CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Series Rings</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Power Series</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Power Series Methods</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>Power series implemented using PARI</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>Multivariate Power Series Rings</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>Multivariate Power Series</td>
<td>61</td>
</tr>
<tr>
<td>7</td>
<td>Laurent Series Rings</td>
<td>79</td>
</tr>
<tr>
<td>8</td>
<td>Laurent Series</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>Lazy Series</td>
<td>99</td>
</tr>
<tr>
<td>10</td>
<td>Lazy Series Rings</td>
<td>149</td>
</tr>
<tr>
<td>11</td>
<td>Puiseux Series Ring</td>
<td>169</td>
</tr>
<tr>
<td>12</td>
<td>Puiseux Series Ring Element</td>
<td>173</td>
</tr>
<tr>
<td>13</td>
<td>Tate algebras</td>
<td>181</td>
</tr>
<tr>
<td>14</td>
<td>Indices and Tables</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Python Module Index</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>197</td>
</tr>
</tbody>
</table>
Power series rings are constructed in the standard Sage fashion. See also *Multivariate Power Series Rings*.

EXAMPLES:

Construct rings and elements:

```sage
code
sage: R.<t> = PowerSeriesRing(QQ)
sage: R.random_element(6)  # random
-4 - 1/2*t^2 - 1/95*t^3 + 1/2*t^4 - 12*t^5 + O(t^6)
```

```sage
code
sage: R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
sage: p = -t + 1/2*t^3*u - 1/4*t^4*u + 2/3*v^5 + R.O(6); p
-t + 1/2*t^3*u - 1/4*t^4*u + 2/3*v^5 + O(t, u, v)^6
sage: p in R
True
```

The default precision is specified at construction, but does not bound the precision of created elements.

```sage
code
sage: R.<t> = PowerSeriesRing(QQ, default_prec=5)
sage: R.random_element(6)  # random
1/2 - 1/4*t + 2/3*t^2 + 5/2*t^3 + 2/3*t^5 + O(t^6)
```

Construct univariate power series from a list of coefficients:

```sage
code
sage: S = R([1, 3, 5, 7]); S
1 + 3*t + 5*t^2 + 7*t^3
```

The default precision of a power series ring stays fixed and cannot be changed. To work with different default precision, create a new power series ring:

```sage
code
sage: R.<x> = PowerSeriesRing(QQ, default_prec=10)
sage: sin(x)
x - 1/6*x^3 + 1/120*x^5 - 1/5040*x^7 + 1/362880*x^9 + O(x^10)
sage: R.<x> = PowerSeriesRing(QQ, default_prec=15)
sage: sin(x)
x - 1/6*x^3 + 1/120*x^5 - 1/5040*x^7 + 1/362880*x^9 - 1/39916800*x^11 + 1/6227020800*x^13 + O(x^15)
```

An iterated example:
Sage can compute with power series over the symbolic ring.

\begin{verbatim}
sage: R.<t> = PowerSeriesRing(ZZ)
sage: S.<t2> = PowerSeriesRing(R)
sage: S
Power Series Ring in t2 over Power Series Ring in t over Integer Ring
sage: S.base_ring()
Power Series Ring in t over Integer Ring
\end{verbatim}

Elements are first coerced to constants in base_ring, then coerced into the PowerSeriesRing:

\begin{verbatim}
sage: R.<t> = PowerSeriesRing(ZZ)
sage: f = Mod(2, 3) * t; (f, f.parent())
(2*t, Power Series Ring in t over Ring of integers modulo 3)
\end{verbatim}

We make a sparse power series.

\begin{verbatim}
sage: R.<x> = PowerSeriesRing(QQ, sparse=True); R
Sparse Power Series Ring in x over Rational Field
sage: f = 1 + x**1000000
sage: g = f*f
sage: g.degree()
2000000
\end{verbatim}

We make a sparse Laurent series from a power series generator:

\begin{verbatim}
sage: R.<t> = PowerSeriesRing(QQ, sparse=True)
sage: S = parent(1/t); S
Sparse Laurent Series Ring in t over Rational Field
\end{verbatim}

Choose another implementation of the attached polynomial ring:

\begin{verbatim}
sage: R.<t> = PowerSeriesRing(ZZ)
sage: type(t.polynomial()) # needs sage.libs.flint
sage: S.<s> = PowerSeriesRing(ZZ, implementation='NTL') # needs sage.libs.ntl
sage: type(s.polynomial()) # needs sage.libs.ntl
\end{verbatim}
AUTHORS:

- William Stein: the code
- Jeremy Cho (2006-05-17): some examples (above)
- Niles Johnson (2010-09): implement multivariate power series
- Simon King (2012-08): use category and coercion framework, github issue #13412

```python
sage.rings.power_series_ring.PowerSeriesRing(base_ring, name=None, arg2=None, names=None,
                                           sparse=False, default_prec=None, order='negdeglex',
                                           num_gens=None, implementation=None)
```

Create a univariate or multivariate power series ring over a given (commutative) base ring.

INPUT:

- `base_ring` – a commutative ring
- `name, names` – name(s) of the indeterminate
- `default_prec` – the default precision used if an exact object must be changed to an approximate object in order to do an arithmetic operation. If left as `None`, it will be set to the global default (20) in the univariate case, and 12 in the multivariate case.
- `sparse` – (default: `False`) whether power series are represented as sparse objects.
- `order` – (default: `negdeglex`) term ordering, for multivariate case
- `num_gens` – number of generators, for multivariate case

There is a unique power series ring over each base ring with given variable name. Two power series over the same base ring with different variable names are not equal or isomorphic.

EXAMPLES (Univariate):

```python
sage: R = PowerSeriesRing(QQ, 'x'); R
Power Series Ring in x over Rational Field

sage: S = PowerSeriesRing(QQ, 'y'); S
Power Series Ring in y over Rational Field

sage: R = PowerSeriesRing(QQ, 10)
Traceback (most recent call last):
  ... ValueError: variable name '10' does not start with a letter

sage: S = PowerSeriesRing(QQ, 'x', default_prec=15); S
Power Series Ring in x over Rational Field
sage: S.default_prec()
15
```

EXAMPLES (Multivariate) See also *Multivariate Power Series Rings:*

```python
sage: R = PowerSeriesRing(QQ, 't,u,v'); R
Multivariate Power Series Ring in t, u, v over Rational Field

sage: N = PowerSeriesRing(QQ,'w',num_gens=5); N
Multivariate Power Series Ring in w0, w1, w2, w3, w4 over Rational Field
```
Number of generators can be specified before variable name without using keyword:

```sage
M = PowerSeriesRing(QQ, 4, 'k'); M
Multivariate Power Series Ring in k0, k1, k2, k3 over Rational Field
```

Multivariate power series can be constructed using angle bracket or double square bracket notation:

```sage
R.<t,u,v> = PowerSeriesRing(QQ, 't,u,v'); R
Multivariate Power Series Ring in t, u, v over Rational Field
```

```sage
ZZ[['s,t,u']]
Multivariate Power Series Ring in s, t, u over Integer Ring
```

Sparse multivariate power series ring:

```sage
M = PowerSeriesRing(QQ, 4, 'k', sparse=True); M
Sparse Multivariate Power Series Ring in k0, k1, k2, k3 over Rational Field
```

Power series ring over polynomial ring:

```sage
H = PowerSeriesRing(PolynomialRing(ZZ, 3, 'z'), 4, 'f'); H
Multivariate Power Series Ring in f0, f1, f2, f3 over Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring
```

Power series ring over finite field:

```sage
S = PowerSeriesRing(GF(65537), 'x,y'); S
Multivariate Power Series Ring in x, y over Finite Field of size 65537
```

Power series ring with many variables:

```sage
R = PowerSeriesRing(ZZ, [x%p for p in primes(100)]); R
Multivariate Power Series Ring in x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, x31, x37, x41, x43, x47, x53, x59, x61, x67, x71, x73, x79, x83, x89, x97 over Integer Ring
```

• Use `inject_variables()` to make the variables available for interactive use.

```sage
R.inject_variables()
Defining x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, x31, x37, x41, x43, x47, x53, x59, x61, x67, x71, x73, x79, x83, x89, x97
```

```sage
f = x47 + 3*x11*x29 - x19 + R.O(3)
```

```sage
f in R
```

Variable ordering determines how series are displayed:
```python
sage: T.<a,b> = PowerSeriesRing(ZZ,order='deglex'); T
Multivariate Power Series Ring in a, b over Integer Ring
sage: T.term_order()
Degree lexicographic term order
sage: p = -2*b^6 + a^5*b^2 + a^7 - b^2 - a*b^3 + T.O(9); p
a^7 + a^5*b^2 - 2*b^6 - a*b^3 - b^2 + O(a, b)^9
sage: U = PowerSeriesRing(ZZ,'a,b',order='negdeglex'); U
Multivariate Power Series Ring in a, b over Integer Ring
sage: U.term_order()
Negative degree lexicographic term order
sage: U(p)
-b^2 - a*b^3 - 2*b^6 + a^7 + a^5*b^2 + O(a, b)^9
```

See also:

- `sage.misc.defaults.set_series_precision()`

```python
class sage.rings.power_series_ring.PowerSeriesRing_domain(base_ring, name=None, default_prec=None, sparse=False, implementation=None, category=None)
```

Bases: `PowerSeriesRing_generic`, `IntegralDomain`

```python
fraction_field()
```

Return the Laurent series ring over the fraction field of the base ring.

This is actually not the fraction field of this ring, but its completion with respect to the topology defined by the valuation. When we are working at finite precision, these two fields are indistinguishable; that is the reason why we allow ourselves to make this confusion here.

EXAMPLES:

```python
sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.fraction_field()
Laurent Series Ring in t over Rational Field
```

```python
class sage.rings.power_series_ring.PowerSeriesRing_generic(base_ring, name=None, default_prec=None, sparse=False, implementation=None, category=None)
```

Bases: `UniqueRepresentation`, `CommutativeRing`, `Nonexact`

A power series ring.

```python
base_extend(R)
```

Return the power series ring over R in the same variable as self, assuming there is a canonical coerce map from the base ring of self to R.

EXAMPLES:

```python
sage: R.<T> = GF(7)[[]]; R
Power Series Ring in T over Finite Field of size 7
sage: R.change_ring(ZZ)
```
Power Series Ring in T over Integer Ring

\texttt{sage: R.base_extend(ZZ)}

Traceback (most recent call last):
...
TypeError: no base extension defined

\textbf{change_ring}(R)

Return the power series ring over \(R \) in the same variable as \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<T> = QQ[[]; sage: R.change_ring(GF(7)) sage: R.base_extend(GF(7)) sage: R.base_extend(QuadraticField(3, 'a')) # needs sage.rings.number_field
\end{verbatim}

\textbf{change_var}(\texttt{var})

Return the power series ring in variable \texttt{var} over the same base ring.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<T> = QQ[[]; sage: R.change_var('D')
\end{verbatim}

\textbf{characteristic}()

Return the characteristic of this power series ring, which is the same as the characteristic of the base ring of the power series ring.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.characteristic() 0
sage: R.<w> = Integers(2^50)[[]]; R
sage: R.characteristic() 1125899906842624
\end{verbatim}

\textbf{construction}()

Return the functorial construction of \texttt{self}, namely, completion of the univariate polynomial ring with respect to the indeterminate (to a given precision).

\textbf{EXAMPLES:}
sage: R = PowerSeriesRing(ZZ, 'x')
Univariate Polynomial Ring in x over Integer Ring
sage: c, S = R.construction(); S
Univariate Polynomial Ring in x over Integer Ring
sage: R == c(S)
True
sage: R = PowerSeriesRing(ZZ, 'x', sparse=True)
sage: c, S = R.construction()
Univariate Polynomial Ring in x over Integer Ring
sage: R == c(S)
True

\textbf{gen}(n=0)

Return the generator of this power series ring.

EXAMPLES:

sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.gen()
t
sage: R.gen(3)
Traceback (most recent call last):
 ...
IndexError: generator n>0 not defined

\textbf{is_dense}()

EXAMPLES:

sage: R.<t> = PowerSeriesRing(ZZ)
sage: t.is_dense()
True
sage: R.<t> = PowerSeriesRing(ZZ, sparse=True)
sage: t.is_dense()
False

\textbf{is_exact}()

Return \textbf{False} since the ring of power series over any ring is not exact.

EXAMPLES:

sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.is_exact()
False

\textbf{is_field}(\textit{proof=True})

Return \textbf{False} since the ring of power series over any ring is never a field.

EXAMPLES:

sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.is_field()
False

\textbf{is_finite}()

Return \textbf{False} since the ring of power series over any ring is never finite.

EXAMPLES:
is_sparse()

EXAMPLES:

```sage
R.<t> = PowerSeriesRing(ZZ)
t.is_sparse()
False
R.<t> = PowerSeriesRing(ZZ, sparse=True)
t.is_sparse()
True
```

laurent_series_ring()

If this is the power series ring $R[[t]]$, return the Laurent series ring $R((t))$.

EXAMPLES:

```sage
R.<t> = PowerSeriesRing(ZZ, default_prec=5)
S = R.laurent_series_ring(); S
Laurent Series Ring in t over Integer Ring
S.default_prec()
5
f = 1 + t; g = 1/f; g
1 - t + t^2 - t^3 + t^4 + O(t^5)
```

gens()

Return the number of generators of this power series ring.

This is always 1.

EXAMPLES:

```sage
R.<t> = ZZ[[t]]
R.ngens()
1
```

random_element(prec=None, *args, **kwds)

Return a random power series.

INPUT:

- `prec` -- Integer specifying precision of output (default: default precision of `self`)
- `*args, **kwds` -- Passed on to the `random_element` method for the base ring

OUTPUT:

- Power series with precision `prec` whose coefficients are random elements from the base ring, randomized subject to the arguments `*args` and `**kwds`

ALGORITHM:

Call the `random_element` method on the underlying polynomial ring.

EXAMPLES:
sage: R.<t> = PowerSeriesRing(QQ)
sage: R.random_element(5) # random
-4 - 1/2*t^2 - 1/95*t^3 + 1/2*t^4 + O(t^5)
sage: R.random_element(10) # random
-1/2 + 2*t - 2/7*t^2 - 25*t^3 - t^4 + 2*t^5 - 4*t^7 - 1/3*t^8 - t^9 + O(t^10)

If given no argument, random_element uses default precision of self:

sage: T = PowerSeriesRing(ZZ, 't')
sage: T.default_prec()
20
sage: T.random_element() # random
4 + 2*t - t^2 - t^3 + 2*t^4 + t^5 + t^6 - 2*t^7 - t^8 - t^9 + t^11
- 6*t^12 + 2*t^14 + 2*t^16 - t^17 - 3*t^18 + O(t^20)
sage: S = PowerSeriesRing(ZZ, 't', default_prec=4)
sage: S.random_element() # random
2 - t - 5*t^2 + t^3 + O(t^4)

Further arguments are passed to the underlying base ring (github issue #9481):

sage: SZ = PowerSeriesRing(ZZ, 'v')
sage: SQ = PowerSeriesRing(QQ, 'v')
sage: SR = PowerSeriesRing(RR, 'v')

sage: SZ.random_element(x=4, y=6) # random
5 + 4*v + 5*v^2 + O(v^3)
sage: SQ.random_element(3, num_bound=3, den_bound=100) # random
1/87 - 3/70*v - 3/44*v^2 + O(v^3)
sage: SR.random_element(3, max=10, min=-10) # random
2.85948321262904 - 9.73071330911226*v - 6.60414378519265*v^2 + O(v^3)

residue_field()

Return the residue field of this power series ring.

EXAMPLES:

sage: R.<x> = PowerSeriesRing(GF(17))
sage: R.residue_field()
Finite Field of size 17
sage: R.<x> = PowerSeriesRing(Zp(5)) # needs sage.rings.padics
Finite Field of size 5

uniformizer()

Return a uniformizer of this power series ring if it is a discrete valuation ring (i.e., if the base ring is actually a field). Otherwise, an error is raised.

EXAMPLES:
sage: R.<t> = PowerSeriesRing(QQ)
sage: R.uniformizer()
t
sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.uniformizer()
Traceback (most recent call last):
 ... TypeError: The base ring is not a field

variable_names_recursive(depth=None)
 Return the list of variable names of this and its base rings.

 EXAMPLES:

sage: R = QQ[['x'],['y'],['z']]
sage: R.variable_names_recursive()
('x', 'y', 'z')
sage: R.variable_names_recursive(2)
('y', 'z')

class sage.rings.power_series_ring.PowerSeriesRing_over_field(base_ring, name=None, default_prec=None, sparse=False, implementation=None, category=None)
 Bases: PowerSeriesRing_domain

 fraction_field()
 Return the fraction field of this power series ring, which is defined
 since this is over a field.
 This fraction field is just the Laurent series ring over the base field.

 EXAMPLES:

 sage: R.<t> = PowerSeriesRing(GF(7))
sage: R.fraction_field()
 Laurent Series Ring in t over Finite Field of size 7
 sage: Frac(R)
 Laurent Series Ring in t over Finite Field of size 7

sage.rings.power_series_ring.is_PowerSeriesRing(R)
 Return True if this is a univariate power series ring. This is in keeping with
 the behavior of is_PolynomialRing versus is_MPolynomialRing.

 EXAMPLES:

 sage: from sage.rings.power_series_ring import is_PowerSeriesRing
 sage: is_PowerSeriesRing(10)
 False
 sage: is_PowerSeriesRing(QQ[['x']])
 True

sage.rings.power_series_ring.unpickle_power_series_ring_v0(base_ring, name, default_prec, sparse)
 Unpickle (deserialize) a univariate power series ring according to the given inputs.

 EXAMPLES:
sage: P.<x> = PowerSeriesRing(QQ)
sage: loads(dumps(P)) == P # indirect doctest
True
Sage provides an implementation of dense and sparse power series over any Sage base ring. This is the base class of the implementations of univariate and multivariate power series ring elements in Sage (see also Power Series Methods, Multivariate Power Series).

AUTHORS:

- William Stein
- David Harvey (2006-09-11): added solve_linear_de() method
- Simon King (2012-08): use category and coercion framework, github issue #13412

EXAMPLES:

```
sage: R.<x> = PowerSeriesRing(ZZ)
sage: TestSuite(R).run()
sage: R([1,2,3])
1 + 2*x + 3*x^2
sage: R([1,2,3], 10)
1 + 2*x + 3*x^2 + O(x^10)
sage: f = 1 + 2*x - 3*x^3 + O(x^4); f
1 + 2*x - 3*x^3 + O(x^4)
sage: f^10
1 + 20*x + 180*x^2 + 930*x^3 + O(x^4)
sage: g = 1/f; g
1 - 2*x + 4*x^2 - 5*x^3 + O(x^4)
sage: g * f
1 + O(x^4)
```

In Python (as opposed to Sage) create the power series ring and its generator as follows:

```
sage: R = PowerSeriesRing(ZZ, 'x')
sage: x = R.gen()
sage: parent(x)
Power Series Ring in x over Integer Ring
```

EXAMPLES:

This example illustrates that coercion for power series rings is consistent with coercion for polynomial rings.
The generator of the first ring gets coerced in as itself, since it is the base ring.

```
sage: huge_ring(gen1)
gen1
```

The generator of the second ring gets mapped via the natural map sending one generator to the other.

```
sage: huge_ring(gen2)
x
```

With power series the behavior is the same.

```
sage: power_ring1.<gen1> = PowerSeriesRing(QQ)
sage: power_ring2.<gen2> = PowerSeriesRing(QQ)
sage: huge_power_ring.<x> = PowerSeriesRing(power_ring1)
sage: huge_power_ring(gen1)
gen1
sage: huge_power_ring(gen2)
x
```

class `sage.rings.power_series_ring_element.PowerSeries`

Bases: `AlgebraElement`

A power series. Base class of univariate and multivariate power series. The following methods are available with both types of objects.

O(prec)

Return this series plus $O(x^{\text{prec}})$. Does not change `self`.

EXAMPLES:

```
sage: R.<x> = PowerSeriesRing(ZZ)
sage: p = 1 + x^2 + x^{10}; p
1 + x^2 + x^{10}
sage: p.O(15)
1 + x^2 + x^{10} + O(x^{15})
sage: p.O(5)
1 + x^2 + O(x^{5})
sage: p.O(-5)
Traceback (most recent call last):
  ...
ValueError: prec (= -5) must be non-negative
```

V(n)

If $f = \sum a_m x^m$, then this function returns $\sum a_m x^{nm}$.

EXAMPLES:

```
sage: R.<x> = PowerSeriesRing(ZZ)
sage: p = 1 + x^2 + x^{10}; p
1 + x^2 + x^{10}
```

(continues on next page)
add_bigoh(prec)

Return the power series of precision at most prec got by adding \(O(q^{\text{prec}})\) to \(f\), where \(q\) is the variable.

EXAMPLES:

```sage
sage: R.<A> = RDF[[[]]
   sage: f = (1+A+O(A^5))^5; f
   1.0 + 5.0*A + 10.0*A^2 + 10.0*A^3 + 5.0*A^4 + O(A^5)
   sage: f.add_bigoh(3)
   1.0 + 5.0*A + 10.0*A^2 + O(A^3)
   sage: f.add_bigoh(5)
   1.0 + 5.0*A + 10.0*A^2 + 10.0*A^3 + 5.0*A^4 + O(A^5)
```

base_extend(R)

Return a copy of this power series but with coefficients in \(R\).

The following coercion uses base_extend implicitly:

```sage
sage: R.<t> = ZZ[[t]]
   sage: (t - t^2) * Mod(1, 3)
   t + 2*t^2
```

base_ring()

Return the base ring that this power series is defined over.

EXAMPLES:

```sage
sage: R.<t> = GF(49, 'alpha')[[]]       # needs sage.rings.finite_rings
   sage: (t^2 + O(t^3)).base_ring()      # needs sage.rings.finite_rings
   Finite Field in alpha of size 7^2
```

change_ring(R)

Change if possible the coefficients of self to lie in \(R\).

EXAMPLES:

```sage
sage: R.<T> = QQ[[[]]; R
   Power Series Ring in T over Rational Field
   sage: f = 1 - 1/2*T + 1/3*T^2 + O(T^3)
   sage: f.base_extend(GF(5))
   Traceback (most recent call last):
     ...  
   TypeError: no base extension defined
   sage: f.change_ring(GF(5))
   1 + 2*T + 2*T^2 + O(T^3)
   sage: f.change_ring(GF(3))
   Traceback (most recent call last):
```

(continues on next page)
ZeroDivisionError: inverse of Mod(0, 3) does not exist

We can only change the ring if there is a \texttt{__call__} coercion defined. The following succeeds because \texttt{ZZ(K(4))} is defined.

\begin{Verbatim}
sage: K.<a> = NumberField(cyclotomic_polynomial(3), \textquoteleft a\textquoteleft) \# needs sage.rings.number_field
sage: R.<t> = K[[\textquoteleft t\textquoteleft]] \# needs sage.rings.number_field
sage: (4*t).change_ring(ZZ) \# needs sage.rings.number_field
\end{Verbatim}

4*t

This does not succeed because \texttt{ZZ(K(a+1))} is not defined.

\begin{Verbatim}
sage: K.<a> = NumberField(cyclotomic_polynomial(3), \textquoteleft a\textquoteleft) \# needs sage.rings.number_field
sage: R.<t> = K[[\textquoteleft t\textquoteleft]] \# needs sage.rings.number_field
sage: ((a+1)*t).change_ring(ZZ) \# needs sage.rings.number_field
\end{Verbatim}

Traceback (most recent call last):
...
TypeError: Unable to coerce a + 1 to an integer

\texttt{coefficients()}

Return the nonzero coefficients of self.

EXAMPLES:

\begin{Verbatim}
sage: R.<t> = PowerSeriesRing(QQ)
sage: f = t + t^2 - 10/3*t^3
sage: f.coefficients()
[1, 1, -10/3]
\end{Verbatim}

\texttt{common_prec()}

Return minimum precision of \(f\) and self.

EXAMPLES:

\begin{Verbatim}
sage: R.<t> = PowerSeriesRing(QQ)
sage: f = t + t^2 + O(t^3)
sage: g = t + t^3 + t^4 + O(t^4)
sage: f.common_prec(g)
3
sage: g.common_prec(f)
3
\end{Verbatim}
cos \(\text{prec='infinity'}\)

Apply cos to the formal power series.

INPUT:

- \text{prec} – Integer or infinity. The degree to truncate the result to.

OUTPUT:

A new power series.

EXAMPLES:

For one variable:

\[\text{sage}: t = \text{PowerSeriesRing}(\text{QQ}, \text{'}t\text{'}).\text{gen()}\]
\[\text{sage}: f = (t + t**2).0(4)\]
\[\text{sage}: \cos(f)\]
\[1 - 1/2*t^2 - t^3 + O(t^4)\]

For several variables:

\[\text{sage}: T.<a,b> = \text{PowerSeriesRing}(\text{ZZ},2)\]
\[\text{sage}: f = a + b + a*b + T.0(3)\]
\[\text{sage}: \cos(f)\]
\[1 - 1/2*a^2 - a*b - 1/2*b^2 + O(a, b)^3\]
\[\text{sage}: f.cos()\]
\[1 - 1/2*a^2 - a*b - 1/2*b^2 + O(a, b)^3\]
\[\text{sage}: f.cos(\text{prec}=2)\]
\[1 + O(a, b)^2\]

If the power series has a non-zero constant coefficient \(c\), one raises an error:

\[\text{sage}: g = 2+f\]
\[\text{sage}: \cos(g)\]
Traceback (most recent call last):
...
ValueError: can only apply cos to formal power series with zero constant term

If no precision is specified, the default precision is used:

\[\text{sage}: T.default_prec()\]
12
\[\text{sage}: \cos(a)\]
\[1 - 1/2*a^2 + 1/24*a^4 - 1/720*a^6 + 1/40320*a^8 - 1/3628800*a^10 + O(a, b)^12\]
\[\text{sage}: a.cos(\text{prec}=5)\]
1 - 1/2*a^2 + 1/24*a^4 + O(a, b)^5

\textbf{sage}: \cos(a + T.O(5))
1 - 1/2*a^2 + 1/24*a^4 + O(a, b)^5

\textbf{cosh}(\textit{prec}='\text{infinity}')

Apply \textit{cosh} to the formal power series.

INPUT:

- \textit{prec} – Integer or \textit{infinity}. The degree to truncate the result to.

OUTPUT:

A new power series.

EXAMPLES:

For one variable:

\begin{verbatim}
\textbf{sage}: t = PowerSeriesRing(QQ, 't').gen()
\textbf{sage}: f = (t + t**2).O(4)
\textbf{sage}: cosh(f)
1 + 1/2*t^2 + t^3 + O(t^4)
\end{verbatim}

For several variables:

\begin{verbatim}
\textbf{sage}: T.<a,b> = PowerSeriesRing(ZZ,2)
\textbf{sage}: f = a + b + a*b + T.O(3)
\textbf{sage}: cosh(f)
1 + 1/2*a^2 + a*b + 1/2*b^2 + O(a, b)^3
\textbf{sage}: f.cosh()
1 + 1/2*a^2 + a*b + 1/2*b^2 + O(a, b)^3
\textbf{sage}: f.cosh(\textit{prec}=2)
1 + O(a, b)^2
\end{verbatim}

If the power series has a non-zero constant coefficient \(c\), one raises an error:

\begin{verbatim}
\textbf{sage}: g = 2 + f
\textbf{sage}: cosh(g)
Traceback (most recent call last):
 ...
ValueError: can only apply cosh to formal power series with zero
constant term
\end{verbatim}

If no precision is specified, the default precision is used:

\begin{verbatim}
\textbf{sage}: T.default_prec()
12
\textbf{sage}: cosh(a)
1 + 1/2*a^2 + 1/24*a^4 + 1/720*a^6 + 1/40320*a^8 + 1/3628800*a^10 +
0(a, b)^12
\textbf{sage}: a.cosh(\textit{prec}=5)
1 + 1/2*a^2 + 1/24*a^4 + O(a, b)^5
\textbf{sage}: cosh(a + T.O(5))
1 + 1/2*a^2 + 1/24*a^4 + O(a, b)^5
\end{verbatim}
degree()

Return the degree of this power series, which is by definition the degree of the underlying polynomial.

EXAMPLES:

```sage
sage: R.<t> = PowerSeriesRing(QQ, sparse=True)
sage: f = t^100000 + O(t^10000000)
sage: f.degree()
100000
```

derivative(*args)

The formal derivative of this power series, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:

_.derivative()

EXAMPLES:

```sage
sage: R.<x> = PowerSeriesRing(QQ)
sage: g = -x + x^2/2 - x^4 + O(x^6)
sage: g.derivative()
-1 + x - 4*x^3 + O(x^5)
sage: g.derivative(x)
-1 + x - 4*x^3 + O(x^5)
sage: g.derivative(x, x)
1 - 12*x^2 + O(x^4)
sage: g.derivative(x, 2)
1 - 12*x^2 + O(x^4)
```

egf_to_ogf()

Return the ordinary generating function power series, assuming self is an exponential generating function power series.

This function is known as serlaplace in PARI/GP.

EXAMPLES:

```sage
sage: R.<t> = PowerSeriesRing(QQ)
sage: f = t + t^2/factorial(2) + 2*t^3/factorial(3)
sage: f.egf_to_ogf()
t + t^2 + 2*t^3
```

exp(prec=None)

Return exp of this power series to the indicated precision.

INPUT:

- prec - integer; default is self.parent().default_prec

ALGORITHM: See `solve_linear_de()`.

Note:

- Screwy things can happen if the coefficient ring is not a field of characteristic zero. See `solve_linear_de()`.
AUTHORS:

- David Harvey (2006-09-08): rewrote to use simplest possible “lazy” algorithm.
- David Harvey (2006-09-10): rewrote to use divide-and-conquer strategy.
- David Harvey (2006-09-11): factored functionality out to solve_linear_de().
- Sourav Sen Gupta, David Harvey (2008-11): handle constant term

EXAMPLES:

```sage
R.<t> = PowerSeriesRing(QQ, default_prec=10)
sage: (t + O(t^10)).exp()
1 + t + 1/2*t^2 + 1/6*t^3 + 1/24*t^4 + 1/120*t^5 + 1/720*t^6
+ 1/5040*t^7 + 1/40320*t^8 + 1/362880*t^9 + O(t^10)
```

Check that \(\exp(t) \) is, well, \(\exp(t) \):

```sage
sage: (2*t + t^2 + O(t^5)).exp()
1 + 2*t + 3*t^2 + 10/3*t^3 + 19/6*t^4 + 8/5*t^5 - 7/90*t^6
- 538/315*t^7 - 425/168*t^8 - 30629/11340*t^9 + O(t^10)
```

Check requesting lower precision:

```sage
sage: (t + t^2 - t^5 + O(t^10)).exp(5)
1 + t + 3/2*t^2 + 7/6*t^3 + 25/24*t^4 + O(t^5)
```

Can't get more precision than the input:

```sage
sage: (t + O(t^2)).exp(0)
O(t^0)
```

Check some boundary cases:

```sage
sage: (t + 0(t^2)).exp(1)
1 + O(t)
```

Handle nonzero constant term (fixes github issue #4477):

```sage
# needs sage.rings.real_mpfr
sage: R.<x> = PowerSeriesRing(RR)
sage: (1 + x + x^2 + O(x^3)).exp()
2.71828182845905 + 2.71828182845905*x + 4.07742274268857*x^2 + O(x^3)
```
sage: R.<x> = PowerSeriesRing(ZZ)
sage: (1 + x + O(x^2)).exp()
 # needs sage.symbolic
Traceback (most recent call last):
 ...
ArithmeticError: exponential of constant term does not belong to coefficient ring (consider working in a larger ring)

sage: R.<x> = PowerSeriesRing(GF(5))
sage: (1 + x + O(x^2)).exp()
Traceback (most recent call last):
 ...
ArithmeticError: constant term of power series does not support exponentiation

exponents()
Return the exponents appearing in self with nonzero coefficients.

EXAMPLES:

sage: R.<t> = PowerSeriesRing(QQ)
sage: f = t + t^2 - 10/3*t^3
sage: f.exponents()
[1, 2, 3]

inverse()
Return the inverse of self, i.e., self^(-1).

EXAMPLES:

sage: R.<t> = PowerSeriesRing(QQ, sparse=True)
sage: t.inverse()
t^-1
sage: type(_)
<class 'sage.rings.laurent_series_ring_element.LaurentSeries'>
sage: (1-t).inverse()
1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + ...

is_dense()

EXAMPLES:

sage: R.<t> = PowerSeriesRing(ZZ)
sage: t.is_dense()
True
sage: R.<t> = PowerSeriesRing(ZZ, sparse=True)
sage: t.is_dense()
False

is_gen()
Return True if this is the generator (the variable) of the power series ring.

EXAMPLES:

sage: R.<t> = QQ[]
sage: t.is_gen()
True
\begin{verbatim}
sage: (1 + 2*t).is_gen()
False
\end{verbatim}

Note that this only returns True on the actual generator, not on something that happens to be equal to it.

\begin{verbatim}
sage: (1*t).is_gen()
False
sage: 1*t == t
True
\end{verbatim}

\textbf{is_monomial()}

Return True if this element is a monomial. That is, if \(self \) is \(x^n \) for some non-negative integer \(n \).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: k.<z> = PowerSeriesRing(QQ, 'z')
sage: z.is_monomial()
True
sage: k(1).is_monomial()
True
sage: (z+1).is_monomial()
False
sage: (z^2909).is_monomial()
True
sage: (3*z^2909).is_monomial()
False
\end{verbatim}

\textbf{is_sparse()}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<t> = PowerSeriesRing(ZZ)
sage: t.is_sparse()
False
sage: R.<t> = PowerSeriesRing(ZZ, sparse=True)
sage: t.is_sparse()
True
\end{verbatim}

\textbf{is_square()}

Return True if this function has a square root in this ring, e.g., there is an element \(y \) in \(self.parent() \) such that \(y^2 \) equals \(self \).

\textbf{ALGORITHM:} If the base ring is a field, this is true whenever the power series has even valuation and the leading coefficient is a perfect square.

For an integral domain, it attempts the square root in the fraction field and tests whether or not the result lies in the original ring.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K.<t> = PowerSeriesRing(QQ, 't', 5)
sage: (1+t).is_square()
True
sage: (2+t).is_square()
\end{verbatim}
is_unit()

Return True if this power series is invertible.

A power series is invertible precisely when the constant term is invertible.

EXAMPLES:

```python
sage: R.<t> = PowerSeriesRing(ZZ)
sage: (-1 + t - t^5).is_unit()
True
sage: (3 + t - t^5).is_unit()
False
sage: 0(t^0).is_unit()
False
```

AUTHORS:

- David Harvey (2006-09-03)

jacobi_continued_fraction()

Return the Jacobi continued fraction of self.

The J-fraction or Jacobi continued fraction of a power series is a continued fraction expansion with steps of size two. We use the following convention

\[\frac{1}{1 + A_0 t + B_0 t^2} \frac{1}{1 + A_1 t + B_1 t^2} \frac{1}{1 + \cdots} \]

OUTPUT:

tuple of pairs \((A_n, B_n)\) for \(n \geq 0\)

The expansion is done as long as possible given the precision. Whenever the expansion is not well-defined, because it would require to divide by zero, an exception is raised.

See section 2.7 of [Kra1999det] for the close relationship of this kind of expansion with Hankel determinants and orthogonal polynomials.

EXAMPLES:

```python
sage: t = PowerSeriesRing(QQ, 't').gen()
sage: s = sum(factorial(k) * t**k for k in range(12)).O(12)
sage: s.jacobi_continued_fraction()
((-1, -1), (-3, -4), (-5, -9), (-7, -16), (-9, -25))
```

Another example:
sage: (log(1+t)/t).jacobi_continued_fraction()
((1/2, -1/12),
 (1/2, -1/15),
 (1/2, -9/140),
 (1/2, -4/63),
 (1/2, -25/396),
 (1/2, -9/143),
 (1/2, -49/780),
 (1/2, -16/255),
 (1/2, -81/1292))

laurent_series()
Return the Laurent series associated to this power series, i.e., this series considered as a Laurent series.

EXAMPLES:

sage: k.<w> = QQ[]
sage: f = 1 + 17*w + 15*w^3 + O(w^5)
sage: parent(f)
Power Series Ring in w over Rational Field
sage: g = f.laurent_series(); g
1 + 17*w + 15*w^3 + O(w^5)

lift_to_precision(absprec=None)
Return a congruent power series with absolute precision at least absprec.

INPUT:

• absprec – an integer or None (default: None), the absolute precision of the result. If None, lifts to an exact element.

EXAMPLES:

sage: A.<t> = PowerSeriesRing(GF(5))
sage: x = t + t^2 + O(t^5)
sage: x.lift_to_precision(10)
t + t^2 + O(t^10)
sage: x.lift_to_precision()
t + t^2

list()
See this method in derived classes:

• sage.rings.power_series_poly.PowerSeries_poly.list()
• sage.rings.multi_power_series_ring_element.MPowerSeries.list()

Implementations MUST override this in the derived class.

EXAMPLES:

sage: from sage.rings.power_series_ring_element import PowerSeries
sage: R.<x> = PowerSeriesRing(ZZ)
sage: PowerSeries.list(1 + x^2)
Traceback (most recent call last):
... NotImplementedError
\textbf{log}(\textit{prec}=None)

Return log of this power series to the indicated precision.

This works only if the constant term of the power series is 1 or the base ring can take the logarithm of the constant coefficient.

INPUT:

\begin{itemize}
 \item \textit{prec} – integer; default is \texttt{self.parent().default_prec()}
\end{itemize}

ALGORITHM: See \texttt{solve_linear_de()}.

\textbf{Warning:} Screwy things can happen if the coefficient ring is not a field of characteristic zero. See \texttt{solve_linear_de()}.

\begin{Verbatim}
EXAMPLES:
sage: R.<t> = PowerSeriesRing(QQ, default_prec=10)
sage: (1 + t + O(t^10)).log()
t - 1/2*t^2 + 1/3*t^3 - 1/4*t^4 + 1/5*t^5 - 1/6*t^6 + 1/7*t^7 - 1/8*t^8 + 1/9*t^9 + O(t^10)
sage: t.exp().log()
t + O(t^10)
sage: (1 + t).log().exp()
l + t + O(t^10)
sage: (-1 + t + O(t^10)).log()
Traceback (most recent call last):
 ...
ArithmeticError: constant term of power series is not 1
sage: # needs sage.rings.real_mpfr
sage: R.<t> = PowerSeriesRing(RR)
sage: (2 + t).log().exp()
2.00000000000000 + 1.00000000000000*t + O(t^20)
\end{Verbatim}

\textbf{map_coefficients}(\textit{f}, \textit{new_base_ring}=None)

Return the series obtained by applying \textit{f} to the non-zero coefficients of \texttt{self}.

If \textit{f} is a \texttt{sage.categories.map.Map}, then the resulting series will be defined over the codomain of \textit{f}. Otherwise, the resulting polynomial will be over the same ring as \texttt{self}. Set \textit{new_base_ring} to override this behaviour.

INPUT:

\begin{itemize}
 \item \textit{f} – a callable that will be applied to the coefficients of \texttt{self}.
 \item \textit{new_base_ring} (optional) – if given, the resulting polynomial will be defined over this ring.
\end{itemize}

EXAMPLES:

\begin{Verbatim}
sage: R.<x> = SR[]
 # needs sage.symbolic
sage: f = (1+I)*x^2 + 3*x - I
(continues on next page)
\end{Verbatim}
needs sage.symbolic

sage: f.map_coefficients(lambda z: z.conjugate())
I + 3*x + (-I + 1)*x^2

needs sage.symbolic

I + 3*x + (-I + 1)*x^2

sage: R.<x> = ZZ[[[]]

sage: f = x^2 + 2

sage: f.map_coefficients(lambda a: a + 42)
44 + 43*x^2

Examples with different base ring:

sage: R.<x> = ZZ[[[]]

sage: k = GF(2)

sage: residue = lambda x: k(x)

sage: f = 4*x^2+x+3

sage: g = f.map_coefficients(residue); g
1 + x

sage: g.parent()
Power Series Ring in x over Integer Ring

sage: g = f.map_coefficients(residue, new_base_ring=k); g
1 + x

sage: g.parent()
Power Series Ring in x over Finite Field of size 2

sage: residue = k.coerce_map_from(ZZ)

sage: g = f.map_coefficients(residue); g
1 + x

sage: g.parent()
Power Series Ring in x over Finite Field of size 2

Tests other implementations:

sage: # needs sage.libs.pari

sage: R.<q> = PowerSeriesRing(GF(11), implementation='pari')

sage: f = q - q^3 + O(q^10)

sage: f.map_coefficients(lambda c: c - 2)
10*q + 8*q^3 + O(q^10)

nth_root(n, prec=None)

Return the n-th root of this power series.

INPUT:

• n – integer

• prec – integer (optional) - precision of the result. Though, if this series has finite precision, then the result cannot have larger precision.

EXAMPLES:

sage: R.<x> = QQ[[[]]

sage: (1+x).nth_root(5)
1 + 1/5*x - 2/25*x^2 + ... + 12039376311816/2384185791015625*x^19 + O(x^20)

sage: (1 + x + O(x^5)).nth_root(5)
1 + 1/5*x - 2/25*x^2 + 6/125*x^3 - 21/625*x^4 + O(x^5)
Power Series Rings and Laurent Series Rings, Release 10.2

Check that the results are consistent with taking log and exponential:

```
sage: R.<x> = PowerSeriesRing(QQ, default_prec=100)
sage: p = (1 + 2*x - x^4)**200
sage: p1 = p.nth_root(1000, prec=100)
sage: p2 = (p.log()/1000).exp()
sage: p1.prec() == p2.prec() == 100
True
sage: p1.polynomial() == p2.polynomial()
True
```

Positive characteristic:

```
sage: R.<u> = GF(3)[[u]]
sage: p = 1 + 2 * u^2
sage: p.nth_root(4)
1 + 2*u^2 + u^6 + 2*u^8 + u^12 + 2*u^14 + O(u^20)
sage: p.nth_root(4)**4
1 + 2*u^2 + O(u^20)
```

`ogf_to_egf()`

Return the exponential generating function power series, assuming self is an ordinary generating function power series.

This can also be computed as `serconvol(f, exp(t))` in PARI/GP.

EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(QQ)
sage: f = t + t^2 + 2*t^3
sage: f.ogf_to_egf()
t + 1/2*t^2 + 1/3*t^3
```

`padded_list(n=None)`

Return a list of coefficients of self up to (but not including) \(q^n \).

Includes 0’s in the list on the right so that the list has length \(n \).

INPUT:

• \(n \) - (optional) an integer that is at least 0. If \(n \) is not given, it will be taken to be the precision of self, unless this is \(+\infty\), in which case we just return `self.list()`.

EXAMPLES:

```
sage: R.<q> = PowerSeriesRing(QQ)
sage: f = 1 - 17*q + 13*q^2 + 10*q^4 + O(q^7)
sage: f.list()
[1, -17, 13, 0, 10]
sage: f.padded_list(7)
[1, -17, 13, 0, 10, 0, 0]
sage: f.padded_list(10)
[1, -17, 13, 0, 10, 0, 0, 0, 0, 0]
sage: f.padded_list(3)
[1, -17, 13]
sage: f.padded_list()
```

(continues on next page)
\[[1, -17, 13, 0, 10, 0, 0] \]
\[\text{sage: } g = 1 - 17*q + 13*q^2 + 10*q^4 \]
\[\text{sage: } g.\text{list()} \]
\[[1, -17, 13, 0, 10] \]
\[\text{sage: } g.\text{padded} \text{list()} \]
\[[1, -17, 13, 0, 10] \]
\[\text{sage: } g.\text{padded} \text{list}(10) \]
\[[1, -17, 13, 0, 10, 0, 0, 0, 0, 0] \]

polynomial()

See this method in derived classes:

- `sage.rings.power_series_poly.PowerSeries_poly.polynomial()`,
- `sage.rings.multi_power_series_ring_element.MPowerSeries.polynomial()`

Implementations *MUST* override this in the derived class.

EXAMPLES:

\[\text{sage: from sage.rings.power_series_ring_element import PowerSeries} \]
\[\text{sage: R.<x> = PowerSeriesRing(ZZ)} \]
\[\text{sage: PowerSeries.polynomial(1 + x^2)} \]

```
Traceback (most recent call last):
  ... Not ImplementedError
```

prec()

The precision of \(... + O(x^r) \) is by definition \(r \).

EXAMPLES:

\[\text{sage: R.<t> = ZZ[[t]]} \]
\[\text{sage: (t^2 + O(t^3)).prec()} \]
\[3 \]
\[\text{sage: (1 - t^2 + O(t^100)).prec()} \]
\[100 \]

precision_absolute()

Return the absolute precision of this series.

By definition, the absolute precision of \(... + O(x^r) \) is \(r \).

EXAMPLES:

\[\text{sage: R.<t> = ZZ[[t]]} \]
\[\text{sage: (t^2 + O(t^3)).precision_absolute()} \]
\[3 \]
\[\text{sage: (1 - t^2 + O(t^100)).precision_absolute()} \]
\[100 \]

precision_relative()

Return the relative precision of this series, that is the difference between its absolute precision and its valuation.

By convention, the relative precision of 0 (or \(O(x^r) \) for any \(r \)) is 0.
EXAMPLES:

```
sage: R.<t> = ZZ[[t]]
sage: (t^2 + O(t^3)).precision_relative() 1
sage: (1 - t^2 + O(t^100)).precision_relative() 100
sage: 0(t^4).precision_relative() 0
```

shift(n)

Return this power series multiplied by the power t^n.

If n is negative, terms below t^{-n} are discarded.

This power series is left unchanged.

Note: Despite the fact that higher order terms are printed to the right in a power series, right shifting decreases the powers of t, while left shifting increases them. This is to be consistent with polynomials, integers, etc.

EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(QQ['y'], 't', 5)
sage: f = ~(1+t); f
1 - t + t^2 - t^3 + t^4 + O(t^5)
sage: f.shift(3)
t^3 - t^4 + t^5 - t^6 + O(t^8)
sage: f >> 2
1 - t + t^2 + O(t^3)
sage: f << 10
t^10 - t^11 + t^12 - t^13 + t^14 + O(t^15)
sage: t << 29
t^30
```

AUTHORS:

• Robert Bradshaw (2007-04-18)

sin(prec='infinity')

Apply sin to the formal power series.

INPUT:

• prec – Integer or infinity. The degree to truncate the result to.

OUTPUT:

A new power series.

EXAMPLES:

For one variable:

```
sage: t = PowerSeriesRing(QQ, 't').gen()
sage: f = (t + t^n2).O(4)
sage: sin(f)
t + t^2 - 1/6*t^3 + O(t^4)
```
For several variables:

```plaintext
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a^b + T.O(3)
sage: sin(f)
a + b + a^b + O(a, b)^3
sage: f.sin()
a + b + a^b + O(a, b)^3
sage: f.sin(prec=2)
a + b + O(a, b)^2
```

If the power series has a non-zero constant coefficient c, one raises an error:

```plaintext
g = 2 + f
sage: sin(g)
Traceback (most recent call last):
...
ValueError: can only apply sin to formal power series with zero constant term
```

If no precision is specified, the default precision is used:

```plaintext
t.default_prec()
12
sage: sin(a)
a - 1/6*a^3 + 1/120*a^5 - 1/5040*a^7 + 1/362880*a^9 - 1/39916800*a^11 + O(a, b)^12
sage: a.sin(prec=5)
a - 1/6*a^3 + O(a, b)^5
sage: sin(a + T.O(5))
a - 1/6*a^3 + O(a, b)^5
```

sinh *(prec='infinity')*

Apply sinh to the formal power series.

INPUT:

- • prec – Integer or infinity. The degree to truncate the result to.

OUTPUT:

A new power series.

EXAMPLES:

For one variable:

```plaintext
t = PowerSeriesRing(QQ, 't').gen()
f = (t + t^2).O(4)
sage: sinh(f)
t + t^2 + 1/6*t^3 + 0(t^4)
```

For several variables:

```plaintext
T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a^b + T.O(3)
sage: sinh(f)
a + b + a^b + 0(a, b)^3
```

(continues on next page)
If the power series has a non-zero constant coefficient \(c \), one raises an error:

\[
\text{sage: } g = 2 + f \\
\text{sage: } \sinh(g)
\]

Traceback (most recent call last):
...
ValueError: can only apply \(\sinh \) to formal power series with zero constant term

If no precision is specified, the default precision is used:

\[
\text{sage: } T.\text{default_prec}() \\
12 \\
\text{sage: } \sinh(a) \\
a + 1/6*a^3 + 1/120*a^5 + 1/5040*a^7 + 1/362880*a^9 + 1/39916800*a^11 + O(a, b)^{12} \\
\text{sage: } \text{a.\sinh(prec=5)} \\
a + 1/6*a^3 + O(a, b)^5 \\
\text{sage: } \sinh(a + T.0(5)) \\
a + 1/6*a^3 + O(a, b)^5
\]

\text{solve_linear_de}(\text{prec=}'infinity', \text{b=None}, \text{f0=None})

Obtain a power series solution to an inhomogeneous linear differential equation of the form:

\[f'(t) = a(t)f(t) + b(t). \]

\text{INPUT:}

- \text{self} - the power series \(a(t) \)
- \text{b} - the power series \(b(t) \) (default is zero)
- \text{f0} - the constant term of \(f \) (“initial condition”) (default is 1)
- \text{prec} - desired precision of result (this will be reduced if either \(a \) or \(b \) have less precision available)

\text{OUTPUT:} the power series \(f \), to indicated precision

\text{ALGORITHM:} A divide-and-conquer strategy; see the source code. Running time is approximately \(M(n) \log n \), where \(M(n) \) is the time required for a polynomial multiplication of length \(n \) over the coefficient ring. (If you’re working over something like \(\mathbb{Q} \), running time analysis can be a little complicated because the coefficients tend to explode.)

\text{Note:}

- If the coefficient ring is a field of characteristic zero, then the solution will exist and is unique.
- For other coefficient rings, things are more complicated. A solution may not exist, and if it does it may not be unique. Generally, by the time the \(n \)th term has been computed, the algorithm will have attempted divisions by \(n! \) in the coefficient ring. So if your coefficient ring has enough ‘precision’, and if your coefficient ring can perform divisions even when the answer is not unique, and if you know in advance that a solution exists, then this function will find a solution (otherwise it will probably crash).
AUTHORS:

- David Harvey (2006-09-11): factored functionality out from exp() function, cleaned up precision tests a bit

EXAMPLES:

```sage
taxi
R.<t> = PowerSeriesRing(QQ, default_prec=10)

sage: a = 2 - 3*t + 4*t^2 + O(t^10)
sage: b = 3 - 4*t^2 + O(t^7)
sage: f = a.solve_linear_de(prec=5, b=b, f0=3/5)
sage: f
3/5 + 21/5*t + 33/10*t^2 - 38/15*t^3 + 11/24*t^4 + O(t^5)
sage: f.derivative() - a*f - b
O(t^4)
```

```sage
taxi
sage: a = 2 - 3*t + 4*t^2
sage: b = 3 - 4*t^2
sage: f = a.solve_linear_de(b=b, f0=3/5)
Traceback (most recent call last):
  ...
ValueError: cannot solve differential equation to infinite precision
```

```sage
taxi
sage: a.solve_linear_de(prec=5, b=b, f0=3/5)
3/5 + 21/5*t + 33/10*t^2 - 38/15*t^3 + 11/24*t^4 + O(t^5)
```

```
```sage
sqrt(prec=None, extend=False, all=False, name=None)
```

Return a square root of self.

INPUT:

- prec -- integer (default: None): if not None and the series has infinite precision, truncates series at precision prec.
- extend -- bool (default: False): if True, return a square root in an extension ring, if necessary. Otherwise, raise a ValueError if the square root is not in the base power series ring. For example, if extend is True, the square root of a power series with odd degree leading coefficient is defined as an element of a formal extension ring.
- name -- string: if extend is True, you must also specify the print name of the formal square root.
- all -- bool (default: False): if True, return all square roots of self, instead of just one.

ALGORITHM: Newton's method

\[ x_{i+1} = \frac{1}{2}(x_i + \text{self}/x_i) \]

EXAMPLES:

```sage
taxi
K.<t> = PowerSeriesRing(QQ, 't', 5)
sage: sqrt(t^2)
t
sage: sqrt(1 + t)
1 + 1/2*t - 1/8*t^2 + 1/16*t^3 - 5/128*t^4 + O(t^5)
```

(continues on next page)
\texttt{sage: sqrt(4 + t)}
\begin{align*}
2 + 1/4*t - 1/64*t^2 + 1/512*t^3 - 5/16384*t^4 + O(t^5)
\end{align*}
\texttt{sage: u = sqrt(2 + t, prec=2, extend=True, name='alpha'); u}
\texttt{alpha}
\texttt{sage: u^2}
\begin{align*}
2 + t
\end{align*}
\texttt{sage: u.parent()}
\text{Univariate Quotient Polynomial Ring in alpha over Power Series Ring in t over Rational Field with modulus x^2 - 2 - t}
\texttt{sage: K.<t> = PowerSeriesRing(QQ, 't', 50)}
\texttt{sage: sqrt(1 + 2*t + t^2)}
\begin{align*}
1 + t
\end{align*}
\texttt{sage: sqrt(t^2 + 2*t^4 + t^6)}
\begin{align*}
t + t^3
\end{align*}
\texttt{sage: sqrt(1 + t + t^2 + 7*t^3)^2}
\begin{align*}
1 + t + t^2 + 7*t^3 + O(t^50)
\end{align*}
\texttt{sage: sqrt(K(0))}
\begin{align*}
0
\end{align*}
\texttt{sage: sqrt(t^2)}
\begin{align*}
t
\end{align*}
\texttt{sage: # needs sage.rings.complex_double}
\texttt{sage: K.<t> = PowerSeriesRing(CDF, 5)}
\texttt{sage: v = sqrt(-1 + t + t^3, all=True); v}
\begin{align*}
[-1.0*I - 0.5*I*t - 0.125*I*t^2 - 0.5625*I*t^3 - 0.2890625*I*t^4 + O(t^5),
-1.0*I + 0.5*I*t + 0.125*I*t^2 + 0.5625*I*t^3 + 0.2890625*I*t^4 + O(t^5)]
\end{align*}
\texttt{sage: [a^2 for a in v]}
\begin{align*}
[-1.0 + 1.0*t + 0.0*t^2 + 1.0*t^3 + O(t^5), -1.0 + 1.0*t + 0.0*t^2 + 1.0*t^3 + ...
\end{align*}
\texttt{→ 0(t^5)]}

A formal square root:
\texttt{sage: K.<t> = PowerSeriesRing(QQ, 5)}
\texttt{sage: f = 2*t + t^3 + O(t^4)}
\texttt{sage: s = f.sqrt(extend=True, name='sqrtf'); s sqrtf}
\texttt{sage: s^2}
\begin{align*}
2*t + t^3 + O(t^4)
\end{align*}
\texttt{sage: parent(s)}
\text{Univariate Quotient Polynomial Ring in sqrtf over Power Series Ring in t over Rational Field with modulus x^2 - 2*t - t^3 + O(t^4)}

\textbf{AUTHORS:}
\begin{itemize}
\item Robert Bradshaw
\item William Stein
\end{itemize}

\texttt{square_root()}\hfill
\texttt{Return the square root of self in this ring. If this cannot be done, then an error will be raised.}

This function succeeds if and only if \texttt{self. is_square()}
EXAMPLES:

```python
sage: K.<t> = PowerSeriesRing(QQ, 't', 5)
sage: (1 + t).square_root()
1 + 1/2*t - 1/8*t^2 + 1/16*t^3 - 5/128*t^4 + O(t^5)
sage: (2 + t).square_root()
Traceback (most recent call last):
...
ValueError: Square root does not live in this ring.
sage: (2 + t.change_ring(RR)).square_root() # needs sage.rings.real_mpfr
1.41421356237309 + 0.353553390593274*t - 0.0441941738241592*t^2
+ 0.0110485434560398*t^3 - 0.00345266983001244*t^4 + O(t^5)
sage: t.square_root()
Traceback (most recent call last):
...
ValueError: Square root not defined for power series of odd valuation.
sage: K.<t> = PowerSeriesRing(ZZ, 't', 5)
sage: f = (1+t)^20
sage: f.square_root()
1 + 10*t + 45*t^2 + 120*t^3 + 210*t^4 + O(t^5)
sage: f = 1 + t
sage: f.square_root()
Traceback (most recent call last):
...
ValueError: Square root does not live in this ring.
```

AUTHORS:
- Robert Bradshaw

`stieltjes_continued_fraction()`

Return the Stieltjes continued fraction of `self`.

The S-fraction or Stieltjes continued fraction of a power series is a continued fraction expansion with steps of size one. We use the following convention

\[
\frac{1}{(1 - A_1 t/(1 - A_2 t/(1 - A_3 t/(1 - \cdots)))})
\]

OUTPUT:

\(A_n\) for \(n \geq 1\)

The expansion is done as long as possible given the precision. Whenever the expansion is not well-defined, because it would require to divide by zero, an exception is raised.

EXAMPLES:

```python
sage: t = PowerSeriesRing(QQ, 't').gen()
sage: s = sum(catalan_number(k) * t**k for k in range(12)).O(12)
sage: s.stieltjes_continued_fraction()
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
```

Another example:

```python
sage: (exp(t)).stieltjes_continued_fraction()
(1,
```
Power Series Rings and Laurent Series Rings, Release 10.2

\[
\begin{align*}
-1/2, \\
1/6, \\
-1/6, \\
1/10, \\
-1/10, \\
1/14, \\
-1/14, \\
1/18, \\
-1/18, \\
1/22, \\
-1/22, \\
1/26, \\
-1/26, \\
1/30, \\
-1/30, \\
1/34, \\
-1/34, \\
1/38
\end{align*}
\]

\[\tan(\text{prec='infinity'})\]

Apply \(\tan\) to the formal power series.

**INPUT:**

- \(\text{prec} – \) Integer or \(\text{infinity}\). The degree to truncate the result to.

**OUTPUT:**

A new power series.

**EXAMPLES:**

For one variable:

\[
\begin{align*}
sage: & \quad t = \text{PowerSeriesRing}(\mathbb{Q}, 't').gen() \\
sage: & \quad f = (t + t**2)*O(4) \\
sage: & \quad \tan(f) \\
& \quad t + t^2 + 1/3*t^3 + O(t^4)
\end{align*}
\]

For several variables:

\[
\begin{align*}
sage: & \quad T.<a,b> = \text{PowerSeriesRing}(\mathbb{Z},2) \\
sage: & \quad f = a + b + a*b + T.O(3) \\
sage: & \quad \tan(f) \\
& \quad a + b + a*b + 0(a, b)^3 \\
sage: & \quad f.tan() \\
& \quad a + b + a*b + 0(a, b)^3 \\
sage: & \quad f.tan(prec=2) \\
& \quad a + b + 0(a, b)^2
\end{align*}
\]

If the power series has a non-zero constant coefficient \(c\), one raises an error:

\[
\begin{align*}
sage: & \quad g = 2 + f \\
sage: & \quad \tan(g) \\
& \quad \text{Traceback (most recent call last)}:
\end{align*}
\]
... 
ValueError: can only apply tan to formal power series with zero constant term

If no precision is specified, the default precision is used:

```
sage: T.default_prec()
12
sage: tan(a)
a + 1/3*a^3 + 2/15*a^5 + 17/315*a^7 + 62/2835*a^9 + 1382/155925*a^11 + O(a, b)^12
sage: a.tan(prec=5)
a + 1/3*a^3 + 0(a, b)^5
sage: tan(a + T.O(5))
a + 1/3*a^3 + 0(a, b)^5
```

```
tanh(prec='infinity')
```
Apply tanh to the formal power series.

INPUT:
- `prec` – Integer or `infinity`. The degree to truncate the result to.

OUTPUT:
A new power series.

EXAMPLES:
For one variable:

```
sage: t = PowerSeriesRing(QQ, 't').gen()
sage: f = (t + t**2).O(4)
sage: tanh(f)
t + t^2 - 1/3*t^3 + O(t^4)
```

For several variables:

```
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a*b + T.O(3)
sage: tanh(f)
a + b + a*b + O(a, b)^3
sage: f.tanh()
a + b + a*b + 0(a, b)^3
sage: f.tanh(prec=2)
a + b + 0(a, b)^2
```

If the power series has a non-zero constant coefficient \(c\), one raises an error:

```
sage: g = 2 + f
sage: tanh(g)
Traceback (most recent call last):
 ...
ValueError: can only apply tanh to formal power series with zero constant term
```

If no precision is specified, the default precision is used:
```python
sage: T.default_prec()
12
sage: tanh(a)
a - 1/3*a^3 + 2/15*a^5 - 17/315*a^7 + 62/2835*a^9 - 1382/155925*a^11 + O(a, b)^12
sage: a.tanh(prec=5)
a - 1/3*a^3 + O(a, b)^5
sage: tanh(a + T.O(5))
a - 1/3*a^3 + O(a, b)^5
```

### truncate(\textit{prec}='\textit{infinity}')

The polynomial obtained from power series by truncation.

**EXAMPLES:**

```python
sage: R.<I> = GF(2)[[]]
sage: f = 1/(1+I+O(I^8)); f
1 + I + I^2 + I^3 + I^4 + I^5 + I^6 + I^7 + O(I^8)
sage: f.truncate(5)
I^4 + I^3 + I^2 + I + 1
```

### valuation()

Return the valuation of this power series.

This is equal to the valuation of the underlying polynomial.

**EXAMPLES:**

Sparse examples:

```python
sage: R.<t> = PowerSeriesRing(QQ, sparse=True)
sage: f = t^100000 + O(t^1000000)
sage: f.valuation()
100000
sage: R(0).valuation()
+Infinity
```

Dense examples:

```python
sage: R.<t> = PowerSeriesRing(ZZ)
sage: f = 17*t^100 + O(t^110)
sage: f.valuation()
100
sage: t.valuation()
1
```

### valuation_zero_part()

Factor self as $q^n \cdot (a_0 + a_1 q + \cdots)$ with $a_0$ nonzero. Then this function returns $a_0 + a_1 q + \cdots$.

**Note:** This valuation zero part need not be a unit if, e.g., $a_0$ is not invertible in the base ring.

**EXAMPLES:**

sage: R.<t> = PowerSeriesRing(QQ)
sage: ((1/3)*t^5*(17-2/3*t^3)).valuation_zero_part()
17/3 - 2/9*t^3

In this example the valuation 0 part is not a unit:

sage: R.<t> = PowerSeriesRing(ZZ, sparse=True)
sage: u = (-2*t^5*(17-t^3)).valuation_zero_part(); u
-34 + 2*t^3
sage: u.is_unit()
False
sage: u.valuation()
0

**variable()**

Return a string with the name of the variable of this power series.

**EXAMPLES:**

```
sage: R.<x> = PowerSeriesRing(Rationals())
sage: f = x^2 + 3*x^4 + O(x^7)
sage: f.variable()
'x'
```

**AUTHORS:**

- David Harvey (2006-08-08)

sage.rings.power_series_ring_element.is_PowerSeries(x)

Return True if x is an instance of a univariate or multivariate power series.

**EXAMPLES:**

```
sage: R.<x> = PowerSeriesRing(ZZ)
sage: from sage.rings.power_series_ring_element import is_PowerSeries
sage: is_PowerSeries(1 + x^2)
True
sage: is_PowerSeries(x - x)
True
sage: is_PowerSeries(0)
False
sage: var('x') # needs sage.symbolic
x
sage: is_PowerSeries(1 + x^2) # needs sage.symbolic
False
```

sage.rings.power_series_ring_element.make_element_from_parent_v0(parent, *args)
sage.rings.power_series_ring_element.make_powerseries_poly_v0(parent, f, prec, is_gen)
The class `PowerSeries_poly` provides additional methods for univariate power series.

```python
class sage.rings.power_series_poly.BaseRingFloorDivAction
 Bases: Action

The floor division action of the base ring on a formal power series.

class sage.rings.power_series_poly.PowerSeries_poly
 Bases: PowerSeries

EXAMPLES:

```
sage: R.<q> = PowerSeriesRing(CC); R
    # needs
    sage.rings.real_mpfr
    Power Series Ring in q over Complex Field with 53 bits of precision
sage: loads(q.dumps()) == q
    # needs
    sage.rings.real_mpfr
    True

sage: R.<t> = QQ[[[]]
    sage: f = 3 - t^3 + O(t^5)
    sage: a = f^3; a
    27 - 27*t^3 + O(t^5)
    sage: b = f^-3; b
    1/27 + 1/27*t^3 + O(t^5)
    sage: a*b
    1 + O(t^5)
```

Check that github issue #22216 is fixed:

```
sage: R.<T> = PowerSeriesRing(QQ)
    sage: R(pari('1 + O(T)'))
        # needs
        sage.libs.pari
        1 + O(T)
    sage: R(pari('1/T + O(T)'))
        # needs
        sage.libs.pari
        Traceback (most recent call last):
        ...
        ValueError: series has negative valuation
```

`degree()`

Return the degree of the underlying polynomial of `self`.
That is, if \(\text{self} \) is of the form \(f(x) + O(x^n) \), we return the degree of \(f(x) \). Note that if \(f(x) \) is 0, we return \(-1\), just as with polynomials.

EXAMPLES:

```python
sage: R.<t> = ZZ[[t]]
sage: (5 + t^3 + O(t^4)).degree()
3
sage: (5 + O(t^4)).degree()
0
sage: O(t^4).degree()
-1
```

dict()

Return a dictionary of coefficients for \(\text{self} \).

This is simply a dict for the underlying polynomial, so need not have keys corresponding to every number smaller than \(\text{self}.\text{prec()} \).

EXAMPLES:

```python
sage: R.<t> = ZZ[[t]]
sage: f = 1 + t^10 + O(t^12)
sage: f.dict()
{0: 1, 10: 1}
```

integral(var=None)

Return the integral of this power series.

By default, the integration variable is the variable of the power series.

Otherwise, the integration variable is the optional parameter \(\text{var} \).

Note: The integral is always chosen so the constant term is 0.

EXAMPLES:

```python
sage: k.<w> = QQ[[w]]
sage: (1+17*w+15*w^3+O(w^5)).integral()
w + 17/2*w^2 + 15/4*w^4 + O(w^6)
sage: (w^3 + 4*w^4 + O(w^7)).integral()
1/4*w^4 + 4/5*w^5 + O(w^8)
sage: (3*w^2).integral()
w^3
```

list()

Return the list of known coefficients for \(\text{self} \).

This is just the list of coefficients of the underlying polynomial, so in particular, need not have length equal to \(\text{self}.\text{prec()} \).

EXAMPLES:

```python
sage: R.<t> = ZZ[[t]]
sage: f = 1 - 5*t^3 + t^5 + O(t^7)
```

(continues on next page)
sage: f.list()
[1, 0, 0, -5, 0, 1]

pade\((m, n)\)

Return the Padé approximant of \texttt{self} of index \((m, n)\).

The Padé approximant of index \((m, n)\) of a formal power series \(f\) is the quotient \(Q/P\) of two polynomials \(Q\) and \(P\) such that \(\deg(Q) \leq m, \deg(P) \leq n\) and

\[
f(z) - Q(z)/P(z) = O(z^{m+n+1}).
\]

The formal power series \(f\) must be known up to order \(n + m\).

See Wikipedia article Padé_approximant

INPUT:

• \(m, n\) – integers, describing the degrees of the polynomials

OUTPUT:

a ratio of two polynomials

ALGORITHM:

This method uses the formula as a quotient of two determinants.

See also:

• \texttt{sage.matrix.berlekamp_massey},

• \texttt{sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint.rational_reconstruction()}

EXAMPLES:

\[
sage: z = \text{PowerSeriesRing}(\mathbb{Q}, \ 'z').\text{gen()}
sage: \exp(z).\text{pade}(4, 0)
1/24*z^4 + 1/6*z^3 + 1/2*z^2 + z + 1
sage: \exp(z).\text{pade}(1, 1)
(-z^2 + 1)/(z - 2)
sage: \exp(z).\text{pade}(3, 3)
(-z^3 + 12*z^2 - 60*z - 120)/(z^3 - 12*z^2 + 60*z - 120)
sage: \log(1-z).\text{pade}(4, 4)
(25/6*z^4 - 130/3*z^3 + 105*z^2 - 70*z)/(z^4 - 20*z^3 + 90*z^2 - 140*z + 70)
sage: \text{sqrt}(1+z).\text{pade}(3, 2)
(1/6*z^3 + 3*z^2 + 8*z + 16/3)/(z^2 + 16/3*z + 16/3)
sage: \exp(2*z).\text{pade}(3, 3)
(-z^3 + 6*z^2 - 15*z - 15)/(z^3 - 6*z^2 + 15*z - 15)
\]

polynomial()

Return the underlying polynomial of \texttt{self}.

EXAMPLES:
reverse\(\text{\texttt{precision=None}}\)

Return the reverse of \(f\), i.e., the series \(g\) such that \(g(f(x)) = x\).

Given an optional argument \texttt{precision}, return the reverse with given precision (note that the reverse can have precision at most \texttt{f.prec()}). If \(f\) has infinite precision, and the argument \texttt{precision} is not given, then the precision of the reverse defaults to the default precision of \texttt{f.parent()}.

Note that this is only possible if the valuation of \texttt{self} is exactly 1.

ALGORITHM:

We first attempt to pass the computation to pari; if this fails, we use Lagrange inversion. Using \texttt{sage: set_verbose(1)} will print a message if passing to pari fails.

If the base ring has positive characteristic, then we attempt to lift to a characteristic zero ring and perform the reverse there. If this fails, an error is raised.

EXAMPLES:

\begin{verbatim}
sage: R.<t> = GF(7)[[]]
sage: f = 3 - t^3 + O(t^5)
sage: f.polynomial()
6*t^3 + 3

reverse\(\text{\texttt{precision=None}}\)

Return the reverse of \(f\), i.e., the series \(g\) such that \(g(f(x)) = x\).

Given an optional argument \texttt{precision}, return the reverse with given precision (note that the reverse can have precision at most \texttt{f.prec()}). If \(f\) has infinite precision, and the argument \texttt{precision} is not given, then the precision of the reverse defaults to the default precision of \texttt{f.parent()}.

Note that this is only possible if the valuation of \texttt{self} is exactly 1.

ALGORITHM:

We first attempt to pass the computation to pari; if this fails, we use Lagrange inversion. Using \texttt{sage: set_verbose(1)} will print a message if passing to pari fails.

If the base ring has positive characteristic, then we attempt to lift to a characteristic zero ring and perform the reverse there. If this fails, an error is raised.

EXAMPLES:

\begin{verbatim}
sage: R.<x> = PowerSeriesRing(QQ)
sage: f = 2*x + 3*x^2 - x^4 + O(x^5)
sage: g = f.reverse()
sage: g
1/2*x - 3/8*x^2 + 9/16*x^3 - 131/128*x^4 + O(x^5)
sage: f(g)
x + O(x^5)
sage: g(f)
x + O(x^5)
sage: A.<t> = PowerSeriesRing(ZZ)
sage: a = t - t^2 - 2*t^4 + t^5 + O(t^6)
sage: b = a.reverse(); b
1/2*t^2 + 7/8*t^3 + 25/16*t^4 + 25*t^5 + O(t^6)
sage: a(b)
t + O(t^6)
sage: b(a)
t + O(t^6)
sage: B.<b,c> = PolynomialRing(ZZ)
sage: A.<t> = PowerSeriesRing(B)
sage: f = t + b*t^2 + c*t^3 + O(t^4)
sage: g = f.reverse(); g
t - b*t^2 + (2*b^2 - c)*t^3 + O(t^4)
sage: f(g)
t + O(t^4)
sage: g(f)
t + O(t^4)
sage: A.<t> = PowerSeriesRing(ZZ)
sage: B.<s> = A[[[]]]
sage: f = (1 - 3*t + 4*t^3 + O(t^4))*s + (2 + t + t^2 + O(t^3))*s^2 + O(s^3)
\end{verbatim}
sage: from sage.misc.verbose import set_verbose
sage: set_verbose(1)
sage: g = f.reverse(); g
verbose 1 (<module>) passing to pari failed; trying Lagrange inversion
(1 + 3*t + 9*t^2 + 23*t^3 + O(t^4))*s + (-2 - 19*t - 118*t^2 + O(t^3))*s^2 +
→O(s^3)
sage: set_verbose(0)
sage: f(g) == g(f) == s
True

If the leading coefficient is not a unit, we pass to its fraction field if possible:

sage: A.<t> = PowerSeriesRing(ZZ)
sage: a = 2*t - 4*t^2 + t^4 - t^5 + O(t^6)
sage: a.reverse()
1/2^*t + 1/2^*t^2 + t^3 + 79/32^*t^4 + 437/64^*t^5 + O(t^6)

sage: B. = PolynomialRing(ZZ)
sage: A.<t> = PowerSeriesRing(B)
sage: f = 2*b*t + b*t^2 + 3*b^2*t^3 + O(t^4)

sage: g = f.reverse(); g
1/(2*b)*t - 1/(8*b^2)*t^2 + ((-3*b + 1)/(16*b^3))*t^3 + O(t^4)

sage: f(g)
t + O(t^4)
sage: g(f)
t + O(t^4)

We can handle some base rings of positive characteristic:

sage: A8.<t> = PowerSeriesRing(Zmod(8))
sage: a = t - 15*t^2 - 2*t^4 + t^5 + O(t^6)
sage: b = a.reverse(); b

t + 7^*t^2 + 2^*t^3 + 5^*t^4 + t^5 + O(t^6)

sage: a(b)
t + O(t^6)
sage: b(a)
t + O(t^6)

The optional argument precision sets the precision of the output:

sage: R.<x> = PowerSeriesRing(QQ)
sage: f = 2*x + 3*x^2 - 7*x^3 + x^4 + O(x^5)

sage: g = f.reverse(precision=3); g
1/2^*x - 3/8^*x^2 + O(x^3)

sage: f(g)
x + O(x^3)
sage: g(f)
x + O(x^3)

If the input series has infinite precision, the precision of the output is automatically set to the default precision of the parent ring:
sage: R.<x> = PowerSeriesRing(QQ, default_prec=20)
sage: (x - x^2).reverse() # get some Catalan numbers
x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + 16796*x^11 + 58786*x^12 + 208012*x^13 + 742900*x^14 + 2674440*x^15 + 9694845*x^16 + 35357670*x^17 + 129644790*x^18 + 477638700*x^19 + O(x^20)
sage: (x - x^2).reverse(precision=3)
x + x^2 + O(x^3)

truncate(\texttt{prec='infinity'})
The polynomial obtained from power series by truncation at precision \texttt{prec}.

EXAMPLES:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sage: R.<I> = GF(2)[[]]</td>
<td></td>
</tr>
<tr>
<td>sage: f = 1/(1+I+O(I^8)); f</td>
<td></td>
</tr>
<tr>
<td>1 + I + I^2 + I^3 + I^4 + I^5 + I^6 + I^7 + O(I^8)</td>
<td></td>
</tr>
<tr>
<td>sage: f.truncate(5)</td>
<td></td>
</tr>
<tr>
<td>I^4 + I^3 + I^2 + I + 1</td>
<td></td>
</tr>
</tbody>
</table>

truncate_powerseries(\texttt{prec})
Given input \texttt{prec} = \(n\), returns the power series of degree < \(n\) which is equivalent to self modulo \(x^n\).

EXAMPLES:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sage: R.<I> = GF(2)[[]]</td>
<td></td>
</tr>
<tr>
<td>sage: f = 1/(1+I+O(I^8)); f</td>
<td></td>
</tr>
<tr>
<td>1 + I + I^2 + I^3 + I^4 + I^5 + I^6 + I^7 + O(I^8)</td>
<td></td>
</tr>
<tr>
<td>sage: f.truncate_powerseries(5)</td>
<td></td>
</tr>
<tr>
<td>1 + I + I^2 + I^3 + I^4 + O(I^5)</td>
<td></td>
</tr>
</tbody>
</table>

valuation()
Return the valuation of \texttt{self}.

EXAMPLES:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sage: R.<t> = QQ[[]]</td>
<td></td>
</tr>
<tr>
<td>sage: (5 - t^8 + O(t^11)).valuation()</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>sage: (-t^8 + O(t^11)).valuation()</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>sage: O(t^7).valuation()</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>sage: R(0).valuation()</td>
<td></td>
</tr>
<tr>
<td>+Infinity</td>
<td></td>
</tr>
</tbody>
</table>

sage.rings.power_series_poly.make_powerseries_poly_v0(\texttt{parent, f, prec, is_gen})
Return the power series specified by \texttt{f, prec, and is_gen}.

This function exists for the purposes of pickling. Do not delete this function – if you change the internal representation, instead make a new function and make sure that both kinds of objects correctly unpickle as the new type.

EXAMPLES:
```python
sage: R.<t> = QQ[[t]]
sage: sage.rings.power_series_poly.make_powerseries_poly_vθ(R, t, infinity, True)
t```

POWER SERIES IMPLEMENTED USING PARI

EXAMPLES:

This implementation can be selected for any base ring supported by PARI by passing the keyword
implementation='pari' to the PowerSeriesRing() constructor:

```
sage: R.<q> = PowerSeriesRing(ZZ, implementation='pari'); R
Power Series Ring in q over Integer Ring
sage: S.<t> = PowerSeriesRing(CC, implementation='pari'); S
 # needs sage.rings.real_mpfr
Power Series Ring in t over Complex Field with 53 bits of precision
```

Note that only the type of the elements depends on the implementation, not the type of the parents:

```
sage: type(R)
<class 'sage.rings.power_series_ring.PowerSeriesRing_domain_with_category'>
sage: type(q)
<class 'sage.rings.power_series_pari.PowerSeries_pari'>
```

If $k$ is a finite field implemented using PARI, this is the default implementation for power series over $k$:

```
sage: k.<c> = GF(5^12)
sage: type(c)
<class 'sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt'>
sage: A.<x> = k[]
sage: type(x)
<class 'sage.rings.power_series_pari.PowerSeries_pari'>
```

**Warning:** Because this implementation uses the PARI interface, the PARI variable ordering must be respected in the sense that the variable name of the power series ring must have higher priority than any variable names occurring in the base ring:

```
sage: R.<y> = QQ[]
sage: S.<x> = PowerSeriesRing(R, implementation='pari'); S
Power Series Ring in x over Univariate Polynomial Ring in y over Rational Field
```
Reversing the variable ordering leads to errors:

```python
sage: R.<x> = QQ[]
sage: S.<y> = PowerSeriesRing(R, implementation='pari')
```

Traceback (most recent call last):
... 

PariError: incorrect priority in gtopoly: variable x <= y

AUTHORS:

• Peter Bruin (December 2013): initial version

class sage.rings.power_series_pari.PowerSeries_pari

Bases: PowerSeries

A power series implemented using PARI.

INPUT:

• parent – the power series ring to use as the parent
• f – object from which to construct a power series
• prec – (default: infinity) precision of the element to be constructed
• check – ignored, but accepted for compatibility with PowerSeries_poly
dict()

Return a dictionary of coefficients for self.

This is simply a dict for the underlying polynomial; it need not have keys corresponding to every number smaller than self.prec().

EXAMPLES:

```python
sage: R.<t> = PowerSeriesRing(ZZ, implementation='pari')
sage: f = 1 + t^10 + O(t^12)
sage: f.dict()
{0: 1, 10: 1}
```

integral(var=None)

Return the formal integral of self.

By default, the integration variable is the variable of the power series. Otherwise, the integration variable is the optional parameter var.

Note: The integral is always chosen so the constant term is 0.

EXAMPLES:

```python
sage: k.<w> = PowerSeriesRing(QQ, implementation='pari')
sage: (1+17*w+15*w^3+O(w^5)).integral()
1/4*w^4 + 4/5*w^5 + O(w^8)
sage: (w^3 + 4*w^4 + O(w^7)).integral()
```
list()

Return the list of known coefficients for self.

This is just the list of coefficients of the underlying polynomial; it need not have length equal to self.prec().

EXAMPLES:

```python
sage: R.<t> = PowerSeriesRing(ZZ, implementation='pari')
sage: f = 1 - 5*t^3 + t^5 + O(t^7)
sage: f.list()
[1, 0, 0, -5, 0, 1]
sage: # needs sage.rings.padics
sage: S.<u> = PowerSeriesRing(pAdicRing(5), implementation='pari')
sage: (2 + u).list()
[2 + O(5^20), 1 + O(5^20)]
```

padded_list(n=None)

Return a list of coefficients of self up to (but not including) $q^n$.

The list is padded with zeroes on the right so that it has length $n$.

INPUT:

* n – a non-negative integer (optional); if $n$ is not given, it will be taken to be the precision of self, unless this is `+Infinity`, in which case we just return self.list()

EXAMPLES:

```python
sage: R.<q> = PowerSeriesRing(QQ, implementation='pari')
sage: f = 1 - 17*q + 13*q^2 + 10*q^4 + O(q^7)
sage: f.list()
[1, -17, 13, 0, 10]
sage: f.padded_list(7)
[1, -17, 13, 0, 10, 0, 0]
sage: f.padded_list(10)
[1, -17, 13, 0, 10, 0, 0, 0, 0, 0]
sage: f.padded_list(3)
[1, -17, 13]
sage: f.padded_list() # case trivial
[1, -17, 13, 0, 10, 0, 0]
sage: g = 1 - 17*q + 13*q^2 + 10*q^4
sage: g.list()
[1, -17, 13, 0, 10]
sage: g.padded_list()
[1, -17, 13, 0, 10]
sage: g.padded_list(10)
[1, -17, 13, 0, 10, 0, 0, 0, 0, 0]
```

polynomial()

Convert self to a polynomial.

EXAMPLES:
```python
sage: R.<t> = PowerSeriesRing(GF(7), implementation='pari')
sage: f = 3 - t^3 + O(t^5)
sage: f.polynomial()
6*t^3 + 3
```

**reverse** *(precision=None)*

Return the reverse of *self*.

The reverse of a power series \( f \) is the power series \( g \) such that \( g(f(x)) = x \). This exists if and only if the valuation of *self* is exactly 1 and the coefficient of \( x \) is a unit.

If the optional argument *precision* is given, the reverse is returned with this precision. If \( f \) has infinite precision and the argument *precision* is not given, then the reverse is returned with the default precision of \( f\ \text{.parent}() \).

**EXAMPLES:**

```python
sage: A.<t> = PowerSeriesRing(QQ, implementation='pari')
sage: f = 2*t + 3*t^2 - x^4 + O(x^5)
sage: g = f.reverse()
sage: g
1/2*t - 3/8*t^2 + 9/16*t^3 - 131/128*t^4 + O(t^5)
sage: f(g)
x + O(x^5)
sage: g(f)
x + O(x^5)
```

```python
sage: B.<b,c> = PolynomialRing(ZZ)
sage: A.<t> = PowerSeriesRing(B, implementation='pari')
sage: f = t + b*t^2 + c*t^3 + O(t^4)
sage: g = f.reverse(); g
t - b*t^2 + (2*b^2 - c)*t^3 + O(t^4)
sage: f(g)
t + O(t^4)
sage: g(f)
t + O(t^4)
```

The optional argument *precision* sets the precision of the output:
sage: R.<x> = PowerSeriesRing(QQ, implementation='pari')
sage: f = 2*x + 3*x^2 - 7*x^3 + x^4 + O(x^5)
sage: g = f.reverse(precision=3); g
1/2*x - 3/8*x^2 + O(x^3)
sage: f(g)
x + O(x^3)
sage: g(f)
x + O(x^3)

If the input series has infinite precision, the precision of the output is automatically set to the default precision of the parent ring:

sage: R.<x> = PowerSeriesRing(QQ, default_prec=20, implementation='pari')
sage: (x - x^2).reverse()  # get some Catalan numbers
x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + 16796*x^11 + 58786*x^12 + 208012*x^13 + 742900*x^14 + 2674440*x^15 + 9694845*x^16 + 35357670*x^17 + 129644790*x^18 + 477638700*x^19 + O(x^20)
sage: (x - x^2).reverse(precision=3)
x + x^2 + O(x^3)

valuation()

Return the valuation of self.

EXAMPLES:

sage: R.<t> = PowerSeriesRing(QQ, implementation='pari')
sage: (5 - t^8 + O(t^11)).valuation()
0
sage: (-t^8 + O(t^11)).valuation()
8
sage: O(t^7).valuation()
7
sage: R(0).valuation()
+Infinity
CHAPTER
FIVE

MULTIVARIATE POWER SERIES RINGS

Construct a multivariate power series ring (in finitely many variables) over a given (commutative) base ring.

EXAMPLES:

Construct rings and elements:

```sage
R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
sage: TestSuite(R).run()
sage: p = -t + 1/2*t^3*u - 1/4*t^4*u + 2/3*v^5 + R.O(6); p
-t + 1/2*t^3*u - 1/4*t^4*u + 2/3*v^5 + O(t, u, v)^6
sage: p in R
True
sage: g = 1 + v + 3*t^2*u - 2*t^2*v^2; g
1 + v + 3*t^2*u - 2*t^2*v^2
sage: g in R
True
```

Add big O as with single variable power series:

```sage
sage: g.add_bigoh(3)
1 + v + 3*t^2*u^2 - 2*t^2*v^2; g
1 + v + 3*t^2*u^2 - 2*t^2*v^2 + O(t, u, v)^2
sage: g in R
True
```

Sage keeps track of total-degree precision:

```sage
sage: f = (g-1)^2 - g + 1; f
-v + v^2 - 3*t^2*u - 6*t^2*u*v + 2*t^2*v^2 + O(t, u, v)^5
sage: f in R
True
sage: f.prec()
5
sage: ((g-1-v)^2).prec()
8
```

Construct multivariate power series rings over various base rings.

```sage
M = PowerSeriesRing(QQ, 4, 'k'); M
Multivariate Power Series Ring in k0, k1, k2, k3 over Rational Field
sage: loads(dumps(M)) is M
```

(continues on next page)
True
\[
\text{sage: } \text{TestSuite(M).run()}
\]

\[
\text{sage: } H = \text{PowerSeriesRing(PolynomialRing(ZZ, 3, 'z'), 4, 'f')}; H
\] Multivariate Power Series Ring in f0, f1, f2, f3
over Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring
\[
\text{sage: } \text{TestSuite(H).run()}
\]
\[
\text{sage: } \text{loads(dumps(H)) is } H
\]
True

\[
\text{sage: } z = H.\text{base_ring().gens()}
\]
\[
\text{sage: } f = H.\text{gens()}
\]
\[
+ (-z[2]^2 - 2*z[0] + z[2])*f[0]*f[2] \ \*
+ H.0(3)
\]
\[
\text{sage: } h \text{ in } H
\]
True
\[
\text{sage: } h
\]
\[
4*z1^2 + 2*z0*z2 + z1*z2 + z2^2 + (-z2^2 - 2*z0 + z2)*f0*f2
+ (-22*z0*z2 + 2*z1^2 - z0*z2 + z2^2 - 1955*z2)*f1*f2
+ (-z0*z1 - 2*z1^2)*f2^2*f3 + (2*z0*z1 + z1*z2 - z2^2 - z1 + 3*z2)*f3^2
+ O(f0, f1, f2, f3)^3
\]

\[
\begin{itemize}
\item Use angle-bracket notation:
\end{itemize}
\]
\[
\text{sage: } \# \text{ needs sage.rings.finite_rings}
\]
\[
\text{sage: } S.<x,y> = \text{PowerSeriesRing(GF(65537))}; S
\] Multivariate Power Series Ring in x, y over Finite Field of size 65537
\[
\text{sage: } s = -30077*x + 9485*x*y - 6260*y^3 + 12870*x^2*y^2 - 20289*y^4 + S.0(5); s
\]
\[
-30077*x + 9485*x*y - 6260*y^3 + 12870*x^2*y^2 - 20289*y^4 + O(x, y)^5
\]
\[
\text{sage: } s \text{ in } S
\]
True
\[
\text{sage: } \text{TestSuite(S).run()}
\]
\[
\text{sage: } \text{loads(dumps(S)) is } S
\]
True

\[
\begin{itemize}
\item Use double square bracket notation:
\end{itemize}
\]
\[
\text{sage: } \text{ZZ[['s,t,u']]}[\text{GF(127931)[]}][['x,y']]
\]
\[
\text{Multivariate Power Series Ring in } s, t, u \text{ over Integer Ring}
\]
\[
\text{sage: } \text{GF(127931)[]}[\text{['x,y']}]
\]
\[
\rightarrow \# \text{ needs sage.rings.finite_rings}
\] Multivariate Power Series Ring in x, y over Finite Field of size 127931

Variable ordering determines how series are displayed.

\[
\text{sage: } T.<a,b> = \text{PowerSeriesRing(ZZ,order='deglex')}; T
\] Multivariate Power Series Ring in a, b over Integer Ring
\[
\text{sage: } \text{TestSuite(T).run()}
\]
\[
\text{sage: } \text{loads(dumps(T)) is } T
\]
(continues on next page)
sage: T.term_order()
Degree lexicographic term order

sage: p = -2*b^6 + a^5*b^2 + a^7 - b^2 - a*b^3 + T.O(9); p
a^7 + a^5*b^2 - 2*b^6 - a*b^3 - b^2 + O(a, b)^9

sage: U = PowerSeriesRing(ZZ,'a,b',order='negdeglex'); U
Multivariate Power Series Ring in a, b over Integer Ring
sage: U.term_order()
Negative degree lexicographic term order
sage: U(p)
-b^2 - a*b^3 - 2*b^6 + a^7 + a^5*b^2 + O(a, b)^9

Change from one base ring to another:

sage: R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
sage: R.base_extend(RR) # needs sage.rings.real_mpfr
Multivariate Power Series Ring in t, u, v over Real Field with 53 bits of precision
sage: R.change_ring(IntegerModRing(10))
Multivariate Power Series Ring in t, u, v over Ring of integers modulo 10

sage: S = PowerSeriesRing(GF(65537),2,'x,y'); S # needs sage.rings.finite_rings
Multivariate Power Series Ring in x, y over Finite Field of size 65537
sage: S.change_ring(GF(5)) # needs sage.rings.finite_rings
Multivariate Power Series Ring in x, y over Finite Field of size 5

Coercion from polynomial ring:

sage: R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
sage: A = PolynomialRing(ZZ,3,'t,u,v')
sage: g = A.gens()
sage: a = 2*g[0]*g[2] - 2*g[0] - 2; a
2*t*v - 2*t - 2
sage: R(a)
-2 - 2*t + 2*t*v
sage: R(a).O(4)
-2 - 2*t + 2*t*v + O(t, u, v)^4
sage: a.parent()
Multivariate Polynomial Ring in t, u, v over Integer Ring
sage: a in R
True

Coercion from polynomial ring in subset of variables:

sage: R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
sage: A = PolynomialRing(QQ,2,'t,v')
sage: g = A.gens()
sage: a = -2*g[0]*g[1] - 1/27*g[1]^2 + g[0] - 1/2*g[1]; a
-2*t*v - 1/27*v^2 + t - 1/2*v
sage: a in R
True

Coercion from symbolic ring:

sage: # needs sage.symbolic
sage: x,y = var('x,y')
sage: S = PowerSeriesRing(GF(11),2,'x,y'); S
Multivariate Power Series Ring in x, y over Finite Field of size 11
sage: type(x)
<class 'sage.symbolic.expression.Expression'>
sage: type(S(x))
<class 'sage.rings.multi_power_series_ring.MPowerSeriesRing_generic_with_category.Element_class'>
sage: f = S(2/7 -100*x^2 + 1/3*x*y + y^2).O(3); f
5 - x^2 + 4*x*y + y^2 + O(x, y)^3
sage: f.parent()
Multivariate Power Series Ring in x, y over Finite Field of size 11
sage: f.parent() == S
True

The implementation of the multivariate power series ring uses a combination of multivariate polynomials and univariate power series. Namely, in order to construct the multivariate power series ring \( R[[x_1, x_2, \ldots, x_n]] \), we consider the univariate power series ring \( S[[T]] \) over the multivariate polynomial ring \( S := R[x_1, x_2, \ldots, x_n] \), and in it we take the subring formed by all power series whose \( i \)-th coefficient has degree \( i \) for all \( i \geq 0 \). This subring is isomorphic to \( R[[x_1, x_2, \ldots, x_n]] \). This is how \( R[[x_1, x_2, \ldots, x_n]] \) is implemented in this class. The ring \( S \) is called the foreground polynomial ring, and the ring \( S[[T]] \) is called the background univariate power series ring.

AUTHORS:
- Niles Johnson (2010-07): initial code
- Simon King (2012-08, 2013-02): Use category and coercion framework, github issue #13412 and github issue #14084

```
class sage.rings.multi_power_series_ring.MPowerSeriesRing_generic(base_ring, num_gens, name_list, order='negdeglex', default_prec=10, sparse=False)
```

Bases: `PowerSeriesRing_generic`, `Nonexact`

A multivariate power series ring. This class is implemented as a single variable power series ring in the variable \( T \) over a multivariable polynomial ring in the specified generators. Each generator \( g \) of the multivariable polynomial ring (called the “foreground ring”) is mapped to \( g^*T \) in the single variable power series ring (called the “background ring”). The background power series ring is used to do arithmetic and track total-degree precision. The foreground polynomial ring is used to display elements.

For usage and examples, see above, and `PowerSeriesRing()`.

**Element**

alias of `MPowerSeries`
Return big oh with precision \( \text{prec} \). This function is an alias for \( \text{bigoh} \).

**EXAMPLES:**

```
sage: T.<a,b> = PowerSeriesRing(ZZ,2); T
Multivariate Power Series Ring in a, b over Integer Ring
sage: T.O(10)
0 + O(a, b)^10
sage: T.bigoh(10)
0 + O(a, b)^10
```

Return big oh with precision \( \text{prec} \). The function \( \text{O} \) does the same thing.

**EXAMPLES:**

```
sage: T.<a,b> = PowerSeriesRing(ZZ,2); T
Multivariate Power Series Ring in a, b over Integer Ring
sage: T.bigoh(10)
0 + O(a, b)^10
sage: T.O(10)
0 + O(a, b)^10
```

Returns the power series ring over \( R \) in the same variable as self. This function ignores the question of whether the base ring of self is or can extend to the base ring of \( R \); for the latter, use \text{base_extend}.

**EXAMPLES:**

```
sage: R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
sage: R.base_extend(RR) # needs sage.rings.real_mpfr
Multivariate Power Series Ring in t, u, v over Real Field with 53 bits of precision
sage: R.change_ring(IntegerModRing(10))
Multivariate Power Series Ring in t, u, v over Ring of integers modulo 10
sage: R.base_extend(IntegerModRing(10))
Traceback (most recent call last):
 ... typing error: no base extension defined
```

Return characteristic of base ring, which is characteristic of self.
EXAMPLES:

```python
sage: H = PowerSeriesRing(GF(65537),4, 'f'); H
needs sage.rings.finite_rings
Multivariate Power Series Ring in f0, f1, f2, f3 over
Finite Field of size 65537
sage: H.characteristic()
needs sage.rings.finite_rings
65537
```

**construction()**

Returns a functor F and base ring R such that F(R) == self.

EXAMPLES:

```python
sage: M = PowerSeriesRing(QQ, 4, 'f'); M
Multivariate Power Series Ring in f0, f1, f2, f3 over Rational Field
sage: (c,R) = M.construction(); (c,R)
(Completion[('f0', 'f1', 'f2', 'f3'), prec=12],
 Multivariate Polynomial Ring in f0, f1, f2, f3 over Rational Field)
sage: c
Completion[('f0', 'f1', 'f2', 'f3'), prec=12]
sage: c(R)
Multivariate Power Series Ring in f0, f1, f2, f3 over Rational Field
sage: c(R) == M
True
```

**gen**

Return the nth generator of self.

EXAMPLES:

```python
sage: M = PowerSeriesRing(ZZ, 10, 'v')
sage: M.gen(6)
v6
```

**is_dense()**

Is self dense? (opposite of sparse)

EXAMPLES:

```python
sage: M = PowerSeriesRing(ZZ, 3, 's,t,u'); M
Multivariate Power Series Ring in s, t, u over Integer Ring
sage: M.is_dense()
True
sage: N = PowerSeriesRing(ZZ, 3, 's,t,u', sparse=True); N
Sparse Multivariate Power Series Ring in s, t, u over Integer Ring
sage: N.is_dense()
False
```

**is_integral_domain**(proof=False)

Return True if the base ring is an integral domain; otherwise return False.

EXAMPLES:
sage: M = PowerSeriesRing(QQ, 4, 'v'); M
Multivariate Power Series Ring in v0, v1, v2, v3 over Rational Field
sage: M.is_integral_domain()
True

\textbf{is_noetherian}(\texttt{proof=False})

Power series over a Noetherian ring are Noetherian.

\textbf{EXAMPLES:}

sage: N = PowerSeriesRing(QQ, 4, 'v'); M
Multivariate Power Series Ring in v0, v1, v2, v3 over Rational Field
sage: M.is_noetherian()
True

sage: W = PowerSeriesRing(InfinitePolynomialRing(ZZ, 'a'), 2, 'x,y')
sage: W.is_noetherian()
False

\textbf{is_sparse}()

Is self sparse?

\textbf{EXAMPLES:}

sage: N = PowerSeriesRing(ZZ, 3, 's,t,u'); M
Multivariate Power Series Ring in s, t, u over Integer Ring
sage: M.is_sparse()
False

sage: N = PowerSeriesRing(ZZ, 3, 's,t,u', \texttt{sparse=True}); M
Sparse Multivariate Power Series Ring in s, t, u over Integer Ring
sage: N.is_sparse()
True

\textbf{laurent_series_ring}()

Laurent series not yet implemented for multivariate power series rings

\textbf{ngens}()

Return number of generators of self.

\textbf{EXAMPLES:}

sage: M = PowerSeriesRing(ZZ, 10, 'v')
sage: M.ngens()
10

\textbf{prec_ideal}()

Return the ideal which determines precision; this is the ideal generated by all of the generators of our background polynomial ring.

\textbf{EXAMPLES:}

sage: A.<s,t,u> = PowerSeriesRing(ZZ)
sage: A.prec_ideal()
Ideal (s, t, u) of
  Multivariate Polynomial Ring in s, t, u over Integer Ring
remove_var(*var)

Remove given variable or sequence of variables from self.

EXAMPLES:

```
sage: A.<s,t,u> = PowerSeriesRing(ZZ)
sage: A.remove_var(t)
Multivariate Power Series Ring in s, u over Integer Ring
sage: A.remove_var(s,t)
Power Series Ring in u over Integer Ring
```

```
sage: M = PowerSeriesRing(GF(5),5,'t'); M
Multivariate Power Series Ring in t0, t1, t2, t3, t4 over Finite Field of size 5
sage: M.remove_var(M.gens()[3])
Multivariate Power Series Ring in t0, t1, t2, t4 over Finite Field of size 5
```

Removing all variables results in the base ring:

```
sage: M.remove_var(*M.gens())
Finite Field of size 5
```

term_order()

Print term ordering of self. Term orderings are implemented by the TermOrder class.

EXAMPLES:

```
sage: M.<x,y,z> = PowerSeriesRing(ZZ,3)
sage: M.term_order()
Negative degree lexicographic term order
sage: m = y*z^12 - y^6*z^8 - x^7*y^5*z^2 + x*y^2*z + M.O(15); m
x*y^2*z + y*z^12 - x^7*y^5*z^2 - y^6*z^8 + O(x, y, z)^15
sage: N = PowerSeriesRing(ZZ,3,'x,y,z', order="deglex")
sage: N.term_order()
Degree lexicographic term order
sage: N(m)
-x^7*y^5*z^2 - y^6*z^8 + y*z^12 + x*y^2*z + O(x, y, z)^15
```

sage.rings.multi_power_series_ring.is_MPowerSeriesRing(x)

Return True if input is a multivariate power series ring.

sage.rings.multi_power_series_ring.unpickle_multi_power_series_ring_v0(base_ring, num_gens, names, order, default_prec, sparse)

Unpickle (deserialize) a multivariate power series ring according to the given inputs.

EXAMPLES:

```
sage: P.<x,y> = PowerSeriesRing(QQ)
sage: loads(dumps(P)) == P # indirect doctest
True
```
Construct and manipulate multivariate power series (in finitely many variables) over a given commutative ring. Multivariate power series are implemented with total-degree precision.

EXAMPLES:

Power series arithmetic, tracking precision:

```
sage: R.<s,t> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in s, t over Integer Ring

sage: f = 1 + s + 3*s^2; f
1 + s + 3*s^2

sage: g = t^2*s + 3*t^2*s^2 + R.O(5); g
s*t^2 + 3*s^2*t^2 + O(s, t)^5

sage: g = t^2*s + 3*t^2*s^2 + O(s, t)^5; g
s*t^2 + 3*s^2*t^2 + O(s, t)^5

sage: f = f.O(7); f
1 + s + 3*s^2 + O(s, t)^7

sage: f += s; f
1 + 2*s + 3*s^2 + O(s, t)^7

sage: f*g
s*t^2 + 5*s^2*t^2 + O(s, t)^5

sage: (f-1)*g
2*s^2*t^2 + 9*s^3*t^2 + O(s, t)^6

sage: f*g - g
2*s^2*t^2 + O(s, t)^5

sage: f *= s; f
s + 2*s^2 + 3*s^3 + O(s, t)^8

sage: f%2
s + s^3 + O(s, t)^8

sage: (f%2).parent()
Multivariate Power Series Ring in s, t over Ring of integers modulo 2
```

As with univariate power series, comparison of $f$ and $g$ is done up to the minimum precision of $f$ and $g$:

```
sage: f = 1 + t + s + s^t + R.O(3); f
1 + s + t + s^t + O(s, t)^3

sage: g = s^2 + 2*s^4 - s^5 + s^2*t^3 + R.O(6); g
s^2 + 2*s^4 - s^5 + s^2*t^3 + O(s, t)^6

sage: f == g
False
```

(continues on next page)
sage: g == g.add_bigoh(3)
True
sage: f < g
False
sage: f > g
True

Calling:

sage: f = s^2 + s*t + s^3 + s^2*t + 3*s^4 + 3*s^3*t + O(s, t)^5; f
s^2 + s*t + s^3 + s^2*t + 3*s^4 + 3*s^3*t + O(s, t)^5
sage: f(t, s)
s^t2 + s^t2 + t^3 + 3*s^t3 + 3*t^4 + O(s, t)^5
sage: f(t^2, s^2)
s^2*t^2 + t^4 + s^2*t^4 + t^6 + 3*s^2*t^6 + 3*t^8 + O(s, t)^10

Substitution is defined only for elements of positive valuation, unless \( f \) has infinite precision:

sage: f(t^2, s^2 + 1)
Traceback (most recent call last):
...TypeError: Substitution defined only for elements of positive valuation, unless self has infinite precision.

sage: g = f.truncate()

Substitution of power series with finite precision works too:

sage: f(s.O(2), t)
s^2 + s*t + O(s, t)^3
sage: f(f, f)
2*s^4 + 4*s^3*t + 2*s^2*t^2 + 4*s^4*t + 4*s^3*t^2 + 16*s^6 + 34*s^5*t + 20*s^4*t^2 + 2*s^3*t^3 + O(s, t)^7
sage: t(f, f)
s^2 + s*t + s^3 + s^2*t + 3*s^4 + 3*s^3*t + O(s, t)^5
sage: t(0, f) == s(f, 0)
True

The \( \text{subs} \) syntax works as expected:

sage: r0 = -t^2 - s^t^3 - 2*t^6 + s^7 + s^5*t^2 + R.O(10)
sage: r1 = s^4 - s^t^4 + s^6*t - 4*s^2*t^5 - 6*s^3*t^5 + R.O(10)
Construct ring homomorphisms from one power series ring to another:

```
sage: A.<a,b> = PowerSeriesRing(QQ)
sage: X.<x,y> = PowerSeriesRing(QQ)
sage: phi = Hom(A,X)([x,2*y]); phi
Ring morphism:
 From: Multivariate Power Series Ring in a, b over Rational Field
 To: Multivariate Power Series Ring in x, y over Rational Field
 Defn: a |---> x
 b |---> 2*y

sage: phi(a+b+3*a*b^2 + A.O(5))
x + 2*y + 12*x*y^2 + O(x, y)^5
```

Multiplicative inversion of power series:

```
sage: h = 1 + s + t + s*t + s^2*t^2 + 3*s^4 + 3*s^3*t + R.O(5)
sage: k = h^-1; k
1 - s - t + s^2 + s*t + t^2 - s^3 - s^2*t - t^3 - 2*s^4 - 2*s^3*t + s*t^3 + t^4 + O(s, t)^5

sage: h*k
1 + O(s, t)^5
```

```
sage: h = ~f; h
1 + 5*s^29 + 5*s^28*t + 4*s^18*t^35 +
....: 4*s^17*t^36 - s^45*t^25 - s^44*t^26 + s^7*t^83 +
....: s^6*t^84 + R.O(101)
sage: h = ~f; h
1 + 5*s^29 + 5*s^28*t - 4*s^18*t^35 - 4*s^17*t^36 + 25*s^58 + 50*s^57*t + 25*s^56*t^2 + s^45*t^25 + s^44*t^26 - 40*s^47*t^35 - 80*s^46*t^36 - 40*s^45*t^37 + 125*s^87 + 375*s^86*t + 375*s^85*t^2 + 125*s^84*t^3 - s^7*t^83 - s^6*t^84 + 10*s^74*t^25 + 20*s^73*t^26 + 10*s^72*t^27 + O(s, t)^101

```

AUTHORS:

- Niles Johnson (07/2010): initial code
- Simon King (08/2012): Use category and coercion framework, github issue #13412
sage: R.<u,v> = QQ[[[]]

sage: m = O(u, v)
sage: m^4
0 + O(u, v)^4

sage: m^1
0 + O(u, v)^1

sage: T.<a,b,c> = PowerSeriesRing(ZZ, 3)
sage: z = O(a, b, c)
sage: z^1
0 + O(a, b, c)^1

sage: 1 + a + z^1
1 + 0(a, b, c)^1

sage: w = 1 + a + O(a, b, c)^2; w
1 + a + O(a, b, c)^2

sage: w^2
1 + 2*a + O(a, b, c)^2

class sage.rings.multi_power_series_ring_element.MPowerSeries(parent, x=0, prec=+Infinity, is_gen=False, check=False)

Bases: PowerSeries

Multivariate power series; these are the elements of Multivariate Power Series Rings.

INPUT:

- parent – A multivariate power series.
- x – The element (default: 0). This can be another MPowerSeries object, or an element of one of the following:
  - the background univariate power series ring
  - the foreground polynomial ring
  - a ring that coerces to one of the above two
- prec – (default: infinity) The precision
- is_gen – (default: False) Is this element one of the generators?
- check – (default: False) Needed by univariate power series class

EXAMPLES:

Construct multivariate power series from generators:
Multivariate Power Series Ring in t₀, t₁, t₂, t₃, t₄
over Finite Field of size 3
sage: t = T.gens()
  t₀ + t₁*t₃ - t₄³ - t₀³*t₂²
sage: w = w.add_bigoh(5); w
  t₀ + t₁*t₃ - t₄³ + O(t₀, t₁, t₂, t₃, t₄)^5
sage: w in T
  True
sage: w
  t₀ + t₀*t₂ - t₄³ - t₀³*t₂² + O(t₀, t₁, t₂, t₃, t₄)^6

Get random elements:

sage: S.random_element(4)  # random
  -2*t + t² - 12*s³ + O(s, t)^4
sage: T.random_element(10)  # random
  -t₁²*t₃²*t₄² + t₁⁵*t₃³*t₄ + O(t₀, t₁, t₂, t₃, t₄)^10

Convert elements from polynomial rings:

sage: # needs sage.rings.finite_rings
sage: R = PolynomialRing(ZZ, 5, T.variable_names())
sage: t = R.gens()
sage: T(r)
  -t₂*t₃ + t₃² + t₄²
sage: r.parent()
  Multivariate Polynomial Ring in t₀, t₁, t₂, t₃, t₄ over Integer Ring
sage: r in T
  True

O(prec)

Return a multivariate power series of precision prec obtained by truncating self at precision prec.

This is the same as add_bigoh().

EXAMPLES:

sage: B.<x,y> = PowerSeriesRing(QQ); B
  Multivariate Power Series Ring in x, y over Rational Field
sage: r = 1 - x*y + x²
sage: r.O(4)
  1 + x² - x²*y + O(x, y)^4
sage: r.O(2)
  1 + O(x, y)^2

Note that this does not change self:

sage: r
  1 + x² - x²*y
\[ V(n) \]

If

\[ f = \sum a_{m_0, \ldots, m_k} x_0^{m_0} \ldots x_k^{m_k}, \]

then this function returns

\[ \sum a_{m_0, \ldots, m_k} x_0^{nm_0} \ldots x_k^{nm_k}. \]

The total-degree precision of the output is \( n \) times the precision of \( \text{self} \).

**EXAMPLES:**

```sage
sage: H = QQ[['x, y, z']]
sage: (x, y, z) = H.gens()
sage: h = -x*y^4*z^7 - 1/4*y*z^12 + 1/2*x^7*y^5*z^2 \\
 + 2/3*y^6*z^8 + H.O(15)
sage: h.V(3)
-x^3*y^12*z^21 - 1/4*y^3*z^36 + 1/2*x^21*y^15*z^6 + 2/3*y^18*z^24 + O(x, y, z)^\rightarrow 45
```

**add_bigoh(prec)**

Return a multivariate power series of precision \( \text{prec} \) obtained by truncating \( \text{self} \) at precision \( \text{prec} \).

This is the same as \( O() \).

**EXAMPLES:**

```sage
sage: B.<x,y> = PowerSeriesRing(QQ); B
Multivariate Power Series Ring in x, y over Rational Field
sage: r = 1 - x*y + x^2
sage: r.add_bigoh(4)
1 + x^2 - x*y + O(x, y)^4
sage: r.add_bigoh(2)
1 + O(x, y)^2
```

Note that this does not change \( \text{self} \):

```sage
sage: r
1 + x^2 - x*y
```

**coefficients()**

Return a dict of monomials and coefficients.

**EXAMPLES:**

```sage
sage: R.<s,t> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in s, t over Integer Ring
sage: f = 1 + t + s + s*t + R.O(3)
sage: f.coefficients()
{s*t: 1, t: 1, s: 1, 1: 1}
sage: (f^2).coefficients()
{t^2: 1, s*t: 4, s^2: 1, t: 2, s: 2, 1: 1}
sage: g = f^2 + f - 2; g
3*s + 3*t + s^2 + 5*s*t + t^2 + O(s, t)^3
```

(continues on next page)
sage: cd = g.coefficients()
sage: g2 = sum(k*v for (k,v) in cd.items()); g2
3*s + 3*t + s^2 + 5*s*t + t^2
sage: g2 == g.truncate()
True

**constant_coefficient()**

Return constant coefficient of self.

**EXAMPLES:**

```python
sage: R.<a,b,c> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in a, b, c over Integer Ring
sage: f = 3 + a + b - a*b - b*c - a*c + R.O(4)
sage: f.constant_coefficient()
3
sage: f.constant_coefficient().parent()
Integer Ring
```

**degree()**

Return degree of underlying polynomial of self.

**EXAMPLES:**

```python
sage: B.<x,y> = PowerSeriesRing(QQ)
sage: r = 1 - x*y + x^2
sage: r = r.add_bigoh(4); r
1 + x^2 - x*y + O(x, y)^4
sage: r.degree()
2
```

**derivative(*args)**

The formal derivative of this power series, with respect to variables supplied in args.

**EXAMPLES:**

```python
sage: T.<a,b> = PowerSeriesRing(ZZ, 2)
sage: f = a + b + a^2*b + T.O(5)
sage: f.derivative(a)
1 + 2*a*b + O(a, b)^4
sage: f.derivative(a,2)
2*b + O(a, b)^3
sage: f.derivative([a,a])
2*b + O(a, b)^3
sage: f.derivative([a,a])
2*b + O(a, b)^3
sage: f.derivative(a,5)
0 + O(a, b)^6
sage: f.derivative(a,6)
0 + O(a, b)^6
```
dict()

Return underlying dictionary with keys the exponents and values the coefficients of this power series.

EXAMPLES:

```python
sage: M = PowerSeriesRing(QQ,4,'t',sparse=True); M
Sparse Multivariate Power Series Ring in t0, t1, t2, t3 over Rational Field

sage: M.inject_variables()
Defining t0, t1, t2, t3

sage: m = 2/3*t0*t1^15*t3^48 - t0^15*t1^21*t2^28*t3^5
sage: m2 = 1/2*t0^12*t1^29*t2^46*t3^6 - 1/4*t0^39*t1^5*t2^23*t3^30 + M.O(100)

sage: s = m + m2

sage: s.dict()
{(1, 15, 0, 48): 2/3, (12, 29, 46, 6): 1/2, (15, 21, 28, 5): -1, (39, 5, 23, 30): -1/4}
```

egf()

Method from univariate power series not yet implemented

exp(prec=+Infinity)

Exponentiate the formal power series.

INPUT:

• prec – Integer or infinity. The degree to truncate the result to.

OUTPUT:

The exponentiated multivariate power series as a new multivariate power series.

EXAMPLES:

```python
sage: T.<a,b> = PowerSeriesRing(ZZ, 2)
sage: f = a + b + a*b + T.O(3)
sage: exp(f)
1 + a + b + 1/2*a^2 + 2*a*b + 1/2*b^2 + O(a, b)^3

sage: f.exp() # exp(f)
1 + a + b + 1/2*a^2 + 2*a*b + 1/2*b^2 + O(a, b)^3

sage: f.exp(prec=2)
1 + a + b + O(a, b)^2

sage: log(exp(f)) - f
O + O(a, b)^3
```

If the power series has a constant coefficient \( c \) and \( \exp(c) \) is transcendental, then \( \exp(f) \) would have to be a power series over the SymbolicRing. These are not yet implemented and therefore such cases raise an error:

```python
sage: g = 2 + f
sage: exp(g) # exp(g) # needs sage.symbolic
Traceback (most recent call last):
...
```

(continues on next page)
Another workaround for this limitation is to change base ring to one which is closed under exponentiation, such as \( \mathbb{R} \) or \( \mathbb{C} \):

```
sage: exp(g.change_ring(RDF))
7.38905609... + 7.38905609...*a + 3.69452804...*a^2 + 14.7781121...*a*b + 3.69452804...*b^2 + O(a, b)^3
```

If no precision is specified, the default precision is used:

```
sage: T.default_prec()
12
sage: exp(a)
1 + a + 1/2*a^2 + 1/6*a^3 + 1/24*a^4 + 1/120*a^5 + 1/720*a^6 + 1/5040*a^7 + 1/40320*a^8 + 1/362880*a^9 + 1/3628800*a^10 + 1/39916800*a^11 + 0(a, b)^12
sage: a.exp(prec=5)
1 + a + 1/2*a^2 + 1/6*a^3 + 1/24*a^4 + O(a, b)^5
sage: exp(a + T.O(5))
1 + a + 1/2*a^2 + 1/6*a^3 + 1/24*a^4 + O(a, b)^5
```

### exponents()

Return a list of tuples which hold the exponents of each monomial of `self`.

**EXAMPLES:**

```
sage: H = QQ[['x,y']]
sage: (x,y) = H.gens()
sage: h = -y^2 - x*y^3 - 6/5*y^6 - x^7 + 2*x^5*y^2 + H.O(10)
sage: h
-ex^2 + x*y^3 - 6/5*y^6 - x^7 + 2*x^5*y^2 + O(x, y)^10
sage: h.exponents()
[(0, 2), (1, 3), (0, 6), (7, 0), (5, 2)]
```

### integral(*args)

The formal integral of this multivariate power series, with respect to variables supplied in `args`.

The variable sequence `args` can contain both variables and counts; for the syntax, see `derivative_parse()`.

**EXAMPLES:**

```
sage: T.<a,b> = PowerSeriesRing(QQ, 2)
sage: f = a + b + a^2*b + T.O(5)
sage: f.integral(a, 2)
1/6*a^3 + 1/2*a^2*b + 1/12*a^4*b + O(a, b)^7
sage: f.integral(a, b)
1/2*a^2*b + 1/2*a*b^2 + 1/6*a^3*b^2 + O(a, b)^7
sage: f.integral(a, 5)
1/720*a^6 + 1/120*a^5*b + 1/2520*a^7*b + O(a, b)^10
```

Only integration with respect to variables works:
### is_nilpotent()]

Return True if self is nilpotent. This occurs if

- self has finite precision and positive valuation, or
- self is constant and nilpotent in base ring.

Otherwise, return False.

**Warning:** This is so far just a sufficient condition, so don’t trust a False output to be legit!

**Todo:** What should we do about this method? Is nilpotency of a power series even decidable (assuming a nilpotency oracle in the base ring)? And I am not sure that returning True just because the series has finite
precision and zero constant term is a good idea.

EXAMPLES:

```python
sage: R.<a,b,c> = PowerSeriesRing(Zmod(8)); R
Multivariate Power Series Ring in a, b, c over Ring of integers modulo 8
sage: f = a + b + c + a^2*c
sage: f.is_nilpotent()
False
sage: f = f.O(4); f
a + b + c + a^2*c + O(a, b, c)^4
sage: f.is_nilpotent()
True
sage: g = R(2)
```

```python
sage: g.is_nilpotent()
True
sage: (g.O(4)).is_nilpotent()
True
sage: S = R.change_ring(QQ)
```

```python
sage: S(g).is_nilpotent()
False
sage: S(g.O(4)).is_nilpotent()
False
```

**is_square()**

Method from univariate power series not yet implemented.

**is_unit()**

A multivariate power series is a unit if and only if its constant coefficient is a unit.

EXAMPLES:

```python
sage: R.<a,b> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in a, b over Integer Ring
sage: f = 2 + a^2 + a*b + a^3 + R.O(9)
```

```python
sage: f.is_unit()
False
```

```python
sage: f.base_extend(QQ).is_unit()
True
```

```python
sage: (O(a,b)^0).is_unit()
False
```

**laurent_series()**

Not implemented for multivariate power series.

**list()**

Doesn’t make sense for multivariate power series. Multivariate polynomials don’t have list of coefficients either.

**log(prec=+Infinity)**

Return the logarithm of the formal power series.

INPUT:
•  prec – Integer or infinity. The degree to truncate the result to.

OUTPUT:

The logarithm of the multivariate power series as a new multivariate power series.

EXAMPLES:

```
sage: T.<a,b> = PowerSeriesRing(ZZ, 2)
sage: f = 1 + a + b + a*b + T.O(5)
sage: f.log()
a + b - 1/2*a^2 - 1/2*b^2 + 1/3*a^3 + 1/3*b^3 - 1/4*a^4 - 1/4*b^4 + O(a, b)^5
```

If the power series has a constant coefficient $c$ and $\exp(c)$ is transcendental, then $\exp(f)$ would have to be a power series over the `SymbolicRing`. These are not yet implemented and therefore such cases raise an error:

```
sage: g = 2 + f
sage: log(g)
needs sage.symbolic
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for -: 'Symbolic Ring' and 'Power Series Ring in Tbg over Multivariate Polynomial Ring in a, b over Rational Field'
```

Another workaround for this limitation is to change base ring to one which is closed under exponentiation, such as $\mathbb{R}$ or $\mathbb{C}$:

```
sage: log(g.change_ring(RDF))
1.09861228... + 0.333333333...*a + 0.333333333...*b - 0.055555555...*a^2 + 0.222222222...*a*b - 0.055555555...*b^2 + 0.123456790...*a^3 - 0.074074074...*a^2*b - 0.074074074...*a*b^2 + 0.0123456790...*b^3 - 0.00308641975...*a^4 + 0.0246913580...*a^3*b + 0.0246913580...*a*b^3 - 0.00308641975...*b^4 + O(a, b)^5
```

`monomials()`

Return a list of monomials of `self`.

These are the keys of the dict returned by `coefficients()`.

EXAMPLES:

```
sage: R.<a,b,c> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in a, b, c over Integer Ring
sage: f = 1 + a + b - a*b - b*c - a*c + R.O(4)
sage: sorted(f.monomials())
[b*c, a*c, a*b, b, a, 1]
sage: f = 1 + 2*a + 7*b - 2*a*b - 4*b*c - 13*a*c + R.O(4)
sage: sorted(f.monomials())
[b*c, a*c, a*b, b, a, 1]
sage: f = R.zero()
```

(continues on next page)
sage: f.monomials()
[]

ogf()
   Method from univariate power series not yet implemented

padded_list()
   Method from univariate power series not yet implemented.

polynomial()
   Return the underlying polynomial of self as an element of the underlying multivariate polynomial ring (the “foreground polynomial ring”).

   EXAMPLES:

sage: M = PowerSeriesRing(QQ,4,'t'); M
Multivariate Power Series Ring in t0, t1, t2, t3 over Rational Field
sage: t = M.gens()
     - 1/4*t[0]*t[1]*t[2]^7 + M.O(10)
sage: f
1/2*t0^3*t1^3*t2^2 + 2/3*t0*t2^6*t3 - t0^3*t1^3*t3^3 - 1/4*t0*t1*t2^7 + O(t0, t1, t2, t3)^10
sage: f.polynomial()
1/2*t0^3*t1^3*t2^2 + 2/3*t0*t2^6*t3 - t0^3*t1^3*t3^3 - 1/4*t0*t1*t2^7
sage: f.polynomial().parent()
Multivariate Polynomial Ring in t0, t1, t2, t3 over Rational Field

Contrast with truncate():

sage: f.truncate()
1/2*t0^3*t1^3*t2^2 + 2/3*t0*t2^6*t3 - t0^3*t1^3*t3^3 - 1/4*t0*t1*t2^7
sage: f.truncate().parent()
Multivariate Power Series Ring in t0, t1, t2, t3 over Rational Field

prec()
   Return precision of self.

   EXAMPLES:

sage: R.<a,b,c> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in a, b, c over Integer Ring
sage: f = 3 + a + b - a*b - b*c - a*c + R.O(4)
sage: f.prec()
4
sage: f.truncate().prec() +Infinity

quo_rem(other, precision=None)
   Return the pair of quotient and remainder for the increasing power division of self by other.
If \(a\) and \(b\) are two elements of a power series ring \(R[[x_1, x_2, \cdots, x_n]]\) such that the trailing term of \(b\) is invertible in \(R\), then the pair of quotient and remainder for the increasing power division of \(a\) by \(b\) is the unique pair \((u, v) \in R[[x_1, x_2, \cdots, x_n]] \times R[x_1, x_2, \cdots, x_n]\) such that \(a = bu + v\) and such that no monomial appearing in \(v\) divides the trailing monomial \(\text{trailing_monomial()}\) of \(b\). Note that this depends on the order of the variables.

This method returns both quotient and remainder as power series, even though in mathematics, the remainder for the increasing power division of two power series is a polynomial. This is because Sage’s power series come with a precision, and that precision is not always sufficient to determine the remainder completely. Disregarding this issue, the \text{polynomial()} method can be used to recast the remainder as an actual polynomial.

**INPUT:**

- \text{other} – an element of the same power series ring as \text{self} such that the trailing term of \text{other} is invertible in \text{self} (this is automatically satisfied if the base ring is a field, unless \text{other} is zero)
- \text{precision} – (default: the default precision of the parent of \text{self}) nonnegative integer, determining the precision to be cast on the resulting quotient and remainder if both \text{self} and \text{other} have infinite precision (ignored otherwise); note that the resulting precision might be lower than this integer

**EXAMPLES:**

```
sage: # needs sage.libs.singular
sage: R.<a,b,c> = PowerSeriesRing(ZZ)
sage: f = 1 + a + b - a*b + R.O(3)
sage: g = 1 + 2*a - 3*a*b + R.O(3)
sage: q, r = f.quo_rem(g); q, r
(1 - a + b + 2*a^2 + O(a, b, c)^3, 0 + O(a, b, c)^3)
sage: f == q*g + r
True
sage: q, r = (a*f).quo_rem(g); q, r
(a - a^2 + a*b + 2*a^3 + O(a, b, c)^4, 0 + O(a, b, c)^4)
sage: a*f == q*(a*g) + r
True
sage: q, r = (a*f).quo_rem(a*g); q, r
(1 - a + b + 2*a^2 + O(a, b, c)^3, 0 + O(a, b, c)^4)
sage: a^2 == q*(a^g) + r
True
sage: q, r = (a*f).quo_rem(b*g); q, r
(a - 3*a^2 + O(a, b, c)^3, a + a^2 + 0(a, b, c)^4)
sage: a^2 == q*(b^g) + r
True
```

Trying to divide two polynomials, we run into the issue that there is no natural setting for the precision of the quotient and remainder (and if we wouldn’t set a precision, the algorithm would never terminate). Here, default precision comes to our help:

```
sage: # needs sage.libs.singular
sage: (1 + a^3).quo_rem(a + a^2)
(a^2 - a^3 + a^4 - a^5 + a^6 - a^7 + a^8 - a^9 + a^10 + O(a, b, c)^11, 1 + O(a, b, c)^12)
sage: (1 + a^3 + a^2).quo_rem(b + c)
(a + 0(a, b, c)^11, 1 - a^c + a^3 + O(a, b, c)^12)
sage: (1 + a^3 + a^2).quo_rem(b + c, precision=17)
(a + 0(a, b, c)^16, 1 - a^c + a^3 + O(a, b, c)^17)
```

(continues on next page)
Illustrating the dependency on the ordering of variables:

\[
\text{sage: } \frac{1 + a + a^{15}}{a^2} \text{ (precision=15)}
\]
\[
= \frac{1 + a + a^{15}}{a^2} \text{ (precision=16)}
\]

shift\(n\)

Doesn’t make sense for multivariate power series.

\text{solve_linear_de}(\text{prec=}+\text{Infinity, } b=\text{None, } f0=\text{None})

Not implemented for multivariate power series.

sqrt()

Method from univariate power series not yet implemented. Depends on square root method for multivariate polynomials.

\text{square_root()}\)

Method from univariate power series not yet implemented. Depends on square root method for multivariate polynomials.

\text{trailing_monomial()}

Return the trailing monomial of self.

This is defined here as the lowest term of the underlying polynomial.

EXAMPLES:

\[
\text{sage: } R.<a,b,c> = \text{PowerSeriesRing}(\text{ZZ})
\]
\[
\text{sage: } f = 1 + a + b - a^b + R.O(3)
\]
\[
\text{sage: } f\text{.trailing_monomial()}
\]
\[
= 1
\]
\[
\text{sage: } f = a^2b^3; f
\]
\[
a^2b^3 + a^3b^3 + a^2b^4 - a^3b^4 + O(a, b, c)^8
\]
\[
\text{sage: } f\text{.trailing_monomial()}
\]
\[
a^2b^3
\]
\textbf{truncate}($\texttt{prec=+Infinity}$)

Return infinite precision multivariate power series formed by truncating \texttt{self} at precision \texttt{prec}.

\textbf{EXAMPLES:}

```sage
M = PowerSeriesRing(QQ,4,'t'); M
Multivariate Power Series Ring in t0, t1, t2, t3 over Rational Field
sage: t = M.gens()
sage: f
1/2*t0^3*t1^3*t2^2 + 2/3*t0*t2^6*t3 - t0^3*t1^3*t3^3 - 1/4*t0*t1*t2^7
```

Contrast with polynomial:

```sage
sage: f.polynomial()
1/2*t0^3*t1^3*t2^2 + 2/3*t0*t2^6*t3 - t0^3*t1^3*t3^3 - 1/4*t0*t1*t2^7
```

\textbf{valuation}()

Return the valuation of \texttt{self}.

The valuation of a power series $f$ is the highest nonnegative integer $k$ less or equal to the precision of $f$ and such that the coefficient of $f$ before each term of degree $< k$ is zero. (If such an integer does not exist, then the valuation is the precision of $f$ itself.)

\textbf{EXAMPLES:}

```sage
needs sage.rings.finite_rings
sage: R.<a,b> = PowerSeriesRing(GF(4949717)); R
Multivariate Power Series Ring in a, b over Finite Field of size 4949717
sage: f = a^2 + a*b + a^3 + R.O(9)
sage: f.valuation()
2
sage: g = 1 + a + a^3
sage: g.valuation()
0
sage: R.zero().valuation()
+Infinity
```

\textbf{valuation_zero_part}()

Doesn't make sense for multivariate power series; valuation zero with respect to which variable?

\textbf{variable}()

Doesn't make sense for multivariate power series.
variables()
Return tuple of variables occurring in self.

EXAMPLES:

```
sage: T = PowerSeriesRing(GF(3),5,'t'); T
Multivariate Power Series Ring in t0, t1, t2, t3, t4 over
Finite Field of size 3
sage: t = T.gens()
sage: w
5*t[4]^3 - t[0]^3*t[2]^2 + O(t[0], t[1], t[2], t[3], t[4])^6
```

```
sage.rings.multi_power_series_ring_element.is_MPowerSeries(f)
Return True if f is a multivariate power series.
```
EXAMPLES:

```python
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.base_ring()
Rational Field
sage: S = LaurentSeriesRing(GF(17)[x], y)
sage: S
Laurent Series Ring in y over Univariate Polynomial Ring in x over Finite Field of size 17
sage: S.base_ring()
Univariate Polynomial Ring in x over Finite Field of size 17
```

See also:

- `sage.misc.defaults.set_series_precision()`

```python
class sage.rings.laurent_series_ring.LaurentSeriesRing(power_series)
```

Univariate Laurent Series Ring.

EXAMPLES:

```python
sage: R = LaurentSeriesRing(QQ, 'x'); R
Laurent Series Ring in x over Rational Field
sage: x = R.0
sage: g = 1 - x + x^2 - x^4 + O(x^8); g
1 - x + x^2 - x^4 + O(x^8)
```

You can also use more mathematical notation when the base is a field:

```python
sage: Frac(QQ[[x]])
Laurent Series Ring in x over Rational Field
sage: Frac(GF(5)[y])
Fraction Field of Univariate Polynomial Ring in y over Finite Field of size 5
```

When the base ring is a domain, the fraction field is the Laurent series ring over the fraction field of the base ring:

```python
sage: Frac(ZZ[[t]])
Laurent Series Ring in t over Rational Field
```
Laurent series rings are determined by their variable and the base ring, and are globally unique:

```
sage: # needs sage.rings.padics
sage: K = Qp(5, prec=5)
sage: L = Qp(5, prec=200)
sage: R.<x> = LaurentSeriesRing(K)
sage: S.<y> = LaurentSeriesRing(L)
sage: R is S
False
sage: T.<y> = LaurentSeriesRing(Qp(5, prec=200))
sage: S is T
True
sage: W.<y> = LaurentSeriesRing(Qp(5, prec=199))
sage: W is T
False

sage: K = LaurentSeriesRing(CC, 'q'); K
Laurent Series Ring in q over Complex Field with 53 bits of precision
sage: loads(K.dumps()) == K
True
```

When the base ring \(k\) is a field, the ring \(k((x))\) is a CDVF, that is a field equipped with a discrete valuation for which it is complete. The appropriate (sub)category is automatically set in this case:

```
sage: k = GF(11)
sage: R.<x> = k[[x]]
sage: F = Frac(R)
sage: F.category()
Join of Category of complete discrete valuation fields and
Category of commutative algebras over (finite enumerated fields and
subquotients of monoids and quotients of semigroups) and
Category of infinite sets
sage: TestSuite(F).run()
```

Element

alias of `LaurentSeries`

`base_extend(R)`

Return the Laurent series ring over \(R\) in the same variable as self, assuming there is a canonical coerce map from the base ring of self to \(R\).

EXAMPLES:

```
sage: K.<x> = LaurentSeriesRing(QQ, default_prec=4)
sage: K.base_extend(QQ['t'])
Laurent Series Ring in x over Univariate Polynomial Ring in t over Rational
```

`change_ring(R)`
EXAMPLES:

```sage
sage: K.<x> = LaurentSeriesRing(QQ, default_prec=4)
sage: R = K.change_ring(ZZ); R
Laurent Series Ring in x over Integer Ring
sage: R.default_prec()
4
```

`characteristic()`

EXAMPLES:

```sage
sage: R.<x> = LaurentSeriesRing(GF(17))
sage: R.characteristic()
17
```

`construction()`

Return the functorial construction of this Laurent power series ring.

The construction is given as the completion of the Laurent polynomials.

EXAMPLES:

```sage
sage: L.<t> = LaurentSeriesRing(ZZ, default_prec=42)
sage: phi, arg = L.construction()
sage: phi
Completion[t, prec=42]
sage: arg
Univariate Laurent Polynomial Ring in t over Integer Ring
sage: phi(arg) is L
True
```

Because of this construction, pushout is automatically available:

```sage
sage: 1/2 * t
1/2*t
sage: parent(1/2 * t)
Laurent Series Ring in t over Rational Field
sage: QQbar.gen() * t
needs sage.rings.number_field
I*t
sage: parent(QQbar.gen() * t)
needs sage.rings.number_field
Laurent Series Ring in t over Algebraic Field
```

`default_prec()`

Get the precision to which exact elements are truncated when necessary (most frequently when inverting).

EXAMPLES:

```sage
sage: R.<x> = LaurentSeriesRing(QQ, default_prec=5)
sage: R.default_prec()
5
```
fraction_field()

Return the fraction field of this ring of Laurent series.

If the base ring is a field, then Laurent series are already a field. If the base ring is a domain, then the Laurent series over its fraction field is returned. Otherwise, raise a ValueError.

EXAMPLES:

```python
sage: R = LaurentSeriesRing(ZZ, 't', 30).fraction_field()
sage: R
Laurent Series Ring in t over Rational Field
sage: R.default_prec()
30
sage: LaurentSeriesRing(Zmod(4), 't').fraction_field()
Traceback (most recent call last):
... ValueError: must be an integral domain
```

gen(n=0)

EXAMPLES:

```python
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.gen()
x
```

is_dense()

EXAMPLES:

```python
sage: K.<x> = LaurentSeriesRing(QQ, sparse=True)
sage: K.is_dense()
False
```

is_exact()

Laurent series rings are inexact.

EXAMPLES:

```python
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.is_exact()
False
```

is_field(proof=True)

A Laurent series ring is a field if and only if the base ring is a field.

is_sparse()

Return if self is a sparse implementation.

EXAMPLES:

```python
sage: K.<x> = LaurentSeriesRing(QQ, sparse=True)
sage: K.is_sparse()
True
```
laurent_polynomial_ring()

If this is the Laurent series ring \( R((t)) \), return the Laurent polynomial ring \( R[t, 1/t] \).

EXAMPLES:

```
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.laurent_polynomial_ring()
Univariate Laurent Polynomial Ring in x over Rational Field
```

gens()

Laurent series rings are univariate.

EXAMPLES:

```
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.ngens()
1
```

polynomial_ring()

If this is the Laurent series ring \( R((t)) \), return the polynomial ring \( R[t] \).

EXAMPLES:

```
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.polynomial_ring()
Univariate Polynomial Ring in x over Rational Field
```

power_series_ring()

If this is the Laurent series ring \( R((t)) \), return the power series ring \( R[[t]] \).

EXAMPLES:

```
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.power_series_ring()
Power Series Ring in x over Rational Field
```

random_element(algorithm='default')

Return a random element of this Laurent series ring.

The optional algorithm parameter decides how elements are generated. Algorithms currently implemented:

- 'default': Choose an integer shift using the standard distribution on the integers. Then choose a list of coefficients using the random_element function of the base ring, and construct a new element based on those coefficients, so that the i-th coefficient corresponds to the (i+shift)-th power of the uniformizer. The amount of coefficients is determined by the default_prec of the ring. Note that this method only creates non-exact elements.

EXAMPLES:

```
sage: S.<s> = LaurentSeriesRing(GF(3))
sage: S.random_element() # random
s^-8 + s^-7 + s^-6 + s^-5 + s^-1 + s + s^3 + s^4 + s^5 + 2*s^6 + s^7 + s^11 + O(s^12)
```

**residue_field()**

Return the residue field of this Laurent series field if it is a complete discrete valuation field (i.e. if the base ring is a field, in which base it is also the residue field).

**EXAMPLES:**

```
sage: R.<x> = LaurentSeriesRing(GF(17))
sage: R.residue_field()
Finite Field of size 17
```

```
sage: R.<x> = LaurentSeriesRing(ZZ)
sage: R.residue_field()
Traceback (most recent call last):
 ...:
TypeError: the base ring is not a field
```

**uniformizer()**

Return a uniformizer of this Laurent series field if it is a discrete valuation field (i.e. if the base ring is actually a field). Otherwise, an error is raised.

**EXAMPLES:**

```
sage: R.<t> = LaurentSeriesRing(QQ)
sage: R.uniformizer()
t
```

```
sage: R.<t> = LaurentSeriesRing(ZZ)
sage: R.uniformizer()
Traceback (most recent call last):
 ...:
TypeError: the base ring is not a field
```

**sage.rings.laurent_series_ring.is_LaurentSeriesRing(x)**

Return True if this is a *univariate* Laurent series ring.

This is in keeping with the behavior of is_PolynomialRing versus is_MPolynomialRing.
EXAMPLES:

```
sage: R.<t> = LaurentSeriesRing(GF(7), 't'); R
Laurent Series Ring in t over Finite Field of size 7
sage: f = 1/(1-t+O(t^10)); f
1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + t^9 + O(t^10)
```

Laurent series are immutable:

```
sage: f[2]
1
Traceback (most recent call last):
... IndexError: Laurent series are immutable
```

We compute with a Laurent series over the complex mpfr numbers.

```
sage: K.<q> = Frac(CC[['q']]); K
needs sage.rings.real_mpfr
Laurent Series Ring in q over Complex Field with 53 bits of precision
sage: q
needs sage.rings.real_mpfr
1.00000000000000*q
```

Saving and loading.

```
sage: loads(q.dumps()) == q
needs sage.rings.real_mpfr
True
sage: loads(K.dumps()) == K
needs sage.rings.real_mpfr
True
```

IMPLEMENTATION: Laurent series in Sage are represented internally as a power of the variable times the unit part (which need not be a unit - it’s a polynomial with nonzero constant term). The zero Laurent series has unit part 0.

AUTHORS:

- William Stein: original version
- David Joyner (2006-01-22): added examples
• Robert Bradshaw: Cython version

class sage.rings.laurent_series_ring_element.LaurentSeries
  
  Bases: AlgebraElement

  A Laurent Series.
  
  We consider a Laurent series of the form $t^n \cdot f$ where $f$ is a power series.

  INPUT:
  
  • parent – a Laurent series ring
  • $f$ – a power series (or something can be coerced to one); note that $f$ does not have to be a unit
  • $n$ – (default: 0) integer

  $O(prec)$
  
  Return the Laurent series of precision at most $prec$ obtained by adding $O(q^{prec})$, where $q$ is the variable.

  The precision of $self$ and the integer $prec$ can be arbitrary. The resulting Laurent series will have precision equal to the minimum of the precision of $self$ and $prec$. The term $O(q^{prec})$ is the zero series with precision $prec$.

  See also $add_bigoh()$.

  EXAMPLES:

  
  sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = t^-5 + t^-4 + t^3 + O(t^10); f
  t^-5 + t^-4 + t^3 + O(t^10)
sage: f.O(-4)
t^-5 + O(t^-4)
sage: f.O(15)
t^-5 + t^-4 + t^3 + O(t^10)

  $V(n)$
  
  Return the $n$-th Verschiebung of $self$.

  If $f = \sum a_m x^m$ then this function returns $\sum a_m x^{mn}$.

  EXAMPLES:

  
  sage: R.<x> = LaurentSeriesRing(QQ)
sage: f = -1/x + 1 + 2*x^2 + 5*x^5
  sage: f.V(2)
  -x^-2 + 1 + 2*x^4 + 5*x^10
  sage: f.V(-1)
  5*x^-5 + 2*x^-2 + 1 - x
  sage: h = f.add_bigoh(7)
sage: h.V(2)
  -x^-2 + 1 + 2*x^4 + 5*x^10 + O(x^14)
sage: h.V(-2)
  Traceback (most recent call last):
  ... ValueError: For finite precision only positive arguments allowed

  $add_bigoh(prec)$
  
  Return the truncated series at chosen precision $prec$. 
See also \( O() \).

INPUT:

- \( \text{prec} \) – the precision of the series as an integer

EXAMPLES:

```python
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = t^2 + t^3 + O(t^10); f
\(t^2 + t^3 + O(t^{10}) \)
sage: f.add_bigoh(5)
\(t^2 + t^3 + O(t^{5}) \)
```

**change_ring** \((R)\)

Change the base ring of \( \text{self} \).

EXAMPLES:

```python
sage: R.<q> = LaurentSeriesRing(ZZ)
sage: p = R([1,2,3]); p
1 + 2*q + 3*q^2
sage: p.change_ring(GF(2))
1 + q^2
```

**coefficients**()

Return the nonzero coefficients of \( \text{self} \).

EXAMPLES:

```python
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = -5/t^(2) + t + t^2 - 10/3*t^3
sage: f.coefficients()
[-5, 1, 1, -10/3]
```

**common_prec** \((\text{other})\)

Return the minimum precision of \( \text{self} \) and \( \text{other} \).

EXAMPLES:

```python
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = t^(-1) + t + t^2 + O(t^3)
sage: g = t + t^3 + t^4 + O(t^4)
sage: f.common_prec(g)
3
sage: g.common_prec(f)
3
sage: f = t + t^2 + O(t^3)
sage: g = t^(-3) + t^2
sage: f.common_prec(g)
3
sage: g.common_prec(f)
3
```
sage: f = t + t^2
sage: g = t^2
sage: f.common_prec(g)
+Infinity

sage: f = t^(-3) + O(t^(-2))
sage: g = t^(-5) + O(t^(-1))
sage: f.common_prec(g)
-2

common_valuation(other)

Return the minimum valuation of \texttt{self} and \texttt{other}.

EXAMPLES:

sage: R.<t> = LaurentSeriesRing(QQ)

sage: f = t^(-1) + t + t^2 + O(t^3)

sage: g = t + t^3 + t^4 + O(t^4)

sage: f.common_valuation(g)
-1

sage: g.common_valuation(f)
-1

sage: f = t + t^2 + O(t^3)

sage: g = t^(-3) + t^2

sage: f.common_valuation(g)
-3

sage: g.common_valuation(f)
-3

sage: f = t + t^2

sage: g = t^2

sage: f.common_valuation(g)
1

sage: f = t^(-3) + O(t^(-2))

sage: g = t^(-5) + O(t^(-1))

sage: f.common_valuation(g)
-5

sage: f = O(t^2)

sage: g = O(t^5)

sage: f.common_valuation(g)
+Infinity
**degree()**

Return the degree of a polynomial equivalent to this power series modulo big oh of the precision.

**EXAMPLES:**

```
sage: x = Frac(QQ[['x']]).0
sage: g = x^2 - x^4 + O(x^8)
sage: g.degree()
4
sage: g = -10/x^5 + x^2 - x^4 + O(x^8)
sage: g.degree()
4
sage: (x^2 + O(x^0)).degree()
-2
```

**derivative(*args)**

The formal derivative of this Laurent series, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

**See also:**

匍._derivative()_

**EXAMPLES:**

```
sage: R.<x> = LaurentSeriesRing(QQ)
sage: g = 1/x^10 - x + x^2 - x^4 + O(x^8)
sage: g.derivative()
-10*x^-11 - 1 + 2*x - 4*x^3 + O(x^7)
sage: g.derivative(x)
-10*x^-11 - 1 + 2*x - 4*x^3 + O(x^7)
sage: R.<t> = PolynomialRing(ZZ)
sage: S.<x> = LaurentSeriesRing(R)
sage: f = 2*t/x + (3*t^2 + 6*t)*x + O(x^2)
sage: f.derivative()
-2*t*x^-2 + (3*t^2 + 6*t) + O(x)
sage: f.derivative(x)
-2*t*x^-2 + (3*t^2 + 6*t) + O(x)
sage: f.derivative(t)
2*x^-1 + (6*t + 6)*x + O(x^2)
```

**exponents()**

Return the exponents appearing in self with nonzero coefficients.

**EXAMPLES:**

```
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = -5/t^(2) + t + t^2 - 10/3*t^3
sage: f.exponents()
[-2, 1, 2, 3]
```

**integral()**

The formal integral of this Laurent series with 0 constant term.
EXAMPLES: The integral may or may not be defined if the base ring is not a field.

```
sage: t = LaurentSeriesRing(ZZ, 't').0
sage: f = 2*t^-3 + 3*t^2 + O(t^4)
sage: f.integral()
-t^-2 + t^3 + O(t^5)
```

```
sage: f = t^3
sage: f.integral()
Traceback (most recent call last):
 ... ArithmeticError: Coefficients of integral cannot be coerced into the base ring
```

The integral of $1/t$ is $\log(t)$, which is not given by a Laurent series:

```
sage: t = Frac(QQ[[[t]]) .0
sage: f = -1/t^3 - 31/t + O(t^3)
sage: f.integral()
Traceback (most recent call last):
 ... ArithmeticError: The integral of is not a Laurent series, since t^{-1} has a non-zero coefficient.
```

Another example with just one negative coefficient:

```
sage: A.<t> = QQ[[[]]

sage: f = -2*t^(-4) + O(t^8)
sage: f.integral()
2/3*t^-3 + O(t^9)
sage: f.integral().derivative() == f
True
```

**inverse()**

Return the inverse of self, i.e., $s^{-1}$.

**EXAMPLES:**

```
sage: R.<t> = LaurentSeriesRing(ZZ)
sage: t.inverse()
t^-1
sage: (1-t).inverse()
t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + ...
```

**is_monomial()**

Return True if this element is a monomial. That is, if self is $x^n$ for some integer $n$.

**EXAMPLES:**

```
sage: k.<z> = LaurentSeriesRing(QQ, 'z')
sage: (30*z).is_monomial()
False
sage: k(1).is_monomial()
True
sage: (z+1).is_monomial()
```

(continues on next page)
False
sage: (z^-2909).is_monomial()
True
sage: (3*z^-2909).is_monomial()
False

is_unit()
Return True if this is Laurent series is a unit in this ring.

EXAMPLES:

sage: R.<t> = LaurentSeriesRing(QQ)
sage: (2 + t).is_unit()
True
sage: f = 2 + t^2 + O(t^10); f.is_unit()
True
sage: 1/f
1/2 - 1/4*t^2 + 1/8*t^4 - 1/16*t^6 + 1/32*t^8 + O(t^10)
sage: R(0).is_unit()
False
sage: R.<s> = LaurentSeriesRing(ZZ)
sage: f = 2 + s^2 + O(s^10)
sage: f.is_unit()
False
sage: 1/f
Traceback (most recent call last):
...
ValueError: constant term 2 is not a unit

ALGORITHM: A Laurent series is a unit if and only if its “unit part” is a unit.

is_zero()

EXAMPLES:

sage: x = Frac(QQ[['x']]).0
sage: f = 1/x + x + x^2 + 3*x^4 + O(x^7)
sage: f.is_zero()
0
sage: z = f^0
sage: z.is_zero()
1

laurent_polynomial()
Return the corresponding Laurent polynomial.

EXAMPLES:

sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = t^-3 + t + 7*t^2 + O(t^5)
sage: g = f.laurent_polynomial(); g
t^-3 + t + 7*t^2
sage: g.parent()
Univariate Laurent Polynomial Ring in t over Rational Field
lift_to_precision(absprec=None)

Return a congruent Laurent series with absolute precision at least absprec.

INPUT:

- absprec – an integer or None (default: None), the absolute precision of the result. If None, lifts to an exact element.

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: A.<t> = LaurentSeriesRing(GF(5))
sage: x = t^(-1) + t^2 + O(t^5)
sage: x.lift_to_precision(10)
t^-1 + t^2 + O(t^10)
sage: x.lift_to_precision()
t^-1 + t^2
```

list()

EXAMPLES:

```
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = -5/t^2 + t + t^2 - 10/3*t^3
sage: f.list()
[-5, 0, 0, 1, 1, -10/3]
```

nth_root(n, prec=None)

Return the n-th root of this Laurent power series.

INPUT:

- n – integer
- prec – integer (optional) - precision of the result. Though, if this series has finite precision, then the result cannot have larger precision.

EXAMPLES:

```
sage: R.<x> = LaurentSeriesRing(QQ)
sage: (x^-2 + 1 + x).nth_root(2)
x^-1 + 1/2*x + 1/2*x^2 - ... - 19437/65536*x^18 + O(x^19)
sage: (x^-2 + 1 + x).nth_root(2)**2
x^-2 + 1 + x + O(x^18)
sage: # needs sage.modular
sage: j = j_invariant_qexp()
sage: q = j.parent().gen()
sage: j(q^3).nth_root(3)
q^-1 + 248*q^2 + 4124*q^5 + ... + O(q^29)
sage: (j(q^2) - 1728).nth_root(2)
q^-1 - 492*q - 22590*q^3 - ... + O(q^19)
```

power_series()

Convert this Laurent series to a power series.

An error is raised if the Laurent series has a term (or an error term $O(x^k)$) whose exponent is negative.

EXAMPLES:
```python
sage: R.<t> = LaurentSeriesRing(ZZ)
sage: f = 1/(1-t+O(t^10)); f.parent()
Laurent Series Ring in t over Integer Ring
sage: g = f.power_series(); g
1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + t^9 + O(t^10)
sage: parent(g)
Power Series Ring in t over Integer Ring
sage: f = 3/t^2 + t^2 + t^3 + O(t^10)
sage: f.power_series()
Traceback (most recent call last):
...
TypeError: self is not a power series
```

**prec()**

This function returns the n so that the Laurent series is of the form (stuff) + \(O(t^n)\). It doesn’t matter how many negative powers appear in the expansion. In particular, prec could be negative.

**EXAMPLES:**

```python
sage: x = Frac(QQ[['x']]).0
sage: f = x^2 + 3*x^4 + O(x^7)
sage: f.prec()
7
sage: g = 1/x^10 - x + x^2 - x^4 + O(x^8)
sage: g.prec()
8
```

**precision_absolute()**

Return the absolute precision of this series.

By definition, the absolute precision of \(\ldots + O(x^r)\) is \(r\).

**EXAMPLES:**

```python
sage: R.<t> = ZZ[[[]]]
sage: (t^2 + O(t^3)).precision_absolute()
3
sage: (1 - t^2 + O(t^100)).precision_absolute()
100
```

**precision_relative()**

Return the relative precision of this series, that is the difference between its absolute precision and its valuation.

By convention, the relative precision of 0 (or \(O(x^r)\) for any \(r\)) is 0.

**EXAMPLES:**

```python
sage: R.<t> = ZZ[[[]]]
sage: (t^2 + O(t^3)).precision_relative()
1
sage: (1 - t^2 + O(t^100)).precision_relative()
100
sage: O(t^4).precision_relative()
0
```
residue()

Return the residue of self.

Consider the Laurent series

\[ f = \sum_{n \in \mathbb{Z}} a_n t^n = \cdots + \frac{a_{-2}}{t^2} + \frac{a_{-1}}{t} + a_0 + a_1 t + a_2 t^2 + \cdots , \]

then the residue of \( f \) is \( a_{-1} \). Alternatively this is the coefficient of \( 1/t \).

EXAMPLES:

```python
sage: t = LaurentSeriesRing(ZZ, 't').gen()
sage: f = 1/t**2 + 2/t + 3 + 4*t
sage: f.residue()
2
sage: f = t + t**2
sage: f.residue()
0
sage: f.residue().parent()
Integer Ring
```

reverse(precision=None)

Return the reverse of \( f \), i.e., the series \( g \) such that \( g(f(x)) = x \). Given an optional argument precision, return the reverse with given precision (note that the reverse can have precision at most \( f.\text{prec()} \)). If \( f \) has infinite precision, and the argument precision is not given, then the precision of the reverse defaults to the default precision of \( f.\text{parent()} \).

Note that this is only possible if the valuation of self is exactly 1.

The implementation depends on the underlying power series element implementing a reverse method.

EXAMPLES:

```python
sage: R.<x> = Frac(QQ[['x']])
sage: f = 2*x + 3*x^2 - x^4 + O(x^5)
sage: g = f.reverse()
sage: g
1/2*x - 3/8*x^2 + 9/16*x^3 - 131/128*x^4 + O(x^5)
sage: f(g)
x + O(x^5)
sage: g(f)
x + O(x^5)
sage: A.<t> = LaurentSeriesRing(ZZ)
sage: a = t - t^2 - 2*t^4 + t^5 + O(t^6)
sage: b = a.reverse(); b
t + t^2 + 2*t^3 + 7*t^4 + 25*t^5 + O(t^6)
sage: a(b)
t + O(t^6)
sage: b(a)
t + O(t^6)
sage: B.<b,c> = ZZ[]
sage: A.<t> = LaurentSeriesRing(B)
sage: f = t + b*t^2 + c*t^3 + O(t^4)
```

(continues on next page)
sage: g = f.reverse(); g
t - b*t^2 + (2*b^2 - c)*t^3 + O(t^4)
sage: f(g)
t + O(t^4)
sage: g(f)
t + O(t^4)

sage: A.<t> = PowerSeriesRing(ZZ)
sage: B.<s> = LaurentSeriesRing(A)
sage: f = (1 - 3*t + 4*t^3 + O(t^4))*s + (2 + t + t^2 + O(t^3))*s^2 + O(s^3)
sage: set_verbose(1)
sage: g = f.reverse(); g
verbose 1 (<module>) passing to pari failed; trying Lagrange inversion
(1 + 3*t + 9*t^2 + 23*t^3 + O(t^4))*s + (-2 - 19*t - 118*t^2 + O(t^3))*s^2 + O(s^3)
sage: set_verbose(0)
sage: f(g) == g(f) == s
True

If the leading coefficient is not a unit, we pass to its fraction field if possible:

sage: A.<t> = LaurentSeriesRing(ZZ)
sage: a = 2*t - 4*t^2 + t^4 - t^5 + O(t^6)
sage: a.reverse()
1/2*t + 1/2*t^2 + t^3 + 79/32*t^4 + 437/64*t^5 + O(t^6)
sage: B.<b> = PolynomialRing(ZZ)
sage: A.<t> = LaurentSeriesRing(B)
sage: f = 2*b*t + b*t^2 + 3*b^2*t^3 + O(t^4)
sage: g = f.reverse(); g
1/(2*b)*t - 1/(8*b^2)*t^2 + ((-3*b + 1)/(16*b^3))*t^3 + O(t^4)
sage: f(g)
t + O(t^4)
sage: g(f)
t + O(t^4)

We can handle some base rings of positive characteristic:

sage: A8.<t> = LaurentSeriesRing(Zmod(8))
sage: a = t - 15*t^2 - 2*t^4 + t^5 + O(t^6)
sage: b = a.reverse(); b
t + 7*t^2 + 2*t^3 + 5*t^4 + t^5 + O(t^6)
sage: a(b)
t + O(t^6)
sage: b(a)
t + O(t^6)

The optional argument precision sets the precision of the output:

sage: R.<x> = LaurentSeriesRing(QQ)
sage: f = 2*x + 3*x^2 - 7*x^3 + x^4 + O(x^5)
sage: g = f.reverse(precision=3); g
1/2*x - 3/8*x^2 + O(x^3)
sage: f(g)
\text{x } + \text{O}(\text{x}^3)
sage: g(f)
\text{x } + \text{O}(\text{x}^3)

If the input series has infinite precision, the precision of the output is automatically set to the default precision of the parent ring:

sage: R.<x> = LaurentSeriesRing(QQ, default_prec=20)
sage: (x - x^2).reverse()  # get some Catalan numbers
x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + 16796*x^11 + 58786*x^12 + 208012*x^13 + 742900*x^14 + 2674440*x^15 + 9694845*x^16 + 35357670*x^17 + 129644790*x^18 + 477638700*x^19 + O(x^20)
sage: (x - x^2).reverse(precision=3)
x + x^2 + O(x^3)

**shift**(k)

Returns this Laurent series multiplied by the power \(t^k\). Does not change this series.

**Note:** Despite the fact that higher order terms are printed to the right in a power series, right shifting decreases the powers of \(t\), while left shifting increases them. This is to be consistent with polynomials, integers, etc.

**EXAMPLES:**

sage: R.<t> = LaurentSeriesRing(QQ['y'])
sage: f = (t+t^-1)^4; f
\text{t}^{-4} + 4\text{t}^{-2} + 6 + 4\text{t}^2 + \text{t}^4
sage: f.shift(10)
\text{t}^6 + 4\text{t}^8 + 6\text{t}^{10} + 4\text{t}^{12} + \text{t}^{14}
sage: f >> 10
\text{t}^{-14} + 4\text{t}^{-12} + 6\text{t}^{-10} + 4\text{t}^{-8} + \text{t}^{-6}
sage: t << 4
\text{t}^5
sage: t + O(t^3) >> 4
\text{t}^{-3} + \text{O}(t^{-1})

**AUTHORS:**

- Robert Bradshaw (2007-04-18)

**truncate**(n)

Return the Laurent series of degree \(< n\) which is equivalent to self modulo \(x^n\).

**EXAMPLES:**

sage: A.<x> = LaurentSeriesRing(ZZ)
sage: f = 1/(1-x)
sage: f
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^{10} + x^{11} + x^{12} + x^{13} + x^{14} + x^{15} + x^{16} + x^{17} + x^{18} + x^{19} + O(x^{20})
\begin{verbatim}
truncateseries(n)

Replace any terms of degree >= n by big oh.

EXAMPLES:

sage: A = LaurentSeriesRing(ZZ)
sage: f = 1/(1-x)
sage: f
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + O(x^20)
sage: f.truncate_series(10)
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + O(x^10)

truncate_neg(n)

Return the Laurent series equivalent to self except without any degree n terms.

This is equivalent to:

self - self.truncate(n)

EXAMPLES:

sage: A.<t> = LaurentSeriesRing(ZZ)
sage: f = 1/(1-t)
sage: f.truncate_neg(15)
t^15 + t^16 + t^17 + t^18 + t^19 + O(t^20)

valuation()

EXAMPLES:

sage: R.<x> = LaurentSeriesRing(QQ)
sage: f = 1/x + x^2 + 3*x^4 + O(x^7)
sage: g = 1 - x + x^2 - x^4 + O(x^8)
sage: f.valuation()
-1
sage: g.valuation()
0

Note that the valuation of an element undistinguishable from zero is infinite:

sage: h = f - f; h
O(x^7)
sage: h.valuation()
+Infinity

valuation_zero_part()

EXAMPLES:

sage: x = Frac(QQx)  # (continues on next page)

(continued from previous page)
\end{verbatim}
sage: f/x
1 + x + 3*x^3 + O(x^6)
sage: f.valuation_zero_part()
1 + x + 3*x^3 + O(x^6)
sage: g = 1/x^7 - x + x^2 - x^4 + O(x^8)
sage: g.valuation_zero_part()
1 - x^8 + x^9 - x^11 + O(x^15)

variable()

EXAMPLES:
sage: x = Frac(QQ['x']).0
sage: f = 1/x + x^2 + 3*x^4 + O(x^7)
sage: f.variable()
'x'

verschiebung(n)

Return the n-th Verschiebung of self.
If \( f = \sum a_m x^m \) then this function returns \( \sum a_m x^{mn} \).

EXAMPLES:
sage: R.<x> = LaurentSeriesRing(QQ)
sage: f = -1/x + 1 + 2*x^2 + 5*x^5
sage: f.V(2)
-x^-2 + 1 + 2*x^4 + 5*x^10
sage: f.V(-1)
5*x^-5 + 2*x^-2 + 1 - x
sage: h = f.add_bigoh(7)
sage: h.V(2)
-x^-2 + 1 + 2*x^4 + 5*x^10 + O(x^14)
sage: h.V(-2)
Traceback (most recent call last):
... ValueError: For finite precision only positive arguments allowed

sage.rings.laurent_series_ring_element.is_LaurentSeries(x)
CHAPTER
NINE

LAZY SERIES

Coefficients of lazy series are computed on demand. They have infinite precision, although equality can only be decided in special cases.

AUTHORS:
• Kwankyu Lee (2019-02-24): initial version
• Tejasvi Chebrolu, Martin Rubey, Travis Scrimshaw (2021-08): refactored and expanded functionality

EXAMPLES:
Laurent series over the integer ring are particularly useful as generating functions for sequences arising in combinatorics.

```
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
```

The generating function of the Fibonacci sequence is:

```
sage: f = 1 / (1 - z - z^2)
sage: f
1 + z + 2*z^2 + 3*z^3 + 5*z^4 + 8*z^5 + 13*z^6 + O(z^7)
```

In principle, we can now compute any coefficient of $f$:

```
sage: f.coefficient(100)
573147844013817084101
```

Which coefficients are actually computed depends on the type of implementation. For the sparse implementation, only the coefficients which are needed are computed.

```
sage: s = L(lambda n: n, valuation=0); s
z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7)
sage: s.coefficient(10)
10
```

Using the dense implementation, all coefficients up to the required coefficient are computed.

```
sage: L.<x> = LazyLaurentSeriesRing(ZZ, sparse=False)
sage: s = L(lambda n: n, valuation=0); s
x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + O(x^7)
sage: s.coefficient(10)
10
```

(continues on next page)
We can do arithmetic with lazy power series:

\[
\text{sage: } \frac{1}{1-z} + \frac{2}{1-z} - \frac{2}{1-z} + 1 + 2z
\]
\[
0
\]

We call lazy power series whose coefficients are known to be eventually constant ‘exact’. In some cases, computations with such series are much faster. Moreover, these are the series where equality can be decided. For example:

\[
\text{sage: } L.<z> = LazyPowerSeriesRing(ZZ)
\]
\[
\text{sage: } f = 1 + \frac{2z^2}{1-z}
\]
\[
\text{sage: } f - 2 / (1-z) + 1 + 2z
\]
\[
0
\]

However, multivariate Taylor series are actually represented as streams of multivariate polynomials. Therefore, the only exact series in this case are polynomials:

\[
\text{sage: } L.<x,y> = LazyPowerSeriesRing(ZZ)
\]
\[
\text{sage: } 1 / (1-x)
\]
\[
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + O(x,y)^7
\]

A similar statement is true for lazy symmetric functions:

\[
\text{sage: } h = \text{SymmetricFunctions(QQ).h()}
\]
\[
\text{--- needs sage.combinat}
\]
\[
\text{sage: } L = \text{LazySymmetricFunctions(h)}
\]
\[
\text{--- needs sage.combinat}
\]
\[
\text{sage: } 1 / (1-L(h[1]))
\]
\[
\text{--- needs sage.combinat}
\]
\[
h[] + h[1] + (h[1,1]) + (h[1,1,1]) + (h[1,1,1,1]) + (h[1,1,1,1,1]) + (h[1,1,1,1,1,1]) + \cdots
\]
\[
O^7
\]

We can change the base ring:

\[
\text{sage: } h = g.change_ring(QQ)
\]
\[
\text{sage: } h.parent()
\]
\[
\text{--- needs sage.combinat}
\]

Lazy Laurent Series Ring in z over Rational Field

\[
\text{sage: } h
\]
\[
\text{--- needs sage.combinat}
\]
\[
4z + 6z^2 + 8z^3 + 19z^4 + 38z^5 + 71z^6 + 130z^7 + O(z^8)
\]
\[
\text{sage: } hinv = h^{-1}; hinv
\]
\[
\text{--- needs sage.combinat}
\]
\[
1/4z^{-1} - 3/8 + 1/16z - 17/32z^2 + 5/64z^3 - 29/128z^4 + 165/256z^5 + O(z^6)
\]
\[
\text{sage: } hinv.valuation()
\]
\[
\text{--- needs sage.combinat}
\]
class sage.rings.lazy_series.LazyCauchyProductSeries(parent, coeff_stream)

Bases: LazyModuleElement

A class for series where multiplication is the Cauchy product.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: f = 1 / (1 - z)
sage: f
1 + z + z^2 + O(z^3)
sage: f * (1 - z)
1
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=True)
sage: f = 1 / (1 - z)
sage: f
1 + z + z^2 + O(z^3)
```

exp()  
Return the exponential series of self.

We use the identity

\[ \exp(s) = 1 + \int s' \exp(s). \]

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: exp(z)
1 + z + 1/2*z^2 + 1/6*z^3 + 1/24*z^4 + 1/120*z^5 + 1/720*z^6 + O(z^7)
sage: exp(z + z^2)
1 + z + 3/2*z^2 + 7/6*z^3 + 25/24*z^4 + 27/40*z^5 + 331/720*z^6 + O(z^7)
sage: exp(0)
#...
sage: exp(1 + z)
Traceback (most recent call last):
 ...
ValueError: can only compose with a positive valuation series
```

log()  
Return the series for the natural logarithm of self.
We use the identity

\[ \log(s) = \int \frac{s'}{s}. \]

EXAMPLES:

```
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: log(1/(1-z))
z + 1/2*z^2 + 1/3*z^3 + 1/4*z^4 + 1/5*z^5 + 1/6*z^6 + 1/7*z^7 + O(z^8)
```

```
sage: L.<x, y> = LazyPowerSeriesRing(QQ)
sage: log((1 + x/(1-y))).polynomial(3)
1/3*x^3 - x^2*y + x*y^2 - 1/2*x^2 + x*y + x
```

valuation()

Return the valuation of self.

This method determines the valuation of the series by looking for a nonzero coefficient. Hence if the series happens to be zero, then it may run forever.

EXAMPLES:

```
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: s = 1/(1 - z) - 1/(1 - 2*z)
sage: s.valuation()
1
```

```
sage: t = z - z
sage: t.valuation()
+Infinity
```

```
sage: M = L(lambda n: n^2, 0)
sage: M.valuation()
1
```

```
sage: (M - M).valuation()
+Infinity
```

### class sage.rings.lazy_series.LazyCompletionGradedAlgebraElement(parent, coeff_stream)

Bases: `LazyCauchyProductSeries`

An element of a completion of a graded algebra that is computed lazily.

### class sage.rings.lazy_series.LazyDirichletSeries(parent, coeff_stream)

Bases: `LazyModuleElement`

A Dirichlet series where the coefficients are computed lazily.

EXAMPLES:

```
sage: L = LazyDirichletSeriesRing(ZZ, "z")
sage: f = L(constant=1)^2
sage: f
1 + 2/3*z + 2/4*z^2 + 1/6*z^3 + 1/8*z^4 + 1/8*z^5 + O(1/(8*z))
sage: f.coefficient(100) == number_of_divisors(100) # needs sage.libs.pari
True
```

Lazy Dirichlet series is picklable:
is_unit()

Return whether this element is a unit in the ring.

EXAMPLES:

```
sage: D = LazyDirichletSeriesRing(ZZ, "s")
sage: D([0, 2]).is_unit()
False
sage: D([-1, 2]).is_unit()
True
sage: D([3, 2]).is_unit()
False
sage: D = LazyDirichletSeriesRing(QQ, "s")
sage: D([3, 2]).is_unit()
True
```

valuation()

Return the valuation of self.

This method determines the valuation of the series by looking for a nonzero coefficient. Hence if the series happens to be zero, then it may run forever.

EXAMPLES:

```
sage: L = LazyDirichletSeriesRing(ZZ, "z")
sage: mu = L(moebius); mu.valuation()
needs sage.libs.pari
0
sage: (mu - mu).valuation()
needs sage.libs.pari
+Infinity
sage: g = L(constant=1, valuation=2)
sage: g.valuation()
needs sage.symbolic
log(2)
sage: (g*g).valuation()
needs sage.symbolic
2*log(2)
```

class sage.rings.lazy_series.LazyLaurentSeries(parent, coeff_stream)

Bases: LazyCauchyProductSeries

A Laurent series where the coefficients are computed lazily.

EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(ZZ)

We can build a series from a function and specify if the series eventually takes a constant value:

sage: f = L(lambda i: i, valuation=-3, constant=-1, degree=3)
sage: f
-3*z^-3 - 2*z^-2 - z^-1 + z + 2*z^2 - z^3 - z^4 - z^5 + O(z^6)
sage: f[-2]
-2
sage: f[10]
-1
sage: f[-5]
0

sage: f = L(lambda i: i, valuation=-3)
sage: f
-3*z^-3 - 2*z^-2 - z^-1 + z + 2*z^2 + 3*z^3 + O(z^4)
sage: f[20]
20

Anything that converts into a polynomial can be input, where we can also specify the valuation or if the series eventually takes a constant value:

sage: L([-5,2,0,5])
-5 + 2*z + 5*z^3
sage: L([-5,2,0,5], constant=6)
-5 + 2*z + 5*z^3 + 6*z^4 + 6*z^5 + 6*z^6 + O(z^7)
sage: L([-5,2,0,5], degree=6, constant=6)
-5 + 2*z + 5*z^3 + 6*z^4 + 6*z^5 + 6*z^6 + O(z^9)
sage: L([-5,2,0,5], valuation=-2, degree=6)
-5*z^-2 + 2*z^-1 + 5*z + 6*z^3 + 6*z^4 + 6*z^5 + O(z^6)
sage: L([-5,2,0,5], valuation=5)
-5*z^5 + 2*z^6 + 5*z^8
sage: L({-2:9, 3:4}, constant=2, degree=5)
9*z^-2 + 4*z^3 + 2*z^5 + 2*z^6 + 2*z^7 + O(z^8)

We can also perform arithmetic:

sage: f = 1 / (1 - z - z^2)
sage: f
1 + z + 2*z^2 + 3*z^3 + 5*z^4 + 8*z^5 + 13*z^6 + O(z^7)
sage: f.coefficient(100)
573147844013817084101
sage: f = (z^-2 - 1 + 2*z) / (z^-1 - z + 3*z^2)
sage: f
z^-1 - z^2 - z^4 + 3*z^5 + O(z^6)

However, we may not always be able to know when a result is exactly a polynomial:

sage: f * (z^-1 - z + 3*z^2)
O(z^6)

approximate_series(prec, name=None)
Return the Laurent series with absolute precision prec approximated from this series.
INPUT:

- `prec` – an integer
- `name` – name of the variable; if it is `None`, the name of the variable of the series is used

OUTPUT: a Laurent series with absolute precision `prec`

EXAMPLES:

```
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: z = L.gen()
sage: f = (z - 2*z^3)^5/(1 - 2*z)
sage: f
z^5 + 2*z^6 - 6*z^7 - 12*z^8 + 16*z^9 + 32*z^10 - 16*z^11 + O(z^12)
sage: g = f.approximate_series(10)
sage: g
z^5 + 2*z^6 - 6*z^7 - 12*z^8 + 16*z^9 + O(z^10)
sage: g.parent()
Power Series Ring in z over Integer Ring
sage: h = (f^-1).approximate_series(3)
sage: h
z^-5 - 2*z^-4 + 10*z^-3 - 20*z^-2 + 60*z^-1 - 120 + 280*z - 560*z^2 + O(z^3)
sage: h.parent()
Laurent Series Ring in z over Integer Ring
```

`compose(g)`

Return the composition of `self` with `g`.

Given two Laurent series `f` and `g` over the same base ring, the composition \((f \circ g)(z) = f(g(z))\) is defined if and only if:

- \(g = 0\) and \(\text{val}(f) \geq 0\),
- \(g\) is non-zero and \(f\) has only finitely many non-zero coefficients,
- \(g\) is non-zero and \(\text{val}(g) > 0\).

INPUT:

- `g` – other series

EXAMPLES:

```
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: f = z^2 + 1 + z
sage: f(0)
1
sage: f(L(0))
1
sage: f(f)
3 + 3*z + 4*z^2 + 2*z^3 + z^4
sage: g = z^-3/(1-2*z); g
z^-3 + 2*z^-2 + 4*z^-1 + 8 + 16*z + 32*z^2 + 64*z^3 + O(z^4)
sage: g(f)
z^-6 + 4*z^-5 + 12*z^-4 + 33*z^-3 + 82*z^-2 + 196*z^-1 + 457 + 0(z)
sage: g^2 + 1 + g
z^-6 + 4*z^-5 + 12*z^-4 + 33*z^-3 + 82*z^-2 + 196*z^-1 + 457 + O(z)
sage: f(int(2))
```
(continues on next page)
sage: f = z^-2 + z + 4*z^3
sage: f(f)
4*z^-6 + 12*z^-3 + z^-2 + 48*z^-1 + 12 + O(z)

sage: f^-2 + f + 4*f^3
4*z^-6 + 12*z^-3 + z^-2 + 48*z^-1 + 12 + O(z)

sage: f(g)
4*z^-9 + 24*z^-8 + 96*z^-7 + 320*z^-6 + 960*z^-5 + 2688*z^-4 + 7169*z^-3 + O(z^-2)

sage: g^-2 + g + 4*g^3
4*z^-9 + 24*z^-8 + 96*z^-7 + 320*z^-6 + 960*z^-5 + 2688*z^-4 + 7169*z^-3 + O(z^-2)

sage: f = z^-3 + z^-2 + 1 / (1 + z^2); f
z^-3 + z^-2 + 1 - z^2 + O(z^4)

sage: g = z^3 / (1 + z - z^3); g
z^3 - z^4 + z^5 - z^7 + 2*z^8 - 2*z^9 + O(z^10)

sage: f(g)
z^-9 + 3*z^-8 + 3*z^-7 - z^-6 - 4*z^-5 - 2*z^-4 + z^-3 + O(z^-2)

sage: g^-3 + g^-2 + 1 / (1 + g^2)
z^-9 + 3*z^-8 + 3*z^-7 + z^-6 - 4*z^-5 - 2*z^-4 + z^-3 + O(z^-2)

sage: f = z^-3
sage: g = z^-2 + z^-1
sage: g(-3)
z^-6 - 3*z^-7 + 6*z^-8 - 10*z^-9 + 15*z^-10 - 21*z^-11 + 28*z^-12 + O(z^-13)

sage: f(g)
z^-6 - 3*z^-7 + 6*z^-8 - 10*z^-9 + 15*z^-10 - 21*z^-11 + 28*z^-12 + O(z^-13)

sage: f = z^2 + z^3
sage: g = z^-3 + z^-2
sage: f^-3 + f^-2
z^-6 - 3*z^-5 + 7*z^-4 - 12*z^-3 + 18*z^-2 - 25*z^-1 + 33 + O(z)

sage: g^-3 + g^-2 + 1 / (1 + g^2)
z^-9 + 3*z^-8 + 3*z^-7 + z^-6 - 4*z^-5 - 2*z^-4 + z^-3 + O(z^-2)

sage: f = L(lambda n: n, valuation=0); f
z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7)

sage: f(z^2)
z^2 + 2*z^4 + 3*z^6 + 4*z^8 + O(z^9)

sage: f = L(lambda n: n, valuation=-2); f
-2*z^-2 - z^-1 + z + 2*z^2 + 3*z^3 + 4*z^4 + 0(z^5)

sage: f3 = f(z^3); f3
-2*z^-6 - z^-3 + O(z)

sage: [f3[i] for i in range(-6,13)]
[-2, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 4]
We compose a Laurent polynomial with a generic element:

```
sage: R.<x> = QQ[]
sage: f = z^2 + 1 + z^-1
go: g = x^2 + x + 3
sage: f(g)
(x^6 + 3*x^5 + 12*x^4 + 19*x^3 + 37*x^2 + 28*x + 31)/(x^2 + x + 3)
sage: f(g) == g^2 + 1 + g^-1
True
```

We compose with another lazy Laurent series:

```
sage: LS.<y> = LazyLaurentSeriesRing(QQ)
sage: f = z^2 + 1 + z^-1
sage: fy = f(y); fy
y^-1 + 1 + y^2
sage: fy.parent() is LS
True
sage: g = y - y
sage: f(g)
Traceback (most recent call last):
...
ZeroDivisionError: the valuation of the series must be nonnegative
```

```
sage: g = 1 - y
sage: f(g)
3 - y + 2*y^2 + y^3 + y^4 + y^5 + 0(y^6)
sage: g^2 + 1 + g^-1
3 - y + 2*y^2 + y^3 + y^4 + y^5 + 0(y^6)
```

```
sage: f = L(lambda n: n, valuation=0); f
z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7)
sage: f(0)
0
sage: f(y)
y + 2*y^2 + 3*y^3 + 4*y^4 + 5*y^5 + 6*y^6 + 7*y^7 + O(y^8)
sage: fp = f(y - y)
sage: fp == 0
True
sage: fp.parent() is LS
True
```

```
sage: f = z^2 + 3 + z
sage: f(y - y)
3
```

With both of them sparse:

```
sage: L.<z> = LazyLaurentSeriesRing(QQ, sparse=True)
sage: LS.<y> = LazyLaurentSeriesRing(QQ, sparse=True)
sage: f = L(lambda n: 1, valuation=0); f
1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + O(z^7)
sage: f(y^2)
1 + y^2 + y^4 + y^6 + 0(y^7)
```

(continues on next page)
sage: fp = f - 1 + z^-2; fp
z^-2 + z + z^2 + z^3 + z^4 + O(z^5)
sage: fpy = fp(y^2); fpy
y^-4 + y^2 + O(y^3)
sage: fpy.parent() is LS
True
sage: [fpy[i] for i in range(-4,11)]
[1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
sage: g = LS(valuation=2, constant=1); g
y^2 + y^3 + y^4 + O(y^5)
sage: fg = f(g); fg
1 + y^2 + 2*y^3 + 4*y^4 + 8*y^5 + 16*y^6 + O(y^7)
sage: h = LS(\lambda n: 1 if n % 2 else 0, valuation=2); h
y^3 + y^5 + y^7 + O(y^9)
sage: fgh = fg(h); fgh
1 + y^6 + O(y^7)

We look at mixing the sparse and the dense:

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: f = L(\lambda n: 1); f
1 + z + z^2 + z^3 + z^4 + z^5 + O(z^7)
sage: g = LS(\lambda n: 1, valuation=1); g
y + y^2 + y^3 + y^4 + y^5 + y^6 + y^7 + O(y^8)
sage: f(g)
1 + y + 2*y^2 + 4*y^3 + 8*y^4 + 16*y^5 + 32*y^6 + O(y^7)

sage: f = z^-2 + 1 + z
sage: g = 1/(y^2*(1-y)); g
y^-1 + 1 + y + 0(y^2)
sage: f(g)
y^-1 + 2 + y + 2*y^2 - y^3 + 2*y^4 + y^5 + y^6 + y^7 + O(y^8)
sage: g^-2 + 1 + g == f(g)
True

sage: f = z^-3 + z^-2 + 1
sage: g = 1/(y^2*(1-y)); g
y^-2 + y^-1 + 1 + O(y)
sage: f(g)
1 + y^4 - 2*y^5 + 2*y^6 - 3*y^7 + 3*y^8 - y^9
sage: g^-3 + g^-2 + 1 == f(g)
True
We look at cases where the composition does not exist. $g = 0$ and $\text{val}(f) < 0$:

```sage
sage: g = L(0)
sage: f = z^{-1} + z^{-2}
sage: f.valuation() < 0
True
sage: f(g)
Traceback (most recent call last):
 ...
ZeroDivisionError: the valuation of the series must be nonnegative
```

$g \neq 0$ and $\text{val}(g) \leq 0$ and $f$ has infinitely many non-zero coefficients:

```sage
sage: g = z^{-1} + z^{-2}
sage: g.valuation() <= 0
True
sage: f = L(lambda n: n, valuation=0)
sage: f(g)
Traceback (most recent call last):
 ...
ValueError: can only compose with a positive valuation series
```

We compose the exponential with a Dirichlet series:

```sage
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: e = L(lambda n: 1/factorial(n), 0)
sage: D = LazyDirichletSeriesRing(QQ, "s")
sage: g = D(constant=1)-1
sage: g
#needs sage.symbolic
1/(2^s) + 1/(3^s) + 1/(4^s) + O(1/(5^s))

sage: e(g)[0:10]
[0, 1, 1, 3/2, 1, 2, 1, 13/6, 3/2]

sage: sum(g^k/factorial(k) for k in range(10))[0:10]
[0, 1, 1, 3/2, 1, 2, 1, 13/6, 3/2]

sage: g = D([0,1,0,1,1,2])
sage: g
#needs sage.symbolic
1/(2^s) + 1/(4^s) + 1/(5^s) + 2/6^s

sage: e(g)[0:10]
[0, 1, 1, 0, 3/2, 1, 2, 0, 7/6, 0]
```

(continues on next page)
sage: sum(g^k/factorial(k) for k in range(10))[0:10]
[0, 1, 1, 0, 3/2, 1, 2, 0, 7/6, 0]

sage: e(D([1,0,1]))
Traceback (most recent call last):
... ValueError: can only compose with a positive valuation series

sage: e5 = L(e, degree=5)
sage: e5
1 + z + 1/2*z^2 + 1/6*z^3 + 1/24*z^4

sage: e5(g)  # needs sage.symbolic
1 + 1/(2^s) + 3/2/4^s + 1/(5^s) + 2/6^s + O(1/(8^s))

sage: sum(e5[k] * g^k for k in range(5))  # needs sage.symbolic
1 + 1/(2^s) + 3/2/4^s + 1/(5^s) + 2/6^s + O(1/(8^s))

The output parent is always the common parent between the base ring of \( f \) and the parent of \( g \) or extended to the corresponding lazy series:

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: R.<x> = ZZ[]
sage: parent(z(x))
Univariate Polynomial Ring in x over Rational Field
sage: parent(z(R.zero()))
Univariate Polynomial Ring in x over Rational Field
sage: parent(z(0))
Rational Field
sage: f = 1 / (1 - z)
sage: f(x)
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + O(x^7)

sage: three = L(3)(x^2); three
3
sage: parent(three)
Univariate Polynomial Ring in x over Rational Field

Consistency check when \( g \) is an uninitialized series between a polynomial \( f \) as both a polynomial and a lazy series:

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: f = 1 + z
sage: g = L.undefined(valuation=0)
sage: f(g) == f.polynomial()(g)
True

\texttt{compositional\_inverse()} 
Return the compositional inverse of \texttt{self}.

Given a Laurent series \( f \), the compositional inverse is a Laurent series \( g \) over the same base ring, such that \((f \circ g)(z) = f(g(z)) = z\).

The compositional inverse exists if and only if:
• \( \text{val}(f) = 1 \), or
• \( f = a + bz \) with \( a, b \neq 0 \), or
• \( f = a/z \) with \( a \neq 0 \).

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: (2*z).revert()
1/2*z
sage: (2/z).revert()
2*z^-1
sage: (z-z^2).revert()
z + z^2 + 2*z^3 + 5*z^4 + 14*z^5 + 42*z^6 + 132*z^7 + O(z^8)
sage: s = L(degree=1, constant=-1)
sage: s.revert()
-z - z^2 - z^3 + O(z^4)
sage: s = L(degree=1, constant=1)
sage: s.revert()
z - z^2 + z^3 - z^4 + z^5 - z^6 + z^7 + O(z^8)
```

**Warning:** For series not known to be eventually constant (e.g., being defined by a function) with approximate valuation \( \leq 1 \) (but not necessarily its true valuation), this assumes that this is the actual valuation:

```python
sage: f = L(lambda n: n if n > 2 else 0, valuation=1)
sage: f.revert()
<repr(...) failed: ValueError: inverse does not exist>
```

derivative(*args)

Return the derivative of the Laurent series.

Multiple variables and iteration counts may be supplied; see the documentation of `sage.calculus.functional.derivative()` function for details.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: z.derivative()
1
sage: (1+z+z^2).derivative(3)
0
sage: (1/z).derivative()
-z^-2
sage: (1/(1-z)).derivative(z)
1 + 2*z + 3*z^2 + 4*z^3 + 5*z^4 + 6*z^5 + 7*z^6 + O(z^7)
```

is_unit()

Return whether this element is a unit in the ring.

EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: (2*z).is_unit()
False
sage: (1 + 2*z).is_unit()
True
sage: (1 + 2*z^-1).is_unit()
False
sage: (z^3 + 4 - z^-2).is_unit()
True

\textbf{polynomial}(\textit{degree=none, name=none})

Return \textit{self} as a Laurent polynomial if \textit{self} is actually so.

\textbf{INPUT}:

- \textit{degree} – \textit{None} or an integer
- \textit{name} – name of the variable; if it is \textit{None}, the name of the variable of the series is used

\textbf{OUTPUT}:

A Laurent polynomial if the valuation of the series is negative or a polynomial otherwise.

If \textit{degree} is not \textit{None}, the terms of the series of degree greater than \textit{degree} are first truncated. If \textit{degree} is \textit{None} and the series is not a polynomial or a Laurent polynomial, a \texttt{ValueError} is raised.

\textbf{EXAMPLES}:

\begin{verbatim}
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: f = L([1,0,0,2,0,0,0,3], valuation=5); f
z^5 + 2*z^8 + 3*z^12
sage: f.polynomial()
3*z^12 + 2*z^8 + z^5
\end{verbatim}

\textbf{revert()}\n
Return the compositional inverse of \textit{self}.

Given a Laurent series \textit{f}, the compositional inverse is a Laurent series \textit{g} over the same base ring, such that \((f \circ g)(z) = f(g(z)) = z\).

The compositional inverse exists if and only if:

- \text{val}(f) = 1, or
- \(f = a + bz\) with \(a, b \neq 0\), or
- \(f = a/z\) with \(a \neq 0\).

\textbf{EXAMPLES}:

\begin{verbatim}
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: (2*z).revert()
1/2*z
sage: (2/z).revert()
2*z^-1
sage: (z-z^2).revert()
\end{verbatim}
\( z + z^2 + 2z^3 + 5z^4 + 14z^5 + 42z^6 + 132z^7 + O(z^8) \)

```sage
sage: s = L(degree=1, constant=-1)
sage: s.revert()
-z - z^2 - z^3 + O(z^4)
```

```sage
sage: s = L(degree=1, constant=1)
sage: s.revert()
z - z^2 + z^3 - z^4 + z^5 - z^6 + z^7 + O(z^8)
```

**Warning:** For series not known to be eventually constant (e.g., being defined by a function) with approximate valuation \( \leq 1 \) (but not necessarily its true valuation), this assumes that this is the actual valuation:

```sage
sage: f = L(lambda n: n if n > 2 else 0, valuation=1)
sage: f.revert()
<repr("... failed: ValueError: inverse does not exist")>
```

class `sage.rings.lazy_series.LazyModuleElement` *(parent, coeff_stream)*

Bases: `Element`

A lazy sequence with a module structure given by term-wise addition and scalar multiplication.

**EXAMPLES:**

```sage
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: M = L(lambda n: n, valuation=0)
sage: N = L(lambda n: 1, valuation=0)
sage: M[0:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: N[0:10]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```

Two sequences can be added:

```sage
sage: O = M + N
sage: O[0:10]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

Two sequences can be subtracted:

```sage
sage: P = M - N
sage: P[0:10]
[-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]
```

A sequence can be multiplied by a scalar:

```sage
sage: Q = 2 * M
sage: Q[0:10]
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
```

The negation of a sequence can also be found:
arccos()

Return the arccosine of self.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(RR)
sage: arccos(z)
 # needs sage.symbolic
1.57079632679490 - 1.00000000000000*z + 0.000000000000000*z^2
 - 0.166666666666667*z^3 + 0.000000000000000*z^4
 - 0.0750000000000000*z^5 + O(1.000000000000000*z^7)
```

```python
sage: L.<z> = LazyLaurentSeriesRing(SR)
sage: arccos(z/(1-z))
 # needs sage.symbolic
1/2*pi - z - z^2 - 7/6*z^3 - 3/2*z^4 - 83/40*z^5 - 73/24*z^6 + O(z^7)
```

```python
sage: L.<x,y> = LazyPowerSeriesRing(SR)
sage: arccos(x/(1-y))
 # needs sage.symbolic
1/2*pi + (-x) + (-x*y) + (1/3*x^3-x*y^2) + (1/2*x^3*y-x*y^3)
 + (3/40)*x^5-x^3*y^2-x*y^4) + (-5/3)*x^3*y^3-x*y^5) + O(x,y)^7
```

arccot()

Return the arctangent of self.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(RR)
sage: arccot(z)
 # needs sage.symbolic
1.57079632679490 - 1.00000000000000*z + 0.000000000000000*z^2
 + 0.333333333333333*z^3 + 0.000000000000000*z^4
 - 0.200000000000000*z^5 + O(1.000000000000000*z^7)
```

```python
sage: L.<z> = LazyLaurentSeriesRing(SR)
sage: arccot(z/(1-z))
 # needs sage.symbolic
1/2*pi - z - z^2 - 2/3*z^3 + 4/5*z^5 + 4/3*z^6 + O(z^7)
```

```python
sage: L.<x,y> = LazyPowerSeriesRing(SR)
sage: acot(x/(1-y))
 # needs sage.symbolic
1/2*pi + (-x) + (-x*y) + (1/3*x^3-x*y^2) + (x^3*y-x*y^3)
 + ((-1/5)*x^5+2*x^3*y^2-x*y^4) + (-x^5*y+10/3*x^3*y^3-x*y^5) + O(x,y)^7
```
arcsin()  
Return the arcsine of self.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: arcsin(z)
z + 1/6*z^3 + 3/40*z^5 + 5/112*z^7 + O(z^8)
```

arcsinh()  
Return the inverse of the hyperbolic sine of self.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: asinh(z)
z - 1/6*z^3 + 3/40*z^5 - 5/112*z^7 + O(z^8)
```

arctan()  
Return the arctangent of self.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: arctan(z)
z - 1/3*z^3 + 1/5*z^5 - 1/7*z^7 + O(z^8)
```

arctanh()  
Return the inverse of the hyperbolic tangent of self.

EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: atanh(z)
z + 1/3*z^3 + 1/5*z^5 + 1/7*z^7 + O(z^8)

arctanh is an alias:

sage: arctanh(z)
z + 1/3*z^3 + 1/5*z^5 + 1/7*z^7 + O(z^8)

sage: L.<x, y> = LazyPowerSeriesRing(QQ)
sage: atanh(x/(1-y))
x + x*y + (1/3*x^3+x*y^2) + (x^3*y+x*y^3) + (1/5*x^5+2*x^3*y^2+x*y^4) + (x^5*y+10/3*x^3*y^3+x*y^5) + (1/7*x^7+3*x^5*y^2+5*x^3*y^4+x*y^6) + O(x,y)^8

change_ring\(\text{(ring)}\)

Return self with coefficients converted to elements of ring.

INPUT:

* ring – a ring

EXAMPLES:

Dense Implementation:

sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=False)
sage: s = 2 + z
sage: t = s.change_ring(QQ)
sage: t^-1
1/2 - 1/4*z + 1/8*z^2 - 1/16*z^3 + 1/32*z^4 - 1/64*z^5 + 1/128*z^6 + O(z^7)

sage: M = L(lambda n: n, valuation=0); M
z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7)

sage: N = M.change_ring(QQ)
sage: N.parent()
Lazy Laurent Series Ring in z over Rational Field

sage: M.parent()
Lazy Laurent Series Ring in z over Integer Ring

Sparse Implementation:

sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=True)
sage: M = L(lambda n: n, valuation=0); M
z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7)

sage: N = M.change_ring(QQ)
sage: N.parent()
Lazy Laurent Series Ring in z over Integer Ring

sage: M.parent()
Lazy Laurent Series Ring in z over Rational Field

sage: M^-1
z^-1 - 2 + z + O(z^6)

A Dirichlet series example:

sage: L = LazyDirichletSeriesRing(ZZ, 'z')
sage: s = L(constant=2)

(continues on next page)
sage: t = s.change_ring(QQ)
sage: t.parent()
Lazy Dirichlet Series Ring in z over Rational Field
sage: it = t^-1
sage: it
˓→ needs sage.symbolic
1/2 - 1/2/2^z - 1/2/3^z - 1/2/5^z + 1/2/6^z - 1/2/7^z + O(1/(8^z))

A Taylor series example:

sage: L.<z> = LazyPowerSeriesRing(ZZ)
sage: s = 2 + z
sage: t = s.change_ring(QQ)
sage: t^-1
1/2 - 1/4*z + 1/8*z^2 - 1/16*z^3 + 1/32*z^4 - 1/64*z^5 + 1/128*z^6 + O(z^7)
sage: t.parent()
Lazy Taylor Series Ring in z over Rational Field

coefficient(n)

Return the homogeneous degree n part of the series.

INPUT:

• n – integer; the degree

For a series f, the slice f[start:stop] produces the following:

• if start and stop are integers, return the list of terms with given degrees
• if start is None, return the list of terms beginning with the valuation
• if stop is None, return a lazy_list_generic instead.

EXAMPLES:

sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: f = z / (1 - 2*z^3)
sage: [f[n] for n in range(20)]
[0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, 16, 0, 0, 32, 0, 0, 64]
sage: f[0:20]
[0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, 16, 0, 0, 32, 0, 0, 64]
sage: f[:20]
[1, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, 16, 0, 0, 32, 0, 0, 64]
sage: f[:3]
lazy list [1, 2, 4, ...]

sage: M = L(lambda n: n, valuation=0)
sage: [M[n] for n in range(20)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=True)
sage: M = L(lambda n: n, valuation=0)
sage: [M[n] for n in range(20)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Similarly for multivariate series:
Similarly for Dirichlet series:

\begin{verbatim}
sage: L = LazyDirichletSeriesRing(ZZ, "z")
sage: L(lambda n: n)[1:11]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
\end{verbatim}

**coefficients** (*n=None*)

Return the first *n* non-zero coefficients of *self*.

**INPUT:**

- *n* – (optional) the number of non-zero coefficients to return

If the series has fewer than *n* non-zero coefficients, only these are returned.

If *n* is *None*, a *lazy_list_generic* with all non-zero coefficients is returned instead.

**Warning:** If there are fewer than *n* non-zero coefficients, but this cannot be detected, this method will not return.

**EXAMPLES:**

\begin{verbatim}
sage: L.<x> = LazyPowerSeriesRing(QQ)
sage: f = L([1,2,3])
sage: f.coefficients(5)
doctest:...: DeprecationWarning: the method coefficients now only returns the non-zero coefficients. Use __getitem__ instead.
See https://github.com/sagemath/sage/issues/32367 for details.
[1, 2, 3]
sage: f = sin(x)
sage: f.coefficients(5)
[1, -1/6, 1/120, -1/5040, 1/362880]
sage: L.<x, y> = LazyPowerSeriesRing(QQ)
sage: f = sin(x^2+y^2)
sage: f.coefficients(5)
[1, 1, -1/6, -1/2, -1/2]
sage: f.coefficients()
lazy list [1, 1, -1/6, ...]
sage: L.<x> = LazyPowerSeriesRing(GF(2))
sage: f = L(lambda n: n)
sage: f.coefficients(5)
[1, 1, 1, 1, 1]
\end{verbatim}
cos()

Return the cosine of self.

EXAMPLES:

```
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: cos(z)
1 - 1/2*z^2 + 1/24*z^4 - 1/720*z^6 + 0(z^7)
```

```
sage: L.<x,y> = LazyPowerSeriesRing(QQ)
sage: cos(x/(1-y)).polynomial(4)
1/24*x^4 - 3/2*x^2*y^2 - x^2*y - 1/2*x^2 + 1
```

cosh()

Return the hyperbolic cosine of self.

EXAMPLES:

```
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: cosh(z)
1 + 1/2*z^2 + 1/24*z^4 + 1/720*z^6 + 0(z^7)
```

```
sage: L.<x,y> = LazyPowerSeriesRing(QQ)
sage: cosh(x/(1-y))
1 + 1/2*x^2 + x^2*y + (1/24*x^4+3/2*x^2*y^2) + (1/6*x^4*y+2*x^2*y^3)
+ (1/720*x^6+5/12*x^4*y^2+5/2*x^2*y^4) + 0(x,y)^7
```

cot()

Return the cotangent of self.

EXAMPLES:

```
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: cot(z)
z^-1 - 1/3*z - 1/45*z^3 - 2/945*z^5 + 0(z^6)
```

```
sage: L.<x> = LazyLaurentSeriesRing(QQ)
sage: cot(x/(1-x)).polynomial(4)
x^-1 - 1 - 1/3*x - 1/3*x^2 - 16/45*x^3 - 2/5*x^4
```

coth()

Return the hyperbolic cotangent of self.

EXAMPLES:

```
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: coth(z)
needs sage.libs.flint
z^-1 + 1/3*z - 1/45*z^3 + 2/945*z^5 + 0(z^6)
```

```
sage: coth(z + z^2)
needs sage.libs.flint
z^-1 - 1 + 4/3*z - 2/3*z^2 + 44/45*z^3 - 16/15*z^4 + 884/945*z^5 + 0(z^6)
```

csc()

Return the cosecant of self.
EXAMPLES:

```
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: csc(z)
z^-1 + 1/6*z + 7/360*z^3 + 31/15120*z^5 + O(z^6)
```

```
sage: L.<x> = LazyLaurentSeriesRing(QQ)
sage: csc(x/(1-x)).polynomial(4)
x^-1 - 1 + 1/6*x + 1/6*x^2 + 67/360*x^3 + 9/40*x^4
```

csch()

Return the hyperbolic cosecant of self.

EXAMPLES:

```
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: csch(z)
needs sage.libs.flint
z^-1 - 1/6*z + 7/360*z^3 - 31/15120*z^5 + O(z^6)
```

```
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: csch(z/(1-z))
needs sage.libs.flint
z^-1 - 1 - 1/6*z - 1/6*z^2 - 53/360*z^3 - 13/120*z^4 - 787/15120*z^5 + O(z^6)
```

define(s)

Define an equation by self = s.

INPUT:

- s – a lazy series

EXAMPLES:

We begin by constructing the Catalan numbers:

```
sage: L.<z> = LazyPowerSeriesRing(ZZ)
sage: C = L.undefined()
sage: C.define(1 + z*C^2)
sage: C
1 + z + 2*z^2 + 5*z^3 + 14*z^4 + 42*z^5 + 132*z^6 + O(z^7)
```

```
sage: binomial(2000, 1000) / C[1000]
needs sage.symbolic
1001
```

The Catalan numbers but with a valuation 1:

```
sage: B = L.undefined(valuation=1)
sage: B.define(z + B^2)
sage: B
z + z^2 + 2*z^3 + 5*z^4 + 14*z^5 + 42*z^6 + 132*z^7 + O(z^8)
```

We can define multiple series that are linked:

```
sage: s = L.undefined()
sage: t = L.undefined()
```

(continues on next page)
A bigger example:

```
sage: L.<z> = LazyPowerSeriesRing(ZZ)
sage: A = L.undefined(valuation=5)
sage: B = L.undefined()
sage: C = L.undefined(valuation=2)
sage: A.define(z^5 + B^2)
sage: B.define(z^5 + C^2)
sage: C.define(z^2 + C^2 + A^2)
sage: A[0:15]
[0, 0, 0, 0, 1, 0, 0, 1, 2, 5, 4, 14, 10, 48]
sage: B[0:15]
[0, 0, 0, 1, 1, 2, 0, 5, 0, 14, 0, 44, 0, 138]
sage: C[0:15]
[0, 0, 1, 0, 1, 0, 2, 0, 5, 0, 15, 0, 44, 2, 142]
```

Counting binary trees:

```
sage: L.<z> = LazyPowerSeriesRing(QQ)
sage: s = L.undefined(valuation=1)
sage: s.define(z + (s^2+s(z^2))/2)
sage: s[0:9]
[0, 1, 1, 1, 2, 3, 6, 11, 23]
```

The $q$-Catalan numbers:

```
sage: R.<q> = ZZ[]
sage: L.<z> = LazyLaurentSeriesRing(R)
sage: s = L.undefined(valuation=0)
sage: s.define(1+z^s*s(q*z))
sage: s
1 + z + (q + 1)*z^2 + (q^3 + q^2 + 2*q + 1)*z^3
 + (q^6 + q^5 + 2*q^4 + 3*q^3 + 3*q^2 + 3*q + 1)*z^4
 + (q^10 + q^9 + 2*q^8 + 3*q^7 + 5*q^6 + 5*q^5 + 7*q^4 + 7*q^3 + 6*q^2 + 4*q +
 1)*z^5
 + (q^15 + q^14 + 2*q^13 + 3*q^12 + 5*q^11 + 7*q^10 + 9*q^9 + 11*q^8
 + 14*q^7 + 16*q^6 + 16*q^5 + 17*q^4 + 14*q^3 + 10*q^2 + 5*q + 1)*z^6 + O(z^7)
```

We count unlabeled ordered trees by total number of nodes and number of internal nodes:

```
sage: R.<q> = QQ[]
sage: Q.<z> = LazyPowerSeriesRing(R)
sage: leaf = z
sage: internal_node = q * z
sage: L = Q(constant=1, degree=1)
```

(continues on next page)
Similarly for Dirichlet series:

```
sage: L = LazyDirichletSeriesRing(ZZ, "z")
sage: g = L(constant=1, valuation=2)
sage: F = L.undefined()
sage: F.define(1 + g*F)
sage: F[:16]
[1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3]
```

```
sage: oeis(_)
optional - \rightarrow internet
0: A002033: Number of perfect partitions of n.
1: A074206: Kalmár's [Kalmar's] problem: number of ordered factorizations of n. ...
```

```
sage: F = L.undefined()
sage: F.define(1 + g*F^2)
sage: F[:16]
[1, 1, 1, 3, 1, 5, 1, 10, 3, 5, 1, 24, 1, 5, 5]
```

We can compute the Frobenius character of unlabeled trees:

```
sage: # needs sage.combinat
sage: m = SymmetricFunctions(QQ).m()
sage: s = SymmetricFunctions(QQ).s()
sage: L = LazySymmetricFunctions(m)
sage: E = L(lambda n: s[n], valuation=0)
sage: X = L(s[1])
sage: A = L.undefined()
sage: A.define(X*E(A))
sage: A[:6]
[m[1],
 2*m[1, 1] + m[2],
 9*m[1, 1, 1] + 5*m[2, 1] + 2*m[3],
 64*m[1, 1, 1, 1] + 34*m[2, 1, 1] + 18*m[2, 2] + 13*m[3, 1] + 4*m[4],
 625*m[1, 1, 1, 1, 1] + 326*m[2, 1, 1, 1] + 171*m[2, 2, 1] + 119*m[3, 1, 1] + m...
]
```

euler()

Return the Euler function evaluated at self.

The Euler function is defined as

\[ \phi(z) = (z; z)_\infty = \sum_{n=0}^{\infty} (-1)^n q^{(3n^2-n)/2}. \]

See also:

`sage.rings.lazy_series_ring.LazyLaurentSeriesRing.euler()`

EXAMPLES:
sage: L.<q> = LazyLaurentSeriesRing(ZZ)
sage: phi = L.euler()
sage: (q + q^2).euler() - phi(q + q^2)
O(q^7)

exp()

Return the exponential series of self.

EXAMPLES:

sage: L = LazyDirichletSeriesRing(QQ, "s")
sage: Z = L(constant=1, valuation=2)
sage: exp(Z)
#<@
1 + 1/(2^s) + 1/(3^s) + 3/2/4^s + 1/(5^s) + 2/6^s + 1/(7^s) + O(1/(8^s))
@#

hypergeometric(a, b)

Return the \( _pF_q \)-hypergeometric function \( _pF_q \) where \( (p, q) \) is the parameterization of self.

INPUT:

- \( a \) – the first parameter of the hypergeometric function
- \( b \) – the second parameter of the hypergeometric function

EXAMPLES:

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: z.hypergeometric([1, 1], [1])
1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + O(z^7)
sage: z.hypergeometric([], []) - exp(z)
O(z^7)

sage: L.<x,y> = LazyPowerSeriesRing(QQ)
sage: (x+y).hypergeometric([1, 1], [1]).polynomial(4)
x^4 + 4*x^3*y + 6*x^2*y^2 + 4*x*y^3 + y^4 + x^3 + 3*x^2*y + 3*y^2 + x^2 + 2*x*y + y^2 + x + y + 1

is_nonzero(proof=False)

Return True if self is known to be nonzero.

INPUT:

- proof – (default: False) if True, this will also return an index such that self has a nonzero coefficient

WARNING: If the stream is exactly zero, this will run forever.

EXAMPLES:

A series that it not known to be nonzero with no halting precision:

sage: L.<z> = LazyLaurentSeriesRing(GF(2))
sage: f = L(lambda n: 0, valuation=0)
sage: f.is_nonzero()
(continues on next page)
With finite halting precision, it can be considered to be indistinguishable from zero until possibly enough coefficients are computed:

```sage
sage: L.options.halting_precision = 20
sage: f = L(lambda n: 0, valuation=0)
sage: f.is_zero()
True

sage: g = L(lambda n: 0 if n < 50 else 1, valuation=2)
sage: g.is_nonzero() # checks up to degree 22 = 2 + 20
False
sage: g.is_nonzero() # checks up to degree 42 = 22 + 20
False
sage: g.is_nonzero() # checks up to degree 62 = 42 + 20
True
sage: L.options._reset()
```

With a proof:

```sage
sage: L.<z> = LazyLaurentSeriesRing(GF(5))
sage: g = L(lambda n: 5 if n < 50 else 1, valuation=2)
sage: g.is_nonzero(proof=True)
(True, 50)

sage: L.zero().is_nonzero(proof=True)
(False, None)
```

**is_trivial_zero()**

Return whether `self` is known to be trivially zero.

**EXAMPLES:**

```sage
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: f = L(lambda n: 0, valuation=2)
sage: f.is_trivial_zero()
False

sage: L.zero().is_trivial_zero()
True
```

**lift_to_precision(absprec=None)**

Return another element of the same parent with absolute precision at least `absprec`, congruent to this element modulo the precision of this element.
Since the precision of a lazy series is infinity, this method returns the series itself, and the argument is ignored.

EXAMPLES:

```python
sage: P.<t> = PowerSeriesRing(QQ, default_prec=2)
sage: R.<z> = LazyPowerSeriesRing(P)
sage: f = R(lambda n: 1/(1-t)*n)
sage: f
1 + ((1+t+O(t^2))*z) + ((1+2*t+O(t^2))*z^2)
+ ((1+3*t+O(t^2))*z^3)
+ ((1+4*t+O(t^2))*z^4)
+ ((1+5*t+O(t^2))*z^5)
+ ((1+6*t+O(t^2))*z^6) + O(z^7)
sage: f.lift_to_precision()
1 + ((1+t+O(t^2))*z) + ((1+2*t+O(t^2))*z^2)
+ ((1+3*t+O(t^2))*z^3)
+ ((1+4*t+O(t^2))*z^4)
+ ((1+5*t+O(t^2))*z^5)
+ ((1+6*t+O(t^2))*z^6) + O(z^7)
```

**log()**

Return the series for the natural logarithm of **self**.

EXAMPLES:

```python
sage: L = LazyDirichletSeriesRing(QQ, "s")
sage: Z = L(constant=1)
sage: log(Z) # needs sage.symbolic
1/(2^s) + 1/(3^s) + 1/2/4^s + 1/(5^s) + 1/(7^s) + O(1/(8^s))
```

**map_coefficients**(\(f\))

Return the series with \(f\) applied to each nonzero coefficient of **self**.

INPUT:

- **func** – function that takes in a coefficient and returns a new coefficient

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: m = L(lambda n: n, valuation=0); m
z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7)
sage: m.map_coefficients(lambda c: c + 1)
2*z + 3*z^2 + 4*z^3 + 5*z^4 + 6*z^5 + 7*z^6 + 8*z^7 + O(z^8)
```

Similarly for Dirichlet series:

```python
sage: L = LazyDirichletSeriesRing(ZZ, "z")
sage: s = L(lambda n: n-1)
sage: s # needs sage.symbolic
1/(2^z) + 2/3*z + 3/4*z^3 + 4/5*z + 5/6*z^5 + 6/7*z^6 + O(1/(8^z))
sage: ms = s.map_coefficients(lambda c: c + 1) # needs sage.symbolic
```

(continues on next page)
Similarly for multivariate power series:

```python
sage: L.<x, y> = LazyPowerSeriesRing(QQ)
sage: f = 1/(1-(x+y)); f
1 + (x+y) + (x^2+2*x*y+y^2) + (x^3+3*x^2*y+3*x*y^2+y^3) + (x^4+4*x^3*y+6*x^2*y^2+4*x*y^3+y^4) + (x^5+5*x^4*y+10*x^3*y^2+10*x^2*y^3+5*x*y^4+y^5) + (x^6+6*x^5*y+15*x^4*y^2+20*x^3*y^3+15*x^2*y^4+6*x*y^5+y^6) + O(x,y)^7
```

```python
sage: f.map_coefficients(lambda c: c^2)
1 + (x+y) + (x^2+4*x*y+y^2) + (x^3+9*x^2*y+9*x*y^2+y^3) + (x^4+16*x^3*y+36*x^2*y^2+16*x*y^3+y^4) + (x^5+25*x^4*y+100*x^3*y^2+100*x^2*y^3+25*x*y^4+y^5) + (x^6+36*x^5*y+225*x^4*y^2+400*x^3*y^3+225*x^2*y^4+36*x*y^5+y^6) + O(x,y)^7
```

Similarly for lazy symmetric functions:

```python
sage: # needs sage.combinat
sage: p = SymmetricFunctions(QQ).p()
sage: L = LazySymmetricFunctions(p)
sage: f = 1/(1-2*L(p[1])); f
p[] + 2*p[1] + (4*p[1,1]) + (8*p[1,1,1]) + (16*p[1,1,1,1]) + (32*p[1,1,1,1]) + (64*p[1,1,1,1,1]) + O^7
```

```python
sage: f.map_coefficients(lambda c: log(c, 2))
p[1] + (2*p[1,1]) + (3*p[1,1,1]) + (4*p[1,1,1,1]) + (5*p[1,1,1,1,1]) + (6*p[1,1,1,1,1]) + O^7
```

`prec()`

Return the precision of the series, which is infinity.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: f = 1/(1 - z)
sage: f.prec()
+Infinity
```

`q_pochhammer(q=None)`

Return the infinite q-Pochhammer symbol \((a; q)_\infty\), where \(a\) is `self`.

This is also one version of the quantum dilogarithm or the \(q\)-Exponential function.

See also:

`sage.rings.lazy_series_ring.LazyLaurentSeriesRing.q_pochhammer()`

INPUT:

- \(q\) – (default: \(q \in \mathbb{Q}(q)\)) the parameter \(q\)

EXAMPLES:
.. code-block::

    sage: q = ZZ['q'].fraction_field().gen()
    sage: L.<q> = LazyLaurentSeriesRing(q.parent())
    sage: qp = L.q_pochhammer(q)
    sage: (z + z^2).q_pochhammer(q) - qp(z + z^2)
    O(z^7)

sec()

Return the secant of self.

EXAMPLES:

.. code-block::

    sage: L.<z> = LazyLaurentSeriesRing(QQ)
    sage: sec(z)
    1 + 1/2*z^2 + 5/24*z^4 + 61/720*z^6 + O(z^7)
    sage: L.<x,y> = LazyPowerSeriesRing(QQ)
    sage: sec(x/(1-y)).polynomial(4)
    5/24*x^4 + 3/2*x^2*y^2 + x^2*y + 1/2*x^2 + 1

sech()

Return the hyperbolic secant of self.

EXAMPLES:

.. code-block::

    sage: L.<z> = LazyLaurentSeriesRing(QQ)
    sage: sech(z)
    # needs sage.libs.flint
    1 - 1/2*z^2 + 5/24*z^4 - 61/720*z^6 + O(z^7)
    sage: L.<x, y> = LazyPowerSeriesRing(QQ)
    sage: sech(x/(1-y))
    # needs sage.libs.flint
    1 + (-1/2*x^2) + (-x^2*y) + (5/24*x^4-3/2*x^2*y^2) + (5/6*x^4*y-2*x^2*y^3) + (-61/720*x^6+25/12*x^4*y^2-5/2*x^2*y^4) + O(x,y)^7

set(s)

Define an equation by self = s.

INPUT:

* s – a lazy series

EXAMPLES:

We begin by constructing the Catalan numbers:

.. code-block::

    sage: L.<z> = LazyPowerSeriesRing(ZZ)
    sage: C = L.undefined()
    sage: C.define(1 + z*C^2)
    sage: C
    1 + z + 2*z^2 + 5*z^3 + 14*z^4 + 42*z^5 + 132*z^6 + O(z^7)
    sage: binomial(2000, 1000) / C[1000]
    # needs sage.symbolic
    1001

The Catalan numbers but with a valuation 1:
We can define multiple series that are linked:

```python
sage: s = L.undefined()

sage: s.define(1 + z * s**3)
```

```python
sage: t = L.undefined()

sage: t.define(1 + z * s**2)
```

```python
sage: s[0:9]
[1, 1, 3, 9, 34, 132, 546, 2327, 10191]

sage: t[0:9]
[1, 1, 2, 7, 24, 95, 386, 1641, 7150]
```

A bigger example:

```python
sage: L.<z> = LazyPowerSeriesRing(ZZ)

sage: A = L.undefined(valuation=5)

sage: B = L.undefined()

sage: C = L.undefined(valuation=2)

sage: A.define(z^5 + B^2)

sage: B.define(z^5 + C^2)

sage: C.define(z^2 + C^2 + A^2)
```

```python
sage: A[0:15]
[0, 0, 0, 0, 1, 0, 0, 1, 2, 5, 4, 14, 10, 48]

sage: B[0:15]
[0, 0, 0, 1, 1, 2, 0, 5, 0, 14, 0, 44, 0, 138]

sage: C[0:15]
[0, 0, 1, 0, 1, 0, 2, 0, 5, 0, 15, 0, 44, 2, 142]
```

Counting binary trees:

```python
sage: L.<z> = LazyPowerSeriesRing(QQ)

sage: s = L.undefined(valuation=1)

sage: s.define(z + (s^2 + s(z^2))/2)
```

```python
sage: s[0:9]
[0, 1, 1, 1, 2, 3, 6, 11, 23]
```

The $q$-Catalan numbers:

```python
sage: R.<q> = ZZ[]

sage: L.<z> = LazyLaurentSeriesRing(R)

sage: s = L.undefined(valuation=0)

sage: s.define(1 + z**s + s(q*z))
```

```python
sage: s
1 + z + (q + 1)*z^2 + (q^3 + q^2 + 2*q + 1)*z^3
+ (q^6 + q^5 + 2*q^4 + 3*q^3 + 3*q^2 + 3*q + 1)*z^4
+ (q^10 + q^9 + 2*q^8 + 3*q^7 + 5*q^6 + 5*q^5 + 7*q^4 + 7*q^3 + 6*q^2 + 4*q +
 1)*z^5
+ (q^15 + q^14 + 2*q^13 + 3*q^12 + 5*q^11 + 7*q^10 + 9*q^9 + 11*q^8
 + 14*q^7 + 16*q^6 + 16*q^5 + 17*q^4 + 14*q^3 + 10*q^2 + 5*q + 1)*z^6 + O(z^7)
```
We count unlabeled ordered trees by total number of nodes and number of internal nodes:

```python
sage: R.<q> = QQ[]
sage: Q.<z> = LazyPowerSeriesRing(R)
sage: leaf = z
sage: internal_node = q * z
sage: L = Q(constant=1, degree=1)
sage: T = Q.undefined(valuation=1)
sage: T.define(leaf + internal_node * L(T))
sage: T[0:6]
[0, 1, q, q^2 + q, q^3 + 3*q^2 + q, q^4 + 6*q^3 + 6*q^2 + q]
```

Similarly for Dirichlet series:

```python
sage: L = LazyDirichletSeriesRing(ZZ, "z")
sage: g = L(constant=1, valuation=2)
sage: F = L.undefined()
sage: F.define(1 + g*F)
sage: F[:16]
[1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3]
sage: oeis(_)
 # optional - internet
0: A002033: Number of perfect partitions of n.
...
sage: F = L.undefined()
sage: F.define(1 + g^2*F*F)
sage: F[:16]
[1, 1, 1, 3, 1, 5, 1, 10, 3, 5, 1, 24, 1, 5, 5]
```

We can compute the Frobenius character of unlabeled trees:

```python
sage: # needs sage.combinat
sage: m = SymmetricFunctions(QQ).m()
sage: s = SymmetricFunctions(QQ).s()
sage: L = LazySymmetricFunctions(m)
sage: E = L(lambda n: s[n], valuation=0)
sage: X = L(s[1])
sage: A = L.undefined()
sage: A.define(X*E(A))
sage: A[:6]
[m[1],
 2*m[1, 1] + m[2],
 9*m[1, 1, 1] + 5*m[2, 1] + 2*m[3],
 64*m[1, 1, 1, 1] + 34*m[2, 1, 1] + 18*m[2, 2] + 13*m[3, 1] + 4*m[4],
 625*m[1, 1, 1, 1, 1] + 326*m[2, 1, 1, 1] + 171*m[2, 2, 1] + 119*m[3, 1, 1] + 9*m[5]]
```

```
shift(n)
```

Return self with the indices shifted by n.

For example, a Laurent series is multiplied by the power $z^n$, where $z$ is the variable of self. For series with a fixed minimal valuation (e.g., power series), this removes any terms that are less than the minimal valuation.
INPUT:

• \( n \) – the amount to shift

EXAMPLES:

```sage
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: f = 1 / (1 + 2*z)
sage: f
1 - 2*z + 4*z^2 - 8*z^3 + 16*z^4 - 32*z^5 + 64*z^6 + O(z^7)
sage: f.shift(3)
z^3 - 2*z^4 + 4*z^5 - 8*z^6 + 16*z^7 - 32*z^8 + 64*z^9 + O(z^10)
sage: f << -3 # shorthand
z^-3 - 2*z^-2 + 4*z^-1 - 8 + 16*z - 32*z^2 + 64*z^3 + O(z^4)
sage: g = z^-3 + 3 + z^2
sage: g.shift(5)
z^2 + 3*z^5 + z^7
sage: L([2,0,3], valuation=2, degree=7, constant=1) << -2
2 + 3*z^2 + z^5 + z^6 + z^7 + O(z^8)
```

```sage
sage: D = LazyDirichletSeriesRing(QQ, 't')
sage: f = D([0,1,2])
sage: f
needs sage.symbolic
1/(2^t) + 2/3^t
sage: sf = f.shift(3)
sage: sf
needs sage.symbolic
1/(5^t) + 2/6^t
```

Examples with power series (where the minimal valuation is 0):

```sage
sage: L.<x> = LazyPowerSeriesRing(QQ)
sage: f = 1 / (1 - x)
sage: f.shift(2)
x^2 + x^3 + x^4 + O(x^5)
sage: g = f.shift(-1); g
1 + x + x^2 + O(x^3)
sage: f == g
True
sage: g[-1]
0
sage: h = L(lambda n: 1)
sage: LazyPowerSeriesRing.options.halting_precision(20) # verify up to degree
˓→20
sage: f == h
True
sage: h == f
True
sage: h.shift(-1) == h
True
sage: LazyPowerSeriesRing.options._reset()
```

```sage
sage: fp = L([3,3,3], constant=1)
sage: fp.shift(2)
```

(continues on next page)
3x^2 + 3x^3 + 3x^4 + x^5 + x^6 + x^7 + O(x^8)
sage: fp.shift(-2)
3 + x + x^2 + x^3 + O(x^4)
sage: fp.shift(-7)
1 + x + x^2 + 0(x^3)
sage: fp.shift(-5) == g
True

We compare the shifting with converting to the fraction field (see also github issue #35293):

sage: M = L.fraction_field()
sage: f = L([1,2,3,4]); f
1 + 2*x + 3*x^2 + 4*x^3
sage: f.shift(-3)
4
sage: M(f).shift(-3)
x^-3 + 2*x^-2 + 3*x^-1 + 4

An example with a more general function:

sage: fun = lambda n: 1 if ZZ(n).is_power_of(2) else 0
sage: f = L(fun); f
x + x^2 + x^4 + O(x^7)
sage: fs = f.shift(-4)
sage: fs
1 + x^4 + O(x^7)
sage: fs.shift(4)
x^4 + x^8 + O(x^11)
sage: M(f).shift(-4)
x^-3 + x^-2 + 1 + O(x^4)

sin()

Return the sine of self.

EXAMPLES:

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: sin(z)
z - 1/6*z^3 + 1/120*z^5 - 1/5040*z^7 + O(z^8)
sage: sin(1 + z)
Traceback (most recent call last):
... ValueError: can only compose with a positive valuation series

sage: L.<x,y> = LazyPowerSeriesRing(QQ)
sage: sin((1-y)).polynomial(3)
-1/6*x^3 + x*y^2 + x*y + x

sinh()

Return the hyperbolic sine of self.

EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: sinh(z)
z + 1/6*z^3 + 1/120*z^5 + 1/5040*z^7 + O(z^8)

sage: L.<x,y> = LazyPowerSeriesRing(QQ)
sage: sinh(x/(1-y))
x + x*y + (1/6*x^3+x*y^2) + (1/2*x^3*y+x*y^3) + (1/120*x^5+x*y^2+5/3*x^3*y^3+x*y^5) + (1/5040*x^7+1/8*x^5*y^2+5/3*x^3*y^4+x*y^6) + O(x,y)^8

\texttt{sqrt()}

Return self^{(1/2)}.

\textbf{EXAMPLES:}

```
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: sqrt(1+z)
1 + 1/2*z - 1/8*z^2 + 1/16*z^3 - 5/128*z^4 + 7/256*z^5 - 21/1024*z^6 + O(z^7)
sage: L.<x,y> = LazyPowerSeriesRing(QQ)
sage: sqrt(1+x/(1-y))
1 + 1/2*x + (-1/8*x^2+1/2*x*y) + (1/16*x^3-1/4*x^2*y+1/2*x*y^2) + (-5/128*x^4+3/16*x^3*y-3/8*x^2*y^2+1/2*x*y^3) + (7/256*x^5-5/32*x^4*y+3/8*x^3*y^2-1/2*x^2*y^3+1/2*x*y^4) + (-21/1024*x^6+35/256*x^5*y-25/64*x^4*y^2+5/8*x^3*y^3-5/8*x^2*y^4+1/2*x*y^5) + (1/32*x^7-1/4*x^6*y+1/2*x^5*y^2+1/4*x^4*y^3-1/2*x^3*y^4+1/2*x^2*y^5+1/8*x*y^6) + 1/8*x*y^7)
```

This also works for Dirichlet series:

```
sage: D = LazyDirichletSeriesRing(SR, "s")
sage: Z = D(constant=1)
sage: f = sqrt(Z); f
1 + 1/2/s + 1/2/3^s + 3/8/4^s + 1/2/5^s + 1/4/6^s + 1/2/7^s + O(1/(8^s))
sage: f^2 - Z
O(1/(8^s))
```

\texttt{tan()}

Return the tangent of self.

\textbf{EXAMPLES:}

```
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: tan(z)
z + 1/3*z^3 + 2/15*z^5 + 17/315*z^7 + O(z^8)
sage: L.<x,y> = LazyPowerSeriesRing(QQ)
sage: tan(x/(1-y)).polynomial(5)
2/15*x^5 + 2*x^3*y^2 + y^4 + x^3*y + y^3 + 1/3*x^3 + y^2 + x*y + x
```

\texttt{tanh()}

Return the hyperbolic tangent of self.

\textbf{EXAMPLES:}
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: tanh(z)  # needs sage.libs.flint
\[ z - 1/3*z^3 + 2/15*z^5 - 17/315*z^7 + O(z^8) \]

sage: L.<x,y> = LazyPowerSeriesRing(QQ)
sage: tanh(x/(1-y))  # needs sage.libs.flint
\[ x + x*y + (-1/3*x^3+x*y^2) + (-x^3*y+x^2*y^3) + (2/15*x^5-2*x^3*y^2+x*y^4) \\
+ (2/3*x^5*y-10/3*x^3*y^3+x^2*y^5) + (-17/315*x^7+2*x^5*y^2-5*x^3*y^4+x^2*y^6) + \ldots \\
\rightarrow O(x,y)^8 \]

\textbf{truncate}(d)

Return the series obtained by removing all terms of degree at least d.

\textbf{INPUT:}

- \texttt{d} – integer; the degree from which the series is truncated

\textbf{EXAMPLES:}

\textbf{Dense implementation:}

\begin{verbatim}
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=False)
sage: alpha = 1/(1-z)
sage: alpha
1 + z + z^2 + O(z^3)
sage: beta = alpha.truncate(5)
sage: beta
1 + z + z^2 + z^3 + z^4
sage: alpha - beta
z^5 + z^6 + z^7 + O(z^8)
sage: M = L(lambda n: n, valuation=0); M
z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7)
sage: M.truncate(4)
z + 2*z^2 + 3*z^3
\end{verbatim}

\textbf{Sparse Implementation:}

\begin{verbatim}
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=True)
sage: M = L(lambda n: n, valuation=0); M
z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7)
sage: M.truncate(4)
z + 2*z^2 + 3*z^3
\end{verbatim}

Series which are known to be exact can also be truncated:

\begin{verbatim}
sage: M = z + z^2 + z^3 + z^4
sage: M.truncate(4)
z + z^2 + z^3
\end{verbatim}

\textbf{class} \texttt{sage.rings.lazy_series.LazyPowerSeries}(parent, coeff_stream)

\textbf{Bases:} \texttt{LazyCauchyProductSeries}

A Taylor series where the coefficients are computed lazily.

\textbf{EXAMPLES:}
Power Series Rings and Laurent Series Rings, Release 10.2

```sage
L.<x, y> = LazyPowerSeriesRing(ZZ)
sage: f = 1 / (1 - x^2 + y^3); f
1 + x^2 + (-y^3) + x^4 + (-2*x^2*y^3) + (x^6+y^6) + O(x,y)^7
P.<x, y> = PowerSeriesRing(ZZ, default_prec=101)
sage: g = 1 / (1 - x^2 + y^3); f[100] - g[100]
0
```

Lazy Taylor series is picklable:

```sage
g = loads(dumps(f))
sage: g
1 + x^2 + (-y^3) + x^4 + (-2*x^2*y^3) + (x^6+y^6) + O(x,y)^7
sage: g == f
True
```

**compose**(*g*)

Return the composition of `self` with `g`.

The arity of `self` must be equal to the number of arguments provided.

Given a Taylor series `f` of arity `n` and a tuple of Taylor series `g = (g_1, ..., g_n)` over the same base ring, the composition `f \circ g` is defined if and only if for each `1 \leq i \leq n`:

- `g_i` is zero, or
- setting all variables except the `i`-th in `f` to zero yields a polynomial, or
- `val(g_i) > 0`.

If `f` is a univariate ‘exact’ series, we can check whether `f` is a actually a polynomial. However, if `f` is a multivariate series, we have no way to test whether setting all but one variable of `f` to zero yields a polynomial, except if `f` itself is ‘exact’ and therefore a polynomial.

**INPUT:**

- `g` – other series, all can be coerced into the same parent

**EXAMPLES:**

```sage
L.<x, y, z> = LazyPowerSeriesRing(QQ)
M.<a, b> = LazyPowerSeriesRing(ZZ)
sage: g1 = 1 / (1 - x)
sage: g2 = x + y^2
sage: p = a^2 + b + 1
sage: p(g1, g2) - g1^2 - g2 - 1
O(x,y,z)^7
```

The number of mappings from a set with `m` elements to a set with `n` elements:

```sage
M.<a> = LazyPowerSeriesRing(QQ)
sage: Ea = M(lamda n: 1/factorial(n))
sage: Ex = L(lamda n: 1/factorial(n)*x^n)
sage: Ea(Ex*a)[5]
1/24*x^4*y + 2/3*x^3*y^2 + 3/4*x^2*y^3 + 1/6*x*y^4 + 1/120*y^5
```

So, there are `3!2!/2!3 = 8` mappings from a three element set to a two element set.

We perform the composition with a lazy Laurent series:
We perform the composition with a lazy Dirichlet series:

```python
sage: # needs sage.symbolic
sage: D = LazyDirichletSeriesRing(QQ, "s")
```

```python
sage: g = D(constant=1)-1
```

```python
sage: g
1/(2^s) + 1/(3^s) + 1/(4^s) + O(1/(5^s))
```

```python
sage: f = 1 / (1 - x - y*z); f
```

```python
1 + x + (x^2+y*z) + (x^3+2*x*y*z) + (x^4+3*x^2*y*z+y^2*z^2) + (x^5+5*x^3+y^2*z^2)+ (x^6+7*x^4+y^2*z^2+y^3+z^3) + O(x,y,z)^7
```

```python
sage: fog = f(g, g, g)
```

```python
sage: fog
1 + 1/(2^s) + 1/(3^s) + 3/4^s + 1/(5^s) + 5/6^s + O(1/(7^s))
```

```python
sage: fg = 1 / (1 - g - g*g)
```

```python
sage: fg
1 + 1/(2^s) + 1/(3^s) + 3/4^s + 1/(5^s) + 5/6^s + 1/(7^s) + O(1/(8^s))
```

```python
sage: fog - fg
O(1/(8^s))
```

The output parent is always the common parent between the base ring of \( f \) and the parent of \( g \) or extended to the corresponding lazy series:

```python
sage: T.<x,y> = LazyPowerSeriesRing(QQ)
```

```python
sage: R.<a,b,c> = ZZ[]
```

```python
sage: S.<v> = R[]
```

```python
sage: L.<z> = LaurentPolynomialRing(ZZ)
```

```python
sage: parent(x(a, b))
Multivariate Polynomial Ring in a, b over Rational Field
```

```python
sage: parent(x(CC(2), a))
Multivariate Polynomial Ring in a, b over Complex Field with 53 bits of precision
```

```python
sage: parent(x(0, 0))
Rational Field
```

```python
sage: f = 1 / (1 - x - y); f
```

```python
1 + (x*y) + (x^2+2*x*y+y^2) + (x^3+3*x^2*y+3*x*y^2+y^3) + (x^4+4*x^3*y+6*x^2*y^2+4*x*y^3+y^4) + (x^5+5*x^4*y+10*x^3*y^2+10*x^2*y^3+5*x*y^4+y^5)
```
compositional_inverse()

Return the compositional inverse of self.

Given a Taylor series $f$ in one variable, the compositional inverse is a power series $g$ over the same base ring, such that $(f \circ g)(z) = f(g(z)) = z$.

The compositional inverse exists if and only if:

- $\text{val}(f) = 1$, or
- $f = a + bz$ with $a, b \neq 0$.

EXAMPLES:

```python
sage: L.<z> = LazyPowerSeriesRing(QQ)
sage: (2*z).revert()
1/2*z
sage: (z-z^2).revert()
z + z^2 + 2*z^3 + 5*z^4 + 14*z^5 + 42*z^6 + 132*z^7 + O(z^8)
sage: s = L(degree=1, constant=-1)
sage: s.revert()
-z - z^2 - z^3 + O(z^4)
sage: s = L(degree=1, constant=1)
sage: s.revert()
z - z^2 + z^3 - z^4 + z^5 - z^6 + z^7 + O(z^8)
```

**Warning:** For series not known to be eventually constant (e.g., being defined by a function) with approximate valuation $\leq 1$ (but not necessarily its true valuation), this assumes that this is the actual valuation:

```python
sage: f = L(lambda n: n if n > 2 else 0)
sage: f.revert()
<repr... failed: ValueError: generator already executing>
```

compute_coefficients(i)

Computes all the coefficients of self up to i.

This method is deprecated, it has no effect anymore.
derivative(*args)

Return the derivative of the Taylor series.

Multiple variables and iteration counts may be supplied; see the documentation of sage.calculus.functional.derivative() function for details.

EXAMPLES:

```
sage: T.<z> = LazyPowerSeriesRing(ZZ)
sage: z.derivative()
1
sage: (1+z+z^2).derivative(3)
0
sage: (1/(1-z)).derivative()
1 + 2*z + 3*z^2 + 4*z^3 + 5*z^4 + 6*z^5 + 7*z^6 + O(z^7)
sage: R.<q> = QQ['q']
sage: L.<x, y> = LazyPowerSeriesRing(R)
sage: f = 1/(1-q*x+y)
f
1 + (q*x-y) + (q^2*x^2+(-2*q)*x*y+y^2) + (q^3*x^3+(-3*q^2)*x^2*y+3*q*x*y^2-y^3) + (q^4*x^4+(-4*q^3)*x^3*y+6*q^2*x^2*y^2+(-4*q)*x*y^3+y^4) + (q^5*x^5+(-5*q^4)*x^4*y+10*q^3*x^3*y^2+(-10*q^2)*x^2*y^3+5*q*x*y^4-y^5) + (q^6*x^6+(-6*q^5)*x^5*y+15*q^4*x^4*y^2+(-20*q^3)*x^3*y^3+15*q^2*x^2*y^4+(-6*q)*x*y^5+y^6) + O(x,y)^7
sage: f.derivative(q)
x + (2*q*x^2+(-2)*x*y) + (3*q^2*x^3+(-6*q)*x^2*y+3*x*y^2) + (4*q^3*x^4+(-12*q^2)*x^3*y+12*q*x^2*y^2+(-4)*x*y^3) + (5*q^4*x^5+(-20*q^3)*x^4*y+30*q^2*x^3*y^2+(-20*q)*x^2*y^3+5*x*y^4) + (6*q^5*x^6+(-30*q^4)*x^5*y+60*q^3*x^4*y^2+(-60*q^2)*x^3*y^3+30*q^2*x^2*y^4+(-6)*x*y^5) + O(x,y)^7
```

exponential()

Return the exponential series of self.

This method is deprecated, use exp() instead.

is_unit()

Return whether this element is a unit in the ring.

EXAMPLES:

```
sage: L.<z> = LazyPowerSeriesRing(ZZ)
sage: (2*z).is_unit()
False
sage: (1 + 2*z).is_unit()
True
sage: (3 + 2*z).is_unit()
False
sage: L.<x,y> = LazyPowerSeriesRing(ZZ)
```

(continues on next page)
**polynomial**(degree=None, names=None)

Return self as a polynomial if self is actually so.

**INPUT:**

- degree – None or an integer
- names – names of the variables; if it is None, the name of the variables of the series is used

**OUTPUT:**

If degree is not None, the terms of the series of degree greater than degree are first truncated. If degree is None and the series is not a polynomial polynomial, a ValueError is raised.

**EXAMPLES:**

```python
sage: L.<x,y> = LazyPowerSeriesRing(ZZ)
sage: f = x^2 + y*x - x + 2; f
2 + (-x) + (x^2+x*y)
sage: f.polynomial()
x^2 + x*y - x + 2
```

**revert()**

Return the compositional inverse of self.

Given a Taylor series \( f \) in one variable, the compositional inverse is a power series \( g \) over the same base ring, such that \( (f \circ g)(z) = f(g(z)) = z \).

The compositional inverse exists if and only if:

- \( \text{val}(f) = 1 \), or
- \( f = a + bz \) with \( a, b \neq 0 \).

**EXAMPLES:**

```python
sage: L.<z> = LazyPowerSeriesRing(QQ)
sage: (2*z).revert()
1/2*z
sage: (z-z^2).revert()
z + z^2 + 2*z^3 + 5*z^4 + 14*z^5 + 42*z^6 + 132*z^7 + O(z^8)
sage: s = L(degree=1, constant=-1)
sage: s.revert()
-z - z^2 - z^3 + O(z^4)
sage: s = L(degree=1, constant=1)
sage: s.revert()
z - z^2 + z^3 - z^4 + z^5 - z^6 + z^7 + O(z^8)
```

**Warning:** For series not known to be eventually constant (e.g., being defined by a function) with approximate valuation \( \leq 1 \) (but not necessarily its true valuation), this assumes that this is the actual valuation:
sage: f = L(lambda n: n if n > 2 else 0)
sage: f.revert()
<repr... failed: ValueError: generator already executing>

class sage.rings.lazy_series.LazyPowerSeries_gcd_mixin
   Bases: object
   A lazy power series that also implements the GCD algorithm.

   \texttt{gcd}(\texttt{other})
   \hspace{1em} \textbf{Return the greatest common divisor of} \texttt{self} \textbf{and} \texttt{other}.

   \textbf{EXAMPLES:}

   sage: L.<x> = LazyPowerSeriesRing(QQ)
sage: a = 16*x^5 / (1 - 5*x)
sage: b = (22*x^2 + x^8) / (1 - 4*x^2)
sage: a.gcd(b)
x^2

   \texttt{xgcd}(\texttt{f})
   \hspace{1em} \textbf{Return the extended gcd of} \texttt{self} \textbf{and} \texttt{f}.

   \textbf{OUTPUT:}

   A triple \((g, s, t)\) such that \(g\) is the gcd of \texttt{self} and \texttt{f}, and \(s\) and \(t\) are cofactors satisfying the Bezout identity

   \[ g = s \cdot \texttt{self} + t \cdot \texttt{f}. \]

   \textbf{EXAMPLES:}

   sage: L.<x> = LazyPowerSeriesRing(QQ)
sage: a = 16*x^5 / (1 - 2*x)
sage: b = (-16*x^5 + x^8) / (1 - 3*x^2)
sage: g, s, t = a.xgcd(b)
(continues on next page)
sage: g
x^5
sage: s
1/16 - 1/16*x - 3/16*x^2 + 1/8*x^3 - 17/256*x^4 + 9/128*x^5 + 1/128*x^6 + O(x^7)
sage: t
1/16*x - 1/16*x^2 - 3/16*x^3 + 1/8*x^4 - 17/256*x^5 + 9/128*x^6 + 1/128*x^7 + O(x^8)
sage: g == s * a + t * b
True

sage: # needs sage.rings.finite_rings
sage: L.<x> = LazyPowerSeriesRing(GF(2))
sage: a = L(lambda n: n % 2, valuation=3); a
x^3 + x^5 + x^7 + x^9 + O(x^10)
sage: b = L(lambda n: binomial(n,2) % 2, valuation=3); b
x^3 + x^6 + x^7 + O(x^10)
sage: g, s, t = a.xgcd(b)
sage: g
x^3
sage: s
1 + x + x^3 + x^4 + x^5 + O(x^7)
sage: t
x + x^2 + x^4 + x^5 + x^6 + O(x^8)
sage: g == s * a + t * b
True

sage: LazyPowerSeriesRing.options._reset()  # reset the options

class sage.rings.lazy_series.LazySymmetricFunction

Bases: LazyCompletionGradedAlgebraElement

A symmetric function where each degree is computed lazily.

EXAMPLES:

sage: s = SymmetricFunctions(ZZ).s()  # needs sage.modules
sage: L = LazySymmetricFunctions(s)  # needs sage.modules

arithmetic_product(*args)

Return the arithmetic product of self with g.

The arithmetic product is a binary operation $\boxdot$ on the ring of symmetric functions which is bilinear in its two arguments and satisfies

$$ p_{\lambda} \boxdot p_{\mu} = \prod_{i \geq 1, j \geq 1} \frac{p_{\gcd(\lambda_i, \mu_j)}}{p_{\lcm(\lambda_i, \mu_j)}} $$

for any two partitions $\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots)$ and $\mu = (\mu_1, \mu_2, \mu_3, \ldots)$ (where $p_\nu$ denotes the power-sum symmetric function indexed by the partition $\nu$, and $p_i$ denotes the $i$-th power-sum symmetric function). This is enough to define the arithmetic product if the base ring is torsion-free as a $\mathbb{Z}$-module; for all other cases the arithmetic product is uniquely determined by requiring it to be functorial in the base ring. See http://mathoverflow.net/questions/138148/ for a discussion of this arithmetic product.
Warning: The operation $f \boxtimes g$ was originally defined only for symmetric functions $f$ and $g$ without constant term. We extend this definition using the convention that the least common multiple of any integer with 0 is 0.

If $f$ and $g$ are two symmetric functions which are homogeneous of degrees $a$ and $b$, respectively, then $f \boxtimes g$ is homogeneous of degree $ab$.

The arithmetic product is commutative and associative and has unity $e_1 = p_1 = h_1$.

For species $M$ and $N$ such that $M[\emptyset] = N[\emptyset] = \emptyset$, their arithmetic product is the species $M \boxtimes N$ of “$M$-assemblies of cloned $N$-structures”. This operation is defined and several examples are given in [MM2008].

INPUT:

- $g$ – a cycle index series having the same parent as self

OUTPUT:
The arithmetic product of self with $g$.

See also:

sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element.arithmetic_product()

EXAMPLES:

For $C$ the species of (oriented) cycles and $L_+$ the species of nonempty linear orders, $C \boxtimes L_+$ corresponds to the species of “regular octopuses”: a $(C \boxtimes L_+)$-structure is a cycle of some length, each of whose elements is an ordered list of a length which is consistent for all the lists in the structure.

```
sage: R.<q> = QQ[]
sage: p = SymmetricFunctions(R).p() # needs sage.modules
sage: m = SymmetricFunctions(R).m() # needs sage.modules
sage: L = LazySymmetricFunctions(m) # needs sage.modules
sage: C = species.CycleSpecies().cycle_index_series()
sage: c = L(lambda n: C[n])
sage: Lplus = L(lambda n: p([1]*n), valuation=1)
sage: r = c.arithmetic_product(Lplus); r # needs sage.libs.pari
m[1] + (3*m[1,1]+2*m[2])
+ (8*m[1,1,1]+4*m[2,1]+2*m[3])
+ (42*m[1,1,1,1]+21*m[2,1,1]+12*m[2,2]+7*m[3,1]+3*m[4])
+ (144*m[1,1,1,1,1]+72*m[2,1,1,1]+36*m[2,2,1]+24*m[3,1,1]+12*m[3,2]+6*m[4,1]+2*m[5])
+ ...
+ O^7
```

In particular, the number of regular octopuses is: 141
It is shown in [MM2008] that the exponential generating function for regular octopuses satisfies \((C \boxtimes L_+)(x) = \sum_{n \geq 1} \sigma(n)(n-1)! \frac{x^n}{n!}\) (where \(\sigma(n)\) is the sum of the divisors of \(n\)).

AUTHORS:

• Andrew Gainer-Dewar (2013)

REFERENCES:

• [MM2008]

\textbf{compositional_inverse()}

Return the compositional inverse of \texttt{self}.

Given a symmetric function \(f\), the compositional inverse is a symmetric function \(g\) over the same base ring, such that \(f \circ g = p_1\). Thus, it is the inverse with respect to plethystic substitution.

The compositional inverse exists if and only if:

• \(\text{val}(f) = 1\), or

• \(f = a + bp_1\) with \(a, b \neq 0\).

EXAMPLES:

ALGORITHM:

Let \(F\) be a symmetric function with valuation 1, i.e., whose constant term vanishes and whose degree one term equals \(bp_1\). Then

\[(F - bp_1) \circ G = F \circ G - bp_1 \circ G = p_1 - bG,
\]

and therefore \(G = (p_1 - (F - bp_1) \circ G)/b\), which allows recursive computation of \(G\).

See also:

The compositional inverse \(\Omega\) of the symmetric function \(h_1 + h_2 + \ldots\) can be handled much more efficiently using specialized methods. See \texttt{LogarithmCycleIndexSeries()}
derivative_with_respect_to_p1\((n=1)\)
Return the symmetric function obtained by taking the derivative of \texttt{self} with respect to the power-sum symmetric function \(p_1\) when the expansion of \texttt{self} in the power-sum basis is considered as a polynomial in \(p_k\)'s (with \(k \geq 1\)).
This is the same as skewing \texttt{self} by the first power-sum symmetric function \(p_1\).

INPUT:
• \(n\) – (default: 1) nonnegative integer which determines which power of the derivative is taken

EXAMPLES:
The species \(E\) of sets satisfies the relationship \(E' = E\):

\begin{verbatim}
sage: # needs sage.modules
sage: h = SymmetricFunctions(QQ).h()
sage: T = LazySymmetricFunctions(h)
sage: E = T(lambda n: h[n])
sage: E - E.derivative_with_respect_to_p1()
O^6
\end{verbatim}

The species \(C\) of cyclic orderings and the species \(L\) of linear orderings satisfy the relationship \(C' = L\):

\begin{verbatim}
sage: p = SymmetricFunctions(QQ).p()
sage: C = T(lambda n: (sum(euler_phi(k)*p([k])**(n//k) for k in divisors(n))/n if n > 0 else 0))
sage: L = T(lambda n: p([1]*n))
sage: L - C.derivative_with_respect_to_p1()  # needs sage.libs.pari
O^6
\end{verbatim}

functorial_composition\((*args)\)
Return the functorial composition of \texttt{self} and \(g\).
Let \(X\) be a finite set of cardinality \(m\). For a group action of the symmetric group \(g : S_n \to S_X\) and a (possibly virtual) representation of the symmetric group on \(X, f : S_X \to GL(V)\), the functorial composition is the (virtual) representation of the symmetric group \(f \boxtimes g : S_n \to GL(V)\) given by \(\sigma \mapsto f(g(\sigma))\).
This is more naturally phrased in the language of combinatorial species. Let \(F\) and \(G\) be species, then their functorial composition is the species \(F \boxtimes G\) with \((F \boxtimes G)[A] = F[G[A]]\). In other words, an \((F \boxtimes G)\)-structure on a set \(A\) of labels is an \(F\)-structure whose labels are the set of all \(G\)-structures on \(A\).
The Frobenius character (or cycle index series) of \(F \boxtimes G\) can be computed as follows, see section 2.2 of [BLL1998]):
\[
\sum_{n \geq 0} \frac{1}{n!} \sum_{\sigma \in S_n} \text{fix } F[(G[\sigma])_1, (G[\sigma])_2, \ldots] p_1^{\sigma_1} p_2^{\sigma_2} \cdots.
\]

\textbf{Warning:} The operation \(f \boxtimes g\) only makes sense when \(g\) corresponds to a permutation representation, i.e., a group action.

EXAMPLES:
The species \(G\) of simple graphs can be expressed in terms of a functorial composition: \(G = p \boxtimes p_2\), where \(p\) is the \texttt{SubsetSpecies}.

143
sage: # needs sage.modules
sage: R.<q> = QQ[]
sage: h = SymmetricFunctions(R).h()
sage: m = SymmetricFunctions(R).m()
sage: L = LazySymmetricFunctions(m)
sage: P = L(lambda n: sum(q^k*h[n-k]*h[k] for k in range(n+1)))
sage: P2 = L(lambda n: h[2]*h[n-2], valuation=2)

# needs sage.libs.pari

P.functorial_composition(P2)[:4]

For example, there are:

unlabelled graphs on 4 vertices and 3 edges, and:

labellings of their vertices with two 1’s and two 2’s.

The symmetric function $h_1 \sum h_n$ is the neutral element with respect to functorial composition:

The symmetric function $\sum h_n$ is a left absorbing element:

The functorial composition distributes over the sum:

(continues on next page)
sage: f1 = F1.functorial_composition(f)
sage: f2 = F2.functorial_composition(f)
sage: (F1 + F2).functorial_composition(f) - f1 - f2 # long time
0^7

is_unit()

Return whether this element is a unit in the ring.

EXAMPLES:

sage: # needs sage.modules
sage: m = SymmetricFunctions(ZZ).m()
sage: L = LazySymmetricFunctions(m)
sage: L(2*m[1]).is_unit()  # long time
False
sage: L(-1 + 2*m[1]).is_unit()  # long time
True
sage: L(2 + m[1]).is_unit()  # long time
False
sage: m = SymmetricFunctions(QQ).m()
sage: L = LazySymmetricFunctions(m)
sage: L(2 + 3*m[1]).is_unit()  # long time
True

plethysm(*args)

Return the composition of self with g.

The arity of self must be equal to the number of arguments provided.

Given a lazy symmetric function f of arity n and a tuple of lazy symmetric functions g = (g1, ..., gn) over the same base ring, the composition (or plethysm) \( f \circ g \) is defined if and only if for each 1 ≤ i ≤ n:

• \( g_i = 0 \), or

• setting all alphabets except the i-th in f to zero yields a symmetric function with only finitely many non-zero coefficients, or

• \( \text{val}(g) > 0 \).

If f is a univariate ‘exact’ lazy symmetric function, we can check whether f has only finitely many non-zero coefficients. However, if f has larger arity, we have no way to test whether setting all but one alphabets of f to zero yields a polynomial, except if f itself is ‘exact’ and therefore a symmetric function with only finitely many non-zero coefficients.

INPUT:

• g – other (lazy) symmetric functions

Todo: Allow specification of degree one elements.

EXAMPLES:

sage: # needs sage.modules
sage: P.<q> = QQ[]
sage: s = SymmetricFunctions(P).s()
The Frobenius character of the permutation action on set partitions is a plethysm:

sage: # needs sage.modules
sage: s = SymmetricFunctions(QQ).s()

The plethysm with a tensor product is also implemented:

sage: # needs sage.modules
sage: X = tensor([s[1], s[[]]])

sage: S2 = LazySymmetricFunctions(tensor([s, s]))

sage: A = S(s[1,1,1])

sage: H = S(la(lambda n: s[n])

(continues on next page)
plethystic_inverse()

Return the compositional inverse of self.

Given a symmetric function \( f \), the compositional inverse is a symmetric function \( g \) over the same base ring, such that \( f \circ g = p_1 \). Thus, it is the inverse with respect to plethystic substitution.

The compositional inverse exists if and only if:

- \( \text{val}(f) = 1 \), or
- \( f = a + bp_1 \) with \( a, b \neq 0 \).

EXAMPLES:

```sage
needs sage.modules
sage: h = SymmetricFunctions(QQ).h()
sage: L = LazySymmetricFunctions(h)
sage: f = L(lambda n: h[n]) - 1
sage: f(f.revert())
h[1] + O^8
```

ALGORITHM:

Let \( F \) be a symmetric function with valuation 1, i.e., whose constant term vanishes and whose degree one term equals \( bp_1 \). Then

\[
(F - bp_1) \circ G = F \circ G - bp_1 \circ G = p_1 - bG,
\]

and therefore \( G = (p_1 - (F - bp_1) \circ G)/b \), which allows recursive computation of \( G \).

See also:
The compositional inverse \( \Omega \) of the symmetric function \( h_1 + h_2 + \ldots \) can be handled much more efficiently using specialized methods. See LogarithmCycleIndexSeries()

AUTHORS:

- Andrew Gainer-Dewar
- Martin Rubey

revert()

Return the compositional inverse of self.

Given a symmetric function \( f \), the compositional inverse is a symmetric function \( g \) over the same base ring, such that \( f \circ g = p_1 \). Thus, it is the inverse with respect to plethystic substitution.

The compositional inverse exists if and only if:

- \( \text{val}(f) = 1 \), or
- \( f = a + bp_1 \) with \( a, b \neq 0 \).

EXAMPLES:
ALGORITHM:

Let $F$ be a symmetric function with valuation 1, i.e., whose constant term vanishes and whose degree one term equals $b_{p_1}$. Then

$$(F - b_{p_1}) \circ G = F \circ G - b_{p_1} \circ G = p_1 - bG,$$

and therefore $G = (p_1 - (F - b_{p_1}) \circ G)/b$, which allows recursive computation of $G$.

See also:
The compositional inverse $\Omega$ of the symmetric function $h_1 + h_2 + \ldots$ can be handled much more efficiently using specialized methods. See `LogarithmCycleIndexSeries()`

AUTHORS:
• Andrew Gainer-Dewar
• Martin Rubey

`symmetric_function(degree=None)`

Return self as a symmetric function if self is actually so.

INPUT:
• degree – None or an integer

OUTPUT:
If degree is not None, the terms of the series of degree greater than degree are first truncated. If degree is None and the series is not a polynomial polynomial, a ValueError is raised.
We provide lazy implementations for various $\mathbb{N}$-graded rings.

<table>
<thead>
<tr>
<th>LazyLaurentSeriesRing</th>
<th>The ring of lazy Laurent series.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LazyPowerSeriesRing</td>
<td>The ring of (possibly multivariate) lazy Taylor series.</td>
</tr>
<tr>
<td>LazyCompletionGradedAlgebra</td>
<td>The completion of a graded algebra consisting of formal series.</td>
</tr>
<tr>
<td>LazySymmetricFunctions</td>
<td>The ring of (possibly multivariate) lazy symmetric functions.</td>
</tr>
<tr>
<td>LazyDirichletSeriesRing</td>
<td>The ring of lazy Dirichlet series.</td>
</tr>
</tbody>
</table>

See also:

`sage.rings.padics.generic_nodes.pAdicRelaxedGeneric`, `sage.rings.padics.factory.ZpER()`

**Warning:** When the halting precision is infinite, the default for $\text{bool}(f)$ is $\text{True}$ for any lazy series $f$ that is not known to be zero. This could end up resulting in infinite loops:

```
sage: L.<x> = LazyPowerSeriesRing(ZZ)
sage: f = L(lambda n: 0, valuation=0)
sage: 1 / f # not tested - infinite loop
```

See also:

The examples of `LazyLaurentSeriesRing` contain a discussion about the different methods of comparisons the lazy series can use.

AUTHORS:

• Kwankyu Lee (2019-02-24): initial version

• Tejasvi Chebrolu, Martin Rubey, Travis Scrimshaw (2021-08): refactored and expanded functionality

**class** `sage.rings.lazy_series_ring.LazyCompletionGradedAlgebra(basis, sparse=True, category=None)`

Bases: `LazySeriesRing`

The completion of a graded algebra consisting of formal series.

For a graded algebra $A$, we can form a completion of $A$ consisting of all formal series of $A$ such that each homogeneous component is a finite linear combination of basis elements of $A$.

**INPUT:**

• `basis` – a graded algebra

• `names` – name(s) of the alphabets
• **sparse** – (default: True) whether we use a sparse or a dense representation

EXCEPTIONS:

```
sage: # needs sage.modules
dsage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: S = NCSF.Complete()
sage: L = S.formal_series_ring(); L
Lazy completion of Non-Commutative Symmetric Functions
over the Rational Field in the Complete basis
sage: f = 1 / (1 - L(S[1])); f
S[] + S[1] + (S[1,1]) + (S[1,1,1]) + (S[1,1,1,1])
+ (S[1,1,1,1,1]) + O^7
sage: g = 1 / (1 - L(S[2])); g
S[] + S[2] + (S[2,2]) + (S[2,2,2]) + O^7
sage: f * g
S[] + S[1] + (S[1,1]+S[2]) + (S[1,1,1]+S[2,1])
+ (S[1,1,1,1]+S[2,1,1]+S[2,2]) + (S[1,1,1,1,1]+S[2,1,1,1]+S[2,2,1])
+ (S[1,1,1,1,1,1]+S[2,1,1,1,1]+S[2,2,1,1]+S[2,2,2]) + O^7
sage: g * f
S[] + S[1] + (S[1,1]+S[2]) + (S[1,1,1]+S[2,1])
+ (S[1,1,1,1]+S[2,1,1]+S[2,2]) + (S[1,1,1,1,1]+S[2,1,1,1]+S[2,2,1])
+ (S[1,1,1,1,1,1]+S[2,1,1,1,1]+S[2,2,1,1]+S[2,2,2]) + O^7
sage: f * g - g * f
(S[1,2]-S[2,1]) + (S[1,1,2]-S[2,1,1])
+ (S[1,1,1,2]+S[1,2,2]-S[2,1,1,1]-S[2,2,1])
+ (S[1,1,1,1,2]+S[1,1,2,2]-S[2,1,1,1,1]-S[2,2,1,1]) + O^7

```

**Element**

alias of `LazyCompletionGradedAlgebraElement`

**some_elements()**

Return a list of elements of self.

EXAMPLES:

```
sage: m = SymmetricFunctions(GF(5)).m()
se# needs sage.modules
sage: L = LazySymmetricFunctions(m)
se# needs sage.modules
sage: L.some_elements()[:5]
se# needs sage.modules
[0, m[], 2*m[] + 2*m[1] + 3*m[2], 2*m[1] + 3*m[2],
3*m[] + 2*m[1] + (m[1,1]+m[2]),
 (2*m[1,1,1]+m[3])
 + (2*m[1,1,1,1]+4*m[2,1,1]+2*m[2,2])
 + (3*m[2,1,1,1]+3*m[3,1,1]+4*m[3,2]+m[5])
 + (2*m[2,2,1,1]+m[2,2,2]+2*m[3,2,1]+2*m[3,3]+m[4,1,1]+3*m[4,2]+4*m[5],
 + 1)+4*m[6])
 + O^7]
sage: # needs sage.modules
sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: S = NCSF.Complete()
sage: L = S.formal_series_ring()
```

(continues on next page)
class sage.rings.lazy_series_ring.LazyDirichletSeriesRing(base_ring, names, sparse=True, category=None)

Bases: LazySeriesRing

The ring of lazy Dirichlet series.

INPUT:

- base_ring -- base ring of this Dirichlet series ring
- names -- name of the generator of this Dirichlet series ring
- sparse -- (default: True) whether this series is sparse or not

Unlike formal univariate Laurent/power series (over a field), the ring of formal Dirichlet series is not a Wikipedia article discrete_valuation_ring. On the other hand, it is a Wikipedia article local_ring. The unique maximal ideal consists of all non-invertible series, i.e., series with vanishing constant term.

Todo: According to the answers in https://mathoverflow.net/questions/5522/dirichlet-series-with-integer-coefficients-as-a-ufd, (which, in particular, references arXiv math/0105219) the ring of formal Dirichlet series is actually a Wikipedia article Unique_factorization_domain over \( \mathbb{Z} \).

Note: An interesting valuation is described in Emil Daniel Schwab; Gheorghe Silberberg A note on some discrete valuation rings of arithmetical functions, Archivum Mathematicum, Vol. 36 (2000), No. 2, 103-109, http://dml.cz/dmlcz/107723. Let \( J_k \) be the ideal of Dirichlet series whose coefficient \( f[n] \) of \( n^k \) vanishes if \( n \) has less than \( k \) prime factors, counting multiplicities. For any Dirichlet series \( f \), let \( D(f) \) be the largest integer \( k \) such that \( f \) is in \( J_k \). Then \( D \) is surjective, \( D(fg) = D(f) + D(g) \) for nonzero \( f \) and \( g \), and \( D(f + g) \geq \min(D(f), D(g)) \) provided that \( f + g \) is nonzero.

For example, \( J_1 \) are series with no constant term, and \( J_2 \) are series such that \( f[1] \) and \( f[p] \) for prime \( p \) vanish.

Since this is a chain of increasing ideals, the ring of formal Dirichlet series is not a Wikipedia article Noetherian_ring.

Evidently, this valuation cannot be computed for a given series.

EXAMPLES:

```
sage: LazyDirichletSeriesRing(ZZ, 't')
Lazy Dirichlet Series Ring in t over Integer Ring
```

The ideal generated by \( 2^{-s} \) and \( 3^{-s} \) is not principal:

```
sage: L = LazyDirichletSeriesRing(QQ, 's')
sage: L in PrincipalIdealDomains
False
```

Element

alias of LazyDirichletSeries
one()
   Return the constant series 1.

   EXAMPLES:

   
   sage: L = LazyDirichletSeriesRing(ZZ, 'z')
   sage: L.one() # needs sage.symbolic
   1
   sage: ~L.one() # needs sage.symbolic
   1 + O(1/(8^z))

some_elements()
   Return a list of elements of self.

   EXAMPLES:

   sage: L = LazyDirichletSeriesRing(ZZ, 'z')
   sage: l = L.some_elements()
   sage: l
   # needs sage.symbolic
   [0, 1,
    1/(4^z) + 1/(5^z) + 1/(6^z) + O(1/(7^z)),
    1/(2^z) - 1/(3^z) + 2/4^z - 2/5^z + 3/6^z - 3/7^z + 4/8^z - 4/9^z,
    1/(2^z) - 1/(3^z) + 2/4^z - 2/5^z + 3/6^z - 3/7^z + 4/8^z - 4/9^z + 1/(10^z) +
    1/(11^z) + 1/(12^z) + O(1/(13^z)),
    1 + 4/2^z + 9/3^z + 16/4^z + 25/5^z + 36/6^z + 49/7^z + 0(1/(8^z))]

   sage: L = LazyDirichletSeriesRing(QQ, 'z')
   sage: l = L.some_elements()
   sage: l
   # needs sage.symbolic
   [0, 1,
    1/2/4^z + 1/2/5^z + 1/2/6^z + O(1/(7^z)),
    1/2 - 1/2/2^z + 2/3^z - 2/4^z + 1/(6^z) - 1/(7^z) + 42/8^z + 2/3/9^z,
    1/2 - 1/2/2^z + 2/3^z - 2/4^z + 1/(6^z) - 1/(7^z) + 42/8^z + 2/3/9^z + 1/2/10^+
    z + 1/2/11^z + 1/2/12^z + O(1/(13^z)),
    1 + 4/2^z + 9/3^z + 16/4^z + 25/5^z + 36/6^z + 49/7^z + 0(1/(8^z))]

class sage.rings.lazy_series_ring.LazyLaurentSeriesRing(base_ring, names, sparse=True, category=None)

   Bases: LazySeriesRing

   The ring of lazy Laurent series.

   The ring of Laurent series over a ring with the usual arithmetic where the coefficients are computed lazily.

   INPUT:

   * base_ring – base ring
   * names – name of the generator
     * sparse – (default: True) whether the implementation of the series is sparse or not

   EXAMPLES:
Lazy Laurent series ring over a finite field:

```python
sage: # needs sage.rings.finite_rings
sage: L.<z> = LazyLaurentSeriesRing(GF(3)); L
Lazy Laurent Series Ring in z over Finite Field of size 3
sage: e = 1 / (1 + z)
sage: e.coefficient(100)
1
sage: e.coefficient(100).parent()
Finite Field of size 3
```

Series can be defined by specifying a coefficient function and a valuation:

```python
sage: R.<x,y> = QQ[]
sage: L.<z> = LazyLaurentSeriesRing(R)
sage: def coeff(n):
...: if n < 0:
...: return -2 + n
...: if n == 0:
...: return 6
...: return x + y^n
sage: f = L(coeff, valuation=-5)
sage: f
-7*z^-5 - 6*z^-4 - 5*z^-3 - 4*z^-2 - 3*z^-1 + 6 + (x + y)*z + O(z^2)
sage: 1 / (1 - f)
1/7*z^5 - 6/49*z^6 + 1/343*z^7 + 8/2401*z^8 + 64/16807*z^9 + 17319/117649*z^10 + (1/49*x + 1/49*y - 180781/823543)*z^11 + O(z^12)
sage: L(coeff, valuation=-3, degree=3, constant=x)
-5*z^-3 - 4*z^-2 - 3*z^-1 + 6 + (x + y)*z + (y^2 + x)*z^2 + x*z^3 + x*z^4 + x*z^5 + O(z^6)
```

We can also specify a polynomial or the initial coefficients. Additionally, we may specify that all coefficients are equal to a given constant, beginning at a given degree:

```python
sage: L([1, x, y, 0, x+y])
1 + x*z + y*z^2 + (x + y)*z^4
sage: L([1, x, y, 0, x+y], constant=2)
1 + x*z + y*z^2 + (x + y)*z^4 + 2*z^5 + 2*z^6 + 2*z^7 + O(z^8)
sage: L([1, x, y, 0, x+y], degree=7, constant=2)
1 + x*z + y*z^2 + (x + y)*z^4 + 2*z^7 + 2*z^8 + 2*z^9 + O(z^10)
sage: L([1, x, y, 0, x+y], valuation=-2)
z^2 + x*z^4 + y + (x + y)*z^2
sage: L([1, x, y, 0, x+y], valuation=-2, constant=3)
z^2 + x*z^4 + y + (x + y)*z^2 + 3*z^3 + 3*z^4 + 3*z^5 + O(z^6)
sage: L([1, x, y, 0, x+y], valuation=-2, degree=4, constant=3)
z^2 + x*z^4 + y + (x + y)*z^2 + 3*z^3 + 3*z^4 + 3*z^5 + 3*z^6 + O(z^7)
```
Some additional examples over the integer ring:

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: L in Fields
False
sage: 1 / (1 - 2*z)^3
1 + 6*z + 24*z^2 + 80*z^3 + 240*z^4 + 672*z^5 + 1792*z^6 + O(z^7)
```

```python
sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: L(x^-2 + 3 + x)
z^-2 + 3 + z
sage: L(x^-2 + 3 + x, valuation=-5, constant=2)
z^-5 + 3*z^-3 + z^-2 + 2*z^-1 + 2 + 2*z + O(z^2)
sage: L(x^-2 + 3 + x, valuation=-5, degree=0, constant=2)
z^-5 + 3*z^-3 + z^-2 + 2 + 2*z + 2*z^2 + O(z^3)
```

We can truncate a series, shift its coefficients, or replace all coefficients beginning with a given degree by a constant:

```python
sage: f = 1 / (z + z^2)
sage: f
z^-1 - 1 + z - z^2 + z^3 - z^4 + z^5 + O(z^6)
sage: L(f, valuation=2)
z^-2 + z^-3 - z^-4 + z^-5 + z^-6 + O(z^-7)
sage: L(f, degree=3)
z^-1 - 1 + z - z^2
sage: L(f, degree=3, constant=2)
z^-2 + z^-3
```

Power series can be defined recursively (see `sage.rings.lazy_series.LazyModuleElement.define()` for more examples):

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: s = L.undefined(valuation=0)
sage: s.define(1 + z*s^2)
sage: s
1 + z + 2*z^2 + 5*z^3 + 14*z^4 + 42*z^5 + 132*z^6 + O(z^7)
```

By default, any two series \( f \) and \( g \) that are not known to be equal are considered to be different:

```python
sage: f = L(lambda n: 0, valuation=0)
sage: f == 0
False
sage: f = L(constant=1, valuation=0).derivative(); f
1 + 2*z + 3*z^2 + 4*z^3 + 5*z^4 + 6*z^5 + 7*z^6 + O(z^7)
sage: g = L(lambda n: (n+1), valuation=0); g
1 + 2*z + 3*z^2 + 4*z^3 + 5*z^4 + 6*z^5 + 7*z^6 + O(z^7)
sage: f == g
False
```
Warning: We have imposed that $(f == g) == \text{not } (f \neq g)$, and so $f \neq g$ returning True might not mean that the two series are actually different:

```
sage: f = L(lambda n: 0, valuation=0)
sage: g = L.zero()
sage: f != g
True
```

This can be verified by is_nonzero(), which only returns True if the series is known to be nonzero:

```
sage: (f - g).is_nonzero()
False
```

The implementation of the ring can be either be a sparse or a dense one. The default is a sparse implementation:

```
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: L.is_sparse()
True
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=False)
sage: L.is_sparse()
False
```

We additionally provide two other methods of performing comparisons. The first is raising a ValueError and the second uses a check up to a (user set) finite precision. These behaviors are set using the options secure and halting_precision. In particular, this applies to series that are not specified by a finite number of initial coefficients and a constant for the remaining coefficients. Equality checking will depend on the coefficients which have already been computed. If this information is not enough to check that two series are different, then if L.options.secure is set to True, then we raise a ValueError:

```
sage: L.options.secure = True
sage: f = 1 / (z + z^2); f
z^-1 - 1 + z - z^2 + z^3 - z^4 + z^5 + O(z^6)
sage: f2 = f * 2 # currently no coefficients computed
sage: f3 = f * 3 # currently no coefficients computed
sage: f2 == f3
Traceback (most recent call last):
... ValueError: undecidable
```

```
sage: f2a = f + f
sage: f2 == f2a
Traceback (most recent call last):
... ValueError: undecidable
```

```
sage: zf = L(lambda n: 0, valuation=0)
sage: zf == 0
Traceback (most recent call last):
... ValueError: undecidable
```

(continues on next page)
ValueError: undecidable

For boolean checks, an error is raised when it is not known to be nonzero:

```python
sage: bool(zf)
Traceback (most recent call last):
... ValueError: undecidable
```

If the halting precision is set to a finite number \( p \) (for unlimited precision, it is set to \( \text{None} \)), then it will check up to \( p \) values from the current position:

```python
sage: L.options.halting_precision = 20
sage: f2 = f * 2 # currently no coefficients computed
sage: f3 = f * 3 # currently no coefficients computed
sage: f2 == f3
False
sage: f2a = f + f
sage: f2 == f2a
True
sage: zf = L(lambda n: 0, valuation=0)
sage: zf == 0
True
```

**Element**

alias of `LazyLaurentSeries`

**euler()**

Return the Euler function as an element of `self`.

The Euler function is defined as

\[
\phi(z) = (z; z)_\infty = \sum_{n=0}^{\infty} (-1)^n q^{(3n^2-n)/2}.
\]

**EXAMPLES:**

```python
sage: L.<q> = LazyLaurentSeriesRing(ZZ)
sage: phi = q.euler()
sage: phi
1 - q - q^2 + q^5 + O(q^7)
```

We verify that \( 1/\phi \) gives the generating function for all partitions:

```python
sage: P = 1 / phi; P
1 + q + 2*q^2 + 3*q^3 + 5*q^4 + 7*q^5 + 11*q^6 + 0(q^7)
sage: P[:20] == [Partitions(n).cardinality() for n in range(20)]
needs sage.libs.flint
True
```

**REFERENCES:**

- Wikipedia article Euler_function
\section*{Power Series Rings and Laurent Series Rings, Release 10.2}

\textbf{\texttt{gen}(n=0)}

Return the n-th generator of \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.gen()
sage: L.gen(3)
Traceback (most recent call last):
  ... IndexError: there is only one generator
\end{verbatim}

\textbf{\texttt{gens}()}

Return the generators of \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: L.gens()
(z,)
sage: 1/(1 - z)
1 + z + z^2 + O(z^3)
\end{verbatim}

\textbf{\texttt{ngens}()}

Return the number of generators of \texttt{self}.

This is always 1.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: L.ngens()
l
\end{verbatim}

\textbf{\texttt{q_pochhammer}(q=None)}

Return the infinite \( q \)-Pochhammer symbol \((a; q)_{\infty}\), where \( a \) is the variable of \texttt{self}.

This is also one version of the quantum dilogarithm or the \( q \)-Exponential function.

\textbf{INPUT:}

- \( q \) – (default: \( q \in \mathbb{Q}(q) \)) the parameter \( q \)

\textbf{EXAMPLES:}

\begin{verbatim}
sage: q = ZZ['q'].fraction_field().gen()
sage: L.<z> = LazyLaurentSeriesRing(q.parent())
sage: qpoch = L.q_pochhammer(q)
sage: qpoch
1 + (-1/(-q + 1))*z + (q/(q^3 - q^2 - q + 1))*z^2 + (-q^3/(-q^6 + q^5 + q^4 - q^2 - q + 1))*z^3 + (q^6/(q^10 - q^9 - q^8 + 2*q^5 - q^2 - q + 1))*z^4 + (-q^10/(-q^15 + q^14 + q^13 - q^10 - q^9 + q^8 + q^7 + q^6 + q^5 - q^2 - q + \ldots -1))*z^5
\end{verbatim}

(continues on next page)
We show that \((z; q)_n = \frac{(z; q)_\infty}{(q^n; q)_\infty}\):

\[
\begin{align*}
sage: \text{qpoch} & / \text{qpoch}(q^2z) \\
1 - z + O(z^7)
\end{align*}
\]

\[
\begin{align*}
sage: \text{qpoch} & / \text{qpoch}(q^3z) \\
1 + (-q^2 - q - 1)*z + (q^3 + q^2 + q)*z^2 - q^3*z^3 + 0(z^7)
\end{align*}
\]

We can also construct part of Euler’s function:

\[
\begin{align*}
sage: M.<a> & = \text{LazyLaurentSeriesRing}(\mathbb{Q}) \\
sage: \phi & = \sum(\text{qpoch}[i](q=a)*a^i \text{ for } i \text{ in range}(10)) \\
sage: \phi[:20] & == M.\text{euler()}[:20] \\
\text{True}
\end{align*}
\]

REFERENCES:

• Wikipedia article Q-Pochhammer_symbol
• Wikipedia article Quantum_dilogarithm
• Wikipedia article Q-exponential

residue_field()

Return the residue field of the ring of integers of \self.

EXAMPLES:

\[
\begin{align*}
sage: L & = \text{LazyLaurentSeriesRing}(\mathbb{Q}, 'z') \\
sage: L.\text{residue_field}() \\
\text{Rational Field}
\end{align*}
\]

series\( (\text{coefficient}, \text{valuation}, \text{degree=None}, \text{constant=None}) \)

Return a lazy Laurent series.

INPUT:

• \text{coefficient} – Python function that computes coefficients or a list
• \text{valuation} – integer; approximate valuation of the series
• \text{degree} – (optional) integer
• \text{constant} – (optional) an element of the base ring

Let the coefficient of index \(i\) mean the coefficient of the term of the series with exponent \(i\).

Python function \text{coefficient} returns the value of the coefficient of index \(i\) from input \(s\) and \(i\) where \(s\) is the series itself.
Let valuation be $n$. All coefficients of index below $n$ are zero. If constant is not specified, then the coefficient function is responsible to compute the values of all coefficients of index $\geq n$. If degree or constant is a pair $(c, m)$, then the coefficient function is responsible to compute the values of all coefficients of index $\geq n$ and $< m$ and all the coefficients of index $\geq m$ is the constant $c$.

EXAMPLES:

```
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.series(lambda s, i: i, 5, (1,10))
5*z^5 + 6*z^6 + 7*z^7 + 8*z^8 + 9*z^9 + z^10 + z^11 + z^12 + O(z^13)
```

```
sage: def g(s, i):
....: if i < 0:
....: return 1
....: else:
....: return s.coefficient(i - 1) + i
sage: e = L.series(g, -5); e
z^-5 + z^-4 + z^-3 + z^-2 + z^-1 + 1 + 2*z + O(z^2)
```

```
sage: f = e^-1; f
z^5 - z^6 - z^11 + O(z^12)
```

```
sage: f.coefficient(10)
0
```

```
sage: f.coefficient(20)
9
```

```
sage: f.coefficient(30)
-219
```

Alternatively, the coefficient can be a list of elements of the base ring. Then these elements are read as coefficients of the terms of degrees starting from the valuation. In this case, constant may be just an element of the base ring instead of a tuple or can be simply omitted if it is zero.

```
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: f = L.series([1,2,3,4], -5); f
z^-5 + 2*z^-4 + 3*z^-3 + 4*z^-2
```

```
sage: g = L.series([1,3,5,7,9], 5, constant=-1); g
z^5 + 3*z^6 + 5*z^7 + 7*z^8 + 9*z^9 - z^10 - z^11 - z^12 + O(z^13)
```

```
some_elements()
```

Return a list of elements of self.

EXAMPLES:

```
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.some_elements()[:7]
[0, 1, z,
-3*z^-4 + z^-3 - 2*z^-2 - 2*z^-1 - 10 - 8*z + z^2 + z^3,
-2*z^2 + z^3 + z^4 + z^5 + O(z^6),
-2*z^3 - 2*z^4 + 4*z^-1 + 11 - z - 34*z^2 - 31*z^3 + O(z^4),
4*z^2 + z^-1 + z + 4*z^2 + 9*z^3 + 16*z^4 + O(z^5)]
```

```
sage: L = LazyLaurentSeriesRing(GF(2), 'z')
sage: L.some_elements()[:7]
[0, 1, z, z^-4 + z^-3 + z^2 + z^3,
z^-2,
```
1 + z + z^3 + z^4 + z^6 + O(z^7),
z^-1 + z + z^3 + 0(z^5)]

\texttt{sage: L = LazyLaurentSeriesRing(GF(3), 'z')}
\texttt{sage: L.some_elements()[:7]}
[0, 1, z,
z^-3 + z^-1 + 2 + z + z^2 + z^3,
z^-2,
z^-3 + z^-2 + z^-1 + 2 + 2^z + 2^z^2 + 0(z^3),
z^-2 + z^-1 + z + z^2 + z^4 + 0(z^5)]

\texttt{uniformizer()}
Return a uniformizer of self.

\texttt{sage: L = LazyLaurentSeriesRing(QQ, 'z')}
\texttt{sage: L.uniformizer()}
z

\texttt{sage.rings.lazy_series_ring.LazyPowerSeriesRing(base_ring, names, sparse=True, category=None)}

\texttt{class sage.rings.lazy_series_ring.LazyPowerSeriesRing(base_ring, names, sparse=True, category=None)}
The ring of (possibly multivariate) lazy Taylor series.

\texttt{Element alias of LazyPowerSeries}

\texttt{fraction_field()}
Return the fraction field of self.

If this is with a single variable over a field, then the fraction field is the field of (lazy) formal Laurent series.

\texttt{Todo: Implement other fraction fields.}

\texttt{EXAMPLES:}
```python
sage: L.<x> = LazyPowerSeriesRing(QQ)
sage: L.fraction_field()
Lazy Laurent Series Ring in x over Rational Field
```

**gen(n=0)**

Return the n-th generator of self.

**EXAMPLES:**

```python
sage: L = LazyPowerSeriesRing(ZZ, 'z')
sage: L.gen()
z
sage: L.gen(3)
Traceback (most recent call last):
... IndexError: there is only one generator
```

**gens()**

Return the generators of self.

**EXAMPLES:**

```python
sage: L = LazyPowerSeriesRing(ZZ, 'x,y')
sage: L.gens()
(x, y)
```

**ngens()**

Return the number of generators of self.

**EXAMPLES:**

```python
sage: L.<z> = LazyPowerSeriesRing(ZZ)
sage: L.ngens()
1
```

**residue_field()**

Return the residue field of the ring of integers of self.

**EXAMPLES:**

```python
sage: L = LazyPowerSeriesRing(QQ, 'x')
sage: L.residue_field()
Rational Field
```

**some_elements()**

Return a list of elements of self.

**EXAMPLES:**

```python
sage: L = LazyPowerSeriesRing(ZZ, 'z')
sage: L.some_elements()[:6]
[0, 1, z + z^2 + z^3 + O(z^4),
-12 - 8*z + z^2 + z^3,
1 + z - 2*z^2 - 7*z^3 - z^4 + 20*z^5 + 23*z^6 + O(z^7),
z + 4*z^2 + 9*z^3 + 16*z^4 + 25*z^5 + 36*z^6 + O(z^7)]
```

(continues on next page)
sage: L = LazyPowerSeriesRing(GF(3)["q"], 'z')
sage: L.some_elements()[:6]
[0, 1, z + q*z^2 + q*z^3 + q*z^4 + O(z^5),
 z + z^2 + z^3,
 1 + z + z^2 + 2*z^3 + 2*z^4 + 2*z^5 + O(z^6),
 z + z^2 + z^4 + z^5 + O(z^7)]

sage: L = LazyPowerSeriesRing(GF(3), 'q, t')
sage: L.some_elements()[:6]
[0, 1, q,
 q + q^2 + q^3,
 1 + q + q^2 + (-q^3) + (-q^4) + (-q^5) + (-q^6) + O(q,t)^7,
 1 + (q+t) + (q^2-q*t+t^2) + (q^3+t^3)
 + (q^4+q^3*t+q^2*t^3+t^4)
 + (q^5-q^4*t+q^3*t^2+q^2*t^3-q*t^4+t^5)
 + (q^6-q^3*t^3+t^6) + O(q,t)^7]

uniformizer()

Return a uniformizer of self.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ, 'x')
sage: L.uniformizer()
x

class sage.rings.lazy_series_ring.LazySeriesRing

Bases: UniqueRepresentation, Parent

Abstract base class for lazy series.

characteristic()

Return the characteristic of this lazy power series ring, which is the same as the characteristic of its base ring.

EXAMPLES:

sage: L.<t> = LazyLaurentSeriesRing(ZZ)
sage: L.characteristic()
0

sage: R.<w> = LazyLaurentSeriesRing(GF(11)); R
Lazy Laurent Series Ring in w over Finite Field of size 11
sage: R.characteristic()
11

sage: R.<x, y> = LazyPowerSeriesRing(GF(7)); R
Multivariate Lazy Taylor Series Ring in x, y over Finite Field of size 7
sage: R.characteristic()
7

sage: L = LazyDirichletSeriesRing(ZZ, "s")
sage: L.characteristic()
0

is_exact()
Return if self is exact or not.

EXAMPLES:

```
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.is_exact()
True
sage: L = LazyLaurentSeriesRing(RR, 'z')
sage: L.is_exact()
False
```

is_sparse()
Return whether self is sparse or not.

EXAMPLES:

```
sage: L = LazyLaurentSeriesRing(ZZ, 'z', sparse=False)
sage: L.is_sparse()
False
sage: L = LazyLaurentSeriesRing(ZZ, 'z', sparse=True)
sage: L.is_sparse()
True
```

one()
Return the constant series 1.

EXAMPLES:

```
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.one()
1
sage: L = LazyPowerSeriesRing(ZZ, 'z')
sage: L.one()
1
sage: m = SymmetricFunctions(ZZ).m()
needs sage.modules
sage: L = LazySymmetricFunctions(m)
needs sage.modules
sage: L.one()
needs sage.modules
m[]
```

options = Current options for lazy series rings - constant_length: 3 - display_length: 7 - halting_precision: None - secure: False

```
prod(f, a=None, b=+Infinity, add_one=False)
The product of elements of self.
```
INPUT:

- \( f \) – a list (or iterable) of elements of \( \text{self} \)
- \( a, b \) – optional arguments
- \text{add\_one} – (default: \text{False}); if True, then converts a lazy series \( p_i \) from \( \text{args} \) into \( 1 + p_i \) for the product

If \( a \) and \( b \) are both integers, then this returns the product \( \prod_{i=a}^{b} f(i) \), where \( f(i) = p_i \) if \text{add\_one=False} \) or \( f(i) = 1 + p_i \) otherwise. If \( b \) is not specified, then we consider \( b = \infty \). Note this corresponds to the Python range\((a, b+1)\).

If \( a \) is any other iterable, then this returns the product \( \prod_{i \in \text{args}} f(i) \), where \( f(i) = p_i \) if \text{add\_one=False} \) or \( f(i) = 1 + p_i \) otherwise.

Note: For infinite products, it is faster to use \text{add\_one=True} since the implementation is based on \( p_i \) in \( \prod_{i}(1 + p_i) \).

Warning: When \( f \) is an infinite generator, then the first argument \( a \) must be \text{True}. Otherwise this will loop forever.

Warning: For an infinite product of the form \( \prod_{i}(1 + p_i) \), if \( p_i = 0 \), then this will loop forever.

EXAMPLES:

```python
sage: L.<t> = LazyLaurentSeriesRing(QQ)
sage: euler = L.prod(lambda n: 1 - t^n, PositiveIntegers())
sage: euler
1 - t - t^2 + t^5 + O(t^7)
sage: 1 / euler
1 + t + 2*t^2 + 3*t^3 + 5*t^4 + 7*t^5 + 11*t^6 + O(t^7)
sage: euler - L.euler()
O(t^7)
sage: L.prod(lambda n: -t^n, 1, add_one=True)
1 - t - t^2 + t^5 + O(t^7)
sage: L.prod((1 - t^n for n in PositiveIntegers()), True)
1 - t - t^2 + t^5 + O(t^7)
sage: L.prod((-t^n for n in PositiveIntegers()), True, add_one=True)
1 - t - t^2 + t^5 + O(t^7)
sage: L.prod((1 + t^(n-3) for n in PositiveIntegers()), True)
2*t^-3 + 4*t^-2 + 4*t^-1 + 4 + 6*t + 10*t^2 + 16*t^3 + O(t^4)
sage: L.prod(lambda n: 2 + t^n, n, -3, 5)
96*t^-6 + 240*t^-5 + 336*t^-4 + 840*t^-3 + 984*t^-2 + 1248*t^-1 + 1980 + 1668*t + 1824*t^2 + 1872*t^3 + 1782*t^4 + 1710*t^5 + 1314*t^6 + 1122*t^7 + 858*t^8 + 711*t^9 + 438*t^10 + 282*t^11 + 210*t^12 + 84*t^13 + 60*t^14 + 24*t^15
sage: L.prod(lambda n: t*n / (1 + abs(n)), -2, 2, add_one=True)
(continues on next page)
```
\[ 1/3*t^{-3} + 5/6*t^{-2} + 13/9*t^{-1} + 25/9 + 13/9*t + 5/6*t^2 + 1/3*t^3 \]
\[
\text{sage: } \text{L.prod(}\lambda n: t^{-n} / n, -4, -2) \\
1/24*t^{-9} - 1/8*t^{-8} - 1/6*t^{-7} + 1/2*t^{-6} \\
\text{sage: } D = \text{LazyDirichletSeriesRing(QQ, "s")} \\
\text{sage: } D.\text{prod(}\lambda p: (1+D(1, valuation=p)).inverse(), \text{Primes()}) \\
1 - 1/(2^s) - 1/(3^s) + 1/(4^s) - 1/(5^s) + 1/(6^s) - 1/(7^s) + O(1/(8^s)) \\
\text{sage: } D.\text{prod(}\lambda p: D(1, valuation=p), \text{Primes(), add_one=True}) \\
1 + 1/(2^s) + 1/(3^s) + 1/(5^s) + 1/(6^s) + 1/(7^s) + O(1/(8^s))
\]

```py
sum(f, a=None, b=+Infinity)
```

The sum of elements of `self`.

INPUT:

- `f` – a list (or iterable or function) of elements of `self`
- `a`, `b` – optional arguments

If `a` and `b` are both integers, then this returns the sum \( \sum_{i=a}^{b} f(i) \). If `b` is not specified, then we consider \( b = \infty \). Note this corresponds to the Python `range(a, b+1)`.

If `a` is any other iterable, then this returns the sum \( \sum_{i \in a} f(i) \).

**Warning:** When `f` is an infinite generator, then the first argument `a` must be `True`. Otherwise this will loop forever.

**Warning:** For an infinite sum of the form \( \sum s_i \), if \( s_i = 0 \), then this will loop forever.

EXAMPLES:

```py
sage: L.<t> = LazyLaurentSeriesRing(QQ)
\text{sage: } L.\text{sum(}\lambda n: t^n / (n+1), \text{PositiveIntegers()}) \\
1/2*t + 1/3*t^2 + 1/4*t^3 + 1/5*t^4 + 1/6*t^5 + 1/7*t^6 + 1/8*t^7 + O(t^8)
\text{sage: } L.<z> = LazyPowerSeriesRing(QQ)
\text{sage: } T = L.\text{undefined}(1) \\
\text{sage: } D = L.\text{undefined}(0) \\
\text{sage: } H = L.\text{sum(}\lambda k: T(z^k)/k, 2) \\
\text{sage: } T.\text{define}(z*exp(T)*D) \\
\text{sage: } D.\text{define}(\text{exp}(H)) \\
\text{sage: } T \\
z + z^2 + 2*z^3 + 4*z^4 + 9*z^5 + 20*z^6 + 48*z^7 + O(z^8) \\
\text{sage: } D \\
1 + 1/2*z^2 + 1/3*z^3 + 7/8*z^4 + 11/30*z^5 + 281/144*z^6 + O(z^7)
\text{sage: } L.<q> = \text{LazyPowerSeriesRing(QQ)} \\
\text{sage: } Gpi = L.\text{prod(}\lambda k: -q^(1+5*k), 0, oo, \text{add_one=True}) \\
\text{continues on next page}
```
Power Series Rings and Laurent Series Rings, Release 10.2

(continued from previous page)

```
sage: Gpi *= L.prod(lambda k: -q^(4+5*k), 0, oo, add_one=True)
sage: Gp = 1 / Gpi
sage: G = L.sum(lambda n: q^(n^2) / prod(1 - q^(k+1) for k in range(n)), 0, oo)
sage: G - Gp
O(q^7)
sage: all(G[k] == Gp[k] for k in range(100))
True
```

```
sage: Hpi = L.prod(lambda k: -q^(2+5*k), 0, oo, add_one=True)
sage: Hpi *= L.prod(lambda k: -q^(3+5*k), 0, oo, add_one=True)
sage: Hp = 1 / Hpi
sage: H = L.sum(lambda n: q^(n^2+n) / prod(1 - q^(k+1) for k in range(n)), 0, oo)
sage: H - Hp
O(q^7)
sage: all(H[k] == Hp[k] for k in range(100))
True
```

```
sage: D = LazyDirichletSeriesRing(QQ, "s")
sage: D.sum(lambda p: D(1, valuation=p), Primes())
1/(2^s) + 1/(3^s) + 1/(5^s) + 1/(7^s) + O(1/(9^s))
```

**undefined**(valuation=None)

Return an uninitialized series.

**INPUT:**

- valuation – integer; a lower bound for the valuation of the series

Power series can be defined recursively (see `sage.rings.lazy_series.LazyModuleElement.define()` for more examples).

**See also:**

- `sage.rings.padics.generic_nodes.pAdicRelaxedGeneric.unknown()`

**EXAMPLES:**

```
sage: L.<z> = LazyPowerSeriesRing(QQ)
sage: s = L.undefined(1)
sage: s.define(z + (s^2+s(z^2))/2)
sage: s
z + z^2 + z^3 + 2*z^4 + 3*z^5 + 6*z^6 + 11*z^7 + O(z^8)
```

Alternatively:

```
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: f = L(None, valuation=-1)
sage: f.define(z^-1 + z^2*f^2)
sage: f
z^-1 + 1 + 2*z + 5*z^2 + 14*z^3 + 42*z^4 + 132*z^5 + O(z^6)
```

**unknown**(valuation=None)

Return an uninitialized series.

**INPUT:**
• valuation – integer; a lower bound for the valuation of the series

Power series can be defined recursively (see `sage.rings.lazy_series.LazyModuleElement.define()` for more examples).

See also:
sage.rings.padics.generic_nodes.pAdicRelaxedGeneric.unknown()

EXAMPLES:

```
sage: L.<z> = LazyPowerSeriesRing(QQ)
sage: s = L.undefined(1)
sage: s.define(z + (s^2+s(z^2))/2)
sage: s
z + z^2 + z^3 + 2*z^4 + 3*z^5 + 6*z^6 + 11*z^7 + O(z^8)
```

Alternatively:

```
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: f = L(None, valuation=-1)
sage: f.define(z^-1 + z^2*f^2)
sage: f
z^-1 + 1 + 2*z + 5*z^2 + 14*z^3 + 42*z^4 + 132*z^5 + O(z^6)
```

`zero()`

Return the zero series.

EXAMPLES:

```
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.zero()
0
```

```
sage: s = SymmetricFunctions(ZZ).s() # needs sage.modules

```

```
sage: L = LazySymmetricFunctions(s) # needs sage.modules
```

```
sage: L.zero() # needs sage.modules
0
```

```
sage: L = LazyDirichletSeriesRing(ZZ, 'z')
sage: L.zero()
0
```

```
sage: L = LazyPowerSeriesRing(ZZ, 'z')
sage: L.zero()
0
```

**class** `sage.rings.lazy_series_ring.LazySymmetricFunctions` *(basis, sparse=True, category=Undefined)*

**Bases:** `LazyCompletionGradedAlgebra`

The ring of lazy symmetric functions.

**INPUT:**

• **basis** – the ring of symmetric functions
• names – name(s) of the alphabets
• sparse – (default: True) whether we use a sparse or a dense representation

EXAMPLES:

```python
sage: s = SymmetricFunctions(ZZ).s() # needs sage.modules
sage: LazySymmetricFunctions(s) # needs sage.modules
Lazy completion of Symmetric Functions over Integer Ring in the Schur basis

sage: m = SymmetricFunctions(ZZ).m() # needs sage.modules
sage: LazySymmetricFunctions(tensor([s, m])) # needs sage.modules
Lazy completion of Symmetric Functions over Integer Ring in the Schur basis
Symmetric Functions over Integer Ring in the monomial basis
```

**Element**

alias of `LazySymmetricFunction`
The ring of Puiseux series.

AUTHORS:
- Chris Swierczewski 2016: initial version on https://github.com/abelfunctions/abelfunctions/tree/master/abelfunctions
- Frédéric Chapoton 2016: integration of code
- Travis Scrimshaw, Sebastian Oehms 2019-2020: basic improvements and completions

REFERENCES:
- Wikipedia article Puiseux_series

class sage.rings.puiseux_series_ring.PuiseuxSeriesRing(laurent_series)
Bases: UniqueRepresentation, CommutativeRing
Rings of Puiseux series.

EXAMPLES:

```sage
P = PuiseuxSeriesRing(QQ, 'y')
y = P.gen()
f = y**(4/3) + y**(-5/6); f
y^(-5/6) + y^(4/3)
f.add_bigoh(2)
y^(-5/6) + y^(4/3) + O(y^2)
f.add_bigoh(1)
y^(-5/6) + O(y)
```

Element
alias of PuiseuxSeries

base_extend(R)
Extend the coefficients.

INPUT:
- R – a ring

EXAMPLES:

```sage
A = PuiseuxSeriesRing(ZZ, 'y')
A.base_extend(QQ)
Puiseux Series Ring in y over Rational Field
```
change_ring($R$)
Return a Puiseux series ring over another ring.

INPUT:
• $R$ – a ring

EXAMPLES:

```
sage: A = PuiseuxSeriesRing(ZZ, 'y')
sage: A.change_ring(QQ)
Puiseux Series Ring in y over Rational Field
```

default_prec()
Return the default precision of self.

EXAMPLES:

```
sage: A = PuiseuxSeriesRing(AA, 'z')
sage: A.default_prec() # needs sage.rings.number_field
20
```

fraction_field()
Return the fraction field of this ring of Laurent series.

If the base ring is a field, then Puiseux series are already a field. If the base ring is a domain, then the
Puiseux series over its fraction field is returned. Otherwise, raise a ValueError.

EXAMPLES:

```
sage: R = PuiseuxSeriesRing(ZZ, 't', 30).fraction_field()
sage: R
Puiseux Series Ring in t over Rational Field
sage: R.default_prec()
30
sage: PuiseuxSeriesRing(Zmod(4), 't').fraction_field()
Traceback (most recent call last):
...
ValueError: must be an integral domain
```

gen($n=0$)
Return the generator of self.

EXAMPLES:

```
sage: A = PuiseuxSeriesRing(AA, 'z')
sage: A.gen() # needs sage.rings.number_field
z
```

is_dense()
Return whether self is dense.

EXAMPLES:
sage: A = PuiseuxSeriesRing(ZZ, 'y')
sage: A.is_dense()
True

is_field(proof=True)
Return whether self is a field.
A Puiseux series ring is a field if and only its base ring is a field.
EXAMPLES:
sage: A = PuiseuxSeriesRing(ZZ, 'y')
sage: A.is_field()  
False
sage: A.change_ring(QQ).is_field()
True

is_sparse()
Return whether self is sparse.
EXAMPLES:
sage: A = PuiseuxSeriesRing(ZZ, 'y')
sage: A.is_sparse()
False

laurent_series_ring()
Return the underlying Laurent series ring.
EXAMPLES:
sage: A = PuiseuxSeriesRing(AA, 'z')  
˓→ needs sage.rings.number_field
sage: A.laurent_series_ring()  
˓→ needs sage.rings.number_field
Laurent Series Ring in z over Algebraic Real Field

ngens()
Return the number of generators of self, namely 1.
EXAMPLES:
sage: A = PuiseuxSeriesRing(AA, 'z')  
˓→ needs sage.rings.number_field
sage: A.ngens()  
˓→ needs sage.rings.number_field
1

residue_field()
Return the residue field of this Puiseux series field if it is a complete discrete valuation field (i.e. if the base ring is a field, in which case it is also the residue field).
EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(GF(17))
sage: R.residue_field()
Finite Field of size 17

sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: R.residue_field()
Traceback (most recent call last):
  ...  
TypeError: the base ring is not a field

uniformizer()

Return a uniformizer of this Puiseux series field if it is a discrete valuation field (i.e. if the base ring is actually a field). Otherwise, an error is raised.

EXAMPLES:

sage: R.<t> = PuiseuxSeriesRing(QQ)
sage: R.uniformizer()
t

sage: R.<t> = PuiseuxSeriesRing(ZZ)
sage: R.uniformizer()
Traceback (most recent call last):
  ...  
TypeError: the base ring is not a field
A Puiseux series is a series of the form

\[ p(x) = \sum_{n=N}^{\infty} a_n (x - a)^{n/e}, \]

where the integer \( e \) is called the \textit{ramification index} of the series and the number \( a \) is the \textit{center}. A Puiseux series is essentially a Laurent series but with fractional exponents.

\section*{EXAMPLES:}

We begin by constructing the ring of Puiseux series in \( x \) with coefficients in the rationals:

\begin{verbatim}
sage: R.<x> = PuiseuxSeriesRing(QQ)
This command also defines \( x \) as the generator of this ring.
When constructing a Puiseux series, the ramification index is automatically determined from the greatest common
divisor of the exponents:
\end{verbatim}

\begin{verbatim}
sage: p = x^(1/2); p
x^(1/2)
sage: p.ramification_index()
2
sage: q = x^(1/2) + x**(1/3); q
x^(1/3) + x^(1/2)
sage: q.ramification_index()
6
\end{verbatim}

Other arithmetic can be performed with Puiseux Series:

\begin{verbatim}
sage: p + q
x^(1/3) + 2*x^(1/2)
sage: p - q
-x^(1/3)
sage: p * q
x^(5/6) + x
sage: (p / q).add_bigoh(4/3)
x^(1/6) - x^(1/3) + x^(1/2) - x^(2/3) + x^(5/6) - x + x^(7/6) + O(x^(4/3))
\end{verbatim}

Mind the base ring. However, the base ring can be changed:

\begin{verbatim}
sage: I = q
#needs sage.rings.number_field
(continues on next page)
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *: 'Number Field in I with defining polynomial x^2 + 1 with I = 1*I' and 'Puiseux Series Ring in x over Rational Field'
sage: qz = q.change_ring(ZZ); qz
x^(1/3) + x^(1/2)
sage: qz.parent()
Puiseux Series Ring in x over Integer Ring

Other properties of the Puiseux series can be easily obtained:

\[
\text{sage: } r = (3x^{-1/5} + 7x^{2/5} + (1/2)x).add_bigoh(6/5); r
3x^{-1/5} + 7x^{2/5} + 1/2x + O(x^{6/5})
\]
\[
\text{sage: } r.\text{valuation}()
-1/5
\]
\[
\text{sage: } r.\text{prec}()
6/5
\]
\[
\text{sage: } r.\text{precision_absolute}()
6/5
\]
\[
\text{sage: } r.\text{precision_relative}()
7/5
\]
\[
\text{sage: } r.\text{exponents}()
[-1/5, 2/5, 1]
\]
\[
\text{sage: } r.\text{coefficients}()
[3, 7, 1/2]
\]

Finally, Puiseux series are compatible with other objects in Sage. For example, you can perform arithmetic with Laurent series:

\[
\text{sage: } L.<x> = LaurentSeriesRing(ZZ)
\]
\[
\text{sage: } l = 3x^{-2} + x^{-1} + 2 + x^3
\]
\[
\text{sage: } r + l
3x^{-2} + x^{-1} + 3x^{-1/5} + 2 + 7x^{2/5} + 1/2x + O(x^{6/5})
\]

AUTHORS:

- Chris Swierczewski 2016: initial version on https://github.com/abelfunctions/abelfunctions/tree/master/abelfunctions
- Frédéric Chapoton 2016: integration of code
- Travis Scrimshaw, Sebastian Oehms 2019-2020: basic improvements and completions

REFERENCES:

- Wikipedia article Puiseux_series

class sage.rings.puiseux_series_ring_element.PuiseuxSeries

Bases: AlgebraElement

A Puiseux series.

\[
\sum_{n=-N}^{\infty} a_n x^{n/e}
\]
It is stored as a Laurent series:

\[ \sum_{n = -N}^{\infty} a_n t^n \]

where \( t = x^{1/c} \).

**INPUT:**

- **parent** – the parent ring
- **f** – one of the following types of inputs:
  - instance of `PuiseuxSeries`
  - instance that can be coerced into the Laurent series ring of the parent
- **e** – integer (default: 1) the ramification index

**EXAMPLES:**

```python
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(1/2) + x^3; p
x^(1/2) + x^3
sage: q = x**(-1/2) - x**(-1/2)
sage: r = q.add_bigoh(7/2); r
-x^(-1/2) + x^(1/2) + O(x^(7/2))
sage: r**2
x^-1 - 2 + x + O(x^3)
```

**add_bigoh(prec)**

Return the truncated series at chosen precision `prec`.

**INPUT:**

- **prec** – the precision of the series as a rational number

**EXAMPLES:**

```python
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3
sage: p.add_bigoh(2)
x^(-7/2) + 3 + 5*x^(1/2) + O(x^2)
sage: p.add_bigoh(0)
x^(-7/2) + O(1)
sage: p.add_bigoh(-1)
x^(-7/2) + O(x^(-1))
```

**Note:** The precision passed to the method is adapted to the common ramification index:

```python
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x**(-1/3) + 2*x**(1/5)
sage: p.add_bigoh(1/2)
x^(-1/3) + 2*x^(1/5) + O(x^(7/15))
```
change_ring($R$)

Return self over a the new ring $R$.

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x^3
sage: q = p.change_ring(QQ); q
x^(-7/2) + 3 + 5*x^(1/2) - 7*x^3
sage: q.parent()
Puiseux Series Ring in x over Rational Field
```

coefficients()

Return the list of coefficients.

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x^(3/4) + 2*x^(4/5) + 3* x^(5/6)
sage: p.coefficients()
[1, 2, 3]
```

common_prec($p$)

Return the minimum precision of $p$ and self.

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = (x**(-1/3) + 2*x**3)**2
sage: q5 = p.add_bigoh(5); q5
x^(-2/3) + 4*x^(8/3) + O(x^5)
sage: q7 = p.add_bigoh(7); q7
x^(-2/3) + 4*x^(8/3) + 4*x^6 + O(x^7)
sage: q5.common_prec(q7)
5
sage: q7.common_prec(q5)
5
```

degree()

Return the degree of self.

EXAMPLES:

```
sage: P.<y> = PolynomialRing(GF(5))
sage: R.<x> = PuiseuxSeriesRing(P)
sage: p = 3*y*x**(-2/3) + 2*y**2*x**(1/5); p
3*y*x^(-2/3) + 2*y^2*x^(1/5)
sage: p.degree()
1/5
```

exponents()

Return the list of exponents.

EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x^(3/4) + 2*x^(4/5) + 3*x^(5/6)
sage: p.exponents()
[3/4, 4/5, 5/6]

inverse()

Return the inverse of self.

EXAMPLES:

sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3
sage: 1/p
x^(7/2) - 3*x^7 - 5*x^(15/2) + 7*x^10 + 9*x^(21/2) + 30*x^11 + 25*x^(23/2) + O(x^(27/2))

is_monomial()

Return whether self is a monomial.

This is True if and only if self is \(x^p\) for some rational \(p\).

EXAMPLES:

sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(1/2) + 3/4 * x^(2/3)
sage: p.is_monomial()
False
sage: q = x**(11/13)
sage: q.is_monomial()
True
sage: q = 4*x**(11/13)
sage: q.is_monomial()
False

is_unit()

Return whether self is a unit.

A Puiseux series is a unit if and only if its leading coefficient is.

EXAMPLES:

sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3
sage: p.is_unit()
True
sage: q = 4 * x^(-7/2) + 3 * x**4
sage: q.is_unit()
False

is_zero()

Return whether self is zero.

EXAMPLES:
```python
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(1/2) + 3/4 * x^(2/3)
sage: p.is_zero()
False
sage: R.zero().is_zero()
True
```

**laurent_part()**

Return the underlying Laurent series.

EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(1/2) + 3/4 * x^(2/3)
sage: p.laurent_part()
x^3 + 3/4*x^4
```

**laurent_series()**

If `self` is a Laurent series, return it as a Laurent series.

EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x**(1/2) - x**(-1/2)
sage: p.laurent_series()
Traceback (most recent call last):
 ...
ArithmeticError: self is not a Laurent series
sage: q = p**2
sage: q.laurent_series()
x^-1 - 2 + x
```

**list()**

Return the list of coefficients indexed by the exponents of the corresponding Laurent series.

EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x^(3/4) + 2*x^(4/5) + 3* x^(5/6)
sage: p.list()
[1, 0, 0, 2, 0, 3]
```

**power_series()**

If `self` is a power series, return it as a power series.

EXAMPLES:

```python
sage: # needs sage.rings.number_field
sage: R.<x> = PuiseuxSeriesRing(QQbar)
sage: p = x**(3/2) - QQbar(I)*x**(1/2)
sage: p.power_series()
Traceback (most recent call last):
 ...
ArithmeticError: self is not a power series
```

(continues on next page)
\begin{verbatim}
sage: q = p**2
sage: q.power_series()
-x - 2*I*x^2 + x^3

prec()

Return the precision of self.

EXAMPLES:

\begin{verbatim}
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = (x**(1/3) + 2*x**3)**2; p
x^(-2/3) + 4*x^(8/3) + 4*x^6
sage: q = p.add_bigoh(5); q
x^(-2/3) + 4*x^(8/3) + O(x^5)
sage: q.prec()
5
\end{verbatim}

precision_absolute()

Return the precision of self.

EXAMPLES:

\begin{verbatim}
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = (x**(1/3) + 2*x**3)**2; p
x^(-2/3) + 4*x^(8/3) + 4*x^6
sage: q = p.add_bigoh(5); q
x^(-2/3) + 4*x^(8/3) + O(x^5)
sage: q.prec()
5
\end{verbatim}

precision_relative()

Return the relative precision of the series.

The relative precision of the Puiseux series is the difference between its absolute precision and its valuation.

EXAMPLES:

\begin{verbatim}
sage: R.<x> = PuiseuxSeriesRing(GF(3))
sage: p = (x**(1/3) + 2*x**3)**2; p
x^(-2/3) + x^(8/3) + x^6
sage: q = p.add_bigoh(7); q
x^(-2/3) + x^(8/3) + x^6 + O(x^7)
sage: q.precision_relative()
23/3
\end{verbatim}

ramification_index()

Return the ramification index.

EXAMPLES:

\begin{verbatim}
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(1/2) + 3/4 * x^(2/3)
sage: p.ramification_index()
6
\end{verbatim}
\end{verbatim}
shift($r$)
Return this Puiseux series multiplied by $x^r$.

EXAMPLES:

```
sage: P.<y> = LaurentPolynomialRing(ZZ)
sage: R.<x> = PuiseuxSeriesRing(P)
sage: p = y*x**(-1/3) + 2*y^(-2)*x**(1/2); p
y*x^(-1/3) + (2*y^-2)*x^(1/2)
sage: p.shift(3)
y*x^(8/3) + (2*y^-2)*x^(7/2)
```

truncate($r$)
Return the Puiseux series of degree < $r$.
This is equivalent to self modulo $x^r$.

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = (x**(-1/3) + 2*x**3)**2; p
x^(-2/3) + 4*x^(8/3) + 4*x^6
sage: q = p.truncate(5); q
x^(-2/3) + 4*x^(8/3)
sage: q == p.add_bigoh(5)
True
```

valuation()
Return the valuation of self.

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3
sage: p.valuation()
-7/2
```

variable()
Return the variable of self.

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3
sage: p.variable()
'x'
```
Let $K$ be a finite extension of $\mathbb{Q}_p$ for some prime number $p$ and let $(v_1, \ldots, v_n)$ be a tuple of real numbers.

The associated Tate algebra consists of series of the form

$$\sum_{i_1, \ldots, i_n \in \mathbb{N}} a_{i_1, \ldots, i_n} x_1^{i_1} \cdots x_n^{i_n}$$

for which the quantity

$$\text{val}(a_{i_1, \ldots, i_n}) - (v_1 i_1 + \cdots + v_n i_n)$$

goess to infinity when the multi-index $(i_1, \ldots, i_n)$ goes to infinity.

These series converge on the closed disc defined by the inequalities $\text{val}(x_i) \geq -v_i$ for all $i \in \{1, \ldots, n\}$. The $v_i$'s are then the logarithms of the radii of convergence of the series in the above Tate algebra; the will be called the log radii of convergence.

We can create Tate algebras using the constructor `sage.rings.tate_algebra.TateAlgebra()`:

```
sage: K = Qp(2, 5, print_mode='digits')
sage: A.<x,y> = TateAlgebra(K)
sage: A
Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative˓→precision 5
```

As we observe, the default value for the log radii of convergence is 0 (the series then converge on the closed unit disc).

We can specify different log radii using the following syntax:

```
sage: B.<u,v> = TateAlgebra(K, log_radii=[1,2]); B
Tate Algebra in u (val >= -1), v (val >= -2) over 2-adic Field with capped relative˓→precision 5
```

Note that if we pass in the ring of integers of $p$-adic field, the same Tate algebra is returned:

```
sage: A1.<x,y> = TateAlgebra(K.integer_ring()); A1
Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative˓→precision 5
```

```
sage: A is A1
True
```

However the method `integer_ring()` constructs the integer ring of a Tate algebra, that is the subring consisting of series bounded by 1 on the domain of convergence.
sage: Ao = A.integer_ring()
sage: Ao
Integer ring of the Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative precision 5

Now we can build elements:

sage: f = 5 + 2*x*y^3 + 4*x^2*y^2; f
...00101 + ...000010*x*y^3 + ...000100*x^2*y^2
sage: g = x^3*y + 2*x*y; g
...0001*x^3*y + ...000010*x*y

and perform all usual arithmetic operations on them:

sage: f + g
...00001*x^3*y + ...000010*x^4*y^4 + ...001010*x*y + ...0000100*x^5*y^3 + ...00001000*x^3*y^3

An element in the integer ring is invertible if and only if its reduction modulo \( p \) is a nonzero constant. In our example, \( f \) is invertible (its reduction modulo 2 is 1) but \( g \) is not:

sage: f.inverse_of_unit()
...01101 + ...01110*x*y^3 + ...10100*x^2*y^6 + ... + O(2^5 * <x, y>)
sage: g.inverse_of_unit()
Traceback (most recent call last):
...
ValueError: this series in not invertible

The notation \( O(2^5) \) in the result above hides a series which lies in \( 2^5 \) times the integer ring of \( A \), that is a series which is bounded by \( 2^5 \) (2-adic norm) on the domain of convergence.

We can also evaluate series in a point of the domain of convergence (in the base field or in an extension):

sage: L.<a> = Qq(2^3, 5)
sage: f(a^2, 2*a)
1 + 2^2 + a*2^4 + O(2^5)
sage: u = polygen(ZZ, 'u')
sage: L.<pi> = K.change(print_mode="series").extension(u^3 - 2)
sage: g(pi, 2*pi)
pi^7 + pi^8 + pi^19 + pi^20 + O(pi^21)

Computations with ideals in Tate algebras are also supported:

sage: f = 7*x^3*y + 2*x*y - x*y^2 - 6*y^5
sage: g = x*y^4 + 8*x^3 - 3*y^3 + 1
sage: I = A.ideal([f, g])
sage: I.groebner_basis()
[...00001*x^2*y^3 + ...00001*y^4 + ...10001*x^2 + ... + O(2^5 * <x, y>),
...00001*x*y^4 + ...11111*y^3 + ...00001 + ... + O(2^5 * <x, y>),
...00001*y^5 + ...111111*x*y^3 + ...01001*x^2*y + ... + O(2^5 * <x, y>),
...00001*x^3 + ...01001*x*y + ...10110*y^4 + ...01110*x + O(2^5 * <x, y>)]

(continues on next page)
AUTHORS:
• Xavier Caruso, Thibaut Verron (2018-09)

class sage.rings.tate_algebra.TateAlgebraFactory
Bases: UniqueFactory
Construct a Tate algebra over a $p$-adic field.
Given a $p$-adic field $K$, variables $X_1, \ldots, X_k$ and convergence log radii $v_1, \ldots, v_n$ in $R$, the corresponding Tate algebra $K[X_1, \ldots, X_k]$ consists of power series with coefficients $a_{i_1, \ldots, i_n}$ in $K$ such that
$$\text{val}(a_{i_1, \ldots, i_n}) - (i_1 v_1 + \cdots + i_n v_n)$$
tends to infinity as $i_1, \ldots, i_n$ go towards infinity.

INPUT:
• $\text{base}$ – a $p$-adic ring or field; if a ring is given, the Tate algebra over its fraction field will be constructed
• $\text{prec}$ – an integer or None (default: None), the precision cap; it is used if an exact object must be truncated in order to do an arithmetic operation. If left as None, it will be set to the precision cap of the base field.
• $\text{log\_radii}$ – an integer or a list or a tuple of integers (default: 0), the value(s) $v_i$. If an integer is given, this will be the common value for all $v_i$.
• $\text{names}$ – names of the indeterminates
• $\text{order}$ – the monomial ordering (default: degrevlex) used to break ties when comparing terms with the same coefficient valuation

EXAMPLES:

```sage
sage: R = Zp(2, 10, print_mode='digits'); R
2-adic Ring with capped relative precision 10
sage: A.<x,y> = TateAlgebra(R, order='lex'); A
Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative␣→precision 10
```

We observe that the result is the Tate algebra over the fraction field of $R$ and not $R$ itself:

```sage
sage: A.base_ring()
2-adic Field with capped relative precision 10
sage: A.base_ring() is R.fraction_field()
True
```

If we want to construct the ring of integers of the Tate algebra, we must use the method integer\_ring():

```sage
sage: Ao = A.integer_ring(); Ao
Integer ring of the Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field␣→with capped relative precision 10
sage: Ao.base_ring()
2-adic Ring with capped relative precision 10
sage: Ao.base_ring() is R
True
```
The term ordering is used (in particular) to determine how series are displayed. Terms are compared first according to the valuation of their coefficient, and ties are broken using the monomial ordering:

```
sage: A.term_order()
Lexicographic term order
sage: f = 2 + y^5 + x^2; f
...0000000001*x^2 + ...0000000001*y^5 + ...00000000010
sage: B.<x,y> = TateAlgebra(R); B
Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative
→precision 10
sage: B.term_order()
Degree reverse lexicographic term order
sage: B(f)
...0000000001*y^5 + ...0000000001*x^2 + ...00000000010
```

Here are examples of Tate algebra with smaller radii of convergence:

```
sage: B.<x,y> = TateAlgebra(R, log_radii=-1); B
Tate Algebra in x (val >= 1), y (val >= 1) over 2-adic Field with capped relative
→precision 10
sage: C.<x,y> = TateAlgebra(R, log_radii=[-1,-2]); C
Tate Algebra in x (val >= 1), y (val >= 2) over 2-adic Field with capped relative
→precision 10
```

AUTHORS:

- Xavier Caruso, Thibaut Verron (2018-09)

create_key(base, prec=None, log_radii=0, names=None, order='degrevlex')

Create a key from the input parameters.

INPUT:

- `base` – a p-adic ring or field
- `prec` – an integer or None (default: None)
- `log_radii` – an integer or a list or a tuple of integers (default: 0)
- `names` – names of the indeterminates
- `order` - a monomial ordering (default: degrevlex)

EXAMPLES:

```
sage: TateAlgebra.create_key(Zp(2), names=['x','y'])
(2-adic Field with capped relative precision 20, 20, (0, 0), ('x', 'y'), Degree reverse lexicographic term order)
```

create_object(version, key)

Create an object using the given key.

class sage.rings.tate_algebra.TateAlgebra_generic(field, prec, log_radii, names, order, integral=False)

Bases: CommutativeAlgebra

Initialize the Tate algebra
**absolute_e()**

Return the absolute index of ramification of this Tate algebra.

It is equal to the absolute index of ramification of the field of coefficients.

**EXAMPLES:**

```sage
R = Zp(2)
A.<u,v> = TateAlgebra(R)
A.absolute_e()
1
```

```sage
R.<a> = Zq(2^3)
A.<u,v> = TateAlgebra(R)
A.absolute_e()
1
```

```sage
x = polygen(ZZ, 'x')
S.<a> = R.extension(x^2 - 2)
A.<u,v> = TateAlgebra(S)
A.absolute_e()
2
```

**characteristic()**

Return the characteristic of this algebra.

**EXAMPLES:**

```sage
R = Zp(2, 10, print_mode='digits')
A.<x,y> = TateAlgebra(R)
A.characteristic()
0
```

**gen(n=0)**

Return the n-th generator of this Tate algebra.

**INPUT:**

- n - an integer (default: 0), the index of the requested generator

**EXAMPLES:**

```sage
R = Zp(2, 10, print_mode='digits')
A.<x,y> = TateAlgebra(R)
A.gen()
...0000000001*x
A.gen(0)
...0000000001*x
A.gen(1)
...0000000001*y
A.gen(2)
Traceback (most recent call last):
... ValueError: generator not defined
```

**gens()**

Return the list of generators of this Tate algebra.
EXAMPLES:

```python
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: A.gens()
(...000000001*x, ...000000001*y)
```

integer_ring()

Return the ring of integers (consisting of series bounded by 1 in the domain of convergence) of this Tate algebra.

EXAMPLES:

```python
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: Ao = A.integer_ring()
sage: Ao
Integer ring of the Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative precision 10
sage: x in Ao
True
sage: x/2 in Ao
False
```

is_integral_domain(proof=True)

Return True since any Tate algebra is an integral domain.

EXAMPLES:

```python
sage: A.<x,y> = TateAlgebra(Zp(3))
sage: A.is_integral_domain()
True
```

log_radii()

Return the list of the log-radii of convergence radii defining this Tate algebra.

EXAMPLES:

```python
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: A.log_radii()
(0, 0)
sage: B.<x,y> = TateAlgebra(R, log_radii=1)
sage: B.log_radii()
(1, 1)
sage: C.<x,y> = TateAlgebra(R, log_radii=(1,-1))
sage: C.log_radii()
(1, -1)
```

monoid_of_terms()

Return the monoid of terms of this Tate algebra.

EXAMPLES:
```python
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: A.monoid_of_terms()
Monoid of terms in x (val >= 0), y (val >= 0) over 2-adic Field with capped_
relative precision 10
```

**ngens()**

Return the number of generators of this algebra.

**EXAMPLES:**

```python
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: A.ngens()
2
```

**precision_cap()**

Return the precision cap of this Tate algebra.

**Note:** The precision cap is the truncation precision used for arithmetic operations computed by successive approximations (as inversion).

**EXAMPLES:**

By default the precision cap is the precision cap of the field of coefficients:

```python
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: A.precision_cap()
10
```

But it could be different (either smaller or larger) if we ask to:

```python
sage: A.<x,y> = TateAlgebra(R, prec=5)
sage: A.precision_cap()
5
sage: A.<x,y> = TateAlgebra(R, prec=20)
sage: A.precision_cap()
20
```

**prime()**

Return the prime, that is the characteristic of the residue field.

**EXAMPLES:**

```python
sage: R = Zp(3)
sage: A.<x,y> = TateAlgebra(R)
sage: A.prime()
3
```

**random_element**(degree=2, terms=5, integral=False, prec=None)

Return a random element of this Tate algebra.

**INPUT:**

```python
```
• degree – an integer (default: 2), an upper bound on the total degree of the result
• terms – an integer (default: 5), the maximal number of terms of the result
• integral – a boolean (default: False); if True the result will be in the ring of integers
• prec – (optional) an integer, the precision of the result

EXAMPLES:

```python
sage: R = Zp(2, prec=10, print_mode="digits")
sage: A.<x,y> = TateAlgebra(R)
sage: A.random_element() # random
(...00101000.01)*y + ...1110111111*x^2 + ...0010010001*x*y + ...110000001 + ...
˓→010100100*y^2
sage: A.random_element(degree=5, terms=3) # random
(...0101110.01)*x^2*y + (...01010011.11)*y^2 + ...001110111*x*y
sage: A.random_element(integral=True) # random
...0011110111*x + ...110110101 + ...00010010110*y + ...11011000110*x*y + ...
˓→000001100100*y^2
```

Note that if we are already working on the ring of integers, specifying integral=False has no effect:

```python
sage: Ao = A.integer_ring()
sage: f = Ao.random_element(integral=False); f # random
...1100111011*x^2 + ...1110100101*x + ...1100001101*y + ...111011000 + ...
˓→01011010110*y^2
sage: f in Ao
True
```

When the log radii are negative, integral series may have non integral coefficients:

```python
sage: B.<x,y> = TateAlgebra(R, log_radii=[-1,-2])
sage: B.random_element(integral=True) # random
(...1111111.001)*x*y + (...111001011.1)*x + (...11010111.01)*y^2 + ...
˓→0010011011*y + ...0010100001000
```

`some_elements()`

Return a list of elements in this Tate algebra.

EXAMPLES:

```python
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: A.some_elements()
[0,
...000000000010,
...00000000001*x,
...00000000001*y,
...000000000010*x*y,
...0000000000100,
...00000000001*x + ...00000000010,
...00000000001*y + ...00000000010,
...000000000010*x*y + ...00000000010,

(continues on next page)
```
...0000000010*x,
...0000000001*x + ...0000000001*y,
...0000000001*x + ...00000000010*x*y,
...0000000010*y,
...0000000001*y + ...00000000010*x*y,
...00000000100*x*y

**term_order()**

Return the monomial order used in this algebra.

**EXAMPLES:**

```sage
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: A.term_order()
Degree reverse lexicographic term order
```

```sage
sage: A.<x,y> = TateAlgebra(R, order='lex')
sage: A.term_order()
Lexicographic term order
```

**variable_names()**

Return the names of the variables of this algebra.

**EXAMPLES:**

```sage
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: A.variable_names()
('x', 'y')
```

### class sage.rings.tate_algebra.TateTermMonoid(A)

Bases: `Monoid_class`, `UniqueRepresentation`

A base class for Tate algebra terms

A term in a Tate algebra $K\{X_1, \ldots, X_n\}$ (resp. in its ring of integers) is a monomial in this ring.

Those terms form a pre-ordered monoid, with term multiplication and the term order of the parent Tate algebra.

**Element**

alias of `TateAlgebraTerm`

**algebra_of_series()**

Return the Tate algebra corresponding to this Tate term monoid.

**EXAMPLES:**

```sage
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.algebra_of_series()
Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative precision 10
```

```sage
sage: T.algebra_of_series() is A
True
```
base_ring()
Return the base ring of this Tate term monoid.

EXAMPLES:

```
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.base_ring()
2-adic Field with capped relative precision 10
```

We observe that the base field is not $R$ but its fraction field:

```
sage: T.base_ring() is R
False
sage: T.base_ring() is R.fraction_field()
True
```

If we really want to create an integral Tate algebra, we have to invoke the method integer_ring():

```
sage: Ao = A.integer_ring(); Ao
Integer ring of the Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic
˓→Field with capped relative precision 10
sage: Ao.base_ring()
2-adic Ring with capped relative precision 10
sage: Ao.base_ring() is R
True
```

gen($n=0$)
Return the $n$-th generator of this monoid of terms.

INPUT:

• $n$ - an integer (default: 0), the index of the requested generator

EXAMPLES:

```
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.gen()
...0000000001*x
sage: T.gen(0)
...0000000001*x
sage: T.gen(1)
...0000000001*y
sage: T.gen(2)
Traceback (most recent call last):
...
ValueError: generator not defined
```

gens()
Return the list of generators of this monoid of terms.

EXAMPLES:
\begin{verbatim}sage: R = Zp(2, 10, print_mode='digits') sage: A.<x,y> = TateAlgebra(R) sage: T = A.monoid_of_terms() sage: T.gens() (...0000000001*x, ...0000000001*y)
\end{verbatim}

\textbf{log_radii()}

Return the log radii of convergence of this Tate term monoid.

\textbf{EXAMPLES:}

\begin{verbatim}sage: R = Zp(2, 10) sage: A.<x,y> = TateAlgebra(R) sage: T = A.monoid_of_terms() sage: T.log_radii() (0, 0)
sage: B.<x,y> = TateAlgebra(R, log_radii=[1,2]) sage: B.monoid_of_terms().log_radii() (1, 2)
\end{verbatim}

\textbf{ngens()}

Return the number of variables in the Tate term monoid

\textbf{EXAMPLES:}

\begin{verbatim}sage: R = Zp(2, 10) sage: A.<x,y> = TateAlgebra(R) sage: T = A.monoid_of_terms() sage: T.ngens() 2
\end{verbatim}

\textbf{prime()}

Return the prime, that is the characteristic of the residue field.

\textbf{EXAMPLES:}

\begin{verbatim}sage: R = Zp(3) sage: A.<x,y> = TateAlgebra(R) sage: T = A.monoid_of_terms() sage: T.prime() 3
\end{verbatim}

\textbf{some_elements()}

Return a list of elements in this monoid of terms.

\textbf{EXAMPLES:}

\begin{verbatim}sage: R = Zp(2, 10, print_mode='digits') sage: A.<x,y> = TateAlgebra(R) sage: T = A.monoid_of_terms() sage: T.some_elements() [...00000000010, ...0000000001*x, ...0000000001*y, ...00000000010*x*y]
\end{verbatim}
term_order()

Return the term order on this Tate term monoid.

EXAMPLES:

```
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.term_order() # default term order is grevlex
Degree reverse lexicographic term order

sage: A.<x,y> = TateAlgebra(R, order='lex')
sage: T = A.monoid_of_terms()
sage: T.term_order()
Lexicographic term order
```

variable_names()

Return the names of the variables of this Tate term monoid.

EXAMPLES:

```
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.variable_names()
('x', 'y')
```
CHAPTER
FOURTEEN

INDICES AND TABLES

• Index
• Module Index
• Search Page
<table>
<thead>
<tr>
<th>Python Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sage.rings.laurent_series_ring</td>
<td>79</td>
</tr>
<tr>
<td>sage.rings.laurent_series_ring_element</td>
<td>85</td>
</tr>
<tr>
<td>sage.rings.lazy_series</td>
<td>99</td>
</tr>
<tr>
<td>sage.rings.lazy_series_ring</td>
<td>149</td>
</tr>
<tr>
<td>sage.rings.multi_power_series_ring</td>
<td>53</td>
</tr>
<tr>
<td>sage.rings.multi_power_series_ring_element</td>
<td>61</td>
</tr>
<tr>
<td>sage.rings.power_series_pari</td>
<td>47</td>
</tr>
<tr>
<td>sage.rings.power_series_poly</td>
<td>39</td>
</tr>
<tr>
<td>sage.rings.power_series_ring</td>
<td>1</td>
</tr>
<tr>
<td>sage.rings.power_series_ring_element</td>
<td>13</td>
</tr>
<tr>
<td>sage.rings.puiseux_series_ring</td>
<td>169</td>
</tr>
<tr>
<td>sage.rings.puiseux_series_ring_element</td>
<td>173</td>
</tr>
<tr>
<td>sage.rings.tate_algebra</td>
<td>181</td>
</tr>
<tr>
<td>Method</td>
<td>Class</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>absolute_e()</td>
<td>sage.rings.tate_algebra.TateAlgebra_generic</td>
</tr>
<tr>
<td>add_bigoh()</td>
<td>sage.rings.laurent_series_ring_element.LaurentSeries</td>
</tr>
<tr>
<td>add_bigoh()</td>
<td>sage.rings.multi_power_series_ring_element.MPowerSeries</td>
</tr>
<tr>
<td>add_bigoh()</td>
<td>sage.rings.power_series_ring_element.PowerSeries</td>
</tr>
<tr>
<td>add_bigoh()</td>
<td>sage.rings.puiseux_series_ring_element.PuiseuxSeries</td>
</tr>
<tr>
<td>algebra_of_series()</td>
<td>sage.rings.tate_algebra.TateTermMonoid</td>
</tr>
<tr>
<td>approximate_series()</td>
<td>sage.rings.lazy_series.LazyLaurentSeries</td>
</tr>
<tr>
<td>arccos()</td>
<td>sage.rings.lazy_series.LazyModuleElement</td>
</tr>
<tr>
<td>arccot()</td>
<td>sage.rings.lazy_series.LazyModuleElement</td>
</tr>
<tr>
<td>arcsin()</td>
<td>sage.rings.lazy_series.LazyModuleElement</td>
</tr>
<tr>
<td>arcsinh()</td>
<td>sage.rings.lazy_series.LazyModuleElement</td>
</tr>
<tr>
<td>arctan()</td>
<td>sage.rings.lazy_series.LazyModuleElement</td>
</tr>
<tr>
<td>arctanh()</td>
<td>sage.rings.lazy_series.LazyModuleElement</td>
</tr>
<tr>
<td>arithmetic_product()</td>
<td>sage.rings.lazy_series.LazySymmetricFunction</td>
</tr>
<tr>
<td>base_ring()</td>
<td>sage.rings.power_series_ring_element.PowerSeries</td>
</tr>
<tr>
<td>base_ring()</td>
<td>sage.rings.tate_algebra.TateTermMonoid</td>
</tr>
<tr>
<td>BaseRingFloorDivAction</td>
<td>class in sage.rings.power_series_poly</td>
</tr>
<tr>
<td>bigoh()</td>
<td>sage.rings.multi_power_series_ring_element.MPowerSeriesRing_generic</td>
</tr>
<tr>
<td>change_ring()</td>
<td>sage.rings.laurent_series_ring.LaurentSeriesRing</td>
</tr>
<tr>
<td>change_ring()</td>
<td>sage.rings.laurent_series_ring_element.LaurentSeries</td>
</tr>
<tr>
<td>change_ring()</td>
<td>sage.rings.lazy_series.LazyModuleElement</td>
</tr>
<tr>
<td>change_ring()</td>
<td>sage.rings.multi_power_series_ring.MPowerSeriesRing_generic</td>
</tr>
<tr>
<td>change_ring()</td>
<td>sage.rings.power_series_ring.PowerSeriesRing_generic</td>
</tr>
<tr>
<td>change_ring()</td>
<td>sage.rings.power_series_ring_element.PowerSeries</td>
</tr>
<tr>
<td>change_ring()</td>
<td>sage.rings.puiseux_series_ring.PuiseuxSeriesRing</td>
</tr>
<tr>
<td>change_ring()</td>
<td>sage.rings.puiseux_series_ring_element.PuiseuxSeries</td>
</tr>
<tr>
<td>change_var()</td>
<td>sage.rings.power_series_ring.PowerSeriesRing_generic</td>
</tr>
<tr>
<td>characteristic()</td>
<td>sage.rings.laurent_series_ring.LaurentSeriesRing</td>
</tr>
<tr>
<td>characteristic()</td>
<td>sage.rings.lazy_series.LazySeriesRing</td>
</tr>
<tr>
<td>characteristic()</td>
<td>sage.rings.multi_power_series_ring.MPowerSeriesRing_generic</td>
</tr>
<tr>
<td>characteristic()</td>
<td>sage.rings.power_series_ring.PowerSeriesRing_generic</td>
</tr>
<tr>
<td>characteristic()</td>
<td>sage.rings.tate_algebra.TateAlgebra_generic</td>
</tr>
<tr>
<td>coefficient()</td>
<td>sage.rings.lazy_series.LazyModuleElement</td>
</tr>
<tr>
<td>coefficients()</td>
<td>sage.rings.laurent_series_ring_element.LaurentSeries</td>
</tr>
</tbody>
</table>
coefficients() (sage.rings.laurent_series.LazyModuleElement method), 118
coefficients() (sage.rings.multi_power_series_ring_element.MPowerSeriesRing_generic method), 66
class_coefficients() (sage.rings.power_series_ring_element.PowerSeries method), 16
class_coefficients() (sage.rings.power_series_ring_element.PowerSeries method), 119
class_coefficients() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 120
class_common_prec() (sage.rings.laurent_series_ring_element.LaurentSeries method), 87
class_common_prec() (sage.rings.power_series_ring_element.PowerSeries method), 16
class_common_prec() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 176
class_common_valuation() (sage.rings.laurent_series_ring_element.LaurentSeries method), 88
class_compositional_inverse() (sage.rings.laurent_series.LazyLaurentSeries method), 110
class_compositional_inverse() (sage.rings.laurent_series.LazyPowerSeries method), 136
class_compositional_inverse() (sage.rings.laurent_series.LazySymmetricFunction method), 142
class_compute_coefficients() (sage.rings.laurent_series.LazyPowerSeries method), 136
class_constant_coefficient() (sage.rings.multi_power_series_ring_element.MPowerSeriesRing_generic method), 67
class_construction() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 81
class_construction() (sage.rings.multi_power_series_ring_element.MPowerSeriesRing_generic method), 58
class_construction() (sage.rings.power_series_ring_element.PowerSeries method), 6
class_cos() (sage.rings.laurent_series.LazyModuleElement method), 118
class_cos() (sage.rings.power_series_ring_element.PowerSeries method), 17
class_cosh() (sage.rings.laurent_series.LazyModuleElement method), 119
class_cosh() (sage.rings.power_series_ring_element.PowerSeries method), 18
class_cot() (sage.rings.laurent_series.LazyModuleElement method), 119
class_coth() (sage.rings.laurent_series.LazyModuleElement method), 119
create_key() (sage.rings.tate_algebra.TateAlgebraFactory method), 184
create_object() (sage.rings.tate_algebra.TateAlgebraFactory method), 184
csc() (sage.rings.laurent_series.LazyModuleElement method), 119
csch() (sage.rings.laurent_series.LazyModuleElement method), 176
default_prec() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 81
default_prec() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 170
define() (sage.rings.laurent_series.LazyModuleElement method), 120
degree() (sage.rings.laurent_series_ring_element.LaurentSeries method), 88
degree() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 88

degree() (sage.rings.power_series_poly.PowerSeries_poly method), 39
degree() (sage.rings.power_series_ring_element.PowerSeries method), 18

degree() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 176
derivative() (sage.rings.laurent_series_ring_element.PuiseuxSeries method), 89
derivative() (sage.rings.laurent_series.LazyLaurentSeries method), 111
derivative() (sage.rings.laurent_series.LazyPowerSeries method), 136
derivative() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 67

derivative() (sage.rings.power_series_ring_element.PowerSeries method), 19
derivative_with_respect_to_p1() (sage.rings.lazy_series.LazySymmetricFunction method), 142
dict() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 120
dict() (sage.rings.power_series_poly.PowerSeries_poly method), 48
dict() (sage.rings.power_series_ring_element.PowerSeries method), 40

E
egf() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 68
egf_to_ogf() (sage.rings.power_series_ring_element.PowerSeries method), 19
Element (sage.rings.laurent_series_ring.LaurentSeriesRing attribute), 80
Element (sage.rings.laurent_series_ring.LazyCompletionGradedAlgebra attribute), 150

Index

198
### Element
- \( \text{Element (sage.rings.lazy_series.LazyDirichletSeriesRing attribute), 151} \)
- \( \text{Element (sage.rings.lazy_series.LazyLaurentSeriesRing attribute), 156} \)
- \( \text{Element (sage.rings.lazy_series.LazyPowerSeriesRing attribute), 160} \)
- \( \text{Element (sage.rings.lazy_series.LazySymmetricFunctions attribute), 168} \)
- \( \text{Element (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic attribute), 56} \)
- \( \text{Element (sage.rings.puiseux_series_ring.PuiseuxSeriesRing attribute), 169} \)
- \( \text{Element (sage.rings.tate_algebra.TateTermMonoid attribute), 189} \)
- \( \text{euler() (sage.rings.lazy_series.LazyModuleElement method), 122} \)
- \( \text{euler() (sage.rings.lazy_series.LazyLaurentSeriesRing method), 156} \)
- \( \text{exp() (sage.rings.lazy_series.LazyCauchyProductSeries method), 101} \)
- \( \text{exp() (sage.rings.lazy_series.LazyModuleElement method), 123} \)
- \( \text{exp() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 68} \)
- \( \text{exp() (sage.rings.power_series_ring_element.PowerSeries method), 19} \)
- \( \text{exponential() (sage.rings.lazy_series.LazyPowerSeries method), 137} \)
- \( \text{exponents() (sage.rings.laurent_series_ring_element.LaurentSeries method), 89} \)
- \( \text{exponents() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 69} \)
- \( \text{exponents() (sage.rings.power_series_ring_element.PowerSeries method), 21} \)
- \( \text{exponents() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 176} \)

### F
- \( \text{fraction_field() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 81} \)
- \( \text{fraction_field() (sage.rings.lazy_series.LazyPowerSeriesRing method), 160} \)
- \( \text{fraction_field() (sage.rings.power_series_ring.PowerSeriesRing_element method), 5} \)
- \( \text{fraction_field() (sage.rings.power_series_ring.PowerSeriesRing_field method), 10} \)
- \( \text{fraction_field() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 170} \)
- \( \text{functorial_composition() (sage.rings.lazy_series.LazySymmetricFunction method), 143} \)

### G
- \( \text{gcd() (sage.rings.lazy_series.LazyPowerSeries_gcd_mixin method), 139} \)
- \( \text{gen() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 82} \)
- \( \text{gen() (sage.rings.lazy_series.LazyLaurentSeriesRing method), 156} \)
- \( \text{gen() (sage.rings.lazy_series.LazyPowerSeriesRing method), 161} \)
- \( \text{gen() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 58} \)
- \( \text{gen() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 7} \)
- \( \text{gen() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 170} \)
- \( \text{gen() (sage.rings.tate_algebra.TateAlgebra_generic method), 185} \)
- \( \text{gen() (sage.rings.tate_algebra.TateTermMonoid method), 190} \)
- \( \text{gen() (sage.rings.tate_algebra.TateAlgebra_generic method), 185} \)
- \( \text{gen() (sage.rings.tate_algebra.TateTermMonoid method), 190} \)

### H
- \( \text{hypergeometric() (sage.rings.lazy_series.LazyModuleElement method), 123} \)

### I
- \( \text{integer_ring() (sage.rings.tate_algebra.TateAlgebra_generic method), 186} \)
- \( \text{integral() (sage.rings.laurent_series_ring_element.LaurentSeries method), 89} \)
- \( \text{integral() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 69} \)
- \( \text{integral() (sage.rings.power_series_pari.PowerSeries_pari method), 48} \)
- \( \text{integral() (sage.rings.power_series_poly.PowerSeries_poly method), 40} \)
- \( \text{inverse() (sage.rings.laurent_series_ring_element.LaurentSeries method), 90} \)
- \( \text{inverse() (sage.rings.power_series_ring_element.PowerSeries method), 21} \)
- \( \text{inverse() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 177} \)
- \( \text{is_dense() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 82} \)
- \( \text{is_dense() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 58} \)
- \( \text{is_dense() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 7} \)
is_dense() (sage.rings.power_series_ring_element.PowerSeries method), 21
is_dense() (sage.rings.puiseux_series_ring.PuiseuxSeries method), 170
is_exact() (sage.rings.laurent_series_ring.LaurentSeries method), 82
is_exact() (sage.rings.power_series_ring_element.PowerSeries method), 8
is_exact() (sage.rings.puiseux_series_ring.PuiseuxSeries method), 163
is_field() (sage.rings.laurent_series_ring.LaurentSeries method), 82
is_field() (sage.rings.power_series_ring_element.PowerSeries method), 7
is_field() (sage.rings.power_series_ring_element.PowerSeries method), 7
is_field() (sage.rings.puiseux_series_ring.PuiseuxSeries method), 21
is_field() (sage.rings.power_series_ring_element.PowerSeries method), 7
is_gen() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 186
is_gen() (sage.rings.power_series_ring_element.PowerSeries method), 21
is_integral_domain() (sage.rings.laurent_series_ring.LaurentSeries method), 58
is_integral_domain() (sage.rings.puiseux_series_ring.Element method), 186
is_LaurentSeries() (in module sage.rings.laurent_series_ring_element), 98
is_LaurentSeriesRing() (in module sage.rings.laurent_series_ring), 84
is_monomial() (sage.rings.power_series_ring_element.PowerSeries method), 91
is_monomial() (sage.rings.power_series_ring_element.PowerSeries method), 177
is_monomial() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 177
is_MPowerSeries() (in module sage.rings.power_series_ring_element), 77
is_MPowerSeriesRing() (in module sage.rings.power_series_ring_element), 77
is_nilpotent() (sage.rings.power_series_ring_element.PowerSeries method), 70
is_noetherian() (sage.rings.power_series_ring_element.PowerSeriesRing_generic method), 59
is_nonzero() (sage.rings.lazy_series.LazyModuleElement method), 123
is_PowerSeries() (in module sage.rings.power_series_ring_element), 38
is_PowerSeriesRing() (in module sage.rings.power_series_ring_element), 10
is_sparse() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 82
is_trivial_zero() (sage.rings.lazy_series.LazyModuleElement method), 171
is_unit() (sage.rings.power_series_ring_element.PowerSeries method), 22
is_unit() (sage.rings.laurent_series_ring.LaurentSeries method), 111
is_unit() (sage.rings.power_series_ring_element.PowerSeries method), 137
is_unit() (sage.rings.laurent_series_ring.LaurentSeries method), 91
is_unit() (sage.rings.power_series_ring_element.PowerSeries method), 71
is_unit() (sage.rings.power_series_ring_element.PowerSeries method), 23
is_unit() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 9
is_unit() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 177

jacobi_continued_fraction() (sage.rings.power_series_ring_element.PowerSeries method), 23
laurent_part() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 178
laurent_polynomial() (sage.rings.laurent_series_ring_element.LaurentSeries method), 91
laurent_polynomial() (sage.rings.puiseux_series_ring.LaurentSeries method), 82
laurent_series() (sage.rings.power_series_ring_element.PowerSeries method), 71
laurent_series() (sage.rings.power_series_ring_element method), 24
laurent_series() (sage.rings.puiseux_series_ring_element method), 178
laurent_series_ring() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 59
laurent_series_ring() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 8
laurent_series_ring() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 171
LaurentSeries (class in sage.rings.laurent_series_ring_element), 86
LaurentSeriesRing (class in sage.rings.laurent_series_ring), 79
LazyCauchyProductSeries (class in sage.rings.lazy_series), 101
LazyCompletionGradedAlgebra (class in sage.rings.lazy_series), 149
LazyCompletionGradedAlgebraElement (class in sage.rings.lazy_series), 102
LazyDirichletSeries (class in sage.rings.lazy_series), 102
LazyDirichletSeriesRing (class in sage.rings.lazy_series), 151
LazyLaurentSeries (class in sage.rings.lazy_series), 103
LazyLaurentSeriesRing (class in sage.rings.lazy_series), 152
LazyModuleElement (class in sage.rings.lazy_series), 113
LazyPowerSeries (class in sage.rings.lazy_series), 133
LazyPowerSeries_gcd_mixin (class in sage.rings.lazy_series), 139
LazyPowerSeriesRing (class in sage.rings.lazy_series), 160
LazySeriesRing (class in sage.rings.lazy_series), 162
LazySymmetricFunction (class in sage.rings.lazy_series), 140
LazySymmetricFunctions (class in sage.rings.lazy_series), 167
lift_to_precision() (sage.rings.laurent_series_ring_element.LaurentSeries method), 91
lift_to_precision() (sage.rings.lazy_series.LazyModuleElement method), 124
lift_to_precision() (sage.rings.power_series_ring_element.PowerSeries method), 24

Index
<table>
<thead>
<tr>
<th>Method/Function</th>
<th>Module/Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>monoid_of_terms()</td>
<td>sage.rings.tate_algebra.TateAlgebra</td>
<td>186</td>
</tr>
<tr>
<td>monomials()</td>
<td>sage.rings.multi_power_series_ring_element</td>
<td>72</td>
</tr>
<tr>
<td>MPowerSeries</td>
<td>class in sage.rings.multi_power_series_ring_element</td>
<td>64</td>
</tr>
<tr>
<td>MPowerSeriesRing_generic</td>
<td>class in sage.rings.multi_power_series_ring_element</td>
<td>56</td>
</tr>
<tr>
<td>ngens()</td>
<td>sage.rings.laurent_series_ring.LaurentSeriesRing</td>
<td>83</td>
</tr>
<tr>
<td>ngens()</td>
<td>sage.rings.lazy_series_ring.LazyLaurentSeriesRing</td>
<td>157</td>
</tr>
<tr>
<td>ngens()</td>
<td>sage.rings.lazy_series_ring.LazyPowerSeriesRing</td>
<td>161</td>
</tr>
<tr>
<td>ngens()</td>
<td>sage.rings.multi_power_series_ring.MPowerSeriesRing</td>
<td>59</td>
</tr>
<tr>
<td>ngens()</td>
<td>sage.rings.power_series_ring.MPowerSeriesRing</td>
<td>8</td>
</tr>
<tr>
<td>nth_root()</td>
<td>sage.rings.laurent_series_ring.LaurentSeriesRing</td>
<td>92</td>
</tr>
<tr>
<td>nth_root()</td>
<td>sage.rings.power_series_ring.LaurentSeriesRing</td>
<td>26</td>
</tr>
<tr>
<td>nth_root()</td>
<td>sage.rings.puiseux_series_ring.PuiseuxSeriesRing</td>
<td>171</td>
</tr>
<tr>
<td>nth_root()</td>
<td>sage.rings.tate_algebra.TateAlgebra_generic</td>
<td>187</td>
</tr>
<tr>
<td>polynomial()</td>
<td>sage.rings.lazy_series.LazyLaurentSeriesRing</td>
<td>112</td>
</tr>
<tr>
<td>polynomial()</td>
<td>sage.rings.lazy_series.LazyPowerSeriesRing</td>
<td>138</td>
</tr>
<tr>
<td>polynomial()</td>
<td>sage.rings.lazy_series.LazySymmetricFunction</td>
<td>145</td>
</tr>
<tr>
<td>polynomial()</td>
<td>sage.rings.power_series_ring.MPowerSeriesRing</td>
<td>73</td>
</tr>
<tr>
<td>polynomial()</td>
<td>sage.rings.power_series_poly.PowerSeries_poly</td>
<td>41</td>
</tr>
<tr>
<td>polynomial()</td>
<td>sage.rings.power_series_ring_element.MPowerSeriesRing</td>
<td>49</td>
</tr>
<tr>
<td>polynomial()</td>
<td>sage.rings.power_series_ring_element.PowerSeries</td>
<td>41</td>
</tr>
<tr>
<td>polynomial()</td>
<td>sage.rings.power_series_ring_element.PowerSeries</td>
<td>27</td>
</tr>
<tr>
<td>polynomial()</td>
<td>sage.rings.power_series_ring_element.PuiseuxSeriesRing</td>
<td>178</td>
</tr>
<tr>
<td>polynomial()</td>
<td>sage.rings.tate_algebra.TateTermMonoid</td>
<td>191</td>
</tr>
<tr>
<td>power_series()</td>
<td>sage.rings.laurent_series_ring.LaurentSeriesRing</td>
<td>83</td>
</tr>
<tr>
<td>power_series()</td>
<td>sage.rings.lazy_series.LazyLaurentSeriesRing</td>
<td>147</td>
</tr>
<tr>
<td>power_series()</td>
<td>sage.rings.power_series_ring_element.MPowerSeriesRing</td>
<td>14</td>
</tr>
<tr>
<td>power_series()</td>
<td>sage.rings.power_series_ring_element.PowerSeries</td>
<td>48</td>
</tr>
<tr>
<td>power_series()</td>
<td>sage.rings.power_series_ring_element.MPowerSeriesRing</td>
<td>39</td>
</tr>
<tr>
<td>power_series()</td>
<td>sage.rings.power_series_ring_element.PowerSeries</td>
<td>5</td>
</tr>
<tr>
<td>power_series()</td>
<td>sage.rings.power_series_ring_element.MPowerSeriesRing</td>
<td>10</td>
</tr>
<tr>
<td>power_series()</td>
<td>sage.rings.lazy_series.LazyModuleElement</td>
<td>126</td>
</tr>
<tr>
<td>power_series()</td>
<td>sage.rings.multi_power_series_ring_element.MPowerSeries</td>
<td>163</td>
</tr>
<tr>
<td>O()</td>
<td>sage.rings.laurent_series_ring_element.LaurentSeries</td>
<td>86</td>
</tr>
<tr>
<td>O()</td>
<td>sage.rings.multi_power_series_ring_element.MPowerSeriesRing</td>
<td>56</td>
</tr>
<tr>
<td>O()</td>
<td>sage.rings.power_series_ring_element.MPowerSeriesRing</td>
<td>65</td>
</tr>
<tr>
<td>O()</td>
<td>sage.rings.power_series_ring_element.PowerSeries</td>
<td>14</td>
</tr>
<tr>
<td>ogf()</td>
<td>sage.rings.multi_power_series_ring_element.MPowerSeriesRing</td>
<td>73</td>
</tr>
<tr>
<td>ogf_to_egf()</td>
<td>sage.rings.power_series_ring_element.PowerSeries</td>
<td>27</td>
</tr>
<tr>
<td>one()</td>
<td>sage.rings.lazy_series_ring.LazyDirichletSeriesRing</td>
<td>151</td>
</tr>
<tr>
<td>one()</td>
<td>sage.rings.lazy_series_ring.LazySeriesRing</td>
<td>163</td>
</tr>
<tr>
<td>options</td>
<td>sage.rings.lazy_series_ring.LazySeriesRing</td>
<td>163</td>
</tr>
</tbody>
</table>