratic = invariant_theory.quadratic_form(p, x,y)

>>> quadratic.discriminant()
b^2 - 4*a*c

>>> R = QQ['a, b, c, d, e, f, g, x, y, z']; (a, b, c, d, e, f, g, x, y, z) = R._first_ngens(10)

>>> p = a*x^Integer(2) + b*y^Integer(2) + c*z^Integer(2) + d*x*y + e*x*z + f*y*z

>>> quadratic = invariant_theory.quadratic_form(p, x,y,z)
```

(continues on next page)
Polynomials, Release 10.4

```python
>>> quadratic.discriminant()
discriminant = 4*a*b*c - c*d^2 - b*e^2 + d*e*f - a*f^2
```

dual()

Return the dual quadratic form.

OUTPUT:

A new quadratic form (with the same number of variables) defined by the adjoint matrix.

EXAMPLES:

```python
sage: R.<a,b,c,x,y,z> = QQ[]
sage: cubic = x^2+y^2+z^2
sage: quadratic = invariant_theory.ternary_quadratic(a*x^2+b*y^2+c*z^2, [x,y,z])
sage: quadratic.form()
a*x^2 + b*y^2 + c*z^2
sage: quadratic.dual().form()
b*c*x^2 + a*c*y^2 + a*b*z^2
```

```python
sage: R.<x,y,z, t> = QQ[]
sage: cubic = x^2+y^2+z^2
sage: quadratic = invariant_theory.ternary_quadratic(x^2+y^2+z^2 + t*x*y, [x,y,z])
sage: quadratic.dual()
Ternary quadratic with coefficients (1, 1, -1/4*t^2 + 1, -t, 0, 0)
```

```python
sage: R.<x,y, t> = QQ[]
```

```python
sage: quadratic = invariant_theory.ternary_quadratic(x^2+y^2+1 + t*x*y, [x,y])
sage: quadratic.dual()
Ternary quadratic with coefficients (1, 1, -1/4*t^2 + 1, -t, 0, 0)
```

```python
sage: from sage.all import *
```

```python
sage: R = QQ['a, b, c, x, y, z']; (a, b, c, x, y, z,) = R._first_ngens(6)
sage: cubic = x**Integer(2)+y**Integer(2)+z**Integer(2)
sage: quadratic = invariant_theory.ternary_quadratic(a*x**Integer(2)+b*y**Integer(2)+c*z**Integer(2), [x,y,z])
sage: quadratic.form()
a*x^2 + b*y^2 + c*z^2
sage: quadratic.dual().form()
b*c*x^2 + a*c*y^2 + a*b*z^2
```

```python
sage: R = QQ['x, y, z, t']; (x, y, z, t,) = R._first_ngens(4)
sage: cubic = x**Integer(2)+y**Integer(2)+z**Integer(2)
sage: quadratic = invariant_theory.ternary_quadratic(x**Integer(2)+y**Integer(2)+z**Integer(2) + t*x*y, [x,y,z])
sage: quadratic.dual()
Ternary quadratic with coefficients (1, 1, -1/4*t^2 + 1, -t, 0, 0)
```

```python
sage: R = QQ['x, y, t']; (x, y, t,) = R._first_ngens(3)
sage: quadratic = invariant_theory.ternary_quadratic(x**Integer(2)+y**Integer(2)+Integer(1) + t*x*y, [x,y])
sage: quadratic.dual()
Ternary quadratic with coefficients (1, 1, -1/4*t^2 + 1, -t, 0, 0)
```

```python
from sage.all import *
```

```python
R = QQ['a, b, c, x, y, z']; (a, b, c, x, y, z,) = R._first_ngens(6)
cubic = x**Integer(2)+y**Integer(2)+z**Integer(2)
quadratic = invariant_theory.ternary_quadratic(a*x**Integer(2)+b*y**Integer(2)+c*z**Integer(2), [x,y,z])
quadratic.form()
a*x^2 + b*y^2 + c*z^2
quadratic.dual().form()
b*c*x^2 + a*c*y^2 + a*b*z^2
```
This function constructs a binary quadratic whose discriminant equal the one provided as argument up to scaling.

**INPUT:**

- **discriminant** – Value of the discriminant used to reconstruct the binary quadratic.

**OUTPUT:**

A QuadraticForm with 2 variables.

**EXAMPLES:**

```python
sage: R.<x,y> = QQ[]
sage: from sage.rings.invariants.invariant_theory import QuadraticForm
sage: QuadraticForm.from_invariants(1, x, y)
Binary quadratic with coefficients (1, -1/4, 0)
```

```python
>>> from sage.all import *
>>> R = QQ['x', 'y']; (x, y,) = R._first_ngens(2)
>>> from sage.rings.invariants.invariant_theory import QuadraticForm
>>> QuadraticForm.from_invariants(Integer(1), x, y)
Binary quadratic with coefficients (1, -1/4, 0)
```

### invariants (type='discriminant')

Return a tuple of invariants of a binary quadratic.

**INPUT:**

- **type** – The type of invariants to return. The default choice is to return the discriminant.

**OUTPUT:**

The invariants of the binary quadratic.

**EXAMPLES:**

```python
sage: R.<x0, x1> = QQ[]
sage: p = 2*x1^2 + 5*x0*x1 + 3*x0^2
sage: quadratic = invariant_theory.binary_quadratic(p, x0, x1)
sage: quadratic.invariants()
(1,)
```

```python
>>> from sage.all import *
>>> R = QQ['x0', 'x1']; (x0, x1,) = R._first_ngens(2)
>>> p = Integer(2)*x1**Integer(2) + Integer(5)*x0*x1 + Integer(3)*x0**Integer(2)
>>> quadratic = invariant_theory.binary_quadratic(p, x0, x1)
>>> quadratic.invariants()
(1,)
```

```python
>>> quadratic.invariants('unknown')
Traceback (most recent call last):
...
ValueError: unknown type of invariants unknown for a binary quadratic
```

```python
>>> from sage.all import *
>>> R = QQ['x0', 'x1']; (x0, x1,) = R._first_ngens(2)
>>> p = Integer(2)*x1**Integer(2) + Integer(5)*x0*x1 + Integer(3)*x0**Integer(2)
>>> quadratic = invariant_theory.binary_quadratic(p, x0, x1)
>>> quadratic.invariants()
(1,)
>>> quadratic.invariants('unknown')
Traceback (most recent call last):
...
ValueError: unknown type of invariants unknown for a binary quadratic
```
matrix()

Return the quadratic form as a symmetric matrix

OUTPUT:

This method returns a symmetric matrix $A$ such that the quadratic $Q$ equals

$$Q(x, y, z, \ldots) = (x, y, \ldots) A (x, y, \ldots)^t$$

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: quadratic = invariant_theory.ternary_quadratic(x^2+y^2+z^2+x*y)
sage: matrix(quadratic)
[1 1/2 0]
[1/2 1 0]
[0 0 1]
sage: quadratic._matrix_() == matrix(quadratic)
True
```
scaled_coeffs()
The scaled coefficients of a quadratic form.

Given
\[ f(x) = \sum_{0 \leq i < n} a_i x_i^2 + \sum_{0 \leq j < k < n} 2a_{jk} x_j x_k \]
this function returns \( a = (a_0, \ldots, a_n, a_{00}, a_{01}, \ldots, a_{n-1,n}) \)

EXAMPLES:

```python
sage: R.<a,b,c,d,e,f,g, x,y,z> = QQ[]
```

```python
sage: p = a*x^2 + b*y^2 + c*z^2 + d*x*y + e*x*z + f*y*z
```

```python
sage: inv = invariant_theory.quadratic_form(p, x,y,z); inv
Ternary quadratic with coefficients (a, b, c, d, e, f)
```

```python
sage: inv.coeffs()
(a, b, c, d, e, f)
```

```python
sage: inv.scaled_coeffs()
(a, b, c, 1/2*d, 1/2*e, 1/2*f)
```

Bases: `FormsBase`
The base class of multiple algebraic forms (i.e. homogeneous polynomials).
You should only instantiate the derived classes of this base class.
See `AlgebraicForm` for the base class of a single algebraic form.

INPUT:

- `forms` – a list/tuple/iterable of at least one `AlgebraicForm` object, all with the same number of variables. Interpreted as multiple homogeneous polynomials in a common polynomial ring.

EXAMPLES:

```python
sage: from sage.rings.invariants.invariant_theory import AlgebraicForm,
 SeveralAlgebraicForms
```

```python
sage: R.<x,y> = QQ[]
```

```python
sage: p = AlgebraicForm(2, 2, x^2, (x,y))
```

```python
sage: q = AlgebraicForm(2, 2, y^2, (x,y))
```

```python
sage: pq = SeveralAlgebraicForms([p, q])
```

```python
>>> from sage.all import *
```

```python
>>> from sage.rings.invariants.invariant_theory import AlgebraicForm,
 SeveralAlgebraicForms
```

(continues on next page)
get_form(i)

Return the \( i \)-th form.

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: q1 = invariant_theory.quadratic_form(x^2 + y^2)
sage: q2 = invariant_theory.quadratic_form(x*y)
sage: q12 = SeveralAlgebraicForms([q1, q2])
sage: q12.get_form(0) is q1
True
sage: q12.get_form(1) is q2
True
sage: q12[0] is q12.get_form(0) # syntactic sugar
True
sage: q12[1] is q12.get_form(1) # syntactic sugar
True
```

homogenized(var='h')

Return form as defined by a homogeneous polynomial.

INPUT:

- var – either a variable name, variable index or a variable (default: 'h').

OUTPUT:

The same algebraic form, but defined by a homogeneous polynomial.

EXAMPLES:

```
sage: q = invariant_theory.quaternary_biquadratic(x^2 + 1, y^2 + 1, [x,y,z])
sage: q
Joint quaternary quadratic with coefficients (1, 0, 0, 1, 0, 0, 0, 0, 0, 0) and quaternary quadratic with coefficients (0, 1, 0, 1, 0, 0, 0, 0, 0, 0)
sage: q.homogenized()
```

(continues on next page)
Joint quaternary quadratic with coefficients \((1, 0, 0, 1, 0, 0, 0, 0, 0, 0)\)
and quaternary quadratic with coefficients \((0, 1, 0, 1, 0, 0, 0, 0, 0, 0)\)
sage: type(q) is type(q.homogenized())
True

```python
>>> from sage.all import *
>>> R = QQ[\"x, y, z\"]; (x, y, z,) = R._first_ngens(3)
>>> q = invariant_theory.quaternary_biquadratic(x**Integer(2) + Integer(1),
˓→y**Integer(2) + Integer(1), [x,y,z])
>>> q
Joint quaternary quadratic with coefficients \((1, 0, 0, 1, 0, 0, 0, 0, 0, 0)\)
and quaternary quadratic with coefficients \((0, 1, 0, 1, 0, 0, 0, 0, 0, 0)\)
>>> q.homogenized()
Joint quaternary quadratic with coefficients \((1, 0, 0, 1, 0, 0, 0, 0, 0, 0)\)
and quaternary quadratic with coefficients \((0, 1, 0, 1, 0, 0, 0, 0, 0, 0)\)
>>> type(q) is type(q.homogenized())
True
```

**n_forms()**

Return the number of forms.

**EXAMPLES:**

```
sage: R.<x,y> = QQ[]
sage: q1 = invariant_theory.quadratic_form(x^2 + y^2)
sage: q2 = invariant_theory.quadratic_form(x*y)
sage: from sage.rings.invariants.invariant_theory import SeveralAlgebraicForms
sage: q12 = SeveralAlgebraicForms([q1, q2])
sage: q12.n_forms()
2
sage: len(q12) == q12.n_forms() # syntactic sugar
True
```

**class** `sage.rings.invariants.invariant_theory.TernaryCubic(n, d, polynomial, *args)`

Invariant theory of a ternary cubic.

You should use the `invariant_theory` factory object to construct instances of this class. See `ternary_cubic()` for details.

**Hessian()**

Return the Hessian covariant.

**OUTPUT:**

The Hessian matrix multiplied with the conventional normalization factor \(1/216\).
EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
```

```python
sage: cubic = invariant_theory.ternary_cubic(x^3 + y^3 + z^3)
```

```python
sage: cubic.Hessian()
```

```python
x*y*z
```

```python
sage: R.<x,y> = QQ[]
```

```python
sage: cubic = invariant_theory.ternary_cubic(x^3 + y^3 + 1)
```

```python
sage: cubic.Hessian()
```

```python
x*y
```

```python
>>> from sage.all import *
```

```python
>>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)
```

```python
>>> cubic = invariant_theory.ternary_cubic(x**Integer(3) + y**Integer(3) +
˓→z**Integer(3))
```

```python
>>> cubic.Hessian()
```

```python
x*y*z
```

```python
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
```

```python
>>> cubic = invariant_theory.ternary_cubic(x**Integer(3) + y**Integer(3) +
˓→Integer(1))
```

```python
>>> cubic.Hessian()
```

```python
x*y
```

\[ J_{\text{covariant}}() \]

Return the J-covariant of the ternary cubic.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
```

```python
sage: cubic = invariant_theory.ternary_cubic(x^3 + y^3 + z^3)
```

```python
sage: cubic.J_covariant()
```

```python
x^6*y^3 - x^3*y^6 - x^6*z^3 + y^6*z^3 + x^3*z^6 - y^3*z^6
```

```python
sage: R.<x,y> = QQ[]
```

```python
sage: cubic = invariant_theory.ternary_cubic(x^3 + y^3 + 1)
```

```python
sage: cubic.J_covariant()
```

```python
x^6*y^3 - x^3*y^6 - x^6 + y^6 + x^3 - y^3
```

```python
>>> from sage.all import *
```

```python
>>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)
```

```python
>>> cubic = invariant_theory.ternary_cubic(x**Integer(3) + y**Integer(3) +
˓→z**Integer(3))
```

```python
>>> cubic.J_covariant()
```

```python
x^6*y^3 - x^3*y^6 - x^6*z^3 + y^6*z^3 + x^3*z^6 - y^3*z^6
```

```python
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
```

```python
>>> cubic = invariant_theory.ternary_cubic(x**Integer(3) + y**Integer(3) +
˓→Integer(1))
```

```python
>>> cubic.J_covariant()
```

```python
x^6*y^3 - x^3*y^6 - x^6 + y^6 + x^3 - y^3
```

\[ S_{\text{invariant}}() \]

Return the S-invariant.

EXAMPLES:
sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^2*y + y^3 + z^3 + x*y*z)
sage: cubic.S_invariant()
-1/1296

>>> from sage.all import *
>>> R = QQ['x, y, z']; (x, y, z) = R._first_ngens(3)
>>> cubic = invariant_theory.ternary_cubic(x**Integer(2)*y + y**Integer(3) +
z**Integer(3) + x*y*z)
>>> cubic.S_invariant()
-1/1296

T_invariant ()
Return the T-invariant.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3 + y^3 + z^3)
sage: cubic.T_invariant()
1
sage: R.<x,y,z,t> = GF(7)[]
sage: cubic = invariant_theory.ternary_cubic(x**Integer(3) + y**Integer(3) +
t*x*y*z, [x,y,
-t*z])
sage: cubic.T_invariant()
-t^6 - t^3 + 1

>>> from sage.all import *
>>> R = QQ['x, y, z, t']; (x, y, z, t) = R._first_ngens(4)
>>> cubic = invariant_theory.ternary_cubic(x**Integer(3) + y**Integer(3) +
t*x*y*z, [x,y,z])
>>> cubic.T_invariant()
-t^6 - t^3 + 1

Theta_covariant ()
Return the \( \Theta \) covariant.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3 + y^3 + z^3)
sage: cubic.Theta_covariant()
-x^3*y^3 - x^3*z^3 - y^3*z^3
sage: R.<x,y> = QQ[]
sage: cubic = invariant_theory.ternary_cubic(x^3 + y^3 + 1)
sage: cubic.Theta_covariant()
-x^3*y^3 - x^3 - y^3
sage: R.<x,y,z,a30,a21,a12,a03,a20,a11,a02,a10,a01,a00> = QQ[]

(continues on next page)
Polynomials, Release 10.4

sage: \( p = (a_{30}x^3 + a_{21}x^2y + a_{12}xy^2 + a_{03}y^3 + a_{20}x^2z + \ldots + a_{00}z^3) \)

sage: cubic = invariant_theory.ternary_cubic(p, x, y, z)
sage: len(list(cubic.Theta_covariant()))
6952

```python
>>> from sage.all import *

>>> R = QQ[\[x, y, z\]]; (x, y, z) = R._first_ngens(3)

>>> cubic = invariant_theory.ternary_cubic(x**Integer(3) + y**Integer(3) + \rightarrow z**Integer(3))

>>> cubic.Theta_covariant()
-x^3*y^3 - x^3*z^3 - y^3*z^3

>>> R = QQ[\[x, y\]]; (x, y) = R._first_ngens(2)

>>> cubic = invariant_theory.ternary_cubic(x**Integer(3) + y**Integer(3) + \rightarrow Integer(1))

>>> cubic.Theta_covariant()
-x^3*y^3 - x^3 - y^3

>>> R = QQ[\[x, y, z, a_{30}, a_{21}, a_{12}, a_{03}, a_{20}, a_{11}, a_{02}, a_{10}, a_{01}, a_{00}\]]

>>> (x, y, z, a_{30}, a_{21}, a_{12}, a_{03}, a_{20}, a_{11}, a_{02}, a_{10}, a_{01}, a_{00}) = R._first_ngens(13)

>>> p = (a_{30}x**Integer(3) + a_{21}x**Integer(2)*y + a_{12}x*y**Integer(2) + \rightarrow a_{03}y**Integer(3) + a_{20}x**Integer(2)*z + \ldots + a_{11}x*y*z + a_{02}y**Integer(2)*z + a_{10}x*z**Integer(2) + \rightarrow a_{01}y*z**Integer(2) + a_{00}z**Integer(3))

>>> cubic = invariant_theory.ternary_cubic(p, x, y, z)

>>> len(list(cubic.Theta_covariant()))
6952
```

```python
coeffs()

Return the coefficients of a cubic.

Given

\[p(x, y) = a_{30}x^3 + a_{21}x^2y + a_{12}xy^2 + a_{03}y^3 + a_{20}x^2 + \]
\[a_{11}x^2y + a_{02}y^3 + a_{10}x + a_{01}y + a_{00} \]

this function returns \(a = (a_{30}, a_{03}, a_{00}, a_{21}, a_{20}, a_{12}, a_{02}, a_{10}, a_{01}, a_{11}) \)

EXAMPLES:

```python
sage: R.<x,y,z,a_{30},a_{21},a_{12},a_{03},a_{20},a_{11},a_{02},a_{10},a_{01},a_{00}> = QQ[]

sage: p = (a_{30}x^3 + a_{21}x^2y + a_{12}xy^2 + a_{03}y^3 + a_{20}x^2 + \ldots + a_{00}z^3)

sage: invariant_theory.ternary_cubic(p, x, y, z).coeffs()
(a_{30}, a_{03}, a_{00}, a_{21}, a_{20}, a_{12}, a_{02}, a_{10}, a_{01}, a_{11})

sage: R.<x,y,z,a_{30},a_{21},a_{12},a_{03},a_{20},a_{11},a_{02},a_{10},a_{01}> = QQ[]

sage: p = (a_{30}x**Integer(3) + a_{21}x**Integer(2)*y + a_{12}x*y**Integer(2) + \rightarrow a_{03}y**Integer(3) + a_{20}x**Integer(2)*z + \ldots + a_{11}x*y*z + a_{02}y**Integer(2)*z + a_{10}x*z**Integer(2) + \rightarrow a_{01}y*z**Integer(2) + a_{00}z**Integer(3))

sage: invariant_theory.ternary_cubic(p, x, y, z).coeffs()
(a_{30}, a_{03}, a_{00}, a_{21}, a_{20}, a_{12}, a_{02}, a_{10}, a_{01}, a_{11})

>>> from sage.all import *

>>> R = QQ[\[x, y, z, a_{30}, a_{21}, a_{12}, a_{03}, a_{20}, a_{11}, a_{02}, a_{10}, a_{01}, a_{00}\]]

>>> (x, y, z, a_{30}, a_{21}, a_{12}, a_{03}, a_{20}, a_{11}, a_{02}, a_{10}, a_{01}, a_{00}) = R._first_ngens(13)

>>> p = (a_{30}x**Integer(3) + a_{21}x**Integer(2)*y + a_{12}x*y**Integer(2) + \rightarrow a_{03}y**Integer(3) + a_{20}x**Integer(2)*z + \ldots + a_{11}x*y*z + a_{02}y**Integer(2)*z + a_{10}x*z**Integer(2) + \rightarrow a_{01}y*z**Integer(2) + a_{00}z**Integer(3))

```
Polynomials, Release 10.4

(continued from previous page)

... a11*x*y*z + a02*y**Integer(2)*z + a10*x*z**Integer(2) +
→ a01*y*z**Integer(2) + a00*z**Integer(3))

>>> invariant_theory.ternary_cubic(p, x,y,z).coeffs()
(a30, a03, a00, a21, a20, a12, a02, a10, a01, a11)

>>> invariant_theory.ternary_cubic(p.subs(z=Integer(1)), x, y).coeffs()
(a30, a03, a00, a21, a20, a12, a02, a10, a01, a11)

monomials()

List the basis monomials of the form.

OUTPUT:

A tuple of monomials. They are in the same order as coeffs().

EXAMPLES:

\begin{verbatim}
from sage.all import *
>>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)
>>> cubic = invariant_theory.ternary_cubic(x**Integer(3)+y*z**Integer(2))
>>> cubic.monomials()
(x^3, y^3, z^3, x^2*y, x^2*z, x*y^2, y^2*z, x*z^2, y*z^2, x*y*z)
\end{verbatim}

polar_conic()

Return the polar conic of the cubic.

OUTPUT:

Given the ternary cubic \(f(X, Y, Z) \), this method returns the symmetric matrix \(A(x, y, z) \) defined by

\[
x f_X + y f_Y + z f_Z = (X, Y, Z) \cdot A(x, y, z) \cdot (X, Y, Z)^t
\]

EXAMPLES:

\begin{verbatim}
from sage.all import *
>>> R = QQ['x, y, z, X, Y, Z, a30, a21, a12, a03, a20, a11, a02, a10, a01, a00']
>>> p = (a30*x^3 + a21*x^2*y + a12*x*y^2 + a03*y^3 + a20*x^2*z +
....: a11*x*y*z + a02*y^2*z + a10*x*z^2 + a01*y*z^2 + a00*z^3)
>>> cubic = invariant_theory.ternary_cubic(p, x,y,z)
>>> cubic.polar_conic()
[3*x*a30 + y*a21 + z*a20 x*a21 + y*a12 + 1/2*z*a11 x*a20 + 1/2*y*a11 +
→ z*a10] [x*a21 + y*a12 + 1/2*z*a11 x*a12 + 3*y*a03 + z*a02 1/2*x*a11 + y*a02 +
→ z*a01] [x*a20 + 1/2*y*a11 + z*a10 1/2*x*a11 + y*a02 + z*a01 x*a10 + y*a01 +
→ 3*z*a00]
>>> polar_eqn = X*p.derivative(x) + Y*p.derivative(y) + Z*p.derivative(z)
>>> polar = invariant_theory.ternary_quadratic(polar_eqn, [x,y,z])
>>> polar.matrix().subs(X=x,Y=y,Z=z) == cubic.polar_conic()
True
\end{verbatim}
\[\begin{align*}
(x, y, z, X, Y, Z, a_{30}, a_{21}, a_{12}, a_{03}, a_{20}, a_{11}, a_{02}, a_{10}, a_{01}, a_{00}) &= \text{R._first_ngens}(16) \\
p &= (a_{30}x^3 + a_{21}x^2y + a_{12}xy^2 + a_{03}y^3 + a_{20}x^2z + a_{11}xyz + a_{02}y^2z + a_{10}xz^2 + a_{01}yz^2 + a_{00}z^3) \\
\text{cubic} &= \text{invariant_theory.ternary_cubic}(p, x, y, z) \\
\text{cubic.polar_conic}() &= \begin{bmatrix}
3x*a_{30} + y*a_{21} + z*a_{20} & x*a_{21} + y*a_{12} + 1/2*z*a_{11} & x*a_{20} + 1/2*y*a_{11} + z*a_{10} \\
x*a_{21} + y*a_{12} + 1/2*z*a_{11} & 3y*a_{03} + z*a_{02} & 1/2*x*a_{11} + y*a_{02} + z*a_{01} \\
x*a_{20} + 1/2*y*a_{11} + z*a_{10} & 1/2*x*a_{11} + y*a_{02} + z*a_{01} & 3*z*a_{00}
\end{bmatrix}
\end{align*} \]

\[\text{polar} = \text{invariant_theory.ternary_quadratic}(\text{polar_eqn}, [x, y, z]) \]

\[\text{polar.matrix}().\text{subs}(X=x, Y=y, Z=z) == \text{cubic.polar_conic}() \]

scaled_coeffs()

Return the coefficients of a cubic.

Compared to `coeffs()`, this method returns rescaled coefficients that are often used in invariant theory.

Given

\[p(x, y) = a_{30}x^3 + a_{21}x^2y + a_{12}xy^2 + a_{03}y^3 + a_{20}x^2z + a_{11}xyz + a_{02}y^2z + a_{10}xz^2 + a_{01}yz^2 + a_{00}z^3 \]

this function returns \(a = (a_{30}, a_{03}, a_{00}, a_{21}/3, a_{20}/3, a_{12}/3, a_{02}/3, a_{10}/3, a_{01}/3, a_{11}/6) \)

EXAMPLES:

\[\begin{align*}
\text{sage: } R.<x, y, z, a_{30}, a_{21}, a_{12}, a_{03}, a_{20}, a_{11}, a_{02}, a_{10}, a_{01}, a_{00}> &= \text{QQ[]} \\
\text{sage: } p &= (a_{30}x^3 + a_{21}x^2y + a_{12}xy^2 + a_{03}y^3 + a_{20}x^2z + a_{11}xyz + a_{02}y^2z + a_{10}xz^2 + a_{01}yz^2 + a_{00}z^3) \\
\text{sage: } \text{invariant_theory.ternary_cubic}(p, x, y, z).\text{scaled_coeffs}() &= (a_{30}, a_{03}, a_{00}, 1/3*a_{21}, 1/3*a_{20}, 1/3*a_{12}, 1/3*a_{02}, 1/3*a_{10}, 1/3*a_{01}, 1/6*a_{11})
\end{align*} \]

\[\begin{align*}
\text{from sage.all import } * \\
\text{R} &= \text{QQ}(['x', 'y', 'z', a_{30}, a_{21}, a_{12}, a_{03}, a_{20}, a_{11}, a_{02}, a_{10}, a_{01}, a_{00}']): (x, y, z, a_{30}, a_{21}, a_{12}, a_{03}, a_{20}, a_{11}, a_{02}, a_{10}, a_{01}, a_{00}) = \text{R._first_ngens}(13) \\
\text{p} &= (a_{30}x^3 + a_{21}x^2y + a_{12}xy^2 + a_{03}y^3 + a_{20}x^2z + a_{11}xyz + a_{02}y^2z + a_{10}xz^2 + a_{01}yz^2 + a_{00}z^3) \\
\text{invariant_theory.ternary_cubic}(p, x, y, z).\text{scaled_coeffs}() &= (a_{30}, a_{03}, a_{00}, 1/3*a_{21}, 1/3*a_{20}, 1/3*a_{12}, 1/3*a_{02}, 1/3*a_{10}, 1/3*a_{01}, 1/6*a_{11})
\end{align*} \]

syzygy \((U, S, T, H, Theta, J)\)

Return the syzygy of the cubic evaluated on the invariants and covariants.

INPUT:

- \(U, S, T, H, Theta, J \) – polynomials from the same polynomial ring.
OUTPUT:

0 if evaluated for the form, the S invariant, the T invariant, the Hessian, the Θ covariant and the J-covariant of a ternary cubic.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: monomials = (x^3, y^3, z^3, x^2*y, x^2*z, x*y^2,
.....: y^2*z, x*z^2, y*z^2, x*y*z)
sage: random_poly = sum([ randint(0,10000) * m for m in monomials ])
sage: cubic = invariant_theory.ternary_cubic(random_poly)
sage: U = cubic.form()
sage: S = cubic.S_invariant()
sage: T = cubic.T_invariant()
sage: H = cubic.Hessian()
sage: Theta = cubic.Theta_covariant()
sage: J = cubic.J_covariant()
sage: cubic.syzygy(U, S, T, H, Theta, J)
0

>>> from sage.all import *
>>> R = QQ['x, y, z']; (x, y, z) = R._first_ngens(3)
>>> monomials = (x**Integer(3), y**Integer(3), z**Integer(3), x**Integer(2)*y,
.....: x**Integer(2)*z, x*y**Integer(2),
.....: y**Integer(2)*z, x*z**Integer(2), y*z**Integer(2), x*y*z)
>>> random_poly = sum([ randint(Integer(0),Integer(10000)) * m for m in monomials ])
>>> cubic = invariant_theory.ternary_cubic(random_poly)
>>> U = cubic.form()
>>> S = cubic.S_invariant()
>>> T = cubic.T_invariant()
>>> H = cubic.Hessian()
>>> Theta = cubic.Theta_covariant()
>>> J = cubic.J_covariant()
>>> cubic.syzygy(U, S, T, H, Theta, J)
0
```

class sage.rings.invariants.invariant_theory.TernaryQuadratic(n, d, polynomial, *args)
Bases: QuadraticForm

Invariant theory of a ternary quadratic.

You should use the invariant_theory factory object to construct instances of this class. See ternary_quadratic() for details.

coeffs()

Return the coefficients of a quadratic.

Given

\[p(x, y) = a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00} \]

this function returns \(a = (a_{20}, a_{02}, a_{11}, a_{10}, a_{01}) \)

EXAMPLES:

```python
sage: R.<x,y,z,a20,a11,a02,a10,a01,a00> = QQ[]
sage: p = ( a20*x^2 + a11*x*y + a02*y^2 + (continues on next page)```
covariant_conic

Return the ternary quadratic covariant to self and other.

INPUT:

• other – Another ternary quadratic.

OUTPUT:

The so-called covariant conic, a ternary quadratic. It is symmetric under exchange of self and other.

EXAMPLES:

```python
sage: ring.<x,y,z> = QQ[]
sage: Q = invariant_theory.ternary_quadratic(x^2 + y^2 + z^2)
sage: R = invariant_theory.ternary_quadratic(x*y + x*z + y*z)
sage: Q.covariant_conic(R)
-x*y - x*z - y*z
sage: R.covariant_conic(Q)
-x*y - x*z - y*z
```

monomials

List the basis monomials of the form.

OUTPUT:

A tuple of monomials. They are in the same order as coeffs().

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: quadratic = invariant_theory.ternary_quadratic(x^2 + y*z)
```
sage: quadratic.monomials()
(x^2, y^2, z^2, x*y, x*z, y*z)

>>> from sage.all import *

>>> R = QQ['x, y, z']; (x, y, z) = R._first_ngens(3)
>>> quadratic = invariant_theory.ternary_quadratic(x**Integer(2) + y*z)

>>> quadratic.monomials()
(x^2, y^2, z^2, x*y, x*z, y*z)

scaled_coeffs()

Return the scaled coefficients of a quadratic.

Given

\[ p(x, y) = a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00} \]

this function returns \( a = (a_{20}, a_{02}, a_{00}, \frac{1}{2}a_{11}, \frac{1}{2}a_{10}, \frac{1}{2}a_{01}) \)

EXAMPLES:

sage: R.<x,y,z,a20,a11,a02,a10,a01,a00> = QQ[]

sage: p = (a20*x^2 + a11*x*y + a02*y^2 +
.....: a10*x*z + a01*y*z + a00*z^2)

sage: invariant_theory.ternary_quadratic(p, x,y,z).scaled_coeffs()
(a20, a02, a00, 1/2*a11, 1/2*a10, 1/2*a01)

sage: invariant_theory.ternary_quadratic(p.subs(z=1), x, y).scaled_coeffs()
(a20, a02, a00, 1/2*a11, 1/2*a10, 1/2*a01)

>>> from sage.all import *

>>> R = QQ['x, y, z, a20, a11, a02, a10, a01, a00']; (x, y, z, a20, a11, a02, ...
...a10, a01, a00,) = R._first_ngens(9)

>>> p = (a20*x**Integer(2) + a11*x*y + a02*y**Integer(2) +
...a10*x*z + a01*y*z + a00*z**Integer(2))

>>> invariant_theory.ternary_quadratic(p, x,y,z).scaled_coeffs()
(a20, a02, a00, 1/2*a11, 1/2*a10, 1/2*a01)

>>> invariant_theory.ternary_quadratic(p.subs(z=Integer(1)), x, y).scaled_ ...
...coeffs()
(a20, a02, a00, 1/2*a11, 1/2*a10, 1/2*a01)

class sage.rings.invariants.invariant_theory.TwoAlgebraicForms (forms)

Bases: SeveralAlgebraicForms

first()

Return the first of the two forms.

OUTPUT:

The first algebraic form used in the definition.

EXAMPLES:

sage: R.<x,y> = QQ[]

sage: q0 = invariant_theory.quadratic_form(x^2 + y^2)

sage: q1 = invariant_theory.quadratic_form(x*y)

sage: from sage.rings.invariants.invariant_theory import TwoAlgebraicForms

sage: q = TwoAlgebraicForms([q0, q1])

sage: q.first() is q0

(continues on next page)
True
sage: q.get_form(0) is q0
True
sage: q.first().polynomial()
x^2 + y^2

>>> from sage.all import *
>>> R = QQ['x', y']; (x, y,) = R._first_ngens(2)
>>> q0 = invariant_theory.quadratic_form(x**Integer(2) + y**Integer(2))
>>> q1 = invariant_theory.quadratic_form(x*y)
>>> from sage.rings.invariants.invariant_theory import TwoAlgebraicForms
>>> q = TwoAlgebraicForms([q0, q1])
>>> q.first() is q0
True
>>> q.get_form(Integer(0)) is q0
True
>>> q.first().polynomial()
x^2 + y^2

second()

Return the second of the two forms.

OUTPUT:

The second form used in the definition.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: q0 = invariant_theory.quadratic_form(x^2 + y^2)
sage: q1 = invariant_theory.quadratic_form(x*y)
sage: from sage.rings.invariants.invariant_theory import TwoAlgebraicForms
sage: q = TwoAlgebraicForms([q0, q1])
sage: q.second() is q1
True
sage: q.second().polynomial()
x*y

>>> from sage.all import *
>>> R = QQ['x', y']; (x, y,) = R._first_ngens(2)
>>> q0 = invariant_theory.quadratic_form(x**Integer(2) + y**Integer(2))
>>> q1 = invariant_theory.quadratic_form(x*y)
>>> from sage.rings.invariants.invariant_theory import TwoAlgebraicForms
>>> q = TwoAlgebraicForms([q0, q1])
>>> q.second() is q1
True
>>> q.second().polynomial()
x*y

class sage.rings.invariants.invariant_theory.TwoQuaternaryQuadratics(forms)
Bases: TwoAlgebraicForms

Invariant theory of two quaternary quadratics.
You should use the `invariant_theory` factory object to construct instances of this class. See `quaternary_biquadratics()` for details.

REFERENCES:
- section on “Invariants and Covariants of Systems of Quadrics” in [Sal1958], [Sal1965]

**Delta_invariant()**

Return the $\Delta$ invariant.

**EXAMPLES:**

```python
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
```

**Delta_prime_invariant()**

Return the $\Delta'$ invariant.

**EXAMPLES:**

```python
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
```
Polynomials, Release 10.4

(continued from previous page)

\[ \begin{align*} &b_4, b_5, A_0, A_1, A_2, A_3, B_0, B_1, B_2, B_3, B_4, B_5, ) = R._\text{first_ngens}(24) \\
&>> p_1 = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 \\
&>> p_1 += b_0 x y + b_1 x z + b_2 x + b_3 y z + b_4 y + b_5 z \\
&>> p_2 = A_0 x^2 + A_1 y^2 + A_2 z^2 + A_3 \\
&>> p_2 += B_0 x y + B_1 x z + B_2 x + B_3 y z + B_4 y + B_5 z \\
&>> q = \text{invariant}_\text{theory}.\text{quaternary}_\text{biquadratic}(p_1, p_2, [x, y, z]) \\
&>> \text{coeffs} = \text{det}(t * q[0].\text{matrix()} + q[1].\text{matrix()}).\text{polynomial}(t).\text{coefficients}(\text{sparse}=True) \\
&>> q.\text{Delta}_\text{prime}_\text{invariant()} == \text{coeffs}[0] \\
&\text{True}
\]

\textbf{\texttt{J\_covariant}()} \\
\text{The } J\text{-covariant.}

This is the Jacobian determinant of the two biquadratics, the } T\text{-covariant, and the } T'\text{-covariant with respect to the four homogeneous variables.}

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage}: R.\text{<w, x, y, z, a0, a1, a2, a3, A0, A1, A2, A3}> = \mathbb{Q}[\mathbb{Q}] \\
\texttt{sage}: p_1 = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 \\
\texttt{sage}: p_1 += b_0 x y + b_1 x z + b_2 x + b_3 y z + b_4 y + b_5 z \\
\texttt{sage}: p_2 = A_0 x^2 + A_1 y^2 + A_2 z^2 + A_3 \\
\texttt{sage}: p_2 += B_0 x y + B_1 x z + B_2 x + B_3 y z + B_4 y + B_5 z \\
\texttt{sage}: q = \text{invariant}_\text{theory}.\text{quaternary}_\text{biquadratic}(p_1, p_2, [w, x, y, z]) \\
\texttt{sage}: q.\text{J\_covariant}().\text{factor()} \\
\texttt{z * y * x * w * (a3*A2 - a2*A3) * (a3*A1 - a1*A3) * (-a2*A1 + a1*A2) * (a3*A0 - a0*A3) * (-a2*A0 + a0*A2) * (-a1*A0 + a0*A1)}
\end{verbatim}

\begin{verbatim}
\texttt{>>> from sage.all import *}
\texttt{>>> R = \mathbb{Q}[\mathbb{Q}][w, x, y, z, a0, a1, a2, a3, A0, A1, A2, A3]; (w, x, y, z, a0, a1, a2, a3, A0, A1, A2, A3,) = R._\text{first_ngens}(12) \\
\texttt{>>> p_1 = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3} \\
\texttt{>>> p_1 += b_0 x y + b_1 x z + b_2 x + b_3 y z + b_4 y + b_5 z} \\
\texttt{>>> p_2 = A_0 x^2 + A_1 y^2 + A_2 z^2 + A_3} \\
\texttt{>>> p_2 += B_0 x y + B_1 x z + B_2 x + B_3 y z + B_4 y + B_5 z} \\
\texttt{>>> q = \text{invariant}_\text{theory}.\text{quaternary}_\text{biquadratic}(p_1, p_2, [w, x, y, z])} \\
\texttt{>>> q.\text{J\_covariant}()}.\text{factor()} \\
\texttt{z * y * x * w * (a3*A2 - a2*A3) * (a3*A1 - a1*A3) * (-a2*A1 + a1*A2) * (a3*A0 - a0*A3) * (-a2*A0 + a0*A2) * (-a1*A0 + a0*A1)}
\end{verbatim}

\textbf{\texttt{Phi\_invariant}()} \\
\text{Return the } \Phi'\text{-invariant.}

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage}: R.\text{<x, y, z, t, a0, a1, a2, a3, b0, b1, b2, b3, b4, b5, A0, A1, A2, A3, B0, B1, B2, B3, B4, B5> = \mathbb{Q}[\mathbb{Q}]}
\texttt{sage}: p_1 = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 \\
\texttt{sage}: p_1 += b_0 x y + b_1 x z + b_2 x + b_3 y z + b_4 y + b_5 z \\
\texttt{sage}: p_2 = A_0 x^2 + A_1 y^2 + A_2 z^2 + A_3} \\
\texttt{sage}: p_2 += B_0 x y + B_1 x z + B_2 x + B_3 y z + B_4 y + B_5 z \\
\texttt{sage}: q = \text{invariant}_\text{theory}.\text{quaternary}_\text{biquadratic}(p_1, p_2, [x, y, z]) \\
\texttt{sage}: \text{coeffs} = \text{det}(t * q[0].\text{matrix()} + q[1].\text{matrix()}).\text{polynomial}(t).\text{coefficients}(\text{sparse}=False) \\
\texttt{sage}: q.\text{Phi\_invariant()} == \text{coeffs}[2] \\
\texttt{True}
\end{verbatim}
```python
from sage.all import *

R = QQ['x, y, z, t, a0, a1, a2, a3, b0, b1, b2, b3, b4, b5, A0, A1, A2, ...
 A3, B0, B1, B2, B3, B4, B5']

(p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
 + b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
 + p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
 + B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
 q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
 coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).
 Phi_invariant() == coeffs[2]
True
```

**T_covariant()**

The $T$-covariant.

**EXAMPLES:**

```python
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5>=
 QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p2 = A0*x^2 + A1*y^2 + A2*z^2 + A3
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: T = invariant_theory.quaternary_quadratic(q.T_covariant(), [x,y,z]).

matrix()
sage: M = q[0].matrix().adjugate() + t*q[1].matrix().adjugate()
sage: M = M.adjugate().apply_map(lambda m: m.coefficient(t))
long time (4s on my thinkpad)
M == q.Delta_invariant()*T
long time
True
```

**T_prime_covariant()**

The $T'$-covariant.

**EXAMPLES:**

```python
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2, ...
 A3, B0, B1, B2, B3, B4, B5']

(p1 = a0*x**Integer(2) + a1*y**Integer(2) + a2*z**Integer(2) + a3
 + b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
 + p2 = A0*x**Integer(2) + A1*y**Integer(2) + A2*z**Integer(2) + A3
 + B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
 q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
 T = invariant_theory.quaternary_quadratic(q.T_prime_covariant(), [x,y,z]).

matrix()
sage: M = q[Integer(0)].matrix().adjugate() + t*q[Integer(1)].matrix().
 adjugate()
sage: M = M.adjugate().apply_map(lambda m: m.coefficient(t))
long time (4s on my thinkpad)
M == q.Delta_invariant()*T
long time
True
```

---

**Chapter 3. Multivariate Polynomials**

874
sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: Tprime = invariant_theory.quaternary_quadratic(...: q.T_prime_covariant(), [x,y,z]).matrix()
sage: M = q[0].matrix().adjugate() + t*q[1].matrix().adjugate()
sage: M = M.adjugate().apply_map(lambda m: m.coefficient(t^2))
>>> M == q.Delta_prime_invariant() * Tprime
True

Theta_invariant ()
Return the Θ invariant.

EXAMPLES:

sage: R.<x,y,z,t,a0,a1,a2,a3,b0,b1,b2,b3,b4,b5,A0,A1,A2,A3,B0,B1,B2,B3,B4,B5> = QQ[]
sage: p1 = a0*x^2 + a1*y^2 + a2*z^2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).
coefficients(sparse=False)
sage: qTheta_invariant() == coeffs[3]
True

from sage.all import *

>>> R = QQ['x, y, z, t, a0, a1, a2, a3, b0, b1, b2, b3, b4, b5, A0, A1, A2, A3, B0, B1, B2, B3, B4, B5']; (x, y, z, t, a0, a1, a2, a3, b0, b1, b2, b3, b4, b5, A0, A1, A2, A3, B0, B1, B2, B3, B4, B5,) = R._first_ngens(24)

(continues on next page)
Theta_prime_invariant()

Return the $\Theta'$ invariant.

EXAMPLES:

```
sage: from sage.all import *

sage: R = QQ['x, y, z, t, a0, a1, a2, a3, b0, b1, b2, b3, b4, b5, A0, A1, A2, A3, B0, B1, B2, B3, B4, B5']

sage: p1 = a0*x**2 + a1*y**2 + a2*z**2 + a3
sage: p1 += b0*x*y + b1*x*z + b2*x + b3*y*z + b4*y + b5*z
sage: p2 = A0*x**2 + A1*y**2 + A2*z**2 + A3
sage: p2 += B0*x*y + B1*x*z + B2*x + B3*y*z + B4*y + B5*z
sage: q = invariant_theory.quaternary_biquadratic(p1, p2, [x, y, z])

sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=False)

sage: q.Theta_prime_invariant() == coeffs[1]
True
```

syzygy($\Delta, \Theta, \Phi, \Theta\_prime, \Delta\_prime, U, V, T, T\_prime, J$)

Return the syzygy evaluated on the invariants and covariants.

INPUT:

- $\Delta, \Theta, \Phi, \Theta\_prime, \Delta\_prime, U, V, T, T\_prime, J$ – polynomials from the same polynomial ring.

OUTPUT:

Zero if the $U$ is the first polynomial, $V$ the second polynomial, and the remaining input are the invariants and covariants of a quaternary biquadratic.

EXAMPLES:

```
sage: R.<w,x,y,z> = QQ[]

sage: monomials = [x^2, x*y, y^2, x*z, y*z, z^2, x*w, y*w, z*w, w^2]
```

sage: def q_rnd():
    return sum(randint(-1000,1000)*m for m in monomials)

sage: biquadratic = invariant_theory.quaternary_biquadratic(q_rnd(), q_rnd())

sage: Delta = biquadratic.Delta_invariant()

sage: Theta = biquadratic.Theta_invariant()

sage: Phi = biquadratic.Phi_invariant()

sage: Theta_prime = biquadratic.Theta_prime_invariant()

sage: Delta_prime = biquadratic.Delta_prime_invariant()

sage: U = biquadratic.first().polynomial()

sage: V = biquadratic.second().polynomial()

sage: T = biquadratic.T_covariant()

sage: T_prime = biquadratic.T_prime_covariant()

sage: J = biquadratic.J_covariant()

sage: biquadratic.syzygy(Delta, Theta, Phi, Theta_prime, Delta_prime, U, V, T, T_prime, J)

0

If the arguments are not the invariants and covariants then the output is some (generically non-zero) polynomial:

sage: biquadratic.syzygy(1, 1, 1, 1, 1, 1, 1, 1, 1, x)

- x^2 + 1

>>> from sage.all import *

>>> R = QQ['w, x, y, z']; (w, x, y, z) = R._first_ngens(4)

>>> monomials = [x*y, x**2, y**2, x*z, y*z, z**2, x*w, y*w, z*w, w**2]

>>> def q_rnd():
    return sum(randint(-1000,1000)*m for m in monomials)

>>> biquadratic = invariant_theory.quaternary_biquadratic(q_rnd(), q_rnd())

>>> Delta = biquadratic.Delta_invariant()

>>> Theta = biquadratic.Theta_invariant()

>>> Phi = biquadratic.Phi_invariant()

>>> Theta_prime = biquadratic.Theta_prime_invariant()

>>> Delta_prime = biquadratic.Delta_prime_invariant()

>>> U = biquadratic.first().polynomial()

>>> V = biquadratic.second().polynomial()

>>> T = biquadratic.T_covariant()

>>> T_prime = biquadratic.T_prime_covariant()

>>> J = biquadratic.J_covariant()

>>> biquadratic.syzygy(Delta, Theta, Phi, Theta_prime, Delta_prime, U, V, T, T_prime, J)

0

>>> from sage.all import *

>>> biquadratic.syzygy(Integer(1), Integer(1), Integer(1), Integer(1), Integer(1), Integer(1), Integer(1), Integer(1), Integer(1), x)

- x^2 + 1

class sage.rings.invariants.invariant_theory.TwoTernaryQuadratics(forms)

Bases: TwoAlgebraicForms

Invariant theory of two ternary quadratics.

You should use the invariant_theory factory object to construct instances of this class. See ternary_biquadratics() for details.

REFERENCES:

3.2. Classical Invariant Theory
• Section on “Invariants and Covariants of Systems of Conics”, Art. 388 (a) in [Sal1954]

**Delta_invariant()**

Return the $\Delta$ invariant.

**EXAMPLES:**

```python
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1, y2, t> = QQ[]
sage: p1 = a00*y0^2 + 2*a01*y0*y1 + a11*y1^2 + 2*a02*y0*y2 + 2*a12*y1*y2 + a22*y2^2
sage: p2 = b00*y0^2 + 2*b01*y0*y1 + b11*y1^2 + 2*b02*y0*y2 + 2*b12*y1*y2 + b22*y2^2
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [y0, y1, y2])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=False)
sage: q.Delta_invariant() == coeffs[3]
True
```

```
>>> from sage.all import *

>>> R = QQ["a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1, y2, t"]; (a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1, y2, t,) = R._first_ngens(16)
>>> p1 = a00*y0**Integer(2) + Integer(2)*a01*y0*y1 + a11*y1**Integer(2) + Integer(2)*a02*y0*y2 + Integer(2)*a12*y1*y2 + a22*y2**Integer(2)
>>> p2 = b00*y0**Integer(2) + Integer(2)*b01*y0*y1 + b11*y1**Integer(2) + Integer(2)*b02*y0*y2 + Integer(2)*b12*y1*y2 + b22*y2**Integer(2)
>>> q = invariant_theory.ternary_biquadratic(p1, p2, [y0, y1, y2])
>>> coeffs = det(t * q[Integer(0)].matrix() + q[Integer(1)].matrix()).polynomial(t).coefficients(sparse=False)
>>> q.Delta_invariant() == coeffs[Integer(3)]
True
```

**Delta_prime_invariant()**

Return the $\Delta'$ invariant.

**EXAMPLES:**

```python
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1, y2, t> = QQ[]
sage: p1 = a00*y0^2 + 2*a01*y0*y1 + a11*y1^2 + 2*a02*y0*y2 + 2*a12*y1*y2 + a22*y2^2
sage: p2 = b00*y0^2 + 2*b01*y0*y1 + b11*y1^2 + 2*b02*y0*y2 + 2*b12*y1*y2 + b22*y2^2
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [y0, y1, y2])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).coefficients(sparse=False)
sage: q.Delta_prime_invariant() == coeffs[0]
True
```

```
>>> from sage.all import *

>>> R = QQ["a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1, y2, t"]; (a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1, y2, t,) = R._first_ngens(16)
>>> p1 = a00*y0**Integer(2) + Integer(2)*a01*y0*y1 + a11*y1**Integer(2) + Integer(2)*a02*y0*y2 + Integer(2)*a12*y1*y2 + a22*y2**Integer(2)
>>> p2 = b00*y0**Integer(2) + Integer(2)*b01*y0*y1 + b11*y1**Integer(2) + Integer(2)*b02*y0*y2 + Integer(2)*b12*y1*y2 + b22*y2**Integer(2)
>>> q = invariant_theory.ternary_biquadratic(p1, p2, [y0, y1, y2])
>>> coeffs = det(t * q[Integer(0)].matrix() + q[Integer(1)].matrix()).polynomial(t).coefficients(sparse=False)
>>> q.Delta_prime_invariant() == coeffs[Integer(0)]
True
```

(continues on next page)
q = invariant_theory.ternary_biquadratic(p1, p2, [y0, y1, y2])
coeffs = det(t * q[Integer(0)].matrix() + q[Integer(1)].matrix()).polynomial(t).coefficients(sparse=False)
q.Delta_prime_invariant() == coeffs[Integer(0)]
True

F_covariant()  
Return the $F$ covariant.

EXAMPLES:

```
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, x, y> = QQ[]
sage: p1 = 73*x^2 + 96*x*y - 11*y^2 + 4*x + 63*y + 57
sage: p2 = 61*x^2 - 100*x*y - 72*y^2 - 81*x + 39*y - 7
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [x, y])
sage: q.F_covariant()
-32566577*x^2 + 29060637/2*x*y + 20153633/4*y^2 - 30250497/2*x - 241241273/4*y - 323820473/16
```

```
from sage.all import *
```

```
R = QQ['a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, x, y']
(a00, a01, a11, a02, a12, b00, b01, b11, b02, b12, b22, x, y,) = R._first_ngens(14)
p1 = Integer(73)*x**Integer(2) + Integer(96)*x*y -
 Integer(11)*y**Integer(2) + Integer(4)*x + Integer(63)*y + Integer(57)
p2 = Integer(61)*x**Integer(2) - Integer(100)*x*y -
 Integer(72)*y**Integer(2) - Integer(81)*x + Integer(39)*y - Integer(7)
q = invariant_theory.ternary_biquadratic(p1, p2, [x, y])
q.F_covariant()
1057324024445*x^3 + 1209531088209*x^2*y + 942116599708*x*y^2 +
 984553030871*y^3 + 543715345505/2*x^2 - 306509350621/2*x*y +
 755263948570*y^2 - 1118430692650*x - 509948695327/4*y + 3369951531745/8
```

J_covariant()  
Return the $J$ covariant.

EXAMPLES:

```
sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, x, y> = QQ[]
sage: p1 = 73*x^2 + 96*x*y - 11*y^2 + 4*x + 63*y + 57
sage: p2 = 61*x^2 - 100*x*y - 72*y^2 - 81*x + 39*y - 7
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [x, y])
sage: q.J_covariant()
1057324024445*x^3 + 1209531088209*x^2*y + 942116599708*x*y^2 +
 984553030871*y^3 + 543715345505/2*x^2 - 306509350621/2*x*y +
 755263948570*y^2 - 1118430692650*x - 509948695327/4*y + 3369951531745/8
```

(continues on next page)
>>> q = invariant_theory.ternary_biquadratic(p1, p2, [x, y])
>>> q.J_covariant()
1057324024445*x^3 + 1209531088209*x^2*y + 942116599708*x*y^2 +
984553030871*y^3 + 543715345505/2*x^2 - 3065093506021/2*x*y +
755263948570*y^2 - 1118430692650*x - 509948695327/4*y + 3369951531745/8

Theta_invariant()

Return the Θ invariant.

EXAMPLES:

sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1,␣
˓→y2, t> = QQ[]
sage: p1 = a00*y0^2 + 2*a01*y0*y1 + a11*y1^2 + 2*a02*y0*y2 + 2*a12*y1*y2 +␣
˓→a22*y2^2
sage: p2 = b00*y0^2 + 2*b01*y0*y1 + b11*y1^2 + 2*b02*y0*y2 + 2*b12*y1*y2 +␣
˓→b22*y2^2
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [y0, y1, y2])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).
˓→coefficients(sparse=False)
sage: q.Theta_invariant() == coeffs[2]
True

Theta_prime_invariant()

Return the Θ’ invariant.

EXAMPLES:

sage: R.<a00, a01, a11, a02, a12, a22, b00, b01, b11, b02, b12, b22, y0, y1,␣
˓→y2, t> = QQ[]
sage: p1 = a00*y0^2 + 2*a01*y0*y1 + a11*y1^2 + 2*a02*y0*y2 + 2*a12*y1*y2 +␣
˓→a22*y2^2
sage: p2 = b00*y0^2 + 2*b01*y0*y1 + b11*y1^2 + 2*b02*y0*y2 + 2*b12*y1*y2 +␣
˓→b22*y2^2
sage: q = invariant_theory.ternary_biquadratic(p1, p2, [y0, y1, y2])
sage: coeffs = det(t * q[0].matrix() + q[1].matrix()).polynomial(t).
˓→coefficients(sparse=False)
sage: q.Theta_prime_invariant() == coeffs[1]
True
syzygy (Delta, Theta, Theta_prime, Delta_prime, S, S_prime, F, J)

Return the syzygy evaluated on the invariants and covariants.

INPUT:

• Delta, Theta, Theta_prime, Delta_prime, S, S_prime, F, J — polynomials from the same polynomial ring.

OUTPUT:

Zero if S is the first polynomial, S_prime the second polynomial, and the remaining input are the invariants and covariants of a ternary biquadratic.

EXAMPLES:

```sage
def q_rnd():
 return sum(randint(-1000, 1000)*m for m in monomials)
```

```sage:
R.<x, y, z> = QQ[]
monomials = [x^2, x*y, y^2, x*z, y*z, z^2]
def q_rnd():
 return sum[randint(-1000, 1000)*m for m in monomials]
```

```sage:
biquadratic = invariant_theory.ternary_biquadratic(q_rnd(), q_rnd(), [x, y, z])
```

```sage:
Delta = biquadratic.Delta_invariant()
Theta = biquadratic.Theta_invariant()
Theta_prime = biquadratic.Theta_prime_invariant()
Delta_prime = biquadratic.Delta_prime_invariant()
S = biquadratic.first().polynomial()
S_prime = biquadratic.second().polynomial()
F = biquadratic.F_covariant()
J = biquadratic.J_covariant()
```

```sage:
biquadratic.syzygy(Delta, Theta, Theta_prime, Delta_prime, S, S_prime, F, J)
```

0
Polynomials, Release 10.4

(continued from previous page)

```python
>>> J = biquadratic.J_covariant()
>>> biquadratic.syzygy(Delta, Theta, Theta_prime, Delta_prime, S, S_prime, F, →J)
0
```

If the arguments are not the invariants and covariants then the output is some (generically non-zero) polynomial:

```python
sage: biquadratic.syzygy(1, 1, 1, 1, 1, 1, 1, x)
1/64*x^2 + 1
```

```
>>> from sage.all import *
```  

```python
>>> biquadratic.syzygy(Integer(1), Integer(1), Integer(1), Integer(1), →Integer(1), Integer(1), Integer(1), x)
1/64*x^2 + 1
```

`sage.rings.invariants.invariant_theory.transvectant(f, g, h=1, scale='default')`

Return the h-th transvectant of f and g.

**INPUT:**

- f, g – two homogeneous binary forms in the same polynomial ring.
- h – the order of the transvectant. If it is not specified, the first transvectant is returned.
- scale – the scaling factor applied to the result. Possible values are 'default' and 'none'. The 'default' scaling factor is the one that appears in the output statement below, if the scaling factor is 'none' the quotient of factorials is left out.

**OUTPUT:**

The h-th transvectant of the listed forms f and g:

\[
(f, g)_h = \frac{(d_f - h)! \cdot (d_g - h)!}{d_f! \cdot d_g!} \left( \frac{\partial^h}{\partial x \partial z^h} \left( \frac{\partial}{\partial x'} \frac{\partial}{\partial z'} \right) (f(x, z) \cdot g(x', z')) \right)_{(x', z') = (x, z)}
\]

**EXAMPLES:**

```python
sage: from sage.rings.invariants.invariant_theory import AlgebraicForm, →transvectant
sage: R.<x,y> = QQ[]
```

```python
sage: f = AlgebraicForm(Integer(2), Integer(5), x**Integer(5) + Integer(5)*x*y + y**Integer(5))
```

```python
sage: transvectant(f, f, Integer(4))
Binary quadratic given by 2*x^2 - 4*x*y + 2*y^2
```

```python
sage: transvectant(f, f, Integer(8))
Binary form of degree -6 given by 0
```

```python
>>> from sage.all import *
```  

```python
>>> from sage.rings.invariants.invariant_theory import AlgebraicForm, transvectant
```  

```python
>>> R = QQ['x', 'y']; (x, y,) = R._first_ngens(2)
```

```python
>>> f = AlgebraicForm(Integer(2), Integer(5), x**Integer(4)*y + Integer(5)*x*y**Integer(4) + y**Integer(5))
```

```python
>>> transvectant(f, f, Integer(4))
Binary quadratic given by 2*x^2 - 4*x*y + 2*y^2
```  

```python
>>> transvectant(f, f, Integer(8))
Binary form of degree -6 given by 0
```
The default scaling will yield an error for fields of positive characteristic below \( d_f \) or \( d_g \) as the denominator of the scaling factor will not be invertible in that case. The scale argument 'none' can be used to compute the transvectant in this case:

```
sage: # needs sage.rings.finite_rings
sage: R.<a0,a1,a2,a3,a4,a5,x0,x1> = GF(5)[]
sage: f = AlgebraicForm(2, 5, a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 + a5*x0^5, x0, x1)
sage: transvectant(f, f, 4)
Traceback (most recent call last):
 ...
ZeroDivisionError
sage: transvectant(f, f, 4, scale='none')
```

Binary quadratic given by \(-a3^2*x0^2 + a2*a4*x0^2 + a2*a3*x0*x1 - a1*a4*x0*x1 - 2*a2^2*x1^2 + a1*a3*x1^2\)

The additional factors that appear when `scale='none'` is used can be seen if we consider the same transvectant over the rationals and compare it to the scaled version:

```
sage: R.<a0,a1,a2,a3,a4,a5,x0,x1> = QQ[]
sage: f = AlgebraicForm(2, 5, a0*x1^5 + a1*x1^4*x0 + a2*x1^3*x0^2 + a3*x1^2*x0^3 + a4*x1*x0^4 + a5*x0^5, x0, x1)
sage: transvectant(f, f, 4, scale='none')
```

Binary quadratic given by \(864*a3^2*x0^2 - 2304*a2*a4*x0^2 + 5760*a1*a5*x0^2 + 5760*a2*a3*x0^2 + 28800*a0*a5*x0^2 + 2304*a2^2*x0^2 - 32400*a1*a3*x0^2 + 5760*a0*a4*x1^2\)

```
>> from sage.all import *
>> # needs sage.rings.finite_rings
>> R = GF(Integer(5))['a0, a1, a2, a3, a4, a5, x0, x1']; (a0, a1, a2, a3, a4, a5, x0, x1,)= R._first_ngens(8)
>> f = AlgebraicForm(Integer(2), Integer(5), a0*x1**Integer(4)*x0 + a2*x1**Integer(3)*x0**Integer(2) + a3*x1**Integer(2)*x0**Integer(3) + a4*x1**Integer(4) + a5*x0**Integer(5), x0, x1)
>> transvectant(f, f, Integer(4), scale='none')
```

Binary quadratic given by \(864*a3^2*x0^2 - 2304*a2*a4*x0^2 + 5760*a1*a5*x0^2 + 5760*a2*a3*x0^2 + 28800*a0*a5*x0^2 + 2304*a2^2*x0^2 - 32400*a1*a3*x0^2 + 5760*a0*a4*x1^2\)

(continues on next page)
If the forms are given as inhomogeneous polynomials, the homogenisation might fail if the polynomial ring has multiple variables. You can circumvent this by making sure the base ring of the polynomial has only one variable:

```python
sage: R.<x,y> = QQ[]
sage: quintic = invariant_theory.binary_quintic(x^5 + x^3 + 2*x^2 + y^5, x)
sage: transvectant(quintic, quintic, 2)
Traceback (most recent call last):
... ValueError: polynomial is not homogeneous
sage: S.<x> = R[]
sage: quintic = invariant_theory.binary_quintic(x^5 + x^3 + 2*x^2 + y^5, x)
sage: transvectant(quintic, quintic, 2)
Binary sextic given by 1/5*x^6 + 6/5*x^5*h - 3/25*x^4*h^2 + (50*y^5 - 8)/25*x^3*h^3 - 12/25*x^2*h^4 + (3*y^5)/5*x*h^5 + (2*y^5)/5*h^6
```

3.2.2 Reconstruction of Algebraic Forms

This module reconstructs algebraic forms from the values of their invariants. Given a set of (classical) invariants, it returns a form that attains this values as invariants (up to scaling).

AUTHORS:

- Jesper Noordsij (2018-06): initial version
Reconstruct a binary cubic from the value of its discriminant.

**INPUT:**

- **discriminant** – The value of the discriminant of the binary cubic.
- **invariant_choice** – The type of invariants provided. The accepted options are 'discriminant' and 'default', which are the same. No other options are implemented.

**OUTPUT:**

A set of coefficients of a binary cubic, whose discriminant is equal to the given discriminant up to a scaling.

**EXAMPLES:**

```python
sage: from sage.rings.invariants.reconstruction import binary_cubic_coefficients_from_invariants
sage: coeffs = binary_cubic_coefficients_from_invariants(1)
sage: coeffs
(0, 1, -1, 0)
sage: R.<x> = QQ[]
sage: R(coeffs).discriminant() # needs sage.libs.pari
1
```

The two non-equivalent cubics \(x^3\) and \(x^2z\) with discriminant 0 can’t be distinguished based on their discriminant, hence an error is raised:

```python
sage: binary_cubic_coefficients_from_invariants(0)
Traceback (most recent call last):
 ... ValueError: no unique reconstruction possible for binary cubics with a double root
```

```python
>>> from sage.all import *
>>> from sage.rings.invariants.reconstruction import binary_cubic_coefficients_from_invariants
>>> coeffs = binary_cubic_coefficients_from_invariants(Integer(0))
>>> coeffs
(0, 1, -1, 0)
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> R(coeffs).discriminant() # needs sage.libs.pari
1
```

```python
>>> from sage.all import *
>>> from sage.rings.invariants.reconstruction import binary_cubic_coefficients_from_invariants
... >>> binary_cubic_coefficients_from_invariants(Integer(0))
Traceback (most recent call last):
 ... ValueError: no unique reconstruction possible for binary cubics with a double root
```
Reconstruct a binary quadratic from the value of its discriminant.

**INPUT:**

- `discriminant` – The value of the discriminant of the binary quadratic.
- `invariant_choice` – The type of invariants provided. The accepted options are 'discriminant' and 'default', which are the same. No other options are implemented.

**OUTPUT:**

A set of coefficients of a binary quadratic, whose discriminant is equal to the given `discriminant` up to a scaling.

**EXAMPLES:**

```python
sage: from sage.rings.invariants.reconstruction import binary_quadratic_coefficients_from_invariants
sage: quadratic = invariant_theory.binary_form_from_invariants(2, [24]) # indirect doctest
sage: quadratic
Binary quadratic with coefficients (1, -6, 0)
sage: quadratic.discriminant() 24
sage: binary_quadratic_coefficients_from_invariants(0)
(1, 0, 0)
```

Reconstruct a binary quintic from the values of its (Clebsch) invariants.
INPUT:

- **invariants** – A list or tuple of values of the three or four invariants. The default option requires the Clebsch invariants \(A, B, C\) and \(R\) of the binary quintic.
- **\(K\)** – The field over which the quintic is defined.
- **invariant_choice** – The type of invariants provided. The accepted options are 'clebsch' and 'default', which are the same. No other options are implemented.
- **scaling** – How the coefficients should be scaled. The accepted values are 'none' for no scaling, 'normalized' to scale in such a way that the resulting coefficients are independent of the scaling of the input invariants and 'coprime' which scales the input invariants by dividing them by their gcd.

OUTPUT:

A set of coefficients of a binary quintic, whose invariants are equal to the given invariants up to a scaling.

EXAMPLES:

First we check the general case, where the invariant \(M\) is non-zero:

```python
sage: R.<x0, x1> = QQ[]
sage: p = 3*x1^5 + 6*x1^4*x0 + 3*x1^3*x0^2 + 4*x1^2*x0^3 - 5*x1*x0^4 + 4*x0^5
sage: quintic = invariant_theory.binary_quintic(p, x0, x1)
sage: invs = quintic.clebsch_invariants(as_tuple=True)
sage: reconstructed = invariant_theory.binary_form_from_invariants(# indirect...
˓→ doctest
....: 5, invs, variables=quintic.variables())
sage: reconstructed
Binary quintic with coefficients (9592267437341790539005557/244140625000000,
21492962207625556323004064707/6103515625000000000,
11149651890347700974453304786783/7629394531250000000,
1226507575189463839564889120734239/47683715820312500000,
32399663094570652847286334593218447/1192092895507812500000,
1504506503646083958416325358558481466127/14901161193847656250000)
```

We can see that the invariants of the reconstructed form match the ones of the original form by scaling the invariants \(B\) and \(C\):

```python
>>> from sage.all import *
>>> R = QQ[‘x0, x1’]; (x0, x1,) = R._first_ngens(2)
>>> p = Integer(3)*x1**Integer(5) + Integer(6)*x1**Integer(4)*x0 +...
˓→ Integer(3)*x1**Integer(3)*x0**Integer(2) +...
˓→ Integer(4)*x1**Integer(2)*x0**Integer(3) - Integer(5)*x1*x0**Integer(4) +...
˓→ Integer(5)*x0*Integer(5)
>>> quintic = invariant_theory.binary_quintic(p, x0, x1)
>>> invs = quintic.clebsch_invariants(as_tuple=True)
>>> reconstructed = invariant_theory.binary_form_from_invariants(# indirect...
˓→ doctest
... Integer(5), invs, variables=quintic.variables())
>>> reconstructed
Binary quintic with coefficients (9592267437341790539005557/244140625000000,
21492962207625556323004064707/6103515625000000000,
11149651890347700974453304786783/7629394531250000000,
1226507575189463839564889120734239/47683715820312500000,
32399663094570652847286334593218447/1192092895507812500000,
1504506503646083958416325358558481466127/14901161193847656250000)
```

3.2. Classical Invariant Theory 887
Polynomials, Release 10.4

```python
sage: scale = invs[0]/reconstructed.A_invariant()
True
True

>>> from sage.all import *

>>> scale = invs[Integer(0)]/reconstructed.A_invariant()

>>> invs[Integer(1)] == reconstructed.B_invariant()*scale**Integer(2)
True

>>> invs[Integer(2)] == reconstructed.C_invariant()*scale**Integer(3)
True

If we compare the form obtained by this reconstruction to the one found by letting the covariants α and β be the coordinates of the form, we find the forms are the same up to a power of the determinant of α and β:

```python
sage: alpha = quintic.alpha_covariant()
sage: beta = quintic.beta_covariant()
sage: g = matrix([[alpha(x0=Integer(1),x1=Integer(0)), alpha(x0=Integer(0),x1=Integer(1))],
              [beta(x0=Integer(1),x1=Integer(0)), beta(x0=Integer(0),x1=Integer(1))]])^-1
sage: transformed = tuple([g.determinant()^-5*x
                        for x in quintic.transformed(g).coeffs()])
sage: transformed == reconstructed.coeffs()
True

>>> from sage.all import *

>>> alpha = quintic.alpha_covariant()

>>> beta = quintic.beta_covariant()

>>> g = matrix([[alpha(x0=Integer(1),x1=Integer(0)), alpha(x0=Integer(0),x1=Integer(1))],
              [beta(x0=Integer(1),x1=Integer(0)), beta(x0=Integer(0),x1=Integer(1))]])**-Integer(1)

>>> transformed = tuple([g.determinant()**-Integer(5)*x
                        for x in quintic.transformed(g).coeffs()])

>>> transformed == reconstructed.coeffs()
True

This can also be seen by computing the $\alpha$ covariant of the obtained form:

```python
sage: reconstructed.alpha_covariant().coefficient(x1)
0
sage: reconstructed.alpha_covariant().coefficient(x0) != Integer(0)
True

>>> from sage.all import *

>>> reconstructed.alpha_covariant().coefficient(x1)
0

>>> reconstructed.alpha_covariant().coefficient(x0) != Integer(0)
True

If the invariant M vanishes, then the coefficients are computed in a different way:

```python
sage: [A,B,C] = [3,1,2]
sage: M = 2*A*B - 3*C
sage: M
0

(continues on next page)
sage: from sage.rings.invariants.reconstruction import binary_quintic_coefficients_from_invariants
sage: reconstructed = binary_quintic_coefficients_from_invariants([A,B,C])
sage: reconstructed
(-66741943359375/2097152,
-125141143798828125/134217728,
0,
52793920040130615234375/34359738368,
19797720015048980712890625/109551627776,
-445487003386020660400390625/17592186044416)
sage: newform = sum([reconstructed[i]*x0**i*x1**(5-i) for i in range(6)])
sage: newquintic = invariant_theory.binary_quintic(newform, x0, x1)
sage: scale = 3/newquintic.A_invariant()
[3, newquintic.B_invariant()*scale**2, newquintic.C_invariant()*scale**3]
[3, 1, 2]

Several special cases:

sage: quintic = invariant_theory.binary_quintic(x0^5 - x1^5, x0, x1)
sage: invs = quintic.clebsch_invariants(as_tuple=True)
sage: binary_quintic_coefficients_from_invariants(invs)
(1, 0, 0, 0, 0, 1)
sage: quintic = invariant_theory.binary_quintic(x0*x1*(x0^3-x1^3), x0, x1)
sage: invs = quintic.clebsch_invariants(as_tuple=True)
sage: binary_quintic_coefficients_from_invariants(invs)
(0, 1, 0, 0, 1, 0)
sage: quintic = invariant_theory.binary_quintic(x0^5 + 10*x0^3*x1^2 - 15*x0*x1^4,...
->x0, x1)
sage: invs = quintic.clebsch_invariants(as_tuple=True)
sage: binary_quintic_coefficients_from_invariants(invs)
(1, 0, 10, 0, -15, 0)
sage: quintic = invariant_theory.binary_quintic(x0^2*(x0^3 + x1^3), x0, x1)
sage: invs = quintic.clebsch_invariants(as_tuple=True)
sage: binary_quintic_coefficients_from_invariants(invs)
(1, 0, 0, 1, 0, 0)
sage: quintic = invariant_theory.binary_quintic(x0*(x0^4 + x1^4), x0, x1)
sage: invs = quintic.clebsch_invariants(as_tuple=True)
sage: binary_quintic_coefficients_from_invariants(invs)
(1, 0, 0, 0, 1, 0)

>>> from sage.all import *
>>> quintic = invariant_theory.binary_quintic(x0**Integer(5) - x1**Integer(5), x0, x1)
>>> invs = quintic.clebsch_invariants(as_tuple=True)
>>> binary_quintic_coefficients_from_invariants(invs)
(1, 0, 0, 0, 0, 1)

For fields of characteristic 2, 3 or 5, there is no reconstruction implemented. This is part of Issue #26786:

sage: binary_quintic_coefficients_from_invariants([3,1,2], K=GF(5))
Traceback (most recent call last):
  ...  
NotImplementedError: no reconstruction of binary quintics implemented for fields of characteristic 2, 3 or 5

>>> from sage.all import *
>>> binary_quintic_coefficients_from_invariants([Integer(3),Integer(1),  
-Integer(2)], K=GF(Integer(5)))
Traceback (most recent call last):
  ...  
NotImplementedError: no reconstruction of binary quintics implemented for fields of characteristic 2, 3 or 5
3.3 Educational Versions of Groebner Basis Related Algorithms

3.3.1 Educational versions of Groebner basis algorithms

Following [BW1993], the original Buchberger algorithm (algorithm GROEBNER in [BW1993]) and an improved version of Buchberger’s algorithm (algorithm GROEBNERNEW2 in [BW1993]) are implemented.

No attempt was made to optimize either algorithm as the emphasis of these implementations is a clean and easy presentation. To compute a Groebner basis most efficiently in Sage, use the MPolynomialIdeal.groebner_basis() method on multivariate polynomial objects instead.

Note: The notion of ‘term’ and ’monomial’ in [BW1993] is swapped from the notion of those words in Sage (or the other way around, however you prefer it). In Sage a term is a monomial multiplied by a coefficient, while in [BW1993] a monomial is a term multiplied by a coefficient. Also, what is called LM (the leading monomial) in Sage is called HT (the head term) in [BW1993].

EXAMPLES:

Consider Katsura-6 with respect to a degrevlex ordering.

```
sage: # needs sage.libs.singular sage.rings.finite_rings
sage: from sage.rings.polynomial.toy_buchberger import *

sage: P.<a,b,c,e,f,g,h,i,j,k> = PolynomialRing(GF(32003))
sage: I = sage.rings.ideal.Katsura(P, 6)
sage: g1 = buchberger(I)
sage: g2 = buchberger_improved(I)
sage: g3 = I.groebner_basis()
```

All algorithms actually compute a Groebner basis:

```
sage: # needs sage.libs.singular sage.rings.finite_rings
sage: Ideal(g1).basis_is_groebner()
True
sage: Ideal(g2).basis_is_groebner()
True
sage: Ideal(g3).basis_is_groebner()
True
```

(continues on next page)
Continued from previous page:

>>> Ideal(g3).basis_is_groebner()
True

The results are correct:

```
sage: # needs sage.libs.singular sage.rings.finite_rings
sage: Ideal(g1) == Ideal(g2) == Ideal(g3)
True
```

```python
from sage.all import *
```

```python
needs sage.libs.singular sage.rings.finite_rings
```

```python
Ideal(g1) == Ideal(g2) == Ideal(g3)
True
```

If `get_verbose()` is ≥ 1, a protocol is provided:

```python
sage: # needs sage.libs.singular sage.rings.finite_rings
sage: from sage.misc.verbose import set_verbose
sage: set_verbose(1)
```

```python
P.<a,b,c> = PolynomialRing(GF(127))
```

```python
I = sage.rings.ideal.Katsura(P)
```

// sage... ideal

```python
sage: I
Ideal (a + 2*b + 2*c - 1, a^2 + 2*b^2 + 2*c^2 - a, 2*a*b + 2*b*c - b) of Multivariate Polynomial Ring in a, b, c over Finite Field of size 127
```

```python
sage: buchberger(I) # random
```

```python
(a + 2*b + 2*c - 1, a^2 + 2*b^2 + 2*c^2 - a) => -2*b^2 - 6*b*c - 6*c^2 + b + 2*c
```

```python
G: set([a + 2*b + 2*c - 1, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c])
```

```python
(a^2 + 2*b^2 + 2*c^2 - a, a + 2*b + 2*c - 1) => 0
```

```python
G: set([a + 2*b + 2*c - 1, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c])
```

```python
(a + 2*b + 2*c - 1, 2*a*b + 2*b*c - b) => -5*b*c - 6*c^2 - 63*b + 2*c
```

```python
G: set([a + 2*b + 2*c - 1, 2*a*b + 2*b*c - b, -5*b*c - 6*c^2 - 63*b + 2*c, a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c])
```

```python
(2*a*b + 2*b*c - b, a + 2*b + 2*c - 1) => 0
```

```python
G: set([a + 2*b + 2*c - 1, 2*a*b + 2*b*c - b, -5*b*c - 6*c^2 - 63*b + 2*c, a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c])
```

```python
(2*a*b + 2*b*c - b, -5*b*c - 6*c^2 - 63*b + 2*c) => -22*c^3 + 24*c^2 - 60*b + 62*c
```

```python
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + 2*b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])
```

```python
(2*a*b + 2*b*c - b, -2*b^2 - 6*b*c - 6*c^2 + 2*b + 2*c) => 0
```

```python
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, -2*b^2 - 6*b*c - 6*c^2 + 2*b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])
```

```python
(2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - a) => 0
```

```python
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + 2*b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])
```

```python
(a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - a) => 0
```
\[ \begin{align*} &\rightarrow 2b^2 + 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c) \\
&\text{G: set([a + 2b + 2c - 1, -22c^3 + 24c^2 - 60b - 62c, 2a^2 + 2b^2c - b, a^2 +} \\
&\quad \rightarrow 2b^2 + 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c]) \\
&\text{(-2b^2 + 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c) => 0} \\
&\text{G: set([a + 2b + 2c - 1, -22c^3 + 24c^2 + 60b + 62c, 2a^2 + 2b^2c - b, a^2 +} \\
&\quad \rightarrow 2b^2 + 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c]) \\
&\text{(a + 2b + 2c - 1, -5b^2c - 6c^2 - 63b + 2c) => 0} \\
&\text{G: set([a + 2b + 2c - 1, -22c^3 + 24c^2 + 60b + 62c, 2a^2 + 2b^2c - b, a^2 +} \\
&\quad \rightarrow 2b^2 + 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c]) \\
&\text{(a^2 + 2b^2 + 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c) => 0} \\
&\text{G: set([a + 2b + 2c - 1, -22c^3 + 24c^2 + 60b + 62c, 2a^2 + 2b^2c - b, a^2 +} \\
&\quad \rightarrow 2b^2 + 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c]) \\
&\text{(-5b^2c - 6c^2 - 63b + 2c) => 0} \\
&\text{G: set([a + 2b + 2c - 1, -22c^3 + 24c^2 + 60b + 62c, 2a^2 + 2b^2c - b, a^2 +} \\
&\quad \rightarrow 2b^2 + 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c]) \\
&\text{(a + 2b + 2c - 1, -22c^3 + 24c^2 - 60b - 62c) => 0} \\
&\text{G: set([a + 2b + 2c - 1, -22c^3 + 24c^2 - 60b - 62c, 2a^2 + 2b^2c - b, a^2 +} \\
&\quad \rightarrow 2b^2 + 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c]) \\
&\text{(a^2 + 2b^2 + 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c) => 0} \\
&\text{G: set([a + 2b + 2c - 1, -22c^3 + 24c^2 - 60b - 62c, 2a^2 + 2b^2c - b, a^2 +} \\
&\quad \rightarrow 2b^2 + 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c]) \\
&\text{(-2b^2 + 6b^2c - 6c^2 + b + 2c, -22c^3 + 24c^2 - 60b - 62c) => 0} \\
&\text{G: set([a + 2b + 2c - 1, -22c^3 + 24c^2 - 60b - 62c, 2a^2 + 2b^2c - b, a^2 +} \\
&\quad \rightarrow 2b^2 + 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c]) \\
&\text{(a^2 + 2b^2 + 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c) => 0} \\
&\text{G: set([a + 2b + 2c - 1, -22c^3 + 24c^2 - 60b - 62c, 2a^2 + 2b^2c - b, a^2 +} \\
&\quad \rightarrow 2b^2 + 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c]) \\
&\text{(-2b^2 + 6b^2c - 6c^2 + b + 2c, -22c^3 + 24c^2 - 60b - 62c) => 0} \\
&\text{G: set([a + 2b + 2c - 1, -22c^3 + 24c^2 - 60b - 62c, 2a^2 + 2b^2c - b, a^2 +} \\
&\quad \rightarrow 2b^2 + 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c]) \\
&\text{(a^2 + 2b^2 + 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c) => 0} \\
&\text{G: set([a + 2b + 2c - 1, -22c^3 + 24c^2 - 60b - 62c, 2a^2 + 2b^2c - b, a^2 +} \\
&\quad \rightarrow 2b^2 + 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c]) \\
&\text{15 reductions to zero.} \\
&\text{[a + 2b + 2c - 1, -22c^3 + 24c^2 - 60b - 62c, 2a^2 + 2b^2c - b, a^2 + 2b^2 +} \\
&\quad \rightarrow 2c^2 - a, -2b^2 - 6b^2c - 6c^2 + b + 2c, -5b^2c - 6c^2 - 63b + 2c] \\
\end{align*}\]

```python
>>> from sage.all import *
>>> # needs sage.libs.singular sage.rings.finite_rings
>>> from sage.misc.verbose import set_verbose
>>> set_verbose(Integer(1))
>>> P = PolynomialRing(GF(Integer(127)), names=('a', 'b', 'c',)); (a, b, c,) = P._first_ngens(3)
>>> I = sage.rings.ideal.Katsura(P) # sage... ideal
>>> I
Ideal (a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a^2 + 2*b^2 + 2*c^2 - a, 2*a*b + 2*b*c - b)
```
of Multivariate Polynomial Ring in \(a, b, c\) over Finite Field of size 127

```python
>>> buchberger(I) # random
(a + 2*b + 2*c - 1, a^2 + 2*b^2 + 2*c^2 - a) => -2*b^2 - 6*b*c - 6*c^2 + b + 2*c
G: set([a + 2*b + 2*c - 1, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c
-> - 6*c^2 + b + 2*c])
(BLANKLINE)
(a^2 + 2*b^2 + 2*c^2 - a, a + 2*b + 2*c - 1) => 0
G: set([a + 2*b + 2*c - 1, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c
-> - 6*c^2 + b + 2*c])
(BLANKLINE)
(a + 2*b + 2*c - 1, 2*a*b + 2*b*c - b) => -5*b*c - 6*c^2 - 63*b + 2*c
G: set([a + 2*b + 2*c - 1, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c
-> - 6*c^2 + b + 2*c])
(BLANKLINE)
(2*a*b + 2*b*c - b, a + 2*b + 2*c - 1) => 0
G: set([a + 2*b + 2*c - 1, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c
-> - 6*c^2 + b + 2*c])
(BLANKLINE)
(2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - a) => -5*b*c - 6*c^2 - 63*b + 2*c
G: set([a + 2*b + 2*c - 1, 2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c
-> - 6*c^2 + b + 2*c])
(BLANKLINE)
(2*a*b + 2*b*c - b, a^2 + 2*b^2 + 2*c^2 - a) => -22*c^3 + 24*c^2 - 60*b - 62*c
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
-> -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])
(BLANKLINE)
(2*a*b + 2*b*c - b, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
-> -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])
(BLANKLINE)
(a + 2*b + 2*c - 1, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
-> -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])
(BLANKLINE)
(a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
-> -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])
(BLANKLINE)
(a + 2*b + 2*c - 1, -5*b*c - 6*c^2 - 63*b + 2*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
-> -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])
(BLANKLINE)
(a + 2*b + 2*c - 1, -5*b*c - 6*c^2 - 63*b + 2*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
-> -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])
(BLANKLINE)
(-2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
-> -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])
(BLANKLINE)
(a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
-> -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])
(BLANKLINE)
(-2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
-> -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])
(BLANKLINE)
(-5*b*c - 6*c^2 - 63*b + 2*c, -22*c^3 + 24*c^2 - 60*b - 62*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
-> -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])
(BLANKLINE)
(a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c) => 0
G: set([a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 +
-> -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c])
```
(continued from previous page)

\[(a^2 + 2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c) \Rightarrow 0\]
\[G: \text{set}(\{a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 \rightarrow -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c\})\]

\[(-2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -22*c^3 + 24*c^2 - 60*b - 62*c) \Rightarrow 0\]
\[G: \text{set}(\{a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 \rightarrow -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c\})\]

\[(2*a*b + 2*b*c - b, -22*c^3 + 24*c^2 - 60*b - 62*c) \Rightarrow 0\]
\[G: \text{set}(\{a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 \rightarrow -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c\})\]

\[(a^2 + 2*b^2 + 2*c^2 - a, -22*c^3 + 24*c^2 - 60*b - 62*c) \Rightarrow 0\]
\[G: \text{set}(\{a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 \rightarrow -2*b^2 + 2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c\})\]

15 reductions to zero.
\[\{a + 2*b + 2*c - 1, -22*c^3 + 24*c^2 - 60*b - 62*c, 2*a*b + 2*b*c - b, a^2 \rightarrow -2*c^2 - a, -2*b^2 - 6*b*c - 6*c^2 + b + 2*c, -5*b*c - 6*c^2 - 63*b + 2*c\}\]

The original Buchberger algorithm performs 15 useless reductions to zero for this example:

```
sage: # needs sage.libs.singular sage.rings.finite_rings
sage: gb = buchberger(I)
... 15 reductions to zero.
```

The ‘improved’ Buchberger algorithm in contrast only performs 1 reduction to zero:

```
sage: # needs sage.libs.singular sage.rings.finite_rings
sage: gb = buchberger_improved(I)
... 1 reductions to zero.
sage: sorted(gb)
[a + 2*b + 2*c - 1, b*c + 52*c^2 + 38*b + 25*c, b^2 - 26*c^2 - 51*b + 51*c, c^3 + 22*c^2 - 55*b + 49*c]
```

AUTHORS:


3.3. Educational Versions of Groebner Basis Related Algorithms 895
Compute a Groebner basis using the original version of Buchberger’s algorithm as presented in [BW1993], page 214.

INPUT:

• $F$ – an ideal in a multivariate polynomial ring

OUTPUT: a Groebner basis for $F$

Note: The verbosity of this function may be controlled with a `set_verbose()` call. Any value $\geq 1$ will result in this function printing intermediate bases.

EXAMPLES:

```python
sage: from sage.rings.polynomial.toy_buchberger import buchberger
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: I = R.ideal([x^2 - z - 1, z^2 - y - 1, x*y^2 - x - 1])
sage: set_verbose(0)
sage: gb = buchberger(I)
Needs sage.libs.singular
sage: gb.is_groebner()
Needs sage.libs.singular
True
sage: gb.ideal() == I
Needs sage.libs.singular
True
```

```
>>> from sage.all import *
>>> from sage.rings.polynomial.toy_buchberger import buchberger
>>> R = PolynomialRing(QQ, names=('x', 'y', 'z',)); (x, y, z) = R._first_ngens(3)
>>> I = R.ideal([x**Integer(2) - z - Integer(1), z**Integer(2) - y - Integer(1), x*y**Integer(2) - x - Integer(1)]
>>> set_verbose(Integer(0))
>>> gb = buchberger(I)
Needs sage.libs.singular
>>> gb.is_groebner()
Needs sage.libs.singular
True
>>> gb.ideal() == I
Needs sage.libs.singular
True
```

Compute a Groebner basis using an improved version of Buchberger’s algorithm as presented in [BW1993], page 232.

This variant uses the Gebauer-Moeller Installation to apply Buchberger’s first and second criterion to avoid useless pairs.

INPUT:
• F – an ideal in a multivariate polynomial ring

OUTPUT: a Grobner basis for F

Note: The verbosity of this function may be controlled with a set_verbose() call. Any value >=1 will result in this function printing intermediate Groebner bases.

EXAMPLES:

```python
sage: from sage.rings.polynomial.toy_buchberger import buchberger_improved
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: set_verbose(0)
sage: sorted(buchberger_improved(R.ideal([x^4 - y - z, x*y*z - 1])))
needs sage.libs.singular
[x*y*z - 1, x^3 - y^2*z - y*z^2, y^3*z^2 + y^2*z^3 - x^2]
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.toy_buchberger import buchberger_improved
>>> R = PolynomialRing(QQ, names=('x', 'y', 'z')); (x, y, z) = R._first_ngens(3)
>>> set_verbose(Integer(0))
>>> sorted(buchberger_improved(R.ideal([x**Integer(4) - y - z, x*y*z - ___
˓→Integer(1)]))) # needs sage.libs.singular
[x*y*z - 1, x^3 - y^2*z - y*z^2, y^3*z^2 + y^2*z^3 - x^2]
```

`sage.rings.polynomial.toy_buchberger.inter_reduction(Q)`

Compute inter-reduced polynomials from a set of polynomials.

INPUT:

• Q – a set of polynomials

OUTPUT:

if Q is the set $f_1,...,f_n$, this method returns $g_1,...,g_s$ such that:

• $(f_1,...,f_n) = (g_1,...,g_s)$
• $LM(g_i) \neq LM(g_j)$ for all $i \neq j$
• $LM(g_i)$ does not divide $m$ for all monomials $m$ of $\{g_1,\ldots,g_i-1,g_i+1,\ldots,g_s\}$
• $LC(g_i) = 1$ for all $i$.

EXAMPLES:

```python
sage: from sage.rings.polynomial.toy_buchberger import inter_reduction
sage: inter_reduction(set())
set()
```

```python
>>> from sage.all import *
>>> from sage.rings.polynomial.toy_buchberger import inter_reduction
>>> inter_reduction(set())
set()
```

```python
sage: P.<x,y> = QQ[]
sage: reduced == inter_reduction(set([x^2 - 5*y^2, x^3])) # needs sage.libs.singular
set([x^2 - 5*y^2, x^3])
```

(continues on next page)
Polynomials, Release 10.4

needs sage.libs.singular
True

\begin{verbatim}
>>> from sage.all import *
>>> P = QQ['x, y']; (x, y,) = P._first_ngens(2)
>>> reduced = inter_reduction(set([x**Integer(2) - Integer(5)*y**Integer(2),
                                     x**Integer(3)]))
# needs sage.libs.singular
>>> reduced == set([x*y**Integer(2), x**Integer(2) - Integer(5)*y**Integer(2)])
# needs sage.libs.singular
True
>>> reduced == inter_reduction(set([Integer(2)*(x**Integer(2) -
                                     Integer(5)*y**Integer(2)), x**Integer(3)]))
# needs sage.libs.singular
True
\end{verbatim}

**sage.rings.polynomial.toy_buchberger.select** ($P$)

Select a polynomial using the normal selection strategy.

**INPUT:**
- $P$ – a list of critical pairs

**OUTPUT:** an element of $P$

**EXAMPLES:**

\begin{verbatim}
sage: from sage.rings.polynomial.toy_buchberger import select
sage: R.<x,y,z> = PolynomialRing(QQ, order='lex')
sage: ps = [x^3 - z - 1, z^3 - y - 1, x^5 - y - 2]
sage: pairs = [[ps[i], ps[j]] for i in range(3) for j in range(i + 1, 3)]
sage: select(pairs)
[x^3 - z - 1, -y + z^3 - 1]
\end{verbatim}

**sage.rings.polynomial.toy_buchberger.spol** ($f, g$)

Compute the S-polynomial of $f$ and $g$.

**INPUT:**
- $f$, $g$ – polynomials

**OUTPUT:** the S-polynomial of $f$ and $g$

**EXAMPLES:**

\begin{verbatim}
>>> from sage.all import *
>>> from sage.rings.polynomial.toy_buchberger import select
>>> R = PolynomialRing(QQ, order='lex', names=('x', 'y', 'z')); (x, y, z,) = R._
first_ngens(3)
>>> ps = [x**Integer(3) - z - Integer(1), z**Integer(3) - y - Integer(1),
        x**Integer(5) - y - Integer(2)]
>>> pairs = [[ps[i], ps[j]] for i in range(Integer(3)) for j in range(i +_Integer(1), Integer(3))]
>>> select(pairs)
[x^3 - z - 1, -y + z^3 - 1]
\end{verbatim}
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: from sage.rings.polynomial.toy_buchberger import spol
sage: spol(x^2 - z - 1, z^2 - y - 1)
x^2*y - z^3 + x^2 - z^2

sage.rings.polynomial.toy_buchberger.update(G, B, h)

Update G using the set of critical pairs B and the polynomial h as presented in [BW1993], page 230. For this, Buchberger's first and second criterion are tested.

This function implements the Gebauer-Moeller Installation.

INPUT:

- G – an intermediate Groebner basis
- B – a set of critical pairs
- h – a polynomial

OUTPUT: a tuple of

- an intermediate Groebner basis
- a set of critical pairs

EXAMPLES:

sage: from sage.rings.polynomial.toy_buchberger import update
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: set_verbose(0)
sage: update(set(), set(), x*y*z)
({x*y*z}, set())
sage: G, B = update(set(), set(), x*y*z - 1)
sage: G, B = update(G, B, x*y**2 - 1)
sage: G, B
({x*y*z - 1, x*y^2 - 1}, {(x*y^2 - 1, x*y*z - 1)})
3.3.2 Educational versions of Groebner basis algorithms: triangular factorization

In this file is the implementation of two algorithms in [Laz1992].

The main algorithm is Triangular; a secondary algorithm, necessary for the first, is ElimPolMin. As per Lazard’s formulation, the implementation works with any term ordering, not only lexicographic.

Lazard does not specify a few of the subalgorithms implemented as the functions

• is_triangular,
• is_linearly_dependent, and
• linear_representation.

The implementations are not hard, and the choice of algorithm is described with the relevant function.

No attempt was made to optimize these algorithms as the emphasis of this implementation is a clean and easy presentation. Examples appear with the appropriate function.

AUTHORS:

• John Perry (2009-02-24): initial version, but some words of documentation were stolen shamelessly from Martin Albrecht’s toy_buchberger.py.

sage.rings.polynomial.toy_variety.coefficient_matrix(polys)

Generate the matrix $M$ whose entries are the coefficients of $polys$.

The entries of row $i$ of $M$ consist of the coefficients of $polys[i]$.

INPUT:

• polys – a list/tuple of polynomials

OUTPUT:

A matrix $M$ of the coefficients of $polys$

EXAMPLES:

```
sage: from sage.rings.polynomial.toy_variety import coefficient_matrix
dsage: R.<x,y> = PolynomialRing(QQ)
sage: coefficient_matrix([x^2 + 1, y^2 + 1, x*y + 1])
needs sage.modules
[1 0 0 1]
[0 0 1 1]
[0 1 0 1]

>>> from sage.all import *
>>> from sage.rings.polynomial.toy_variety import coefficient_matrix
>>> R = PolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> coefficient_matrix([x**Integer(2) + Integer(1), y**Integer(2) + Integer(1),
... x*y + Integer(1)])
needs sage.modules
[1 0 0 1]
[0 0 1 1]
[0 1 0 1]
```

Note: This function may be merged with sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic.coefficient_matrix() in the future.
Find the unique monic polynomial of lowest degree and lowest variable in the ideal described by \( B \).

For the purposes of the triangularization algorithm, it is necessary to preserve the ring, so \( n \) specifies which variable to check. By default, we check the last one, which should also be the smallest.

The algorithm may not work if you are trying to cheat: \( B \) should describe the Groebner basis of a zero-dimensional ideal. However, it is not necessary for the Groebner basis to be lexicographic.

The algorithm is taken from a 1993 paper by Lazard [Laz1992].

**INPUT:**

- \( B \) – a list/tuple of polynomials or a multivariate polynomial ideal
- \( n \) – the variable to check (see above) (default: \(-1\))

**EXAMPLES:**

```python
sage: # needs sage.rings.finite_rings
sage: from sage.misc.verbose import set_verbose
sage: set_verbose(0)
sage: from sage.rings.polynomial.toy_variety import elim_pol
sage: R.<x,y,z> = PolynomialRing(GF(32003))
sage: p1 = x^2*(x-1)^3*y^2*(z-3)^3
sage: p2 = z^2 - z
sage: p3 = (x-2)^2*(y-1)^3
sage: I = R.ideal(p1,p2,p3)
>>> elim_pol(I.groebner_basis())
\# needs sage.libs.singular
z^2 - z
```

Decide whether the polynomials of \( \text{polys} \) are linearly dependent.

Here \( \text{polys} \) is a collection of polynomials.

The algorithm creates a matrix of coefficients of the monomials of \( \text{polys} \). It computes the echelon form of the matrix, then checks whether any of the rows is the zero vector.

Essentially this relies on the fact that the monomials are linearly independent, and therefore is building a linear map from the vector space of the monomials to the canonical basis of \( \mathbb{R}^n \), where \( n \) is the number of distinct monomials in \( \text{polys} \). There is a zero vector iff there is a linear dependence among \( \text{polys} \).

The case where \( \text{polys}=[] \) is considered to be not linearly dependent.
INPUT:

- polys – a list/tuple of polynomials

OUTPUT:

True if the elements of polys are linearly dependent; False otherwise.

EXAMPLES:

```python
sage: from sage.rings.polynomial.toy_variety import is_linearly_dependent
sage: R.<x,y> = PolynomialRing(QQ)
sage: B = [x^2 + 1, y^2 + 1, x*y + 1]
sage: is_linearly_dependent(B + [p]) # needs sage.modules
True
sage: p = x*B[0]
sage: is_linearly_dependent(B + [p]) # needs sage.modules
False
sage: is_linearly_dependent([])
False
sage: R.<x> = PolynomialRing(QQ)
sage: B = [x^147 + x^99,
 : 2*x^123 + x^75,
 : x^147 + 2*x^123 + 2*x^75,
 : 2*x^147 + x^99 + x^75]
sage: is_linearly_dependent(B)
True
```
INPUT:

- B – a list/tuple of polynomials or a multivariate polynomial ideal

OUTPUT:

True if the basis is triangular; False otherwise.

EXAMPLES:

```sage
from sage.rings.polynomial.toy_variety import is_triangular
R.<x,y,z> = PolynomialRing(QQ)
p1 = x^2*y + z^2
p2 = y*z + z^3
p3 = y*z
sage: is_triangular(R.ideal(p1,p2,p3))
False
sage: p3 = z^2 - 3
sage: is_triangular(R.ideal(p1,p2,p3))
True
```

sage.rings.polynomial.toy_variety.linear_representation(p, polys)

Assuming that p is a linear combination of polys, determine coefficients that describe the linear combination.

This probably does not work for any inputs except p, a polynomial, and polys, a sequence of polynomials. If p is not in fact a linear combination of polys, the function raises an exception.

The algorithm creates a matrix of coefficients of the monomials of polys and p, with the coefficients of p in the last row. It augments this matrix with the appropriate identity matrix, then computes the echelon form of the augmented matrix. The last row should contain zeroes in the first columns, and the last columns contain a linear dependence relation. Solving for the desired linear relation is straightforward.

INPUT:

- p – a polynomial
- polys – a list/tuple of polynomials

OUTPUT:

If n == len(polys), returns [a[0], a[1], ..., a[n-1]] such that p == a[0]*poly[0] + ... + a[n-1]*poly[n-1].

EXAMPLES:

```sage
needs sage.modules sage.rings.finite_rings
from sage.rings.polynomial.toy_variety import linear_representation
R.<x,y> = PolynomialRing(GF(32003))
B = [x^2 + 1, y^2 + 1, x*y + 1]
```
Polynomials, Release 10.4

```
sage: linear_representation(p, B)
[3, 32001, 1]
```

```
>>> from sage.all import *

>>> from sage.modules.sage.rings.finite_rings import linear_representation

>>> from sage.rings.polynomial.toy_variety import linear_representation

>>> R = PolynomialRing(GF(Integer(32003)), names=('x', 'y',)); (x, y,)
 = R._first_ngens(2)

>>> B = [x**Integer(2) + Integer(1), y**Integer(2) + Integer(1), x*y + Integer(1)]

>>> p = Integer(3)*B[Integer(0)] - Integer(2)*B[Integer(1)] + B[Integer(2)]

>>> linear_representation(p, B)
[3, 32001, 1]
```

```
sage.rings.polynomial.toy_variety.triangular_factorization(B, n=-1)

Compute the triangular factorization of the Groebner basis B of an ideal.

This will not work properly if B is not a Groebner basis!

The algorithm used is that described in a 1992 paper by Daniel Lazard [Laz1992]. It is not necessary for the term ordering to be lexicographic.

INPUT:

- B – a list/tuple of polynomials or a multivariate polynomial ideal
- n – the recursion parameter (default: -1)

OUTPUT:

A list T of triangular sets T_0, T_1, etc.

EXAMPLES:

```
sage: # needs sage.rings.finite_rings

technicians: from sage.misc.verbose import setVerbose

>>> setVerbose(0)

>>> from sage.rings.polynomial.toy_variety import triangular_factorization

>>> R = PolynomialRing(GF(Integer(32003)), names=('x', 'y', 'z',)); (x, y, z,)
    = R._first_ngens(3)

>>> p1 = x**Integer(2)*(x-Integer(1))**Integer(3)*y**Integer(2)*(z-Integer(3))

>>> p2 = z**Integer(2) - z

>>> p3 = (x-Integer(2))^2*(y-Integer(1))^3

>>> I = R.ideal(p1, p2, p3)

>>> triangular_factorization(I.groebner_basis())

```

```
[[x^2 - 4*x + 4, y, z],
 [x^5 - 3*x^4 + 3*x^3 - x^2, y - 1, z],
 [x^2 - 4*x + 4, y, z - 1],
 [x^5 - 3*x^4 + 3*x^3 - x^2, y - 1, z - 1]]
```

```
```

(continues on next page)
>>> p2 = z ** Integer(2) - z
>>> p3 = (x - Integer(2)) ** Integer(2) * (y - Integer(1)) ** Integer(3)
>>> I = R.ideal(p1, p2, p3)
>>> triangular_factorization(I.groebner_basis()) # needs sage.libs.singular
[[x^2 - 4*x + 4, y, z], [x^5 - 3*x^4 + 3*x^3 - x^2, y - 1, z], [x^2 - 4*x + 4, y, z - 1], [x^5 - 3*x^4 + 3*x^3 - x^2, y - 1, z - 1]]

3.3.3 Educational version of the \(d\)-Groebner basis algorithm over PIDs

No attempt was made to optimize this algorithm as the emphasis of this implementation is a clean and easy presentation.

Note: The notion of ‘term’ and ‘monomial’ in [BW1993] is swapped from the notion of those words in Sage (or the other way around, however you prefer it). In Sage a term is a monomial multiplied by a coefficient, while in [BW1993] a monomial is a term multiplied by a coefficient. Also, what is called LM (the leading monomial) in Sage is called HT (the head term) in [BW1993].

EXAMPLES:

sage: from sage.rings.polynomial.toy_d_basis import d_basis

First, consider an example from arithmetic geometry:

sage: A.<x,y> = PolynomialRing(ZZ, 2)
sage: B.<X,Y> = PolynomialRing(Rationals(), 2)
sage: f = -y^2 - y + x^3 + 7*x + 1
sage: fx = f.derivative(x)
sage: fy = f.derivative(y)
sage: I = B.ideal([B(f), B(fx), B(fy)])
sage: I.groebner_basis() # needs sage.libs.singular
[[X^2 - 4*X + 4, Y, Z], [X^5 - 3*X^4 + 3*X^3 - X^2, Y - 1, Z], [X^2 - 4*X + 4, Y, Z - 1], [X^5 - 3*X^4 + 3*X^3 - X^2, Y - 1, Z - 1]]

Since the output is 1, we know that there are no generic singularities.

To look at the singularities of the arithmetic surface, we need to do the corresponding computation over \(\mathbb{Z}\):
This Groebner Basis gives a lot of information. First, the only fibers (over \(\mathbb{Z} \)) that are not smooth are at 11 = 0, and 17 = 0. Examining the Groebner Basis, we see that we have a simple node in both the fiber at 11 and at 17. From the factorization, we see that the node at 17 is regular on the surface (an \(I_1 \) node), but the node at 11 is not. After blowing up this non-regular point, we find that it is an \(I_3 \) node.

Another example. This one is from the Magma Handbook:

To compute modulo 4, we can add the generator 4 to our basis.
A third example is also from the Magma Handbook. This example shows how one can use Groebner bases over the integers to find the primes modulo which a system of equations has a solution, when the system has no solutions over the rationals.

We first form a certain ideal \(I \) in \(\mathbb{Z}[x, y, z] \), and note that the Groebner basis of \(I \) over \(\mathbb{Q} \) contains 1, so there are no solutions over \(\mathbb{Q} \) or an algebraic closure of it (this is not surprising as there are 4 equations in 3 unknowns).

```
sage: P.<x, y, z> = PolynomialRing(IntegerRing(), 3, order='degrevlex'); (x, y, z) = P._first_ngens(3)
sage: I = ideal(x^2 - 3*y, y^3 - x*y, z^3 - x, x^4 - y*z + 1)
sage: I.change_ring(P.change_ring(RationalField())).groebner_basis() # needs sage.libs.singular
[1]
```

However, when we compute the Groebner basis of \(I \) (defined over \(\mathbb{Z} \)), we note that there is a certain integer in the ideal which is not 1:

```
sage: gb = d_basis(I); gb # needs sage.libs.singular
\[ z \ldots, y \ldots, x \ldots, 282687803443 \]
```

Now for each prime \(p \) dividing this integer 282687803443, the Groebner basis of \(I \) modulo \(p \) will be non-trivial and will thus give a solution of the original system modulo \(p \):

```
sage: factor(282687803443)
101 * 103 * 27173681
sage: I.change_ring(P.change_ring(GF(101))).groebner_basis() # needs sage.libs.singular
\[ z - 33, y + 48, x + 19 \]
sage: I.change_ring(P.change_ring(GF(103))).groebner_basis() # needs sage.libs.singular
\[ z - 18, y + 8, x + 39 \]
```

(continues on next page)
sage: I.change_ring(P.change_ring(GF(27173681))).groebner_basis() # needs sage.libs.singular sage.rings.finite_rings
[z + 10380032, y + 3186055, x - 536027]

>>> from sage.all import *

>>> factor(Integer(282687803443))
101 * 103 * 27173681

>>> I.change_ring(P.change_ring(GF(Integer(101)))).groebner_basis() # needs sage.libs.singular
[z - 33, y + 48, x + 19]

>>> I.change_ring(P.change_ring(GF(Integer(103)))).groebner_basis() # needs sage.libs.singular
[z - 18, y + 8, x + 39]

>>> I.change_ring(P.change_ring(GF(Integer(27173681)))).groebner_basis() # needs sage.libs.singular sage.rings.finite_rings
[z + 10380032, y + 3186055, x - 536027]

Of course, modulo any other prime the Groebner basis is trivial so there are no other solutions. For example:

sage: I.change_ring(P.change_ring(GF(3))).groebner_basis() # needs sage.libs.singular
[1]

>>> from sage.all import *

>>> I.change_ring(P.change_ring(GF(Integer(3)))).groebner_basis() # needs sage.libs.singular
[1]

AUTHOR:
- Martin Albrecht (2008-08): initial version

sage.rings.polynomial.toy_d_basis.LC(f)
sage.rings.polynomial.toy_d_basis.LM(f)
sage.rings.polynomial.toy_d_basis.d_basis(F, strat=True)

Return the \(d\)-basis for the Ideal \(F\) as defined in [BW1993].

INPUT:
- \(F\) – an ideal
- \(\text{strat}\) – use update strategy (default: True)

EXAMPLES:

sage: from sage.rings.polynomial.toy_d_basis import d_basis
d_basis
sage: A.<x,y> = PolynomialRing(ZZ, 2)
sage: \(f = -y^2 - y + x^3 + 7x + 1\)
sage: fx = f.derivative(x)
sage: fy = f.derivative(y)
sage: I = A.ideal([f,fx,fy])
sage: gb = d_basis(I); gb
sage.rings.polynomial.toy_d_basis.gpol(g1, g2)

Return the G-Polynomial of g_1 and g_2.

Let a_it be \(LT(g_i) \), \(a = a_i * c_i + a_j * c_j \) with \(a = GCD(a_i, a_j) \), and \(s_i = t/t_i \) with \(t = LCM(t_i, t_j) \). Then the G-Polynomial is defined as: \(c_1s_1g_1 - c_2s_2g_2 \).

INPUT:
- \(g_1 \) – polynomial
- \(g_2 \) – polynomial

EXAMPLES:

```python
sage: from sage.rings.polynomial.toy_d_basis import gpol
sage: P.<x, y, z> = PolynomialRing(IntegerRing(), 3, order='lex')
sage: f = x^2 - 1
sage: g = 2*x*y - z
sage: gpol(f, g)
x^2*y - y
```

sage.rings.polynomial.toy_d_basis.select(P)

The normal selection strategy.

INPUT:
- \(P \) – a list of critical pairs

OUTPUT:
- an element of \(P \)

EXAMPLES:
sage: from sage.rings.polynomial.toy_d_basis import select
sage: A.<x,y> = PolynomialRing(ZZ, 2)
sage: f = -y^2 - y + x^3 + 7*x + 1
sage: fx = f.derivative(x)
sage: fy = f.derivative(y)
sage: G = [f, fx, fy]
sage: B = set((f1, f2) for f1 in G for f2 in G if f1 != f2)
sage: select(B)
(-2*y - 1, 3*x^2 + 7)

sage.rings.polynomial.toy_d_basis.spol(g1, g2)

Return the S-Polynomial of \(g_1 \) and \(g_2 \).

Let \(a_i t_i \) be \(\text{LT}(g_i) \), \(b_i = a_i / a_i \) with \(a = \text{LCM}(a_i, a_j) \), and \(s_i = t_i / t_i \) with \(t = \text{LCM}(t_i, t_j) \). Then the S-Polynomial is defined as: \(b_1 s_1 g_1 - b_2 s_2 g_2 \).

INPUT:

- \(g1 \) – polynomial
- \(g2 \) – polynomial

EXAMPLES:

sage: from sage.rings.polynomial.toy_d_basis import spol
sage: P.<x, y, z> = PolynomialRing(IntegerRing(), 3, order='lex')
sage: f = x^2 - 1
sage: g = 2*x*y - z
sage: spol(f,g)
x*z - 2*y

sage.rings.polynomial.toy_d_basis.update(G, B, h)

Update \(G \) using the list of critical pairs \(B \) and the polynomial \(h \) as presented in [BW1993], page 230. For this, Buchberger’s first and second criterion are tested.

This function uses the Gebauer-Moeller Installation.

INPUT:
• G – an intermediate Groebner basis
• B – a list of critical pairs
• h – a polynomial

OUTPUT:
G, B where G and B are updated

EXAMPLES:

```
sage: from sage.rings.polynomial.toy_d_basis import update
sage: A.<x,y> = PolynomialRing(ZZ, 2)
sage: G = set([3*x^2 + 7, 2*y + 1, x^3 - y^2 + 7*x - y + 1])
sage: B = set()
sage: h = x^2*y - x^2 + y - 3
sage: update(G,B,h)
{(2*y + 1, 3*x^2 + 7, x^2*y - x^2 + y - 3, x^3 - y^2 + 7*x - y + 1),
 (x^2*y - x^2 + y - 3, 3*x^2 + 7),
 (x^2*y - x^2 + y - 3, x^3 - y^2 + 7*x - y + 1))
```

```
>>> from sage.all import *
>>> from sage.rings.polynomial.toy_d_basis import update
>>> A = PolynomialRing(ZZ, Integer(2), names=(x, y,)); (x, y,)=A._first_˓→ngens(2)
>>> G = set([Integer(3)*x**Integer(2) + Integer(7), Integer(2)*y + Integer(1), x^Integer(3) - y^Integer(2) + Integer(7)*x - y + Integer(1)])
>>> B = set()
>>> h = x**Integer(2)*y - x**Integer(2) + y - Integer(3)
>>> update(G,B,h)
{(2*y + 1, 3*x^2 + 7, x^2*y - x^2 + y - 3, x^3 - y^2 + 7*x - y + 1),
 (x^2*y - x^2 + y - 3, 3*x^2 + 7),
 (x^2*y - x^2 + y - 3, x^3 - y^2 + 7*x - y + 1))
```
4.1 Fraction Field of Integral Domains

AUTHORS:

- William Stein (with input from David Joyner, David Kohel, and Joe Wetherell)
- Burcin Erocal
- Julian Rüth (2017-06-27): embedding into the field of fractions and its section

EXAMPLES:

Quotienting is a constructor for an element of the fraction field:

```sage
sage: R.<x> = QQ[]
sage: (x^2-1)/(x+1)
x - 1
sage: parent((x^2-1)/(x+1))
Fraction Field of Univariate Polynomial Ring in x over Rational Field
```

The GCD is not taken (since it doesn't converge sometimes) in the inexact case:

```sage
sage: # needs sage.rings.real_mpfr
sage: Z.<z> = CC[]
sage: I = CC.gen()
sage: (1+I*z)/(z+0.1*I)
(z + 1.00000000000000 + 0.00000000000000*I)/(z + 0.10000000000000000000*I)
sage: (1+I*z)/(z+1.1)
(I*z + 1.00000000000000)/(z + 1.10000000000000)
```

(continues on next page)
sage.rings.fraction_field.FractionField\(R, names=None\)

Create the fraction field of the integral domain \(R\).

INPUT:

- \(R\) – an integral domain
- \(names\) – ignored

EXAMPLES:

We create some example fraction fields:

```
sage: FractionField(IntegerRing())
Rational Field
sage: FractionField(PolynomialRing(RationalField(),'x'))
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: FractionField(PolynomialRing(IntegerRing(),'x'))
Fraction Field of Univariate Polynomial Ring in x over Integer Ring
sage: FractionField(PolynomialRing(RationalField(),2,'x'))
Fraction Field of Multivariate Polynomial Ring in x0, x1 over Rational Field
```

Dividing elements often implicitly creates elements of the fraction field:

```
sage: x = PolynomialRing(RationalField(), 'x').gen()
sage: f = x/(x+1)
sage: g = x**3/(x+1)
sage: f/g
1/x^2
sage: g/f
x^2
```

The input must be an integral domain:
sage: Frac(Integers(4))
Traceback (most recent call last):
...
TypeError: R must be an integral domain

```python
>>> from sage.all import *

>>> Frac(Integers(Integer(4)))
Traceback (most recent call last):
...  
TypeError: R must be an integral domain
```

class sage.rings.fraction_field.FractionFieldEmbedding
Bases: DefaultConvertMap_unique

The embedding of an integral domain into its field of fractions.

EXAMPLES:

sage: R.<x> = QQ[]

```python
sage: f = R.fraction_field().coerce_map_from(R); f
Coercion map:
  From: Univariate Polynomial Ring in x over Rational Field
  To:   Fraction Field of Univariate Polynomial Ring in x over Rational Field
```

```python
>>> from sage.all import *

>>> R = QQ['x']; (x,) = R._first_ngens(1)

```python
>>> f = R.fraction_field().coerce_map_from(R); f
Coercion map:
 From: Univariate Polynomial Ring in x over Rational Field
 To: Fraction Field of Univariate Polynomial Ring in x over Rational Field
```

```python
is_injective()
Return whether this map is injective.

EXAMPLES:

The map from an integral domain to its fraction field is always injective:

```python
sage: R.<x> = QQ[]

```python
sage: R.fraction_field().coerce_map_from(R).is_injective()
```
```
True
```

```python
>>> from sage.all import *

```python
>>> R = QQ['x']; (x,) = R._first_ngens(1)

```python
>>> R.fraction_field().coerce_map_from(R).is_injective()
```
```
True
```

```python
is_surjective()
Return whether this map is surjective.

EXAMPLES:

```python
sage: R.<x> = QQ[]

```python
sage: R.fraction_field().coerce_map_from(R).is_surjective()
```
```
False
```
section()

Return a section of this map.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = R.fraction_field().coerce_map_from(R).section(); f
Section map:
 From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
 To: Univariate Polynomial Ring in x over Rational Field
```

class sage.rings.fraction_field.FractionFieldEmbeddingSection

Bases: Section

The section of the embedding of an integral domain into its field of fractions.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: f = R.fraction_field().coerce_map_from(R).section(); f
Section map:
 From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
 To: Univariate Polynomial Ring in x over Rational Field
```

class sage.rings.fraction_field.FractionField_1poly_field

Bases: FractionField_generic

The fraction field of a univariate polynomial ring over a field.

Many of the functions here are included for coherence with number fields.

class_number()

Here for compatibility with number fields and function fields.

EXAMPLES:
sage: R.<t> = GF(5)[]; K = R.fraction_field()
sage: K.class_number()
1

>>> from sage.all import *
>>> R = GF(Integer(5))['t']; (t,) = R._first_ngens(1); K = R.fraction_field()
>>> K.class_number()
1

**function_field()**

Return the isomorphic function field.

**EXAMPLES:**

```
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: K.function_field()
Rational function field in t over Finite Field of size 5
```

```
>>> from sage.all import *
>>> R = GF(Integer(5))['t']; (t,) = R._first_ngens(1)
>>> K = R.fraction_field()
>>> K.function_field()
Rational function field in t over Finite Field of size 5
```

See also:

```
sage.rings.function_field.RationalFunctionField.field()
```

**maximal_order()**

Return the maximal order in this fraction field.

**EXAMPLES:**

```
sage: K = FractionField(GF(5)['t'])
sage: K.maximal_order()
Univariate Polynomial Ring in t over Finite Field of size 5
```

```
>>> from sage.all import *
>>> K = FractionField(GF(Integer(5))['t'])
>>> K.maximal_order()
Univariate Polynomial Ring in t over Finite Field of size 5
```

**ring_of_integers()**

Return the ring of integers in this fraction field.

**EXAMPLES:**

```
sage: K = FractionField(GF(5)['t'])
sage: K.ring_of_integers()
Univariate Polynomial Ring in t over Finite Field of size 5
```

```
>>> from sage.all import *
>>> K = FractionField(GF(Integer(5))['t'])
>>> K.ring_of_integers()
Univariate Polynomial Ring in t over Finite Field of size 5
```
class sage.rings.fraction_field.FractionField_generic(R, element_class=<class 'sage.rings.fraction_field_element.FractionFieldElement'>, category=Category of quotient fields)

Bases: Field

The fraction field of an integral domain.

base_ring()

Return the base ring of self.

This is the base ring of the ring which this fraction field is the fraction field of.

EXAMPLES:

```sage
R = Frac(ZZ['t'])
sage: R.base_ring()
Integer Ring
```

```python
>>> from sage.all import *
>>> R = Frac(ZZ['t'])
>>> R.base_ring()
Integer Ring
```

classification()

Return the characteristic of this fraction field.

EXAMPLES:

```sage
R = Frac(ZZ['t'])
sage: R.base_ring()
Integer Ring
R = Frac(ZZ['t']); R.characteristic()
0
R = Frac(GF(5)['w']); R.characteristic()
5
```

```python
>>> from sage.all import *
>>> R = Frac(ZZ['t'])
>>> R.base_ring()
>>> R = Frac(ZZ['t']); R.characteristic()
0
>>> R = Frac(GF(Integer(5))['w']); R.characteristic()
5
```

construction()

EXAMPLES:

```sage
Frac(ZZ['x']).construction()
(FractionField, Univariate Polynomial Ring in x over Integer Ring)
K = Frac(GF(3)['t'])
sage: f, R = K.construction()
sage: f(R)
Fraction Field of Univariate Polynomial Ring in t
over Finite Field of size 3
```

(continues on next page)
\begin{verbatim}
>>> f(R) == K
True

>>> from sage.all import *

>>> Frac(ZZ['x']).construction()
(FractionField, Univariate Polynomial Ring in x over Integer Ring)

>>> K = Frac(GF(Integer(3))['t'])

>>> f, R = K.construction()

>>> f(R)
Fraction Field of Univariate Polynomial Ring in t
    over Finite Field of size 3

>>> f(R) == K
True
\end{verbatim}

gen \((i=0)\)

Return the \(i\)-th generator of \self.

EXAMPLES:

\begin{verbatim}
>>> R = Frac(PolynomialRing(QQ,'z',Integer(10))); R
Fraction Field of Multivariate Polynomial Ring
    in z0, z1, z2, z3, z4, z5, z6, z7, z8, z9 over Rational Field

>>> R.0
z0

>>> R.gen(3)
z3

>>> R.3
z3

>>> from sage.all import *

>>> R = Frac(PolynomialRing(QQ,'z','10')); R
Fraction Field of Multivariate Polynomial Ring
    in z0, z1, z2, z3, z4, z5, z6, z7, z8, z9 over Rational Field

>>> R.gen(0)
z0

>>> R.gen(Integer(3))
z3

>>> R.gen(3)
z3
\end{verbatim}

is_exact()

Return if \self is exact which is if the underlying ring is exact.

EXAMPLES:

\begin{verbatim}
>>> Frac(ZZ['x']).is_exact()
True

>>> Frac(CDF['x']).is_exact()
False

>>> from sage.all import *

>>> Frac(ZZ['x']).is_exact()
True

>>> Frac(CDF['x']).is_exact()
False
\end{verbatim}
is_field \(proof=True\)

Return True, since the fraction field is a field.

EXAMPLES:

```python
sage: Frac(ZZ).is_field()
True

>>> from sage.all import *
>>> Frac(ZZ).is_field()
True
```

is_finite()

Tells whether this fraction field is finite.

**Note:** A fraction field is finite if and only if the associated integral domain is finite.

EXAMPLES:

```python
sage: Frac(QQ['a','b','c']).is_finite()
False

>>> from sage.all import *
>>> Frac(QQ['a','b','c']).is_finite()
False
```

ngens()

This is the same as for the parent object.

EXAMPLES:

```python
sage: R = Frac(PolynomialRing(QQ,'z',10)); R
Fraction Field of Multivariate Polynomial Ring
in z0, z1, z2, z3, z4, z5, z6, z7, z8, z9 over Rational Field
sage: R.ngens()
10

>>> from sage.all import *
>>> R = Frac(PolynomialRing(QQ,'z',Integer(10))); R
Fraction Field of Multivariate Polynomial Ring
in z0, z1, z2, z3, z4, z5, z6, z7, z8, z9 over Rational Field
>>> R.ngens()
10
```

random_element (*args, **kwds)

Return a random element in this fraction field.

The arguments are passed to the random generator of the underlying ring.

EXAMPLES:
sage: F = ZZ['x'].fraction_field()
sage: F.random_element()  # random
(2*x - 8)/(-x^2 + x)

>>> from sage.all import *

>>> F = ZZ['x'].fraction_field()

>>> F.random_element()  # random
(2*x - 8)/(-x^2 + x)

sage: f = F.random_element(degree=5)
sage: f.numerator().degree() == f.denominator().degree()
True

sage: f.denominator().degree() <= 5
True

sage: while f.numerator().degree() != 5:
    ....:     f = F.random_element(degree=5)

>>> from sage.all import *

>>> f = F.random_element(degree=Integer(5))

>>> f.numerator().degree() == f.denominator().degree()
True

>>> f.denominator().degree() <= Integer(5)
True

>>> while f.numerator().degree() != Integer(5):
    ...     f = F.random_element(degree=Integer(5))

ring()

Return the ring that this is the fraction field of.

EXAMPLES:

sage: R = Frac(QQ['x,y'])
sage: R
Fraction Field of Multivariate Polynomial Ring in x, y over Rational Field

sage: R.ring()
Multivariate Polynomial Ring in x, y over Rational Field

some_elements()

Return some elements in this field.

EXAMPLES:

sage: R.<x> = QQ[]
sage: R.fraction_field().some_elements()
[0, 1, x, 2*x, x/(x^2 + 2*x + 1),

(continues on next page)
1/x^2,
...
(2*x^2 + 2)/(x^2 + 2*x + 1),
(2*x^2 + 2)/x^3,
(2*x^2 + 2)/(x^2 - 1),
2]

```python
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> R.fraction_field().some_elements()
[0,
 1,
 x,
 2*x,
 x/(x^2 + 2*x + 1),
 1/x^2,
...
(2*x^2 + 2)/(x^2 + 2*x + 1),
(2*x^2 + 2)/x^3,
(2*x^2 + 2)/(x^2 - 1),
2]
```

```
sage.rings.fraction_field.is_FractionField(x)

Test whether or not x inherits from FractionField_generic.

EXAMPLES:
```
```
sage: from sage.rings.fraction_field import is_FractionField
sage: is_FractionField(Frac(ZZ['x']))
True
sage: is_FractionField(QQ)
False
```
```
```
4.2 Fraction Field Elements

AUTHORS:

- William Stein (input from David Joyner, David Kohel, and Joe Wetherell)
- Sebastian Pancratz (2010-01-06): Rewrite of addition, multiplication and derivative to use Henrici’s algorithms [Hor1972]

class sage.rings.fraction_field_element.FractionFieldElement

Bases: FieldElement

EXAMPLES:

```python
sage: K = FractionField(PolynomialRing(QQ, 'x'))
sage: K
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: loads(K.dumps()) == K
True
sage: x = K.gen()
sage: f = (x^3 + x)/(17 - x^19); f
(-x^3 - x)/(x^19 - 17)
sage: loads(f.dumps()) == f
True
```

denominator()

Return the denominator of self.

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: f = x/y + 1; f
(x + y)/y
sage: f.denominator()
y
```

is_one()

Return True if this element is equal to one.

EXAMPLES:

```python
sage: from sage.all import *
sage: R = ZZ['x', 'y']; (x, y,) = R._first_ngens(2)
sage: f = x/y + Integer(1); f
(x + y)/y
sage: f.denominator()
y
```
EXAMPLES:

```python
sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: (x/x).is_one()
 True
sage: (x/y).is_one()
 False
```

```python
>>> from sage.all import *
>>> F = ZZ['x,y'].fraction_field()
>>> x,y = F.gens()
>>> (x/x).is_one()
 True
>>> (x/y).is_one()
 False
```

`is_square (root=False)`

Return whether or not `self` is a perfect square.

If the optional argument `root` is `True`, then also returns a square root (or `None`, if the fraction field element is not square).

**INPUT:**

- `root` – whether or not to also return a square root (default: `False`)

**OUTPUT:**

- `bool` – whether or not a square
- `object` – (optional) an actual square root if found, and `None` otherwise.

**EXAMPLES:**

```python
sage: R.<t> = QQ[]
sage: (1/t).is_square()
 False
sage: (1/t^6).is_square()
 True
sage: ((1+t)^4/t^6).is_square()
 True
sage: (4*(1+t)^4/t^6).is_square()
 True
sage: (2*(1+t)^4/t^6).is_square()
 False
sage: ((1+t)/t^6).is_square()
 False
sage: (4*(1+t)^4/t^6).is_square(root=True)
 (True, (2*t^2 + 4*t + 2)/t^3)
```
Polynomials, Release 10.4

(continued from previous page)

```python
sage: (0/x).is_square()
True
```

```python
>>> from sage.all import *
>>> R = QQ['t']; (t,) = R._first_ngens(1)
>>> (Integer(1)/t).is_square()
False
>>> (Integer(1)/t**Integer(6)).is_square()
True
>>> ((Integer(1)+t)**Integer(4)/t**Integer(6)).is_square()
True
>>> (Integer(4)*(Integer(1)+t)**Integer(4)/t**Integer(6)).is_square()
True
>>> (Integer(2)*(Integer(1)+t)**Integer(4)/t**Integer(6)).is_square()
False
>>> ((Integer(1)+t)/t**Integer(6)).is_square()
False
>>> (Integer(4)*(Integer(1)+t)**Integer(4)/t**Integer(6)).is_square(root=True)
(True, (2*t^2 + 4*t + 2)/t^3)
>>> (Integer(2)*(Integer(1)+t)**Integer(4)/t**Integer(6)).is_square(root=True)
(False, None)
```

```python
R = QQ['x']; (x,) = R._first_ngens(1)
a = Integer(2)*(x+Integer(1))**Integer(2) / (Integer(2)*(x-
 Integer(1)))**Integer(2)); a
(x^2 + 2*x + 1)/(x^2 - 2*x + 1)
a.is_square()
True
>>> (Integer(0)/x).is_square()
True
```

```
is_zero()
```

Return True if this element is equal to zero.

EXAMPLES:

```python
sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: t = F(0)/x
sage: t.is_zero()
True
sage: u = 1/x - 1/x
sage: u.is_zero()
True
sage: u.parent() is F
True
```

```python
>>> from sage.all import *
>>> F = ZZ['x,y'].fraction_field()
>>> x,y = F.gens()
>>> t = F(Integer(0))/x
>>> t.is_zero()
True
>>> u = Integer(1)/x - Integer(1)/x
>>> u.is_zero()
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

True
>>> u.parent() is F
True

nth_root \((n)\)

Return a \(n\)-th root of this element.

EXAMPLES:

```python
sage: R = QQ['t'].fraction_field()
sage: t = R.gen()
sage: p = (t+1)^3 / (t^2+t-1)^3
sage: p.nth_root(3)
(t + 1)/(t^2 + t - 1)

sage: p = (t+1) / (t-1)
sage: p.nth_root(2)
Traceback (most recent call last):
 ... ValueError: not a 2nd power
```

```python
>>> from sage.all import *
>>> R = QQ['t'].fraction_field()
>>> t = R.gen()
>>> p = (t+Integer(1))^3 / (t^2+t-Integer(1))^3
>>> p.nth_root(Integer(3))
(t + 1)/(t^2 + t - 1)

>>> p = (t+Integer(1)) / (t-Integer(1))
>>> p.nth_root(Integer(2))
Traceback (most recent call last):
 ... ValueError: not a 2nd power
```

numerator()

Return the numerator of self.

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: f = x/y + 1; f
(x + y)/y
sage: f.numerator()
x + y

```
Additionally, depending on the base ring, the leading coefficients of the numerator and the denominator may be normalized to 1.

Automatically called for exact rings, but because it may be numerically unstable for inexact rings it must be called manually in that case.

EXAMPLES:

```python
sage: R.<x> = RealField(10)[]
needs sage.rings.real_mpfr
sage: f = (x^2+2*x+1)/(x+1); f
needs sage.rings.real_mpfr
(x^2 + 2.0*x + 1.0)/(x + 1.0)
sage: f.reduce(); f
needs sage.rings.real_mpfr
x + 1.0
```

\[
\text{specialization}(D=None, \phi=None)
\]

Returns the specialization of a fraction element of a polynomial ring

\[
\text{subs}(\text{in\_dict}=None, *\text{args}, **\text{kwds})
\]

Substitute variables in the numerator and denominator of \text{self}.

If a dictionary is passed, the keys are mapped to generators of the parent ring. Otherwise, the arguments are transmitted unchanged to the method \text{subs} of the numerator and the denominator.

EXAMPLES:

```python
sage: x, y = PolynomialRing(ZZ, 2, 'xy').gens()
sage: f = x^2 + y + x^2*y^2 + 5
sage: (1/f).subs(x=5)
1/(25*y^2 + y + 30)
```

\[
\text{valuation}(v=None)
\]

Return the valuation of \text{self}, assuming that the numerator and denominator have valuation functions defined on them.

EXAMPLES:

```python
sage: x = PolynomialRing(RationalField(),'x').gen()
sage: f = (x^3 + x)/(x^2 - 2*x^3)
```
(-1/2*x^2 - 1/2)/(x^2 - 1/2*x)
sage: f.valuation()
-1
sage: f.valuation(x^2 + 1)
1

>>> from sage.all import *
>>> x = PolynomialRing(RationalField(), 'x').gen()
>>> f = (x**Integer(3) + x)/(x**Integer(2) - Integer(2)*x**Integer(3))
>>> f
(-1/2*x^2 - 1/2)/(x^2 - 1/2*x)
>>> f.valuation()
-1
>>> f.valuation(x**Integer(2) + Integer(1))
1

class sage.rings.fraction_field_element.FractionFieldElement_1poly_field

Bases: FractionFieldElement

A fraction field element where the parent is the fraction field of a univariate polynomial ring over a field.

Many of the functions here are included for coherence with number fields.

is_integral()

Returns whether this element is actually a polynomial.

EXAMPLES:

sage: R.<t> = QQ[]
sage: elt = (t^2 + t - 2) / (t + 2); elt
# == (t + 2)*(t - 1)/(t + 2)
t - 1
sage: elt.is_integral()
True
sage: elt = (t^2 - t) / (t+2); elt
# == t*(t - 1)/(t + 2)
(t^2 - t)/(t + 2)
sage: elt.is_integral()
False

>>> from sage.all import *
>>> R = QQ['t']; (t,) = R._first_ngens(1)
>>> elt = (t**Integer(2) + t - Integer(2)) / (t + Integer(2)); elt
# == (t + ... -2)*(t - 1)/(t + 2)
t - 1
>>> elt.is_integral()
True
>>> elt = (t**Integer(2) - t) / (t+Integer(2)); elt
# == t*(t - 1)/(t + 2)
(t^2 - t)/(t + 2)
>>> elt.is_integral()
False

reduce()

Pick a normalized representation of self.

In particular, for any a == b, after normalization they will have the same numerator and denominator.

EXAMPLES:

For univariate rational functions over a field, we have:
```python
sage: R.<x> = QQ[]
sage: (2 + 2*x) / (4*x) # indirect doctest
(1/2*x + 1/2)/x

>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> (Integer(2) + Integer(2)*x) / (Integer(4)*x) # indirect doctest
(1/2*x + 1/2)/x

Compare with:

sage: R.<x> = ZZ[]
sage: (2 + 2*x) / (4*x)
(x + 1)/(2*x)

>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> (Integer(2) + Integer(2)*x) / (Integer(4)*x)
(x + 1)/(2*x)

support()

Returns a sorted list of primes dividing either the numerator or denominator of this element.

EXAMPLES:

sage: R.<t> = QQ[]
sage: h = (t^14 + 2*t^12 - 4*t^11 - 8*t^9 + 6*t^8 + 12*t^6 - 4*t^5
 : - 8*t^3 + t^2 + 2)/(t^6 + 6*t^5 + 9*t^4 - 2*t^2 - 12*t - 18)
sage: h.support() # needs sage.libs.pari
[t - 1, t + 3, t^2 + 2, t^2 + t + 1, t^4 - 2]

sage.rings.fraction_field_element.is_FractionFieldElement(x)

Return whether or not x is a FractionFieldElement.

EXAMPLES:

sage: from sage.rings.fraction_field_element import is_FractionFieldElement
sage: R.<x> = ZZ[]
sage: is_FractionFieldElement(x/2)
doctest:warning...
DeprecationWarning: The function is_FractionFieldElement is deprecated; use 'isinstance(..., FractionFieldElement)' instead.
```
Polynomials, Release 10.4

See https://github.com/sagemath/sage/issues/38128 for details.
False
sage: is_FractionFieldElement(2/x)
True
sage: is_FractionFieldElement(1/3)
False

>>> from sage.all import *
>>> from sage.rings.fraction_field_element import is_FractionFieldElement
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> is_FractionFieldElement(x/Integer(2))
doctest:warning...
DeprecationWarning: The function is_FractionFieldElement is deprecated;
use 'isinstance(..., FractionFieldElement)' instead.
See https://github.com/sagemath/sage/issues/38128 for details.
False
>>> is_FractionFieldElement(Integer(2)/x)
True
>>> is_FractionFieldElement(Integer(1)/Integer(3))
False

sage.rings.fraction_field_element.make_element(parent, numerator, denominator)

Used for unpickling FractionFieldElement objects (and subclasses).

EXAMPLES:

sage: from sage.rings.fraction_field_element import make_element
sage: R = ZZ['x,y']
sage: x,y = R.gens()
sage: F = R.fraction_field()
sage: make_element(F, 1 + x, 1 + y)
(x + 1)/(y + 1)

>>> from sage.all import *
>>> from sage.rings.fraction_field_element import make_element
>>> R = ZZ['x,y']
>>> x,y = R.gens()
>>> F = R.fraction_field()
>>> make_element(F, Integer(1) + x, Integer(1) + y)
(x + 1)/(y + 1)

sage.rings.fraction_field_element.make_element_old(parent, cdict)

Used for unpickling old FractionFieldElement pickles.

EXAMPLES:

sage: from sage.rings.fraction_field_element import make_element_old
sage: R.<x,y> = ZZ[]
sage: F = R.fraction_field()
sage: make_element_old(F, {_FractionFieldElement__numerator: x + y, ....:    _FractionFieldElement__denominator: x - y})
(x + y)/(x - y)

>>> from sage.all import *
>>> from sage.rings.fraction_field_element import make_element_old
(continues on next page)
4.3 Univariate rational functions over prime fields

class sage.rings.fraction_field_FpT.FpT(R, names=None)

Bases: FractionField_1poly_field

This class represents the fraction field $\mathbb{F}_p(T)$ for $2 < p < \sqrt{2^{31} - 1}$.

EXAMPLES:

sage: R.<T> = GF(71)[]
sage: K = FractionField(R); K
Fraction Field of Univariate Polynomial Ring in T over Finite Field of size 71
sage: 1-1/T
(T + 70)/T
sage: parent(1-1/T) is K
True

INTEGER_LIMIT = 46341

iter (bound=None, start=None)

EXAMPLES:

sage: from sage.rings.fraction_field_FpT import *
sage: R.<t> = FpT(GF(5)['t'])
sage: list(R.iter(2))[350:355]
[(t^2 + t + 1)/(t + 2),
 (t^2 + t + 2)/(t + 2),
 (t^2 + t + 4)/(t + 2),
 (t^2 + 2*t + 1)/(t + 2),
 (t^2 + 2*t + 2)/(t + 2)]

(continues on next page)
class sage.rings.fraction_field_FpT.FpTElement

    Bases: FieldElement

    An element of an \(\mathbb{F}_p(T)\) fraction field.

    \textbf{denom}()

    Return the denominator of this element, as an element of the polynomial ring.

    EXAMPLES:

    \begin{verbatim}
    sage: K = GF(11)['t'].fraction_field()
    sage: t = K.gen(0); a = (t + 1/t)^3 - 1
    sage: a.denom()
    t^3
    >>> from sage.all import *
    >>> K = GF(Integer(11))['t'].fraction_field()
    >>> t = K.gen(Integer(0)); a = (t + Integer(1)/t)**Integer(3) - Integer(1)
    >>> a.denom()
    t^3
    \end{verbatim}

    \textbf{denominator}()

    Return the denominator of this element, as an element of the polynomial ring.

    EXAMPLES:

    \begin{verbatim}
    sage: K = GF(11)['t'].fraction_field()
    sage: t = K.gen(0); a = (t + 1/t)^3 - 1
    sage: a.denominator()
    t^3
    >>> from sage.all import *
    >>> K = GF(Integer(11))['t'].fraction_field()
    >>> t = K.gen(Integer(0)); a = (t + Integer(1)/t)**Integer(3) - Integer(1)
    >>> a.denominator()
    t^3
    \end{verbatim}

    \textbf{factor}()

    EXAMPLES:

    \begin{verbatim}
    sage: K = Frac(GF(5)['t'])
    sage: t = K.gen()
    sage: f = 2 * (t+1) * (t^2+t+1)^2 / (t-1)
    sage: factor(f)
    (2) * (t + 4)^-1 * (t + 1) * (t^2 + t + 1)^2
    >>> from sage.all import *
    >>> K = Frac(GF(Integer(5))['t'])
    >>> t = K.gen()
    >>> f = Integer(2) * (t+Integer(1)) *...
    (...) * (t**Integer(2)+t+Integer(1))**Integer(2) / (t-Integer(1))
    >>> factor(f)
    (2) * (t + 4)^-1 * (t + 1) * (t^2 + t + 1)^2
    \end{verbatim}

Chapter 4. Rational Functions
is_square()  
Return True if this element is the square of another element of the fraction field.

EXAMPLES:

```
sage: K = GF(13)[‘t’].fraction_field(); t = K.gen()
sage: t.is_square()
False
sage: (1/t^2).is_square()
True
sage: K(0).is_square()
True
```

next()  
Iterate through all polynomials, returning the “next” polynomial after this one.

The strategy is as follows:

- We always leave the denominator monic.
- We progress through the elements with both numerator and denominator monic, and with the denominator less than the numerator. For each such, we output all the scalar multiples of it, then all of the scalar multiples of its inverse.
- So if the leading coefficient of the numerator is less than \( p - 1 \), we scale the numerator to increase it by 1.
- Otherwise, we consider the multiple with numerator and denominator monic.
  - If the numerator is less than the denominator (lexicographically), we return the inverse of that element.
  - If the numerator is greater than the denominator, we invert, and then increase the numerator (remaining monic) until we either get something relatively prime to the new denominator, or we reach the new denominator. In this case, we increase the denominator and set the numerator to 1.

EXAMPLES:

```
sage: from sage.rings.fraction_field_FpT import *
sage: R.<t> = FpT(GF(3)[‘t’])
sage: a = R(0)
sage: for _ in range(30):
 : a = a.next()
 : print(a)
1
2
1/t
2/t
t
2*t
1/(t + 1)
```
\[
\begin{align*}
2/(t + 1) \\
t + 1 \\
2*t + 2 \\
t/(t + 1) \\
2*t/(t + 1) \\
(t + 1)/t \\
(2*t + 2)/t \\
1/(t + 2) \\
2/(t + 2) \\
t + 2 \\
2*t + 1 \\
t/(t + 2) \\
2*t/(t + 2) \\
(t + 2)/t \\
(2*t + 2)/t \\
(t + 2)/(t + 1) \\
(2*t + 1)/(t + 1) \\
1/t^2 \\
2/t^2 \\
t^2 \\
2*t^2 \\
\end{align*}
\]

```python
>>> from sage.all import *
>>> from sage.rings.fraction_field_FpT import *
>>> R = FpT(GF(Integer(3))['t'], names=('t',)); (t,) = R._first_ngens(1)
>>> a = R(Integer(0))
>>> for _ in range(Integer(30)):
... a = a.next()
... print(a)
1
2
1/t
2/t
t
2*t
1/(t + 1)
2/(t + 1)
t + 1
2*t + 2 \\
t/(t + 1) \\
2*t/(t + 1) \\
(t + 1)/t \\
(2*t + 2)/t \\
1/(t + 2) \\
2/(t + 2) \\
t + 2 \\
2*t + 1 \\
t/(t + 2) \\
2*t/(t + 2) \\
(t + 2)/t \\
(2*t + 1)/t \\
(t + 1)/(t + 2) \\
(2*t + 2)/(t + 2) \\
(t + 2)/(t + 1) \\
2*t^2
```

(continues on next page)
numerator()

Return the numerator of this element, as an element of the polynomial ring.

EXAMPLES:

```python
sage: K = GF(11)['t'].fraction_field()
sage: t = K.gen(0); a = (t + 1/t)^3 - 1
sage: a.numerator()
t^6 + 3*t^4 + 10*t^3 + 3*t^2 + 1
```

```python
>>> from sage.all import *
>>> K = GF(Integer(11))['t'].fraction_field()
>>> t = K.gen(Integer(0)); a = (t + Integer(1)/t)**Integer(3) - Integer(1)
>>> a.numerator()
t^6 + 3*t^4 + 10*t^3 + 3*t^2 + 1
```

sqrt (extend=True, all=False)

Return the square root of this element.

INPUT:

- extend – bool (default: True); if True, return a square root in an extension ring, if necessary. Otherwise, raise a ValueError if the square is not in the base ring.
- all – bool (default: False); if True, return all square roots of self, instead of just one.

EXAMPLES:

```python
sage: from sage.rings.fraction_field_FpT import *
sage: K = GF(7)['t'].fraction_field(); t = K.gen(0)
sage: p = (t + 2)^2/(3*t^3 + 1)^4
sage: p.sqrt()
(3*t + 6)/(t^6 + 3*t^3 + 4)
sage: p.sqrt()^2 == p
True
```
```python
>>> from sage.all import *
>>> from sage.rings.fraction_field_FpT import *
>>> K = GF(Integer(7))[t].fraction_field(); t = K.gen(Integer(0))
>>> p = (t + Integer(2))**Integer(2)/(Integer(3)*t**Integer(3) +
 Integer(1))**Integer(4)
>>> p.sqrt()
(3*t + 6)/(t^6 + 3*t^3 + 4)
>>> p.sqrt()**Integer(2) == p
True
```

**subs**(in_dict=None, *args, **kwds)

EXAMPLES:
```
sage: K = Frac(GF(11)[t])
sage: t = K.gen()
sage: f = (t+1)/(t-1)
sage: f.subs(t=2)
3
sage: f.subs(X=2)
(t + 1)/(t + 10)
```

**valuation**(v)

Return the valuation of self at v.

EXAMPLES:
```
sage: R.<t> = GF(5)[]
sage: f = (t+1)^2 * (t^2+t+1) / (t-1)^3
sage: f.valuation(t+1)
2
sage: f.valuation(t-1)
-3
sage: f.valuation(t)
0
```

**class** sage.rings.fraction_field_FpT.FpT_Fp_section

Bases: Section
This class represents the section from GF(p)(t) back to GF(p)[t]

EXAMPLES:

```
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = GF(5).convert_map_from(K); f
Section map:
 From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
 To: Finite Field of size 5
sage: type(f)
<class 'sage.rings.fraction_field_FpT.FpT_Fp_section'>

>>> from sage.all import *
>>> R = GF(Integer(5))[t]; (t,) = R._first_ngens(1)
>>> K = R.fraction_field()
>>> f = GF(Integer(5)).convert_map_from(K); f
Section map:
 From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
 To: Finite Field of size 5
>>> type(f)
<class 'sage.rings.fraction_field_FpT.FpT_Fp_section'>
```

**Warning:** Comparison of FpT_Fp_section objects is not currently implemented. See Issue #23469.

```
sage: fprime = loads(dumps(f))
sage: fprime == f
False
sage: fprime(3) == f(3)
True

>>> from sage.all import *
>>> fprime = loads(dumps(f))
>>> fprime == f
False
>>> fprime(Integer(3)) == f(Integer(3))
True
```

```
class sage.rings.fraction_field_FpT.FpT_Polyring_section
Bases: Section

This class represents the section from GF(p)(t) back to GF(p)[t]

EXAMPLES:

```
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = R.convert_map_from(K); f
Section map:
  From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
  To:   Univariate Polynomial Ring in t over Finite Field of size 5
```
```
sage: type(f)
<class 'sage.rings.fraction_field_FpT.FpT_Polyring_section'>

>>> from sage.all import *

>>> R = GF(Integer(5))[t]; (t,) = R._first_ngens(1)
>>> K = R.fraction_field()

>>> f = R.convert_map_from(K); f
Section map:
  From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
  To:  Univariate Polynomial Ring in t over Finite Field of size 5

>>> type(f)
<class 'sage.rings.fraction_field_FpT.FpT_Polyring_section'>

Warning: Comparison of FpT_Polyring_section objects is not currently implemented. See Issue #23469.

sage: fprime = loads(dumps(f))
sage: fprime == f
False

sage: fprime(1+t) == f(1+t)
True

>>> from sage.all import *

>>> fprime = loads(dumps(f))

>>> fprime == f
False

>>> fprime(Integer(1)+t) == f(Integer(1)+t)
True

class sage.rings.fraction_field_FpT.FpT_iter
Bases: object

Return a class that iterates over all elements of an FpT.

EXAMPLES:
\[
\begin{align*}
(2*t + 1)/t, \\
(2*t + 2)/t, \\
1/(t + 1), \\
2/(t + 1), \\
t/(t + 1), \\
(t + 2)/(t + 1), \\
2*t/(t + 1), \\
(2*t + 1)/(t + 1), \\
1/(t + 2), \\
2/(t + 2), \\
t/(t + 2), \\
(t + 1)/(t + 2), \\
2*t/(t + 2), \\
(2*t + 2)/(t + 2)
\end{align*}
\]

```python
>>> from sage.all import *

>>> K = GF(Integer(3))['t'].fraction_field()

>>> I = K.iter(Integer(1))

>>> list(I)

[0,
 1,
 2,
 t,
 t + 1,
 t + 2,
 2*t,
 2*t + 1,
 2*t + 2,
 1/t,
 2/t,
 (t + 1)/t,
 (t + 2)/t,
 (2*t + 1)/t,
 (2*t + 2)/t,
 1/(t + 1),
 2/(t + 1),
 t/(t + 1),
 (t + 2)/(t + 1),
 2*t/(t + 1),
 (2*t + 1)/(t + 1),
 1/(t + 2),
 2/(t + 2),
 t/(t + 2),
 (t + 1)/(t + 2),
 2*t/(t + 2),
 (2*t + 2)/(t + 2)]
```

class sage.rings.fraction_field_FpT.Fp_FpT_coerce

Bases: RingHomomorphism

This class represents the coercion map from GF(p) to GF(p)(t)

EXAMPLES:

```
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(GF(5)); f
```

(continues on next page)
Ring morphism:
  From: Finite Field of size 5
  To: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
sage: type(f)
<class 'sage.rings.fraction_field_FpT.Fp_FpT_coerce'>

>>> from sage.all import *
>>> R = GF(Integer(5))['t']; (t,) = R._first_ngens(1)
>>> K = R.fraction_field()
>>> f = K.coerce_map_from(GF(Integer(5))); f
Ring morphism:
  From: Finite Field of size 5
  To: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
>>> type(f)
<class 'sage.rings.fraction_field_FpT.Fp_FpT_coerce'>

section()

Return the section of this inclusion: the partially defined map from \( GF(p)(t) \) back to \( GF(p) \), defined on constant elements.

EXAMPLES:

sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(GF(5))
sage: g = f.section(); g
Section map:
  From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
  To: Finite Field of size 5
sage: t = K.gen()
sage: g(f(Integer(1),Integer(3),reduce=False))
2
sage: g(t)
Traceback (most recent call last):
...
ValueError: not constant
sage: g(1/t)
Traceback (most recent call last):
...
ValueError: not integral

>>> from sage.all import *
>>> R = GF(Integer(5))['t']; (t,) = R._first_ngens(1)
>>> K = R.fraction_field()
>>> f = K.coerce_map_from(GF(Integer(5)))
>>> g = f.section(); g
Section map:
  From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
  To: Finite Field of size 5
>>> t = K.gen()
>>> g(f(Integer(1),Integer(3),reduce=False))
2
(continues on next page)
class sage.rings.fraction_field_FpT.Polyring_FpT_coerce

Bases: RingHomomorphism

This class represents the coercion map from GF(p)[t] to GF(p)(t)

EXAMPLES:

```
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R); f
Ring morphism:
 From: Univariate Polynomial Ring in t over Finite Field of size 5
 To: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
sage: type(f)
<class 'sage.rings.fraction_field_FpT.Polyring_FpT_coerce'>
```

```
>>> from sage.all import *
>>> R = GF(Integer(5))[t]; (t,) = R._first_ngens(1)
>>> K = R.fraction_field()
>>> f = K.coerce_map_from(R); f
Ring morphism:
 From: Univariate Polynomial Ring in t over Finite Field of size 5
 To: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
>>> type(f)
<class 'sage.rings.fraction_field_FpT.Polyring_FpT_coerce'>
```

`section()`

Return the section of this inclusion: the partially defined map from GF(p)(t) back to GF(p)[t], defined on elements with unit denominator.

EXAMPLES:

```
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R)
sage: g = f.section(); g
Section map:
 From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 5
 To: Univariate Polynomial Ring in t over Finite Field of size 5
sage: t = K.gen()
sage: g(t)
t
sage: g(1/t)
Traceback (most recent call last):
```

(continues on next page)
... ValueError: not integral

```python
>>> from sage.all import *
>>> R = GF(Integer(5))[t]; (t,) = R._first_ngens(1)
>>> K = R.fraction_field()
>>> f = K.coerce_map_from(R)
>>> g = f.section(); g
Section map:
 From: Fraction Field of Univariate Polynomial Ring in t over Finite Field
 â†’ of size 5
 To: Univariate Polynomial Ring in t over Finite Field of size 5
>>> t = K.gen()
>>> g(t)
t
>>> g(Integer(1)/t)
Traceback (most recent call last):
 ... ValueError: not integral
```

class `sage.rings.fraction_field_FpT.ZZ_FpT_coerce`

Bases: `RingHomomorphism`

This class represents the coercion map from ZZ to GF(p)(t)

**EXAMPLES:**

```python
sage: R.<t> = GF(17)[]
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(ZZ); f
Ring morphism:
 From: Integer Ring
 To: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 17
sage: type(f)
<class 'sage.rings.fraction_field_FpT.ZZ_FpT_coerce'>
```

```python
>>> from sage.all import *
>>> R = GF(Integer(17))[t]; (t,) = R._first_ngens(1)
>>> K = R.fraction_field()
>>> f = K.coerce_map_from(ZZ); f
Ring morphism:
 From: Integer Ring
 To: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 17
>>> type(f)
<class 'sage.rings.fraction_field_FpT.ZZ_FpT_coerce'>
```

`section()`

Return the section of this inclusion: the partially defined map from GF(p)(t) back to ZZ, defined on constant elements.

**EXAMPLES:**

```python
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
```

(continues on next page)
sage: f = K.coerce_map_from(ZZ)
sage: g = f.section(); g

Composite map:
  From: Fraction Field of Univariate Polynomial Ring in t over Finite Field...
  → of size 5
  To:    Integer Ring
  Defn:  Section map:
          From: Fraction Field of Univariate Polynomial Ring in t over Finite...
          → Field of size 5
          then
          Lifting map:
          From: Finite Field of size 5
          To:    Integer Ring

sage: t = K.gen()
sage: g(f(Integer(1), Integer(3), reduce=False))
2
sage: g(t)
Traceback (most recent call last):
  ... ValueError: not constant
sage: g(Integer(1)/t)
Traceback (most recent call last):
  ... ValueError: not integral

>>> from sage.all import *
>>> R = GF(Integer(5))['t']; (t,) = R._first_ngens(1)
>>> K = R.fraction_field()
>>> f = K.coerce_map_from(ZZ)
>>> g = f.section(); g

Composite map:
  From: Fraction Field of Univariate Polynomial Ring in t over Finite Field...
  → of size 5
  To:    Integer Ring
  Defn:  Section map:
          From: Fraction Field of Univariate Polynomial Ring in t over Finite...
          → Field of size 5
          then
          Lifting map:
          From: Finite Field of size 5
          To:    Integer Ring

>>> t = K.gen()
>>> g(f(Integer(1), Integer(3), reduce=False))
2
>>> g(t)
Traceback (most recent call last):
  ... ValueError: not constant
>>> g(Integer(1)/t)
Traceback (most recent call last):
  ... ValueError: not integral

sage.rings.fraction_field_FpT.unpickle_FpT_element(K, numer, denom)
Used for pickling.
5.1 Ring of Laurent Polynomials (base class)

If \( R \) is a commutative ring, then the ring of Laurent polynomials in \( n \) variables over \( R \) is \( R[x_1^\pm 1, x_2^\pm 1, \ldots, x_n^\pm 1] \).

AUTHORS:
- David Roe (2008-2-23): created
- David Loeffler (2009-07-10): cleaned up docstrings

```python
class sage.rings.polynomial.laurent_polynomial_ring_base.LaurentPolynomialRing_generic(R)
 Bases: CommutativeRing, Parent
 Laurent polynomial ring (base class).
 EXAMPLES:
 This base class inherits from CommutativeRing. Since Issue #11900, it is also initialised as such:

 sage: R.<x1,x2> = LaurentPolynomialRing(QQ)
 sage: R.category()
 Join of Category of unique factorization domains
 and Category of commutative algebras
 over (number fields and quotient fields and metric spaces)
 and Category of infinite sets
 sage: TestSuite(R).run()

 >>> from sage.all import *
 >>> R = LaurentPolynomialRing(QQ, names=('x1', 'x2',)); (x1, x2,) = R._first_
 ... -ngens(2)
 >>> R.category()
 Join of Category of unique factorization domains
 and Category of commutative algebras
 over (number fields and quotient fields and metric spaces)
 and Category of infinite sets
 >>> TestSuite(R).run()
```

change_ring \((\text{base\_ring}=None, \text{names}=None, \text{sparse}=False, \text{order}=None)\)

EXAMPLES:

```python
sage: R = LaurentPolynomialRing(QQ, 2, 'x')
sage: R.change_ring(ZZ)
Multivariate Laurent Polynomial Ring in x0, x1 over Integer Ring
```
>>> from sage.all import *
>>> R = LaurentPolynomialRing(QQ, Integer(2), 'x')
>>> R.change_ring(ZZ)
Multivariate Laurent Polynomial Ring in x0, x1 over Integer Ring

Check that the distinction between a univariate ring and a multivariate ring with one generator is preserved:

sage: P.<x> = LaurentPolynomialRing(QQ, 1)
sage: P
Multivariate Laurent Polynomial Ring in x over Rational Field
sage: K.<i> = CyclotomicField(4) # needs sage.rings.number_field
sage: P.change_ring(K) # needs sage.rings.number_field
Multivariate Laurent Polynomial Ring in x over Cyclotomic Field of order 4 and degree 2

characteristic()
Returns the characteristic of the base ring.

EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x').characteristic()
0
sage: LaurentPolynomialRing(GF(3), 2, 'x').characteristic()
3

completion (p=None, prec=20, extras=None)
Return the completion of self.
Currently only implemented for the ring of formal Laurent series. The prec variable controls the precision used in the Laurent series ring. If \( \text{prec} = \infty \), then this returns a LazyLaurentSeriesRing.

EXAMPLES:

sage: P.<x> = LaurentPolynomialRing(QQ); P
Univariate Laurent Polynomial Ring in x over Rational Field
sage: PP = P.completion(x); PP
Laurent Series Ring in x over Rational Field

(continues on next page)
sage: f = 1 - 1/x
sage: PP(f)
-x^-1 + 1
sage: g = 1 / PP(f); g
-x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8 - x^9 - x^10 - x^11
- x^12 - x^13 - x^14 - x^15 - x^16 - x^17 - x^18 - x^19 - x^20 + O(x^21)
sage: 1 / g
-x^-1 + 1 + O(x^19)

sage: # needs sage.combinat
sage: PP = P.completion(x, prec=oo); PP
Lazy Laurent Series Ring in x over Rational Field
sage: g = 1 / PP(f); g
-x - x^2 - x^3 + O(x^4)
sage: 1 / g == f
True

>>> from sage.all import *
>>> P = LaurentPolynomialRing(QQ, names=('x',)); (x,) = P._first_ngens(1); P
Univariate Laurent Polynomial Ring in x over Rational Field
>>> PP = P.completion(x); PP
Laurent Series Ring in x over Rational Field
>>> f = Integer(1) - Integer(1)/x
>>> PP(f)
-x^-1 + 1
>>> g = Integer(1) / PP(f); g
-x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8 - x^9 - x^10 - x^11
- x^12 - x^13 - x^14 - x^15 - x^16 - x^17 - x^18 - x^19 - x^20 + O(x^21)
>>> Integer(1) / g
-x^-1 + 1 + O(x^19)

>>> # needs sage.combinat
>>> PP = P.completion(x, prec=oo); PP
Laurent Series Ring in x over Rational Field
>>> g = Integer(1) / PP(f); g
-x - x^2 - x^3 + O(x^4)
>>> Integer(1) / g == f
True

construction()
Return the construction of self.

EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x,y').construction()
(LaurentPolynomialFunctor,
 Univariate Laurent Polynomial Ring in x over Rational Field)

>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x,y').construction()
(LaurentPolynomialFunctor,
 Univariate Laurent Polynomial Ring in x over Rational Field)

fraction_field()
The fraction field is the same as the fraction field of the polynomial ring.

EXAMPLES:
sage: L.<x> = LaurentPolynomialRing(QQ)
sage: L.fraction_field()
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: (x^-1 + 2) / (x - 1)
(2*x + 1)/(x^2 - x)

>>> from sage.all import *
>>> L = LaurentPolynomialRing(QQ, names=('x',)); (x,) = L._first_ngens(1)
>>> L.fraction_field()
Fraction Field of Univariate Polynomial Ring in x over Rational Field
>>> (x**-Integer(1) + Integer(2)) / (x - Integer(1))
(2*x + 1)/(x^2 - x)

gen (i=0)
Returns the $i^{th}$ generator of self. If i is not specified, then the first generator will be returned.

EXAMPLES:
sage: LaurentPolynomialRing(QQ, 2, 'x').gen()
x0
sage: LaurentPolynomialRing(QQ, 2, 'x').gen(0)
x0
sage: LaurentPolynomialRing(QQ, 2, 'x').gen(1)
x1

>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').gen()
x0
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').gen(Integer(0))
x0
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').gen(Integer(1))
x1

ideal (*args, **kwd)
EXAMPLES:
sage: LaurentPolynomialRing(QQ, 2, 'x').ideal([1])
Ideal (1) of Multivariate Laurent Polynomial Ring in x0, x1 over Rational → Field

>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').ideal([Integer(1)])
Ideal (1) of Multivariate Laurent Polynomial Ring in x0, x1 over Rational → Field

is_exact()
Return True if the base ring is exact.

EXAMPLES:
sage: LaurentPolynomialRing(QQ, 2, 'x').is_exact()
True
sage: LaurentPolynomialRing(RDF, 2, 'x').is_exact()
False
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').is_exact()
True
>>> LaurentPolynomialRing(RDF, Integer(2), 'x').is_exact()
False

is_field(proof=True)
EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x').is_field()
False

>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').is_field()
False

is_finite()
EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x').is_finite()
False

>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').is_finite()
False

is_integral_domain(proof=True)

Return True if self is an integral domain.

EXAMPLES:

sage: LaurentPolynomialRing(QQ, 2, 'x').is_integral_domain()
True

>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').is_integral_domain()
True

The following used to fail; see Issue #7530:

sage: L = LaurentPolynomialRing(ZZ, X)
sage: L['Y']
Univariate Polynomial Ring in Y over
  Univariate Laurent Polynomial Ring in X over Integer Ring

sage: L = LaurentPolynomialRing(ZZ, 'X')

is_noetherian()

Return True if self is Noetherian.

EXAMPLES:
LaurentPolynomialRing(QQ, 2, 'x').is_noetherian()
True

>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').is_noetherian()
True

krull_dimension()
EXAMPLES:
LaurentPolynomialRing(QQ, 2, 'x').krull_dimension()
Traceback (most recent call last):  
...  
NotImplementedError

>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').krull_dimension()
Traceback (most recent call last):  
...  
NotImplementedError

gens()
Return the number of generators of self.
EXAMPLES:
LaurentPolynomialRing(QQ, 2, 'x').ngens()
2
LaurentPolynomialRing(QQ, 1, 'x').ngens()
1

>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').ngens()
2
>>> LaurentPolynomialRing(QQ, Integer(1), 'x').ngens()
1

polynomial_ring()
Returns the polynomial ring associated with self.
EXAMPLES:
LaurentPolynomialRing(QQ, 2, 'x').polynomial_ring()
Multivariate Polynomial Ring in x0, x1 over Rational Field
LaurentPolynomialRing(QQ, 1, 'x').polynomial_ring()
Multivariate Polynomial Ring in x over Rational Field

>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, Integer(2), 'x').polynomial_ring()
Multivariate Polynomial Ring in x0, x1 over Rational Field
>>> LaurentPolynomialRing(QQ, Integer(1), 'x').polynomial_ring()
Multivariate Polynomial Ring in x over Rational Field

random_element (min_valuation=-2, max_degree=2, **args, **kwds)
Return a random polynomial with degree at most max_degree and lowest valuation at least min_valuation.
Uses the random sampling from the base polynomial ring then divides out by a monomial to ensure correct max_degree and min_valuation.

**INPUT:**

- min_valuation – integer (default: -2); the minimal allowed valuation of the polynomial
- max_degree – integer (default: 2); the maximal allowed degree of the polynomial
- *args, **kwds – passed to the random element generator of the base polynomial ring and base ring itself

**EXAMPLES:**

```python
sage: L.<x> = LaurentPolynomialRing(QQ)
sage: f = L.random_element()
sage: f.degree() <= 2
True
sage: f.valuation() >= -2
True
sage: f.parent() is L
True
```

```python
>>> from sage.all import *
>>> L = LaurentPolynomialRing(QQ, names=('x',)); (x,) = L._first_ngens(1)
>>> f = L.random_element()
>>> f.degree() <= Integer(2)
True
>>> f.valuation() >= -Integer(2)
True
>>> f.parent() is L
True
```

```python
sage: L = LaurentPolynomialRing(ZZ, 2, 'x')
sage: f = L.random_element(10, 20)
sage: f.degree() <= 20
True
sage: f.valuation() >= 10
True
sage: f.parent() is L
True
```

```python
>>> from sage.all import *
>>> L = LaurentPolynomialRing(ZZ, Integer(2), 'x')
>>> f = L.random_element(Integer(10), Integer(20))
>>> f.degree() <= Integer(20)
True
>>> f.valuation() >= Integer(10)
True
>>> f.parent() is L
True
```

```python
sage: L = LaurentPolynomialRing(GF(13), 3, 'x')
sage: f = L.random_element(-10, -1)
sage: f.degree() <= -1
True
sage: f.valuation() >= -10
True
```

(continues on next page)
sage: f.parent() is L
True

>>> from sage.all import *
>>> L = LaurentPolynomialRing(GF(Integer(13)), Integer(3), 'x')
>>> f = L.random_element(-Integer(10), -Integer(1))
>>> f.degree() <= -Integer(1)
True
>>> f.valuation() >= -Integer(10)
True
>>> f.parent() is L
True

sage: L.<x, y> = LaurentPolynomialRing(RR)
sage: f = L.random_element()
sage: f.degree() <= 2
True
sage: f.valuation() >= -2
True
sage: f.parent() is L
True

>>> from sage.all import *
>>> L = LaurentPolynomialRing(RR, names=('x', 'y',)); (x, y,) = L._first_ngens(2)
>>> f = L.random_element()
>>> f.degree() <= Integer(2)
True
sage: f.valuation() >= -Integer(2)
True
>>> f.parent() is L
True

sage: L = LaurentPolynomialRing(QQbar, 5, 'x')
sage: f = L.random_element(-1, 1)
sage: f = L.random_element(-1, 1)
sage: f.degree() <= Integer(1)
True
sage: f.valuation() >= -Integer(1)
True
>>> f.parent() is L
True

>>> from sage.all import *
>>> L = LaurentPolynomialRing(QQbar, Integer(5), 'x')
>>> f = L.random_element(-Integer(1), -Integer(1))
>>> f = L.random_element(-Integer(1), -Integer(1))
>>> f.degree() <= Integer(1)
True
>>> f.valuation() >= -Integer(1)
True
>>> f.parent() is L
True

remove_var(var)
EXAMPLES:

```
sage: R = LaurentPolynomialRing(QQ,'x,y,z')
sage: R.remove_var('x')
Multivariate Laurent Polynomial Ring in y, z over Rational Field
sage: R.remove_var('x').remove_var('y')
Univariate Laurent Polynomial Ring in z over Rational Field
```

```python
>>> from sage.all import *

>>> R = LaurentPolynomialRing(QQ, 'x,y,z')

>>> R.remove_var('x')
Multivariate Laurent Polynomial Ring in y, z over Rational Field

>>> R.remove_var('x').remove_var('y')
Univariate Laurent Polynomial Ring in z over Rational Field
```

term_order()

Returns the term order of self.

EXAMPLES:

```
sage: LaurentPolynomialRing(QQ, 2, x).term_order()
Degree reverse lexicographic term order
```

```python
>>> from sage.all import *

>>> LaurentPolynomialRing(QQ, Integer(2), x).term_order()
Degree reverse lexicographic term order
```

variable_names_recursive(depth=Infinity)

Return the list of variable names of this ring and its base rings, as if it were a single multi-variate Laurent polynomial.

INPUT:

• depth – an integer or Infinity.

OUTPUT:

A tuple of strings.

EXAMPLES:

```
sage: T = LaurentPolynomialRing(QQ, 'x')
sage: S = LaurentPolynomialRing(T, 'y')
sage: R = LaurentPolynomialRing(S, 'z')
sage: R.variable_names_recursive()
('x', 'y', 'z')
sage: R.variable_names_recursive(2)
('y', 'z')
```

```python
>>> from sage.all import *

>>> T = LaurentPolynomialRing(QQ, 'x')

>>> S = LaurentPolynomialRing(T, 'y')

>>> R = LaurentPolynomialRing(S, 'z')

>>> R.variable_names_recursive()
('x', 'y', 'z')

>>> R.variable_names_recursive(Integer(2))
('y', 'z')
```
5.2 Ring of Laurent Polynomials

If $R$ is a commutative ring, then the ring of Laurent polynomials in $n$ variables over $R$ is $R[x_1^{\pm 1}, x_2^{\pm 1}, \ldots, x_n^{\pm 1}]$. We implement it as a quotient ring

$$R[x_1, y_1, x_2, y_2, \ldots, x_n, y_n]/(x_1y_1 - 1, x_2y_2 - 1, \ldots, x_ny_n - 1).$$

AUTHORS:

- David Roe (2008-2-23): created
- David Loeffler (2009-07-10): cleaned up docstrings

\[\text{sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing}(\text{base}_.\text{ring}, \*\text{args}, \*\text{kwds})\]

Return the globally unique univariate or multivariate Laurent polynomial ring with given properties and variable name or names.

There are four ways to call the Laurent polynomial ring constructor:

1. LaurentPolynomialRing(base_ring, name, sparse=False)
2. LaurentPolynomialRing(base_ring, names, order='degrevlex')
3. LaurentPolynomialRing(base_ring, name, n, order='degrevlex')
4. LaurentPolynomialRing(base_ring, n, name, order='degrevlex')

The optional arguments sparse and order must be explicitly named, and the other arguments must be given positionally.

INPUT:

- base_ring – a commutative ring
- name – a string
- names – a list or tuple of names, or a comma separated string
- n – a positive integer
- sparse – bool (default: False), whether or not elements are sparse
- order – string or TermOrder, e.g.,
  - 'degrevlex' (default) – degree reverse lexicographic
  - 'lex' – lexicographic
  - 'deglex' – degree lexicographic
  - TermOrder('deglex', 3) + TermOrder('deglex', 3) – block ordering

OUTPUT:

LaurentPolynomialRing(base_ring, name, sparse=False) returns a univariate Laurent polynomial ring; all other input formats return a multivariate Laurent polynomial ring.

UNIQUENESS and IMMUTABILITY: In Sage there is exactly one single-variate Laurent polynomial ring over each base ring in each choice of variable and sparseness. There is also exactly one multivariate Laurent polynomial ring over each base ring for each choice of names of variables and term order.
Polynomials, Release 10.4

```python
sage: R.<x,y> = LaurentPolynomialRing(QQ, 2); R
needs sage.modules
Multivariate Laurent Polynomial Ring in x, y over Rational Field
sage: f = x^2 - 2*y^-2
needs sage.modules
```

You can’t just globally change the names of those variables. This is because objects all over Sage could have pointers to that polynomial ring.

```python
sage: R._assign_names(['z','w'])
needs sage.modules
Traceback (most recent call last):
 ... ValueError: variable names cannot be changed after object creation.
```

**EXAMPLES:**

1. `LaurentPolynomialRing(base_ring, name, sparse=False)`

```python
sage: LaurentPolynomialRing(QQ, 'w')
Univariate Laurent Polynomial Ring in w over Rational Field
```

Use the diamond brackets notation to make the variable ready for use after you define the ring:

```python
sage: R.<w> = LaurentPolynomialRing(QQ)
sage: (1 + w)^3
1 + 3*w + 3*w^2 + w^3
```

You must specify a name:

```python
sage: LaurentPolynomialRing(QQ)
Traceback (most recent call last):
 ... ValueError: variable names cannot be changed after object creation.
```

5.2. Ring of Laurent Polynomials 955
### TypeError: you must specify the names of the variables

```python
sage: R.<abc> = LaurentPolynomialRing(QQ, sparse=True); R
Univariate Laurent Polynomial Ring in abc over Rational Field
```

```python
sage: R.<w> = LaurentPolynomialRing(PolynomialRing(GF(7),k)); R
Univariate Laurent Polynomial Ring in w over Univariate Polynomial Ring in k over Finite Field of size 7
```

```python
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ)
Traceback (most recent call last):
 ...
TypeError: you must specify the names of the variables
```

```python
>>> R = LaurentPolynomialRing(QQ, sparse=True, names=('abc',)); (abc,) = R._first_ngens(1); R
Univariate Laurent Polynomial Ring in abc over Rational Field
```

```python
>>> R = LaurentPolynomialRing(PolynomialRing(GF(Integer(7)),k), names=('w',)); (w,) = R._first_ngens(1); R
Univariate Laurent Polynomial Ring in w over Univariate Polynomial Ring in k over Finite Field of size 7
```

### Rings with different variables are different:

```python
sage: LaurentPolynomialRing(QQ, 'x') == LaurentPolynomialRing(QQ, 'y')
False
```

```python
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, 'x') == LaurentPolynomialRing(QQ, 'y')
False
```

#### 2. LaurentPolynomialRing(base_ring, names, order='degrevlex')

```python
sage: R = LaurentPolynomialRing(QQ, 'a,b,c'); R
 # needs sage.modules
Multivariate Laurent Polynomial Ring in a, b, c over Rational Field
```

```python
sage: S = LaurentPolynomialRing(QQ, ['a','b','c']); S
 # needs sage.modules
Multivariate Laurent Polynomial Ring in a, b, c over Rational Field
```

```python
sage: T = LaurentPolynomialRing(QQ, ('a','b','c')); T
 # needs sage.modules
Multivariate Laurent Polynomial Ring in a, b, c over Rational Field
```

```python
>>> from sage.all import *
>>> R = LaurentPolynomialRing(QQ, 'a,b,c'); R
 # needs sage.modules
Multivariate Laurent Polynomial Ring in a, b, c over Rational Field
```

```python
>>> S = LaurentPolynomialRing(QQ, ['a','b','c']); S
 # needs sage.modules
Multivariate Laurent Polynomial Ring in a, b, c over Rational Field
```
All three rings are identical.

```python
sage: (R is S) and (S is T)
needs sage.modules
True
```

There is a unique Laurent polynomial ring with each term order:

```python
sage: # needs sage.modules
sage: R = LaurentPolynomialRing(QQ, 'x,y,z', order='degrevlex'); R
Multivariate Laurent Polynomial Ring in x, y, z over Rational Field
sage: S = LaurentPolynomialRing(QQ, 'x,y,z', order='invlex'); S
Multivariate Laurent Polynomial Ring in x, y, z over Rational Field
sage: S is LaurentPolynomialRing(QQ, 'x,y,z', order='invlex')
True
sage: R == S
False
```

3. LaurentPolynomialRing(base_ring, name, n, order='degrevlex')

If you specify a single name as a string and a number of variables, then variables labeled with numbers are created.

```python
sage: LaurentPolynomialRing(QQ, 'x', 10)
needs sage.modules
Multivariate Laurent Polynomial Ring in x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 over Rational Field
sage: LaurentPolynomialRing(GF(7), 'y', 5)
needs sage.modules
Multivariate Laurent Polynomial Ring in y0, y1, y2, y3, y4 over Finite Field of size 7
sage: LaurentPolynomialRing(QQ, 'y', 3, sparse=True)
(continues on next page)
Multivariate Laurent Polynomial Ring in y0, y1, y2 over Rational Field

```
>>> from sage.all import *
>>> LaurentPolynomialRing(QQ, 'x', Integer(10))
# needs sage.modules
Multivariate Laurent Polynomial Ring in x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 over Rational Field
```

```
>>> LaurentPolynomialRing(GF(Integer(7)), 'y', Integer(5))
# needs sage.modules
Multivariate Laurent Polynomial Ring in y0, y1, y2, y3, y4 over Finite Field of size 7
```

```
>>> LaurentPolynomialRing(QQ, 'y', Integer(3), sparse=True)
# needs sage.modules
Multivariate Laurent Polynomial Ring in y0, y1, y2 over Rational Field
```

By calling the `inject_variables()` method, all those variable names are available for interactive use:

```
sage: R = LaurentPolynomialRing(GF(7), 15, w); R
# needs sage.modules
Multivariate Laurent Polynomial Ring in w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14 over Finite Field of size 7
sage: R.inject_variables()
# needs sage.modules
Defining w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14
```

```
>>> from sage.all import *
>>> R = LaurentPolynomialRing(GF(Integer(7)), Integer(15), w); R
# needs sage.modules
Multivariate Laurent Polynomial Ring in w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14 over Finite Field of size 7
>>> R.inject_variables()
# needs sage.modules
Defining w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14
```

```
class sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_mpair(R)
Bases: LaurentPolynomialRing_generic

EXAMPLES:
```
```
Element

alias of LaurentPolynomial_mpair

monomial(*args)

Return the monomial whose exponents are given in argument.

EXAMPLES:

```sage
sage: # needs sage.modules
sage: L = LaurentPolynomialRing(QQ, 'x', 2)
```

```
x0^-3 * x1^5
sage: L.monomial(1, 1)
x0 * x1
sage: L.monomial(0, 0)
1
sage: L.monomial(-2, -3)
x0^-2 * x1^-3
```

```
sage: x0, x1 = L.gens()
```

```sage
sage: L.monomial(-1, 2) == x0^-1 * x1^2
```

```sage
True
```

```
sage: L.monomial(1, 2, 3)
```

```
Traceback (most recent call last):
...
TypeError: tuple key must have same length as ngens
```
>>> x0, x1 = L.gens()  # needs sage.modules
>>> L.monomial(-Integer(1), Integer(2)) == x0**-Integer(1) * x1**Integer(2)  # needs sage.modules
True

>>> L.monomial(Integer(1), Integer(2), Integer(3))  # needs sage.modules
Traceback (most recent call last):
...
TypeError: tuple key must have same length as ngens

class sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_univariate(R)

Bases: LaurentPolynomialRing_generic

EXAMPLES:

sage: L = LaurentPolynomialRing(QQ,'x')
sage: type(L)
<class 'sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_univariate_with_category'>
sage: TestSuite(L).run()

>>> from sage.all import *
>>> L = LaurentPolynomialRing(QQ,'x')
>>> type(L)
<class 'sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_univariate_with_category'>
>>> TestSuite(L).run()

Element

alias of LaurentPolynomial_univariate

sage.rings.polynomial.laurent_polynomial_ring.from_fraction_field(L, x)

Helper function to construct a Laurent polynomial from an element of its parent’s fraction field.

INPUT:

- L – an instance of LaurentPolynomialRing_generic
- x – an element of the fraction field of L

OUTPUT:

An instance of the element class of L. If the denominator fails to be a unit in L an error is raised.

EXAMPLES:

sage: # needs sage.modules
sage: from sage.rings.polynomial.laurent_polynomial_ring import from_fraction_field
sage: L.<x, y> = LaurentPolynomialRing(ZZ)
sage: F = L.fraction_field()
sage: xi = F(-x)
sage: from_fraction_field(L, xi) == ~x
True
sage.rings.polynomial.laurent_polynomial_ring.is_LaurentPolynomialRing(R)

Return True if and only if R is a Laurent polynomial ring.

EXAMPLES:

```python
sage: from sage.rings.polynomial.laurent_polynomial_ring import is_

sage: P = PolynomialRing(QQ, 2, 'x')

sage: is_LaurentPolynomialRing(P)
False

sage: R = LaurentPolynomialRing(QQ,3,'x')

sage: is_LaurentPolynomialRing(R)
True
```

5.2. Ring of Laurent Polynomials  961
5.3 Elements of Laurent polynomial rings

class sage.rings.polynomial.laurent_polynomial.LaurentPolynomial

Bases: CommutativeAlgebraElement

Base class for Laurent polynomials.

c\text{change\_ring} (R)

Return a copy of this Laurent polynomial, with coefficients in R.

EXAMPLES:

```
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: a = x^2 + 3*x^3 + 5*x^{-1}
sage: a.change_ring(GF(3))
2*x^{-1} + x^2

>>> from sage.all import *
>>> R = LaurentPolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> a = x**Integer(2) + Integer(3)*x**Integer(3) + Integer(5)*x**-Integer(1)
>>> a.change_ring(GF(Integer(3)))
2*x^{-1} + x^2
```

Check that Issue #22277 is fixed:

```
sage: # needs sage.modules
sage: R.<x, y> = LaurentPolynomialRing(QQ)
sage: a = 2*x^2 + 3*x^3 + 4*x^{-1}
sage: a.change_ring(GF(3))
-x^2 + x^{-1}

>>> from sage.all import *
>>> R = LaurentPolynomialRing(QQ, names=(x, y,)); (x, y,) = R._first_ngens(2)
>>> a = Integer(2)*x**Integer(2) + Integer(3)*x**Integer(3) + Integer(4)*x**-Integer(1)
>>> a.change_ring(GF(Integer(3)))
-x^2 + x^{-1}
```

dict()

Abstract dict method.

EXAMPLES:

```
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: from sage.rings.polynomial.laurent_polynomial import LaurentPolynomial
sage: LaurentPolynomial.dict(x)
Traceback (most recent call last):
 ...
NotImplementedError

>>> from sage.all import *
>>> R = LaurentPolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>> from sage.rings.polynomial.laurent_polynomial import LaurentPolynomial
>>> LaurentPolynomial.dict(x)
```
(continues on next page)
hamming_weight()

Return the hamming weight of self.

The hamming weight is number of non-zero coefficients and also known as the weight or sparsity.

EXAMPLES:

```python
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: f = x^3 - 1
sage: f.hamming_weight()
2
```

map_coefficients(f, new_base_ring=None)

Apply f to the coefficients of self.

If f is a `sage.categories.map.Map`, then the resulting polynomial will be defined over the codomain of f. Otherwise, the resulting polynomial will be over the same ring as self. Set new_base_ring to override this behavior.

INPUT:

- f – a callable that will be applied to the coefficients of self.
- new_base_ring (optional) – if given, the resulting polynomial will be defined over this ring.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(9)
sage: R.<x> = LaurentPolynomialRing(k)
sage: f = x*a + a
sage: f.map_coefficients(lambda a: a + 1)
(2*a + 1)*x^3*y + (a + 1)*x + a + 1
```

```python
>>> from sage.all import *
>>> R = LaurentPolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>> f = x**Integer(3) - Integer(1)
>>> f.hamming_weight()
2
```

```python
>>> from sage.all import *
>>> R = LaurentPolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>> f = x*a + a
>>> f.map_coefficients(lambda a: a + Integer(1))
```

(continues on next page)
Examples with different base ring:

```
sage: # needs sage.modules sage.rings.finite_rings
sage: R.<r> = GF(9); S.<s> = GF(81)
sage: h = Hom(R, S)[0]; h
Ring morphism:
 From: Finite Field in r of size 3^2
 To: Finite Field in s of size 3^4
 Defn: r |--> 2*s^3 + 2*s^2 + 1
sage: T.<X,Y> = LaurentPolynomialRing(R, 2)
sage: f = r*X + Y
sage: g = f.map_coefficients(h); g
(2*s^3 + 2*s^2 + 1)*X + Y
sage: g.parent()
Multivariate Laurent Polynomial Ring in X, Y
 over Finite Field in s of size 3^4
sage: h = lambda x: x.trace()
sage: g = f.map_coefficients(h); g
X - Y
sage: g.parent()
Multivariate Laurent Polynomial Ring in X, Y
 over Finite Field in r of size 3^2
```

```bash
>>> from sage.all import *
>>> # needs sage.modules sage.rings.finite_rings
>>> R = GF(Integer(9), names=('r',)); (r,) = R._first_ngens(1); S =
 GF(Integer(81), names=('s',)); (s,) = S._first_ngens(1)
>>> h = Hom(R, S)[Integer(0)]; h
Ring morphism:
 From: Finite Field in r of size 3^2
 To: Finite Field in s of size 3^4
 Defn: r |--> 2*s^3 + 2*s^2 + 1
>>> T = LaurentPolynomialRing(R, Integer(2), names=('X', 'Y',)); (X, Y,) = T._
 first_ngens(2)
>>> f = r*X + Y
>>> g = f.map_coefficients(h); g
(2*s^3 + 2*s^2 + 1)*X + Y
>>> g.parent()
Multivariate Laurent Polynomial Ring in X, Y
 over Finite Field in s of size 3^4
>>> h = lambda x: x.trace()
>>> g = f.map_coefficients(h); g
X - Y
```
```python
>>> g.parent()
Multivariate Laurent Polynomial Ring in X, Y
over Finite Field in r of size 3^2
>>> g = f.map_coefficients(h, new_base_ring=GF(Integer(3))); g
X - Y
>>> g.parent()
Multivariate Laurent Polynomial Ring in X, Y over Finite Field of size 3
```

### number_of_terms()

Abstract method for number of terms

**EXAMPLES:**

```python
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: from sage.rings.polynomial.laurent_polynomial import LaurentPolynomial
sage: LaurentPolynomial.number_of_terms(x)
Traceback (most recent call last):
 ...
NotImplementedError
```

```python
>>> from sage.all import *

>>> R = LaurentPolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>> from sage.rings.polynomial.laurent_polynomial import LaurentPolynomial

>>> LaurentPolynomial.number_of_terms(x)
Traceback (most recent call last):
 ...
NotImplementedError
```

```python
class sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate
Bases: LaurentPolynomial

A univariate Laurent polynomial in the form of \(t^n \cdot f \) where \(f \) is a polynomial in \(t \).

INPUT:

- \texttt{parent} – a Laurent polynomial ring
- \texttt{f} – a polynomial (or something can be coerced to one)
- \texttt{n} – (default: 0) an integer

AUTHORS:

- Tom Boothby (2011) copied this class almost verbatim from \texttt{laurent_series_ring_element.pyx}, so most of the credit goes to William Stein, David Joyner, and Robert Bradshaw
- Travis Scrimshaw (09-2013): Cleaned-up and added a few extra methods

coefficients()

Return the nonzero coefficients of \texttt{self}.

EXAMPLES:

```python
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: f = -5/t^2 + t + t^2 - 10/3*t^3
sage: f.coefficients()
[-5, 1, 1, -10/3]
```
```python
>>> from sage.all import *
>>> R = LaurentPolynomialRing(QQ, names=('t',)); (t,) = R._first_ngens(1)
>>> f = -Integer(5)/t**(Integer(2)) + t + t**Integer(2) - Integer(10)/
→Integer(3)*t**Integer(3)
>>> f.coefficients()
[-5, 1, 1, -10/3]
```

constant_coefficient()

Return the coefficient of the constant term of `self`.

EXAMPLES:

```python
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: f = 3*t^-2 - t^-1 + 3 + t^2
sage: f.constant_coefficient()
3
sage: g = -2*t^-2 + t^-1 + 3*t
sage: g.constant_coefficient()
0
```

```python
>>> from sage.all import *
>>> R = LaurentPolynomialRing(QQ, names=('t',)); (t,) = R._first_ngens(1)
>>> f = Integer(3)*t**-Integer(2) - t**-Integer(1) + Integer(3) +␣
→t**Integer(2)
>>> f.constant_coefficient()
3
>>> g = -Integer(2)*t**-Integer(2) + t**-Integer(1) + Integer(3)*t
>>> g.constant_coefficient()
0
```

degree()

Return the degree of `self`.

EXAMPLES:

```python
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: g = x^2 - x^4
sage: g.degree()
4
sage: g = -10/x^5 + x^2 - x^7
sage: g.degree()
7
```

```python
>>> from sage.all import *
>>> R = LaurentPolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>> g = x**Integer(2) - x**Integer(4)
>>> g.degree()
4
>>> g = -Integer(10)/x**Integer(5) + x**Integer(2) - x**Integer(7)
>>> g.degree()
7
```

The zero polynomial is defined to have degree $-\infty$:

```python
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: R.zero().degree()
-Infinity
```
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> R = LaurentPolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>> R.zero().degree()
-Infinity
```

dervative(*args)

The formal derivative of this Laurent polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied. See documentation for the global derivative function for more details.

See also:

_derivative()

EXAMPLES:

```python
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: g = 1/x^10 - x + x^2 - x^4
sage: g.derivative()
-10*x^-11 - 1 + 2*x - 4*x^3
sage: g.derivative(x)
-10*x^-11 - 1 + 2*x - 4*x^3
```

```python
sage: R.<t> = PolynomialRing(ZZ)
sage: S.<x> = LaurentPolynomialRing(R)
sage: f = 2*t/x + (3*t^2 + 6*t)*x
sage: f.derivative()
-2*t*x^-2 + (3*t^2 + 6*t)
sage: f.derivative(x)
-2*t*x^-2 + (3*t^2 + 6*t)
```

dict()

Return a dictionary representing self.

EXAMPLES:

5.3. Elements of Laurent polynomial rings
sage: R.<x,y> = ZZ[]
sage: Q.<t> = LaurentPolynomialRing(R)
sage: f = (x^3 + y/t^3)^3 + t^2; f
y^3*t^-9 + 3*x^3*y^2*t^-6 + 3*x^6*y*t^-3 + x^9 + t^2
sage: f.dict()
\{-9: y^3, -6: 3*x^3*y^2, -3: 3*x^6*y, 0: x^9, 2: 1\}

\>>> from sage.all import *
\>>> R = ZZ['x, y']; (x, y,) = R._first_ngens(2)
\>>> Q = LaurentPolynomialRing(R, names=('t',)); (t,) = Q._first_ngens(1)
\>>> f = (x**Integer(3) + y/t**Integer(3))**Integer(3) + t**Integer(2); f
y^3*t^-9 + 3*x^3*y^2*t^-6 + 3*x^6*y*t^-3 + x^9 + t^2
\>>> f.dict()
\{-9: y^3, -6: 3*x^3*y^2, -3: 3*x^6*y, 0: x^9, 2: 1\}

divides (other)

Return True if self divides other.

EXAMPLES:

sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: (2*x**-1 + 1).divides(4*x**-2 - 1)
True
sage: (2*x + 1).divides(4*x**2 + 1)
False
sage: (2*x + x**-1).divides(R(0))
True
sage: R(0).divides(2*x ** -1 + 1)
False
sage: R(0).divides(R(0))
True
sage: R.<x> = LaurentPolynomialRing(Zmod(6))
sage: p = 4*x + 3*x^-1
sage: q = 5*x^2 + x + 2*x^-2
sage: p.divides(q)
False
sage: (x+y+1) * z**-1 + x*y
\>>> from sage.all import *
\>>> R = LaurentPolynomialRing(ZZ, names=('x, y',)); (x, y,) = R._first_ngens(1)
\>>> (x+y)**-1 * z + x*y
\>>> R(Integer(0)).divides(Integer(2)*x ** -1 + Integer(1))
\>>> from sage.libs.singular
(continues on next page)
```python
>>> R = LaurentPolynomialRing(Zmod(Integer(6)), names=('x',)); (x,) = R._first_ngens(1)
>>> p = Integer(4)*x + Integer(3)*x**-Integer(1)
>>> q = Integer(5)*x**Integer(2) + x + Integer(2)*x**-Integer(2)
>>> p.divides(q)
False

>>> R = GF(Integer(2))[x, y]; (x, y,) = R._first_ngens(2)
>>> S = LaurentPolynomialRing(R, names=('z',)); (z,) = S._first_ngens(1)
>>> p = (x+y+Integer(1)) * z**-Integer(1) + x*y
>>> q = (y**Integer(2)-x**Integer(2)) * z**-Integer(2) + z + x-y
>>> p.divides(q), p.divides(p*q)  # needs sage.libs.singular
(False, True)
```

euclidean_degree()

Return the degree of self as an element of an Euclidean domain.

This is the Euclidean degree of the underlying polynomial.

EXAMPLES:

```python
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: (x**-5 + x**2).euclidean_degree()
7
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: (x**-5 + x**2).euclidean_degree()
Traceback (most recent call last):
...  Not ImplementedError
```

```python
from sage.all import *
```

```python
>>> from sage.all import *
```

```python
>>> R = LaurentPolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> (x**-Integer(5) + x**Integer(2)).euclidean_degree()
7
```

```python
>>> R = LaurentPolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>> (x**-Integer(5) + x**Integer(2)).euclidean_degree()
Traceback (most recent call last):
...  Not ImplementedError
```

exponents()

Return the exponents appearing in self with nonzero coefficients.

EXAMPLES:

```python
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: f = -5/t^2 + t + t^2 - 10/3*t^3
sage: f.exponents()
[-2, 1, 2, 3]
```

```python
from sage.all import *
```

```python
>>> from sage.all import *
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

>>> f = -Integer(5)/t**(Integer(2)) + t + t**Integer(2) - Integer(10)/
 Integer(3)*t**Integer(3)
>>> f.exponents()
[-2, 1, 2, 3]

factor()

Return a Laurent monomial (the unit part of the factorization) and a factored polynomial.

EXAMPLES:

sage: R.<t> = LaurentPolynomialRing(ZZ)
sage: f = 4*t^-7 + 3*t^3 + 2*t^4 + t^-6
sage: f.factor()
needs sage.libs.pari
(t^-7) * (4 + t + 3*t^10 + 2*t^11)

>>> from sage.all import *
>>> R = LaurentPolynomialRing(ZZ, names=('t',)); (t,) = R._first_ngens(1)
>>> f = Integer(4)*t**-Integer(7) + Integer(3)*t**Integer(3) +
 Integer(2)*t**Integer(4) + t**-Integer(6)
>>> f.factor()
needs sage.libs.pari
(t^-7) * (4 + t + 3*t^10 + 2*t^11)

gcd(right)

Return the gcd of self with right where the common divisor d makes both self and right into polynomials with the lowest possible degree.

EXAMPLES:

sage: R.<t> = LaurentPolynomialRing(QQ)
sage: t.gcd(2)
1
sage: gcd(t^-2 + 1, t^-4 + 3*t^-1)
t^-4
sage: gcd((t^-2 + t)*t + t^-1), (t^5 + t^-8)*(t^-2))
(t^-3 + t^-1 + 1 + t^2)

>>> from sage.all import *
>>> R = LaurentPolynomialRing(QQ, names=('t',)); (t,) = R._first_ngens(1)
>>> t.gcd(Integer(2))
1
>>> gcd(t**-Integer(2) + Integer(1), t**-Integer(4) + Integer(3)*t**-
 Integer(1))
t^-4
>>> gcd((t**-Integer(2) + t)*t + t**-Integer(1)), (t**Integer(5) +
 t**Integer(8))*(Integer(1) + t**-Integer(2))
t^-3 + t^-1 + 1 + t^2

integral()

The formal integral of this Laurent series with 0 constant term.

EXAMPLES:

The integral may or may not be defined if the base ring is not a field.
The integral of $1/t$ is $\log(t)$, which is not given by a Laurent polynomial:

```sage
sage: t = LaurentPolynomialRing(ZZ, 't').0
sage: f = -1/t^3 - 31/t
sage: f.integral()
Traceback (most recent call last):
...;
ArithmeticError: the integral of is not a Laurent polynomial, since $t^{-1}$ has → nonzero coefficient
```

Another example with just one negative coefficient:

```sage
sage: A.<t> = LaurentPolynomialRing(QQ)
sage: f = -2*t^(-4)
sage: f.integral()
2/3*t^-3
sage: f.integral().derivative() == f
True
```

(continues on next page)
Polynomials, Release 10.4

>>> f.integral()
2/3*t^-3
>>> f.integral().derivative() == f
True

inverse_mod \((a, m)\)

Invert the polynomial \(a\) with respect to \(m\), or raise a `ValueError` if no such inverse exists.

The parameter \(m\) may be either a single polynomial or an ideal (for consistency with `inverse_mod()` in other rings).

ALGORITHM: Solve the system \(as + mt = 1\), returning \(s\) as the inverse of \(a\) mod \(m\).

EXAMPLES:

```python
sage: S.<t> = LaurentPolynomialRing(QQ)
sage: f = inverse_mod(t^-2 + 1, t^-3 + 1); f
1/2*t^2 - 1/2*t^3 - 1/2*t^4
sage: f * (t^-2 + 1) + (1/2*t^4 + 1/2*t^3) * (t^-3 + 1)
1
```

```python
>>> from sage.all import *
```

```python
S = LaurentPolynomialRing(QQ, names=('t',)); (t,) = S._first_ngens(1)
>>> f = inverse_mod(t**Integer(-2) + Integer(1), t**Integer(-3) + Integer(1)); →
1/2*t^2 - 1/2*t^3 - 1/2*t^4
>>> f * (t**Integer(-2) + Integer(1)) + (Integer(1)/Integer(2)*t**Integer(4)→
+ Integer(1)/Integer(2)*t**Integer(3)) * (t**Integer(-3) + Integer(1))
1
```

inverse_of_unit()

Return the inverse of `self` if a unit.

EXAMPLES:

```python
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: (t^-2).inverse_of_unit()
t^2
sage: (t + 2).inverse_of_unit()
Traceback (most recent call last):
... ArithmeticError: element is not a unit
```

```python
>>> from sage.all import *
>>> R = LaurentPolynomialRing(QQ, names=('t',)); (t,) = R._first_ngens(1)
>>> (t**Integer(-2)).inverse_of_unit()
t^2
>>> (t + Integer(2)).inverse_of_unit()
Traceback (most recent call last):
... ArithmeticError: element is not a unit
```

is_constant()

Return whether this Laurent polynomial is constant.

EXAMPLES:
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: x.is_constant()
False
sage: R.one().is_constant()
True
sage: (x^-2).is_constant()
False
sage: (x^2).is_constant()
False
sage: (x^-2 + 2).is_constant()
False
sage: R(0).is_constant()
True
sage: R(42).is_constant()
True
sage: x.is_constant()
True
sage: (1/x).is_constant()
False

>>> from sage.all import *
>>> R = LaurentPolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> x.is_constant()
False
>>> R.one().is_constant()
True
>>> (x**Integer(2)).is_constant()
False
>>> (x**Integer(2)).is_constant()
False
>>> (x**-Integer(2) + Integer(2)).is_constant()
False
>>> R(Integer(0)).is_constant()
True
>>> R(Integer(42)).is_constant()
True
>>> x.is_constant()
False
>>> (Integer(1)/x).is_constant()
False

is_monomial()

Return True if self is a monomial; that is, if self is x^n for some integer n.

EXAMPLES:

sage: k.<z> = LaurentPolynomialRing(QQ)
sage: z.is_monomial()
True
sage: k(1).is_monomial()
True
sage: (z+1).is_monomial()
False
sage: (z^-2909).is_monomial()
True
sage: (38*z^-2909).is_monomial()
False
is_square (root=False)

Return whether this Laurent polynomial is a square.

If root is set to True then return a pair made of the boolean answer together with None or a square root.

EXAMPLES:

```python
>>> from sage.all import *
>>> R = LaurentPolynomialRing(QQ, names=('t',)); (t,) = R._first_ngens(1)
>>> R.one().is_square()
True
>>> R(Integer(2)).is_square()
False
```

Usage of the root option:

```python
sage: p = (1 + t^-1 - 2*t^3)
sage: p.is_square(root=True)
(False, None)
sage: (p**2).is_square(root=True)
(True, -t^-1 - 1 + 2*t^3)
```

(continues on next page)
The answer is dependent of the base ring:

```python
sage: # needs sage.rings.number_field
sage: S.<u> = LaurentPolynomialRing(QQbar)
sage: (2 + 4*t + 2*t^2).is_square()
False
sage: (2 + 4*u + 2*u^2).is_square()
True
```

```python
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> S = LaurentPolynomialRing(QQbar, names=('u',)); (u,) = S._first_ngens(1)
>>> (Integer(2) + Integer(4)*t + Integer(2)*t**Integer(2)).is_square()
False
>>> (Integer(2) + Integer(4)*u + Integer(2)*u**Integer(2)).is_square()
True
```

is_unit()

Return True if this Laurent polynomial is a unit in this ring.

EXAMPLES:

```python
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: (2 + t).is_unit()
False
sage: f = 2*t
sage: f.is_unit()
True
sage: 1/f
1/2*t^-1
sage: R(0).is_unit()
False
sage: R.<s> = LaurentPolynomialRing(ZZ)
sage: g = 2*s
sage: g.is_unit()
False
sage: 1/g
1/2*s^-1
```

```python
>>> from sage.all import *
>>> R = LaurentPolynomialRing(QQ, names=('t',)); (t,) = R._first_ngens(1)
>>> (Integer(2) + t).is_unit()
False
>>> f = Integer(2)*t
>>> f.is_unit()
True
>>> Integer(1)/f
1/2*t^-1
>>> R(Integer(0)).is_unit()
False
>>> R = LaurentPolynomialRing(ZZ, names=('s',)); (s,) = R._first_ngens(1)
>>> g = Integer(2)*s
>>> g.is_unit()
```

(continues on next page)
False

```python
>>> Integer(1)/g
1/2*s^-1
```

ALGORITHM: A Laurent polynomial is a unit if and only if its “unit part” is a unit.

is_zero()

Return 1 if self is 0, else return 0.

EXAMPLES:

```python
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x + x^2 + 3*x^4
sage: f.is_zero()
0
sage: z = 0*f
sage: z.is_zero()
1
```

```python
>>> from sage.all import *
```

```python
R = LaurentPolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
```

```python
f = Integer(1)/x + x + x**Integer(2) + Integer(3)*x**Integer(4)
```

```python
f.is_zero()
```

```python
0
```

```python
z = Integer(0)*f
```

```python
z.is_zero()
```

```python
1
```

monomial_reduction()

Return the decomposition as a polynomial and a power of the variable. Constructed for compatibility with the multivariate case.

OUTPUT:

A tuple \((u, t^n)\) where \(u\) is the underlying polynomial and \(n\) is the power of the exponent shift.

EXAMPLES:

```python
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x + x^2 + 3*x^4
sage: f.monomial_reduction()
(3*x^5 + x^3 + 1, x^-1)
```

```python
>>> from sage.all import *
```

```python
R = LaurentPolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
```

```python
f = Integer(1)/x + x**Integer(2) + Integer(3)*x**Integer(4)
```

```python
f.monomial_reduction()
```

```python
(3*x^5 + x^3 + 1, x^-1)
```

number_of_terms()

Return the number of non-zero coefficients of self.

Also called weight, hamming weight or sparsity.

EXAMPLES:
```python
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: f = x^3 - 1
sage: f.number_of_terms()
2
sage: R(0).number_of_terms()
0
sage: f = (x+1)^100
sage: f.number_of_terms()
101
```

The method `hamming_weight()` is an alias:

```python
sage: f.hamming_weight()
101
```

polynomial_construction()

Return the polynomial and the shift in power used to construct the Laurent polynomial \(t^u u \).

OUTPUT:

A tuple \((u, n)\) where \(u \) is the underlying polynomial and \(n \) is the power of the exponent shift.

EXAMPLES:

```python
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x^2 + 3*x^4
sage: f.polynomial_construction()
(3*x^5 + x^3 + 1, -1)
```

quo_rem(other)

Divide `self` by `other` and return a quotient \(q \) and a remainder \(r \) such that \(self == q * other + r \).

EXAMPLES:
```python
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: (t^-3 - t^3).quo_rem(t^-1 - t)
(t^-2 + 1 + t^2, 0)
sage: (t^-2 + 3 + t).quo_rem(t^-4)
(t^-2 + 3*t^4 + t^5, 0)
sage: num = t^-2 + t
sage: den = t^-2 + 1
sage: q, r = num.quo_rem(den)
sage: num == q * den + r
True
```

```python
>>> from sage.all import *
R = LaurentPolynomialRing(QQ, names=('t',)); (t,) = R._first_ngens(1)
>>> (t**-Integer(3) - t**Integer(3)).quo_rem(t**-Integer(1) - t)
(t^-2 + 1 + t^2, 0)
>>> (t**-Integer(2) + Integer(3) + t).quo_rem(t**-Integer(4))
(t^-2 + 3*t^4 + t^5, 0)
```

```python
residue()
```

Return the residue of self.

The residue is the coefficient of t^{-1}.

EXAMPLES:

```python
sage: R.<t> = LaurentPolynomialRing(QQ)
sage: f = 3*t^-2 - t^-1 + 3 + t^2
sage: f.residue()
-1
```

```python
>>> from sage.all import *
R = LaurentPolynomialRing(QQ, names=('t',)); (t,) = R._first_ngens(1)
>>> f = 3*t^-2 - t^-1 + 3 + t^2
>>> f.residue()
-1
```

```python
shift(k)
```

Return this Laurent polynomial multiplied by the power t^n. Does not change this polynomial.

EXAMPLES:

```python
```
truncation \(n\)

Return a polynomial with degree at most \(n - 1\) whose \(j\)-th coefficients agree with `self` for all \(j < n\).

EXAMPLES:

```python
sage: R.<t> = LaurentPolynomialRing(QQ['y'])
sage: f = (t+t^-1)^4; f
t^-4 + 4*t^-2 + 6 + 4*t^2 + t^4
sage: f.shift(10)
t^6 + 4*t^8 + 6*t^10 + 4*t^12 + t^14
sage: f >> 10
t^-14 + 4*t^-12 + 6*t^-10 + 4*t^-8 + t^-6
sage: f << 4
1 + 4*t^2 + 6*t^4 + 4*t^6 + t^8
```

```python
>>> from sage.all import *
>>> R = LaurentPolynomialRing(QQ['y'], names=('t',)); (t,) = R._first_ngens(1)
>>> f = (t+t**-Integer(1))**Integer(4); f
t^-4 + 4*t^-2 + 6 + 4*t^2 + t^4
>>> f.shift(Integer(10))
t^6 + 4*t^8 + 6*t^10 + 4*t^12 + t^14
>>> f >> Integer(10)
t^-14 + 4*t^-12 + 6*t^-10 + 4*t^-8 + t^-6
>>> f << Integer(4)
1 + 4*t^2 + 6*t^4 + 4*t^6 + t^8
```

valuation \(p=None\)

Return the valuation of `self`.

The valuation of a Laurent polynomial \(t^n u\) is \(n\) plus the valuation of \(u\).

EXAMPLES:

```python
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: f = 1/x + x^2 + 3*x^4
sage: g = 1 - x + x^2 - x^4
sage: f.valuation()
```

(continues on next page)
variable_name()

Return the name of variable of self as a string.

EXAMPLES:

```
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x**2 + 3*x**4
sage: f.variable_name()
'x'
```

variables()

Return the tuple of variables occurring in this Laurent polynomial.

EXAMPLES:

```
sage: R.<x> = LaurentPolynomialRing(QQ)
sage: f = 1/x + x**2 + 3*x**4
sage: f.variables()
(x,)
sage: R.one().variables()
()```

xgcd(other)

Extended gcd() for univariate Laurent polynomial rings over a field.

OUTPUT:

A triple \((g, p, q)\) such that \(g\) is the gcd() of \(\text{self} (= a)\) and \(\text{other} (= b)\), and \(p\) and \(q\) are cofactors
satisfying the Bezout identity

\[ g = p \cdot a + q \cdot b. \]

EXAMPLES:

```
sage: S.<t> = LaurentPolynomialRing(QQ)
sage: a = t^-2 + 1
sage: b = t^-3 + 1
sage: g, p, q = a.xgcd(b); (g, p, q)
(t^-3, 1/2*t^-1 - 1/2 - 1/2*t, 1/2 + 1/2*t)
sage: g == p * a + q * b
True
sage: g == a.gcd(b)
True
sage: t.xgcd(t)
(t, 0, 1)
sage: t.xgcd(5)
(1, 0, 1/5)
```

5.4 MacMahon's Partition Analysis Omega Operator

This module implements MacMahon's Omega Operator [Mac1915], which takes a quotient of Laurent polynomials and removes all negative exponents in the corresponding power series.

5.4.1 Examples

In the following example, all negative exponents of \( \mu \) are removed. The formula

\[
\Omega_\geq \frac{1}{(1-x\mu)(1-y/\mu)} = \frac{1}{(1-x)(1-xy)}
\]

can be calculated and verified by

```
sage: L.<mu, x, y> = LaurentPolynomialRing(ZZ)
sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu])
1 * (-x + 1)^-1 * (-x*y + 1)^-1
```
>>> from sage.all import *
>>> L = LaurentPolynomialRing(ZZ, names=('mu', 'x', 'y',)); (mu, x, y,) = L._first_ ngens(3)
>>> MacMahonOmega(mu, Integer(1), [Integer(1) - x*mu, Integer(1) - y/mu])
1 * (-x + 1)^-1 * (-x*y + 1)^-1

5.4.2 Various

AUTHORS:

• DanielKrenn (2016)

ACKNOWLEDGEMENT:

• Daniel Krenn is supported by the Austrian Science Fund (FWF): P 24644-N26.

5.4.3 Functions

sage.rings.polynomial.omega.MacMahonOmega(var, expression, denominator=None, op=<built-in function ge>, Factorization_sort=False, Factorization_simplify=True)

Return $\Omega_{op}$ of expression with respect to var.

To be more precise, calculate

$$\frac{n}{d_1 \ldots d_n}$$

for the numerator $n$ and the factors $d_1, \ldots, d_n$ of the denominator, all of which are Laurent polynomials in var and return a (partial) factorization of the result.

INPUT:

• var – a variable or a representation string of a variable

• expression – a Factorization of Laurent polynomials or, if denominator is specified, a Laurent polynomial interpreted as the numerator of the expression

• denominator – a Laurent polynomial or a Factorization (consisting of Laurent polynomial factors) or a tuple/list of factors (Laurent polynomials)

• op – (default: operator.ge) an operator

At the moment only operator.ge is implemented.

• Factorization_sort (default: False) and Factorization_simplify (default: True) – are passed on to sage.structure.factorization.Factorization when creating the result

OUTPUT:

A (partial) Factorization of the result whose factors are Laurent polynomials

Note: The numerator of the result may not be factored.

REFERENCES:

• [Mac1915]
EXAMPLES:

```python
sage: L.<mu, x, y, z, w> = LaurentPolynomialRing(ZZ)

sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu])
1 * (-x + 1)^-1 * (-x*y + 1)^-1

sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu, 1 - z/mu])
1 * (-x + 1)^-1 * (-x*y + 1)^-1 * (-x*z + 1)^-1

sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu, 1 - z/mu])
(-x*y*z + 1) * (-x + 1)^-1 * (-y + 1)^-1 * (-y*z + 1)^-1

sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu])
(x*y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1

sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu, 1 - z/mu])
(-x*y*z + 1) * (-x + 1)^-1 * (-x*y + 1)^-1 * (-y + 1)^-1 * (-x*z + 1)^-1

sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu, 1 - z/mu])
(-x+y^2 + x*y + 1) * (-x + 1)^-1 * (-x*y^3 + 1)^-1

sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu])
(x*y^2 + x*y + 1) * (-x + 1)^-1 * (-x*y^3 + 1)^-1

sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu, 1 - z/mu])
(-x*y*z + x*y + x*z + 1) * (-x + 1)^-1 * (-x*y + 1)^-1 * (-x*z + 1)^-1

sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu])
(x*y^2 + x*y^2*z*w + x*y*z*w + x^2*z*w - x*zy*w - x*y*z*w + 1) * (-x + 1)^-1 * (-y + 1)^-1 * (-x*z + 1)^-1

sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu])
(x^2*y*z*w + x*y^2*z*w - x*y*z*w - x*y*z*w + 1) * (-x + 1)^-1 * (-y + 1)^-1 * (-x*z + 1)^-1

sage: MacMahonOmega(mu, 1, [1 - x*mu, 1 - y/mu])
(x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1
```

```python
>>> from sage.all import *

L = LaurentPolynomialRing(ZZ, names=('mu', 'x', 'y', 'z', 'w',)); (mu, x, y, ...
```

(continues on next page)
\(\rightarrow z, w, \) = L._first_ngens(5)

>>> MacMahonOmega(mu, Integer(1), [Integer(1) - x*mu, Integer(1) - y/mu])
\[1 \times (-x + 1)^{-1} \times (-x^2 + 1)^{-1}\]

>>> MacMahonOmega(mu, Integer(1), [Integer(1) - x*mu, Integer(1) - y/mu])
\[1 \times (-x + 1)^{-1} \times (-x^2 + 1)^{-1}\]

>>> MacMahonOmega(mu, Integer(1), [Integer(1) - x*mu, Integer(1) - y/mu])
\[(-x^2 + 1)^{-1} \times (-x + 1)^{-1} \times (-x^2 + 1)^{-1}\]

>>> MacMahonOmega(mu, Integer(1), [Integer(1) - x*mu, Integer(1) - y/mu])
\[1 \times (-x + 1)^{-1} \times (-x^2 + 1)^{-1}\]

>>> MacMahonOmega(mu, Integer(1), [Integer(1) - x*mu, Integer(1) - y/mu])
\[(x^2 + x*y + 1) \times (-x + 1)^{-1} \times (-x^2 + 1)^{-1}\]

>>> MacMahonOmega(mu, Integer(1), [Integer(1) - x*mu, Integer(1) - y/mu])
\[(x^2 + x*y + 1) \times (-x + 1)^{-1} \times (-x^2 + 1)^{-1}\]

>>> MacMahonOmega(mu, Integer(1), [Integer(1) - x*mu, Integer(1) - y/mu])
\[(x^2 + x*y + 1) \times (-x + 1)^{-1} \times (-x^2 + 1)^{-1}\]

>>> MacMahonOmega(mu, Integer(1), [Integer(1) - x*mu, Integer(1) - y/mu])
\[(x^2 + x*y + 1) \times (-x + 1)^{-1} \times (-x^2 + 1)^{-1}\]

>>> MacMahonOmega(mu, Integer(1), [Integer(1) - x*mu, Integer(1) - y/mu])
\[(x^2 + x*y + 1) \times (-x + 1)^{-1} \times (-x^2 + 1)^{-1}\]

>>> MacMahonOmega(mu, Integer(1), [Integer(1) - x*mu, Integer(1) - y/mu])
\[(x^2 + x*y + 1) \times (-x + 1)^{-1} \times (-x^2 + 1)^{-1}\]

>>> MacMahonOmega(mu, Integer(1), [Integer(1) - x*mu, Integer(1) - y/mu])
\[(x^2 + x*y + 1) \times (-x + 1)^{-1} \times (-x^2 + 1)^{-1}\]
x^2 * (-x + 1)^-1 * (-x*y + 1)^-1
>>> MacMahonOmega(mu, mu^x*Integer(1), [Integer(1) - x*mu, Integer(1) - y/mu])
x * (-x + 1)^-1 * (-x*y + 1)^-1
>>> MacMahonOmega(mu, mu, [Integer(1) - x*mu, Integer(1) - y/mu])
(-x^y + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1
>>> MacMahonOmega(mu, mu^x*Integer(2), [Integer(1) - x*mu, Integer(1) - y/mu])
(-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1

We demonstrate the different allowed input variants:

```python
sage: MacMahonOmega(mu,
....: Factorization([(mu, 2), (1 - x*mu, -1), (1 - y/mu, -1)]))
(-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1
sage: MacMahonOmega(mu, mu^2,
....: Factorization([(1 - x*mu, 1), (1 - y/mu, 1)]))
(-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1
sage: MacMahonOmega(mu, mu^2, [1 - x*mu, 1 - y/mu])
(-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1
sage: MacMahonOmega(mu, mu^2, (1 - x*mu)*(1 - y/mu)) # not tested because not fully implemented
(-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1
sage: MacMahonOmega(mu, mu^2 / ((1 - x*mu)*(1 - y/mu))) # not tested because not fully implemented
(-x*y^2 - x*y + y^2 + y + 1) * (-x + 1)^-1 * (-x*y + 1)^-1
```

```python
>>> from sage.all import *
```
and return its numerator and a factorization of its denominator. Note that $z_0, \ldots, z_{n-1}$ only appear in the output, but not in the input.

**INPUT:**

- $a$ – an integer
- exponents – a tuple of integers

**OUTPUT:**

A pair representing a quotient as follows: Its first component is the numerator as a Laurent polynomial, its second component a factorization of the denominator as a tuple of Laurent polynomials, where each Laurent polynomial $z$ represents a factor $1 - z$.

The parents of these Laurent polynomials is always a Laurent polynomial ring in $z_0, \ldots, z_{n-1}$ over $\mathbb{Z}$, where $n$ is the length of exponents.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.omega import Omega_ge
sage: Omega_ge(0, (1, -2))
(1, (z0, z0^2*z1))

sage: Omega_ge(0, (1, -3))
(1, (z0, z0^3*z1))

sage: Omega_ge(0, (1, -4))
(1, (z0, z0^4*z1))

sage: Omega_ge(0, (2, -1))
(z0*z1 + 1, (z0, z0*z1^2))

sage: Omega_ge(0, (3, -1))
(z0*z1^2 + z0*z1 + 1, (z0, z0*z1^3))

sage: Omega_ge(0, (4, -1))
(z0*z1^3 + z0*z1^2 + z0*z1 + 1, (z0, z0*z1^4))

sage: Omega_ge(0, (1, 1, -2))
(-z0^2*z1*z2 - z0*z1^2*z2 + z0*z1*z2 + 1, (z0, z1, z0^2*z2, z1^2*z2))

sage: Omega_ge(0, (2, -1, -1))
(z0*z1*z2 + z0*z1 + z0*z2 + 1, (z0, z0*z1^2, z0*z2^2))

sage: Omega_ge(0, (2, 1, -1))
(-z0*z1*z2^2 - z0*z1*z2 + z0*z2 + 1, (z0, z1, z0*z2^2, z1*z2))
```
Polynomials, Release 10.4

>>> Omega_ge(Integer(0), (Integer(2), -Integer(1), -Integer(1)))
(z0*z1*z2 + z0*z1 + z0*z2 + 1, (z0, z0*z1^2, z0*z2^2))

>>> Omega_ge(0, (2, 1, -1))
(-z0^3*z1^3*z2^3 + 2*z0^2*z1^3*z2^2 - z0*z1^3*z2
+ z0^2*z2^2 - 2*z0*z2 + 1,
(z0, z1, z0*z2, z0*z2, z0*z2, z1^3*z2))

>>> from sage.all import *

>>> Omega_ge(Integer(0), (Integer(2), -Integer(2)))
(-z0*z1 + 1, (z0, z0*z1, z0*z1))

>>> Omega_ge(0, (3, 6, -1))
(-z0*z1*z2^8 - z0*z1*z2^7 - z0*z1*z2^6 - z0*z1*z2^5 - z0*z1*z2^4 +
z1*z2^5 - z0*z1*z2^3 + z1*z2^4 - z0*z1*z2^2 + z1*z2^3 - z0*z1*z2 + z0*z2^2 + z1*z2^2 + z0*z2 + z1*z2 + 1,
(z0, z1, z0*z2^3, z1*z2^6))

sage.rings.polynomial.omega.homogeneous_symmetric_function(j, x)

Return a complete homogeneous symmetric polynomial (Wikipedia article Complete_homogeneous_symmetric_polynomial).

INPUT:

- j – the degree as a nonnegative integer
- x – an iterable of variables

OUTPUT:

A polynomial of the common parent of all entries of x

EXAMPLES:

sage: from sage.rings.polynomial.omega import homogeneous_symmetric_function
sage: P = PolynomialRing(ZZ, 'X', 3)
sage: homogeneous_symmetric_function(0, P.gens())
sage: homogeneous_symmetric_function(1, P.gens())
X0 + X1 + X2
sage: homogeneous_symmetric_function(2, P.gens())
X0^2 + X0*X1 + X1^2 + X0*X2 + X1*X2 + X2^2
sage: homogeneous_symmetric_function(3, P.gens())
X0^3 + X0^2*X1 + X0*X1^2 + X1^3 + X0^2*X2 + X0*X1*X2 + X1^2*X2 + X0*X2^2 + X1*X2^2 + X2^3

sage.rings.polynomial.omega.partition (items, predicate=<class 'bool'>)

Split items into two parts by the given predicate.

INPUT:

• item – an iterator
• predicate – a function

OUTPUT:

A pair of iterators; the first contains the elements not satisfying the predicate, the second the elements satisfying the predicate.

ALGORITHM:

Source of the code: http://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html

EXAMPLES:

sage: from sage.rings.polynomial.omega import partition
sage: E, O = partition(srange(10), is_odd)
sage: tuple(E), tuple(O)
((0, 2, 4, 6, 8), (1, 3, 5, 7, 9))

>>> from sage.all import *
>>> from sage.rings.polynomial.omega import partition
>>> E, O = partition(srange(Integer(10)), is_odd)
>>> tuple(E), tuple(O)
((0, 2, 4, 6, 8), (1, 3, 5, 7, 9))
6.1 Infinite Polynomial Rings

By Infinite Polynomial Rings, we mean polynomial rings in a countably infinite number of variables. The implementation consists of a wrapper around the current finite polynomial rings in Sage.

AUTHORS:

- Simon King <simon.king@nuigalway.ie>
- Mike Hansen <mhansen@gmail.com>

An Infinite Polynomial Ring has finitely many generators \( x_\ast, y_\ast, \ldots \) and infinitely many variables of the form \( x_0, x_1, x_2, \ldots, y_0, y_1, y_2, \ldots, \ldots \). We refer to the natural number \( n \) as the index of the variable \( x_n \).

INPUT:

- \( R \), the base ring. It has to be a commutative ring, and in some applications it must even be a field
- \( \text{names} \), a finite list of generator names. Generator names must be alpha-numeric.
- \( \text{order} \) (optional string). The default order is 'lex' (lexicographic). 'deglex' is degree lexicographic, and 'degrevlex' (degree reverse lexicographic) is possible but discouraged.

Each generator \( x \) produces an infinite sequence of variables \( x[1], x[2], \ldots \) which are printed on screen as \( x_1, x_2, \ldots \) and are latex typeset as \( x_1, x_2, \ldots \). Then, the Infinite Polynomial Ring is formed by polynomials in these variables.

By default, the monomials are ordered lexicographically. Alternatively, degree (reverse) lexicographic ordering is possible as well. However, we do not guarantee that the computation of Groebner bases will terminate in this case.

In either case, the variables of a Infinite Polynomial Ring \( X \) are ordered according to the following rule:

\[
X.\text{gen}(i)[m] > X.\text{gen}(j)[n] \text{ if and only if } i < j \text{ or } (i = j \text{ and } m > n)
\]

We provide a 'dense' and a 'sparse' implementation. In the dense implementation, the Infinite Polynomial Ring carries a finite polynomial ring that comprises all variables up to the maximal index that has been used so far. This is potentially a very big ring and may also comprise many variables that are not used.

In the sparse implementation, we try to keep the underlying finite polynomial rings small, using only those variables that are really needed. By default, we use the dense implementation, since it usually is much faster.

EXAMPLES:

```sage
sage: X.<x,y> = Infinite PolynomialRing(ZZ, implementation='sparse')
sage: A.<alpha,beta> = Infinite PolynomialRing(QQ, order='deglex')
sage: f = x[5] + 2; f
x_5 + 2
```

(continues on next page)
It has some advantages to have an underlying ring that is not univariate. Hence, we always have at least two variables:

```python
sage: g._p.parent()
Multivariate Polynomial Ring in y_1, y_0 over Integer Ring
```

Of course, we provide the usual polynomial arithmetic:

```python
sage: f + g
x_5 + 3*y_1 + 2
sage: p = x[10]**2*(f+g); p
x_10^2*x_5 + 3*x_10^2*y_1 + 2*x_10^2
sage: p2 = alpha[10]**2*(f2+g2); p2
alpha_10^2*alpha_5 + 3*alpha_10^2*beta_1 + 2*alpha_10^2
```
There is a permutation action on the variables, by permuting positive variable indices:

```
sage: P = Permutation(((10,1)))
sage: p^P
x_5 * x_1^2 + 3 * x_1^2 * y_10 + 2 * x_1^2
sage: p2^P
alpha_5 * alpha_1^2 + 3 * alpha_1^2 * beta_10 + 2 * alpha_1^2
```

Note that $x_0^P = x_0$, since the permutations only change positive variable indices.

We also implemented ideals of Infinite Polynomial Rings. Here, it is thoroughly assumed that the ideals are set-wise invariant under the permutation action. We therefore refer to these ideals as Symmetric Ideals. Symmetric Ideals are finitely generated modulo addition, multiplication by ring elements and permutation of variables. If the base ring is a field, one can compute Symmetric Groebner Bases:

```
sage: J.groebner_basis()
\# needs sage.combinat sage.libs.singular
[alpha_1 * beta_2, alpha_2 * beta_1]
```

For more details, see `SymmetricIdeal`.

Infinite Polynomial Rings can have any commutative base ring. If the base ring of an Infinite Polynomial Ring is a (classical or infinite) Polynomial Ring, then our implementation tries to merge everything into one ring. The basic requirement is that the monomial orders match. In the case of two Infinite Polynomial Rings, the implementations must match. Moreover, name conflicts should be avoided. An overlap is only accepted if the order of variables can be uniquely inferred, as in the following example:

```
sage: A.<a,b,c> = InfinitePolynomialRing(ZZ)
sage: B.<b,c,d> = InfinitePolynomialRing(A)
sage: B
Infinite polynomial ring in a, b, c, d over Integer Ring
```

This is also allowed if finite polynomial rings are involved:
It is no problem if one generator of the Infinite Polynomial Ring is called \texttt{x} and one variable of the base ring is also called \texttt{x}. This is since no \texttt{variable} of the Infinite Polynomial Ring will be called \texttt{x}. However, a problem arises if the underlying classical Polynomial Ring has a variable \texttt{x}_1, since this can be confused with a variable of the Infinite Polynomial Ring. In this case, an error will be raised:

```python
sage: X.<x,y_1> = ZZ[
sage: Y.<x,z> = InfinitePolynomialRing(X)
```

Note that \texttt{X} is not merged into \texttt{Y}; this is since the monomial order of \texttt{X} is 'degrevlex', but of \texttt{Y} is 'lex'.

```python
sage: Y
Infinite polynomial ring in x, z over
Multivariate Polynomial Ring in x, y_1 over Integer Ring
```

The variable \texttt{x} of \texttt{X} can still be interpreted in \texttt{Y}, although the first generator of \texttt{X} is called \texttt{x} as well:

```python
sage: x
x
sage: X('x')
x
sage: Y(X('x'))
x
sage: Y('x')
x
```

(continues on next page)
But there is only merging if the resulting monomial order is uniquely determined. This is not the case in the following examples, and thus an error is raised:

```python
>>> Y('x')
x
```

If the type of monomial orderings (e.g., `degrevlex` versus `lex`) or if the implementations do not match, there is no simplified construction available:

```python
>>> from sage.all import *
>>> X = ZZ['y_1, x']; (y_1, x,) = X._first_ngens(2)
>>> Y = InfinitePolynomialRing(X, names=('y', 'z',)); (y, z,) = Y._first_ngens(2)
Traceback (most recent call last):
... CoercionException: Overlapping variables ((y,),[y_1, y_2]) are incompatible
```

```python
>>> from sage.all import *
>>> X = InfinitePolynomialRing(ZZ, names=('x', 'y',)); (x, y,) = X._first_ngens(2)
>>> Y = InfinitePolynomialRing(X, order='degrevlex', names=('z',)); (z,) = Y._first_ngens(1)
```

(continues on next page)
Infinite polynomial ring in z over Infinite polynomial ring in x, y over Integer Ring
>>> Y = InfinitePolynomialRing(X, implementation='sparse', names=('z',)); (z,) = Y._first_ngens(1)
>>> Y
Infinite polynomial ring in z over Infinite polynomial ring in x, y over Integer Ring

**class** sage.rings.polynomial.infinite_polynomial_ring.GenDictWithBasering (parent, start)

**Bases:** object

A dictionary-like class that is suitable for usage in `sage_eval`.

This pseudo-dictionary accepts strings as index, and then walks down a chain of base rings of (infinite) polynomial rings until it finds one ring that has the given string as variable name, which is then returned.

**EXAMPLES:**

```
sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: D = R.gens_dict() # indirect doctest
sage: D['a_15']
a_15
sage: type(_)
<class 'sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_dense'>
sage: sage_eval('3*a_3*b_5-1/2*a_7', D)
-1/2*a_7 + 3*a_3*b_5
```

```
next ()

Return a dictionary that can be used to interprete strings in the base ring of self.

EXAMPLES:

```
sage: R.<a,b> = InfinitePolynomialRing(QQ['t'])
sage: D = R.gens_dict()
sage: D
GenDict of Infinite polynomial ring in a, b over Univariate Polynomial Ring in t over Rational Field
sage: next(D)
GenDict of Univariate Polynomial Ring in t over Rational Field
sage: sage_eval('t^2', next(D))
t^2
```
class sage.rings.polynomial.infinite_polynomial_ring.InfiniteGenDict(Gens)
Bases: object

A dictionary-like class that is suitable for usage in sage_eval.

The generators of an Infinite Polynomial Ring are not variables. Variables of an Infinite Polynomial Ring are returned by indexing a generator. The purpose of this class is to return a variable of an Infinite Polynomial Ring, given its string representation.

EXAMPLES:

```python
class sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialGen(parent, name)
Bases: sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial_dense

This class provides the object which is responsible for returning variables in an infinite polynomial ring (implemented in __getitem__()).

EXAMPLES:
```
Polynomials, Release 10.4

```python
sage: X.<x1,x2> = InfinitePolynomialRing(RR)
sage: x1
x1_*
sage: x1[5]
x1_5
sage: x1 == loads(dumps(x1))
True
```

```python
>>> from sage.all import *

>>> X = InfinitePolynomialRing(RR, names=('x1', 'x2',)); (x1, x2,) = X._first_ngens(2)
>>> x1
x1_*
>>> x1[Integer(5)]
x1_5
>>> x1 == loads(dumps(x1))
True
```

```python
class sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRingFactory

Bases: UniqueFactory

A factory for creating infinite polynomial ring elements. It handles making sure that they are unique as well as handling pickling. For more details, see UniqueFactory and infinite_polynomial_ring.

EXAMPLES:

```python
sage: A.<a> = InfinitePolynomialRing(QQ)
sage: B. = InfinitePolynomialRing(A)
sage: B.construction()
[InfPoly{[a,b], "lex", "dense"}, Rational Field]
sage: R.<a,b> = InfinitePolynomialRing(QQ)
sage: R is B
True
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: X2.<x> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: X is X2
False
sage: X is loads(dumps(X))
True
```

```python
>>> from sage.all import *

>>> A = InfinitePolynomialRing(QQ, names=('a',)); (a,) = A._first_ngens(1)
>>> B = InfinitePolynomialRing(A, names=('b',)); (b,) = B._first_ngens(1)
>>> B.construction()
[InfPoly{[a,b], "lex", "dense"}, Rational Field]
>>> R = InfinitePolynomialRing(QQ, names=('a', 'b',)); (a, b,) = R._first_ngens(2)
>>> R is B
True
>>> X = InfinitePolynomialRing(QQ, names=('x',)); (x,) = X._first_ngens(1)
>>> X2 = InfinitePolynomialRing(QQ, implementation='sparse', names=('x',)); (x,)
... = X2._first_ngens(1)
>>> X is X2
False
```
```
create_key \((R, \text{names}=('x',), \text{order}='lex', \text{implementation}='dense')\)

Creates a key which uniquely defines the infinite polynomial ring.

create_object \((\text{version}, \text{key})\)

Return the infinite polynomial ring corresponding to the key \text{key}.

\[
\text{class} \ \text{sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_dense} \ (R, \ \text{names}, \ \text{order})
\]

Bases: \text{InfinitePolynomialRing_sparse}

Dense implementation of Infinite Polynomial Rings

Compared with \text{InfinitePolynomialRing_sparse}, from which this class inherits, it keeps a polynomial ring that comprises all elements that have been created so far.

construction()

Return the construction of self.

OUTPUT:

A pair \(F, R\), where \(F\) is a construction functor and \(R\) is a ring, so that \(F(R)\) is self.

EXAMPLES:

```
sage: R.<x,y> = InfinitePolynomialRing(GF(5))
sage: R.construction()
[InfPoly\{(x,y), "lex", "dense"}, Finite Field of size 5]
```

```
>>> from sage.all import *
>>>
R = InfinitePolynomialRing(GF(Integer(5)), names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> R.construction()
[InfPoly\{(x,y), "lex", "dense"}, Finite Field of size 5]
```

polynomial_ring()

Return the underlying finite polynomial ring.

Note: The ring returned can change over time as more variables are used.

Since the rings are cached, we create here a ring with variable names that do not occur in other doc tests, so that we avoid side effects.

EXAMPLES:

```
sage: X.<xx, yy> = InfinitePolynomialRing(ZZ)
sage: X.polynomial_ring()
Multivariate Polynomial Ring in xx_0, yy_0 over Integer Ring
sage: a = yy[3]
sage: X.polynomial_ring()
Multivariate Polynomial Ring in xx_3, xx_2, xx_1, xx_0, yy_3, yy_2, yy_1, yy_0 over Integer Ring
```
Polynomials, Release 10.4

>>> from sage.all import *

>>> X = InfinitePolynomialRing(ZZ, names=('xx', 'yy',)); (xx, yy,) = X._first_ngens(2)
>>> X.polynomial_ring()
Multivariate Polynomial Ring in xx_0, yy_0 over Integer Ring
>>> a = yy[Integer(3)]
>>> X.polynomial_ring()
Multivariate Polynomial Ring in xx_3, xx_2, xx_1, xx_0, yy_3, yy_2, yy_1, yy_0
over Integer Ring

tensor_with_ring(R)

Return the tensor product of self with another ring.

INPUT:

• R – a ring.

OUTPUT:

An infinite polynomial ring that, mathematically, can be seen as the tensor product of self with R.

NOTE:

It is required that the underlying ring of self coerces into R. Hence, the tensor product is in fact merely an extension of the base ring.

EXAMPLES:

sage: R.<a,b> = InfinitePolynomialRing(ZZ, implementation='sparse')
sage: R.tensor_with_ring(QQ)
Infinite polynomial ring in a, b over Rational Field
sage: R
Infinite polynomial ring in a, b over Integer Ring

The following tests against a bug that was fixed at Issue #10468:

sage: R.<x,y> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: R.tensor_with_ring(QQ) is R
True

class sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse(R, names, order)

Bases: CommutativeRing
Sparse implementation of Infinite Polynomial Rings.

An Infinite Polynomial Ring with generators $x_*, y_*, ...$ over a field F is a free commutative F-algebra generated by $x_0, x_1, x_2, ..., y_0, y_1, y_2, ...$ and is equipped with a permutation action on the generators, namely $x_\mu = x_{\mu(\mu)}$, $y_\mu = y_{\mu(\mu)}$, ... for any permutation μ (note that variables of index zero are invariant under such permutation).

It is known that any permutation invariant ideal in an Infinite Polynomial Ring is finitely generated modulo the permutation action – see SymmetricIdeal for more details.

Usually, an instance of this class is created using InfinitePolynomialRing with the optional parameter implementation='sparse'. This takes care of uniqueness of parent structures. However, a direct construction is possible, in principle:

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: Y.<x,y> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: X is Y
True
sage: from sage.rings.polynomial.infinite_polynomial_ring import InfinitePolynomialRing_sparse
sage: Z = InfinitePolynomialRing_sparse(QQ, [x,y], 'lex')
```

Nevertheless, since infinite polynomial rings are supposed to be unique parent structures, they do not evaluate equal.

```python
sage: Z == X
False
```

The last parameter ('lex' in the above example) can also be 'deglex' or 'degrevlex'; this would result in an Infinite Polynomial Ring in degree lexicographic or degree reverse lexicographic order.

See infinite_polynomial_ring for more details.

characteristic()

Return the characteristic of the base field.

EXAMPLES:

```python
sage: X.<x,y> = InfinitePolynomialRing(GF(25,'a'))
# Needs sage.rings.finite_rings
sage: X
# Needs sage.rings.finite_rings
Infinite polynomial ring in x, y over Finite Field in a of size 5^2
sage: X.characteristic()
# (continues on next page)
```
construction()

Return the construction of self.

OUTPUT:
A pair \(F, R \), where \(F \) is a construction functor and \(R \) is a ring, so that \(F(R) \) is self.

EXAMPLES:

```python
sage: R.<x,y> = InfinitePolynomialRing(GF(5))
sage: R.construction()
[InfPoly([x,y], "lex", "dense"), Finite Field of size 5]
```

```
from sage.all import *
from sage.rings.finite_rings import FiniteField
R = InfinitePolynomialRing(QQ)
R.construction()
```

```
from sage.all import *
from sage.rings.finite_rings import FiniteField
from sage.rings.polynomial.polynomial_ring import InfinitePolynomialRing

X = InfinitePolynomialRing(GF(Integer(5)), names=('x', 'y',)); (x, y,) = X._first_ngens(2) # needs sage.rings.finite_rings
X
```

```python
>>> from sage.all import *
X = InfinitePolynomialRing(QQ)
>>> x = R.gen()
>>> x[1]
x_1
```

```
X.gen() is X.gen(0)
True
```

```
X = InfinitePolynomialRing(QQ)
>>> x = X.gen()
>>> x[Integer(1)]
x_1
>>> X.gen() is X.gen(Integer(0))
True
```

```
X = InfinitePolynomialRing(QQ)
>>> x = X.gen()
>>> x[Integer(1)]
x_1
>>> X.gen() is X.gen(Integer(0))
True
```

```
X = InfinitePolynomialRing(QQ)
>>> x = X.gen()
>>> x[Integer(1)]
x_1
>>> X.gen() is X.gen(Integer(0))
True
```

```
X = InfinitePolynomialRing(QQ)
>>> x = X.gen()
>>> x[Integer(1)]
x_1
>>> X.gen() is X.gen(Integer(0))
True
```

```
from sage.all import *
from sage.rings.finite_rings import FiniteField
R = InfinitePolynomialRing(QQ)
R.construction()
```

```
from sage.all import *
from sage.rings.finite_rings import FiniteField
from sage.rings.polynomial.polynomial_ring import InfinitePolynomialRing

X = InfinitePolynomialRing(QQ)
X.characteristic()
```

```
from sage.all import *
from sage.rings.finite_rings import FiniteField
R = InfinitePolynomialRing(QQ)
R.construction()
```

```
from sage.all import *
from sage.rings.finite_rings import FiniteField
from sage.rings.polynomial.polynomial_ring import InfinitePolynomialRing

X = InfinitePolynomialRing(QQ)
X.characteristic()
```

```
from sage.all import *
from sage.rings.finite_rings import FiniteField
from sage.rings.polynomial.polynomial_ring import InfinitePolynomialRing

X = InfinitePolynomialRing(QQ)
X.characteristic()
```

```
from sage.all import *
from sage.rings.finite_rings import FiniteField
from sage.rings.polynomial.polynomial_ring import InfinitePolynomialRing

X = InfinitePolynomialRing(QQ)
X.characteristic()
```

```
from sage.all import *
from sage.rings.finite_rings import FiniteField
from sage.rings.polynomial.polynomial_ring import InfinitePolynomialRing

X = InfinitePolynomialRing(QQ)
X.characteristic()
```

```
from sage.all import *
from sage.rings.finite_rings import FiniteField
from sage.rings.polynomial.polynomial_ring import InfinitePolynomialRing

X = InfinitePolynomialRing(QQ)
X.characteristic()
```

```
from sage.all import *
from sage.rings.finite_rings import FiniteField
from sage.rings.polynomial.polynomial_ring import InfinitePolynomialRing

X = InfinitePolynomialRing(QQ)
X.characteristic()
```

```
from sage.all import *
from sage.rings.finite_rings import FiniteField
from sage.rings.polynomial.polynomial_ring import InfinitePolynomialRing

X = InfinitePolynomialRing(QQ)
X.characteristic()
```

```
from sage.all import *
from sage.rings.finite_rings import FiniteField
from sage.rings.polynomial.polynomial_ring import InfinitePolynomialRing

X = InfinitePolynomialRing(QQ)
X.characteristic()
```
gens_dict()

Return a dictionary-like object containing the infinitely many \{\text{var_name:variable}\} pairs.

EXAMPLES:

```python
sage: R = InfinitePolynomialRing(ZZ, 'a')
sage: D = R.gens_dict()
sage: D
GenDict of Infinite polynomial ring in a over Integer Ring
sage: D['a_5']
a_5
```

is_field(*args, **kwds)**

Return False since Infinite Polynomial Rings are never fields.

Since Infinite Polynomial Rings must have at least one generator, they have infinitely many variables and thus never are fields.

EXAMPLES:

```python
sage: R.<x, y> = InfinitePolynomialRing(QQ)
sage: R.is_field()
False
```

is_integral_domain(*args, **kwds)**

An infinite polynomial ring is an integral domain if and only if the base ring is. Arguments are passed to is_integral_domain method of base ring.

EXAMPLES:

```python
sage: R.<x, y> = InfinitePolynomialRing(QQ)
sage: R.is_integral_domain()
True
```

is_noetherian()

Return False, since polynomial rings in infinitely many variables are never Noetherian rings.
Since Infinite Polynomial Rings must have at least one generator, they have infinitely many variables and are thus not Noetherian, as a ring.

Note: Infinite Polynomial Rings over a field \(F \) are Noetherian as \(F(G) \) modules, where \(G \) is the symmetric group of the natural numbers. But this is not what the method `is_noetherian()` is answering.

key_basis()
Return the basis of `self` given by key polynomials.

EXAMPLES:

```sage
sage: R.<x> = InfinitePolynomialRing(GF(2))
sage: R.key_basis()  # needs sage.combinat sage.modules
Key polynomial basis over Finite Field of size 2
```

```python
>>> from sage.all import *
>>> R = InfinitePolynomialRing(GF(Integer(2)), names=(x,)); (x,) = R._first_ngens(1)
>>> R.key_basis()  # needs sage.combinat sage.modules
Key polynomial basis over Finite Field of size 2
```

krull_dimension(*args, **kwds)
Return Infinity, since polynomial rings in infinitely many variables have infinite Krull dimension.

EXAMPLES:

```sage
sage: R.<x, y> = InfinitePolynomialRing(QQ)
sage: R.krull_dimension()  #Infinity
```

```python
>>> from sage.all import *
>>> R = InfinitePolynomialRing(QQ, names=(x, y,)); (x, y,) = R._first_ngens(2)
>>> R.krull_dimension()  #Infinity
```

ngens()
Return the number of generators for this ring.

Since there are countably infinitely many variables in this polynomial ring, by 'generators' we mean the number of infinite families of variables. See `infinite_polynomial_ring` for more details.

EXAMPLES:

```sage
sage: X.<x> = InfinitePolynomialRing(ZZ)
sage: X.ngens() 1
```

```sage
sage: X.<x1,x2> = InfinitePolynomialRing(QQ)
sage: X.ngens() 2
```
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> X = InfinitePolynomialRing(ZZ, names=('x',)); (x,) = X._first_ngens(1)
>>> X.ngens()
1

>>> X = InfinitePolynomialRing(QQ, names=('x1', 'x2',)); (x1, x2,) = X._first_ngens(2)
>>> X.ngens()
2
```

one()

order()

Return `Infinity`, since polynomial rings have infinitely many elements.

EXAMPLES:

```python
sage: R.<x> = InfinitePolynomialRing(GF(2))
sage: R.order()
+Infinity
```

tensor_with_ring(R)

Return the tensor product of `self` with another ring.

INPUT:

- `R` - a ring.

OUTPUT:

An infinite polynomial ring that, mathematically, can be seen as the tensor product of `self` with `R`.

NOTE:

It is required that the underlying ring of `self` coerces into `R`. Hence, the tensor product is in fact merely an extension of the base ring.

EXAMPLES:

```python
sage: R.<a,b> = InfinitePolynomialRing(ZZ)
sage: R.tensor_with_ring(QQ)
Infinite polynomial ring in a, b over Rational Field
sage: R
Infinite polynomial ring in a, b over Integer Ring
```

```python
>>> from sage.all import *

>>> R = InfinitePolynomialRing(GF(Integer(2)), names=('x',)); (x,) = R._first_ngens(1)
>>> R.order()
+Infinity
```

6.1. Infinite Polynomial Rings 1003
The following tests against a bug that was fixed at Issue #10468:

```python
sage: R.<x,y> = InfinitePolynomialRing(QQ)
sage: R.tensor_with_ring(QQ) is R
True
```

```python
>>> from sage.all import *

R = InfinitePolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> R.tensor_with_ring(QQ) is R
True
```

varname_key(x)

Key for comparison of variable names.

INPUT:

- `x` - a string of the form `a+'_'+str(n)`, where `a` is the name of a generator, and `n` is an integer

RETURN:

a key used to sort the variables

THEORY:

The order is defined as follows:

\[x < y \iff \text{the string } x.split('_')[0] \text{ is later in the list of generator names of self than } y.split('_')[0], \text{ or } (x.split('_')[0]==y.split('_')[0] \text{ and } \text{int}(x.split('_')[1])<\text{int}(y.split('_')[1])) \]

EXAMPLES:

```python
sage: X.<alpha,beta> = InfinitePolynomialRing(ZZ)
sage: X.varname_key('alpha_1')
(0, 1)
sage: X.varname_key('beta_10')
(-1, 10)
sage: X.varname_key('beta_1')
(-1, 1)
sage: X.varname_key('alpha_10')
(0, 10)
sage: X.varname_key('alpha_1')
(0, 1)
sage: X.varname_key('alpha_10')
(0, 10)
```

```python
>>> from sage.all import *

>>> X = InfinitePolynomialRing(ZZ, names=('alpha', 'beta',)); (alpha, beta,)=X._first_ngens(2)
>>> X.varname_key('alpha_1')
(0, 1)
>>> X.varname_key('beta_10')
(-1, 10)
>>> X.varname_key('beta_1')
(-1, 1)
>>> X.varname_key('alpha_10')
(0, 10)
>>> X.varname_key('alpha_1')
(0, 1)
```

(continues on next page)
6.2 Elements of Infinite Polynomial Rings

AUTHORS:

- Simon King <simon.king@nuigalway.ie>
- Mike Hansen <mhansen@gmail.com>

An Infinite Polynomial Ring has generators $x_*, y_*, ...$, so that the variables are of the form $x_0, x_1, x_2, ..., y_0, y_1, y_2, ...$ (see `infinite_polynomial_ring`). Using the generators, we can create elements as follows:

```sage
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: a = x[3]
sage: b = y[4]
sage: a
x_3
sage: b
y_4
sage: c = a*b + a^3 - 2*b^4
sage: c
x_3^3 + x_3*y_4 - 2*y_4^4
```

Any Infinite Polynomial Ring X is equipped with a monomial ordering. We only consider monomial orderings in which:

$$X\text{.gen}(i)[m] > X\text{.gen}(j)[n] \iff i < j, \text{or } i == j \text{ and } m > n$$

Under this restriction, the monomial ordering can be lexicographic (default), degree lexicographic, or degree reverse lexicographic. Here, the ordering is lexicographic, and elements can be compared as usual:

```sage
sage: X._order
'lex'
sage: a > b
True
```

```sage
>>> from sage.all import *
>>> X._order
'lex'
>>> a > b
True
```
Note that, when a method is called that is not directly implemented for ‘InfinitePolynomial’, it is tried to call this method for the underlying classical polynomial. This holds, e.g., when applying the \texttt{latex} function:

\begin{verbatim}
\texttt{sage: latex(c)}
x_.{3}^{} + x_.{3} y_.{4} - 2 y_.{4}^{}\{4}
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> latex(c)
x_.{3}^{} + x_.{3} y_.{4} - 2 y_.{4}^{}\{4}
\end{verbatim}

There is a permutation action on Infinite Polynomial Rings by permuting the indices of the variables:

\begin{verbatim}
\texttt{sage: P = Permutation(((4,5),(2,3)))}
\texttt{sage: c^P}
x_2^3 + x_2*y_5 - 2*y_5^4
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> P = Permutation(((Integer(4),Integer(5)),(Integer(2),Integer(3))))
>>> c**P
x_2^3 + x_2*y_5 - 2*y_5^4
\end{verbatim}

Note that \(P(0)==0 \), and thus variables of index zero are invariant under the permutation action. More generally, if \(P \) is any callable object that accepts non-negative integers as input and returns non-negative integers, then \(c^P \) means to apply \(P \) to the variable indices occurring in \(c \).

If you want to substitute variables you can use the standard polynomial methods, such as \texttt{subs}():

\begin{verbatim}
\texttt{sage: R.<x,y> = InfinitePolynomialRing(QQ)}
\texttt{sage: f = x[1] + x[1]*x[2]*x[3]}
\texttt{sage: f.subs({x[1]: x[0]})}
x_3*x_2*x_0 + x_0
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> R = InfinitePolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> f = x[Integer(1)] + x[Integer(1)]*x[Integer(2)]*x[Integer(3)]
>>> f.subs({x[Integer(1)]: x[Integer(0)]})
x_3*x_2*x_0 + x_0
\end{verbatim}

\begin{verbatim}
\texttt{class sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial(A, p)}
\end{verbatim}

\begin{verbatim}
\texttt{Bases: CommutativePolynomial}
\end{verbatim}

Create an element of a Polynomial Ring with a Countably Infinite Number of Variables.

Usually, an InfinitePolynomial is obtained by using the generators of an Infinite Polynomial Ring (see \texttt{infinite_polynomial_ring}) or by conversion.

\textbf{INPUT:}

\begin{itemize}
 \item \(A \) – an Infinite Polynomial Ring.
 \item \(p \) – a classical polynomial that can be interpreted in \(A \).
\end{itemize}
ASSUMPTIONS:
In the dense implementation, it must be ensured that the argument \(p \) coerces into \(A._P \) by a name preserving conversion map.

In the sparse implementation, in the direct construction of an infinite polynomial, it is not tested whether the argument \(p \) makes sense in \(A \).

EXAMPLES:

```python
sage: from sage.rings.polynomial.infinite_polynomial_element import InfinitePolynomial
sage: X.<alpha> = InfinitePolynomialRing(ZZ)

P.<alpha_1, alpha_2> = ZZ[]
```

Currently, \(P \) and \(X._P \) (the underlying polynomial ring of \(X \)) both have two variables:

```python
sage: X._P
Multivariate Polynomial Ring in alpha_1, alpha_0 over Integer Ring

P.<alpha_1, alpha_2> = ZZ[
```

By default, a coercion from \(P \) to \(X._P \) would not be name preserving. However, this is taken care for; a name preserving conversion is impossible, and by consequence an error is raised:

```python
sage: InfinitePolynomial(X, (alpha_1+alpha_2)^2)
Traceback (most recent call last):
  ...
TypeError: Could not find a mapping of the passed element to this ring.
```

When extending the underlying polynomial ring, the construction of an infinite polynomial works:

```python
sage: alpha[2]
alpha_2

sage: InfinitePolynomial(X, (alpha_1+alpha_2)^2)
alpha_2^2 + 2*alpha_2*alpha_1 + alpha_1^2

>>> from sage.all import *
>>> alpha[Integer(2)]
alpha_2

>>> InfinitePolynomial(X, (alpha_1+alpha_2)**Integer(2))
alpha_2^2 + 2*alpha_2*alpha_1 + alpha_1^2
```
In the sparse implementation, it is not checked whether the polynomial really belongs to the parent, and when it does not, the results may be unexpected due to coercions:

```plaintext
sage: Y.<alpha,beta> = InfinitePolynomialRing(GF(2), implementation='sparse')
sage: a = (alpha_1+alpha_2)^2
sage: InfinitePolynomial(Y, a)
alpha_0^2 + beta_0^2
```

However, it is checked when doing a conversion:

```plaintext
sage: Y(a)
alpha_2^2 + alpha_1^2
```

```plaintext
coefficient (monomial)
Returns the coefficient of a monomial in this polynomial.

INPUT:
- A monomial (element of the parent of self) or
- a dictionary that describes a monomial (the keys are variables of the parent of self, the values are the corresponding exponents)

EXAMPLES:
We can get the coefficient in front of monomials:
```
```
We can also pass in a dictionary:

\[
\begin{align*}
\text{sage: } & \text{a.coefficient}((x[0]:1, x[1]:1)) \\
& 2 \\
\text{from sage.all import } * \\
\text{a.coefficient}((x[0]:Integer(1), x[1]:Integer(1))) \\
& 2
\end{align*}
\]

**footprint()**

Leading exponents sorted by index and generator.

**OUTPUT:**

D – a dictionary whose keys are the occurring variable indices.

D[s] is a list [i_1, ..., i_n], where i_j gives the exponent of self.parent().gen(j)[s] in the leading term of self.

**EXAMPLES:**

\[
\begin{align*}
\text{sage: } & X.<x,y> = InfinitePolynomialRing(QQ) \\
\text{sage: } & \text{sorted(p.footprint().items())} \\
& [(1, [2, 3]), (30, [1, 0])]
\end{align*}
\]

**gcd(x)**

computes the greatest common divisor

**EXAMPLES:**

\[
\begin{align*}
\text{sage: } & R.<x> = InfinitePolynomialRing(QQ) \\
\text{sage: } & p1 = x[0] + x[1]**2 \\
\text{sage: } & \text{gcd(p1, p1+3)} \\
& 1 \\
\text{sage: } & \text{gcd(p1, p1)==p1} \\
& True
\end{align*}
\]

\[
\begin{align*}
\text{from sage.all import } * \\
\text{R = InfinitePolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)} \\
\text{p1=x[Integer(0)] + x[Integer(1)]**Integer(2)} \\
\text{gcd(p1, p1+Integer(3))} \\
& 1 \\
\text{gcd(p1, p1)==p1} \\
& True
\end{align*}
\]
is_nilpotent()

Return True if self is nilpotent, i.e., some power of self is 0.

EXAMPLES:

```python
sage: R.<x> = InfinitePolynomialRing(QQbar) # needs sage.rings.number_field
sage: (x[0] + x[1]).is_nilpotent() # needs sage.rings.number_field
False
sage: R(0).is_nilpotent() # needs sage.rings.number_field
True
sage: R.<x> = InfinitePolynomialRing(Zmod(4))
sage: (2*x[0]).is_nilpotent()
True
sage: (2+x[4]*x[7]).is_nilpotent()
False
sage: R.<y> = InfinitePolynomialRing(Zmod(100))
sage: (5+2*y[0] + 10*(y[0]^2+y[1]^2)).is_nilpotent()
False
True
```

is_unit()

Answer whether self is a unit.

EXAMPLES:

```python
>>> from sage.all import *

>>> R = InfinitePolynomialRing(QQbar, names=('x','')); (x,) = R._first_ngens(1)

>>> (x[Integer(0)] + x[Integer(1)]).is_nilpotent()
False

>>> R(Integer(0)).is_nilpotent()
True

>>> _ = InfinitePolynomialRing(Zmod(Integer(4)), names=('x','')); (x,) = _._

>>> (Integer(2)*x[Integer(0)]).is_nilpotent()
True

>>> (Integer(2)+x[Integer(4)]*x[Integer(7)]).is_nilpotent()
False

>>> _ = InfinitePolynomialRing(Zmod(Integer(100)), names=('y','')); (y,) = _._

>>> (Integer(2)*x[Integer(0)]).is_nilpotent()
False

>>> (Integer(10)*y[Integer(0)]**Integer(2)+y[Integer(1)]**Integer(2)+y[Integer(5)]**Integer(2))).is_nilpotent()
True

>>> (Integer(10)*y[Integer(2)] + Integer(20)*y[Integer(5)]
- Integer(30)*y[Integer(2)]*y[Integer(5)]
+ Integer(70)*y[Integer(2)]**Integer(2)+y[Integer(5)]**Integer(2)]).is_nilpotent()
True
```

(continues on next page)
Check that Issue #22454 is fixed:

```
sage: _.x = InfinitePolynomialRing(Zmod(4))
sage: (1 + 2*x[0]).is_unit()
True
sage: (x[0]*x[1]).is_unit()
False
sage: _.x = InfinitePolynomialRing(Zmod(900))
sage: (7+150*x[0] + 30*x[1] + 120*x[1]*x[100]).is_unit()
True
```

```
>>> from sage.all import *
>>> R1 = InfinitePolynomialRing(ZZ, names=('x', 'y',)); (x, y,) = R1._first_ngens(2)
>>> R2 = InfinitePolynomialRing(QQ, names=('a', 'b',)); (a, b,) = R2._first_ngens(2)
>>> (Integer(1) + x[Integer(2)]).is_unit()
False
>>> R1(Integer(1)).is_unit()
True
>>> R1(Integer(2)).is_unit()
False
>>> R2(Integer(2)).is_unit()
True
>>> (Integer(1) + a[Integer(2)]).is_unit()
False
```

\[ \text{lc()} \]

The coefficient of the leading term of \textit{self}.

\textbf{EXAMPLES:}
The leading monomial of self.

**EXAMPLES:**

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p.lm()
x_10*x_1^2*y_1^3
```

The leading term (= product of coefficient and monomial) of self.

**EXAMPLES:**

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p.lt()
3*x_10*x_1^2*y_1^3
```

Return the maximal index of a variable occurring in self, or -1 if self is scalar.

**EXAMPLES:**

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ)
```

(continues on next page)
sage: p.max_index()
4
sage: x[0].max_index()
0
sage: X(10).max_index()
-1

>>> from sage.all import *
>>> X = InfinitePolynomialRing(QQ, names=('x', 'y',)); (x, y,) = X._first_ngens(2)
>>> p = x[Integer(1)]**Integer(2) + y[Integer(2)]**Integer(2) +...
   -x[Integer(1)]*x[Integer(2)]*y[Integer(3)] + x[Integer(1)]*y[Integer(4)]
>>> p.max_index()
4
>>> x[Integer(0)].max_index()
0
>>> X(Integer(10)).max_index()
-1

polynomial()

Return the underlying polynomial.

EXAMPLES:

sage: X.<x,y> = InfinitePolynomialRing(GF(7))
sage: p = x[2]*y[1] + 3*y[0]
sage: p
x_2*y_1 + 3*y_0
sage: p.polynomial()
  x_2*y_1 + 3*y_0
sage: p.polynomial().parent()
  Multivariate Polynomial Ring in x_2, x_1, x_0, y_2, y_1, y_0
  over Finite Field of size 7
sage: p.parent()
  Infinite polynomial ring in x, y over Finite Field of size 7

>>> from sage.all import *
>>> X = InfinitePolynomialRing(GF(Integer(7)), names=('x', 'y',)); (x, y,) =...
   -X._first_ngens(2)
>>> p = x[Integer(2)]*y[Integer(1)] + Integer(3)*y[Integer(0)]
>>> p
x_2*y_1 + 3*y_0
>>> p.polynomial()
  x_2*y_1 + 3*y_0
>>> p.polynomial().parent()
  Multivariate Polynomial Ring in x_2, x_1, x_0, y_2, y_1, y_0
  over Finite Field of size 7
>>> p.parent()
  Infinite polynomial ring in x, y over Finite Field of size 7

reduce (I, tailreduce=False, report=None)

Symmetrical reduction of self with respect to a symmetric ideal (or list of Infinite Polynomials).

INPUT:

- I – a SymmetricIdeal or a list of Infinite Polynomials.
• tailreduce – (bool, default False) Tail reduction is performed if this parameter is True.
• report – (object, default None) If not None, some information on the progress of computation is printed, since reduction of huge polynomials may take a long time.

OUTPUT:
Symmetrical reduction of self with respect to I, possibly with tail reduction.

THEORY:
Reducing an element \( p \) of an Infinite Polynomial Ring \( X \) by some other element \( q \) means the following:
1. Let \( M \) and \( N \) be the leading terms of \( p \) and \( q \).
2. Test whether there is a permutation \( P \) that does not diminish the variable indices occurring in \( N \) and preserves their order, so that there is some term \( T \in X \) with \( TN^P = M \). If there is no such permutation, return \( p \).
3. Replace \( p \) by \( p - Tq^P \) and continue with step 1.

EXAMPLES:

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p.reduce([y[2]*x[1]^2])
x_3^3*y_2 + y_3*y_1^2
```

The preceding is correct: If a permutation turns \( y[2]*x[1]^2 \) into a factor of the leading monomial \( y[2]*x[3]^3 \) of \( p \), then it interchanges the variable indices 1 and 2; this is not allowed in a symmetric reduction. However, reduction by \( y[1]*x[2]^2 \) works, since one can change variable index 1 into 2 and 2 into 3:

```python
sage: p.reduce([y[1]*x[2]^2]) # needs sage.libs.singular
x_3^3*y_2 + y_3*y_1^2
```

The next example shows that tail reduction is not done, unless it is explicitly advised. The input can also be a Symmetric Ideal:

```python
sage: I = (y[3])*X
sage: p.reduce(I)
x_3^3*y_2 + y_3*y_1^2
sage: p.reduce(I, tailreduce=True) # needs sage.libs.singular
x_3^3*y_2
```
Polynomials, Release 10.4

```python
>>> from sage.all import *
>>> I = (y[Integer(3)])*X
>>> p.reduce(I)
x_3^3*y_2 + y_3*y_1^2
>>> p.reduce(I, tailreduce=True)
needs sage.libs.singular
x_3^3*y_2
```

Last, we demonstrate the report option:

```python
sage: p.reduce(I, tailreduce=True, report=True)
needs sage.libs.singular
:T[2]:>
> x_1^2 + y_2^2
```

The output ':T[2]:>' means that there was one reduction of the leading monomial. 'T[2]' means that a tail reduction was performed on a polynomial with two terms. At ':T[2]:>', one round of the reduction process is finished (there could only be several non-trivial rounds if I was generated by more than one polynomial).

`ring()`

The ring which `self` belongs to.

This is the same as `self.parent()`.

EXAMPLES:

```python
sage: X.<x,y> = InfinitePolynomialRing(ZZ, implementation='sparse')
sage: p = x[100]*y[1]**3*x[1]**2 + 2*x[10]*y[30]
sage: p.ring()
Infinite polynomial ring in x, y over Integer Ring
```

```python
>>> from sage.all import *
>>> X = InfinitePolynomialRing(ZZ, implementation='sparse', names=('x', 'y',));
>>> (x, y) = X._first_ngens(2)
>>> p = x[Integer(100)]*y[Integer(1)]**Integer(3)*x[Integer(1)]**Integer(2) +
 Integer(2)*x[Integer(10)]*y[Integer(30)]
>>> p.ring()
Infinite polynomial ring in x, y over Integer Ring
```

`squeezed()`

Reduce the variable indices occurring in `self`.

OUTPUT:

Apply a permutation to `self` that does not change the order of the variable indices of `self` but squeezes them into the range 1,2,...

EXAMPLES:
Polynomials, Release 10.4

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: p = x[1]*y[100] + x[50]*y[1000]
sage: p.squeezed()
x_2*y_4 + x_1*y_3
```

**stretch** ($k$)

Stretch self by a given factor.

**INPUT:**

- $k$ – an integer.

**OUTPUT:**

Replace $v_n$ with $v_{n,k}$ for all generators $v_s$ occurring in self.

**EXAMPLES:**

```python
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: a.stretch(2)
x_4 + x_2 + x_0
```

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: a = x[0] + x[1] + y[0]*y[1]; a
x_1 + x_0 + y_1*y_0
sage: a.stretch(2)
x_2 + x_0 + y_2*y_0
```

```python
>>> from sage.all import *
>>> X = InfinitePolynomialRing(QQ, implementation='sparse', names=('x', 'y',)); (x, y,) = X._first_ngens(2)
>>> p = x[Integer(1)]*y[Integer(100)] + x[Integer(50)]*y[Integer(1000)]
>>> p.squeezed()
x_2*y_4 + x_1*y_3
```

**subs** *(fixed=None, **kwargs)*

Substitute variables in self.

**INPUT:**

- `fixed` – (optional) dict with `{variable: value}` pairs
- `**kwargs` – named parameters

**OUTPUT:**
the resulting substitution

EXAMPLES:

```python
sage: R.<x,y> = InfinitePolynomialRing(QQ)
sage: f = x[1] + x[1]*x[2]*x[3]

>>> from sage.all import *
>>> R = InfinitePolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> f = x[Integer(1)] + x[Integer(1)]*x[Integer(2)]*x[Integer(3)]

Passing fixed={x[1]: x[0]}. Note that the keys may be given using the generators of the infinite polynomial ring or as a string:

```python
go to next page
```
If you pass both `fixed` and `kwargs`, any conflicts will defer to `fixed`:

```python
sage: R.<x,y> = InfinitePolynomialRing(QQ)
sage: f = x[0]
sage: f.subs({x[0]: 1})
1
sage: f.subs(x_0=Integer(5))
5
sage: f.subs({x[0]: 1}, x_0=Integer(5))
1
```

symmetric_cancellation_order(other)

Comparison of leading terms by Symmetric Cancellation Order, \(<_{sc}\).

INPUT:

self, other – two Infinite Polynomials

ASSUMPTION:

Both Infinite Polynomials are non-zero.

OUTPUT:

\((c, \sigma, w)\), where

- \(c = -1, 0, 1\), or None if the leading monomial of self is smaller, equal, greater, or incomparable with respect to other in the monomial ordering of the Infinite Polynomial Ring
• sigma is a permutation witnessing self <<sc> other (resp. self ><sc> other) or is 1 if self.lm()==other.lm()
• w is 1 or is a term so that w*self.lt()^sigma == other.lt() if c ≤ 0, and w*other.lt()^sigma == self.lt() if c = 1

THEORY:
If the Symmetric Cancellation Order is a well-quasi-ordering then computation of Groebner bases always terminates. This is the case, e.g., if the monomial order is lexicographic. For that reason, lexicographic order is our default order.

EXAMPLES:

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: (x[2]*x[1]).symmetric_cancellation_order(x[2]^2)
(None, 1, 1)
sage: (x[2]*x[1]).symmetric_cancellation_order(x[2]*x[3]*y[1])
(-1, [2, 3, 1], y_1)
sage: (x[2]*x[1]*y[1]).symmetric_cancellation_order(x[2]*x[3]*y[1])
(None, 1, 1)
sage: (x[2]*x[1]*y[1]).symmetric_cancellation_order(x[2]*x[3]*y[2])
(-1, [2, 3, 1], 1)
```

```python
>>> from sage.all import *
>>> X = InfinitePolynomialRing(QQ, names=('x', 'y')); (x, y,) = X._first_ngens(2)
>>> (x[Integer(2)]*x[Integer(1)]).symmetric_cancellation_order(x[Integer(2)]**Integer(2))
(None, 1, 1)
>>> (x[Integer(2)]*x[Integer(1)]).symmetric_cancellation_order(x[Integer(2)]*x[Integer(3)]*y[Integer(1)])
(-1, [2, 3, 1], y_1)
>>> (x[Integer(2)]*x[Integer(1)]*y[Integer(1)]).symmetric_cancellation_order(x[Integer(2)]*x[Integer(3)]*y[Integer(1)])
(None, 1, 1)
>>> (x[Integer(2)]*x[Integer(1)]*y[Integer(1)]).symmetric_cancellation_order(x[Integer(2)]*x[Integer(3)]*y[Integer(2)])
(-1, [2, 3, 1], 1)
```

tail()
The tail of self (this is self minus its leading term).

EXAMPLES:

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: p.tail()
2*x_10*y_30
```

```python
>>> from sage.all import *
>>> X = InfinitePolynomialRing(QQ, names=('x', 'y')); (x, y,) = X._first_ngens(2)
>>> p = Integer(2)*x[Integer(10)]*y[Integer(30)] + Integer(3)*x[Integer(10)]*y[Integer(1)]**Integer(3)*x[Integer(1)]**Integer(2)
>>> p.tail()
2*x_10*y_30
```
variables()

Return the variables occurring in self (tuple of elements of some polynomial ring).

EXAMPLES:

```
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: p.variables()
(x_3, x_2, x_1)
sage: x[1].variables()
(x_1,)
sage: X(1).variables()
()```
over Univariate Polynomial Ring in a over Rational Field
sage: p.polynomial().parent()
Multivariate Polynomial Ring in b_100, b_0, c_4, c_0
over Univariate Polynomial Ring in a over Rational Field

>>> from sage.all import *
>>> A = QQ['a']; (a,) = A._first_ngens(1)
>>> B = InfinitePolynomialRing(A, implementation='sparse', names=('b', 'c',)); (b,...
→c, ) = B._first_ngens(2)
>>> p = a*b[Integer(100)] + Integer(1)/Integer(2)*c[Integer(4)]
>>> p
a*b_100 + 1/2*c_4
>>> p.parent()
Infinite polynomial ring in b, c
over Univariate Polynomial Ring in a over Rational Field
>>> p.polynomial().parent()
Multivariate Polynomial Ring in b_100, b_0, c_4, c_0
over Univariate Polynomial Ring in a over Rational Field

6.3 Symmetric Ideals of Infinite Polynomial Rings

This module provides an implementation of ideals of polynomial rings in a countably infinite number of variables that are invariant under variable permutation. Such ideals are called ‘Symmetric Ideals’ in the rest of this document. Our implementation is based on the theory of M. Aschenbrenner and C. Hillar.

AUTHORS:
• Simon King <simon.king@nuigalway.ie>

EXAMPLES:
Here, we demonstrate that working in quotient rings of Infinite Polynomial Rings works, provided that one uses symmetric Groebner bases.

sage: R.<x> = InfinitePolynomialRing(QQ)
sage: I = R.ideal([x[1]*x[2] + x[3]])

>>> from sage.all import *
>>> R = InfinitePolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> I = R.ideal([x[Integer(1)]*x[Integer(2)] + x[Integer(3)]]

Note that I is not a symmetric Groebner basis:

sage: # needs sage.combinat
sage: G = R * I.groebner_basis()
sage: G
Symmetric Ideal (x_1^2 + x_1, x_2 - x_1) of
   Infinite polynomial ring in x over Rational Field
sage: Q = R.quotient(G)
sage: Q(p)
-2*x_1 + 3

6.3. Symmetric Ideals of Infinite Polynomial Rings 1021
Polynomials, Release 10.4

```python
>>> from sage.all import *
 # needs sage.combinat
>>> G = R * I.groebner_basis()
 # needs sage.combinat
>>> G
Symmetric Ideal (x_1^2 + x_1, x_2 - x_1) of
 Infinite polynomial ring in x over Rational Field
>>> Q = R.quotient(G)
>>> p = x[Integer(3)]*x[Integer(1)] + x[Integer(2)]**Integer(2) + Integer(3)
>>> Q(p)
-2*x_1 + 3
```

By the second generator of G, variable \(x_n\) is equal to \(x_1\) for any positive integer \(n\). By the first generator of G, \(x_3^2\) is equal to \(x_1\) in Q. Indeed, we have

```python
True
```

By the second generator of G, variable \(x_n\) is equal to \(x_1\) for any positive integer \(n\). By the first generator of G, \(x_3^2\) is equal to \(x_1\) in Q. Indeed, we have

```python
True
```

```python
class sage.rings.polynomial.symmetric_ideal.SymmetricIdeal (ring, gens, coerce=True)
Bases: Ideal_generic

Ideal in an Infinite Polynomial Ring, invariant under permutation of variable indices

THEORY:

An Infinite Polynomial Ring with finitely many generators \(x_*, y_*, ...\) over a field \(F\) is a free commutative \(F\)-algebra generated by infinitely many 'variables' \(x_0, x_1, x_2, ..., y_0, y_1, y_2, ...\). We refer to the natural number \(n\) as the index of the variable \(x_n\). See more detailed description at infinite_polynomial_ring

Infinite Polynomial Rings are equipped with a permutation action by permuting positive variable indices, i.e., \(x_{nP} = x_{nP(n)}, y_{nP} = y_{nP(n)}\), ... for any permutation \(P\). Note that the variables \(x_0, y_0, ...\) of index zero are invariant under that action.

A Symmetric Ideal is an ideal in an infinite polynomial ring \(X\) that is invariant under the permutation action. In other words, if \(S_\infty\) denotes the symmetric group of \(1, 2, ..., \) then a Symmetric Ideal is a right \(X[S_\infty]\)-submodule of \(X\).

It is known by work of Aschenbrenner and Hillar [AB2007] that an Infinite Polynomial Ring \(X\) with a single generator \(x_\ast\) is Noetherian, in the sense that any Symmetric Ideal \(I \subset X\) is finitely generated modulo addition, multiplication by elements of \(X\), and permutation of variable indices (hence, it is a finitely generated right \(X[S_\infty]\)-module).

Moreover, if \(X\) is equipped with a lexicographic monomial ordering with \(x_1 < x_2 < x_3...\) then there is an algorithm of Buchberger type that computes a Groebner basis \(G\) for \(I\) that allows for computation of a unique normal form, that is zero precisely for the elements of \(I\) – see [AB2008]. See groebner_basis() for more details.

Our implementation allows more than one generator and also provides degree lexicographic and degree reverse lexicographic monomial orderings – we do, however, not guarantee termination of the Buchberger algorithm in these cases.

EXAMPLES:
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: I == loads(dumps(I))
True
sage: latex(I)
\left(x_{1} y_{2} y_{1} + 2 x_{1} y_{2}\right)\Bold{Q}[x_{\ast}, y_{\ast}][\mathfrak{S}_{\infty}]

Thedefaultorderingis lexicographic. Wenowcompute a Groebner basis:

sage: J = I.groebner_basis(); J

about 3 seconds

\[\begin{align*}
&x_1*y_2*y_1 + 2*x_1*y_2, \\
x_2*y_2*y_1 + 2*x_2*y_1, \\
x_2*x_1*y_1^2 + 2*x_2*x_1*y_1, \\
x_2*x_1*y_2 - x_2*x_1*y_1
\end{align*}\]

Note that even though the symmetric ideal can be generated by a single polynomial, its reduced symmetric Groebner basis comprises four elements. Ideal membership in I can now be tested by commuting symmetric reduction modulo J:

sage: I.reduce(J)

#...

Symmetric Ideal (0) of Infinite polynomial ring in x, y over Rational Field

The Groebner basis is not point-wise invariant under permutation:

sage: P = Permutation([2, 1])
sage: J[2]^P

\[\begin{align*}
x_2*x_1*y_1^2 + 2*x_2*x_1*y_1
\end{align*}\]

sage: J[2]^P in J
False

6.3. Symmetric Ideals of Infinite Polynomial Rings
However, any element of J has symmetric reduction zero even after applying a permutation. This even holds when the permutations involve higher variable indices than the ones occurring in J:

```
sage: [[(p^P).reduce(J) for p in J for P in Permutations(3)] for p in J]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0,...
```

Since I is not a Groebner basis, it is no surprise that it cannot detect ideal membership:

```
sage: [p.reduce(I) for p in J]
[0, x_2*y_2*y_1 + 2*x_2*y_1, x_2*x_1*y_1^2 + 2*x_2*x_1*y_1, x_2*x_1*y_2 - x_2*x_
```

Note that we give no guarantee that the computation of a symmetric Groebner basis will terminate in any order different from lexicographic.

When multiplying Symmetric Ideals or raising them to some integer power, the permutation action is taken into account, so that the product is indeed the product of ideals in the mathematical sense.

```
sage: I = X * (x[1])
sage: I * I
Symmetric Ideal (x_1^2, x_2*x_1) of Inf...
>>> from sage.all import *

>>> I = X * (x[Integer(1)])
>>> I * I
# needs sage.combinat
Symmetric Ideal (x_1^2, x_2*x_1) of
Infinite polynomial ring in x, y over Rational Field

>>> I**Integer(3)
# needs sage.combinat
Symmetric Ideal (x_1^3, x_2*x_1^2, x_2^2*x_1, x_3*x_2*x_1) of
Infinite polynomial ring in x, y over Rational Field

>>> I * I == X * (x[Integer(1)]**Integer(2))
# needs sage.combinat
False

**groebner_basis**(tailreduce=False, reduced=True, algorithm=None, report=None, use_full_group=False)

Return a symmetric Groebner basis (type Sequence) of self.

INPUT:

- tailreduce – (bool, default False) If True, use tail reduction in intermediate computations
- reduced – (bool, default True) If True, return the reduced normalised symmetric Groebner basis.
- algorithm – (string, default None) Determine the algorithm (see below for available algorithms).
- report – (object, default None) If not None, print information on the progress of computation.
- use_full_group – (bool, default False) If True then proceed as originally suggested by [AB2008]. Our default method should be faster; see symmetrisation() for more details.

The computation of symmetric Groebner bases also involves the computation of classical Groebner bases, i.e., of Groebner bases for ideals in polynomial rings with finitely many variables. For these computations, Sage provides the following ALGORITHMS:

- autoselect (default)
- singular:groebner
  Singular’s groebner command
- singular:std
  Singular’s std command
- singular:stdhilb
  Singular’s stdhilb command
- singular:stdfglm
  Singular’s stdfglm command
- singular:slimgb
  Singular’s slimgb command
- libsingular:std
  libSingular’s std command
- libsingular:slimgb
  libSingular’s slimgb command
- toy:buchberger
  Sage’s toy/educational buchberger without strategy
- toy:buchberger2
  Sage’s toy/educational buchberger with strategy

6.3. Symmetric Ideals of Infinite Polynomial Rings
Polynomials, Release 10.4

\textbf{‘toy:d\_basis’}
Sage’s toy/educational \texttt{d\_basis} algorithm

\textbf{‘macaulay2:gb’}
Macaulay2’s \texttt{gb} command (if available)

\textbf{‘magma:GroebnerBasis’}
Magma’s \texttt{GroebnerBasis} command (if available)

If only a system is given - e.g. ‘magma’ - the default algorithm is chosen for that system.

\textbf{Note:} The Singular and \texttt{libSingular} versions of the respective algorithms are identical, but the former calls an external Singular process while the later calls a C function, i.e. the calling overhead is smaller.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: I1 = X * (x[1] + x[2], x[1]*x[2])
sage: I1.groebner_basis() #← needs sage.combinat [x_1]
sage: I2.groebner_basis() #← needs sage.combinat [x_1\cdot y_2 + y_2^2\cdot y_1, x_2\cdot y_1 + y_2\cdot y_1^2]
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> X = InfinitePolynomialRing(QQ, names=('x', 'y',)); (x, y,) = X._first_  #← ngens(2)
>>> I1 = X * (x[Integer(1)] + x[Integer(2)], x[Integer(1)]*x[Integer(2)])
>>> I1.groebner_basis() #← needs sage.combinat [x_1]
>>> I2 = X * (y[Integer(1)]**Integer(2)*y[Integer(3)] + y[Integer(1)]*x[Integer(3)])
>>> I2.groebner_basis() #← needs sage.combinat [x_1\cdot y_2 + y_2^2\cdot y_1, x_2\cdot y_1 + y_2\cdot y_1^2]
\end{verbatim}

Note that a symmetric Groebner basis of a principal ideal is not necessarily formed by a single polynomial.

When using the algorithm originally suggested by Aschenbrenner and Hillar, the result is the same, but the computation takes much longer:

\begin{verbatim}
sage: I2.groebner_basis(use_full_group=True) #← needs sage.combinat [x_1\cdot y_2 + y_2^2\cdot y_1, x_2\cdot y_1 + y_2\cdot y_1^2]
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> I2.groebner_basis(use_full_group=True) #← needs sage.combinat [x_1\cdot y_2 + y_2^2\cdot y_1, x_2\cdot y_1 + y_2\cdot y_1^2]
\end{verbatim}

Last, we demonstrate how the report on the progress of computations looks like:

\begin{verbatim}
sage: I1.groebner_basis(report=True, reduced=True) #← needs sage.combinat
(continues on next page)
\end{verbatim}
Symmetric interreduction
[1/2] >
[2/2] :>
[1/2] >
[2/2] >
Symmetrise 2 polynomials at level 2
Apply permutations
>
>
Symmetric interreduction
[1/3] >
[2/3] >
[3/3] :>
-> 0
[1/2] >
[2/2] >
Symmetrisation done
Classical Groebner basis
-> 2 generators
Symmetric interreduction
[1/2] >
[2/2] >
Symmetrise 2 polynomials at level 3
Apply permutations
>
>
Symmetric interreduction
[1/4] >
[2/4] :>
-> 0
[3/4] :>
-> 0
[4/4] :>
-> 0
[1/1] >
Apply permutations
:> :
>
Symmetric interreduction
[1/1] >
Classical Groebner basis
-> 1 generators
Symmetric interreduction
[1/1] >
Symmetrise 1 polynomials at level 4
Apply permutations
>
>: 
>
> :>

(continues on next page)
Symmetric interreduction
[1/2] >
[2/2] :>
-> 0
[1/1] >
Symmetric interreduction
[1/1] >
[x_1]

```python
>>> from sage.all import *
>>> I1.groebner_basis(report=True, reduced=True) #...
needs sage.combinat
Symmetric interreduction
[1/2] >
[2/2] :>
[1/2] >
[2/2] >
Symmetrise 2 polynomials at level 2
Apply permutations
>
>
Symmetric interreduction
[1/3] >
[2/3] >
[3/3] :>
-> 0
[1/2] >
[2/2] >
Symmetrisation done
Classical Groebner basis
-> 2 generators
Symmetric interreduction
[1/2] >
[2/2] >
Symmetrise 2 polynomials at level 3
Apply permutations
>
>
::>
::>
::>
Symmetric interreduction
[1/4] >
[2/4] :>
-> 0
[3/4] ::>
-> 0
[4/4] :
-> 0
[1/1] >
Apply permutations
:>
:>
:>
Symmetric interreduction
```
The Aschenbrenner-Hillar algorithm is only guaranteed to work if the base ring is a field. So, we raise a `TypeError` if this is not the case:

```python
sage: R.<x,y> = InfinitePolynomialRing(ZZ)
sage: I = R * [x[1] + x[2], y[1]]
sage: I.groebner_basis()
˓→ needs sage.combinat
Traceback (most recent call last):
...TypeError: The base ring (= Integer Ring) must be a field
```

```python
>>> from sage.all import *
>>> R = InfinitePolynomialRing(ZZ, names=('x', 'y',)); (x, y,) = R._first_
˓→ ngens(2)
>>> I = R * [x[Integer(1)] + x[Integer(2)], y[Integer(1)]]
>>> I.groebner_basis()
˓→ needs sage.combinat
Traceback (most recent call last):
...TypeError: The base ring (= Integer Ring) must be a field
```

**interreduced_basis()**

A fully symmetrically reduced generating set (type `Sequence`) of self.

This does essentially the same as `interreduction()` with the option `tailreduce`, but it returns a `Sequence` rather than a `SymmetricIdeal`.

**EXAMPLES:**

```python
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I = X * (x[1] + x[2], x[1]*x[2])
sage: I.interreduced_basis()
˓→ needs sage.combinat
[-x_1^2, x_2 + x_1]
```
interreduction (tailreduce=True, sorted=False, report=None, RStrat=None)

Return symmetrically interreduced form of self.

INPUT:

- `tailreduce` – (bool, default True) If True, the interreduction is also performed on the non-leading monomials.
- `sorted` – (bool, default False) If True, it is assumed that the generators of self are already increasingly sorted.
- `report` – (object, default None) If not None, some information on the progress of computation is printed
- `RStrat` – (SymmetricReductionStrategy, default None) A reduction strategy to which the polynomials resulting from the interreduction will be added. If RStrat already contains some polynomials, they will be used in the interreduction. The effect is to compute in a quotient ring.

OUTPUT:

A Symmetric Ideal \( J \) (sorted list of generators) coinciding with self as an ideal, so that any generator is symmetrically reduced w.r.t. the other generators. Note that the leading coefficients of the result are not necessarily 1.

EXAMPLES:

```sage
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I = X * (x[1] + x[2], x[1]*x[2])
sage: I.interreduction()
```

```
Symmetric Ideal (-x_1^2, x_2 + x_1) of Infinite polynomial ring in x over Rational Field
```

Here, we show the report option:

```sage
sage: I.interreduction(report=True)
```

```
Symmetric interreduction
[1/2] >
[2/2] >
[1/2] >
> (continues on next page)
```
Symmetric Ideal \((-x_1^2, x_2 + x_1)\) of Infinite polynomial ring in \(x\) over Rational Field

[1/2]	>
[2/2]	:>
[1/2]	>

Symmetric Ideal \((-x_1^2, x_2 + x_1)\) of Infinite polynomial ring in \(x\) over Rational Field

\([m/n]\) indicates that polynomial number \(m\) is considered and the total number of polynomials under consideration is \(n\). ‘-> 0’ is printed if a zero reduction occurred. The rest of the report is as described in \texttt{sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy.reduce()}. 

Last, we demonstrate the use of the optional parameter \texttt{RStrat}:

\begin{verbatim}
sage: from sage.rings.polynomial.symmetric_reduction import...SymmetricReductionStrategy
sage: R = SymmetricReductionStrategy(X); R
Symmetric Reduction Strategy in Infinite polynomial ring in \(x\) over Rational Field
sage: I.interreduction(RStrat=R) #...
Symmetric Ideal \((-x_1^2, x_2 + x_1)\) of Infinite polynomial ring in \(x\) over Rational Field
sage: R #...
Symmetric Reduction Strategy in Infinite polynomial ring in \(x\) over Rational Field, modulo \(x_1^2, x_2 + x_1\)
sage: R = SymmetricReductionStrategy(X, [x[1]^2])
sage: I.interreduction(RStrat=R) #...
Symmetric Ideal \((x_2 + x_1)\) of Infinite polynomial ring in \(x\) over Rational Field

(continues on next page)
Infinite polynomial ring in x over Rational Field, modulo
\[ x_1^2, \quad x_2 + x_1 \]
```python
>>> R = SymmetricReductionStrategy(X, [x[Integer(1)]**Integer(2)])
>>> I.interreduction(RStrat=R) # needs sage.combinat
Symmetric Ideal (x_2 + x_1) of Infinite polynomial ring in x over Rational Field
```

**is_maximal()**

Answer whether `self` is a maximal ideal.

**ASSUMPTION:**

`self` is defined by a symmetric Groebner basis.

**NOTE:**

It is not checked whether `self` is in fact a symmetric Groebner basis. A wrong answer can result if this assumption does not hold. A `NotImplementedError` is raised if the base ring is not a field, since symmetric Groebner bases are not implemented in this setting.

**EXAMPLES:**

```python
sage: R.<x,y> = InfinitePolynomialRing(QQ)
sage: I = R * I.groebner_basis(); I # needs sage.combinat
Symmetric Ideal (y_1, x_1) of
Infinite polynomial ring in x, y over Rational Field
```

```python
sage: I.is_maximal() # needs sage.combinat
False
```

```python
>>> from sage.all import *
```

```python
>>> R = InfinitePolynomialRing(QQ, names=('x', 'y',)); (x, y,) = R._first_ # needs sage.combinat
>>> I = R.ideal([x[Integer(1)] + y[Integer(2)], x[Integer(2)] - y[Integer(1)]])
>>> I = R * I.groebner_basis(); I # needs sage.combinat
Symmetric Ideal (y_1, x_1) of
Infinite polynomial ring in x, y over Rational Field
```

```python
>>> I = R.ideal([x[Integer(1)] + y[Integer(2)], x[Integer(2)] - y[Integer(1)]]) # needs sage.combinat
>>> I.is_maximal() # needs sage.combinat
False
```

The preceding answer is wrong, since it is not the case that `I` is given by a symmetric Groebner basis:

```python
sage: I = R * I.groebner_basis(); I # needs sage.combinat
Symmetric Ideal (y_1, x_1) of
Infinite polynomial ring in x, y over Rational Field
```

(continues on next page)
normalisation()

Return an ideal that coincides with self, so that all generators have leading coefficient 1. Possibly occurring zeroes are removed from the generator list.

EXAMPLES:

```
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I = X*(1/2*x[1] + 2/3*x[2], 0, 4/5*x[1]*x[2])
sage: I.normalisation()
Symmetric Ideal (x_2 + 3/4*x_1, x_2*x_1) of
Infinite polynomial ring in x over Rational Field
```

reduce(I, tailreduce=False)

Symmetric reduction of self by another Symmetric Ideal or list of Infinite Polynomials, or symmetric reduction of a given Infinite Polynomial by self.

INPUT:

- I – an Infinite Polynomial, or a Symmetric Ideal or a list of Infinite Polynomials.
- tailreduce – (bool, default False) If True, the non-leading terms will be reduced as well.

OUTPUT:

Symmetric reduction of self with respect to I.

THEORY:

Reduction of an element p of an Infinite Polynomial Ring X by some other element q means the following:

1. Let M and N be the leading terms of p and q.
2. Test whether there is a permutation P that does not does not diminish the variable indices occurring in N and preserves their order, so that there is some term T ∈ X with TN^P = M. If there is no such permutation, return p.
3. Replace p by p − Tq^P and continue with step 1.
EXAMPLES:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: I.reduce([x[1]^2*y[2]])
Symmetric Ideal (x_3^2*y_1 + y_3*y_1^2) of Infinite polynomial ring in x, y over Rational Field

>>> from sage.all import *
>>> X = InfinitePolynomialRing(QQ, names=('x', 'y')); (x, y,) = X._first_ngens(2)
>>> I = X * (y[Integer(1)]**Integer(2)*y[Integer(3)] + y[Integer(1)]*x[Integer(3)]**Integer(2))
>>> I.reduce([x[Integer(1)]**Integer(2)*y[Integer(3)]])
Symmetric Ideal (x_3^2*y_1 + y_3*y_1^2) of Infinite polynomial ring in x, y over Rational Field
```

The preceding is correct, since any permutation that turns $x[1]^2*y[2]$ into a factor of $x[3]^2*y[2]$ interchanges the variable indices 1 and 2 – which is not allowed. However, reduction by $x[2]^2*y[1]$ works, since one can change variable index 1 into 2 and 2 into 3:

```
sage: I.reduce([x[2]^2*y[1]])
needs sage.combinat
Symmetric Ideal (y_3*y_1^2) of Infinite polynomial ring in x, y over Rational Field
```

The next example shows that tail reduction is not done, unless it is explicitly advised. The input can also be a symmetric ideal:

```
sage: J = (y[2]) * X
sage: I.reduce(J)
Symmetric Ideal (x_3^2*y_1 + y_3*y_1^2) of Infinite polynomial ring in x, y over Rational Field
sage: I.reduce(J, tailreduce=True)
needs sage.combinat
Symmetric Ideal (x_3^2*y_1) of Infinite polynomial ring in x, y over Rational Field
```

```
squeezed()
Reduce the variable indices occurring in self.
```
OUTPUT:
A Symmetric Ideal whose generators are the result of applying \texttt{squeezed()} to the generators of \texttt{self}.

NOTE:
The output describes the same Symmetric Ideal as \texttt{self}.

EXAMPLES:

```python
sage: X.<x,y> = InfinitePolynomialRing(QQ, implementation='sparse')
sage: I = X * (x[1000]*y[100], x[50]*y[1000])
sage: I.squeezed()
Symmetric Ideal (x_2*y_1, x_1*y_2) of
Infinite polynomial ring in x, y over Rational Field
```

```python
>>> from sage.all import *
>>> X = InfinitePolynomialRing(QQ, implementation='sparse', names=('x', 'y', ...
˓→)); (x, y,) = X._first_ngens(2)
>>> I = X * (x[Integer(1000)]*y[Integer(100)], ...
˓→x[Integer(50)]*y[Integer(1000)])
>>> I.squeezed()
Symmetric Ideal (x_2*y_1, x_1*y_2) of
Infinite polynomial ring in x, y over Rational Field
```

\texttt{symmetric\_basis()}  
A symmetrised generating set (type \texttt{Sequence}) of \texttt{self}.

This does essentially the same as \texttt{symmetrisation()} with the option \texttt{tailreduce}, and it returns a \texttt{Sequence} rather than a \texttt{SymmetricIdeal}.

EXAMPLES:

```python
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I = X * (x[1] + x[2], x[1]*x[2])
sage: I.symmetric_basis()
####
[x_1^2, x_2 + x_1]
```

```python
>>> from sage.all import *
>>> X = InfinitePolynomialRing(QQ, names=('x',)); (x,) = X._first_ngens(1)
>>> I = X * (x[Integer(1)] + x[Integer(2)], x[Integer(1)]*x[Integer(2)])
>>> I.symmetric_basis()
####
[x_1^2, x_2 + x_1]
```

\texttt{symmetrisation()} \((N=None, \text{tailreduce}=False, \text{report}=None, \text{use\_full\_group}=False)\)
Apply permutations to the generators of \texttt{self} and interreduce.

INPUT:

- \texttt{N} – (integer, default \texttt{None}) Apply permutations in \texttt{Sym(N)}. If it is not given then it will be replaced by the maximal variable index occurring in the generators of \texttt{self.interreduction()}. \texttt{squeezed()}.
- \texttt{tailreduce} – (bool, default \texttt{False}) If \texttt{True}, perform tail reductions.
- \texttt{report} – (object, default \texttt{None}) If not \texttt{None}, report on the progress of computations.
- \texttt{use\_full\_group} (optional) – If \texttt{True}, apply all elements of \texttt{Sym(N)} to the generators of \texttt{self} (this is what [AB2008] originally suggests). The default is to apply all elementary transpositions to the
generator of self.squeezed(), interreduce, and repeat until the result stabilises, which is often much faster than applying all of \( Sym(N) \), and we are convinced that both methods yield the same result.

OUTPUT:
A symmetrically interreduced symmetric ideal with respect to which any \( Sym(N) \)-translate of a generator of self is symmetrically reducible, where by default \( N \) is the maximal variable index that occurs in the generators of self.interreduction().squeezed().

NOTE:
If I is a symmetric ideal whose generators are monomials, then I.symmetrisation() is its reduced Groebner basis. It should be noted that without symmetrisation, monomial generators, in general, do not form a Groebner basis.

EXAMPLES:

```python
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: I = X * (x[1] + x[2], x[1]*x[2])
sage: ISYM = I.symmetrisation() # needs sage.combinat
Symmetric Ideal (-x_1^2, x_2 + x_1) of
 Infinite polynomial ring in x over Rational Field
sage: ISYM = I.symmetrisation(N=3) # needs sage.combinat
Symmetric Ideal (-2*x_1) of Infinite polynomial ring in x over Rational Field
sage: ISYM = I.symmetrisation(N=3, use_full_group=True) # needs sage.combinat
Symmetric Ideal (-2*x_1) of Infinite polynomial ring in x over Rational Field
```

6.4 Symmetric Reduction of Infinite Polynomials

`SymmetricReductionStrategy` provides a framework for efficient symmetric reduction of Infinite Polynomials, see infinite_polynomial_element.

AUTHORS:
- Simon King <simon.king@nuigalway.ie>

THEORY:
According to M. Aschenbrenner and C. Hillar [AB2007], Symmetric Reduction of an element \( p \) of an Infinite Polynomial Ring \( X \) by some other element \( q \) means the following:
1. Let $M$ and $N$ be the leading terms of $p$ and $q$.

2. Test whether there is a permutation $P$ that does not diminish the variable indices occurring in $N$ and preserves their order, so that there is some term $T \in X$ with $TN^P = M$. If there is no such permutation, return $p$.

3. Replace $p$ by $p - Tq^P$ and continue with step 1.

When reducing one polynomial $p$ with respect to a list $L$ of other polynomials, there usually is a choice of order on which the efficiency crucially depends. Also it helps to modify the polynomials on the list in order to simplify the basic reduction steps.

The preparation of $L$ may be expensive. Hence, if the same list is used many times then it is reasonable to perform the preparation only once. This is the background of SymmetricReductionStrategy.

Our current strategy is to keep the number of terms in the polynomials as small as possible. For this, we sort $L$ by increasing number of terms. If several elements of $L$ allow for a reduction of $p$, we choose the one with the smallest number of terms. Later on, it should be possible to implement further strategies for choice.

When adding a new polynomial $q$ to $L$, we first reduce $q$ with respect to $L$. Then, we test heuristically whether it is possible to reduce the number of terms of the elements of $L$ by reduction modulo $q$. That way, we see best chances to keep the number of terms in intermediate reduction steps relatively small.

EXAMPLES:

First, we create an infinite polynomial ring and one of its elements:

```
sage: X.<x,y> = InfinitePolynomialRing(QQ)
```

We want to symmetrically reduce it by another polynomial. So, we put this other polynomial into a list and create a SymmetricReductionStrategy object:

```
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: S = SymmetricReductionStrategy(X, [y[2]^2*x[1]])
```

The preceding is correct, since any permutation that turns $y[2]^2*x[1]$ into a factor of $y[1]^2*x[3]$ interchanges the variable indices 1 and 2 – which is not allowed in a symmetric reduction. However, reduction by $y[1]^2*x[2]$ works, since one can change variable index 1 into 2 and 2 into 3. So, we add this to $S$:

```
sage: from sage.all import *
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
>>> S = SymmetricReductionStrategy(X, [y=Integer(2)**Integer(2)*x[Integer(1)]]
```

The preceding is correct, since any permutation that turns $y[2]^2*x[1]$ into a factor of $y[1]^2*x[3]$ interchanges the variable indices 1 and 2 – which is not allowed in a symmetric reduction. However, reduction by $y[1]^2*x[2]$ works, since one can change variable index 1 into 2 and 2 into 3. So, we add this to $S$:

6.4. Symmetric Reduction of Infinite Polynomials 1037
Polynomials, Release 10.4

```
sage: S.add_generator(y[1]**2*x[2])
sage: S
Symmetric Reduction Strategy in
 Infinite polynomial ring in x, y over Rational Field, modulo
 x_2*y_1^2,
 x_1*y_2^2
sage: S.reduce(p) # needs sage.combinat
 y_3*y_1
```

```python
>>> from sage.all import *
>>> S.add_generator(y[Integer(1)]**Integer(2)*x[Integer(2)])
>>> S
Symmetric Reduction Strategy in
 Infinite polynomial ring in x, y over Rational Field, modulo
 x_2*y_1^2,
 x_1*y_2^2
>>> S.reduce(p) # needs sage.combinat
 y_3*y_1
```

The next example shows that tail reduction is not done, unless it is explicitly advised:

```
sage: S.reduce(x[3] + 2*x[2]*y[1]**2 + 3*y[2]**2*x[1]) # needs sage.combinat
 x_3 + 2*x_2*y_1^2 + 3*x_1*y_2^2
sage: S.tailreduce(x[3] + 2*x[2]*y[1]**2 + 3*y[2]**2*x[1]) # needs sage.combinat
 x_3
```

```
>>> from sage.all import *
>>> S.reduce(x[Integer(3)] + Integer(2)*x[Integer(2)]*y[Integer(1)]**Integer(2)) # needs sage.combinat
 x_3 + 2*x_2*y_1^2 + 3*x_1*y_2^2
>>> S.tailreduce(x[Integer(3)] + Integer(2)*x[Integer(2)]*y[Integer(1)]**Integer(2)) # needs sage.combinat
 x_3
```

However, it is possible to ask for tailreduction already when the Symmetric Reduction Strategy is created:

```
sage: S2 = SymmetricReductionStrategy(X, [y[2]**2*x[1],y[1]**2*x[2]], tailreduce=True)
sage: S2
Symmetric Reduction Strategy in
 Infinite polynomial ring in x, y over Rational Field, modulo
 x_2*y_1^2,
 x_1*y_2^2
with tailreduction
sage: S2.reduce(x[3] + 2*x[2]*y[1]**2 + 3*y[2]**2*x[1]) # needs sage.combinat
 x_3
```

```
>>> from sage.all import *
>>> S2 = SymmetricReductionStrategy(X, [y[Integer(2)]**Integer(2)*x[Integer(1)],
 y[Integer(1)]**Integer(2)*x[Integer(2)]], tailreduce=True)
```

(continues on next page)
Polynomials, Release 10.4

(continued from previous page)

>>> S2
Symmetric Reduction Strategy in
    Infinite polynomial ring in x, y over Rational Field, modulo
    x_2*y_1^2,
    x_1*y_2^2
    with tailreduction
>>> S2.reduce(x[Integer(3)] + Integer(2)*x[Integer(2)]*y[Integer(1)]**Integer(2) +_
            Integer(3)*y[Integer(2)]**Integer(2)*x[Integer(1)])
    # needs sage.combinat
    x_3

class sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy
    Bases: object

    A framework for efficient symmetric reduction of InfinitePolynomial, see infinite_polynomial_element.

    INPUT:
    - Parent – an Infinite Polynomial Ring, see infinite_polynomial_element.
    - L – (list, default the empty list) List of elements of Parent with respect to which will be reduced.
    - good_input – (bool, default None) If this optional parameter is true, it is assumed that each element of L is symmetrically reduced with respect to the previous elements of L.

    EXAMPLES:

    sage: X.<y> = InfinitePolynomialRing(QQ)
    sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
    y_3 + 3*y_2^2*y_1 + 2*y_2*y_1^2
    # needs sage.combinat
    y_3

>>> from sage.all import *
>>> X = InfinitePolynomialRing(QQ, names=('y',)); (y,) = X._first_ngens(1)
>>> from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
>>> S = SymmetricReductionStrategy(X, [y[Integer(2)]**Integer(2)*y[Integer(1)],
       y[Integer(1)]**Integer(2)*y[Integer(2)]], good_input=True)
>>> S.reduce(y[Integer(3)] + Integer(2)*y[Integer(2)]*y[Integer(1)]**Integer(2) +_
       Integer(3)*y[Integer(2)]**Integer(2)*y[Integer(1)])
    # needs sage.combinat
    y_3

    add_generator (p, good_input=None)
        Add another polynomial to self.

        INPUT:
• \( p \) – An element of the underlying infinite polynomial ring.

• `good_input` – (bool, default `None`) If `True`, it is assumed that \( p \) is reduced with respect to `self`. Otherwise, this reduction will be done first (which may cost some time).

**Note:** Previously added polynomials may be modified. All input is prepared in view of an efficient symmetric reduction.

**EXAMPLES:**

```python
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: X.<x,y> = InfinitePolynomialRing(QQ)
sage: S = SymmetricReductionStrategy(X)
```

```python
```

```python
sage: S
Symmetric Reduction Strategy in Infinite polynomial ring in x, y over Rational Field
```

```python
sage: S.add_generator(x[2] + x[1])
```

Note that the first added polynomial will be simplified when adding a suitable second polynomial:

```python
sage: S.add_generator(x[2] + x[1])
```

```python
sage: S
```

(continues on next page)
Infinite polynomial ring in x, y over Rational Field, modulo
   y_3,
   x_2 + x_1

By default, reduction is applied to any newly added polynomial. This can be avoided by specifying the optional parameter 'good_input':

```
sage: # needs sage.combinat
sage: S.add_generator(y[2] + y[1]*x[2])
sage: S
Symmetric Reduction Strategy in
Infinite polynomial ring in x, y over Rational Field, modulo
 y_3,
 x_1*y_1 - y_2,
 x_2 + x_1
sage: S.reduce(x[3] + x[2])
-2*x_1
sage: S.add_generator(x[3] + x[2], good_input=True)
sage: S
Symmetric Reduction Strategy in
Infinite polynomial ring in x, y over Rational Field, modulo
 y_3,
 x_3 + x_2,
 x_1*y_1 - y_2,
 x_2 + x_1
```

From the previous example, x[3] + x[2] is added without being reduced to zero.

```
>>> from sage.all import *
>>> # needs sage.combinat
>>> S.add_generator(y[Integer(2)] + y[Integer(1)]*x[Integer(2)])
>>> S
Symmetric Reduction Strategy in
Infinite polynomial ring in x, y over Rational Field, modulo
 y_3,
 x_1*y_1 - y_2,
 x_2 + x_1
>>> S.reduce(x[Integer(3)] + x[Integer(2)])
-2*x_1
>>> S.add_generator(x[Integer(3)] + x[Integer(2)], good_input=True)
>>> S
Symmetric Reduction Strategy in
Infinite polynomial ring in x, y over Rational Field, modulo
 y_3,
 x_3 + x_2,
 x_1*y_1 - y_2,
 x_2 + x_1
```

In the previous example, x[3] + x[2] is added without being reduced to zero.

```
gens()
Return the list of Infinite Polynomials modulo which self reduces.

EXAMPLES:
```
sage: X.<y> = InfinitePolynomialRing(QQ)
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
```

(continues on next page)
reduce\((p, \text{notail}=False, \text{report}=None)\)

Symmetric reduction of an infinite polynomial.

INPUT:

- \(p\) – an element of the underlying infinite polynomial ring.
- \(\text{notail}\) – (bool, default \(False\)) If \(True\), tail reduction is avoided (but there is no guarantee that there will be no tail reduction at all).
- \(\text{report}\) – (object, default \(None\)) If not \(None\), print information on the progress of the computation.

OUTPUT:

Reduction of \(p\) with respect to self.

Note: If tail reduction shall be forced, use \(\text{tailreduce()}\).
Polynomials, Release 10.4

(continued from previous page)

\[\texttt{ngen}(2) \]
\[\texttt{S} = \text{SymmetricReductionStrategy}(X, [y[\text{Integer}(3)]], \text{tailreduce=\text{True}}) \]
\[\texttt{S.reduce}(y[\text{Integer}(4)]*x[\text{Integer}(1)] + y[\text{Integer}(1)]*x[\text{Integer}(4)]) \]
\[x_4*y_1 \]
\[\texttt{S.reduce}(y[\text{Integer}(4)]*x[\text{Integer}(1)] + y[\text{Integer}(1)]*x[\text{Integer}(4)], \text{notail=\text{True}}) \]
\[x_4*y_1 + x_1*y_4 \]

Last, we demonstrate the \texttt{report} option:

\[\texttt{sage: S} = \text{SymmetricReductionStrategy}(X, [x[2] + y[1],} \]
\[\texttt{.....: y[3] + y[2]])} \]
\[\texttt{sage: S} \]
\[\text{Symmetric Reduction Strategy in} \]
\[\text{Infinite polynomial ring in x, y over Rational Field, modulo} \]
\[y_3 + y_2, \]
\[x_2 + y_1, \]
\[x_1*y_2 + y_4 - y_3*y_1 \]
\[\texttt{sage: S.reduce}(x[3] + x[1]*y[3] + x[1]*y[1], \text{report=\text{True}}) \]
\[::> x_1*y_1 + y_4 - y_3*y_1 - y_1 \]

\[\texttt{from sage.all import * \}
\[\texttt{S} = \text{SymmetricReductionStrategy}(X, [x[\text{Integer}(2)] + y[\text{Integer}(1)],} \]
\[\texttt{.....: x[\text{Integer}(2)]*y[\text{Integer}(3)] \text{=} \text{True}} \]
\[\texttt{.....: y[\text{Integer}(3)] + y[\text{Integer}(2)])} \]
\[\texttt{S} \]
\[\text{Symmetric Reduction Strategy in} \]
\[\text{Infinite polynomial ring in x, y over Rational Field, modulo} \]
\[y_3 + y_2, \]
\[x_2 + y_1, \]
\[x_1*y_2 + y_4 - y_3*y_1 \]
\[\texttt{S.reduce}(x[\text{Integer}(3)] + x[\text{Integer}(1)]*y[\text{Integer}(3)] + \text{True}) \]
\[::> x_1*y_1 + y_4 - y_3*y_1 - y_1 \]

Each `:` indicates that one reduction of the leading monomial was performed. Eventually, the `>` indicates that the computation is finished.

\texttt{reset(\texttt{)}}

Remove all polynomials from \texttt{self}.

EXAMPLES:

\[\texttt{sage: X.<y> = InfinitePolynomialRing(QQ)} \]
\[\texttt{sage: from sage.rings.polynomial.symmetric_reduction import \texttt{SymmetricReductionStrategy}} \]
\[\texttt{sage: S} \]
\[\text{Symmetric Reduction Strategy in} \]
\[\text{Infinite polynomial ring in y over Rational Field, modulo} \]
\[y_2*y_1^2, \]
\[y_1^2*y_2, \]
\[\texttt{sage: S.reset(\texttt{)}} \]

(continues on next page)
```python
sage: from sage.all import *
>>> from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
>>> X.<y> = InfinitePolynomialRing(QQ)
>>> S
Symmetric Reduction Strategy in
Infinite polynomial ring in y over Rational Field, modulo
y_2*y_1^2,
y_2^2*y_1
>>> S.reset()
>>> S
Symmetric Reduction Strategy in
Infinite polynomial ring in y over Rational Field
```

setgens(L)

Define the list of Infinite Polynomials modulo which self reduces.

INPUT:

- L – a list of elements of the underlying infinite polynomial ring.

Note: It is not tested if L is a good input. That method simply assigns a copy of L to the generators of self.

EXAMPLES:

```python
sage: from sage.rings.polynomial.symmetric_reduction import SymmetricReductionStrategy
sage: X.<y> = InfinitePolynomialRing(QQ)
>>> R = SymmetricReductionStrategy(X)
>>> R.setgens(S.gens())
>>> R
Symmetric Reduction Strategy in
Infinite polynomial ring in y over Rational Field, modulo
y_2*y_1^2,
y_2^2*y_1
>>> R.gens() == S.gens()
True
```

(continues on next page)
Symmetric Reduction Strategy in
Infinite polynomial ring in y over Rational Field, modulo
\(y_2 \cdot y_1^2, \)
\(y_2^2 \cdot y_1 \)

\[y_2 \cdot y_1^2, \quad y_2^2 \cdot y_1 \]

Symmetric Reduction Strategy in
Infinite polynomial ring in x, y over Rational Field, modulo
\(y_3 + y_2 \),
\(y_3 + y_2 \)

\[y_3 + y_2 \]
The protocol means the following.

- ‘T[3]’ means that we currently do tail reduction for a polynomial with three terms.

- ‘:::>’ means that there were three reductions of leading terms.

- The tail of the result of the preceding reduction still has three terms. One reduction of leading terms was possible, and then the final result was obtained.
BOOLEAN POLYNOMIALS
INDICES AND TABLES

- Index
- Module Index
- Search Page
sage.rings.fraction_field, 913
sage.rings.fraction_field_element, 923
sage.rings.fraction_field_FpT, 931
sage.rings.invariants.invariant_theory, 813
sage.rings.invariants.reconstruction, 884
sage.rings.monomials, 812
sage.rings.polynomial.complex_roots, 382
sage.rings.polynomial.convolution, 451
sage.rings.polynomial.cyclotomic, 452
sage.rings.polynomial.flatten, 807
sage.rings.polynomial.hilbert, 805
sage.rings.polynomial.ideal, 387
sage.rings.polynomial.infinite_polynomial_element, 1005
sage.rings.polynomial.infinite_polynomial_ring, 989
sage.rings.polynomial.integer_values, 436
sage.rings.polynomial.laurent_polynomial, 962
sage.rings.polynomial.laurent_polynomial_ring, 954
sage.rings.polynomial.laurent_polynomial_ring_base, 945
sage.rings.polynomial.msolve, 776
sage.rings.polynomial.multi_polynomial, 515
sage.rings.polynomial.multi_polynomial_element, 565
sage.rings.polynomial.multi_polynomial_ideal, 596
sage.rings.polynomial.multi_polynomial_ideal_libsingular, 774
sage.rings.polynomial.multi_polynomial_libsingular, 720
sage.rings.polynomial.multi_polynomial_ring, 559
sage.rings.polynomial.multi_polynomial_ring_base, 493
sage.rings.polynomial.multi_polynomial_sequence, 690
sage.rings.polynomial.omega, 981
sage.rings.polynomial.padics.polynomial_padic, 313
sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense, 319
sage.rings.polynomial.padics.polynomial_padic_flint, 329
sage.rings.polynomial.pbori.pbori, ??
sage.rings.polynomial.polydict, 778
sage.rings.polynomial.polynomial_compiled, 435
sage.rings.polynomial.polynomial_element, 54
sage.rings.polynomial.polynomial_element_generic, 207
sage.rings.polynomial.polynomial_finite_field, 436
sage.rings.polynomial.polynomial_integer_dense_flint, 234
sage.rings.polynomial.polynomial_integer_dense_ntl, 248
sage.rings.polynomial.polynomial_modn_dense_ntl, 289
sage.rings.polynomial.polynomial_number_field, 230
sage.rings.polynomial.polynomial_quotient_ring, 389
sage.rings.polynomial.polynomial_quotient_ring_element, 426
sage.rings.polynomial.polynomial_rational_flint, 257
sage.rings.polynomial.polynomial_real_mpfr_dense, 307
sage.rings.polynomial.polynomial_ring, 15
sage.rings.polynomial.polynomial_ring_constructor, 1
sage.rings.polynomial.polynomial_ring_homomorphism, 52
sage.rings.polynomial.polynomial_singular_interface, 312
sage.rings.polynomial.polynomial_zmod_flint, 276
sage.rings.polynomial.polynomial_zz_pex, 329
sage.rings.polynomial.real_roots, 337
sage.rings.polynomial.refine_root, 386
sage.rings.polynomial.symmetric_ideal, 1021
sage.rings.polynomial.symmetric_reduction, 1036
sage.rings.polynomial.term_order, 457
sage.rings.polynomial.toy_buchberger, 891
sage.rings.polynomial.toy_d_basis, 905
sage.rings.polynomial.toy_variety, 900
Non-alphabetical

\texttt{add}() (sage.rings.polynomial.polynomial_element.Polynomial method), 55

\texttt{add}() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 234

\texttt{add}() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl_zz method), 298

\texttt{add}() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 257

\texttt{add}() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 280

\texttt{lmul}() (sage.rings.polynomial.polynomial_element.Polynomial method), 56

\texttt{lmul}() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 235

\texttt{lmul}() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl_zz method), 298

\texttt{lmul}() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 257

\texttt{lmul}() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 281

\texttt{mul}() (sage.rings.polynomial.polynomial_element.Polynomial method), 57

\texttt{mul}() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 235

\texttt{mul}() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl_zz method), 298

\texttt{mul}() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 258

\texttt{mul}() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 282

_\texttt{mul_trunc_}() (sage.rings.polynomial.polynomial_element.Polynomial method), 57

_\texttt{mul_trunc_}() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 236

_\texttt{mul_trunc_}() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl_zz method), 298

_\texttt{mul_trunc_}() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 258

_\texttt{mul_trunc_}() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 283

\texttt{rmul}() (sage.rings.polynomial.polynomial_element.Polynomial method), 56

\texttt{rmul}() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 235

\texttt{rmul}() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl_zz method), 298

\texttt{rmul}() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 258

\texttt{rmul}() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 282

\texttt{sub}() (sage.rings.polynomial.polynomial_element.Polynomial method), 56

\texttt{sub}() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 234

\texttt{sub}() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl_zz method), 298

\texttt{sub}() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 257

\texttt{sub}() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 281
A

A_invariant() (sage.rings.invariants.invariant_theory.BinaryQuintic method), 824

a_realization() (sage.rings.polynomial.integer_valued_polynomials.IntegerValuedPolynomialRing method), 451

abc_pd (class in sage.rings.polynomial.polynomial_compiled), 436

adams_operator() (sage.rings.polynomial.polynomial_element.Polynomial method), 58

adams_operator_on_roots() (sage.rings.polynomial.polynomial_element.Polynomial method), 58

add_bigoh() (sage.rings.polynomial.polynomial_element.Polynomial method), 59

add_generator() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 1039

add_m_mul_q() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 731

add_pd (class in sage.rings.polynomial.polynomial_compiled), 436

algebraic_dependence() (sage.rings.polynomial.integer_polynomial_sequence.PolynomialSequence_generic method), 699

AlgebraicForm (class in sage.rings.invariants.invariant_theory), 815

all_done() (sage.rings.polynomial.real_roots.ocean method), 364

all_roots_in_interval() (sage.rings.polynomial.polynomial_element.Polynomial method), 60

alpha_covariant() (sage.rings.invariants.invariant_theory.BinaryQuintic method), 829

ambient() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 406

any_irreducible_factor() (sage.rings.polynomial.polynomial_element.Polynomial method), 60

any_root() (sage.rings.polynomial.polynomial_element.Polynomial method), 63

apply_map() (sage.rings.polynomial.polydict.PolyDict method), 789

approx_bp() (sage.rings.polynomial.real_roots.ocean method), 364

B

B (sage.rings.polynomial.integer_valued_polynomials.IntegerValuedPolynomialRing attribute), 437

B_invariant() (sage.rings.invariants.invariant_theory.BinaryQuintic method), 825

base_extend() (sage.rings.polynomial.polynomial_element.Polynomial method), 65

base_extend() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 33

base_field() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_field method), 399

base_ring() (sage.rings.fraction_field.FractionField_generic method), 918

base_ring() (sage.rings.polynomial.polynomial_element.Polynomial method), 66

basis (sage.rings.polynomial.multi_polynomial.ideal.MPolynomialIdeal method), 603

basis_is_groebner() (sage.rings.polynomial.multi_polynomial.ideal.MPolynomialIdeal_singular_repr method), 636

bateman_bound() (in module sage.rings.polynomial.cyclotomic), 452

bernstein_down() (in module sage.rings.polynomial.real_roots), 337

bernstein_expand() (in module sage.rings.polynomial.real_roots), 338

bernstein_polynomial() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory_ar method), 339

bernstein_polynomial() (sage.rings.polynomial.real_roots.bernstein_polynomial_fac-
Polynomials, Release 10.4

Index 1055
characteristic() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 495
characteristic() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 408
characteristic() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 34
charpoly() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 428
c1_maximum_root() (in module sage.rings.polynomial.real_roots), 342
c1_maximum_root_first_lambda() (in module sage.rings.polynomial.real_roots), 343
c1_maximum_root_local_max() (in module sage.rings.polynomial.real_roots), 343
class_group() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 408
class_number() (in module sage.rings.polynomial.real_roots), 342
clebsch_invariants() (sage.rings.invariants.invariant_theory.BinaryQuartic method), 820
coefficient() (sage.rings.polynomial.polynomial_element_InfinitePolynomial method), 1008
coefficient() (sage.rings.polynomial.polynomial_element.MPolynomial_polydict method), 567
coefficient() (sage.rings.polynomial.polynomial_element.quotient Polynomial_quotient_ring_element method), 731
coefficient() (sage.rings.polynomial.polynomial_element.MPolynomial_polydict method), 790
coefficient_matrix() (in module sage.rings.polynomial.toy_variety), 900
coefficient_matrix() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 701
coefficients() (sage.rings.polynomial.modular_elements.specialization.MPolynomial_modern specialization method), 816
coefficients() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 965
coefficients() (sage.rings.polynomial.multi_polynomial.libSingular.MPolynomial_libSingular method), 733
coefficients() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 517
coefficients() (sage.rings.polynomial.polynomial.Polynomial method), 790
coefficients() (sage.rings.polynomial.multi_polynomial_element_generic.Polynomial_element_generic_sparse method), 215
coefficients() (sage.rings.polynomial.polynomial_element.Polynomial method), 67
coefficients() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 702
coefficients_monomials() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 713
coeffs() (sage.rings.invariants.invariant_theory.BinaryQuartic method), 820
coeffs() (sage.rings.invariants.invariant_theory.BinaryQuintic method), 833
coeffs() (sage.rings.invariants.invariant_theory.QuadricForm method), 855
coeffs() (sage.rings.invariants.invariant_theory.TernaryCubic method), 865
coeffs() (sage.rings.invariants.invariant_theory.TernaryQuartic method), 868
coeffs_bitsize() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory ar method), 340
coeffs_bitsize() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory_intlist method), 341
coeffs_bitsize() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory_rationallist method), 342
coece_coefficients() (sage.rings.polynomial.polvolution.PolyDict method), 790
combine_to_positives() (sage.rings.polynomial.polydict.ETuple method), 799
common_nonzero_positions() (sage.rings.polynomial.polydict.ETuple method), 799
 CompiledPolynomialFunction (class in sage.rings.polynomial.polynomial_ring_compiled), 435
complete_primary_decomposition() (sage.rings.polynomial.multi_polynomial.ideal.MPolynomialIdeal_singular_repr method), 640
completion() (sage.rings.polynomial.laurent_polynomial_ring_base.LaurentPolynomialRingGeneral method), 946
completion() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 495
completion() (sage.rings.polynomial.multi_polynomial.PolynomialRing_general method), 35
complex_embeddings() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRingElement method), 428

1056 Index
de_casteljau() (sage.rings.polynomial.real_roots.intervalbernstein_polynomial_float method), 352
de_casteljau() (sage.rings.polynomial.real_roots.intervalbernstein_polynomial_integer method), 355
de_casteljau_doublevec() (in module sage.rings.polynomial.real_roots), 344
de_casteljau_intvec() (in module sage.rings.polynomial.real_roots), 344
degree() (sage.rings.polynomial.series.LaurentPolynomial_univariate method), 966
degree() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 569
degree() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 734
degree() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 319
degree() (sage.rings.polynomial.polydict.PolyDict method), 790
degree() (sage.rings.polynomial.polynomial_element_generic_sparse.Polynomial_generic_sparse method), 215
degree() (sage.rings.polynomial.polynomial_element.Polynomial method), 74
degree() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense method), 198
degree() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense_inexact method), 202
degree() (sage.rings.polynomial.polynomial_gf2x.Polynomial_template method), 226
degree() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 237
degree() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 249
degree() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl method), 290
degree() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl_ZZ method), 295
degree() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl_zz method), 299
degree() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 413
degree() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 259
degree() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 307
degree() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 277
degree() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 334
degree() (sage.rings.polynomial.multi_polynomial_integer_value.Polynomial_integer_value method), 595
degree_of_semi_regularity() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 604
degree_on_basis() (sage.rings.polynomial.integer_value.Polynomial_integer_value method), 439
degree_reduction_next_size() (in module sage.rings.polynomial.real_roots), 345
degrees() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 571
degrees() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 736
delta() (sage.rings.polynomial.integer_value.Polynomial_integer_value method), 447
delta_covariant() (sage.rings.invariants.invariant_theory.BinaryQuintic method), 834
Delta_invariant() (sage.rings.invariants.invariant_theory.TwoQuaternaryQuadratics method), 872
Delta_invariant() (sage.rings.invariants.invariant_theory.TwoTernaryQuadratics method), 878
Delta_prime_invariant() (sage.rings.invariants.invariant_theory.TwoQuaternaryQuadratics method), 872
Delta_prime_invariant() (sage.rings.invariants.invariant_theory.TwoTernaryQuadratics method), 878
denom() (sage.rings.fraction_field_FpT.FpTElement method), 932
denominator() (sage.rings.fraction_field_Element.FractionFieldElement method), 923
denominator() (sage.rings.fraction_field_FpT.FpTElement method), 932
denominator() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 519
denominator() (sage.rings.polynomial.polynomial_element.Polynomial method), 75
denominator() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 260
discriminant() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 522
discriminant() (sage.rings.polynomial.polydict.PolyDict method), 792
discriminant() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 520
discriminant() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 967

discriminant() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 77
discriminant() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 572
discriminant() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 737
discriminant() (sage.rings.polynomial.polydict.PolyDict method), 792
discriminant() (sage.rings.polynomial.polydict.PolyDict method), 729

disc() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 320
disc() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 237
disc() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 237
disc() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 260

divides() (sage.rings.polynomial.polynomial_element.LaurentPolynomial_univariate method), 78
divides() (sage.rings.polynomial.polynomial_element.LaurentPolynomial_univariate method), 968

divides() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 78
divides() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 520

divides() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 967
divides() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 77
divides() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 78
divides() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 572
divides() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 737
divides() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 237

divides() (sage.rings.polynomial.polydict.PolyDict method), 792
divides() (sage.rings.polynomial.polydict.PolyDict method), 729

dictionary() (sage.rings.polynomial.polynomial_ring.PolynomialRing_field method), 28
divides() (sage.rings.polynomial.polydict.PolyDict method), 792
dict() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 967
dict() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 572
dict() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 737
dict() (sage.rings.polynomial.polydict.PolyDict method), 792
dict() (sage.rings.polynomial.polydict.PolyDict method), 729

discriminant() (sage.rings.polynomial.polynomial_element.LaurentPolynomial_univariate method), 80
discriminant() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 238
discriminant() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 250
discriminant() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_p method), 293
discriminant() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 413
discriminant() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 261

dispersion() (sage.rings.polynomial.polynomial_element.Polynomial method), 82
dispersion() (sage.rings.polynomial.polynomial_element.Polynomial method), 261

dispersion() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer method), 357
dispersion() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer method), 356

divide_by_gcd() (sage.rings.polynomial.polydict.ETuple method), 779
divide_by_var() (sage.rings.polynomial.polydict.ETuple method), 780
divided_difference() (sage.rings.polynomial.polynomial_ring.PolynomialRing_field method), 28
divides() (sage.rings.polynomial.polynomial_element.LaurentPolynomial_univariate method), 968
divides() (sage.rings.polynomial.polynomial_element.LaurentPolynomial_univariate method), 781
divides() (sage.rings.polynomial.polydict.PolyDict method), 780
divides() (sage.rings.polynomial.polynomial_element.Polynomial method), 84
done() (sage.rings.polynomial.real_roots.island method), 360

dotprod() (sage.rings.polynomial.polydict.ETuple method), 781
down_degree() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer method), 356
down_degree_iter() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer method), 356
downscale() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer method), 357

dprod_imatrow_vec() (in module sage.rings.polynomial.real_roots.real_roots), 346

dimension() (sage.rings.polynomial.multi_polynomial_element.Polynomial method), 79
dimension() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 643
dimension() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 643
dimension() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 643

dict() (sage.rings.polynomial.polynomial_ring.PolynomialRing_generic method), 28

dict() (sage.rings.polynomial.polynomial_ring.PolynomialRing_field method), 28

dict() (sage.rings.polynomial.polydict.PolyDict method), 28

dict() (sage.rings.polynomial.polydict.PolyDict method), 28

dict() (sage.rings.polynomial.polydict.PolyDict method), 28

done() (sage.rings.polynomial.real_roots.island method), 360
dual() (sage.rings.invariants.invariant_theory.QuadraticForm method), 857
dummy_pd (class in sage.rings.polynomial.polynomialCompiled), 436

E
eadd() (sage.rings.polynomial.polydict.ETuple method), 781
eadd_p() (sage.rings.polynomial.polydict.ETuple method), 782
eadd_scaled() (sage.rings.polynomial.polydict.ETuple method), 783
EisensteinD() (sage.rings.invariants.invariant_theory.BinaryQuartic method), 820
EisensteinE() (sage.rings.invariants.invariant_theory.BinaryQuartic method), 820
Element (sage.rings.polynomial.laurent_polynomial.LaurentPolynomialRing_mpair attribute), 959
Element (sage.rings.polynomial.laurent_polynomial.LaurentPolynomialRing_univariate attribute), 960
Element (sage.rings.polynomial.multi_polynomial.libsingular.MPolynomialRing_libsingular attribute), 726
Element (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic attribute), 401
element() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_element method), 565
Element_hidden (sage.rings.polynomial.multi_polynomial_element.MPolynomialPolydict attribute), 560
elim_pol() (in module sage.rings.polynomial.toy_variety), 900
eliminate_linear_variables() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_GF2 method), 714
elimination_ideal() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 644
elimination_ideal() (sage.rings.polynomial.multi_polynomial_ideal.NCPolynomialIdeal method), 682
emax() (sage.rings.polynomial.polydict.ETuple method), 783
emin() (sage.rings.polynomial.polydict.ETuple method), 784
emul() (sage.rings.polynomial.polydict.ETuple method), 784
escalar_div() (sage.rings.polynomial.polydict.ETuple method), 785
esub() (sage.rings.polynomial.polydict.ETuple method), 785
ETuple (class in sage.rings.polynomial.polydict), 778
euclidean_degree() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 969
euclidean_degree() (sage.rings.polynomial.polynomial_element.MPolynomialPolydict method), 85
exponents() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 969
exponents() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 778
exponents() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_libsingular method), 738
exponents() (sage.rings.polynomial.polynomial_element_generic.PolynomialGeneric_sparse method), 216
extend_variables() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 36

F
F_covariant() (sage.rings.invariants.invariant_theory.TwoTernaryQuadratics method), 879
factor() (sage.rings.fraction_field_FpT.FpTElement method), 932
factor() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 970
factor() (sage.rings.polynomial.multi_polynomial_element.MPolynomialPolydict method), 573
factor() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 738
factor() (sage.rings.polynomial.padics.polynomial_padic.PolynomialPadic method), 315
factor() (sage.rings.polynomial.polynomial_element.MPolynomialPolydict method), 85
factor() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 238
factor() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 250
factor() (sage.rings.polynomial.polynomial_mod_integer_dense_ring.Polynomial_mod_integer_dense method), 283
factor_mod() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.PolynomialPadic method), 36

Index
factor_mod() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 239
factor_mod() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 251
factor_mod() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 262
factor_of_slope() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv method), 208
factor_padic() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 239
factor_padic() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 251
factor_padic() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 263
fcp() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 428
field_extension() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 429
field_extension() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 429
field_extension() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRing_element method), 429
field_extension() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRing_element method), 429
field_extension() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRing_domain method), 395
find_roots() (sage.rings.polynomial.real_roots.ocean method), 365
first() (sage.rings.invariants.invariant_theory.TwoAlgebraicForms method), 870
first_hilbert_series() (in module sage.rings.polynomial.hilbert), 805
flattening_morphism() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 497
flattening_morphism() (sage.rings.polynomial.multi_polynomial_ring_generic.PolynomialRing_generic method), 37
FlatteningMorphism (class in sage.rings.polynomial.flattening), 807
footprint() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial method), 1009
form() (sage.rings.invariants.invariant_theory.AlgebraicForm method), 817
FormsBase (class in sage.rings.invariants.invariant_theory), 841
Fp_FpT_coerce (class in sage.rings.fraction_field_FpT), 939
FpT (class in sage.rings.fraction_field_FpT), 931
FpT_Fp_section (class in sage.rings.fraction_field_FpT), 936
FpT_iter (class in sage.rings.fraction_field_FpT), 938
FpT_Polyring_section (class in sage.rings.fraction_field_FpT), 937
FpTElement (class in sage.rings.fraction_field_FpT), 932
fraction() (sage.rings.polynomial.integer_values.IntegerValuedPolynomialRing.Shifted.Element method), 448
fraction_field() (sage.rings.polynomial.laurent_polynomial_ring_base.LaurentPolynomialRing_generic method), 947
fraction_field() (sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_p method), 23
fraction_field() (sage.rings.polynomial.polynomial_ring.PolynomialRing_field method), 30
FractionField() (in module sage.rings.fraction_field), 914
FractionField_ipoly_field (class in sage.rings.fraction_field), 916
FractionField_generic (class in sage.rings.fraction_field), 917
FractionFieldElement (class in sage.rings.fraction_field_element), 923
FractionFieldElement_ipoly_field (class in sage.rings.fraction_field_element), 928
FractionFieldEmbedding (class in sage.rings.fraction_field), 915
FractionFieldEmbeddingSection (class in sage.rings.fraction_field), 916
FractionSpecializationMorphism (class in sage.rings.polynomial.flatten), 810
free_resolution() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 645
from_fraction_field() (in module sage.rings.polynomial.laurent_polynomial_ring), 960
from_h_vector() (sage.rings.polynomial.integer_values.IntegerValuedPolynomialRing.Shifted method), 450
from_invariants() (sage.rings.invariants.invariant_theory.BinaryQuintic class method), 834
from_invariants() (sage.rings.invariants.invariant_theory.QuadraticForm class method), 857
from_ocean() (sage.rings.polynomial.real_roots.linear_map method), 360
from_ocean() (sage.rings.polynomial.real_roots.warp_map method), 381
function_field() (sage.rings.function_field.FractionField_generic method), 917

g

g_covariant() (sage.rings.invariants.invariant_theory.BinaryQuartic method), 821
galois_group() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 265
galois_group_davenport_smith_test() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 267
gamma_covariant() (sage.rings.invariants.invariant_theory.BinaryQuartic method), 835
gcd() (sage.rings.polynomial.integral_domain.IntegralDomain_flint method), 793
gcd() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 226
gcd() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 240
gcd() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 252
gcd() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 294
gcd() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 327
gcd() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 350
gcd() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 384
gcd() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 417
gcd() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 450
gen() (sage.rings.function_field.FractionField_generic method), 919
gen() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 948
gen() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 994
gen() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 1009
gen() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 498

GenDictWithBasering (class in sage.rings.polynomial.polydict), 804
generic_pd (class in sage.rings.polynomial.polynomial_zz_pex), 277
generic_power_trunc() (in module sage.rings.polynomial.polynomial_element), 204
gen() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 523

gen() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 557

gen() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 591

gen() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 625

gen() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 659

gen() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 693

gen() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 728

gen() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 762

gen() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 796

gen() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 830

gen() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 864
GenusDict (in module sage.rings.polynomial.polynomial_zz_pex), 898

get_cparent() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 227
get() (sage.rings.polynomial.polydict.PolyDict method), 793

get_be_log() (sage.rings.polynomial.real_roots.RootFindingContext method), 344

Index
get_cparent() (sage.rings.polynomial.polynomial_mod_flint.Polynomial_template method), 278
greater_tuple_zmod_flint.Polynomial_template method),
get_cparent() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 334
greater_tuple_degrevlex() (sage.rings.polynomial.real_roots.context method), 344
greater_tuple_neglex() (sage.rings.invariants.invariant_theory.SeveralAlgebraicForms method), 861
greater_tuple_lex() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_float method), 353
greater_tuple_matrix() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer method), 358
greater_tuple_wdegrevlex() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_float method), 347
greater_tuple_wdeglex() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial_integer method), 469
greater_tuple_invlex() (sage.rings.polynomial.real_roots.TermOrder method), 470
greater_tuple_negdegrevlex() (sage.rings.polynomial.real_roots.TermOrder method), 471
greater_tuple_negwdegrevlex() (sage.rings.polynomial.real_roots.TermOrder method), 472
greater_tuple_negwdeglex() (sage.rings.polynomial.real_roots.TermOrder method), 473
greater_tuple_negdeglex() (sage.rings.polynomial.real_roots.TermOrder method), 474
groebner_basis() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 1025
groebner_basis() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdealIdeal method), 617
groebner_basis() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdealIdeal method), 607
groebner_basis() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 1025
groebner_basis() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdealIdeal method), 617
groebner粉丝() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdealIdeal method), 618

h
h_covariant() (sage.rings.invariants.invariant_theory.BinaryQuintic method), 822
H_covariant() (sage.rings.invariants.invariant_theory.BinaryQuartic method), 826
h_polynomial() (sage.rings.invariants.invariant_theory.BinaryQuintic method), 826
h_vector() (sage.rings.polynomial.integer_valued_polynomials.IntegerValuedPolynomialRing.Shifted.Element method), 448
hamming_weight() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial method), 963
hamming_weight() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_element method), 566

hamming_weight() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 746

hamming_weight() (sage.rings.polynomial.polynomial_element.Polynomial method), 96

has_cyclotomic_factor() (sage.rings.polynomial.polynomial_element.Polynomial method), 97

has_root() (sage.rings.polynomial.real_roots.island method), 360

hensel_lift() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv method), 209

hensel_lift() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 268

Hessian() (sage.rings.invariants.invariant_theory.TernaryCubic method), 862

hilbert_numerator() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 650

hilbert_poincare_series() (in module sage.rings.polynomial.hilbert), 806

hilbert_polynomial() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 654

homogeneous_components() (sage.rings.polynomial.multi_polynomial_element.Polynomial method), 525

homogeneous_symmetric_function() (in module sage.rings.polynomial.omega), 987

homogenize() (sage.rings.polynomial.multi_polynomial_element.MPolynomialIdeal method), 618

homogenize() (sage.rings.polynomial.multi_polynomial_element.MPolynomial method), 652

homogenize() (sage.rings.polynomial.polydict.PolyDict method), 793

homogenized() (sage.rings.polynomial.polynomial_element.Polynomial method), 98

homogenized() (sage.rings.polynomial.real_roots.island method), 817

homogenized() (sage.rings.polynomial.real_roots.island method), 861

i_covariant() (sage.rings.invariants.invariant_theory.BinaryQuintic method), 836

ideal() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomialRing_generic method), 948

ideal() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_element method, LaurentPolynomialRing_generic method), 972

ideal() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 726

ideal() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_domain method), 564

ideal() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method, PolynomialSequence_generic method), 705

Ideal_1poly_field (class in sage.rings.polynomial.ideal), 387

in_subalgebra() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_libsingular method), 747

increase_precision() (sage.rings.polynomial.real_roots.ocean method), 365

InfiniteGenDict (class in sage.rings.polynomial.infinity_polynomial_ring), 995

InfinitePolynomial (class in sage.rings.polynomial.infinity_polynomial_element), 1006

InfinitePolynomial_dense (class in sage.rings.polynomial.infinity_polynomial_element), 1020

InfinitePolynomial_sparse (class in sage.rings.polynomial.infinity_polynomial_element), 1020

InfinitePolynomialGen (class in sage.rings.polynomial.infinity_polynomial_ring), 995

InfinitePolynomialRing_dense (class in sage.rings.polynomial.infinity_polynomial_ring), 997

InfinitePolynomialRing_sparse (class in sage.rings.polynomial.infinity_polynomial_ring), 998

InfinitePolynomialRingFactory (class in sage.rings.polynomial.infinity_polynomial_ring), 996

inhomogeneous_quadratic_form() (sage.rings.invariants.InvariantTheoryFactory method), 848

int_list() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n method), 291

int_list() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_mod_n method), 299

INTEGER_LIMIT (sage.rings.fraction_field_FpT.FpT attribute), 931

IntegerValuedPolynomialRing (class in sage.rings.polynomial.integer_valued_polynomials), 436
<table>
<thead>
<tr>
<th>Function Name</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>inverse_series_trunc()</td>
<td>sage.rings.polynomial.polynomial_element</td>
<td>269</td>
</tr>
<tr>
<td>inverse_series_trunc()</td>
<td>sage.rings.polynomial.polynomial_ZZ_pEX</td>
<td>330</td>
</tr>
<tr>
<td>irreducible_element()</td>
<td>sage.rings.polynomial.polynomial_ring</td>
<td>20</td>
</tr>
<tr>
<td>irreducible_element()</td>
<td>sage.rings.polynomial.polynomial_ring</td>
<td>24</td>
</tr>
<tr>
<td>irrelevant_ideal()</td>
<td>sage.rings.polynomial.polynomial_ring_base</td>
<td>500</td>
</tr>
<tr>
<td>is_block_order()</td>
<td>sage.rings.polynomial.term_order</td>
<td>475</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.laurent_polynomial_univariate</td>
<td>972</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.multi_polynomial_element</td>
<td>576</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.multi_polynomial_libsingular</td>
<td>749</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.polynomial_quotient_ring</td>
<td>415</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.polynomial_quotient_ring</td>
<td>39</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.polynomial_quotient_ring</td>
<td>920</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.polynomial_quotient_ring</td>
<td>414</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.polynomial_quotient_ring</td>
<td>39</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.polynomial_quotient_ring</td>
<td>929</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.polynomial_quotient_ring</td>
<td>110</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.polynomial_quotient_ring</td>
<td>227</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.polynomial_quotient_ring</td>
<td>300</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.polynomial_quotient_ring</td>
<td>278</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.polynomial_quotient_ring</td>
<td>334</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.polynomial_quotient_ring</td>
<td>577</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.polynomial_quotient_ring</td>
<td>529</td>
</tr>
<tr>
<td>is_constant()</td>
<td>sage.rings.polynomial.polynomial_quotient_ring</td>
<td>475</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.infinite_polynomial_ring</td>
<td>1001</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.laurent_polynomial_ring</td>
<td>949</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.multi_polynomial_ring</td>
<td>501</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.multi_polynomial_ring</td>
<td>564</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.multi_polynomial_quotient_ring</td>
<td>414</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.multi_polynomial_quotient_ring</td>
<td>920</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.multi_polynomial_quotient_ring</td>
<td>414</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.multi_polynomial_quotient_ring</td>
<td>929</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.multi_polynomial_quotient_ring</td>
<td>110</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.multi_polynomial_quotient_ring</td>
<td>227</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.multi_polynomial_quotient_ring</td>
<td>300</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.multi_polynomial_quotient_ring</td>
<td>278</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.multi_polynomial_quotient_ring</td>
<td>334</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.multi_polynomial_quotient_ring</td>
<td>577</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.multi_polynomial_quotient_ring</td>
<td>529</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.multi_polynomial_quotient_ring</td>
<td>475</td>
</tr>
<tr>
<td>is_field()</td>
<td>sage.rings.polynomial.multi_polynomial_quotient_ring</td>
<td>920</td>
</tr>
</tbody>
</table>

1066 Index
is_noetherian() (sage.rings.polynomial.laurent_polynomial_ring.laurent_polynomial_ring, 1001)
is_square() (sage.rings.polynomial.laurent_polynomial_ring.laurent_polynomial_ring_base.LaurentPolynomialRing_generic method), 949
is_noetherian() (sage.rings.polynomial.multi_polynomial_ring_libsingular.MPolynomialRing_base method), 501
is_noetherian() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 39
is_one() (sage.rings.fraction_field_element.FractionFieldElement method), 923
is_one() (sage.rings.polynomial.polynomial_element.Polynomial.method), 115
is_one() (sage.rings.polynomial.polynomial_element.gf2x.Polynomial_template method), 227
is_one() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 241
is_one() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 270
is_one() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template method), 278
is_one() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 335
is_Polynomial() (in module sage.rings.polynomial.polynomial_element), 204
is_PolynomialQuotientRing() (in module sage.rings.polynomial.polynomial_quotient_ring), 425
is_PolynomialRing() (in module sage.rings.polynomial.polynomial_ring), 50
is_PolynomialSequence() (in module sage.rings.polynomial.multi_polynomial_sequence), 720
is_prime() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 658
is_primitive() (sage.rings.polynomial.polynomial_element.Polynomial method), 116
is_real_rooted() (sage.rings.polynomial.polynomial_element.Polynomial method), 119
is_sparse() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 39
is_square() (sage.rings.fraction_field_element.FractionFieldElement method), 924
is_square() (sage.rings.fraction_field.FpT.FpTElement method), 932
is_square() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 974
is_square() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 532
is_square() (sage.rings.polynomial.polynomial_element.Polynomial method), 119
is_squarefree() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 751
is_squarefree() (sage.rings.polynomial.polynomial_element.Polynomial method), 120
is_surjective() (sage.rings.polynomial.polynomial_element.PolynomialBaseringInjection method), 915
is_surjective() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_coercion method), 394
is_surjective() (sage.rings.polynomial.polynomial_ring_homomorphism.PolynomialRingHomomorphism_from_base method), 53
is_symmetric() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 533
is_term() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polynomial_element method), 579
is_term() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 751
is_term() (sage.rings.polynomial.polynomial_element.Polynomial method), 123
is_term() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense method), 198
is_triangular() (in module sage.rings.polynomial.toy_variety), 902
is_unique_factorization_domain() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 40
is_unit() (sage.rings.polynomial.polynomial_element.InfinitePolynomial_element method), 1010
is_unit() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 975
is_unit() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 534
is_unit() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_domain method), 212
is_unit() (sage.rings.polynomial.polynomial_element.Polynomial method), 124
is_unit() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 431
is_univariate() (sage.rings.polynomial.multi_polynomial_element.Polynomial element method), 914
<table>
<thead>
<tr>
<th>Function/Method Name</th>
<th>Module/Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>is_univariate()</td>
<td>sage.rings.polynomial.multi_polynomial_element.Polynomial</td>
<td>752</td>
</tr>
<tr>
<td>is_weighted_degree_order()</td>
<td>sage.rings.polynomial.term_order.TermOrder</td>
<td>476</td>
</tr>
<tr>
<td>is_weil_polynomial()</td>
<td>sage.rings.polynomial.multi_polynomial.MPolynomial</td>
<td>358</td>
</tr>
<tr>
<td>is_zero()</td>
<td>sage.rings.fraction_field_element.FractionFieldElement</td>
<td>925</td>
</tr>
<tr>
<td>is_zero()</td>
<td>sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate</td>
<td>976</td>
</tr>
<tr>
<td>is_zero()</td>
<td>sage.rings.polynomial.multi_polynomial.MPolynomial</td>
<td>752</td>
</tr>
<tr>
<td>is_zero()</td>
<td>sage.rings.polynomial.polynomial_element.Polynomial</td>
<td>125</td>
</tr>
<tr>
<td>is_zero()</td>
<td>sage.rings.polynomial.polynomial_gf2x.Polynomial_template</td>
<td>227</td>
</tr>
<tr>
<td>is_zero()</td>
<td>sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint</td>
<td>241</td>
</tr>
<tr>
<td>is_zero()</td>
<td>sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint</td>
<td>270</td>
</tr>
<tr>
<td>is_zero()</td>
<td>sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template</td>
<td>278</td>
</tr>
<tr>
<td>is_zero()</td>
<td>sage.rings.polynomial.polynomial_zz_pex.Polynomial_template</td>
<td>335</td>
</tr>
<tr>
<td>island()</td>
<td>sage.rings.polynomial.real_roots</td>
<td>358</td>
</tr>
<tr>
<td>iter()</td>
<td>sage.rings.fraction_field_element.FractionFieldElement.FractionFieldElement</td>
<td>925</td>
</tr>
<tr>
<td>iterator_exp_coeff()</td>
<td>sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict</td>
<td>580</td>
</tr>
<tr>
<td>iterator_exp_coeff()</td>
<td>sage.rings.polynomial.multi_polynomial.MPolynomial_libsingular</td>
<td>753</td>
</tr>
<tr>
<td>iterator_exp_coeff()</td>
<td>sage.rings.polynomial.multi_polynomial.Polynomial</td>
<td>535</td>
</tr>
<tr>
<td>J_covariant()</td>
<td>sage.rings.invariants.invariant_theory.BinaryQuintic</td>
<td>837</td>
</tr>
<tr>
<td>J_covariant()</td>
<td>sage.rings.invariants.invariant_theory.TernaryCubic</td>
<td>863</td>
</tr>
<tr>
<td>J_covariant()</td>
<td>sage.rings.invariants.invariant_theory.TwoQuaternaryQuadratics</td>
<td>873</td>
</tr>
<tr>
<td>jacobian_ideal()</td>
<td>sage.rings.polynomial.multi_polynomial.MPolynomial</td>
<td>536</td>
</tr>
<tr>
<td>jacobian_ideal()</td>
<td>sage.rings.polynomial_ring.PolynomialRing_field</td>
<td>30</td>
</tr>
<tr>
<td>jacobian_ideal()</td>
<td>sage.rings.polynomial_ring.PolynomialRing_general</td>
<td>40</td>
</tr>
<tr>
<td>jacobian_ideal()</td>
<td>sage.rings.polynomial_ring.PolynomialRing_univariate</td>
<td>962</td>
</tr>
<tr>
<td>jacobian_ideal()</td>
<td>sage.rings.polynomial_ring_base.LaurentPolynomialRing_base</td>
<td>945</td>
</tr>
<tr>
<td>jacobian_ideal()</td>
<td>sage.rings.polynomial_quotient_ring.PolynomialQuotientRing_generic</td>
<td>417</td>
</tr>
<tr>
<td>jacobian_ideal()</td>
<td>sage.rings.polynomial_quotient_ring.PolynomialQuotientRing_field</td>
<td>40</td>
</tr>
<tr>
<td>jcovariant()</td>
<td>sage.rings.invariants.invariant_theory.BinaryQuintic</td>
<td>837</td>
</tr>
<tr>
<td>jcovariant()</td>
<td>sage.rings.invariants.invariant_theory.TernaryCubic</td>
<td>863</td>
</tr>
<tr>
<td>jcovariant()</td>
<td>sage.rings.invariants.invariant_theory.TwoQuaternaryQuadratics</td>
<td>873</td>
</tr>
<tr>
<td>karatsuba_threshold()</td>
<td>sage.rings.polynomial_ring.PolynomialRing_general</td>
<td>40</td>
</tr>
<tr>
<td>kbase_libsingular()</td>
<td>sage.rings.polynomial_multi_polynomial.MPolynomial</td>
<td>775</td>
</tr>
<tr>
<td>key_basis()</td>
<td>sage.rings.polynomial_infinite_polynomial_ring.InfinitePolynomialRing_sparse</td>
<td>1002</td>
</tr>
<tr>
<td>krull_dimension()</td>
<td>sage.rings.polynomial_infinite_polynomial_ring.InfinitePolynomialRing_sparse</td>
<td>1002</td>
</tr>
<tr>
<td>krull_dimension()</td>
<td>sage.rings.polynomial.laurent_polynomial.PolynomialRing_base</td>
<td>950</td>
</tr>
<tr>
<td>krull_dimension()</td>
<td>sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base</td>
<td>502</td>
</tr>
<tr>
<td>krull_dimension()</td>
<td>sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRingGeneric</td>
<td>417</td>
</tr>
<tr>
<td>krull_dimension()</td>
<td>sage.rings.polynomial.polynomial_ring.PolynomialRing_general</td>
<td>40</td>
</tr>
<tr>
<td>lagrange_polynomial()</td>
<td>sage.rings.polynomial_ring.PolynomialRing_field</td>
<td>30</td>
</tr>
<tr>
<td>latex()</td>
<td>sage.rings.polynomial.polydict.PolyDict</td>
<td>795</td>
</tr>
<tr>
<td>LaurentPolynomial()</td>
<td>sage.rings.polynomial.laurent_polynomial</td>
<td>962</td>
</tr>
<tr>
<td>LaurentPolynomial_univariate()</td>
<td>sage.rings.polynomial.laurent_polynomial</td>
<td>965</td>
</tr>
<tr>
<td>LaurentPolynomialRing()</td>
<td>sage.rings.polynomial.laurent_polynomial_ring</td>
<td>954</td>
</tr>
<tr>
<td>LaurentPolynomialRing_generic()</td>
<td>sage.rings.polynomial.laurent_polynomial</td>
<td>945</td>
</tr>
<tr>
<td>LaurentPolynomialRing_mpair()</td>
<td>sage.rings.polynomial.laurent_polynomial</td>
<td>958</td>
</tr>
<tr>
<td>LaurentPolynomialRing_univariate()</td>
<td>sage.rings.polynomial.laurent_polynomial</td>
<td>960</td>
</tr>
<tr>
<td>LC()</td>
<td>sage.rings.polynomial.toy_d_basis</td>
<td>908</td>
</tr>
</tbody>
</table>
lc() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial method), 1011
lc() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_poldict method), 581
lc() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 753
lc() (sage.rings.polynomial.polynomial_element. Polynomial method), 126
LCM() (in module sage.rings.polynomial.toy_buchberger), 896
lcm() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 754
lcm() (sage.rings.polynomial.polynomial_element.Polynomial method), 126
lcm() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 242
lcm() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 252
lcm() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 271
lcm() (sage.rings.polynomial.polynomial_element.Polynomial method), 796
leading_coefficient() (sage.rings.polynomial.polynomial_element.Polynomial method), 126
less_bits() (sage.rings.polynomial.real_roots.island method), 360
lift() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_poldict method), 581
lift() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 755
lift() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 536
lift() (sage.rings.polynomial.padic.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 321
lift() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 431
lift() (sage.rings.polynomial.polynomial_quotient_ring_generic method), 417
linear_map (class in sage.rings.polynomial.real_roots), 360
linear_representation() (in module sage.rings.polynomial.toy_variety), 903
list() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 583
list() (sage.rings.polynomial.polydict.PolyDict method), 796
list() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 217
list() (sage.rings.polynomial.polynomial_element.Polynomial method), 127
list() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense method), 199
list() (sage.rings.polynomial.polynomial_gf2x.Polynomial_template method), 228
list() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 242
list() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 253
list() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_flint method), 291
list() (sage.rings.polynomial.polynomial_modn_dense_flint.Polynomial_modn_dense_flint method), 296
list() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 432
list() (sage.rings.polynomial.polynomial_ZZ_pEX.PolynomialZZ_pEX method), 329
LM() (in module sage.rings.polynomial.toy_buchberger), 896
LM() (in module sage.rings.polynomial.toy_d_basis), 908
lm() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial method), 1012
lm() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_poldict method), 582
lm() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 756
lm() (sage.rings.polynomial.polynomial_element.Polynomial method), 128
local_height() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_poldict method), 583
min_max_diff_intvec() (in module sage.rings.polynomial.real_roots), 362
minimal_associated_primes() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 659
minpoly() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 433
minpoly_mod() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl method), 291
minpoly_mod() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 284
mk_context() (in module sage.rings.polynomial.real_roots), 363
mk_ibp() (in module sage.rings.polynomial.real_roots), 363
mk_ibpi() (in module sage.rings.polynomial.real_roots), 363
mod() (sage.rings.polynomial.polynomial_element.Polynomial method), 132
modular_composition() (sage.rings.polynomial.polynomial_gf2x.Polynomial_GF2X method), 225
module
 sage.rings.fraction_field, 913
 sage.rings.fraction_field_element, 923
 sage.rings.fraction_field_FpT, 931
 sage.rings.invariants.invariant_theory, 813
 sage.rings.invariants.reconstruction, 884
 sage.rings.monomials, 812
 sage.rings.polynomial.complex_roots, 382
 sage.rings.polynomial.convolution, 451
 sage.rings.polynomial.cyclotomic, 452
 sage.rings.polynomial.flattened, 807
 sage.rings.polynomial.hilbert, 805
 sage.rings.polynomial.ideal, 387
 sage.rings.polynomial.infinite_polynomial_element, 1005
 sage.rings.polynomial.infinite_polynomial_ring, 989
 sage.rings.polynomial.integer_valued_polynomials, 436
 sage.rings.polynomial.laurent_polynomial, 962
 sage.rings.polynomial.laurent_polynomial_element, 981
 sage.rings.polynomial.laurent_polynomial_ring, 954
 sage.rings.polynomial.laurent_polynomial_ring_base, 945
 sage.rings.polynomial.msolve, 776
 sage.rings.polynomial.multi_polynomial, 515
 sage.rings.polynomial.multi_polynomial_element, 565
 sage.rings.polynomial.multi_polynomial_ideal, 596
 sage.rings.polynomial.multi_polynomial_ideal_libsingular, 774
 sage.rings.polynomial.multi_polynomial_ring, 690
 sage.rings.polynomial.multi_polynomial_sequence, 690
 sage.rings.polynomial.omega, 981
 sage.rings.polynomial.padics.polynomial_padic, 313
 sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense, 319
 sage.rings.polynomial.padics.polynomial_padic_flattened, 329
 sage.rings.polynomial.polydict, 778
 sage.rings.polynomial.polynomial_element, 435
 sage.rings.polynomial.polynomial_element, 54
 sage.rings.polynomial.polynomial_element_generic, 207
 sage.rings.polynomial.polynomial_fateman, 436
 sage.rings.polynomial.polynomial_gf2x, 223
 sage.rings.polynomial.polynomial_integer_dense_flint, 234
 sage.rings.polynomial.polynomial_integer_dense_ntl, 248
 sage.rings.polynomial.polynomial_modn_dense_ntl, 289
 sage.rings.polynomial.polynomial_number_field, 230
 sage.rings.polynomial.polynomial_quotient_ring, 389
 sage.rings.polynomial.polynomial_quotient_ring_element, 426
 sage.rings.polynomial.polynomial_quotient_ring_element, 426
mial_rational_flint, 257
sage.rings.polynomial.polynomial_rational_flint, 257
sage.rings.polynomial.polynomial_real_mpfr_dense, 307
sage.rings.polynomial.polynomial_ring, 1
sage.rings.polynomial.polynomial_ring_constructor, 1
sage.rings.polynomial.polynomial_ring_homomorphism, 52
sage.rings.polynomial.polynomial_singular_interface, 312
sage.rings.polynomial.polynomial_zmod_flint, 276
sage.rings.polynomial.polynomial_zz_pex, 329
sage.rings.polynomial.real_roots, 337
sage.rings.polynomial.refine_root, 386
sage.rings.polynomial.symmetric_ideal, 1021
sage.rings.polynomial.symmetric_reduction, 1036
sage.rings.polynomial.term_order, 457
sage.rings.polynomial.toy_buchberger, 891
sage.rings.polynomial.toy_d_basis, 905
sage.rings.polynomial.toy_variety, 900
modulus() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 418
modulus() (sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_n method), 21
monic() (sage.rings.polynomial.polynomial_element.Polynomial method), 133
monic() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 284
monics() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 41
monomial() (sage.rings.polynomial.laurent_polynomial.laurent_polynomial_ring.LaurentPolynomialRing_repair method), 959
monomial() (sage.rings.polynomial.multi_polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 506
monomial() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 42
monomial_all_divisors() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 727
monomial_all_divisors() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict method), 560
monomial_coefficient() (sage.rings.polynomial.multi_polynomial_element.MPolynomialRing_polydict method), 586
monomial_coefficient() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 760
monomial_coefficient() (sage.rings.polynomial.polydict.PolyDict method), 797
monomial_coefficient() (sage.rings.polynomial.polynomial_element.Polynomial method), 134
monomial_divides() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 727
monomial_divides() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict method), 560
monomial_exponent() (in module sage.rings.polynomial.polydict), 804
monomial_lcm() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 728
monomial_lcm() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict method), 561
monomial_pairwise_prime() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 728
monomial_pairwise_prime() (sage.rings.polynomial.polydict.PolyDict method), 561
monomial_quotient() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 729
monomial_quotient() (sage.rings.polynomial.polydict.PolyDict method), 759
monomial_quotient() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict method), 562
monomial_reduce() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 730
monomial_reduce() (sage.rings.polynomial.polydict.PolyDict method), 760
monomial_reduction() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 976
monomials() (in module sage.rings.monoids), 812
monomials() (sage.rings.invariants.invariant_theory.BinaryQuartic method), 823
monomials() (sage.rings.invariants.invariant_theory.BinaryQuintic method), 838
monomials() (sage.rings.invariants.invariant_theory.QuadraticForm method), 859
monomials() (sage.rings.invariants.invariant_theory.TernaryCubic method), 866
monomials() (sage.rings.invariants.invariant_theory.TernaryQuadratic method), 869
monomials() (sage.rings.polynomial.multi_polynomial.MPolynomial_polydict method), 587
monomials() (sage.rings.polynomial.multi_polynomial.MPolynomial_libsingular method), 761
monomials() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 707
monomials() (sage.rings.polynomial.polynomial_element.Polynomial method), 135
monomials_of_degree() (sage.rings.polynomial.multi_polynomial.MPolynomial_Ring_base method), 507
more_bits() (sage.rings.polynomial.real_roots.island method), 360
MPolynomial (class in sage.rings.polynomial.multi_polynomial), 515
MPolynomial_element (class in sage.rings.polynomial.multi_polynomial_element), 565
MPolynomial_libsingular (class in sage.rings.polynomial.multi_polynomial), 558
MPolynomial_libsingular (class in sage.rings.polynomial.multi_polynomial_libsingular), 731
MPolynomial_libsingular (class in sage.rings.polynomial.multi_polynomial_libsingular), 558
MPolynomial_polydict (class in sage.rings.polynomial.multi_polynomial_element), 567
MPolynomialIdeal (class in sage.rings.polynomial.multi_polynomial_element), 602
MPolynomialIdeal_macaulay2_repr (class in sage.rings.polynomial.multi_polynomial_element), 633
MPolynomialIdeal_magma_repr (class in sage.rings.polynomial.multi_polynomial_element), 633
MPolynomialIdeal_quotient (class in sage.rings.polynomial.multi_polynomial_element), 633
MPolynomialIdeal_singular_base_repr (class in sage.rings.polynomial.multi_polynomial_element), 634
MPolynomialIdeal_singular_repr (class in sage.rings.polynomial.multi_polynomial_element), 635
MPolynomialRing_base (class in sage.rings.polynomial.multi_polynomial_ring_base), 494
MPolynomialRing_libsingular (class in sage.rings.polynomial.multi_polynomial_libsingular), 723
MPolynomialRing_macaulay2_repr (class in sage.rings.polynomial.multi_polynomial_ring), 559
MPolynomialRing_polydict (class in sage.rings.polynomial.multi_polynomial_ring), 560
MPolynomialRing_polydict_domain (class in sage.rings.polynomial.multi_polynomial_ring), 564
mul_pd (class in sage.rings.polynomial.polynomial_compiled), 436
multiplication_trunc() (sage.rings.polynomial.polynomial_element.Polynomial method), 136

N
n_forms() (sage.rings.invariants.invariant_theory.SeveralAlgebraicForms method), 862
name() (sage.rings.polynomial.term_order.TermOrder method), 478
NCPolynomialIdeal (class in sage.rings.polynomial.multi_polynomial_ideal), 680
newton_polygon() (sage.rings.polynomial.padic.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 322
newton_polygon() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv method), 209
newton_polytope() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 543
newton_raphson() (sage.rings.polynomial.polynomial_element.Polynomial method), 136
newton_slopes() (sage.rings.polynomial.padic.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 323
newton_slopes() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_cdv method), 210
next() (sage.rings.fraction_field.FpT.FpTElement method), 933
next() (sage.rings.polynomial.infinite_polynomial_ring.GenDictWithBasering method), 994
ngens() (sage.rings.polynomial.fraction_field.FractionField_generic method), 920
ngens() (sage.rings.polynomial.infinite_polyno-
Polynomials, Release 10.4

ngens() (sage.rings.polynomial.laurent_polynomial.laurent_polynomial_ring_base.LaurentPolynomialRing_generic method), 950

ngens() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular method), 730

ngens() (sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_base method), 508

ngens() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 418

ngens() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 43

nmonomials() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 707

Node (class in sage.rings.polynomial.hilbert), 805

nonzero_positions() (sage.rings.polynomial.polydict.ETuple method), 786

nonzero_values() (sage.rings.polynomial.polydict.ETuple method), 787

norm() (sage.rings.polynomial.polynomial_element.Polynomial method), 138

norm() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 434

normal_basis() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 660

normalisation() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 1033

nparts() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 707

nth_root() (sage.rings.fracion_field_element.FractionFieldElement method), 926

nth_root() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 543

nth_root() (sage.rings.polynomial.polynomial_element.Polynomial method), 139

ntl_set_directly() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl method), 291

ntl_set_directly() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl method), 291

ntl_ZZ_pX() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl method), 300

number_field() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 418

number_of_real_roots() (sage.rings.polynomial.polynomial_element.Polynomial method), 142

number_of_roots_in_interval() (sage.rings.polynomial.polynomial_element.Polynomial method), 143

number_of_terms() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial method), 965

number_of_terms() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 976

number_of_terms() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_element_generic.Polynomial_generic_sparse method), 218

number_of_terms() (sage.rings.polynomial.polynomial_element.Polynomial method), 144

numerator() (sage.rings.fraction_field_FpT.FpTElement method), 935

numerator() (sage.rings.fraction_field_element.FractionFieldElement method), 926

numerator() (sage.rings.fraction_field_FpT.FpTElement method), 935

numerator() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_libsingular method), 762

numerator() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_libsingular method), 762

numerator() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 544

numerator() (sage.rings.polynomial.polynomial_element.Polynomial method), 145

numerator() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_element, 272

nvariables() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 588

nvariables() (sage.rings.polynomial.multi_polynomial.MPolynomial_libsingular method), 763

nvariables() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 708

Ocean (class in sage.rings.polynomial.real_roots), 364

Omega_ge() (in module sage.rings.polynomial.omega), 985
one() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 1003
one_basis() (sage.rings.polynomial.integer_valued_polynomials.IntegerValuedPolynomialRing.Bases.ParentMethods method), 441
ord() (sage.rings.polynomial.element.Element method), 146
order() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 1003
order() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 419
padded_list() (sage.rings.polynomial.polynomial_element.Polynomial method), 147
parameter() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 43
part() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 708
partition() (in module sage.rings.polynomial.omega), 988
parts() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 709
Phi_invariant() (sage.rings.invariants.invariant_theory.TwoQuaternaryQuadratics method), 873
plot() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal method), 620
plot() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 661
plot() (sage.rings.polynomial.polynomial_element.Polynomial method), 147
polar_conic() (sage.rings.invariants.invariant_theory.TernaryCubic method), 866
poly_repr() (sage.rings.polynomial.polydict.PolyDict method), 797
PolyDict (class in sage.rings.polynomial.polydict), 789
polygen() (in module sage.rings.polynomial.polynomial_ring), 51
polygens() (in module sage.rings.polynomial.polynomial_ring), 52
Polynomial (class in sage.rings.polynomial.polynomial_element), 55
polynomial() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 546
polynomial() (sage.rings.polynomial.polynomial_element.Polynomial method), 148
Polynomial_absolute_number_field_dense (class in sage.rings.polynomial.polynomial_number_field), 232
polynomial_coefficient() (sage.rings.polynomial.polydict.PolyDict method), 798
polynomial_construction() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 977
polynomial_default_category() (in module sage.rings.polynomial.polynomial_ring_constructor), 12
Polynomial_dense_mod_n (class in sage.rings.polynomial.polynomial_modn_dense_ntl), 289
Polynomial_dense_mod_p (class in sage.rings.polynomial.polynomial_modn_dense_ntl), 293
Polynomial_dense_modn_ntl_ZZ (class in sage.rings.polynomial.polynomial_modn_dense_ntl), 295
Polynomial_dense_modn_ntl_zz (class in sage.rings.polynomial.polynomial_modn_dense_ntl), 298
Polynomial_generic_cdv (class in sage.rings.polynomial.polynomial_element_generic), 207
Polynomial_generic_cdvf (class in sage.rings.polynomial.polynomial_element_generic), 212
Polynomial_generic_cdvr (class in sage.rings.polynomial.polynomial_element_generic), 212
Polynomial_generic_dense (class in sage.rings.polynomial.polynomial_element), 198
Polynomial_generic_dense_cdv (class in sage.rings.polynomial.polynomial_element_generic), 212
Polynomial_generic_dense_cdvf (class in sage.rings.polynomial.polynomial_element_generic), 212
Polynomial_generic_dense_cdvr (class in sage.rings.polynomial.polynomial_element_generic), 212
Polynomial_generic_dense_field (class in sage.rings.polynomial.polynomial_element_generic), 212
Polynomial_generic_dense_inexact (class in sage.rings.polynomial.polynomial_element), 201
Polynomial_generic_dense (class in
Polynomials, Release 10.4

sage.rings.polynomial.polynomial_element_generic, 212
Polynomial_generic_field (class in sage.rings.polynomial.polynomial_element_generic), 213
Polynomial_generic_sparse (class in sage.rings.polynomial.polynomial_element_generic), 213
Polynomial_generic_sparse_cdv (class in sage.rings.polynomial.polynomial_element_generic), 221
Polynomial_generic_sparse_cdvf (class in sage.rings.polynomial.polynomial_element_generic), 222
Polynomial_generic_sparse_cdvr (class in sage.rings.polynomial.polynomial_element_generic), 222
Polynomial_generic_sparse_field (class in sage.rings.polynomial.polynomial_element_generic), 222
Polynomial_GF2X (class in sage.rings.polynomial.polynomial_gf2x), 224
Polynomial_integer_dense_flint (class in sage.rings.polynomial.polynomial_integer_dense_flint), 234
Polynomial_integer_dense_ntl (class in sage.rings.polynomial.polynomial_integer_dense_ntl), 248
polynomial_is_variable() (in module sage.rings.polynomial.polynomial_element), 205
Polynomial_padic (class in sage.rings.polynomial.polynomial_padic), 313
Polynomial_padic_capped_relative_dense (class in sage.rings.polynomial.polynomial_padic_capped_relative_dense), 319
Polynomial_padic_flat (class in sage.rings.polynomial.polynomial_padic_flat), 280
Polynomial_relative_number_field_dense (class in sage.rings.polynomial.polynomial_relative_number_field_dense), 233
polynomial_ring() (sage.rings.polynomial.infinite_polynomialRing.InfinitePolynomialRing_dense method), 997
polynomial_ring() (sage.rings.polynomial.laurent_polynomial_ring.LaurentPolynomialRing_generic method), 950
polynomial_ring() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 420
Polynomial_singular_repr (class in sage.rings.polynomial.polynomial_singular_interface), 312
Polynomial_template (class in sage.rings.polynomial.polynomial_gf2x), 226
Polynomial_template (class in sage.rings.polynomial.polynomial_zmod_flint), 277
Polynomial_template (class in sage.rings.polynomial.polynomial_zz_pex), 333
Polynomial_zmod_flint (class in sage.rings.polynomial.polynomial_zmod_flint), 280
Polynomial_ZZ_pEX (class in sage.rings.polynomial.polynomial_zz_pex), 329
PolynomialBasingInjection (class in sage.rings.polynomial.polynomial_element), 195
PolynomialQuotientRing_coercion (class in sage.rings.polynomial.polynomial_quotient_ring), 393
PolynomialQuotientRing_domain (class in sage.rings.polynomial.polynomial_quotient_ring), 395
PolynomialQuotientRing_field (class in sage.rings.polynomial.polynomial_quotient_ring), 398
PolynomialQuotientRing_generic (class in sage.rings.polynomial.polynomial_quotient_ring), 399
PolynomialQuotientRingElement (class in sage.rings.polynomial.polynomial_quotient_ring_element), 427
PolynomialQuotientRingFactory (class in sage.rings.polynomial.polynomial_quotient_ring), 389
PolynomialRealDense (class in sage.rings.polynomial.polynomial_real_mpfr_dense), 307
PolynomialRing() (in module sage.rings.polynomial.polynomial_ring_constructor), 2
PolynomialRing_cdvf (class in sage.rings.polynomial.polynomial_ring), 18
PolynomialRing_cdvr (class in sage.rings.polynomial.polynomial_ring), 18
PolynomialRing_commutative (class in sage.rings.polynomial.polynomial_ring), 19
PolynomialRing_dense_field (class in sage.rings.polynomial.polynomial_ring), 20
PolynomialRing_dense_mod_n (class in sage.rings.polynomial.polynomial_ring), 21
PolynomialRing_dense_mod_p (class in sage.rings.polynomial.polynomial_ring), 23
PolynomialRing_dense_padic_field_capped_relative (class in sage.rings.polynomial.polynomial_ring), 26
PolynomialRing_dense_padic_field_generic (class in sage.rings.polynomial.polynomial_ring), 27
Index 1077
PolynomialRing_dense_padic_ring_capped_absolute (class in sage.rings.polynomial.polynomial_ring), 26
PolynomialRing_dense_padic_ring_capped_relative (class in sage.rings.polynomial.polynomial_ring), 27
PolynomialRing_dense_padic_ring_fixed_mod (class in sage.rings.polynomial.polynomial_ring), 27
PolynomialRing_dense_padic_ring_generic (class in sage.rings.polynomial.polynomial_ring), 27
PolynomialRing_field (class in sage.rings.polynomial.polynomial_ring), 28
PolynomialRing_general (class in sage.rings.polynomial.polynomial_ring), 33
PolynomialRing_integral_domain (class in sage.rings.polynomial.polynomial_ring), 47
PolynomialRing_singular_repr (class in sage.rings.polynomial.polynomial_singular_interface), 312
PolynomialRingHomomorphism_from_base (class in sage.rings.polynomial.polynomial_ring_homomorphism), 53
polynomials() (sage.rings.polynomial.polynomial_ring.PolynomialRing_general method), 43
PolynomialSequence() (in module sage.rings.polynomial.multi_polynomial_sequence), 696
PolynomialSequence_generic (class in sage.rings.polynomial.multi_polynomial_sequence), 698
PolynomialSequence_gf2 (class in sage.rings.polynomial.multi_polynomial_sequence), 713
PolynomialSequence_gf2e (class in sage.rings.polynomial.multi_polynomial_sequence), 718
Polyring_FpT_coerce (class in sage.rings.fraction_field_FpT), 941
pow_pd (class in sage.rings.polynomial.polynomial_compiled), 436
power_trunc() (sage.rings.polynomial.polynomial_element.Polynomial method), 148
prec() (sage.rings.polynomial.polynomial_element.Polynomial method), 150
prec_degree() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 324
prec_degree() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense_inexact method), 203
precision_absolute() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 325
precision_relative() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 325
precompute_degree_reduction_cache() (in module sage.rings.polynomial.polynomial.real_roots), 368
primary_decomposition() (sage.rings.polynomial.multi_polynomialIdeal.MPolynomialIdeal_singular_repr method), 662
primary_decomposition_complete() (sage.rings.polynomial.multi_polynomialIdeal.MPolynomialIdeal_singular_repr method), 664
product_on_basis() (sage.rings.polynomial.integer_valued_polynomials.IntegerValuedPolynomialRing.Binomial method), 444
product_on_basis() (sage.rings.polynomial.integer_valued_polynomials.IntegerValuedPolynomialRing.Shifted method), 450
pseudo_divrem() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 243
pseudo_quo_rem() (sage.rings.polynomial.polynomial_element.Polynomial method), 150
pseudoinverse() (in module sage.rings.polynomial.real_roots), 368
quadratic_form() (sage.rings.invariants.invariant_theory.InvariantTheoryFactory method), 849
QuadraticForm (class in sage.rings.invariants.invariant_theory), 854
quaternary_biquadratic() (sage.rings.invariants.invariant_theory.InvariantTheoryFactory method), 850
quaternary_quadratic() (sage.rings.invariants.invariant_theory.InvariantTheoryFactory method), 851
quo_rem() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 977
quo_rem() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 588
quo_rem() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 764
quo_rem() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method),
Index 1079
reduce() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial method), 1013
reduce() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 589
reduce() (sage.rings.polynomial.multi_polynomialIdeal.MPolynomialIdeal method), 625
reduce() (sage.rings.polynomial.multi_polynomialIdeal.MPolynomialIdeal_quotient method), 634
reduce() (sage.rings.polynomial.multi_polynomialIdeal.NCPolynomialIdeal method), 683
reduce() (sage.rings.polynomial.multi_polynomial_libring.MPolynomial_libring method), 765
reduce() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 1033
reduce() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 1042
reduce() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 709
reduce() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_gf2 method), 716
reduce_form() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 547
refine() (sage.rings.polynomial.real_roots.island method), 360
refine_all() (sage.rings.polynomial.real_roots.ocean method), 366
refine_recursive() (sage.rings.polynomial.real_roots.island method), 360
refine_root() (in module sage.rings.polynomial.refine_root), 386
region() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial method), 349
region() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial method), 349
region_width() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial method), 349
relative_bounds() (in module sage.rings.polynomial.real_roots), 376
remove_var() (sage.rings.polynomial.laurent_polynomial.laurent_polynomial_ring_base.LaurentPolynomialRing_generic method), 952
remove_var() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 511
remove_zeros() (sage.rings.polynomial.polydict.PolyDict method), 799
repr_long() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 512
require_field (in module sage.rings.polynomial.multi_polynomialIdeal), 690
RequireField (class in sage.rings.polynomial.multi_polynomialIdeal), 689
res() (sage.rings.polynomial.multi_polynomialIdeal.NCPolynomialIdeal method), 684
rescale() (sage.rings.padics.multi_polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 326
reset() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 1043
reset_root_width() (sage.rings.polynomial.real_roots.island method), 360
reset_root_width() (sage.rings.polynomial.real_roots.ocean method), 366
residue() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 978
residue_class_degree() (sage.rings.polynomial.laurent_polynomialIdeal.Island_Ipoly_field method), 388
residue_field() (sage.rings.polynomial.laurent_polynomialIdeal.Island_Ipoly_field method), 388
residue_field() (sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_n method), 22
resultant() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 591
resultant() (sage.rings.polynomial.multi_polynomial_libring.MPolynomial_libring method), 766
resultant() (sage.rings.polynomial.polynomial_element.Polynomial method), 158
resultant() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 244
resultant() (sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl method), 255
resultant() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl method), 294
resultant() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 273
resultant() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 285
resultant() (sage.rings.polynomial.polynomial_ZZ_pEX.Polynomial_ZZ_pEX method), 332
retract() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 421
reverse() (sage.rings.polynomial.padics.multi_polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method),
reverse() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 220
reverse() (sage.rings.polynomial.polynomial_element.Polynomial method), 159
reverse() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 245
reverse() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl_ZZ method), 296
reverse() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl_zz method), 300
reverse() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 273
reverse() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 309
reverse() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 286
reverse() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_ZZ_pEX method), 332
reverse_intvec() (in module sage.rings.polynomial.real_roots), 376
reversed() (sage.rings.polynomial.polydict.ETuple method), 787
revert_series() (sage.rings.polynomial.polynomial_element.Polynomial method), 160
revert_series() (sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint method), 245
revert_series() (sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 274
revert_series() (sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint method), 287
rich_compare() (sage.rings.polynomial.polydict.PolyDict method), 800
ring() (sage.rings.fraction_field.FractionField_generic method), 921
ring() (sage.rings.fraction_field.FractionField_generic method), 921
ring() (sage.rings.invariants.invariant_theory.FormsBase method), 842
ring() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial method), 1015
ring() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 710
ring_of_integers() (sage.rings.fraction_field.FractionField_1poly_field method), 917
root_bounds() (in module sage.rings.polynomial.real_roots), 377
root_field() (sage.rings.polynomial.padics.polynomial_padic.Polynomial_padic method), 318
root_field() (sage.rings.polynomial.polynomial_element.Polynomial method), 161
roots() (sage.rings.polynomial.polynomial_element.Polynomial method), 163
roots() (sage.rings.polynomial.polynomial_element.Polynomial method), 163
rr_gap (class in sage.rings.polynomial.real_roots), 377
rshift_coeffs() (sage.rings.polynomial.polynomial_padic.Polynomial_padic method), 327
S (sage.rings.polynomial.integer_valued_polynomials.IntegerValuedPolynomialRing attribute), 445
S_class_group() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 401
S_invariant() (sage.rings.invariants.invariant_theory.TernaryCubic method), 863
S_units() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 404
sage.rings.fraction_field module, 913
sage.rings.fraction_field_element module, 923
sage.rings.fraction_field_FpT module, 931
sage.rings.invariants.invariant_theory module, 813
sage.rings.invariants.reconstruction module, 884
sage.rings.monomials module, 812
sage.rings.polynomial.complex_roots module, 382
sage.rings.polynomial.convolution module, 451
sage.rings.polynomial.cyclotomic module, 452
sage.rings.polynomial.flatten module, 807
sage.rings.polynomial.hilbert module, 805
sage.rings.polynomial.ideal module, 387
sage.rings.polynomial.infinite_polynomial_element module, 1005
sage.rings.polynomial.infinite_polynomial_ring module, 989
sage.rings.polynomial.integer_values_polynomials module, 436
sage.rings.polynomial.laurent_polynomial module, 962
sage.rings.polynomial.laurent_polynomial_ring module, 954
sage.rings.polynomial.laurent_polynomial_ring_base module, 945
sage.rings.polynomial.msolve module, 776
sage.rings.polynomial.multi_polynomial module, 515
sage.rings.polynomial.multi_polynomial_element module, 565
sage.rings.polynomial.multi_polynomial_ideal module, 596
sage.rings.polynomial.multi_polynomial_ideal_libsingular module, 774
sage.rings.polynomial.multi_polynomial_libsingular module, 720
sage.rings.polynomial.multi_polynomial_ring module, 559
sage.rings.polynomial.multi_polynomial_ring_base module, 493
sage.rings.polynomial.multi_polynomial_sequence module, 690
sage.rings.polynomial.omega module, 981
sage.rings.polynomial.padics.polynomial_padic module, 313
sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense module, 319
sage.rings.polynomial.padics.polynomial_padic_flat module, 329
sage.rings.polynomial.polydict module, 778
sage.rings.polynomial.polynomial_compiled module, 435
sage.rings.polynomial.polynomial_element module, 54
sage.rings.polynomial.polynomial_element_generic module, 207
sage.rings.polynomial.polynomial_finite_field module, 436
sage.rings.polynomial.polynomial_gf2x module, 223
sage.rings.polynomial.polynomial_integer_dense_flint module, 234
sage.rings.polynomial.polynomial_integer_dense_ntl module, 248
sage.rings.polynomial.polynomial_integer_modn_dense_ntl module, 289
sage.rings.polynomial.polynomial_integer_ring module, 240
sage.rings.polynomial.polynomial_integer_ring_element module, 389
sage.rings.polynomial.polynomial_integer_ring_quotient module, 426
sage.rings.polynomial.polynomial_integer_ring_quotient_element module, 257
sage.rings.polynomial.polynomial_integer_real_mpfr_dense module, 307
sage.rings.polynomial.polynomial_ring module, 15
sage.rings.polynomial.polynomial_ring_constructor module, 1
sage.rings.polynomial.polynomial_ring_homomorphism module, 52
sage.rings.polynomial.polynomial_singular_interface module, 312
sage.rings.polynomial.polynomial_zmod_flint module, 329
std_libsingular() (in module sage.rings.polynomial.multi_polynomial_libsingular), 776
stretch() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial method), 1016
sub_m_mul_q() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 768
subresultants() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_libsingular method), 592
subresultants() (sage.rings.polynomial.multi_polynomial_element.MPolynomialPolydict method), 554
subresultants() (sage.rings.polynomial.polynomial_element.MPolynomial_polydict method), 641

T
T_covariant() (sage.rings.invariants.invariant_theory.BinaryQuintic method), 828
T_covariant() (sage.rings.invariants.invariant_theory.TwoQuaternaryQuadratics method), 874
T_invariant() (sage.rings.invariants.invariant_theory.TernaryCubic method), 864
T_prime_covariant() (sage.rings.invariants.invariant_theory.TwoTernaryQuadratics method), 1039
T(covariant) (sage.rings.invariants.invariant_theory.TernaryCubic method), 867
T(covariant) (sage.rings.invariants.invariant_theory.TwoQuaternaryQuadratics method), 876
syzygy() (sage.rings.polynomial.symmetric_ideal.SymmetricIdeal method), 1035
syzygy() (sage.rings.polynomial.symmetric_ideal.TernaryCubic method), 867
syzygy() (sage.rings.polynomial.symmetric_ideal.TwoQuaternaryQuadratics method), 876
syzygy_module() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_base_repr method), 634
syzygy_module() (sage.rings.polynomial.multi_polynomial_ideal.MPolynomialIdeal_singular_repr method), 669
syzygy_module() (sage.rings.polynomial.multi_polynomial_ideal.NCPolynomialIdeal method), 686
T(covariant) (sage.rings.invariants.invariant_theory.BinaryQuintic method), 828
T(covariant) (sage.rings.invariants.invariant_theory.TwoQuaternaryQuadratics method), 874
T_prime_covariant() (sage.rings.invariants.invariant_theory.TwoTernaryQuadratics method), 1039
T_prime_covariant() (sage.rings.invariants.invariant_theory.TernaryCubic method), 864
tail() (sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial method), 1019
tailreduce() (sage.rings.polynomial.symmetric_reduction.SymmetricReductionStrategy method), 1045
tau_covariant() (sage.rings.invariants.invariant_theory.BinaryQuintic method), 839
taylor_shift1_intvec() (in module sage.rings.polynomial.real_roots), 379
tensor_with_ring() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_dense method), 998
tensor_with_ring() (sage.rings.polynomial.infinite_polynomial_ring.InfinitePolynomialRing_sparse method), 1003
term_lmul() (sage.rings.polynomial.polydict.PolyDict method), 802
term_order() (sage.rings.polynomial.laurent_polynomial_ring_base.LaurentPolynomialRing_generic method), 953

term_order() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 513

term_rmult() (sage.rings.polynomial.polydict.PolyDict method), 803

termorder_from_singular() (in module sage.rings.polynomial.term_order), 491

ternary_biquadratic() (sage.rings.invariants.invariant_theory.InvariantTheoryFactory method), 852

ternary_cubic() (sage.rings.invariants.invariant_theory.InvariantTheoryFactory method), 853

ternary_quadratic() (sage.rings.invariants.invariant_theory.InvariantTheoryFactory method), 854

TernaryCubic (class in sage.rings.invariants.invariant_theory), 862

TernaryQuadratic (class in sage.rings.invariants.invariant_theory), 864

theta_covariant() (sage.rings.invariants.invariant_theory.BinaryQuintic method), 840

Theta_covariant() (sage.rings.invariants.invariant_theory.TernaryCubic method), 864

Theta_invariant() (sage.rings.invariants.invariant_theory.TwoQuaternaryQuadratics method), 875

Theta_invariant() (sage.rings.invariants.invariant_theory.TwoTernaryQuadratics method), 880

Theta_prime_invariant() (sage.rings.invariants.invariant_theory.TwoQuaternaryQuadratics method), 876

Theta_prime_invariant() (sage.rings.invariants.invariant_theory.TwoTernaryQuadratics method), 880

to_bernstein() (in module sage.rings.polynomial.real_roots), 379

to_bernstein_warp() (in module sage.rings.polynomial.real_roots), 380

to_ocean() (sage.rings.polynomial.real_roots.linear_map method), 361

to_ocean() (sage.rings.polynomial.real_roots.warp_map method), 381

total_degree() (sage.rings.polynomial.multi_polynomial.libsingular.MPolynomial_libsingular method), 770

total_degree() (sage.rings.polynomial.polydict.Polynomial method), 803

trace() (sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement method), 435

trace_polynomial() (sage.rings.polynomial.polynomial_element.Polynomial method), 191

transformed() (sage.rings.invariants.invariant_theory.AlgebraicForm method), 819

transformed_basis() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 670

transvectant() (in module sage.rings.invariants.invariant_theory), 882

triangular_decomposition() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialIdeal_singular_repr method), 671

triangular_factorization() (in module sage.rings.polynomial.toy_variety), 904

truncate() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 979

truncate() (sage.rings.polynomial.multi_polynomial.MPolynomial method), 556

truncate() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 221

truncate() (sage.rings.polynomial.polynomial_element.Polynomial method), 201

truncate() (sage.rings.polynomial.polynomial_element.Polynomial_generic_dense method), 201

truncate() (sage.rings.polynomial.polynomial_modn_dense_ntl.PolynomialModn_dense_modnntl_ZZ method), 297

truncate() (sage.rings.polynomial.polynomial_modn_dense_ntl.PolynomialModn_dense_modnntl method), 301

truncate() (sage.rings.polynomial.polynomial_modn_dense_ntl.PolynomialModn_dense_modnntl method), 301

truncate() (sage.rings.polynomial.polynomial_rational_flint.PolynomialRationalFlint method), 275

truncate() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 310

truncate() (sage.rings.polynomial.polynomial_zmod_flint.PolynomialZmodFlint method), 279

truncate() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 336
Index 1087

truncation_abs() (sage.rings.polynomial.polynomial_real_mpfr_dense.PolynomialRealDense method), 311

try_rand_split() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial method), 349

try_split() (sage.rings.polynomial.real_roots.interval_bernstein_polynomial method), 350

tuple_weight() (sage.rings.polynomial.term_order.TermOrder method), 490

TwoAlgebraicForms (class in sage.rings.invariants.invariant_theory), 870

TwoQuaternaryQuadratics (class in sage.rings.invariants.invariant_theory), 871

twostd() (sage.rings.polynomial.multi_polynomial_ideal.NCPolynomialIdeal method), 669

TwoTernaryQuadratics (class in sage.rings.invariants.invariant_theory), 877

U

umbra() (sage.rings.polynomial.integer_valued_polynomials.IntegerValuedPolynomialRing.Shifted.Element method), 449

unary_pd (class in sage.rings.polynomial.polydict), 436

UnflatteningMorphism (class in sage.rings.polynomial.polydict), 811

units() (sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic method), 423

univar_pd (class in sage.rings.polynomial.multi_polynomial_compiled), 436

univariate_polynomial() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_element.MPolynomial_polydict method), 594

univariate_polynomial() (sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method), 771

univariate_ring() (sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method), 513

universal_discriminant() (in module sage.rings.polynomial.polynomial_element), 206

universal() (sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method), 712

unpickle_FpT_element() (in module sage.rings.fraction_field_FpT), 943

unpickle_MPolynomial_libsingular() (class in sage.rings.polynomial.multi_polynomial_libsingular), 773

unpickle_MPolynomialRing() (in module sage.rings.polynomial.polynomial_ring_constructor), 13

unweighted_degree() (sage.rings.polynomial.polydict.ETuple method), 788

unweighted_quotient_degree() (sage.rings.polynomial.polydict.ETuple method), 788

update() (in module sage.rings.polynomial.toy_buchberger), 899

update() (in module sage.rings.polynomial.toy_d_basis), 910

usign() (sage.rings.polynomial.real_roots.bernstein_polynomial_factory method), 339

V

valuation() (sage.rings.fraction_field_element.FractionFieldElement method), 927

valuation() (sage.rings.fraction_field_FpT.FpTElement method), 936

valuation() (sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 979

valuation() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 328

valuation() (sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_sparse method), 221

valuation() (sage.rings.polynomial.polynomial_element.Polynomial method), 193

valuation() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_ntl method), 297

valuation() (sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_modn_dense_modn_ZZ method), 302

valuation_of_coefficient() (sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense method), 328

var_pd (class in sage.rings.polynomial.polynomial_compiled), 436

variable() (sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict method), 594
<table>
<thead>
<tr>
<th>function/property</th>
<th>module.path</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable()</td>
<td>sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular method</td>
<td>772</td>
</tr>
<tr>
<td>variable_name()</td>
<td>sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method</td>
<td>980</td>
</tr>
<tr>
<td>variable_name()</td>
<td>sage.rings.polynomial.polynomial_element.Polynomial method</td>
<td>193</td>
</tr>
<tr>
<td>variable_names_recursive()</td>
<td>sage.rings.polynomial.laurent_polynomial_ring_base.LaurentPolynomialRing_generic method</td>
<td>953</td>
</tr>
<tr>
<td>variable_names_recursive()</td>
<td>sage.rings.polynomial.multi_polynomial_ring_base.MPolynomialRing_base method</td>
<td>514</td>
</tr>
<tr>
<td>variable_names_recursive()</td>
<td>sage.rings.polynomial.polynomial_ring.PolynomialRing_general method</td>
<td>47</td>
</tr>
<tr>
<td>variable_shift()</td>
<td>sage.rings.polynomial.integer_valued_polynomials.IntegerValuedPolynomialRing.Binomial.Element method</td>
<td>444</td>
</tr>
<tr>
<td>variable_shift()</td>
<td>sage.rings.polynomial.integer_valued_polynomials.IntegerValuedPolynomialRing.Shifted.Element method</td>
<td>450</td>
</tr>
<tr>
<td>variables()</td>
<td>sage.rings.invariants.invariant_theory.FormsBase method</td>
<td>842</td>
</tr>
<tr>
<td>variables()</td>
<td>sage.rings.polynomial.infinite_polynomial_element.InfinitePolynomial method</td>
<td>1019</td>
</tr>
<tr>
<td>variables()</td>
<td>sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method</td>
<td>980</td>
</tr>
<tr>
<td>variables()</td>
<td>sage.rings.polynomial.multi_polynomial_element.MPolynomial_polymod method</td>
<td>595</td>
</tr>
<tr>
<td>variables()</td>
<td>sage.rings.polynomial.multi_polynomial.laurent_polynomial_MPolynomial_libsingular method</td>
<td>773</td>
</tr>
<tr>
<td>variables()</td>
<td>sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic method</td>
<td>712</td>
</tr>
<tr>
<td>variables()</td>
<td>sage.rings.polynomial.multi_polynomial_element.Polynomial method</td>
<td>194</td>
</tr>
<tr>
<td>variations()</td>
<td>sage.rings.polynomial.real_roots.interval_bezier_polynomial method</td>
<td>351</td>
</tr>
<tr>
<td>variety()</td>
<td>in module sage.rings.polynomial.msolve</td>
<td>778</td>
</tr>
<tr>
<td>variety()</td>
<td>sage.rings.polynomial.multi_polynomial_ideal.MPolynomial_ideal_singular_repr method</td>
<td>679</td>
</tr>
<tr>
<td>weyl_algebra()</td>
<td>(sage.rings.polynomial.multi_polynomial_rational_flint.Polynomial_rational_flint method), 276</td>
<td></td>
</tr>
<tr>
<td>weyl_algebra()</td>
<td>(sage.rings.polynomial.polydict.ETuple method), 789</td>
<td></td>
</tr>
<tr>
<td>weyl_restriction()</td>
<td>(sage.rings.polynomial.multi_polynomial_ideal.MPolynomial_ideal_singular_repr method), 679</td>
<td></td>
</tr>
<tr>
<td>xgcd()</td>
<td>(sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_univariate method), 980</td>
<td></td>
</tr>
<tr>
<td>xgcd()</td>
<td>(sage.rings.polynomial.polynomial_element.Polynomial method), 194</td>
<td></td>
</tr>
<tr>
<td>xgcd()</td>
<td>(sage.rings.polynomial.gf2x.Polynomial_template method), 229</td>
<td></td>
</tr>
<tr>
<td>xgcd()</td>
<td>(sage.rings.polynomial.integer_dense_flint.Polynomial_integer_dense_flint method), 247</td>
<td></td>
</tr>
<tr>
<td>xgcd()</td>
<td>(sage.rings.polynomial.integer_dense_ntl.Polynomial_integer_dense_ntl method), 256</td>
<td></td>
</tr>
<tr>
<td>xgcd()</td>
<td>(sage.rings.polynomial.integer_dense_flint.Polynomial_integer_dense_flint method), 247</td>
<td></td>
</tr>
<tr>
<td>xgcd()</td>
<td>(sage.rings.polynomial.integer_dense_ntl.Polynomial_integer_dense_ntl method), 256</td>
<td></td>
</tr>
<tr>
<td>xgcd()</td>
<td>(sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint method), 276</td>
<td></td>
</tr>
<tr>
<td>xgcd()</td>
<td>(sage.rings.polynomial.polydict.ETuple method), 789</td>
<td></td>
</tr>
<tr>
<td>xgcd()</td>
<td>(sage.rings.polynomial.polydict.ETuple method), 789</td>
<td></td>
</tr>
<tr>
<td>xgcd()</td>
<td>(sage.rings.polynomial.polydict.ETuple method), 789</td>
<td></td>
</tr>
</tbody>
</table>
xgcd() (sage.rings.polynomial.polynomial_zz_pex.Polynomial_template method), 337

Z

ZZ_FpT_coerce (class in sage.rings.fraction_field_FpT), 942