Power series rings are constructed in the standard Sage fashion. See also *Multivariate Power Series Rings*.

EXAMPLES:

Construct rings and elements:

```sage
sage: R.<t> = PowerSeriesRing(QQ)
sage: R.random_element(6)  # random
-4 - 1/2*t^2 - 1/95*t^3 + 1/2*t^4 - 12*t^5 + O(t^6)
```

```sage
sage: R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
sage: p = -t + 1/2*t^3*u - 1/4*t^4*u + 2/3*v^5 + R.O(6); p
-t + 1/2*t^3*u - 1/4*t^4*u + 2/3*v^5 + O(t, u, v)^6
sage: p in R
True
```

The default precision is specified at construction, but does not bound the precision of created elements.

```sage
sage: R.<t> = PowerSeriesRing(QQ, default_prec=5)
sage: R.random_element(6)  # random
1/2 - 1/4*t + 2/3*t^2 - 5/2*t^3 + 2/3*t^5 + O(t^6)
```

Construct univariate power series from a list of coefficients:

```sage
sage: S = R([1, 3, 5, 7]); S
1 + 3*t + 5*t^2 + 7*t^3
```

The default precision of a power series ring stays fixed and cannot be changed. To work with different default precision, create a new power series ring:

```sage
sage: R.<x> = PowerSeriesRing(QQ, default_prec=10)
sage: sin(x)
x - 1/6*x^3 + 1/120*x^5 - 1/5040*x^7 + 1/362880*x^9 + O(x^10)
```

```sage
sage: R.<x> = PowerSeriesRing(QQ, default_prec=15)
sage: sin(x)
x - 1/6*x^3 + 1/120*x^5 - 1/5040*x^7 + 1/362880*x^9 - 1/39916800*x^11 + 1/

```6227020800*x^13 + O(x^15)
```

An iterated example:

```sage
sage: R.<t> = PowerSeriesRing(ZZ)
sage: S.<t2> = PowerSeriesRing(R)
sage: S
```
Sage can compute with power series over the symbolic ring.

```python
sage: K.<t> = PowerSeriesRing(SR, default_prec=5)
sage: a, b, c = var('a,b,c')
sage: f = a + b*t + c*t^2 + O(t^3)
sage: f^2
a^2 + 2*a*b*t + (b^2 + 2*a*c)*t^2 + O(t^3)
sage: f = sqrt(2) + sqrt(3)*t + O(t^3)
sage: f^2
2 + 2*sqrt(3)*sqrt(2)*t + 3*t^2 + O(t^3)
```

Elements are first coerced to constants in `base_ring`, then coerced into the `PowerSeriesRing`:

```python
sage: R.<t> = PowerSeriesRing(ZZ)
sage: f = Mod(2, 3) * t; (f, f.parent())
(2*t, Power Series Ring in t over Ring of integers modulo 3)
```

We make a sparse power series.

```python
sage: R.<x> = PowerSeriesRing(QQ, sparse=True); R
Sparse Power Series Ring in x over Rational Field
sage: f = 1 + x^1000000
sage: g = f*f
sage: g.degree()
2000000
```

We make a sparse Laurent series from a power series generator:

```python
sage: R.<t> = PowerSeriesRing(QQ, sparse=True)
sage: latex(-2/3*(1/t^3) + 1/t + 3/5*t^2 + O(t^5))
\frac{-\frac{2}{3}}{t^{3}} + \frac{1}{t} + \frac{3}{5}t^{2} + O(t^{5})
sage: S = parent(1/t); S
Sparse Laurent Series Ring in t over Rational Field
```

Choose another implementation of the attached polynomial ring:

```python
sage: R.<t> = PowerSeriesRing(ZZ)
sage: type(t.polynomial())
<... 'sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint'>
sage: S.<s> = PowerSeriesRing(ZZ, implementation='NTL')
sage: type(s.polynomial())
<... 'sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl'>
```

AUTHORS:
- William Stein: the code
- Jeremy Cho (2006-05-17): some examples (above)
- Niles Johnson (2010-09): implement multivariate power series
- Simon King (2012-08): use category and coercion framework, trac ticket #13412
Create a univariate or multivariate power series ring over a given (commutative) base ring.

**INPUT:**

- `base_ring` - a commutative ring
- `name, names` - name(s) of the indeterminate
- `default_prec` - the default precision used if an exact object must be changed to an approximate object in order to do an arithmetic operation. If left as `None`, it will be set to the global default (20) in the univariate case, and 12 in the multivariate case.
- `sparse` - (default: `False`) whether power series are represented as sparse objects.
- `order` - (default: `negdeglex`) term ordering, for multivariate case
- `num_gens` - number of generators, for multivariate case

There is a unique power series ring over each base ring with given variable name. Two power series over the same base ring with different variable names are not equal or isomorphic.

**EXAMPLES (Univariate):**

```python
sage: R = PowerSeriesRing(QQ, 'x'); R
Power Series Ring in x over Rational Field

sage: S = PowerSeriesRing(QQ, 'y'); S
Power Series Ring in y over Rational Field

sage: R = PowerSeriesRing(QQ, 10)
Traceback (most recent call last):
 ... ValueError: variable name '10' does not start with a letter

sage: S = PowerSeriesRing(QQ, 'x', default_prec = 15); S
Power Series Ring in x over Rational Field
sage: S.default_prec()
15
```

**EXAMPLES (Multivariate) See also Multivariate Power Series Rings:**

```python
sage: R = PowerSeriesRing(QQ, 't,u,v'); R
Multivariate Power Series Ring in t, u, v over Rational Field

sage: N = PowerSeriesRing(QQ,'w',num_gens=5); N
Multivariate Power Series Ring in w0, w1, w2, w3, w4 over Rational Field

Number of generators can be specified before variable name without using keyword:

```python
sage: M = PowerSeriesRing(QQ,4,'k'); M
Multivariate Power Series Ring in k0, k1, k2, k3 over Rational Field
```

Multivariate power series can be constructed using angle bracket or double square bracket notation:

```sage
sage: R.<t,u,v> = PowerSeriesRing(QQ, 't,u,v'); R
Multivariate Power Series Ring in t, u, v over Rational Field

sage: ZZ[['s,t,u']]
Multivariate Power Series Ring in s, t, u over Integer Ring

Sparse multivariate power series ring:

```sage
sage: M = PowerSeriesRing(QQ,4,'k',sparse=True); M
Sparse Multivariate Power Series Ring in k0, k1, k2, k3 over Rational Field
```n
Power series ring over polynomial ring:

```sage
sage: H = PowerSeriesRing(PolynomialRing(ZZ,3,'z'),4,'f'); H
Multivariate Power Series Ring in f0, f1, f2, f3 over Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring
```n
Power series ring over finite field:

```sage
sage: S = PowerSeriesRing(GF(65537),'x,y'); S
Multivariate Power Series Ring in x, y over Finite Field of size 65537
```n
Power series ring with many variables:

```sage
sage: R = PowerSeriesRing(ZZ, ['x%s%s' % p for p in primes(100)]); R
Multivariate Power Series Ring in x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, x31, x37, x41, x43, x47, x53, x59, x61, x67, x71, x73, x79, x83, x89, x97 over Integer Ring
```n
• Use `inject_variables()` to make the variables available for interactive use.

```sage
sage: R.inject_variables()
Defining x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, x31, x37, x41, x43, x47, x53, x59, x61, x67, x71, x73, x79, x83, x89, x97

sage: f = x47 + 3*x11*x29 - x19 + R.O(3)
sage: f
in R
True
```n
Variable ordering determines how series are displayed:

```sage
sage: T.<a,b> = PowerSeriesRing(ZZ,order='deglex'); T
Multivariate Power Series Ring in a, b over Integer Ring

sage: T.term_order()
Degree lexicographic term order

sage: p = - 2*b^6 + a^5*b^2 + a^7 - b^2 - a*b^3 + T.O(9); p
a^7 + a^5*b^2 - 2*b^6 - a*b^3 - b^2 + O(a, b)^9

sage: U = PowerSeriesRing(ZZ,'a,b',order='negdeglex'); U
Multivariate Power Series Ring in a, b over Integer Ring

sage: U.term_order()
Negative degree lexicographic term order

sage: U(p)
-b^2 - a*b^3 - 2*b^6 + a^7 + a^5*b^2 + O(a, b)^9
```
See also:

- `sage.misc.defaults.set_series_precision()`

class `sage.rings.power_series_ring.PowerSeriesRing_domain`(base_ring, name=None, default_prec=None, sparse=False, implementation=None, category=None)

Bases: `sage.rings.power_series_ring.PowerSeriesRing_generic`, `sage.rings.ring.IntegralDomain`

`fraction_field()`

Return the Laurent series ring over the fraction field of the base ring.

This is actually *not* the fraction field of this ring, but its completion with respect to the topology defined by the valuation. When we are working at finite precision, these two fields are indistinguishable; that is the reason why we allow ourselves to make this confusion here.

EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.fraction_field()
Laurent Series Ring in t over Rational Field
sage: Frac(R)
Laurent Series Ring in t over Rational Field
```

class `sage.rings.power_series_ring.PowerSeriesRing_generic`(base_ring, name=None, default_prec=None, sparse=False, implementation=None, category=None)


A power series ring.

`base_extend`(R)

Return the power series ring over R in the same variable as self, assuming there is a canonical coerce map from the base ring of self to R.

EXAMPLES:

```
sage: R.<T> = GF(7)[[]]; R
Power Series Ring in T over Finite Field of size 7
sage: R.change_ring(ZZ)
Power Series Ring in T over Integer Ring
sage: R.base_extend(ZZ)
Traceback (most recent call last):
 ...
TypeError: no base extension defined
```

`change_ring`(R)

Return the power series ring over R in the same variable as self.

EXAMPLES:
sage: R.<T> = QQ[[[]]]; R
Power Series Ring in T over Rational Field
sage: R.change_ring(GF(7))
Power Series Ring in T over Finite Field of size 7
sage: R.base_extend(GF(7))
Traceback (most recent call last):
  ...
TypeError: no base extension defined
sage: R.base_extend(QuadraticField(3,'a'))
Power Series Ring in T over Number Field in a with defining polynomial x^2 - 3 with a = 1.732050807568878?

change_var(var)
Return the power series ring in variable var over the same base ring.

EXAMPLES:

sage: R.<T> = QQ[[[]]]; R
Power Series Ring in T over Rational Field
sage: R.change_var('D')
Power Series Ring in D over Rational Field

characteristic()
Return the characteristic of this power series ring, which is the same as the characteristic of the base ring of the power series ring.

EXAMPLES:

sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.characteristic()
0
sage: R.<w> = Integers(2^50)[[]]; R
Power Series Ring in w over Ring of integers modulo 1125899906842624
sage: R.characteristic()
1125899906842624

construction()
Return the functorial construction of self, namely, completion of the univariate polynomial ring with respect to the indeterminate (to a given precision).

EXAMPLES:

sage: R = PowerSeriesRing(ZZ, 'x')
sage: c, S = R.construction(); S
Univariate Polynomial Ring in x over Integer Ring
sage: R == c(S)
True
sage: R = PowerSeriesRing(ZZ, 'x', sparse=True)
sage: c, S = R.construction()
True

gen(n=0)
Return the generator of this power series ring.

EXAMPLES:
sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.gen()  
t
sage: R.gen(3)
Traceback (most recent call last):  ...
IndexError: generator n>0 not defined

**is_dense()**

**EXAMPLES:**

```
sage: R.<t> = PowerSeriesRing(ZZ)
sage: t.is_dense()
True
sage: R.<t> = PowerSeriesRing(ZZ, sparse=True)
sage: t.is_dense()
False
```

**is_exact()**

Return False since the ring of power series over any ring is not exact.

**EXAMPLES:**

```
sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.is_exact()
False
```

**is_field**(proof=True)

Return False since the ring of power series over any ring is never a field.

**EXAMPLES:**

```
sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.is_field()
False
```

**is_finite()**

Return False since the ring of power series over any ring is never finite.

**EXAMPLES:**

```
sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.is_finite()
False
```

**is_sparse()**

**EXAMPLES:**

```
sage: R.<t> = PowerSeriesRing(ZZ)
sage: t.is_sparse()
False
sage: R.<t> = PowerSeriesRing(ZZ, sparse=True)
sage: t.is_sparse()
True
```

**laurent_series_ring**()

If this is the power series ring $R[[t]]$, return the Laurent series ring $R((t))$.

**EXAMPLES:**

```
```
```python
sage: R.<t> = PowerSeriesRing(ZZ,default_prec=5)
sage: S = R.laurent_series_ring(); S
Laurent Series Ring in t over Integer Ring
sage: S.default_prec()
5
sage: f = 1+t; g=1/f; g
1 - t + t^2 - t^3 + t^4 + O(t^5)
```

\textbf{ngens()}

Return the number of generators of this power series ring.

This is always 1.

**EXAMPLES:**

```python
sage: R.<t> = ZZ[[t]]
sage: R.ngens()
1
```

\textbf{random_element(\textit{prec}=None, *\textit{args}, **\textit{kwds})}

Return a random power series.

**INPUT:**

- \textit{prec} - Integer specifying precision of output (default: default precision of self)
- *\textit{args}, **\textit{kwds} - Passed on to the \textit{random_element} method for the base ring

**OUTPUT:**

- Power series with precision \textit{prec} whose coefficients are random elements from the base ring, randomized subject to the arguments *\textit{args} and **\textit{kwds}

**ALGORITHM:**

Call the \textit{random_element} method on the underlying polynomial ring.

**EXAMPLES:**

```python
sage: R.<t> = PowerSeriesRing(QQ)
sage: R.random_element(5)
random
-4 - 1/2*t^2 - 1/95*t^3 + 1/2*t^4 + O(t^5)
sage: R.random_element(10)
random
-1/2 + 2*t - 2/7*t^2 - 25*t^3 - 2*t^5 - 4*t^7 - 1/3*t^8 - t^9 + O(t^10)
```

If given no argument, \textit{random_element} uses default precision of self:

```python
sage: T = PowerSeriesRing(ZZ,'t', default_prec=4)
sage: T.random_element()
random
2 - t - 5*t^2 + t^3 + O(t^4)
```

Further arguments are passed to the underlying base ring (trac ticket #9481):
sage: SZ = PowerSeriesRing(ZZ,'v')
sage: SQ = PowerSeriesRing(QQ,'v')
sage: SR = PowerSeriesRing(RR,'v')

sage: SZ.random_element(x=4, y=6)  # random
4 + 5*v + 5*v^2 + 5*v^3 + 4*v^4 + 5*v^5 + 5*v^6 + 5*v^7 + 4*v^8 + 5*v^9 + 4*v^10 + 4*v^11 + 5*v^12 + 5*v^13 + 5*v^14 + 5*v^15 + 5*v^16 + 5*v^17 + 4*v^18 + 5*v^19 + O(v^20)
sage: SZ.random_element(3, x=4, y=6)  # random
5 + 4*v + 5*v^2 + O(v^3)
sage: SQ.random_element(3, num_bound=3, den_bound=100)  # random
1/87 - 3/70*v - 3/44*v^2 + O(v^3)
sage: SR.random_element(3, max=10, min=-10)  # random
2.85948321262904 - 9.73071330911226*v - 6.60414378519265*v^2 + O(v^3)

residue_field()

Return the residue field of this power series ring.

EXAMPLES:

sage: R.<x> = PowerSeriesRing(GF(17))
sage: R.residue_field()
Finite Field of size 17
sage: R.<x> = PowerSeriesRing(Zp(5))
sage: R.residue_field()
Finite Field of size 5

uniformizer()

Return a uniformizer of this power series ring if it is a discrete valuation ring (i.e., if the base ring is actually a field). Otherwise, an error is raised.

EXAMPLES:

sage: R.<t> = PowerSeriesRing(QQ)
sage: R.uniformizer()
t
sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.uniformizer()
Traceback (most recent call last):
...
TypeError: The base ring is not a field

variable_names_recursive(depth=None)

Return the list of variable names of this and its base rings.

EXAMPLES:

sage: R = QQ[['x','y','z']]
sage: R.variable_names_recursive()
('x', 'y', 'z')
sage: R.variable_names_recursive(2)
('y', 'z')
class sage.rings.power_series_ring.PowerSeriesRing_over_field(base_ring, name=None, default_prec=None, sparse=False, implementation=None, category=None)

Bases: sage.rings.power_series_ring.PowerSeriesRing_domain

fraction_field()
Return the fraction field of this power series ring, which is defined since this is over a field.
This fraction field is just the Laurent series ring over the base field.

EXAMPLES:

```sage
c R.<t> = PowerSeriesRing(GF(7))
c R.fraction_field()
Laurent Series Ring in t over Finite Field of size 7
c Frac(R)
Laurent Series Ring in t over Finite Field of size 7
```

sage.rings.power_series_ring.is_PowerSeriesRing(R)
Return True if this is a univariate power series ring. This is in keeping with the behavior of is_PolynomialRing versus is_MPolynomialRing.

EXAMPLES:

```sage:
from sage.rings.power_series_ring import is_PowerSeriesRing
sage: is_PowerSeriesRing(10)
False	sage: is_PowerSeriesRing(QQ[['x']])
True
```

sage.rings.power_series_ring.unpickle_power_series_ring_v0(base_ring, name, default_prec, sparse)
Unpickle (deserialize) a univariate power series ring according to the given inputs.

EXAMPLES:

```sage:
P.<x> = PowerSeriesRing(QQ)
sage: loads(dumps(P)) == P # indirect doctest
True
```
Sage provides an implementation of dense and sparse power series over any Sage base ring. This is the base class of the implementations of univariate and multivariate power series ring elements in Sage (see also Power Series Methods, Multivariate Power Series).

AUTHORS:

- William Stein
- David Harvey (2006-09-11): added solve_linear_de() method
- Simon King (2012-08): use category and coercion framework, trac ticket #13412

EXAMPLES:

```python
sage: R.<x> = PowerSeriesRing(ZZ)
sage: TestSuite(R).run()
sage: R([1,2,3])
1 + 2*x + 3*x^2
sage: R([1,2,3], 10)
1 + 2*x + 3*x^2 + O(x^10)
sage: f = 1 + 2*x - 3*x^3 + O(x^4); f
1 + 2*x - 3*x^3 + O(x^4)
sage: f^10
1 + 20*x + 180*x^2 + 930*x^3 + O(x^4)
sage: g = 1/f; g
1 - 2*x + 4*x^2 - 5*x^3 + O(x^4)
sage: g * f
1 + O(x^4)
```

In Python (as opposed to Sage) create the power series ring and its generator as follows:

```python
sage: R = PowerSeriesRing(ZZ, 'x')
sage: x = R.gen()
sage: parent(x)
Power Series Ring in x over Integer Ring
```

EXAMPLES:

This example illustrates that coercion for power series rings is consistent with coercion for polynomial rings.

```python
sage: poly_ring1.<gen1> = PolynomialRing(QQ)
sage: poly_ring2.<gen2> = PolynomialRing(QQ)
sage: huge_ring.<x> = PolynomialRing(poly_ring1)
```
The generator of the first ring gets coerced in as itself, since it is the base ring.

```
sage: huge_ring(gen1)
gen1
```

The generator of the second ring gets mapped via the natural map sending one generator to the other.

```
sage: huge_ring(gen2)
x
```

With power series the behavior is the same.

```
sage: power_ring1.<gen1> = PowerSeriesRing(QQ)
sage: power_ring2.<gen2> = PowerSeriesRing(QQ)
sage: huge_power_ring.<x> = PowerSeriesRing(power_ring1)
sage: huge_power_ring(gen1)
gen1
sage: huge_power_ring(gen2)
x
```

class sage.rings.power_series_ring_element.PowerSeries

Bases: sage.structure.element.AlgebraElement

A power series. Base class of univariate and multivariate power series. The following methods are available with both types of objects.

**O**(prec)

Return this series plus \( O(x^{\text{prec}}) \). Does not change self.

**EXAMPLES:**

```
sage: R.<x> = PowerSeriesRing(ZZ)
sage: p = 1 + x^2 + x^10; p
1 + x^2 + x^10
sage: p.O(15)
1 + x^2 + x^10 + O(x^15)
sage: p.O(5)
1 + x^2 + O(x^5)
sage: p.O(-5)
Traceback (most recent call last):
 ...
ValueError: prec (= -5) must be non-negative
```

**V**(n)

If \( f = \sum a_m x^m \), then this function returns \( \sum a_m x^{nm} \).

**EXAMPLES:**

```
sage: R.<x> = PowerSeriesRing(ZZ)
sage: p = 1 + x^2 + x^10; p
1 + x^2 + x^10
sage: p.V(3)
1 + x^6 + x^30
```

**add_bigoh**(prec)

Return the power series of precision at most \( \text{prec} \) got by adding \( O(q^{\text{prec}}) \) to \( f \), where \( q \) is the variable.

**EXAMPLES:**
```sage
sage: R.<A> = RDF[[[]]
1.0 + 5.0*A + 10.0*A^2 + 10.0*A^3 + 5.0*A^4 + O(A^5)
sage: f.add_bigoh(3)
1.0 + 5.0*A + 10.0*A^2 + O(A^3)
sage: f.add_bigoh(5)
1.0 + 5.0*A + 10.0*A^2 + 10.0*A^3 + 5.0*A^4 + O(A^5)
```

### `base_extend` \((R)\)

Return a copy of this power series but with coefficients in \(R\).

The following coercion uses `base_extend` implicitly:

```sage
sage: R.<t> = ZZ[[t]]
sage: (t - t^2) * Mod(1, 3)
t + 2*t^2
```

### `base_ring` ()

Return the base ring that this power series is defined over.

**EXAMPLES:**

```sage
sage: R.<t> = GF(49,'alpha')[[[]]
sage: (t^2 + O(t^3)).base_ring()
Finite Field in alpha of size 7^2
```

### `change_ring` \((R)\)

Change if possible the coefficients of self to lie in \(R\).

**EXAMPLES:**

```sage
sage: R.<T> = QQ[[[]]; R
Power Series Ring in T over Rational Field
sage: f = 1 - 1/2*T + 1/3*T^2 + O(T^3)
sage: f.base_extend(GF(5))
Traceback (most recent call last):
 ...
TypeError: no base extension defined
sage: f.change_ring(GF(5))
1 + 2*T + 2*T^2 + O(T^3)
sage: f.change_ring(GF(3))
Traceback (most recent call last):
 ...
ZeroDivisionError: inverse of Mod(0, 3) does not exist
```

We can only change the ring if there is a `__call__` coercion defined. The following succeeds because \(\mathbb{Z}[K(4)]\) is defined.

```sage
sage: K.<a> = NumberField(cyclotomic_polynomial(3), 'a')
sage: R.<t> = K[[t]]
sage: (4*t).change_ring(ZZ)
4*t
```

This does not succeed because \(\mathbb{Z}[K(a+1)]\) is not defined.

```sage
sage: K.<a> = NumberField(cyclotomic_polynomial(3), 'a')
sage: R.<t> = K[[t]]
sage: ((a+1)*t).change_ring(ZZ)
```

(continues on next page)
coefficient()  
Return the nonzero coefficients of self.

EXAMPLES:

```python
sage: R.<t> = PowerSeriesRing(QQ)
sage: f = t + t^2 - 10/3*t^3
sage: f.coefficients()
[1, 1, -10/3]
```

common_prec(f)  
Return minimum precision of \( f \) and self.

EXAMPLES:

```python
sage: R.<t> = PowerSeriesRing(QQ)

sage: f = t + t^2 + O(t^3)
sage: g = t + t^3 + t^4 + O(t^4)
sage: f.common_prec(g)
3
sage: g.common_prec(f)
3
sage: f = t + t^2 + O(t^3)
sage: g = t^2
sage: f.common_prec(g)
3
```

```
cos(prec='infinity')
Apply cos to the formal power series.

INPUT:

* prec – Integer or infinity. The degree to truncate the result to.

OUTPUT:

A new power series.

EXAMPLES:

For one variable:

```python
sage: t = PowerSeriesRing(QQ, 't').gen()
sage: f = (t + t^2).O(4)
```

(continues on next page)
For several variables:

```
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a*b + T.O(3)
sage: cos(f)
1 - 1/2*a^2 - a*b - 1/2*b^2 + O(a, b)^3
sage: f.cos()
1 - 1/2*a^2 - a*b - 1/2*b^2 + O(a, b)^3
sage: f.cos(prec=2)
1 + O(a, b)^2
```

If the power series has a non-zero constant coefficient \(c \), one raises an error:

```
sage: g = 2+f
sage: cos(g)
Traceback (most recent call last):
  ...  
ValueError: can only apply cos to formal power series with zero constant term
```

If no precision is specified, the default precision is used:

```
sage: T.default_prec()
12
sage: cos(a)
1 - 1/2*a^2 + 1/24*a^4 - 1/720*a^6 + 1/40320*a^8 - 1/3628800*a^10 + O(a, b)^12
sage: a.cos(prec=5)
1 - 1/2*a^2 + 1/24*a^4 + O(a, b)^5
sage: cos(a + T.O(5))
1 - 1/2*a^2 + 1/24*a^4 + O(a, b)^5
```

cosh

Apply cosh to the formal power series.

INPUT:

- prec - Integer or infinity. The degree to truncate the result to.

OUTPUT:

A new power series.

EXAMPLES:

For one variable:

```
sage: t = PowerSeriesRing(QQ, 't').gen()
sage: f = (t + t**2).O(4)
sage: cosh(f)
1 + 1/2*t^2 + t^3 + O(t^4)
```

For several variables:

```
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a*b + T.O(3)
sage: cosh(f)
```

(continues on next page)
If the power series has a non-zero constant coefficient \(c \), one raises an error:

```sage
g = f + 2
sage: cosh(g)
Traceback (most recent call last):
  ...  
ValueError: can only apply cosh to formal power series with zero constant term
```

If no precision is specified, the default precision is used:

```sage
T.default_prec()
12
sage: cosh(a)
1 + 1/2*a^2 + 1/24*a^4 + 1/720*a^6 + 1/40320*a^8 + 1/3628800*a^10 + O(a, b)^12
sage: f.cosh(prec=5)
1 + 1/2*a^2 + 1/24*a^4 + O(a, b)^5
```

\textbf{degree}()

Return the degree of this power series, which is by definition the degree of the underlying polynomial.

\textbf{derivative}(*\texttt{args})

The formal derivative of this power series, with respect to variables supplied in \texttt{args}.

Multiple variables and iteration counts may be supplied; see documentation for the global \texttt{derivative()} function for more details.

\textbf{See also:}

_\texttt{derivative}()

\textbf{EXAMPLES:}

```sage
R.<x> = PowerSeriesRing(QQ)
sage: g = -x + x^2/2 - x^4 + O(x^6)
sage: g.derivative()
-1 + x - 4*x^3 + O(x^5)
sage: g.derivative(x)
-1 + x - 4*x^3 + O(x^5)
sage: g.derivative(x, x)
1 - 12*x^2 + O(x^4)
```
sage: g.derivative(x, 2)
1 - 12*x^2 + O(x^4)

egf_to_ogf()
Return the ordinary generating function power series, assuming self is an exponential generating function power series.
This function is known as \texttt{serlaplace} in PARI/GP.

EXAMPLES:

sage: R.<t> = PowerSeriesRing(QQ)
sage: f = t + t^2/factorial(2) + 2*t^3/factorial(3)
sage: f.egf_to_ogf()
t + t^2 + 2*t^3

exp\nop\left(prec=None\right)
Return exp of this power series to the indicated precision.

INPUT:

\begin{itemize}
 \item \texttt{prec} - integer; default is \texttt{self.parent().default_prec}
\end{itemize}

ALGORITHM: See \texttt{solve_linear_de()}.

Note:

\begin{itemize}
 \item Screwy things can happen if the coefficient ring is not a field of characteristic zero. See \texttt{solve_linear_de()}.
\end{itemize}

AUTHORS:

\begin{itemize}
 \item David Harvey (2006-09-08): rewrote to use simplest possible “lazy” algorithm.
 \item David Harvey (2006-09-10): rewrote to use divide-and-conquer strategy.
 \item David Harvey (2006-09-11): factored functionality out to \texttt{solve_linear_de()}.
 \item Sourav Sen Gupta, David Harvey (2008-11): handle constant term
\end{itemize}

EXAMPLES:

sage: R.<t> = PowerSeriesRing(QQ, default_prec=10)

Check that \texttt{exp(t)} is, well, \texttt{exp(t)}:

sage: (t + O(t^10)).exp()
1 + t + 1/2*t^2 + 1/6*t^3 + 1/24*t^4 + 1/120*t^5 + 1/720*t^6 + 1/5040*t^7 + 1/
\texttt{40320*t^8} + 1/362880*t^9 + O(t^10)

Check that \texttt{exp(log(1+t))} is \texttt{1+t}:

sage: (sum([-(-t)^n/n for n in range(1, 10)]) + O(t^10)).exp()
1 + t + O(t^10)

Check that \texttt{exp(2t + t^2 - t^5)} is whatever it is:

sage: (2*t + t^2 - t^5 + O(t^10)).exp()
1 + 2*t + 3*t^2 + 10/3*t^3 + 19/6*t^4 + 8/5*t^5 - 7/90*t^6 - 538/315*t^7 -
\texttt{425/168*t^8} - 30629/11340*t^9 + O(t^10)
Check requesting lower precision:

```
sage: (t + t^2 - t^5 + O(t^10)).exp(5)
1 + t + 3/2*t^2 + 7/6*t^3 + 25/24*t^4 + O(t^5)
```

Can’t get more precision than the input:

```
sage: (t + t^2 + O(t^3)).exp(10)
1 + t + 3/2*t^2 + O(t^3)
```

Check some boundary cases:

```
sage: (t + O(t^2)).exp(1)
1 + O(t)
sage: (t + O(t^2)).exp(0)
O(t^0)
```

Handle nonzero constant term (fixes trac ticket #4477):

```
sage: R.<x> = PowerSeriesRing(RR)
sage: (1 + x + x^2 + O(x^3)).exp()
2.71828182845905 + 2.71828182845905*x + 4.07742274268857*x^2 + O(x^3)
```

```
sage: R.<x> = PowerSeriesRing(ZZ)
sage: (1 + x + O(x^2)).exp()
Traceback (most recent call last):
  ... ArithmeticError: constant term of power series does not support exponentiation
```

```
sage: R.<x> = PowerSeriesRing(GF(5))
sage: (1 + x + O(x^2)).exp()
Traceback (most recent call last):
  ... ArithmeticError: exponential of constant term does not belong to coefficient ring (consider working in a larger ring)
```

`exponents()` returns the exponents appearing in self with nonzero coefficients.

EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(QQ)
sage: f = t + t^2 - 10/3*t^3
sage: f.exponents()
[1, 2, 3]
```

`inverse()` returns the inverse of self, i.e., $self^{-1}$.

EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(QQ, sparse=True)
sage: t.inverse()
t^-1
```

(continues on next page)
is_dense()

EXAMPLES:

```python
sage: R.<t> = PowerSeriesRing(ZZ)
sage: t.is_dense()
True
sage: R.<t> = PowerSeriesRing(ZZ, sparse=True)
sage: t.is_dense()
False
```

Return True if this is the generator (the variable) of the power series ring.

EXAMPLES:

```python
sage: R.<t> = QQ []
sage: t.is_gen()
True
sage: (1 + 2*t).is_gen()
False
```

Note that this only returns True on the actual generator, not on something that happens to be equal to it.

```python
sage: (1*t).is_gen()
False
sage: 1*t == t
True
```

is_monomial()

EXAMPLES:

```python
sage: k.<z> = PowerSeriesRing(QQ, 'z')
sage: z.is_monomial()
True
sage: k(1).is_monomial()
True
sage: (z+1).is_monomial()
False
sage: (z^2909).is_monomial()
True
sage: (3*z^2909).is_monomial()
False
```

Return True if this element is a monomial. That is, if self is x^n for some non-negative integer n.

is_sparse()

EXAMPLES:

```python
sage: R.<t> = PowerSeriesRing(ZZ)
sage: t.is_sparse()
False
sage: R.<t> = PowerSeriesRing(ZZ, sparse=True)
```

(continued on next page)
sage: t.is_sparse()
True

is_square()
Return True if this function has a square root in this ring, e.g., there is an element y in `self.parent()` such that y^2 equals `self`.

ALGORITHM: If the base ring is a field, this is true whenever the power series has even valuation and the leading coefficient is a perfect square.

For an integral domain, it attempts the square root in the fraction field and tests whether or not the result lies in the original ring.

EXAMPLES:

sage: K.<t> = PowerSeriesRing(QQ, 't', 5)
sage: (1+t).is_square()
True
sage: (2+t).is_square()
False
sage: (2+t.change_ring(RR)).is_square()
True
sage: t.is_square()
False
sage: K.<t> = PowerSeriesRing(ZZ, 't', 5)
sage: (1+t).is_square()
False
sage: f = (1+t)^100
sage: f.is_square()
True

is_unit()
Return True if this power series is invertible.

A power series is invertible precisely when the constant term is invertible.

EXAMPLES:

sage: R.<t> = PowerSeriesRing(ZZ)
sage: (-1 + t - t^5).is_unit()
True
sage: (3 + t - t^5).is_unit()
False
sage: O(t^0).is_unit()
False

AUTHORS:
• David Harvey (2006-09-03)

jacobi_continued_fraction()
Return the Jacobi continued fraction of `self`.

The J-fraction or Jacobi continued fraction of a power series is a continued fraction expansion with steps of size two. We use the following convention

$$1/(1 + A_0 t + B_0 t^2/(1 + A_1 t + B_1 t^2/(1 + \cdots)))$$

OUTPUT:
tuple of pairs \((A_n, B_n)\) for \(n \geq 0\)

The expansion is done as long as possible given the precision. Whenever the expansion is not well-defined, because it would require to divide by zero, an exception is raised.

See section 2.7 of [Kra1999det] for the close relationship of this kind of expansion with Hankel determinants and orthogonal polynomials.

EXAMPLES:

```python
sage: A.<t> = PowerSeriesRing(QQ, 't')
sage: x = 1 + 17*w + 15*w^3 + O(w^5)
sage: parent(x)
Power Series Ring in w over Rational Field
sage: y = x.laurent_series(); y
1 + 17*w + 15*w^3 + O(w^5)
```

lift_to_precision(absprec=None)

Return a congruent power series with absolute precision at least absprec.

INPUT:

- absprec – an integer or None (default: None), the absolute precision of the result. If None, lifts to an exact element.

EXAMPLES:

```python
sage: A.<t> = PowerSeriesRing(GF(5))
sage: x = t + t^2 + O(t^5)
sage: x.lift_to_precision(10)
t + t^2 + O(t^10)
sage: x.lift_to_precision() t + t^2
```

list()

See this method in derived classes:

- `sage.rings.power_series_poly.PowerSeries_poly.list()`,
sage.rings.multi_power_series_ring_element.MPowerSeries.list()

Implementations **MUST** override this in the derived class.

EXAMPLES:

```python
sage: R.<x> = PowerSeriesRing(ZZ)
sage: PowerSeries.list(1+x^2)
Traceback (most recent call last):
  ...
NotImplementedError
```

log *(prec=None)*

Return log of this power series to the indicated precision.

This works only if the constant term of the power series is 1 or the base ring can take the logarithm of the constant coefficient.

INPUT:

- **prec** – integer; default is self.parent().default_prec()

ALGORITHM: See `solve_linear_de()`.

Warning: Screwy things can happen if the coefficient ring is not a field of characteristic zero. See `solve_linear_de()`.

EXAMPLES:

```python
sage: R.<t> = PowerSeriesRing(QQ, default_prec=10)
sage: (1 + t + O(t^10)).log()
t - 1/2*t^2 + 1/3*t^3 - 1/4*t^4 + 1/5*t^5 - 1/6*t^6 + 1/7*t^7 - 1/8*t^8 + 1/9*t^9 + O(t^10)
sage: t.exp().log()
t + O(t^10)
sage: (1+t).log().exp()  
l + t + O(t^10)
sage: (-1 + t + O(t^10)).log()
Traceback (most recent call last):
  ...
ArithmeticError: constant term of power series is not 1
```

map_coefficients *(f, new_base_ring=None)*

Return the series obtained by applying `f` to the non-zero coefficients of `self`.

If `f` is a `sage.categories.map.Map`, then the resulting series will be defined over the codomain of `f`. Otherwise, the resulting polynomial will be over the same ring as `self`. Set `new_base_ring` to override this behaviour.

INPUT:

- **f** – a callable that will be applied to the coefficients of `self`.
• `new_base_ring` (optional) – if given, the resulting polynomial will be defined over this ring.

EXAMPLES:

```
sage: R.<x> = SR[]
sage: f = (1+I)*x^2 + 3*x - I
sage: f.map_coefficients(lambda z: z.conjugate())
I + 3*x + (-I + 1)*x^2
sage: R.<x> = ZZ[]
sage: f = x^2 + 2
sage: f.map_coefficients(lambda a: a + 42)
44 + 43*x^2
```

Examples with different base ring:

```
sage: R.<x> = ZZ[]
sage: k = GF(2)
sage: residue = lambda x: k(x)
sage: f = 4*x^2+x+3
sage: g = f.map_coefficients(residue); g
1 + x
sage: g.parent()
Power Series Ring in x over Integer Ring
sage: g = f.map_coefficients(residue, new_base_ring = k); g
1 + x
sage: g.parent()
Power Series Ring in x over Finite Field of size 2
sage: residue = k.coerce_map_from(ZZ)
sage: g = f.map_coefficients(residue); g
1 + x
sage: g.parent()
Power Series Ring in x over Finite Field of size 2
```

Tests other implementations:

```
sage: R.<q> = PowerSeriesRing(GF(11), implementation='pari')
sage: f = q - q^3 + O(q^10)
sage: f.map_coefficients(lambda c: c - 2)
10*q + 8*q^3 + O(q^10)
```

nth_root (*n, prec=None*)

Return the n-th root of this power series.

INPUT:

- n – integer
- prec – integer (optional) - precision of the result. Though, if this series has finite precision, then the result cannot have larger precision.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: (1+x).nth_root(5)
1 + 1/5*x - 2/25*x^2 + ... + 12039376311816/2384185791015625*x^19 + O(x^20)
sage: (1 + x + O(x^5)).nth_root(5)
1 + 1/5*x - 2/25*x^2 + 6/125*x^3 - 21/625*x^4 + O(x^5)
```

Check that the results are consistent with taking log and exponential:
```python
sage: R.<x> = PowerSeriesRing(QQ, default_prec=100)
sage: p = (1 + 2*x - x^4)**200
sage: p1 = p.nth_root(1000, prec=100)
sage: p2 = (p.log()/1000).exp()
sage: p1.prec() == p2.prec() == 100
True
sage: p1.polynomial() == p2.polynomial()
True
```

Positive characteristic:

```python
sage: R.<u> = GF(3)[[]]
sage: p = 1 + 2 * u^2
sage: p.nth_root(4)
1 + 2*u^2 + u^6 + 2*u^8 + u^12 + 2*u^14 + O(u^20)
sage: p.nth_root(4)**4
1 + 2*u^2 + O(u^20)
```

`ogf_to_egf()`

Return the exponential generating function power series, assuming self is an ordinary generating function power series.

This can also be computed as `serconvol(f, exp(t))` in PARI/GP.

EXAMPLES:

```python
sage: R.<t> = PowerSeriesRing(QQ)
sage: f = t + t^2 + 2*t^3
sage: f.ogf_to_egf()
t + 1/2*t^2 + 1/3*t^3
```

`padded_list(n=None)`

Return a list of coefficients of self up to (but not including) q^n.

Includes 0’s in the list on the right so that the list has length n.

INPUT:

- n - (optional) an integer that is at least 0. If n is not given, it will be taken to be the precision of self, unless this is `+Infinity`, in which case we just return `self.list()`.

EXAMPLES:

```python
sage: R.<q> = PowerSeriesRing(QQ)
sage: f = 1 - 17*q + 13*q^2 + 10*q^4 + O(q^7)
sage: f.list()
[1, -17, 13, 0, 10]
sage: f.padded_list(7)
[1, -17, 13, 0, 10, 0, 0]
sage: f.padded_list(10)
[1, -17, 13, 0, 10, 0, 0, 0, 0, 0]
sage: f.padded_list(3)
[1, -17, 13]
sage: f.padded_list()
[1, -17, 13, 0, 10, 0, 0]
sage: g = 1 - 17*q + 13*q^2 + 10*q^4
sage: g.list()
[1, -17, 13, 0, 10]
sage: g.padded_list()
```

(continues on next page)
polynomial()

See this method in derived classes:

• `sage.rings.power_series_poly.PowerSeries_poly.polynomial()`,
• `sage.rings.multi_power_series_ring_element.MPowerSeries.polynomial()`

Implementations **MUST** override this in the derived class.

EXAMPLES:

```
sage: R.<x> = PowerSeriesRing(ZZ)
sage: PowerSeries.polynomial(1+x^2)
Traceback (most recent call last):
...  
NotImplementedError
```

prec()

The precision of \(... + O(x^r) \) is by definition \(r \).

EXAMPLES:

```
sage: R.<t> = ZZ[[[]]
sage: (t^2 + O(t^3)).prec()
3  
sage: (1 - t^2 + O(t^100)).prec()
100
```

precision_absolute()

Return the absolute precision of this series.

By definition, the absolute precision of \(... + O(x^r) \) is \(r \).

EXAMPLES:

```
sage: R.<t> = ZZ[[[]]
sage: (t^2 + O(t^3)).precision_absolute()
3  
sage: (1 - t^2 + O(t^100)).precision_absolute()
100
```

precision_relative()

Return the relative precision of this series, that is the difference between its absolute precision and its valuation.

By convention, the relative precision of 0 (or \(O(x^r) \) for any \(r \)) is 0.

EXAMPLES:

```
sage: R.<t> = ZZ[[[]]
sage: (t^2 + O(t^3)).precision_relative()
1  
sage: (1 - t^2 + O(t^100)).precision_relative()
100
```

(continues on next page)
\textbf{shift} \((n)\)

Return this power series multiplied by the power \(t^n\). If \(n\) is negative, terms below \(t^n\) will be discarded. Does not change this power series.

\textbf{Note:} Despite the fact that higher order terms are printed to the right in a power series, right shifting decreases the powers of \(t\), while left shifting increases them. This is to be consistent with polynomials, integers, etc.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<t> = PowerSeriesRing(QQ['y'], 't', 5)
sage: f = ~(1+t); f
1 - t + t^2 - t^3 + t^4 + O(t^5)
sage: f.shift(3)
t^3 - t^4 + t^5 - t^6 + O(t^8)
sage: f >> 2
1 - t + t^2 + O(t^3)
sage: f << 10
t^10 - t^11 + t^12 - t^13 + t^14 + O(t^15)
sage: t << 29
t^30
\end{verbatim}

\textbf{AUTHORS:}

\begin{itemize}
\item Robert Bradshaw (2007-04-18)
\end{itemize}

\textbf{\texttt{sin}} \((\texttt{prec}=\texttt{'infinity'})\)

Apply \texttt{sin} to the formal power series.

\textbf{INPUT:}

- \texttt{prec} – Integer or \texttt{infinity}. The degree to truncate the result to.

\textbf{OUTPUT:}

A new power series.

\textbf{EXAMPLES:}

For one variable:

\begin{verbatim}
sage: t = PowerSeriesRing(QQ, 't').gen()
sage: f = (t + t**2).O(4)
sage: sin(f)
t + t^2 - 1/6*t^3 + O(t^4)
\end{verbatim}

For several variables:

\begin{verbatim}
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a*b + T.O(3)
sage: sin(f)
a + b + a*b + O(a, b)^3
sage: f.sin()
a + b + a*b + O(a, b)^3
\end{verbatim}
If the power series has a non-zero constant coefficient c, one raises an error:

```
sage: g = 2+f
sage: sin(g)
Traceback (most recent call last):
  ... ValueError: can only apply sin to formal power series with zero constant term
```

If no precision is specified, the default precision is used:

```
sage: T.default_prec()
12
sage: sin(a)
a - 1/6*a^3 + 1/120*a^5 - 1/5040*a^7 + 1/362880*a^9 - 1/39916800*a^11 + O(a, b)^12
sage: a.sin(prec=5)
a - 1/6*a^3 + 0(a, b)^5
sage: sin(a + T.O(5))
a - 1/6*a^3 + O(a, b)^5
```

sinh ($\text{prec} = \text{'infinity'}$)

Apply sinh to the formal power series.

INPUT:

- **prec** – Integer or *infinity*. The degree to truncate the result to.

OUTPUT:

A new power series.

EXAMPLES:

For one variable:

```
sage: t = PowerSeriesRing(QQ, 't').gen()
sage: f = (t + t**2).O(4)
sage: sinh(f)
t + t^2 + 1/6*t^3 + O(t^4)
```

For several variables:

```
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a*b + T.O(3)
sage: sinh(f)
a + b + a*b + O(a, b)^3
sage: f.sinh()
a + b + a*b + O(a, b)^3
sage: f.sinh(prec=2)
a + b + O(a, b)^2
```

If the power series has a non-zero constant coefficient c, one raises an error:

```
sage: g = 2+f
sage: sinh(g)
(continues on next page)
```
Traceback (most recent call last):
...
ValueError: can only apply sinh to formal power series with zero constant term

If no precision is specified, the default precision is used:

```
sage: T.default_prec()
12
sage: sinh(a)
a + 1/6*a^3 + 1/120*a^5 + 1/5040*a^7 + 1/362880*a^9 +
  1/39916800*a^11 + O(a, b)^12
sage: a.sinh(prec=5)
a + 1/6*a^3 + O(a, b)^5
sage: sinh(a + T.O(5))
a + 1/6*a^3 + O(a, b)^5
```

```
solve_linear_de (prec='infinity', b=None, f0=None)
Obtain a power series solution to an inhomogeneous linear differential equation of the form:

\[ f'(t) = a(t)f(t) + b(t). \]

INPUT:

- self - the power series \( a(t) \)
- b - the power series \( b(t) \) (default is zero)
- f0 - the constant term of \( f \) (“initial condition”) (default is 1)
- prec - desired precision of result (this will be reduced if either a or b have less precision available)

OUTPUT: the power series \( f \), to indicated precision

ALGORITHM: A divide-and-conquer strategy; see the source code. Running time is approximately \( M(n) \log n \), where \( M(n) \) is the time required for a polynomial multiplication of length \( n \) over the coefficient ring. (If you’re working over something like \( \mathbb{Q} \), running time analysis can be a little complicated because the coefficients tend to explode.)

Note:

- If the coefficient ring is a field of characteristic zero, then the solution will exist and is unique.
- For other coefficient rings, things are more complicated. A solution may not exist, and if it does it may not be unique. Generally, by the time the \( n \)th term has been computed, the algorithm will have attempted divisions by \( n! \) in the coefficient ring. So if your coefficient ring has enough ‘precision’, and if your coefficient ring can perform divisions even when the answer is not unique, and if you know in advance that a solution exists, then this function will find a solution (otherwise it will probably crash).

AUTHORS:

- David Harvey (2006-09-11): factored functionality out from exp() function, cleaned up precision tests a bit

EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(QQ, default_prec=10)```
```python
sage: a = 2 - 3*t + 4*t^2 + O(t^10)
sage: b = 3 - 4*t^2 + O(t^7)
sage: f = a.solve_linear_de(prec=5, b=b, f0=3/5)
sage: f
3/5 + 21/5*t + 33/10*t^2 - 38/15*t^3 + 11/24*t^4 + O(t^5)
sage: f.derivative() - a*f - b
O(t^4)
```

```python
sage: a = 2 - 3*t + 4*t^2
sage: b = b = 3 - 4*t^2
sage: f = a.solve_linear_de(b=b, f0=3/5)
Traceback (most recent call last):
  ... ValueError: cannot solve differential equation to infinite precision
```

```python
sage: a.solve_linear_de(prec=5, b=b, f0=3/5)
3/5 + 21/5*t + 33/10*t^2 - 38/15*t^3 + 11/24*t^4 + O(t^5)
```

```python
sage: sqrt(prec=None, extend=False, all=False, name=None)
Return a square root of self.

INPUT:
- `prec` - integer (default: None): if not None and the series has infinite precision, truncates series at precision `prec`.
- `extend` - bool (default: False): if True, return a square root in an extension ring, if necessary. Otherwise, raise a ValueError if the square root is not in the base power series ring. For example, if `extend` is True the square root of a power series with odd degree leading coefficient is defined as an element of a formal extension ring.
- `name` - string; if `extend` is True, you must also specify the print name of the formal square root.
- `all` - bool (default: False): if True, return all square roots of self, instead of just one.

ALGORITHM: Newton’s method

\[ x_{i+1} = \frac{1}{2} (x_i + \text{self}/x_i) \]

EXAMPLES:
```
sage: K.<t> = PowerSeriesRing(QQ, 't', 5)
sage: sqrt(t^2)
t
sage: sqrt(1+t)
1 + 1/2*t - 1/8*t^2 + 1/16*t^3 - 5/128*t^4 + O(t^5)
sage: sqrt(4+t)
2 + 1/4*t - 1/64*t^2 + 1/512*t^3 - 5/16384*t^4 + O(t^5)
sage: u = sqrt(2+t, prec=2, extend=True, name = 'alpha'); u
alpha
sage: u^2
2 + t
sage: u.parent()
Univariate Quotient Polynomial Ring in alpha over Power Series Ring in t over Rational Field with modulus x^2 - 2 - t
sage: K.<t> = PowerSeriesRing(QQ, 't', 50)
sage: sqrt(1+2*t+t^2)
1 + t
```
```
sage: sqrt(t^2 + 2*t^4 + t^6)
t + t^3
sage: sqrt(1 + t + t^2 + 7*t^3)^2
1 + t + t^2 + 7*t^3 + O(t^50)
sage: sqrt(K(0))
0
sage: sqrt(t^2)
t

sage: K.<t> = PowerSeriesRing(CDF, 5)
sage: v = sqrt(-1 + t + t^3, all=True); v
[1.0*I - 0.5*I*t - 0.125*I*t^2 - 0.5625*I*t^3 - 0.2890625*I*t^4 + O(t^5),
-1.0*I + 0.5*I*t + 0.125*I*t^2 + 0.5625*I*t^3 + 0.2890625*I*t^4 + O(t^5)]
sage: [a^2 for a in v]
[-1.0 + 1.0*t + 0.0*t^2 + 1.0*t^3 + O(t^5), -1.0 + 1.0*t + 0.0*t^2 + 1.0*t^3 + O(t^5)]

A formal square root:

sage: K.<t> = PowerSeriesRing(QQ, 5)
sage: f = 2*t + t^3 + O(t^4)
sage: s = f.sqrt(extend=True, name='sqrtf'); s
sqrtf
sage: s^2
2*t + t^3 + O(t^4)
sage: parent(s)
Univariate Quotient Polynomial Ring in sqrtf over Power Series Ring in t over Rational Field with modulus x^2 - 2*t - t^3 + O(t^4)

AUTHORS:
• Robert Bradshaw
• William Stein

square_root()]
Return the square root of self in this ring. If this cannot be done then an error will be raised.

This function succeeds if and only if self. is_square()

EXAMPLES:

sage: K.<t> = PowerSeriesRing(QQ, 't', 5)
sage: (1+t).square_root()
1 + 1/2*t - 1/8*t^2 + 1/16*t^3 - 5/128*t^4 + O(t^5)
sage: (2+t).square_root()
Traceback (most recent call last):
 ... Square root does not live in this ring.
sage: (2+t.change_ring(RR)).square_root()
1.41421356237309 + 0.353553390593274*t - 0.0441941738241592*t^2 + O(t^5)
sage: t.square_root()
Traceback (most recent call last):
 ... Square root not defined for power series of odd valuation.
sage: K.<t> = PowerSeriesRing(ZZ, 't', 5)
sage: f = (1+t)^20

(continues on next page)
AUTHORS:

- Robert Bradshaw

`stieltjes_continued_fraction()`

Return the Stieltjes continued fraction of `self`.

The S-fraction or Stieltjes continued fraction of a power series is a continued fraction expansion with steps of size one. We use the following convention

\[\frac{1}{1 - A_1 t/(1 - A_2 t/(1 - A_3 t/(1 - \cdots)))} \]

OUTPUT:

\[A_n \text{ for } n \geq 1 \]

The expansion is done as long as possible given the precision. Whenever the expansion is not well-defined, because it would require to divide by zero, an exception is raised.

EXAMPLES:

```python
sage: t = PowerSeriesRing(QQ, 't').gen()
sage: s = sum(catalan_number(k) * t**k for k in range(12)).O(12)
sage: s.stieltjes_continued_fraction()
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
```

Another example:

```python
sage: (exp(t)).stieltjes_continued_fraction()
(1, -1/2, 1/6, -1/6, 1/10, -1/10, 1/14, -1/14, 1/18, -1/18, 1/22, -1/22, 1/26, -1/26, 1/30, -1/30, 1/34, -1/34, 1/38)
```

`tan(prec='infinity')`

Apply tan to the formal power series.
INPUT:

• `prec` – Integer or infinity. The degree to truncate the result to.

OUTPUT:

A new power series.

EXAMPLES:

For one variable:

```python
sage: t = PowerSeriesRing(QQ, 't').gen()
sage: f = (t + t**2).O(4)
sage: tan(f)
t + t^2 + 1/3*t^3 + O(t^4)
```

For several variables:

```python
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a*b + T.O(3)
sage: tan(f)
a + b + a*b + O(a, b)^3
```

If the power series has a non-zero constant coefficient c, one raises an error:

```python
sage: g = 2+f
tsage: tan(g)
Traceback (most recent call last):
  ...
ValueError: can only apply tan to formal power series with zero constant term
```

If no precision is specified, the default precision is used:

```python
sage: T.default_prec()
12
tsage: tan(a)
a + 1/3*a^3 + 2/15*a^5 + 17/315*a^7 + 62/2835*a^9 + 1382/155925*a^11 + O(a, b)^12
```

`tanh` (prec='infinity')

Apply tanh to the formal power series.

INPUT:

• `prec` – Integer or infinity. The degree to truncate the result to.

OUTPUT:

A new power series.

EXAMPLES:

For one variable:
sage: t = PowerSeriesRing(QQ, 't').gen()
sage: f = (t + t**2).O(4)
sage: tanh(f)
t + t^2 - 1/3*t^3 + O(t^4)

For several variables:

sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a*b + T.O(3)
sage: tanh(f)
a + b + a*b + O(a, b)^3
sage: f.tanh()
a + b + a*b + O(a, b)^3
sage: f.tanh(prec=2)
a + b + O(a, b)^2

If the power series has a non-zero constant coefficient c, one raises an error:

sage: g = 2+f
sage: tanh(g)
Traceback (most recent call last):
...
ValueError: can only apply tanh to formal power series with zero constant term

If no precision is specified, the default precision is used:

sage: T.default_prec()
12
sage: tanh(a)
a - 1/3*a^3 + 2/15*a^5 - 17/315*a^7 + 62/2835*a^9 -
1382/155925*a^11 + O(a, b)^12
sage: a.tanh(prec=5)
a - 1/3*a^3 + O(a, b)^5
sage: tanh(a + T.O(5))
a - 1/3*a^3 + O(a, b)^5

truncate (`prec='infinity'`)
The polynomial obtained from power series by truncation.

EXAMPLES:

sage: R.<I> = GF(2)[[]]
sage: f = 1/(1+I+O(I^8)); f
1 + I + I^2 + I^3 + I^4 + I^5 + I^6 + I^7 + O(I^8)
sage: f.truncate(5)
I^4 + I^3 + I^2 + I + 1

valuation ()

Return the valuation of this power series.

This is equal to the valuation of the underlying polynomial.

EXAMPLES:

Sparse examples:
Dense examples:

```python
sage: R.<t> = PowerSeriesRing(QQ)
sage: f = t^100000 + O(t^10000000)
sage: f.valuation()
100000
sage: R(0).valuation()
+Infinity
```

valuation_zero_part()

Factor self as \(q^n \cdot (a_0 + a_1q + \cdots) \) with \(a_0 \) nonzero. Then this function returns \(a_0 + a_1q + \cdots \).

Note: This valuation zero part need not be a unit if, e.g., \(a_0 \) is not invertible in the base ring.

EXAMPLES:

```python
sage: R.<t> = PowerSeriesRing(QQ)
sage: ((1/3)*t^5*(17-2/3*t^3)).valuation_zero_part()
17/3 - 2/9*t^3
```

Valuation 0 part is not a unit:

```python
sage: R.<t> = PowerSeriesRing(ZZ, sparse=True)
sage: u = (-2*t^5*(17-t^3)).valuation_zero_part(); u
-34 + 2*t^3
sage: u.is_unit()
False
sage: u.valuation()
0
```

variable()

Return a string with the name of the variable of this power series.

EXAMPLES:

```python
sage: R.<x> = PowerSeriesRing(Rationals())
sage: f = x^2 + 3*x^4 + O(x^7)
sage: f.variable()
'x'
```

AUTHORS:

- David Harvey (2006-08-08)
```python
sage: R.<x> = PowerSeriesRing(ZZ)
sage: from sage.rings.power_series_ring_element import is_PowerSeries
sage: is_PowerSeries(1+x^2)
True
sage: is_PowerSeries(x-x)
True
sage: is_PowerSeries(0)
False
sage: var('x')
x
sage: is_PowerSeries(1+x^2)
False
```

```python
sage.rings.power_series_ring_element.make_element_from_parent_v0(parent, *args)

sage.rings.power_series_ring_element.make_powerseries_poly_v0(parent, f, prec, is_gen)
```
The class `PowerSeries_poly` provides additional methods for univariate power series.

```python
class sage.rings.power_series_poly.PowerSeries_poly
    Bases: sage.rings.power_series_ring_element.PowerSeries

EXAMPLES:

sage: R.<q> = PowerSeriesRing(CC)
sage: R
Power Series Ring in q over Complex Field with 53 bits of precision
sage: loads(q.dumps()) == q
True
sage: R.<t> = QQ[[[]]
sage: f = 3 - t^3 + O(t^5)
sage: a = f^3; a
27 - 27*t^3 + O(t^5)
sage: b = f^-3; b
1/27 + 1/27*t^3 + O(t^5)
sage: a*b
1 + O(t^5)

Check that trac ticket #22216 is fixed:

sage: R.<T> = PowerSeriesRing(QQ)
sage: R(pari('1 + O(T)'))
1 + O(T)
sage: R(pari('1/T + O(T)'))
Traceback (most recent call last):
...,
ValueError: series has negative valuation
```

```python
default
    Return the degree of the underlying polynomial of `self`.

    That is, if `self` is of the form \( f(x) + O(x^n) \), we return the degree of \( f(x) \). Note that if \( f(x) \) is 0, we return \(-1\), just as with polynomials.

EXAMPLES:

sage: R.<t> = ZZ[[[]]
sage: (5 + t^3 + O(t^4)).degree()
3
sage: (5 + O(t^4)).degree()
0
```

\texttt{sage}: 0(t^4).degree()
\hline
\texttt{-1}
\hline
\subsection*{dict()}
Return a dictionary of coefficients for \texttt{self}.

This is simply a dict for the underlying polynomial, so need not have keys corresponding to every number smaller than \texttt{self.prec()}.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage}: R.<t> = ZZ[[[]]
\texttt{sage}: f = 1 + t^10 + O(t^12)
\texttt{sage}: f.dict()
\{0: 1, 10: 1\}
\end{verbatim}

\subsection*{integral (var=None)}
Return the integral of this power series.

By default, the integration variable is the variable of the power series.

Otherwise, the integration variable is the optional parameter \texttt{var}.

\textbf{Note:} The integral is always chosen so the constant term is 0.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage}: k.<w> = QQ[[[]]]
\texttt{sage}: (1+17*w+15*w^3+O(w^5)).integral()
\quad w + 17/2*w^2 + 15/4*w^4 + O(w^6)
\texttt{sage}: (w^3 + 4*w^4 + O(w^7)).integral()
\quad 1/4*w^4 + 4/5*w^5 + O(w^8)
\texttt{sage}: (3*w^2).integral()
\quad w^3
\end{verbatim}

\subsection*{list()}
Return the list of known coefficients for \texttt{self}.

This is just the list of coefficients of the underlying polynomial, so in particular, need not have length equal to \texttt{self.prec()}.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage}: R.<t> = ZZ[[[]]
\texttt{sage}: f = 1 - 5*t^3 + t^5 + O(t^7)
\texttt{sage}: f.list()
\{1, 0, 0, -5, 0, 1\}
\end{verbatim}

\subsection*{pade \((m, n)\)}
Return the Padé approximant of \texttt{self} of index \((m, n)\).

The Padé approximant of index \((m, n)\) of a formal power series \(f\) is the quotient \(Q/P\) of two polynomials \(Q\) and \(P\) such that \(\text{deg}(Q) \leq m\), \(\text{deg}(P) \leq n\) and

\[f(z) - Q(z)/P(z) = O(z^{m+n+1}).\]

The formal power series \(f\) must be known up to order \(n + m\).
See Wikipedia article Padé_approximant

INPUT:

• \(m, n \) – integers, describing the degrees of the polynomials

OUTPUT:

a ratio of two polynomials

Warning: The current implementation uses a very slow algorithm and is not suitable for high orders.

ALGORITHM:

This method uses the formula as a quotient of two determinants.

See also:

• *sage.matrix.berlekamp_massey*,
• *sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint.rational_reconstruct()*

EXAMPLES:

```
sage: z = PowerSeriesRing(QQ, 'z').gen()
sage: exp(z).pade(4, 0)
1/24*z^4 + 1/6*z^3 + 1/2*z^2 + z + 1
sage: exp(z).pade(1, 1)
(-z - 2)/(z - 2)
sage: exp(z).pade(3, 3)
(-z^3 - 12*z^2 - 60*z - 120)/(z^3 - 12*z^2 + 60*z - 120)
sage: log(1-z).pade(4, 4)
(25/6*z^4 - 130/3*z^3 + 105*z^2 - 70*z)/(z^4 - 20*z^3 + 90*z^2 - 140*z + 70)
sage: sqrt(1+z).pade(3, 2)
(1/6*z^3 + 3*z^2 + 8*z + 16/3)/(z^2 + 16/3*z + 16/3)
sage: exp(2*z).pade(3, 3)
(-z^3 - 6*z^2 - 15*z - 15)/(z^3 - 6*z^2 + 15*z - 15)
```

polynomial()

Return the underlying polynomial of self.

EXAMPLES:

```
sage: R.<t> = GF(7)[[]]
sage: f = 3 - t^3 + O(t^5)
sage: f.polynomial()
6*t^3 + 3
```

reverse(precision=None)

Return the reverse of \(f \), i.e., the series \(g \) such that \(g(f(x)) = x \).

Given an optional argument `precision`, return the reverse with given precision (note that the reverse can have precision at most \(f \).prec()). If \(f \) has infinite precision, and the argument `precision` is not given, then the precision of the reverse defaults to the default precision of \(f \).parent().

Note that this is only possible if the valuation of self is exactly 1.

ALGORITHM:
We first attempt to pass the computation to pari; if this fails, we use Lagrange inversion. Using `sage: set_verbose(1)` will print a message if passing to pari fails.

If the base ring has positive characteristic, then we attempt to lift to a characteristic zero ring and perform the reverse there. If this fails, an error is raised.

EXAMPLES:

```sage
sage: R.<x> = PowerSeriesRing(QQ)
sage: f = 2*x + 3*x^2 - x^4 + O(x^5)
sage: g = f.reverse()
sage: g
1/2*x - 3/8*x^2 + 9/16*x^3 - 131/128*x^4 + O(x^5)
sage: f(g)
x + O(x^5)
sage: g(f)
x + O(x^5)
sage: A.<t> = PowerSeriesRing(ZZ)
sage: a = t - t^2 - 2*t^4 + t^5 + O(t^6)
sage: b = a.reverse(); b
1/2*t + 1/2*t^2 + t^3 + 79/32*t^4 + 437/64*t^5 + O(t^6)
sage: a(b)
t + O(t^6)
sage: b(a)
t + O(t^6)
sage: B.<b,c> = PolynomialRing(ZZ)
sage: A.<t> = PowerSeriesRing(B)
sage: f = t + b*t^2 + c*t^3 + O(t^4)
sage: g = f.reverse(); g
t - b*t^2 + (2*b^2 - c)*t^3 + O(t^4)
sage: f(g)
t + O(t^4)
sage: g(f)
t + O(t^4)
sage: A.<t> = PowerSeriesRing(ZZ)
sage: B.<s> = A[].
sage: f = (1 - 3*t + 4*t^3 + O(t^4))*s + (2 + t + t^2 + O(t^3))*s^2 + O(s^3)
sage: from sage.misc.verbose import set_verbose
sage: set_verbose(1)
sage: g = f.reverse(); g
verbose 1 (<module>) passing to pari failed; trying Lagrange inversion
(1 + 3*t + O(t^3))*s + (-2 - 19*t - 118*t^2 + O(t^3))*s^2 + O(s^3)
sage: set_verbose(0)
sage: f(g) == g(f) == s
True
```

If the leading coefficient is not a unit, we pass to its fraction field if possible:
We can handle some base rings of positive characteristic:

```sage
A8.<t> = PowerSeriesRing(Zmod(8))
sage: a = t - 15*t^2 - 2*t^4 + t^5 + O(t^6)
sage: b = a.reverse(); b
  t + 7*t^2 + 2*t^3 + 5*t^4 + t^5 + O(t^6)
sage: a(b)
t + O(t^6)
sage: b(a)
t + O(t^6)
```

The optional argument `precision` sets the precision of the output:

```sage
R.<x> = PowerSeriesRing(QQ)
sage: f = 2*x + 3*x^2 - 7*x^3 + x^4 + O(x^5)
sage: g = f.reverse(precision=3); g
  1/2*x - 3/8*x^2 + O(x^3)
sage: f(g)
x + O(x^3)
sage: g(f)
x + O(x^3)
```

If the input series has infinite precision, the precision of the output is automatically set to the default precision of the parent ring:

```sage
R.<x> = PowerSeriesRing(QQ, default_prec=20)
sage: (x - x^2).reverse()
# get some Catalan numbers
x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 +
   4862*x^10 + 16795*x^11 + 58786*x^12 + 208012*x^13 + 742900*x^14 + 2674440*x^15 +
   9694845*x^16 + 35357670*x^17 + 129644790*x^18 + 477638700*x^19 + O(x^20)
sage: (x - x^2).reverse(precision=3)
x + x^2 + O(x^3)
```

`truncate` (*prec*='infinity')

The polynomial obtained from power series by truncation at precision *prec*.

EXAMPLES:

```sage
R.<I> = GF(2)[[]]
sage: f = 1/(1+I+O(I^8)); f
  1 + I + I^2 + I^3 + I^4 + I^5 + I^6 + I^7 + O(I^8)
sage: f.truncate(5)
I^4 + I^3 + I^2 + I + 1
```

`truncate_powerseries` (*prec*)

Given input *prec* = *n*, returns the power series of degree < *n* which is equivalent to self modulo *x^n*.

EXAMPLES:
```plaintext
sage: R.<I> = GF(2)[[[]]]
sage: f = 1/(1+I+O(I^8)); f
1 + I + I^2 + I^3 + I^4 + I^5 + I^6 + I^7 + O(I^8)
sage: f.truncate_powerseries(5)
1 + I + I^2 + I^3 + I^4 + O(I^5)
```

valuation()

Return the valuation of self.

EXAMPLES:

```plaintext
sage: R.<t> = QQ[[[]]]
sage: (5 - t^8 + O(t^11)).valuation()
0
sage: (-t^8 + O(t^11)).valuation()
8
sage: O(t^7).valuation()
7
sage: R(0).valuation()
+Infinity
```

```
42 Chapter 3. Power Series Methods
```
EXAMPLES:
This implementation can be selected for any base ring supported by PARI by passing the keyword `implementation='pari'` to the `PowerSeriesRing()` constructor:

```sage
sage: R.<q> = PowerSeriesRing(ZZ, implementation='pari'); R
Power Series Ring in q over Integer Ring
sage: S.<t> = PowerSeriesRing(CC, implementation='pari'); S
Power Series Ring in t over Complex Field with 53 bits of precision
```

Note that only the type of the elements depends on the implementation, not the type of the parents:

```sage
sage: type(R)
<class 'sage.rings.power_series_ring.PowerSeriesRing_domain_with_category'>
sage: type(q)
<type 'sage.rings.power_series_pari.PowerSeries_pari'>
sage: type(S)
<class 'sage.rings.power_series_ring.PowerSeriesRing_over_field_with_category'>
sage: type(t)
<type 'sage.rings.power_series_pari.PowerSeries_pari'>
```

If k is a finite field implemented using PARI, this is the default implementation for power series over k:

```sage
sage: k.<c> = GF(5^12)
sage: type(c)
<type 'sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt'>
sage: A.<x> = k[[x]]
sage: type(x)
<type 'sage.rings.power_series_pari.PowerSeries_pari'>
```

Warning: Because this implementation uses the PARI interface, the PARI variable ordering must be respected in the sense that the variable name of the power series ring must have higher priority than any variable names occurring in the base ring:

```sage
sage: R.<y> = QQ[]
```

```sage
sage: S.<x> = PowerSeriesRing(R, implementation='pari'); S
Power Series Ring in x over Univariate Polynomial Ring in y over Rational Field
```

Reversing the variable ordering leads to errors:

```sage
sage: R.<x> = QQ[]
```

```sage
sage: S.<y> = PowerSeriesRing(R, implementation='pari')
Traceback (most recent call last):
...  PariError: incorrect priority in gtopoly: variable x <= y
```

```
AUTHORS:

- Peter Bruin (December 2013): initial version

class sage.rings.power_series_pari.PowerSeries_pari

    Bases: sage.rings.power_series_ring_element.PowerSeries

A power series implemented using PARI.

INPUT:

- parent – the power series ring to use as the parent
- f – object from which to construct a power series
- prec – (default: infinity) precision of the element to be constructed
- check – ignored, but accepted for compatibility with PowerSeries_poly

dict()

Return a dictionary of coefficients for self.

This is simply a dict for the underlying polynomial; it need not have keys corresponding to every number smaller than self.prec().

EXAMPLES:

    sage: R.<t> = PowerSeriesRing(ZZ, implementation='pari')
    sage: f = 1 + t^10 + O(t^12)
    sage: f.dict()
    {0: 1, 10: 1}

integral(var=None)

Return the formal integral of self.

By default, the integration variable is the variable of the power series. Otherwise, the integration variable is the optional parameter var.

Note: The integral is always chosen so the constant term is 0.

EXAMPLES:

    sage: k.<w> = PowerSeriesRing(QQ, implementation='pari')
    sage: (1+17*w+15*w^3+O(w^5)).integral()
    w + 17/2*w^2 + 15/4*w^4 + O(w^6)
    sage: (w^3 + 4*w^4 + O(w^7)).integral()
    1/4*w^4 + 4/5*w^5 + O(w^8)
    sage: (3*w^2).integral()
    w^3

list()

Return the list of known coefficients for self.

This is just the list of coefficients of the underlying polynomial; it need not have length equal to self.prec().

EXAMPLES:
sage: R.<t> = PowerSeriesRing(ZZ, implementation='pari')
sage: f = 1 - 5*t^3 + t^5 + O(t^7)
sage: f.list()
[1, 0, 0, -5, 0, 1]
sage: S.<u> = PowerSeriesRing(pAdicRing(5), implementation='pari')
sage: (2 + u).list()
[2 + O(5^20), 1 + O(5^20)]

padded_list(n=None)
Return a list of coefficients of self up to (but not including) $q^n$.
The list is padded with zeroes on the right so that it has length $n$.

INPUT:

* n – a non-negative integer (optional); if $n$ is not given, it will be taken to be the precision of self, unless this is ``+Infinity, in which case we just return self.list()

EXAMPLES:

sage: R.<q> = PowerSeriesRing(QQ, implementation='pari')
sage: f = 1 - 17*q + 13*q^2 + 10*q^4 + O(q^7)
sage: f.list()
[1, -17, 13, 0, 10]
sage: f.padded_list(7)
[1, -17, 13, 0, 10, 0, 0]
sage: f.padded_list(10)
[1, -17, 13, 0, 10, 0, 0, 0, 0, 0]
sage: f.padded_list(3)
[1, -17, 13]
sage: f.padded_list()
[1, -17, 13, 0, 10, 0, 0]
sage: g = 1 - 17*q + 13*q^2 + 10*q^4
sage: g.list()
[1, -17, 13, 0, 10]
sage: g.padded_list()
[1, -17, 13, 0, 10]
sage: g.padded_list(10)
[1, -17, 13, 0, 10, 0, 0, 0, 0, 0]

polynomial()
Convert self to a polynomial.

EXAMPLES:

sage: R.<t> = PowerSeriesRing(GF(7), implementation='pari')
sage: f = 3 - t^3 + O(t^5)
sage: f.polynomial()
6*t^3 + 3

reverse(precision=None)
Return the reverse of self.
The reverse of a power series $f$ is the power series $g$ such that $g(f(x)) = x$. This exists if and only if the valuation of self is exactly 1 and the coefficient of $x$ is a unit.

If the optional argument precision is given, the reverse is returned with this precision. If $f$ has infinite precision and the argument precision is not given, then the reverse is returned with the default precision of $f$.parent().
EXAMPLES:

```python
sage: R.<x> = PowerSeriesRing(QQ, implementation='pari')
sage: f = 2*x + 3*x^2 - x^4 + O(x^5)
sage: g = f.reverse()
sage: g
1/2*x - 3/8*x^2 + 9/16*x^3 - 131/128*x^4 + O(x^5)
sage: f(g)
x + O(x^5)
sage: g(f)
x + O(x^5)

sage: A.<t> = PowerSeriesRing(ZZ, implementation='pari')
sage: a = t - t^2 - 2*t^4 + t^5 + O(t^6)
sage: b = a.reverse(); b
t + t^2 + 2*t^3 + 7*t^4 + 25*t^5 + O(t^6)
sage: a(b)
t + O(t^6)
sage: b(a)
t + O(t^6)

sage: B.<b,c> = PolynomialRing(ZZ)
sage: A.<t> = PowerSeriesRing(B, implementation='pari')
sage: f = t + b*t^2 + c*t^3 + O(t^4)
sage: g = f.reverse(); g
t - b*t^2 + (2*b^2 - c)*t^3 + O(t^4)
sage: f(g)
t + O(t^4)
sage: g(f)
t + O(t^4)

sage: A.<t> = PowerSeriesRing(ZZ, implementation='pari')
sage: B.<x> = PowerSeriesRing(A, implementation='pari')
sage: f = (1 - 3*t + 4*t^3 + O(t^4))*x + (2 + t + t^2 + O(t^3))*x^2 + O(x^3)
sage: g = f.reverse(); g
(1 + 3*t + 9*t^2 + 23*t^3 + O(t^4))*x + (-2 - 19*t - 118*t^2 + O(t^3))*x^2 + O(x^3)
```

The optional argument `precision` sets the precision of the output:

```python
sage: R.<x> = PowerSeriesRing(QQ, implementation='pari')
sage: f = 2*x + 3*x^2 - 7*x^3 + x^4 + O(x^5)
sage: g = f.reverse(precision=3); g
1/2*x - 3/8*x^2 + O(x^3)
sage: f(g)
x + O(x^3)
sage: g(f)
x + O(x^3)
```

If the input series has infinite precision, the precision of the output is automatically set to the default precision of the parent ring:

```python
sage: R.<x> = PowerSeriesRing(QQ, default_prec=20, implementation='pari')
sage: (x - x^2).reverse()
get some Catalan numbers
x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + 16796*x^11 + 58786*x^12 + 208012*x^13 + 742900*x^14 + 2674440*x^15 + 9694845*x^16 + 35357670*x^17 + 129644790*x^18 + 477638700*x^19 + O(x^20)
```

(continues on next page)
sage: (x - x^2).reverse(precision=3)
x + x^2 + O(x^3)

valuation()

Return the valuation of self.

EXAMPLES:

sage: R.<t> = PowerSeriesRing(QQ, implementation='pari')
sage: (5 - t^8 + O(t^11)).valuation()
0
sage: (-t^8 + O(t^11)).valuation()
8
sage: O(t^7).valuation()
7
sage: R(0).valuation()
+Infinity
Construct a multivariate power series ring (in finitely many variables) over a given (commutative) base ring.

EXAMPLES:

Construct rings and elements:

```
sage: R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
sage: TestSuite(R).run()
sage: p = -t + 1/2*t^3*u - 1/4*t^4*u + 2/3*v^5 + R.O(6); p
-t + 1/2*t^3*u - 1/4*t^4*u + 2/3*v^5 + O(t, u, v)^6
sage: p in R
True
sage: g = 1 + v + 3*u*t^2 - 2*v^2*t^2; g
1 + v + 3*t^2*u - 2*t^2*v^2
sage: g in R
True
```

Add big O as with single variable power series:

```
sage: g.add_bigoh(3)
1 + v + O(t, u, v)^3
sage: g = g.O(5); g
1 + v + 3*t^2*u - 2*t^2*v^2 + O(t, u, v)^5
```

Sage keeps track of total-degree precision:

```
sage: f = (g-1)^2 - g + 1; f
-v + v^2 - 3*t^2*u + 6*t^2*u*v + 2*t^2*v^2 + O(t, u, v)^5
sage: f in R
True
sage: f.prec()
5
sage: ((g-1-v)^2).prec()
8
```

Construct multivariate power series rings over various base rings.

```
sage: M = PowerSeriesRing(QQ, 4, 'k'); M
Multivariate Power Series Ring in k0, k1, k2, k3 over Rational Field
sage: loads(dumps(M)) is M
True
sage: TestSuite(M).run()
```

(continues on next page)
sage: H = PowerSeriesRing(PolynomialRing(ZZ,3,'z'),4,'f'); H
Multivariate Power Series Ring in f0, f1, f2, f3 over Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring
sage: TestSuite(H).run()
sage: loads(dumps(H)) is H
True

sage: z = H.base_ring().gens()
sage: f = H.gens()
+ (-z[0]*z[1] + 2*z[1]*z[2])*f[2]*f[3] \\
+ H.O(3)
sage: h in H
True

sage: h
4*z1^2 + 2*z0*z2 + z1*z2 + z2^2 + (-z2^2 - 2*z0 + z2)*f0*f2 \\
+ (-22*z0^2 + 2*z1*z2 - z0*z2 + z2^2 - 1955*z2)*f1*f2 \\
+ (-z0*z1 + 2*z1*z2)*f2*f3 + (2*z0*z1 + z1*z2 - z2^2 - z1 + 3*z2)*f3^2 \\
+ O(f0, f1, f2, f3)^3

• Use angle-bracket notation:

sage: S.<x,y> = PowerSeriesRing(GF(65537)); S
Multivariate Power Series Ring in x, y over Finite Field of size 65537
sage: s = -30077*x + 9485*x*y - 6260*y^3 + 12870*x^2*y^2 - 20289*y^4 + S.O(5); s
-30077*x + 9485*x*y - 6260*y^3 + 12870*x^2*y^2 - 20289*y^4 + O(x, y)^5
sage: s in S
True
sage: TestSuite(S).run()
sage: loads(dumps(S)) is S
True

• Use double square bracket notation:

sage: ZZ[['s,t,u']]
Multivariate Power Series Ring in s, t, u over Integer Ring
sage: GF(127931)[['x,y']]
Multivariate Power Series Ring in x, y over Finite Field of size 127931

Variable ordering determines how series are displayed.

sage: T.<a,b> = PowerSeriesRing(ZZ,order='deglex'); T
Multivariate Power Series Ring in a, b over Integer Ring
sage: TestSuite(T).run()
sage: loads(dumps(T)) is T
True
sage: T.term_order()
Degree lexicographic term order
sage: p = - 2*b^6 + a^5*b^2 + a^7 - b^2 - a*b^3 + T.O(9); p
a^7 + a^5*b^2 - 2*b^6 - a*b^3 - b^2 + O(a, b)^9
sage: U = PowerSeriesRing(ZZ,'a,b',order='negdeglex'); U
Multivariate Power Series Ring in a, b over Integer Ring

(continues on next page)
sage: U.term_order()
Negative degree lexicographic term order
sage: U(p)
-b^2 - a*b^3 - 2*b^6 + a^7 + a^5*b^2 + O(a, b)^9

Change from one base ring to another:

sage: R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
sage: R.base_extend(RR)
Multivariate Power Series Ring in t, u, v over Real Field with 53
bits of precision
sage: R.change_ring(IntegerModRing(10))
Multivariate Power Series Ring in t, u, v over Ring of integers
modulo 10

sage: S = PowerSeriesRing(GF(65537),2,'x,y'); S
Multivariate Power Series Ring in x, y over Finite Field of size 65537
sage: S.change_ring(GF(5))
Multivariate Power Series Ring in x, y over Finite Field of size 5

Coercion from polynomial ring:

sage: R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
sage: A = PolynomialRing(ZZ,3,'t,u,v')
sage: g = A.gens()
sage: a = 2*g[0]*g[2] - 2*g[0] - 2; a
2*t*v - 2*t - 2
sage: R(a)
-2 - 2*t + 2*t*v
sage: R(a).O(4)
-2 - 2*t + 2*t*v + O(t, u, v)^4
sage: a.parent()
Multivariate Polynomial Ring in t, u, v over Integer Ring
sage: a in R
True

Coercion from polynomial ring in subset of variables:

sage: R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
sage: A = PolynomialRing(QQ,2,'t,v')
sage: g = A.gens()
sage: a = -2*g[0]*g[1] - 1/27*g[1]^2 + g[0] - 1/2*g[1]; a
-2*t*v - 1/27*v^2 + t - 1/2*v
sage: a in R
True

Coercion from symbolic ring:

sage: x,y = var('x,y')
sage: S = PowerSeriesRing(GF(11),2,'x,y'); S
Multivariate Power Series Ring in x, y over Finite Field of size 11
sage: type(x)
<type 'sage.symbolic.expression.Expression'>

(continues on next page)
sage: type(S(x))
class 'sage.rings.multi_power_series_ring.MPowerSeriesRing_generic_with_category.
˓element_class'>
sage: f = S(2/7 -100*x^2 + 1/3*x*y + y^2).O(3); f
5 - x^2 + 4*x*y + y^2 + O(x, y)^3
sage: f.parent()
Multivariate Power Series Ring in x, y over Finite Field of size 11
sage: f.parent() == S
True
The implementation of the multivariate power series ring uses a combination of multivariate polynomials and univariate
power series. Namely, in order to construct the multivariate power series ring \( R[[x_1, x_2, \cdots, x_n]] \), we consider the
univariate power series ring \( S[[T]] \) over the multivariate polynomial ring \( S := R[x_1, x_2, \cdots, x_n] \), and in it we take
the subring formed by all power series whose \( i \)-th coefficient has degree \( i \) for all \( i \geq 0 \). This subring is isomorphic to
\( R[[x_1, x_2, \cdots, x_n]] \). This is how \( R[[x_1, x_2, \cdots, x_n]] \) is implemented in this class. The ring \( S \) is called the foreground
polynomial ring, and the ring \( S[[T]] \) is called the background univariate power series ring.

AUTHORS:

- Niles Johnson (2010-07): initial code
- Simon King (2012-08, 2013-02): Use category and coercion framework, trac ticket #13412 and trac ticket
  #14084

class sage.rings.multi_power_series_ring.MPowerSeriesRing_generic (base_ring,
num_gens,
name_list,
or-
der='negdeglex',
de-
fault_prec=10,
sparse=False)

onexact.Nonexact

A multivariate power series ring. This class is implemented as a single variable power series ring in the variable
\( T \) over a multivariable polynomial ring in the specified generators. Each generator \( g \) of the multivariable polynomial
ring (called the “foreground ring”) is mapped to \( g*T \) in the single variable power series ring (called the “background ring”). The background power series ring is used to do arithmetic and track total-degree precision. The foreground polynomial ring is used to display elements.

For usage and examples, see above, and PowerSeriesRing().

Element

alias of sage.rings.multi_power_series_ring_element.MPowerSeries

O (prec)

Return big oh with precision prec. This function is an alias for bigoh.

EXAMPLES:

sage: T.<a,b> = PowerSeriesRing(ZZ,2); T
Multivariate Power Series Ring in a, b over Integer Ring
sage: T.O(10)
0 + O(a, b)^10
sage: T.bigoh(10)
0 + O(a, b)^10
**bigoh***(prec)  
Return **big oh** with precision `prec`. The function `O` does the same thing.

**EXAMPLES:**

```
sage: T.<a,b> = PowerSeriesRing(ZZ,2); T
Multivariate Power Series Ring in a, b over Integer Ring
sage: T.bigoh(10)
0 + O(a, b)^10
sage: T.O(10)
0 + O(a, b)^10
```

**change_ring**(R)  
Returns the power series ring over R in the same variable as self. This function ignores the question of whether the base ring of self is or can extend to the base ring of R; for the latter, use base_extend.

**EXAMPLES:**

```
sage: R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
sage: R.base_extend(RR)
Multivariate Power Series Ring in t, u, v over Real Field with
53 bits of precision
sage: R.change_ring(IntegerModRing(10))
Multivariate Power Series Ring in t, u, v over Ring of integers
modulo 10
sage: R.base_extend(IntegerModRing(10))
Traceback (most recent call last):
...
TypeError: no base extension defined
```

**characteristic()**  
Return characteristic of base ring, which is characteristic of self.

**EXAMPLES:**

```
sage: H = PowerSeriesRing(GF(65537),4,'f'); H
Multivariate Power Series Ring in f0, f1, f2, f3 over
Finite Field of size 65537
sage: H.characteristic()
65537
```

**construction()**  
Returns a functor F and base ring R such that F(R) == self.

**EXAMPLES:**

```
sage: M = PowerSeriesRing(QQ,4,'f'); M
Multivariate Power Series Ring in f0, f1, f2, f3 over
Rational Field
sage: (c,R) = M.construction(); (c,R)
(Completion[['f0', 'f1', 'f2', 'f3']], 12),
```

(continues on next page)
Multivariate Polynomial Ring in f0, f1, f2, f3 over Rational Field
\texttt{sage: } c
Completion[('f0', 'f1', 'f2', 'f3'), prec=12]
\texttt{sage: } c(R)
Multivariate Power Series Ring in f0, f1, f2, f3 over Rational Field
\texttt{sage: } c(R) == M
True

\texttt{gen}(n=0)
Return the \textit{n}th generator of self.

\textbf{EXAMPLES:}

\texttt{sage: } M = PowerSeriesRing(ZZ,10,'v')
\texttt{sage: } M.gen(6)
v6

\texttt{is\_dense}()
Is self dense? (opposite of sparse)

\textbf{EXAMPLES:}

\texttt{sage: } M = PowerSeriesRing(ZZ,3,'s,t,u'); M
Multivariate Power Series Ring in s, t, u over Integer Ring
\texttt{sage: } M.is_dense()
True
\texttt{sage: } N = PowerSeriesRing(ZZ,3,'s,t,u',sparse=True); N
Sparse Multivariate Power Series Ring in s, t, u over Integer Ring
\texttt{sage: } N.is_dense()
False

\texttt{is\_integral\_domain}(\texttt{proof=False})
Return True if the base ring is an integral domain; otherwise return False.

\textbf{EXAMPLES:}

\texttt{sage: } M = PowerSeriesRing(QQ,4,'v'); M
Multivariate Power Series Ring in v0, v1, v2, v3 over Rational Field
\texttt{sage: } M.is_integral_domain()
True

\texttt{is\_noetherian}(\texttt{proof=False})
Power series over a Noetherian ring are Noetherian.

\textbf{EXAMPLES:}

\texttt{sage: } M = PowerSeriesRing(QQ,4,'v'); M
Multivariate Power Series Ring in v0, v1, v2, v3 over Rational Field
\texttt{sage: } M.is_noetherian()
True
\texttt{sage: } N = PowerSeriesRing(InfinitePolynomialRing(ZZ,'a'),2,'x,y')
\texttt{sage: } N.is_noetherian()
False

\texttt{is\_sparse}()
Is self sparse?

\textbf{EXAMPLES:}
```sage
definitions:
M = PowerSeriesRing(ZZ, 3, 's,t,u'); M
Multivariate Power Series Ring in s, t, u over Integer Ring
M.is_sparse()
False
N = PowerSeriesRing(ZZ, 3, 's,t,u', sparse=True); N
Sparse Multivariate Power Series Ring in s, t, u over Integer Ring
N.is_sparse()
True
```

**laurent_series_ring()**
Laurent series not yet implemented for multivariate power series rings

**ngens()**
Return number of generators of self.

**EXAMPLES:**
```
sage: M = PowerSeriesRing(ZZ, 10, 'v')
sage: M.ngens()
10
```

**prec_ideal()**
Return the ideal which determines precision; this is the ideal generated by all of the generators of our background polynomial ring.

**EXAMPLES:**
```
sage: A.<s,t,u> = PowerSeriesRing(ZZ)
sage: A.prec_ideal()
Ideal (s, t, u) of Multivariate Polynomial Ring in s, t, u over Integer Ring
```

**remove_var(var)**
Remove given variable or sequence of variables from self.

**EXAMPLES:**
```
sage: A.<s,t,u> = PowerSeriesRing(ZZ)
sage: A.remove_var(t)
Multivariate Power Series Ring in s, u over Integer Ring
sage: A.remove_var(s,t)
Power Series Ring in u over Integer Ring
```

```
sage: M = PowerSeriesRing(GF(5), 5, 't'); M
Multivariate Power Series Ring in t0, t1, t2, t3, t4 over Finite Field of size 5
sage: M.remove_var(M.gens()[3])
Multivariate Power Series Ring in t0, t1, t2, t4 over Finite Field of size 5
```

Removing all variables results in the base ring:
```
sage: M.remove_var(*M.gens())
Finite Field of size 5
```

**term_order()**
Print term ordering of self. Term orderings are implemented by the TermOrder class.
EXAMPLES:

```python
sage: M.<x,y,z> = PowerSeriesRing(ZZ,3)
sage: M.term_order()
Negative degree lexicographic term order
sage: m = y*z^12 - y^6*z^8 - x^7*y^5*z^2 + x*y^2*z + M.O(15); m
x*y^2*z + y*z^12 - x^7*y^5*z^2 - y^6*z^8 + O(x, y, z)^15
sage: N = PowerSeriesRing(ZZ,3,'x,y,z', order="deglex")
sage: N.term_order()
Degree lexicographic term order
sage: N(m)
-x^7*y^5*z^2 - y^6*z^8 + y*z^12 + x*y^2*z + O(x, y, z)^15
```

```
sage.rings.multi_power_series_ring.is_MPowerSeriesRing(x)
Return true if input is a multivariate power series ring.
```

```
sage.rings.multi_power_series_ring.unpickle_multi_power_series_ring_v0(base_ring, num_gens, names, order, default_prec, sparse)
Unpickle (deserialize) a multivariate power series ring according to the given inputs.
```

EXAMPLES:

```python
sage: P.<x,y> = PowerSeriesRing(QQ)
sage: loads(dumps(P)) == P # indirect doctest
True
```
MULTIVARIATE POWER SERIES

Construct and manipulate multivariate power series (in finitely many variables) over a given commutative ring. Multivariate power series are implemented with total-degree precision.

EXAMPLES:

Power series arithmetic, tracking precision:

```sage
R.<s,t> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in s, t over Integer Ring

sage: f = 1 + s + 3*s^2; f
1 + s + 3*s^2

sage: g = t^2*s + 3*t^2*s^2 + R.O(5); g
s*t^2 + 3*s^2*t^2 + O(s, t)^5

sage: g = t^2*s + 3*t^2*s^2 + O(s, t)^5; g
s*t^2 + 3*s^2*t^2 + O(s, t)^5

sage: f = f.O(7); f
1 + s + 3*s^2 + O(s, t)^7

sage: f += s; f
1 + 2*s + 3*s^2 + O(s, t)^7

sage: f*g
s*t^2 + 5*s^2*t^2 + O(s, t)^5

sage: (f-1)*g
2*s^2*t^2 + 9*s^3*t^2 + O(s, t)^6

sage: f*g - g
2*s^2*t^2 + O(s, t)^5

sage: f*=s; f
s + 2*s^2 + 3*s^3 + O(s, t)^8

sage: f%2
s + s^3 + O(s, t)^8

sage: (f%2).parent()
Multivariate Power Series Ring in s, t over Ring of integers modulo 2
```

As with univariate power series, comparison of \( f \) and \( g \) is done up to the minimum precision of \( f \) and \( g \):

```sage
sage: f = 1 + t + s + s*t + R.O(3); f
1 + s + t + s*t + O(s, t)^3

sage: g = s^2 + 2*s^4 - s^5 + s^2*t^3 + R.O(6); g
s^2 + 2*s^4 - s^5 + s^2*t^3 + O(s, t)^6

sage: f == g
False

sage: g == g.add_bigoh(3)
True
```

(continues on next page)
Calling:

```
sage: f = s^2 + s*t + s^3 + s^2*t + 3*s^4 + 3*s^3*t + R.O(5); f
s^2 + s*t + s^3 + s^2*t + 3*s^4 + 3*s^3*t + O(s, t)^5
sage: f(t,s)
s*t + t^2 + s*t^2 + t^3 + 3*s*t^3 + 3*t^4 + O(s, t)^5
sage: f(t^2,s^2)
s^2*t^2 + t^4 + s^2*t^4 + t^6 + 3*s^2*t^6 + 3*t^8 + O(s, t)^10
```

Substitution is defined only for elements of positive valuation, unless \( f \) has infinite precision:

```
sage: f(t^2,s^2+1)
Traceback (most recent call last):
...
TypeError: Substitution defined only for elements of positive valuation, unless self has infinite precision.
sage: g = f.truncate()
sage: g(t^2,s^2+1)
t^2 + s^2*t^2 + 2*t^4 + s^2*t^4 + 4*t^6 + 3*s^2*t^6 + 3*t^8
sage: g(t^2,(s^2+1).O(3))
t^2 + s^2*t^2 + 2*t^4 + O(s, t)^5
```

0 has valuation \(+\infty\):

```
sage: f(t^2,0)
t^4 + t^6 + 3*t^8 + O(s, t)^10
sage: f(t^2,s^2+s)
s*t^2 + s^2*t^2 + t^4 + O(s, t)^5
```

Substitution of power series with finite precision works too:

```
sage: f(s.O(2),t)
s^2 + s*t + O(s, t)^3
sage: f(f,f)
2*s^4 + 4*s^3*t + 2*s^2*t^2 + 4*s^4*t + 4*s^3*t^2 + 16*s^6 +
34*s^5*t + 20*s^4*t^2 + 2*s^3*t^3 + O(s, t)^7
sage: t(f,f)
s^2 + s*t + s^3 + s^2*t + 3*s^4 + 3*s^3*t + O(s, t)^5
sage: t(0,f) == s(f,0)
True
```

The `subs` syntax works as expected:

```
sage: r0 = -t^2 - s*t^3 - 2*t^6 + s^7 + s^5*t^2 + R.O(10)
sage: r1 = s^4 - s*t^4 + s^6*t - 4*s^2*t^5 - 6*s^3*t^5 + R.O(10)
sage: r2 = 2*s^3*t^2 - 2*s*t^4 - 2*s^3*t^4 + s*t^7 + R.O(10)
sage: r0.subs((t:r2,s:r1))
-4*s^6*t^4 + 8*s^4*t^6 - 4*s^2*t^8 + 8*s^6*t^6 - 8*s^4*t^8 - 4*s^4*t^9 + 4*s^2*t^11 - 4*s^6*t^8 + O(s, t)^15
sage: r0.subs((t:r2,s:r1)) == r0(r1,r2)
True
```
Construct ring homomorphisms from one power series ring to another:

```
sage: A.<a,b> = PowerSeriesRing(QQ)
sage: X.<x,y> = PowerSeriesRing(QQ)
sage: phi = Hom(A,X)([x,2*y]); phi
Ring morphism:
 From: Multivariate Power Series Ring in a, b over Rational Field
 To: Multivariate Power Series Ring in x, y over Rational Field
 Defn: a |--> x
 b |--> 2*y
sage: phi(a+b+3*a*b^2 + A.O(5))
x + 2*y + 12*x*y^2 + O(x, y)^5
```

Multiplicative inversion of power series:

```
sage: h = 1 + s + t + s*t + s^2*t^2 + 3*s^4 + 3*s^3*t + R.O(5)
sage: k = h^-1; k
1 - s - t + s^2 + s*t + t^2 - s^3 - s^2*t - s*t^2 - t^3 - 2*s^4 -
2*s^3*t + s*t^3 + t^4 + O(s, t)^5
sage: h*k
1 + O(s, t)^5
```

```
sage: f = 1 - 5*s^29 - 5*s^28*t + 4*s^18*t^35 +
 : 4*s^17*t^36 - s^45*t^25 - s^44*t^26 + s^7*t^83 +
 : s^6*t^84 + R.O(101)
sage: h = ~f; h
1 + 5*s^29 + 5*s^28*t - 4*s^18*t^35 - 4*s^17*t^36 + 25*s^58 + 50*s^57*t
+ 25*s^56*t^2 + s^45*t^25 + s^44*t^26 - 40*s^47*t^35 - 80*s^46*t^36
- 40*s^45*t^37 + 125*s^86*t + 375*s^85*t^2 + 125*s^84*t^3
- s^7*t^83 - s^6*t^84 + 10*s^74*t^25 + 20*s^73*t^26 + 10*s^72*t^27
+ O(s, t)^101
sage: h*f
1 + O(s, t)^101
```

AUTHORS:

- Niles Johnson (07/2010): initial code
- Simon King (08/2012): Use category and coercion framework, trac ticket #13412

class sage.rings.multi_power_series_ring_element.MO(x)
  Bases: object
  
  Object representing a zero element with given precision.

EXAMPLES:

```
sage: R.<u,v> = QQ[]
sage: m = O(u, v)
sage: m^4
0 + O(u, v)^4
sage: m^1
0 + O(u, v)^1
```

(continues on next page)
```python
sage: 1 + a + z^1
1 + O(a, b, c)^1

sage: w = 1 + a + O(a, b, c)^2; w
1 + a + O(a, b, c)^2

sage: w^2
1 + 2*a + O(a, b, c)^2
```

```python
class sage.rings.multi_power_series_ring_element.MPowerSeries(
 parent, x=0, prec=+Infinity, is_gen=False, check=False)
```

**Bases:** `sage.rings.power_series_ring_element.PowerSeries`

Multivariate power series; these are the elements of Multivariate Power Series Rings.

**INPUT:**

- `parent` – A multivariate power series.
- `x` – The element (default: 0). This can be another `MPowerSeries` object, or an element of one of the following:
  - the background univariate power series ring
  - the foreground polynomial ring
  - a ring that coerces to one of the above two
- `prec` – (default: `infinity`) The precision
- `is_gen` – (default: `False`) Is this element one of the generators?
- `check` – (default: `False`) Needed by univariate power series class

**EXAMPLES:**

Construct multivariate power series from generators:

```python
sage: S.<s,t> = PowerSeriesRing(ZZ)
sage: f = s + 4*t + 3*s*t
sage: f in S
True
sage: f = f.add_bigoh(4); f
s + 4*t + 3*s*t + O(s, t)^4
sage: g = 1 + s + t - s*t + S.O(5); g
1 + s + t - s*t + O(s, t)^5
sage: g in S
True
```

(continues on next page)
Get random elements:

\begin{Verbatim}
  sage: S.random_element(4)  # random
  -2*t + t^2 - 12*s^3 + O(s, t)^4
  sage: T.random_element(10)  # random
  -t1^2*t3^2*t4^2 + t1^5*t3^3*t4 + O(t0, t1, t2, t3, t4)^10
\end{Verbatim}

Convert elements from polynomial rings:

\begin{Verbatim}
  sage: R = PolynomialRing(ZZ,5,T.variable_names())
  sage: t = R.gens()
  sage: T(r)
  -t2*t3 + t3^2 + t4^2
  sage: r.parent()
  Multivariate Polynomial Ring in t0, t1, t2, t3, t4 over Integer Ring
  sage: r in T
  True
\end{Verbatim}

\textbf{O (prec)}

Return a multivariate power series of precision \texttt{prec} obtained by truncating \texttt{self} at precision \texttt{prec}.

This is the same as \textit{add_bigoh ()}.

\textbf{EXAMPLES:}

\begin{Verbatim}
  sage: B.<x,y> = PowerSeriesRing(QQ); B
  Multivariate Power Series Ring in x, y over Rational Field
  sage: r = 1 - x*y + x^2
  sage: r.O(4)
  1 + x^2 - x*y + O(x, y)^4
  sage: r.O(2)
  1 + O(x, y)^2
\end{Verbatim}

Note that this does not change \texttt{self}:  

\begin{Verbatim}
  sage: r
  1 + x^2 - x*y
\end{Verbatim}

\textbf{V (n)}

If

\[
  f = \sum a_{m_0,...,m_k} x_0^{m_0} \cdots x_k^{m_k},
\]

then this function returns

\[
  \sum a_{m_0,...,m_k} x_0^{nm_0} \cdots x_k^{nm_k}.
\]

The total-degree precision of the output is \texttt{n} times the precision of \texttt{self}.

\textbf{EXAMPLES:}
add_bigoh \( (\text{prec}) \)
Return a multivariate power series of precision \( \text{prec} \) obtained by truncating \( \text{self} \) at precision \( \text{prec} \).

This is the same as \( O() \).

EXAMPLES:

```
sage: B.<x,y> = PowerSeriesRing(QQ); B
Multivariate Power Series Ring in x, y over Rational Field
sage: r = 1 - x*y + x^2
sage: r.add_bigoh(4)
1 + x^2 - x*y + O(x, y)^4
sage: r.add_bigoh(2)
1 + O(x, y)^2
```

Note that this does not change \( \text{self} \):

```
sage: r
1 + x^2 - x*y
```

coefficients ()
Return a dict of monomials and coefficients.

EXAMPLES:

```
sage: R.<s,t> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in s, t over Integer Ring
sage: f = 1 + t + s + s*t + R.O(3)
sage: f.coefficients()
{s*t: 1, t: 1, s: 1, 1: 1}
sage: (f^2).coefficients()
{t^2: 1, s*t: 4, s^2: 1, t: 2, s: 2, 1: 1}
sage: g = f^2 + f - 2; g
3*s + 3*t + s^2 + 5*s*t + t^2 + O(s, t)^3
sage: cd = g.coefficients()
sage: g2 = sum(k*v for (k,v) in cd.items()); g2
3*s + 3*t + s^2 + 5*s*t + t^2
sage: g2 == g.truncate()
True
```

constant_coefficient ()
Return constant coefficient of \( \text{self} \).

EXAMPLES:

```
sage: R.<a,b,c> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in a, b, c over Integer Ring
sage: f = 3 + a + b - a*b - b*c - a*c + R.O(4)
sage: f.constant_coefficient()
3
```

(continues on next page)
sage: f.constant_coefficient().parent()
Integer Ring

defree()
Return degree of underlying polynomial of self.

EXAMPLES:

sage: B.<x,y> = PowerSeriesRing(QQ)
sage: B
Multivariate Power Series Ring in x, y over Rational Field
sage: r = 1 - x*y + x^2
sage: r = r.add_bigoh(4); r
1 + x^2 - x*y + 0(x, y)^4
sage: r.degree()
2

derivative(*args)
The formal derivative of this power series, with respect to variables supplied in args.

EXAMPLES:

sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a^2*b + T.O(5)
sage: f.derivative(a)
1 + 2*a*b + O(a, b)^4
sage: f.derivative(a,2)
2*b + O(a, b)^3
sage: f.derivative(a,a)
2*b + O(a, b)^3
sage: f.derivative([a,a])
2*b + O(a, b)^3
sage: f.derivative(a,5)
0 + O(a, b)^0
sage: f.derivative(a,6)
0 + O(a, b)^0

dict()  
Return underlying dictionary with keys the exponents and values the coefficients of this power series.

EXAMPLES:

sage: M = PowerSeriesRing(QQ,4,'t',sparse=True); M
Sparse Multivariate Power Series Ring in t0, t1, t2, t3 over Rational Field
sage: M.inject_variables()
Defining t0, t1, t2, t3
sage: m = 2/3*t0*t1^15*t3^48 - t0^15*t1^21*t2^28*t3^5
sage: m2 = 1/2*t0^12*t1^29*t2^46*t3^6 - 1/4*t0^39*t1^5*t2^23*t3^30 + M.O(100)
sage: s = m + m2
sage: s.dict()
{(1, 15, 0, 48): 2/3,
 (12, 29, 46, 6): 1/2,
 (15, 21, 28, 5): -1,
 (39, 5, 23, 30): -1/4}
**egf()**
Method from univariate power series not yet implemented

**exp**(prec=+Infinity)
Exponentiate the formal power series.

**INPUT:**
- prec – Integer or infinity. The degree to truncate the result to.

**OUTPUT:**
The exponentiated multivariate power series as a new multivariate power series.

**EXAMPLES:**

```python
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a*b + T.O(3)
sage: exp(f)
1 + a + b + 1/2*a^2 + 2*a*b + 1/2*b^2 + O(a, b)^3
sage: f.exp()
1 + a + b + 1/2*a^2 + 2*a*b + 1/2*b^2 + O(a, b)^3
sage: f.exp(prec=2)
1 + a + b + O(a, b)^2
sage: log(exp(f)) - f
0 + O(a, b)^3
```

If the power series has a constant coefficient $c$ and $\exp(c)$ is transcendental, then $\exp(f)$ would have to be a power series over the SymbolicRing. These are not yet implemented and therefore such cases raise an error:

```python
sage: g = 2+f
sage: exp(g)
Traceback (most recent call last):
 ...TypeError: unsupported operand parent(s) for *: 'Symbolic Ring' and 'Power Series Ring in Tbg over Multivariate Polynomial Ring in a, b over Rational Field'
```

Another workaround for this limitation is to change base ring to one which is closed under exponentiation, such as $\mathbb{R}$ or $\mathbb{C}$:

```python
sage: exp(g.change_ring(RDF))
7.38905609... + 7.38905609...*a + 7.38905609...*b + 3.69452804...*a^2 + 14.7781121...*a*b + 3.69452804...*b^2 + O(a, b)^3
```

If no precision is specified, the default precision is used:

```python
sage: T.default_prec()
12
sage: exp(a)
1 + a + 1/2*a^2 + 1/6*a^3 + 1/24*a^4 + 1/120*a^5 + 1/720*a^6 + 1/5040*a^7 + 1/40320*a^8 + 1/362880*a^9 + 1/3628800*a^10 + 1/39916800*a^11 + O(a, b)^12
sage: a.exp(prec=5)
1 + a + 1/2*a^2 + 1/6*a^3 + 1/24*a^4 + O(a, b)^5
sage: exp(a + T.O(5))
1 + a + 1/2*a^2 + 1/6*a^3 + 1/24*a^4 + O(a, b)^5
```

**exponents()**
Return a list of tuples which hold the exponents of each monomial of self.
EXAMPLES:

```python
sage: H = QQ[['x,y']]
sage: (x,y) = H.gens()
sage: h = -y^2 - xy^3 - 6/5*y^6 - x^7 + 2*x^5*y^2 + H.O(10)
sage: h
-y^2 - xy^3 - 6/5*y^6 - x^7 + 2*x^5*y^2 + O(x, y)^10
sage: h.exponents()
[(0, 2), (1, 3), (0, 6), (7, 0), (5, 2)]
```

The formal integral of this multivariate power series, with respect to variables supplied in `args`.

The variable sequence `args` can contain both variables and counts; for the syntax, see `derivative_parse()`.

EXAMPLES:

```python
sage: T.<a,b> = PowerSeriesRing(QQ,2)
sage: f = a + b + a^2*b + T.O(5)
sage: f.integral(a, 2)
1/6*a^3 + 1/2*a^2*b + 1/12*a^4*b + O(a, b)^7
sage: f.integral(a, b)
1/2*a^2*b + 1/2*a*b^2 + 1/6*a^3*b^2 + O(a, b)^7
sage: f.integral(a, 5)
1/720*a^6 + 1/120*a^5*b + 1/2520*a^7*b + O(a, b)^10
```

Only integration with respect to variables works:

```python
sage: f.integral(a+b)
Traceback (most recent call last):
... ValueError: a + b is not a variable
```

**Warning:** Coefficient division.

If the base ring is not a field (e.g. \( \mathbb{Z} \)), or if it has a non-zero characteristic, (e.g. \( \mathbb{Z}/3\mathbb{Z} \)), integration is not always possible while staying with the same base ring. In the first case, Sage will report that it has not been able to coerce some coefficient to the base ring:

```python
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + T.O(5)
sage: f.integral(a)
Traceback (most recent call last):
... TypeError: no conversion of this rational to integer
```

One can get the correct result by changing the base ring first:

```python
sage: f.change_ring(QQ).integral(a)
1/2*a^2 + O(a, b)^6
```

However, a correct result is returned even without base change if the denominator cancels:

```python
sage: f = 2*b + T.O(5)
sage: f.integral(b)
b^2 + O(a, b)^6
```

In non-zero characteristic, Sage will report that a zero division occurred
sage: T.<a,b> = PowerSeriesRing(Zmod(3),2)
sage: (a^3).integral(a)
a^4
sage: (a^2).integral(a)
Traceback (most recent call last):
...
ZeroDivisionError: inverse of Mod(0, 3) does not exist

**is_nilpotent()**
Return **True** if **self** is nilpotent. This occurs if

- **self** has finite precision and positive valuation, or
- **self** is constant and nilpotent in base ring.

Otherwise, return **False**.

**Warning:** This is so far just a sufficient condition, so don’t trust a **False** output to be legit!

**Todo:** What should we do about this method? Is nilpotency of a power series even decidable (assuming a nilpotency oracle in the base ring)? And I am not sure that returning **True** just because the series has finite precision and zero constant term is a good idea.

**EXAMPLES:**

```python
sage: R.<a,b,c> = PowerSeriesRing(Zmod(8)); R
Multivariate Power Series Ring in a, b, c over Ring of integers modulo 8
sage: f = a + b + c + a^2*c
sage: f.is_nilpotent()
False
sage: f = f.O(4); f
a + b + c + a^2*c + O(a, b, c)^4
sage: f.is_nilpotent()
True
sage: g = R(2)
sage: g.is_nilpotent()
True
sage: (g.O(4)).is_nilpotent()
True
sage: S = R.change_ring(QQ)
sage: S(g).is_nilpotent()
False
sage: S(g.O(4)).is_nilpotent()
False
```

**is_square()**
Method from univariate power series not yet implemented.

**is_unit()**
A multivariate power series is a unit if and only if its constant coefficient is a unit.
EXAMPLES:

```
sage: R.<a,b> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in a, b over Integer Ring
sage: f = 2 + a^2 + a*b + a^3 + R.O(9)
sage: f.is_unit()
False
sage: f.base_extend(QQ).is_unit()
True
sage: (O(a,b)^0).is_unit()
False
```

```python
laurent_series()
Not implemented for multivariate power series.
```

```python
list()
Doesn’t make sense for multivariate power series. Multivariate polynomials don’t have list of coefficients either.
```

```python
log(prec=+ Infinity)
Return the logarithm of the formal power series.

INPUT:

• prec – Integer or infinity. The degree to truncate the result to.

OUTPUT:

The logarithm of the multivariate power series as a new multivariate power series.

EXAMPLES:

```
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = 1 + a + b + a*b + T.O(5)
sage: f.log()
a + b - 1/2*a^2 - 1/2*b^2 + 1/3*a^3 + 1/3*b^3 - 1/4*a^4 - 1/4*b^4 + O(a, b)^5
sage: log(f)
a + b - 1/2*a^2 - 1/2*b^2 + 1/3*a^3 + 1/3*b^3 - 1/4*a^4 - 1/4*b^4 + O(a, b)^5
sage: exp(log(f)) - f
0 + O(a, b)^5
```
```
If the power series has a constant coefficient \(c\) and \(\exp(c)\) is transcendental, then \(\exp(f)\) would have to be a power series over the \SymbolicRing. These are not yet implemented and therefore such cases raise an error:

```
sage: g = 2+f
sage: log(g)
Traceback (most recent call last):
 ...TypeError: unsupported operand parent(s) for -: 'Symbolic Ring' and 'PowerSeries Ring in Tbg over Multivariate Polynomial Ring in a, b over Rational'
```
```
Another workaround for this limitation is to change base ring to one which is closed under exponentiation, such as \(R\) or \(C\):

```
sage: log(g.change_ring(RDF))
n1.09861228... + 0.333333333...*a + 0.333333333...*b - 0.055555555...*a^2 + 0.222222222...*a*b - 0.055555555...*b^2 + 0.0123456790...*a^3 - 0.0740740740...*a^2*b - 0.0740740740...*a*b^2 + 0.0123456790...*b^3
```
```
(continues on next page)
```
monomials()

Return a list of monomials of self.

These are the keys of the dict returned by coefficients().

EXAMPLES:

```python
sage: R.<a,b,c> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in a, b, c over Integer Ring
sage: f = 1 + a + b - a*b - b*c - a*c + R.O(4)
sage: sorted(f.monomials())
[b*c, a*c, a*b, b, a, 1]
sage: f = 1 + 2*a + 7*b - 2*a*b - 4*b*c - 13*a*c + R.O(4)
sage: sorted(f.monomials())
[b*c, a*c, a*b, b, a, 1]
sage: f = R.zero()
sage: f.monomials()
[]
```

ogf()

Method from univariate power series not yet implemented

padded_list()

Method from univariate power series not yet implemented.

polynomial()

Return the underlying polynomial of self as an element of the underlying multivariate polynomial ring (the “foreground polynomial ring”).

EXAMPLES:

```python
sage: M = PowerSeriesRing(QQ,4,'t'); M
Multivariate Power Series Ring in t0, t1, t2, t3 over Rational Field
sage: t = M.gens()
sage: f
1/2*t0^3*t1^3*t2^2 + 2/3*t0*t2^6*t3 - t0^3*t1^3*t3^3 - 1/4*t0*t1*t2^7
sage: f.polynomial()
1/2*t0^3*t1^3*t2^2 + 2/3*t0*t2^6*t3 - t0^3*t1^3*t3^3 - 1/4*t0*t1*t2^7
```

Contrast with truncate():

```python
sage: f.truncate()
1/2*t0^3*t1^3*t2^2 + 2/3*t0*t2^6*t3 - t0^3*t1^3*t3^3 - 1/4*t0*t1*t2^7
sage: f.truncate().parent()
Multivariate Power Series Ring in t0, t1, t2, t3 over Rational Field
```
prec()
Return precision of self.

EXAMPLES:

```
sage: R.<a,b,c> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in a, b, c over Integer Ring
sage: f = 3 + a + b - a*b - b*c - a*c + R.O(4)
sage: f.prec()
4
sage: f.truncate().prec()
+Infinity
```

quo_rem(other, precision=None)
Return the pair of quotient and remainder for the increasing power division of self by other.

If \(a \) and \(b \) are two elements of a power series ring \(R[[x_1,x_2,\ldots,x_n]] \) such that the trailing term of \(b \) is invertible in \(R \), then the pair of quotient and remainder for the increasing power division of \(a \) by \(b \) is the unique pair \((u,v)\in R[[x_1,x_2,\ldots,x_n]]\times R[x_1,x_2,\ldots,x_n]\) such that \(a = bu + v \) and such that no monomial appearing in \(v \) divides the trailing monomial \((\text{trailing_monomial}())\) of \(b \). Note that this depends on the order of the variables.

This method returns both quotient and remainder as power series, even though in mathematics, the remainder for the increasing power division of two power series is a polynomial. This is because Sage’s power series come with a precision, and that precision is not always sufficient to determine the remainder completely. Disregarding this issue, the \(\text{polynomial()} \) method can be used to recast the remainder as an actual polynomial.

INPUT:

- \(\text{other} \) – an element of the same power series ring as self such that the trailing term of \(\text{other} \) is invertible in self (this is automatically satisfied if the base ring is a field, unless \(\text{other} \) is zero)
- \(\text{precision} \) – (default: the default precision of the parent of self) nonnegative integer, determining the precision to be cast on the resulting quotient and remainder if both self and other have infinite precision (ignored otherwise); note that the resulting precision might be lower than this integer

EXAMPLES:

```
sage: R.<a,b,c> = PowerSeriesRing(ZZ)
sage: f = 1 + a + b - a*b + R.O(3)
sage: g = 1 + 2*a - 3*a*b + R.O(3)
sage: q, r = f.quo_rem(g); q, r
(1 - a + b + 2*a^2 + O(a, b, c)^3, 0 + O(a, b, c)^3)
sage: f == q*g+r
True
sage: q, r = (a*f).quo_rem(g); q, r
(a - a^2 + a*b + 2*a^3 + O(a, b, c)^4, 0 + O(a, b, c)^4)
sage: a*f == q*g+r
True
sage: q, r = (a*f).quo_rem(a*g); q, r
(1 - a + b + 2*a^2 + O(a, b, c)^3, 0 + O(a, b, c)^4)
sage: a*f == q*(a*g)+r
True
sage: q, r = (a*f).quo_rem(b*g); q, r
(a - 3*a^2 + O(a, b, c)^3, a + a^2 + O(a, b, c)^4)
```

(continues on next page)
Trying to divide two polynomials, we run into the issue that there is no natural setting for the precision of the quotient and remainder (and if we wouldn’t set a precision, the algorithm would never terminate). Here, default precision comes to our help:

\[
sage: (1+a^3+a*b).quo_rem(b+c)
(a - b - c + O(a, b, c)^{11}, 2*b^2 + 2*b*c + 2*c^2 + O(a, b, c)^{12})
\]

Illustrating the dependency on the ordering of variables:

\[
sage: (1+a+a^15).quo_rem(a^2)
(0 + O(a, b, c)^{10}, 1 + a + O(a, b, c)^{12})
\]

\[
sage: (1+a+a^15).quo_rem(a^2, precision=15)
(0 + O(a, b, c)^{13}, 1 + a + O(a, b, c)^{15})
\]

\[
sage: (1+a+a^15).quo_rem(a^2, precision=16)
(a^13 + O(a, b, c)^{14}, 1 + a + O(a, b, c)^{16})
\]

\[
shift(n)
\]
Doesn’t make sense for multivariate power series.

\[
solve_linear_de(prec=+Infinity, b=None, f0=None)
\]
Not implemented for multivariate power series.

\[
sqrt()
\]
Method from univariate power series not yet implemented. Depends on square root method for multivariate polynomials.

\[
square_root()
\]
Method from univariate power series not yet implemented. Depends on square root method for multivariate polynomials.
trailing_monomial()
Return the trailing monomial of self.

This is defined here as the lowest term of the underlying polynomial.

EXAMPLES:

```
sage: R.<a,b,c> = PowerSeriesRing(ZZ)
sage: f = 1 + a + b - a*b + R.O(3)
sage: f.trailing_monomial()
1
sage: f = a^2*b^3*f; f
a^2*b^3 + a^3*b^3 + a^2*b^4 - a^3*b^4 + O(a, b, c)^8
sage: f.trailing_monomial()
a^2*b^3
```

truncate (prec=+ Infinity)
Return infinite precision multivariate power series formed by truncating self at precision prec.

EXAMPLES:

```
sage: M = PowerSeriesRing(QQ,4,'t'); M
Multivariate Power Series Ring in t0, t1, t2, t3 over Rational Field
sage: t = M.gens()
    - 1/4*t[0]*t[1]*t[2]^7 + M.O(10)
sage: f
1/2*t0^3*t1^3*t2^2 + 2/3*t0*t2^6*t3 - t0^3*t1^3*t3^3
    - 1/4*t0*t1*t2^7 + O(t0, t1, t2, t3)^10
sage: f.truncate()
1/2*t0^3*t1^3*t2^2 + 2/3*t0*t2^6*t3 - t0^3*t1^3*t3^3
    - 1/4*t0*t1*t2^7
sage: f.truncate().parent()
Multivariate Power Series Ring in t0, t1, t2, t3 over Rational Field
```

Contrast with polynomial:

```
sage: f.polynomial()
    - 1/4*t[0]*t[1]*t[2]^7 + O(t[0], t[1], t[2], t[3])^10
sage: f.polynomial().parent()
Multivariate Polynomial Ring in t0, t1, t2, t3 over Rational Field
```

valuation()
Return the valuation of self.

The valuation of a power series \(f \) is the highest nonnegative integer \(k \) less or equal to the precision of \(f \) and such that the coefficient of \(f \) before each term of degree \(< k \) is zero. (If such an integer does not exist, then the valuation is the precision of \(f \) itself.)

EXAMPLES:

```
sage: R.<a,b> = PowerSeriesRing(GF(4949717)); R
Multivariate Power Series Ring in a, b over Finite Field of size 4949717
sage: f = a^2 + a*b + a^3 + R.O(9)
sage: f.valuation()
2
sage: g = 1 + a + a^3
(continues on next page)```
valuation_zero_part()

Doesn’t make sense for multivariate power series; valuation zero with respect to which variable?

variable()

Doesn’t make sense for multivariate power series.

variables()

Return tuple of variables occurring in self.

EXAMPLES:

```python
sage: T = PowerSeriesRing(GF(3), 5, 't'); T
Multivariate Power Series Ring in t0, t1, t2, t3, t4 over
Finite Field of size 3
sage: t = T.gens()
sage: w
t0 + t0*t2 - t4^3 - t0^3*t2^2 + O(t0, t1, t2, t3, t4)^6
sage: w.variables()
(t0, t2, t4)
```

sage.rings.multi_power_series_ring_element.is_MPowerSeries(f)

Return True if f is a multivariate power series.
EXAMPIES:

```python
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.base_ring()
Rational Field
sage: S = LaurentSeriesRing(GF(17)['x'], 'y')
sage: S
Laurent Series Ring in y over Univariate Polynomial Ring in x over Finite Field of size 17
sage: S.base_ring()
Univariate Polynomial Ring in x over Finite Field of size 17
```

See also:

- `sage.misc.defaults.set_series_precision()`

**class** `sage.rings.laurent_series_ring.LaurentSeriesRing(power_series)`

Bases: `sage.structure.unique_representation.UniqueRepresentation`, `sage.rings.ring.CommutativeRing`

Univariate Laurent Series Ring.

**EXAMPLES:**

```python
sage: R = LaurentSeriesRing(QQ, 'x'); R
Laurent Series Ring in x over Rational Field
sage: x = R.0
sage: g = 1 - x + x^2 - x^4 +O(x^8); g
1 - x + x^2 - x^4 + O(x^8)
sage: g = 10*x^(-3) + 2006 - 19*x + x^2 - x^4 +O(x^8); g
10*x^-3 + 2006 - 19*x + x^2 - x^4 + O(x^8)
```

You can also use more mathematical notation when the base is a field:

```python
sage: Frac(QQ[['x']])
Laurent Series Ring in x over Rational Field
sage: Frac(GF(5)['y'])
Fraction Field of Univariate Polynomial Ring in y over Finite Field of size 5
```

When the base ring is a domain, the fraction field is the Laurent series ring over the fraction field of the base ring:

```python
sage: Frac(ZZ[['t']])
Laurent Series Ring in t over Rational Field
```

Laurent series rings are determined by their variable and the base ring, and are globally unique:
When the base ring \( k \) is a field, the ring \( k((x)) \) is a CDVF, that is a field equipped with a discrete valuation for which it is complete. The appropriate (sub)category is automatically set in this case:

```
sage: k = GF(11)
sage: R.<x> = k[[[]]
```

```sage: F = Frac(R)
sage: F.category()
Join of Category of complete discrete valuation fields and Category of
 commutative algebras over (finite enumerated fields and subquotients of monoids
 and quotients of semigroups) and Category of infinite sets
```

```
sage: TestSuite(F).run()
```

Element

alias of `sage.rings.laurent_series_ring_element.LaurentSeries`

**base_extend** \((R)\)

Return the Laurent series ring over \( R \) in the same variable as self, assuming there is a canonical coerce map from the base ring of self to \( R \).

**EXAMPLES:**

```sage: K.<x> = LaurentSeriesRing(QQ, default_prec=4)
sage: K.base_extend(QQ['t'])
Laurent Series Ring in x over Univariate Polynomial Ring in t over Rational
```

**change_ring** \((R)\)

**EXAMPLES:**

```sage: K.<x> = LaurentSeriesRing(QQ, default_prec=4)
sage: R = K.change_ring(ZZ); R
Laurent Series Ring in x over Integer Ring
```

**characteristic**()
EXAMPLES:

```
sage: R.<x> = LaurentSeriesRing(GF(17))
sage: R.characteristic()
17
```

`construction()`

Return the functorial construction of this Laurent power series ring.

The construction is given as the completion of the Laurent polynomials.

EXAMPLES:

```
sage: L.<t> = LaurentSeriesRing(ZZ, default_prec=42)
sage: phi, arg = L.construction()
sage: phi
Completion[t, prec=42]
sage: arg
Univariate Laurent Polynomial Ring in t over Integer Ring
sage: phi(arg) is L
True
```

Because of this construction, pushout is automatically available:

```
sage: 1/2 * t
1/2*t
sage: parent(1/2 * t)
Laurent Series Ring in t over Rational Field
sage: QQbar.gen() * t
I*t
sage: parent(QQbar.gen() * t)
Laurent Series Ring in t over Algebraic Field
```

default_prec()

Get the precision to which exact elements are truncated when necessary (most frequently when inverting).

EXAMPLES:

```
sage: R.<x> = LaurentSeriesRing(QQ, default_prec=5)
sage: R.default_prec()
5
```

`fraction_field()`

Return the fraction field of this ring of Laurent series.

If the base ring is a field, then Laurent series are already a field. If the base ring is a domain, then the Laurent series over its fraction field is returned. Otherwise, raise a `ValueError`.

EXAMPLES:

```
sage: R = LaurentSeriesRing(ZZ, 't', 30).fraction_field()
sage: R
Laurent Series Ring in t over Rational Field
sage: R.default_prec()
30
```

Traceback (most recent call last):
```
ValueError: must be an integral domain

\textbf{\texttt{gen}} \texttt{(n=0)}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.gen()
x
\end{verbatim}

\textbf{\texttt{is_dense}}()

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K.<x> = LaurentSeriesRing(QQ, sparse=True)
sage: K.is_dense()
False
\end{verbatim}

\textbf{\texttt{is_exact}}()

Laurent series rings are inexact.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.is_exact()
False
\end{verbatim}

\textbf{\texttt{is_field}} \texttt{(\textit{proof}=True)}

A Laurent series ring is a field if and only if the base ring is a field.

\textbf{\texttt{is_sparse}}()

Return if \texttt{self} is a sparse implementation.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K.<x> = LaurentSeriesRing(QQ, sparse=True)
sage: K.is_sparse()
True
\end{verbatim}

\textbf{\texttt{laurent_polynomial_ring}}()

If this is the Laurent series ring $\mathbb{R}((t))$, return the Laurent polynomial ring $\mathbb{R}[t, 1/t]$.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.laurent_polynomial_ring()
Univariate Laurent Polynomial Ring in x over Rational Field
\end{verbatim}

\textbf{\texttt{ngens}}()

Laurent series rings are univariate.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.ngens()
1
\end{verbatim}

\textbf{\texttt{polynomial_ring}}()

If this is the Laurent series ring $\mathbb{R}((t))$, return the polynomial ring $\mathbb{R}[t]$.

76 Chapter 7. Laurent Series Rings
EXAMPLES:

```python
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.polynomial_ring()
Univariate Polynomial Ring in x over Rational Field
```

```python
def power_series_ring():
    If this is the Laurent series ring \( R((t)) \), return the power series ring \( R[[t]] \).

EXAMPLES:

```python
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.power_series_ring()
Power Series Ring in x over Rational Field
```

`random_element(algorithm='default')`
Return a random element of this Laurent series ring.

The optional `algorithm` parameter decides how elements are generated. Algorithms currently implemented:

- 'default': Choose an integer \( \text{shift} \) using the standard distribution on the integers. Then choose a list of coefficients using the `random_element` function of the base ring, and construct a new element based on those coefficients, so that the i-th coefficient corresponds to the \((i+\text{shift})\)-th power of the uniformizer. The amount of coefficients is determined by the `default_prec` of the ring. Note that this method only creates non-exact elements.

EXAMPLES:

```python
sage: S.<s> = LaurentSeriesRing(GF(3))
sage: S.random_element()
random
s^{-8} + s^{-7} + s^{-6} + s^{-5} + s^{-1} + s + s^3 + s^4
+ s^5 + 2*s^6 + s^7 + s^{11} + O(s^{12})
```

`residue_field()`
Return the residue field of this Laurent series field if it is a complete discrete valuation field (i.e. if the base ring is a field, in which base it is also the residue field).

EXAMPLES:

```python
sage: R.<x> = LaurentSeriesRing(GF(17))
sage: R.residue_field()
Finite Field of size 17
```

```python
sage: R.<x> = LaurentSeriesRing(ZZ)
sage: R.residue_field()
Traceback (most recent call last):
...
TypeError: the base ring is not a field
```

`uniformizer()`
Return a uniformizer of this Laurent series field if it is a discrete valuation field (i.e. if the base ring is actually a field). Otherwise, an error is raised.

EXAMPLES:

```python
sage: R.<t> = LaurentSeriesRing(QQ)
sage: R.uniformizer()
t
```
sage: R.<t> = LaurentSeriesRing(ZZ)
sage: R.uniformizer()
Traceback (most recent call last):
...  
TypeError: the base ring is not a field

```
sage.rings.laurent_series_ring.is_LaurentSeriesRing(x)
 Return True if this is a univariate Laurent series ring.

 This is in keeping with the behavior of is_PolynomialRing versus is_MPolynomialRing.
```
EXAMPLES:

```
sage: R.<t> = LaurentSeriesRing(GF(7), 't'); R
Laurent Series Ring in t over Finite Field of size 7
sage: f = 1/(1-t+O(t^10)); f
1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + t^9 + O(t^10)
```

Laurent series are immutable:

```
sage: f[2]
1
Traceback (most recent call last):
 ... IndexError: Laurent series are immutable
```

We compute with a Laurent series over the complex mpfr numbers.

```
sage: K.<q> = Frac(CC[['q']])
sage: K
Laurent Series Ring in q over Complex Field with 53 bits of precision
sage: q
1.00000000000000*q
```

Saving and loading.

```
sage: loads(q.dumps()) == q
True
sage: loads(K.dumps()) == K
True
```

IMPLEMENTATION: Laurent series in Sage are represented internally as a power of the variable times the unit part (which need not be a unit - it’s a polynomial with nonzero constant term). The zero Laurent series has unit part 0.

AUTHORS:

- William Stein: original version
- David Joyner (2006-01-22): added examples
- Robert Bradshaw: Cython version

class sage.rings.laurent_series_ring_element.LaurentSeries
    Bases: sage.structure.element.AlgebraElement
A Laurent Series.

We consider a Laurent series of the form $t^n \cdot f$ where $f$ is a power series.

**INPUT:**

- `parent` – a Laurent series ring
- `f` – a power series (or something can be coerced to one); note that $f$ does not have to be a unit
- `n` – (default: 0) integer

**O(prec)**

Return the Laurent series of precision at most `prec` obtained by adding $O(q^{prec})$, where $q$ is the variable.

The precision of `self` and the integer `prec` can be arbitrary. The resulting Laurent series will have precision equal to the minimum of the precision of `self` and `prec`. The term $O(q^{prec})$ is the zero series with precision `prec`.

See also `add_bigoh()`.

**EXAMPLES:**

```python
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = t^-5 + t^-4 + t^3 + O(t^10); f
 t^-5 + t^-4 + t^3 + O(t^10)
sage: f.O(-4)
 t^-5 + O(t^-4)
sage: f.O(15)
 t^-5 + t^-4 + t^3 + O(t^10)
```

**V(n)**

Return the $n$-th Verschiebung of `self`.

If $f = \sum a_m x^m$ then this function returns $\sum a_m x^{mn}$.

**EXAMPLES:**

```python
sage: R.<x> = LaurentSeriesRing(QQ)
sage: f = -1/x + 1 + 2*x^2 + 5*x^5
sage: f.V(2)
 -x^-2 + 1 + 2*x^4 + 5*x^10
sage: f.V(-1)
 5*x^-5 + 2*x^-2 + 1 - x
sage: h = f.add_bigoh(7)
sage: h.V(2)
 -x^-2 + 1 + 2*x^4 + 5*x^10 + O(x^14)
sage: h.V(-2)
 Traceback (most recent call last):
 ...
 ValueError: For finite precision only positive arguments allowed
```

**add_bigoh(prec)**

Return the truncated series at chosen precision `prec`.

See also `O()`.

**INPUT:**

- `prec` – the precision of the series as an integer

**EXAMPLES:**

```python
...
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = t^2 + t^3 + O(t^10); f
 t^2 + t^3 + O(t^10)
sage: f.add_bigoh(5)
 t^2 + t^3 + O(t^5)

change_ring(R)

Change the base ring of self.

EXAMPLES:

sage: R.<q> = LaurentSeriesRing(ZZ)
sage: p = R([1,2,3]); p
 1 + 2*q + 3*q^2
sage: p.change_ring(GF(2))
 1 + q^2

coefficients()

Return the nonzero coefficients of self.

EXAMPLES:

sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = -5/t^(2) + t + t^2 - 10/3*t^3
sage: f.coefficients()
 [-5, 1, 1, -10/3]

common_prec(other)

Return the minimum precision of self and other.

EXAMPLES:

sage: R.<t> = LaurentSeriesRing(QQ)

sage: f = t^(-1) + t + t^2 + O(t^3)
sage: g = t + t^3 + t^4 + O(t^4)
sage: f.common_prec(g)
3
sage: g.common_prec(f)
3
sage: f = t + t^2 + O(t^3)
sage: g = t^2
sage: f.common_prec(g)
+Infinity
sage: f = t^(-3) + O(t^(-2))
sage: g = t^(-5) + O(t^(-1))
sage: f.common_prec(g)
-2
sage: f = O(t^2)
sage: g = O(t^5)
sage: f.common_prec(g)
2

common_valuation(other)
Return the minimum valuation of self and other.

EXAMPLES:

sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = t^(-1) + t + t^2 + O(t^3)
sage: g = t + t^3 + t^4 + O(t^4)
sage: f.common_valuation(g)
-1
sage: g.common_valuation(f)
-1

sage: f = t + t^2 + O(t^3)
sage: g = t^(-3) + t^2
sage: f.common_valuation(g)
-3
sage: g.common_valuation(f)
-3

sage: f = t + t^2
sage: g = t^2
sage: f.common_valuation(g)
1

sage: f = t^(-3) + O(t^(-2))
сage: g = t^(-5) + O(t^(-1))
сage: f.common_valuation(g)
-5

degree()
Return the degree of a polynomial equivalent to this power series modulo big oh of the precision.

EXAMPLES:

sage: x = Frac(QQ[['x']]).0
sage: g = x^2 - x^4 + O(x^8)
sage: g.degree()
4
sage: g = -10/x^5 + x^2 - x^4 + O(x^8)
sage: g.degree()
4
sage: (x^2 + O(x^0)).degree()
-2
derivative(*args)

The formal derivative of this Laurent series, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:

_derivative()

EXAMPLES:

```
sage: R.<x> = LaurentSeriesRing(QQ)
sage: g = 1/x^10 - x + x^2 - x^4 + O(x^8)
sage: g.derivative()
-10*x^-11 - 1 + 2*x - 4*x^3 + O(x^7)
sage: g.derivative(x)
-10*x^-11 - 1 + 2*x - 4*x^3 + O(x^7)
sage: R.<t> = PolynomialRing(ZZ)
sage: S.<x> = LaurentSeriesRing(R)
sage: f = 2*t/x + (3*t^2 + 6*t)*x + O(x^2)
sage: f.derivative()
-2*t*x^-2 + (3*t^2 + 6*t) + O(x)
sage: f.derivative(x)
-2*t*x^-2 + (3*t^2 + 6*t) + O(x)
sage: f.derivative(t)
2*x^-1 + (6*t + 6)*x + O(x^2)
```

exponents()

Return the exponents appearing in self with nonzero coefficients.

EXAMPLES:

```
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = -5/t^(2) + t + t^2 - 10/3*t^3
sage: f.exponents()
[-2, 1, 2, 3]
```

integral()

The formal integral of this Laurent series with 0 constant term.

EXAMPLES: The integral may or may not be defined if the base ring is not a field.

```
sage: t = LaurentSeriesRing(ZZ, 't').0
sage: f = 2*t^-3 + 3*t^2 + O(t^4)
sage: f.integral()
-t^-2 + t^3 + O(t^5)
sage: f = t^3
sage: f.integral()
Traceback (most recent call last):
... ArithmeticError: Coefficients of integral cannot be coerced into the base ring
```

The integral of 1/t is \(\log(t)\), which is not given by a Laurent series:

```
sage: t = Frac(QQ['t']).0
sage: f = -1/t^3 - 31/t + O(t^3)
```

(continues on next page)
Another example with just one negative coefficient:

```python
sage: A.<t> = QQ[]
sage: f = -2*t^(-4) + O(t^8)
sage: f.integral()
2/3*t^-3 + O(t^9)
sage: f.integral().derivative() == f
True
```

inverse()
Return the inverse of self, i.e., \(self^{-1} \).

EXAMPLES:

```python
sage: R.<t> = LaurentSeriesRing(ZZ)
sage: t.inverse()
t^-1
sage: (1-t).inverse()
1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + ...
```

is_monomial()
Return True if this element is a monomial. That is, if self is \(x^n \) for some integer \(n \).

EXAMPLES:

```python
sage: k.<z> = LaurentSeriesRing(QQ, 'z')
sage: (30*z).is_monomial()
False
sage: k(1).is_monomial()
True
sage: (z+1).is_monomial()
False
sage: (z^-2909).is_monomial()
True
sage: (3*z^-2909).is_monomial()
False
```

is_unit()
Return True if this is Laurent series is a unit in this ring.

EXAMPLES:

```python
sage: R.<t> = LaurentSeriesRing(QQ)
sage: (2+t).is_unit()
True
sage: f = 2+t^2+O(t^10); f.is_unit()
True
sage: 1/f
1/2 - 1/4*t^2 + 1/8*t^4 - 1/16*t^6 + 1/32*t^8 + O(t^10)
sage: R(0).is_unit()
False
```

(continues on next page)
ALGORITHM: A Laurent series is a unit if and only if its “unit part” is a unit.

is_zero()

EXAMPLES:

```
sage: x = Frac(QQ[['x']]).0
sage: f = 1/x + x + x^2 + 3*x^4 + O(x^7)
sage: f.is_zero()
0
sage: z = 0*f
sage: z.is_zero()
1
```

laurent_polynomial()

Return the corresponding Laurent polynomial.

EXAMPLES:

```
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = t^-3 + t + 7*t^2 + O(t^5)
sage: g = f.laurent_polynomial(); g
  t^-3 + t + 7*t^2
sage: g.parent()
Univariate Laurent Polynomial Ring in t over Rational Field
```

lift_to_precision(absprec=None)

Return a congruent Laurent series with absolute precision at least absprec.

INPUT:

- `absprec`: an integer or `None` (default: `None`), the absolute precision of the result. If `None`, lifts to an exact element.

EXAMPLES:

```
sage: A.<t> = LaurentSeriesRing(GF(5))
sage: x = t^(-1) + t^2 + O(t^5)
sage: x.lift_to_precision(10)
t^-1 + t^2 + O(t^10)
sage: x.lift_to_precision()
t^-1 + t^2
```

list()

EXAMPLES:

```
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = -5/t^(2) + t + t^2 - 10/3*t^3
sage: f.list()
[-5, 0, 0, 1, 1, -10/3]
```
nth_root \((n, \text{prec}=\text{None})\)
Return the \(n\)-th root of this Laurent power series.

INPUT:

- \(n\) – integer
- \(\text{prec}\) – integer (optional) - precision of the result. Though, if this series has finite precision, then the result cannot have larger precision.

EXAMPLES:

```python
sage: R.<x> = LaurentSeriesRing(QQ)
sage: (x^-2 + 1 + x).nth_root(2)
x^-1 + 1/2*x + 1/2*x^2 - ... - 19437/65536*x^18 + O(x^19)
sage: (x^-2 + 1 + x).nth_root(2)**2
x^-2 + 1 + x + O(x^18)
sage: j = j_invariant_qexp()
sage: q = j.parent().gen()
sage: j(q^3).nth_root(3)
q^-1 + 248*q^2 + 4124*q^5 + ... + O(q^29)
sage: (j(q^2) - 1728).nth_root(2)
q^-1 - 492*q - 22590*q^3 - ... + O(q^19)
```

power_series()
Convert this Laurent series to a power series.

An error is raised if the Laurent series has a term (or an error term \(O(x^k)\)) whose exponent is negative.

EXAMPLES:

```python
sage: R.<t> = LaurentSeriesRing(ZZ)
sage: f = 1/(1-t+O(t^10)); f.parent()
Laurent Series Ring in t over Integer Ring
sage: g = f.power_series(); g
1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + t^9 + O(t^10)
sage: parent(g)
Power Series Ring in t over Integer Ring
sage: f = 3/t^2 + t^2 + t^3 + O(t^10)
sage: f.power_series()
Traceback (most recent call last):
...  
TypeError: self is not a power series
```

prec()
This function returns the \(n\) so that the Laurent series is of the form (stuff) + \(O(t^n)\). It doesn’t matter how many negative powers appear in the expansion. In particular, prec could be negative.

EXAMPLES:

```python
sage: x = Frac(QQ[['x']]).0
sage: f = x^2 + 3*x^4 + O(x^7)
sage: f.prec()
7
sage: g = 1/x^10 - x + x^2 - x^4 + O(x^8)
sage: g.prec()
8
```

precision_absolute()
Return the absolute precision of this series.
By definition, the absolute precision of \(... + O(x^r) \) is \(r \).

EXAMPLES:

```python
sage: R.<t> = ZZ[[[]]]
sage: (t^2 + O(t^3)).precision_absolute()
3
sage: (1 - t^2 + O(t^100)).precision_absolute()
100
```

precision_relative()

Return the relative precision of this series, that is the difference between its absolute precision and its valuation.

By convention, the relative precision of 0 (or \(O(x^r) \) for any \(r \)) is 0.

EXAMPLES:

```python
sage: R.<t> = ZZ[[[]]]
sage: (t^2 + O(t^3)).precision_relative()
1
sage: (1 - t^2 + O(t^100)).precision_relative()
100
sage: O(t^4).precision_relative()
0
```

residue()

Return the residue of \(\text{self} \).

Consider the Laurent series

\[
f = \sum_{n \in \mathbb{Z}} a_n t^n = \cdots + \frac{a_{-2}}{t^2} + \frac{a_{-1}}{t} + a_0 + a_1 t + a_2 t^2 + \cdots ,
\]

then the residue of \(f \) is \(a_{-1} \). Alternatively this is the coefficient of \(1/t \).

EXAMPLES:

```python
sage: t = LaurentSeriesRing(ZZ,'t').gen()
sage: f = 1/t**2+2/t+3+4*t
sage: f.residue()
2
sage: f = t+t**2
sage: f.residue()
0
sage: f.residue().parent()
Integer Ring
```

reverse(precision=None)

Return the reverse of \(f \), i.e., the series \(g \) such that \(g(f(x)) = x \). Given an optional argument \(\text{precision} \), return the reverse with given precision (note that the reverse can have precision at most \(f.\text{prec()} \)). If \(f \) has infinite precision, and the argument \(\text{precision} \) is not given, then the precision of the reverse defaults to the default precision of \(f.\text{parent()} \).

Note that this is only possible if the valuation of \(\text{self} \) is exactly 1.

The implementation depends on the underlying power series element implementing a reverse method.

EXAMPLES:
sage: R.<x> = Frac(QQ[['x']])
sage: f = 2*x + 3*x^2 - x^4 + O(x^5)
sage: g = f.reverse()
sage: g
1/2*x - 3/8*x^2 + 9/16*x^3 - 131/128*x^4 + O(x^5)
sage: f(g)
x + O(x^5)
sage: g(f)
x + O(x^5)

sage: A.<t> = LaurentSeriesRing(ZZ)
sage: a = t - t^2 - 2*t^4 + t^5 + O(t^6)
sage: b = a.reverse(); b
t + t^2 + 2*t^3 + 7*t^4 + 25*t^5 + O(t^6)
sage: a(b)
t + O(t^6)
sage: b(a)
t + O(t^6)

sage: B.<b,c> = ZZ[
]
sage: A.<t> = LaurentSeriesRing(B)
sage: f = t + b*t^2 + c*t^3 + O(t^4)
sage: g = f.reverse(); g
t - b*t^2 + (2*b^2 - c)*t^3 + O(t^4)
sage: f(g)
t + O(t^4)
sage: g(f)
t + O(t^4)

sage: A.<t> = PowerSeriesRing(ZZ)
sage: B.<s> = LaurentSeriesRing(A)
sage: f = (1 - 3*t + 4*t^3 + O(t^4))*s + (2 + t + t^2 + O(t^3))*s^2 + O(s^3)
sage: set_verbose(1)
sage: g = f.reverse(); g
verbose 1 (<module>) passing to pari failed; trying Lagrange inversion
(1 + 3*t + 9*t^2 + 23*t^3 + O(t^4))*s + (-2 - 19*t - 118*t^2 + O(t^3))*s^2 + O(s^3)
sage: set_verbose(0)
sage: f(g) == g(f) == s
True

If the leading coefficient is not a unit, we pass to its fraction field if possible:

sage: A.<t> = LaurentSeriesRing(ZZ)
sage: a = 2*t - 4*t^2 + t^4 - t^5 + O(t^6)
sage: a.reverse()
l/2*t^2 + l/2*t^3 + 79/32*t^4 + 437/64*t^5 + O(t^6)

sage: B. = PolynomialRing(ZZ)
sage: A.<t> = LaurentSeriesRing(B)
sage: f = 2*b*t + b*t^2 + 3*b^2*t^3 + O(t^4)
sage: g = f.reverse(); g
l/(2*b)*t - 1/(8*b^2)*t^2 + ((-3*b + 1)/(16*b^3))*t^3 + O(t^4)
sage: f(g)
t + O(t^4)
sage: g(f)
t + O(t^4)
We can handle some base rings of positive characteristic:

```python
sage: A8.<t> = LaurentSeriesRing(Zmod(8))
sage: a = t - 15*t^2 - 2*t^4 + t^5 + O(t^6)
sage: b = a.reverse(); b
    t + 7*t^2 + 2*t^3 + 5*t^4 + t^5 + O(t^6)
sage: a(b)
t + O(t^6)
sage: b(a)
t + O(t^6)
```

The optional argument `precision` sets the precision of the output:

```python
sage: R.<x> = LaurentSeriesRing(QQ)
sage: f = 2*x + 3*x^2 - 7*x^3 + x^4 + O(x^5)
sage: g = f.reverse(precision=3); g
    1/2*x - 3/8*x^2 + O(x^3)
sage: f(g)
x + O(x^3)
sage: g(f)
x + O(x^3)
```

If the input series has infinite precision, the precision of the output is automatically set to the default precision of the parent ring:

```python
sage: R.<x> = LaurentSeriesRing(QQ, default_prec=20)
sage: (x - x^2).reverse()
    x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 +
    4862*x^10 + 16796*x^11 + 58786*x^12 + 208012*x^13 + 742900*x^14 + 2674440*x^15 +
    9694845*x^16 + 35357670*x^17 + 129644790*x^18 + 477638700*x^19 + O(x^20)
sage: (x - x^2).reverse(precision=3)
    x + x^2 + O(x^3)
```

```python
shift (k)
```

Returns this Laurent series multiplied by the power \(t^n \). Does not change this series.

Note: Despite the fact that higher order terms are printed to the right in a power series, right shifting decreases the powers of \(t \), while left shifting increases them. This is to be consistent with polynomials, integers, etc.

EXAMPLES:

```python
sage: R.<t> = LaurentSeriesRing(QQ['y'])
sage: f = (t+t^-1)^4; f
    t^-4 + 4*t^-2 + 6 + 4*t^2 + t^4
sage: f.shift(10)
    t^6 + 4*t^8 + 6*t^10 + 4*t^12 + t^14
sage: f >> 10
    t^-14 + 4*t^-12 + 6*t^-10 + 4*t^-8 + t^-6
sage: t << 4
    t^5
sage: t + O(t^3) >> 4
    t^-3 + O(t^-1)
```

AUTHORS:
• Robert Bradshaw (2007-04-18)

truncate \((n)\)

Return the Laurent series of degree \(< n\) which is equivalent to self modulo \(x^n\).

EXAMPLES:

```
sage: A.<x> = LaurentSeriesRing(ZZ)
sage: f = 1/(1-x)
sage: f
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 +
- x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + O(x^20)
sage: f.truncate(10)
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9
```

truncate_laurentseries \((n)\)

Replace any terms of degree \(\geq n\) by big oh.

EXAMPLES:

```
sage: A.<x> = LaurentSeriesRing(ZZ)
sage: f = 1/(1-x)
sage: f
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 +
- x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + O(x^20)
sage: f.truncate_laurentseries(10)
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + O(x^10)
```

truncate_neg \((n)\)

Return the Laurent series equivalent to self except without any degree \(n\) terms.

This is equivalent to:

```
self - self.truncate(n)
```

EXAMPLES:

```
sage: A.<t> = LaurentSeriesRing(ZZ)
sage: f = 1/(1-t)
sage: f
1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + t^9 + t^10 + O(t^11)
sage: f.truncate_neg(15)
t^15 + t^16 + t^17 + t^18 + t^19 + O(t^20)
```

valuation ()

EXAMPLES:

```
sage: R.<x> = LaurentSeriesRing(QQ)
sage: f = 1/x + x^2 + 3*x^4 + O(x^7)
sage: g = 1 - x + x^2 - x^4 + O(x^8)
sage: f.valuation()
-1
sage: g.valuation()
0
```

Note that the valuation of an element undistinguishable from zero is infinite:

```
sage: h = f - f; h
O(x^7)
sage: h.valuation()
+Infinity
```
valuation_zero_part()

EXAMPLES:

```python
sage: x = Frac(QQ[['x']]).0
sage: f = x + x^2 + 3*x^4 + O(x^7)
sage: f/x
1 + x + 3*x^3 + O(x^6)
sage: f.valuation_zero_part()
1 + x + 3*x^3 + O(x^6)
sage: g = 1/x^7 - x + x^2 - x^4 + O(x^8)
sage: g.valuation_zero_part()
1 - x^8 + x^9 - x^11 + O(x^15)
```

variable()

EXAMPLES:

```python
sage: x = Frac(QQ[['x']]).0
sage: f = 1/x + x^2 + 3*x^4 + O(x^7)
sage: f.variable()
'x'
```

verschiebung(n)

Return the \(n\)-th Verschiebung of \(self\).

If \(f = \sum a_m x^m\) then this function returns \(\sum a_m x^{mn}\).

EXAMPLES:

```python
sage: R.<x> = LaurentSeriesRing(QQ)
sage: f = -1/x + 1 + 2*x^2 + 5*x^5
sage: f.V(2)
-x^-2 + 1 + 2*x^4 + 5*x^10
sage: f.V(-1)
5*x^-5 + 2*x^-2 + 1 - x
sage: h = f.add_bigoh(7)
sage: h.V(2)
-x^-2 + 1 + 2*x^4 + 5*x^10 + O(x^14)
sage: h.V(-2)
Traceback (most recent call last):
...
ValueError: For finite precision only positive arguments allowed
```

sage.rings.laurent_series_ring_element.is_LaurentSeries(x)
A lazy Laurent series is a Laurent series whose coefficients are computed as demanded or needed. Unlike the usual Laurent series in Sage, lazy Laurent series do not have precisions because a lazy Laurent series knows (can be computed, lazily) all its coefficients.

EXAMPLES:

Generating functions are Laurent series over the integer ring:

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
```

This defines the generating function of Fibonacci sequence:

```python
sage: def coeff(s, i):
    ....:     if i in [0, 1]:
    ....:         return 1
    ....:     else:
    ....:         return s.coefficient(i - 1) + s.coefficient(i - 2)

sage: f = L.series(coeff, valuation=0); f
1 + z + 2*z^2 + 3*z^3 + 5*z^4 + 8*z^5 + 13*z^6 + ...
```

The 100th element of Fibonacci sequence can be obtained from the generating function:

```python
sage: f.coefficient(100)
573147844013817084101
```

Coefficients are computed and cached only when necessary:

```python
sage: f._cache[100]
573147844013817084101
sage: f._cache[101]
Traceback (most recent call last):
...
KeyError: 101
```

You can do arithmetic with lazy power series:

```python
sage: f
1 + z + 2*z^2 + 3*z^3 + 5*z^4 + 8*z^5 + 13*z^6 + ...

sage: f^-1
1 - z - z^2 + ...

sage: f + f^-1
2 + z^2 + 3*z^3 + 5*z^4 + 8*z^5 + 13*z^6 + ...

sage: g = (f + f^-1)*(f - f^-1); g
4*z + 6*z^2 + 8*z^3 + 19*z^4 + 38*z^5 + 71*z^6 + ...
```
You may need to change the base ring:

```python
sage: h = g.change_ring(QQ)
sage: h.parent()
Lazy Laurent Series Ring in z over Rational Field
sage: h
4*z + 6*z^2 + 8*z^3 + 19*z^4 + 38*z^5 + 71*z^6 + ...
sage: h^-1
1/4*z^-1 - 3/8 + 1/16*z - 17/32*z^2 + 5/64*z^3 - 29/128*z^4 + 165/256*z^5 + ...
sage: _.valuation()
-1
```

AUTHORS:

• Kwankyu Lee (2019-02-24): initial version

```python
class sage.rings.lazy_laurent_series.LazyLaurentSeries(parent, coefficient=None, valuation=0, constant=None):

Bases: sage.structure.element.ModuleElement

Return a lazy Laurent series.

INPUT:

• coefficient – Python function that computes coefficients
• valuation – integer; approximate valuation of the series
• constant – either None or pair of an element of the base ring and an integer

Let the coefficient of index \( i \) mean the coefficient of the term of the series with exponent \( i \).

Python function `coefficient` returns the value of the coefficient of index \( i \) from input \( s \) and \( i \) where \( s \) is the series itself.

Let valuation be \( n \). All coefficients of index below \( n \) are zero. If constant is None, then the coefficient function is responsible to compute the values of all coefficients of index \( \geq n \). If constant is a pair \((c, m)\), then the coefficient function is responsible to compute the values of all coefficients of index \( \geq n \) and \( < m \) and all the coefficients of index \( \geq m \) is the constant \( c \).

EXAMPLES:

```python
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.series(lambda s, i: i, valuation=-3, constant=(-1,3))
-3*z^-3 - 2*z^-2 - z^-1 + z + 2*z^2 + 3*z^3 - z^4 - z^5 + ...

sage: def coeff(s, i):
...: if i in [0, 1]:
...: return 1
...: else:
...: return s.coefficient(i - 1) + s.coefficient(i - 2)
sage: f = L.series(coeff, valuation=0); f
1 + z + 2*z^2 + 3*z^3 + 5*z^4 + 8*z^5 + 13*z^6 + ...
sage: f.coefficient(100)
573147844013817084101
```

Lazy Laurent series is picklable:

```python
sage: z = L.gen()
sage: f = 1/(1 - z - z^2)
```
apply_to_coefficients (function)

Return the series with function applied to each coefficient of this series.

INPUT:

- function – Python function

Python function function returns a new coefficient for input coefficient.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: s = z/(1 - 2*z)
sage: t = s.apply_to_coefficients(lambda c: c + 1)
sage: t
2*z + 3*z^2 + 5*z^3 + 9*z^4 + 17*z^5 + 33*z^6 + 65*z^7 + ...
```

approximate_series (prec, name=None)

Return the Laurent series with absolute precision prec approximated from this series.

INPUT:

- prec – an integer
- name – name of the variable; if it is None, the name of the variable of the series is used

OUTPUT: a Laurent series with absolute precision prec

EXAMPLES:

```python
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: z = L.gen()
sage: f = (z - 2*z^3)^5/(1 - 2*z)
sage: g = f.approximate_series(10)
sage: g
z^5 + 2*z^6 - 6*z^7 - 12*z^8 + 16*z^9 + 32*z^10 - 16*z^11 + ...
sage: g.parent()
Power Series Ring in z over Integer Ring
```

```python
sage: h = (f^-1).approximate_series(3)
sage: h
z^-5 - 2*z^-4 + 10*z^-3 - 20*z^-2 + 60*z^-1 - 120 + 280*z - 560*z^2 + O(z^3)
sage: h.parent()
Laurent Series Ring in z over Integer Ring
```

change_ring (ring)

Return this series with coefficients converted to elements of ring.
INPUT:

• ring – a ring

EXAMPLES:

```
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: s = 2 + z
sage: t = s.change_ring(QQ)
sage: t^-1
1/2 - 1/4*z + 1/8*z^2 - 1/16*z^3 + 1/32*z^4 - 1/64*z^5 + 1/128*z^6 + ...
```

**coefficient** (*n*)

Return the coefficient of the term with exponent *n* of the series.

INPUT:

• *n* – integer

EXAMPLES:

```
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: def g(s, i):
.... if i == 0:
.... return 1
.... else:
.... return sum(s.coefficient(j)*s.coefficient(i - 1 - j) for j in [0..i-1])
sage: e = L.series(g, valuation=0)
sage: e.coefficient(10)
16796
sage: e
1 + z + 2*z^2 + 5*z^3 + 14*z^4 + 42*z^5 + 132*z^6 + ...
```

**polynomial** (*degree=None, name=None*)

Return the polynomial or Laurent polynomial if the series is actually so.

INPUT:

• *degree* – None or an integer

• *name* – name of the variable; if it is None, the name of the variable of the series is used

OUTPUT: a Laurent polynomial if the valuation of the series is negative or a polynomial otherwise.

If *degree* is not None, the terms of the series of degree greater than *degree* are truncated first. If *degree* is None and the series is not a polynomial or a Laurent polynomial, a ValueError is raised.

EXAMPLES:

```
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: f = L.series([1,0,0,2,0,0,0,3], 5); f
z^5 + 2*z^8 + 3*z^12
sage: f.polynomial()
3*z^12 + 2*z^8 + z^5
sage: g = L.series([1,0,0,2,0,0,0,3], -5); g
z^-5 + 2*z^-2 + 3*z^2
sage: g.polynomial()
z^-5 + 2*z^-2 + 3*z^2
```
```python
sage: z = L.gen()
sage: f = (1 + z)/(z^3 - z^5)
sage: f
z^-3 + z^-2 + z^-1 + 1 + z + z^2 + z^3 + ...
sage: f.polynomial(5)
z^-3 + z^-2 + z^-1 + 1 + z + z^2 + z^3 + z^4 + z^5
sage: f.polynomial(0)
z^-3 + z^-2 + z^-1 + 1
sage: f.polynomial(-5)
0
```

**prec()**

Return the precision of the series, which is infinity.

**EXAMPLES:**

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: f = 1/(1 - z)
sage: f.prec()
+Infinity
```

**truncate** (**d**)  

Return this series with its terms of degree >= d truncated.

**INPUT:**

- **d** – integer

**EXAMPLES:**

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: alpha = 1/(1-z)
sage: alpha
1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + ...
sage: beta = alpha.truncate(5)
sage: beta
1 + z + z^2 + z^3 + z^4
sage: alpha - beta
z^5 + z^6 + z^7 + z^8 + z^9 + z^10 + z^11 + ...
```

**valuation()**

Return the valuation of the series.

This method determines the valuation of the series by looking for a nonzero coefficient. Hence if the series happens to be zero, then it may run forever.

**EXAMPLES:**

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: s = 1/(1 - z) - 1/(1 - 2*z)
sage: s.valuation()
1
sage: t = z - z
sage: t.valuation()
+Infinity
```
The ring of lazy Laurent series over a ring has usual arithmetic operations, but it is actually not a ring in the usual sense since every arithmetic operation gives a new series.

EXAMPLES:
The definition of Laurent series rings is not initially imported into the global namespace. You need to import it explicitly to use it:

```python
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: L.category()
Category of magmas and additive magmas
sage: 1/(1 - z)
1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + ...
sage: 1/(1 - z) == 1/(1 - z)
True
```

Lazy Laurent series ring over a finite field:

```python
sage: L.<z> = LazyLaurentSeriesRing(GF(3)); L
Lazy Laurent Series Ring in z over Finite Field of size 3
sage: e = 1/(1 + z)
sage: e.coefficient(100)
1
sage: e.coefficient(100).parent()
Finite Field of size 3
```

Generating functions of integer sequences are Laurent series over the integer ring:

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ); L
Lazy Laurent Series Ring in z over Integer Ring
sage: 1/(1 - 2*z)^3
1 + 6*z + 24*z^2 + 80*z^3 + 240*z^4 + 672*z^5 + 1792*z^6 + ...
```

Power series can be defined recursively:

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: L.series(lambda s,n: (1 + z*s^2)[n], valuation=0)
1 + z + 2*z^2 + 5*z^3 + 14*z^4 + 42*z^5 + 132*z^6 + ...
```

AUTHORS:

- Kwankyu Lee (2019-02-24): initial version

```python
class sage.rings.lazy_laurent_series_ring.LazyLaurentSeriesRing(base_ring, names, category=None)
```
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

Lazy Laurent series ring.

INPUT:

- base_ring – base ring of this Laurent series ring
- names – name of the generator of this Laurent series ring

EXAMPLES:

```python
sage: LazyLaurentSeriesRing(ZZ, 't')
Lazy Laurent Series Ring in t over Integer Ring
```

**Element**

alias of `sage.rings.lazy_laurent_series.LazyLaurentSeries`

gen \(n=0\)

Return the generator of this Laurent series ring.

EXAMPLES:

```python
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.gen()
z
sage: L.gen(3)
Traceback (most recent call last):
... IndexError: there is only one generator
```

gens()

Return the tuple of the generator.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: 1/(1 - z)
1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + ...
```

ngens()

Return the number of generators of this Laurent series ring.

This is always 1.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: L.ngens()
1
```

one()

Return the constant series 1.

EXAMPLES:

```python
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.one()
1
```
**series** *(coefficient, valuation, constant=None)*

Return a lazy Laurent series.

**INPUT:**

- **coefficient** – Python function that computes coefficients
- **valuation** – integer; approximate valuation of the series
- **constant** – either `None` or pair of an element of the base ring and an integer

Let the coefficient of index \( i \) mean the coefficient of the term of the series with exponent \( i \).

Python function `coefficient` returns the value of the coefficient of index \( i \) from input \( s \) and \( i \) where \( s \) is the series itself.

Let `valuation` be \( n \). All coefficients of index below \( n \) are zero. If `constant` is `None`, then the `coefficient` function is responsible to compute the values of all coefficients of index \( \geq n \). If `constant` is a pair \((c, m)\), then the `coefficient` function is responsible to compute the values of all coefficients of index \( \geq n \) and \( < m \) and all the coefficients of index \( \geq m \) is the constant \( c \).

**EXAMPLES:**

```python
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.series(lambda s, i: i, 5, (1,10))
5*z^5 + 6*z^6 + 7*z^7 + 8*z^8 + 9*z^9 + z^10 + z^11 + z^12 + ...

sage: def g(s, i):
 : if i < 0:
 : return
 : else:
 : return s.coefficient(i - 1) + i
sage: e = L.series(g, -5); e
z^-5 + z^-4 + z^-3 + z^-2 + z^-1 + 1 + 2*z + ...

sage: f = e^-1; f
z^5 - z^6 - z^11 + ...

sage: f.coefficient(10)
0
sage: f.coefficient(20)
9
sage: f.coefficient(30)
-219
```

Alternatively, the `coefficient` can be a list of elements of the base ring. Then these elements are read as coefficients of the terms of degrees starting from the `valuation`. In this case, `constant` may be just an element of the base ring instead of a tuple or can be simply omitted if it is zero.

**EXAMPLES:**

```python
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.series([1,2,3,4], -5)
z^-5 + 2*z^-4 + 3*z^-3 + 4*z^-2

sage: g = L.series([1,3,5,7,9], 5, -1)
sage: g
z^5 + 3*z^6 + 5*z^7 + 7*z^8 + 9*z^9 - z^10 - z^11 - z^12 + ...
```

**zero** ()

Return the zero series.

**EXAMPLES:**
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.zero()
0
LAZY LAURENT SERIES OPERATORS

This module implements operators internally used to construct lazy Laurent series. The job of an operator attached to a series is to compute the \( n \)-th coefficient of the series if \( n \) is not less than the valuation of the series and the \( n \)-th coefficient is not declared to be a constant.

If a new operator is added to this module, an example of how it is used should be added below.

EXAMPLES:

```sage
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: f = 1/(1 - 2*z)
sage: g = 1/(1 + z^2)

Constructors:

```sage
sage: L(1)
1

```sage
sage: L.series([1,2,3,4], -10)
z^-10 + 2*z^-9 + 3*z^-8 + 4*z^-7

```sage
sage: L.gen()
z

```sage
sage: P.<x> = LaurentPolynomialRing(ZZ)
sage: p = (1 + 1/x)^3 + (1 + x)^4
sage: L(p)
z^-3 + 3*z^-2 + 3*z^-1 + 2 + 4*z + 6*z^2 + 4*z^3 + z^4

Unary operators:

```sage
sage: -f
-1 - 2*z - 4*z^2 - 8*z^3 - 16*z^4 - 32*z^5 - 64*z^6 + ...

```sage
sage: ~f
1 - 2*z + ...

Binary operators:

```sage
sage: f + g
2 + 2*z + 3*z^2 + 8*z^3 + 17*z^4 + 32*z^5 + 63*z^6 + ...

```sage
sage: f - g
2*z + 5*z^2 + 8*z^3 + 15*z^4 + 32*z^5 + 65*z^6 + 128*z^7 + ...

```
Transformers:

```python
sage: 2*f
2 + 4*z + 8*z^2 + 16*z^3 + 32*z^4 + 64*z^5 + 128*z^6 + ...
```

```python
sage: f.change_ring(GF(3))
1 + 2*z + z^2 + 2*z^3 + z^4 + 2*z^5 + z^6 + ...
```

```python
sage: f.apply_to_coefficients(lambda c: c^2)
1 + 4*z + 16*z^2 + 64*z^3 + 256*z^4 + 1024*z^5 + 4096*z^6 + ...
```

```python
sage: f.truncate(5)
1 + 2*z + 4*z^2 + 8*z^3 + 16*z^4
```

AUTHORS:

- Kwankyu Lee (2019-02-24): initial version

```python
class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesBinaryOperator(left, right)
Bases: sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator
```

Abstract base class for binary operators.

INPUT:

- `left`: series on the left side of the binary operator
- `right`: series on the right side of the binary operator

```python
class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator
Bases: object
```

Base class for operators computing coefficients of a lazy Laurent series.

Subclasses of this class are used to implement arithmetic operations for lazy Laurent series. These classes are not to be used directly by the user.

```python
class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator_add(left, right)
Bases: sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesBinaryOperator
```

Operator for addition.

```python
class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator_apply(series, function)
Bases: sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator
```

Operator for applying a function.

INPUT:

- `series`: a lazy Laurent series
- `function`: a Python function to apply to each coefficient of the series
class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator_change_ring(series, ring)

Bases: sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator

Operator for changing the base ring of the series to ring.

INPUT:
• series – a lazy Laurent series
• ring – a ring

class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator_constant(ring, constant)

Bases: sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator

Operator for the generator element.

INPUT:
• ring – a lazy Laurent series ring
• constant – a constant of the base ring of ring

class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator_div(left, right)

Bases: sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesBinaryOperator

Operator for division.

class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator_gen(ring)

Bases: sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator

Operator for the generator element.

INPUT:
• ring – a lazy Laurent series ring

class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator_inv(series)

Bases: sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesUnaryOperator

Operator for inversion.

INPUT:
• series – a lazy Laurent series

class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator_list(ring, l, v)

Bases: sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator

Operator for the series defined by a list.

INPUT:
• l – list
• v – integer

class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator_mul(left, right)

Bases: sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesBinaryOperator

Operator for multiplication.
class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator_neg(series)
Bases: sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesUnaryOperator

Operator for negation.

INPUT:
• series – a lazy Laurent series

class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator_polynomial(ring, poly)
Bases: sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator

Operator for the series coerced from a polynomial or a Laurent polynomial.

INPUT:
• ring – a lazy Laurent series ring
• poly – a polynomial or a Laurent polynomial

class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator_scale(series, scalar)
Bases: sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator

Operator for scalar multiplication of series with scalar.

INPUT:
• series – a lazy Laurent series
• scalar – an element of the base ring

class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator_sub(left, right)
Bases: sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesBinaryOperator

Operator for subtraction.

class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator_truncate(series, d)
Bases: sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator

Operator for truncation.

INPUT:
• series – a lazy Laurent series
• d – an integer; the series is truncated the terms of degree > d

class sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesUnaryOperator(series)
Bases: sage.rings.lazy_laurent_series_operator.LazyLaurentSeriesOperator

Abstract base class for unary operators.

INPUT:
• series – series upon which the operator operates
PUISEUX SERIES RING

The ring of Puiseux series.

AUTHORS:

- Chris Swierczewski 2016: initial version on https://github.com/abelfunctions/abelfunctions/tree/master/abelfunctions
- Frédéric Chapoton 2016: integration of code
- Travis Scrimshaw, Sebastian Oehms 2019-2020: basic improvements and completions

REFERENCES:

- Wikipedia article Puiseux_series

```python
class sage.rings.puiseux_series_ring.PuiseuxSeriesRing (laurent_series)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.rings.
ring.CommutativeRing

Rings of Puiseux series.

EXAMPLES:

sage: P = PuiseuxSeriesRing(QQ, 'y')
sage: y = P.gen()
sage: f = y**(4/3) + y**(-5/6); f
y^(-5/6) + y^(4/3)
sage: f.add_bigoh(2)
y^(-5/6) + y^(4/3) + O(y^2)
sage: f.add_bigoh(1)
y^(-5/6) + O(y)
```

Element

alias of sage.rings.puiseux_series_ring_element.PuiseuxSeries

base_extend (R)

Extend the coefficients.

INPUT:

- R – a ring

EXAMPLES:

```python
sage: A = PuiseuxSeriesRing(ZZ, 'y')
sage: A.base_extend(QQ)
Puiseux Series Ring in y over Rational Field
```
**change_ring**($R$)
Return a Puiseux series ring over another ring.

**INPUT:**
- $R$ – a ring

**EXAMPLES:**
```python
sage: A = PuiseuxSeriesRing(ZZ, 'y')
sage: A.change_ring(QQ)
Puiseux Series Ring in y over Rational Field
```

**default_prec()**
Return the default precision of self.

**EXAMPLES:**
```python
sage: A = PuiseuxSeriesRing(AA, 'z')
sage: A.default_prec()
20
```

**fraction_field()**
Return the fraction field of this ring of Laurent series.

If the base ring is a field, then Puiseux series are already a field. If the base ring is a domain, then the Puiseux series over its fraction field is returned. Otherwise, raise a **ValueError**.

**EXAMPLES:**
```python
sage: R = PuiseuxSeriesRing(ZZ, 't', 30).fraction_field()
sage: R
Puiseux Series Ring in t over Rational Field
sage: R.default_prec()
30
sage: PuiseuxSeriesRing(Zmod(4), 't').fraction_field()
Traceback (most recent call last):
...
ValueError: must be an integral domain
```

**gen**($n=0$)
Return the generator of self.

**EXAMPLES:**
```python
sage: A = PuiseuxSeriesRing(AA, 'z')
sage: A.gen()
z
```

**is_dense()**
Return whether self is dense.

**EXAMPLES:**
```python
sage: A = PuiseuxSeriesRing(ZZ, 'y')
sage: A.is_dense()
True
```

**is_field**(proof=True)
Return whether self is a field.
A Puiseux series ring is a field if and only its base ring is a field.

EXAMPLES:

```python
sage: A = PuiseuxSeriesRing(ZZ, 'y')
sage: A.is_field()
False
sage: A.change_ring(QQ).is_field()
True
```

`is_sparse()`

Return whether self is sparse.

EXAMPLES:

```python
sage: A = PuiseuxSeriesRing(ZZ, 'y')
sage: A.is_sparse()
False
```

`laurent_series_ring()`

Return the underlying Laurent series ring.

EXAMPLES:

```python
sage: A = PuiseuxSeriesRing(AA, 'z')
sage: A.laurent_series_ring()
Laurent Series Ring in z over Algebraic Real Field
```

`ngens()`

Return the number of generators of self, namely 1.

EXAMPLES:

```python
sage: A = PuiseuxSeriesRing(AA, 'z')
sage: A.ngens()
1
```

`residue_field()`

Return the residue field of this Puiseux series field if it is a complete discrete valuation field (i.e. if the base ring is a field, in which case it is also the residue field).

EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(GF(17))
sage: R.residue_field()
Finite Field of size 17
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: R.residue_field()
Traceback (most recent call last):
 ...
TypeError: the base ring is not a field
```

`uniformizer()`

Return a uniformizer of this Puiseux series field if it is a discrete valuation field (i.e. if the base ring is actually a field). Otherwise, an error is raised.

EXAMPLES:
sage: R.<t> = PuiseuxSeriesRing(QQ)
sage: R.uniformizer()
t
sage: R.<t> = PuiseuxSeriesRing(ZZ)
sage: R.uniformizer()
Traceback (most recent call last):
  ...
TypeError: the base ring is not a field
A Puiseux series is a series of the form
\[ p(x) = \sum_{n=N}^{\infty} a_n(x - a)^{n/e}, \]
where the integer \( e \) is called the ramification index of the series and the number \( a \) is the center. A Puiseux series is essentially a Laurent series but with fractional exponents.

EXAMPLES:
We begin by constructing the ring of Puiseux series in \( x \) with coefficients in the rationals:

```
sage: R.<x> = PuiseuxSeriesRing(QQ)
```

This command also defines \( x \) as the generator of this ring.

When constructing a Puiseux series, the ramification index is automatically determined from the greatest common divisor of the exponents:

```
sage: p = x^(1/2); p
x^(1/2)
sage: p.ramification_index()
2
sage: q = x^(1/2) + x**(1/3); q
x^(1/3) + x^(1/2)
sage: q.ramification_index()
6
```

Other arithmetic can be performed with Puiseux Series:

```
sage: p + q
x^(1/3) + 2*x^(1/2)
sage: p - q
-x^(1/3)
sage: p * q
x^(5/6) + x
sage: (p / q).add_bigoh(4/3)
x^(1/6) - x^(1/3) + x^(1/2) - x^(2/3) + x^(5/6) - x + x^(7/6) + O(x^(4/3))
```

Mind the base ring. However, the base ring can be changed:

```
sage: I*q
Traceback (most recent call last):
 ...
TypeError: unsupported operand parent(s) for *: 'Number Field in I with defining polynomial x^2 + 1 with I = 1*I' and 'Puiseux Series Ring in x over Rational Field'
```

(continues on next page)
sage: qz = q.change_ring(ZZ); qz
x^(1/3) + x^(1/2)
sage: qz.parent()
Puiseux Series Ring in x over Integer Ring

Other properties of the Puiseux series can be easily obtained:

sage: r = (3*x^(-1/5) + 7*x^(2/5) + (1/2)*x).add_bigoh(6/5); r
3*x^(-1/5) + 7*x^(2/5) + 1/2*x + O(x^(6/5))
sage: r.valuation()
-1/5
sage: r.prec()
6/5
sage: r.precision_absolute()
6/5
sage: r.precision_relative()
7/5
sage: r.exponents()
[-1/5, 2/5, 1]
sage: r.coefficients()
[3, 7, 1/2]

Finally, Puiseux series are compatible with other objects in Sage. For example, you can perform arithmetic with Laurent series:

sage: L.<x> = LaurentSeriesRing(ZZ)
sage: l = 3*x^(-2) + x^(-1) + 2 + x**3
sage: r + l
3*x^-2 + x^-1 + 3*x^(-1/5) + 2 + 7*x^(2/5) + 1/2*x + O(x^(6/5))

AUTHORS:

• Chris Swierczewski 2016: initial version on https://github.com/abelfunctions/abelfunctions/tree/master/abelfunctions
• Frédéric Chapoton 2016: integration of code
• Travis Scrimshaw, Sebastian Oehms 2019-2020: basic improvements and completions

REFERENCES:

• Wikipedia article Puiseux_series

class sage.rings.puiseux_series_ring_element.PuiseuxSeries

A Puiseux series.

\[ \sum_{n=-N}^{\infty} a_n x^{n/e} \]

It is stored as a Laurent series:

\[ \sum_{n=-N}^{\infty} a_n t^n \]

where \( t = x^{1/e} \).

INPUT:
• parent – the parent ring
• f – one of the following types of inputs:
  – instance of PuiseuxSeries
  – instance that can be coerced into the Laurent series ring of the parent
• e – integer (default: 1) the ramification index

EXAMPLES:

```sage
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(1/2) + x^3; p
x^(1/2) + x^3
sage: q = x**(1/2) - x**(-1/2)
sage: r = q.add_bigoh(7/2); r
-x^(-1/2) + x^(1/2) + O(x^(7/2))
sage: r**2
x^-1 - 2 + x + O(x^3)
```

add_bigoh(prec)

Return the truncated series at chosen precision prec.

INPUT:

• prec – the precision of the series as a rational number

EXAMPLES:

```sage
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3
sage: p.add_bigoh(2)
x^(-7/2) + 3 + 5*x^(1/2) + O(x^2)
sage: p.add_bigoh(0)
x^(-7/2) + O(1)
sage: p.add_bigoh(-1)
x^(-7/2) + O(x^(-1))
```

Note: The precision passed to the method is adapted to the common ramification index:

```sage
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x**(-1/3) + 2*x**(1/5)
sage: p.add_bigoh(1/2)
x^(-1/3) + 2*x^(1/5) + O(x^(7/15))
```

change_ring(R)

Return self over a the new ring R.

EXAMPLES:

```sage
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3
sage: q = p.change_ring(QQ); q
x^(-7/2) + 3 + 5*x^(1/2) - 7*x^3
sage: q.parent()
Puiseux Series Ring in x over Rational Field
```

coefficients()

Return the list of coefficients.
EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x^(3/4) + 2*x^(4/5) + 3*x^(5/6)
sage: p.coefficients()
[1, 2, 3]
```

**common_prec** (*p*)

Return the minimum precision of *p* and *self*.

**degree**

Return the degree of *self*.

**exponents**

Return the list of exponents.

**inverse**

Return the inverse of *self*.

**is_monomial**

Return whether *self* is a monomial.

This is `True` if and only if *self* is $x^p$ for some rational $p$.
EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(1/2) + 3/4 * x^(2/3)
sage: p.is_monomial()
False
sage: q = x**(11/13)
sage: q.is_monomial()
True
sage: q = 4*x**(11/13)
sage: q.is_monomial()
False
```

**is_unit()**

Return whether `self` is a unit.

A Puiseux series is a unit if and only if its leading coefficient is.

EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3
sage: p.is_unit()
True
sage: q = 4 * x^(-7/2) + 3 * x**4
sage: q.is_unit()
False
```

**is_zero()**

Return whether `self` is zero.

EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(1/2) + 3/4 * x^(2/3)
sage: p.is_zero()
False
sage: R.zero().is_zero()
True
```

**laurent_part()**

Return the underlying Laurent series.

EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(1/2) + 3/4 * x^(2/3)
sage: p.laurent_part()
x^3 + 3/4*x^4
```

**laurent_series()**

If `self` is a Laurent series, return it as a Laurent series.

EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x**(1/2) - x**(-1/2)
sage: p.laurent_series()
```

(continues on next page)
... ArithmeticError: self is not a Laurent series
sage: q = p**2
sage: q.laurent_series()
x^-1 - 2 + x

list()
Return the list of coefficients indexed by the exponents of the corresponding Laurent series.

EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x^(3/4) + 2*x^(4/5) + 3*x^(5/6)
sage: p.list()
[1, 0, 0, 2, 0, 3]
```

power_series()
If self is a power series, return it as a power series.

EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(QQbar)
sage: p = x**(3/2) - QQbar(I)*x**(1/2)
sage: p.power_series()
Traceback (most recent call last):
 ... ArithmeticError: self is not a power series
sage: q = p**2
sage: q.power_series()
-x - 2*I*x^2 + x^3
```

prec()
Return the precision of self.

EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = (x**(-1/3) + 2*x**3)**2; p
x^(-2/3) + 4*x^(8/3) + 4*x^6
sage: q = p.add_bigoh(5); q
x^(-2/3) + 4*x^(8/3) + O(x^5)
sage: q.prec()
5
```

precision_absolute()
Return the precision of self.

EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = (x**(-1/3) + 2*x**3)**2; p
x^(-2/3) + 4*x^(8/3) + 4*x^6
sage: q = p.add_bigoh(5); q
x^(-2/3) + 4*x^(8/3) + O(x^5)
sage: q.prec()
5
```
precision_relative()

Return the relative precision of the series.

The relative precision of the Puiseux series is the difference between its absolute precision and its valuation.

EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(GF(3))
sage: p = (x**(-1/3) + 2*x**3)**2; p
x^(-2/3) + x^(8/3) + x^6
sage: q = p.add_bigoh(7); q
x^(-2/3) + x^(8/3) + x^6 + O(x^7)
sage: q.precision_relative()
23/3
```

ramification_index()

Return the ramification index.

EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(1/2) + 3/4 * x^(2/3)
sage: p.ramification_index()
6
```

shift(r)

Return this Puiseux series multiplied by \(x^r\).

EXAMPLES:

```python
sage: P.<y> = LaurentPolynomialRing(ZZ)
sage: R.<x> = PuiseuxSeriesRing(P)
sage: p = y*x**(-1/3) + 2*y^(-2)*x**(1/2); p
y*x^(-1/3) + (2*y^-2)*x^(1/2)
sage: p.shift(3)
y*x^(8/3) + (2*y^-2)*x^(7/2)
```

truncate(r)

Return the Puiseux series of degree \(\leq r\).

This is equivalent to `self` modulo \(x^r\).

EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = (x**(-1/3) + 2*x**3)**2; p
x^(-2/3) + 4*x^(8/3) + 4*x^6
sage: q = p.truncate(5); q
x^(-2/3) + 4*x^(8/3)
sage: q == p.add_bigoh(5)
True
```

valuation()

Return the valuation of `self`.

EXAMPLES:

```python
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3
```

(continues on next page)
variable()

Return the variable of self.

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3
sage: p.variable()
'x'
```
Let $K$ be a finite extension of $\mathbb{Q}_p$ for some prime number $p$ and let $(v_1, \ldots, v_n)$ be a tuple of real numbers. The associated Tate algebra consists of series of the form

$$\sum_{i_1, \ldots, i_n \in \mathbb{N}} a_{i_1, \ldots, i_n} x_1^{i_1} \cdots x_n^{i_n}$$

for which the quantity

$$\text{val}(a_{i_1, \ldots, i_n}) - (v_1 i_1 + \cdots + v_n i_n)$$

go to infinity when the multi-index $(i_1, \ldots, i_n)$ goes to infinity.

These series converge on the closed disc defined by the inequalities $\text{val}(x_i) \geq -v_i$ for all $i \in \{1, \ldots, n\}$. The $v_i$'s are then the logarithms of the radii of convergence of the series in the above Tate algebra; they will be called the log radii of convergence.

We can create Tate algebras using the constructor `sage.rings.tate_algebra.TateAlgebra()`:

```
sage: K = Qp(2, 5, print_mode='digits')
sage: A.<x,y> = TateAlgebra(K)
sage: A
Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative precision 5
```

As we observe, the default value for the log radii of convergence is 0 (the series then converge on the closed unit disc).

We can specify different log radii using the following syntax:

```
sage: B.<u,v> = TateAlgebra(K, log_radii=[1,2]); B
Tate Algebra in u (val >= -1), v (val >= -2) over 2-adic Field with capped relative precision 5
```

Note that if we pass in the ring of integers of $p$-adic field, the same Tate algebra is returned:

```
sage: A1.<x,y> = TateAlgebra(K.integer_ring()); A1
Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative precision 5
sage: A is A1
True
```

However the method `integer_ring()` constructs the integer ring of a Tate algebra, that is the subring consisting of series bounded by 1 on the domain of convergence:
Now we can build elements:

```python
sage: f = 5 + 2*x*y^3 + 4*x^2*y^2; f
...00101 + ...000010*x*y^3 + ...000010*x^2*y^2
sage: g = x^3*y + 2*x*y; g
...00001*x^3*y + ...000010*x*y
```

and perform all usual arithmetic operations on them:

```python
sage: f + g
...00001*x^3*y + ...00101 + ...000010*x*y^3 + ...000010*x^2*y^2
sage: f * g
...00101*x^3*y + ...000010*x^4*y^4 + ...001010*x*y + ...000010*x^5*y^3 + ...
...000010*x^2*y^4 + ...00001000*x^3*y^3
```

An element in the integer ring is invertible if and only if its reduction modulo \( p \) is a nonzero constant. In our example, \( f \) is invertible (its reduction modulo \( 2 \) is 1) but \( g \) is not:

```python
sage: f.inverse_of_unit()
...01101 + ...01110*x*y^3 + ...00001*y^4 + ... + O(2^5 * <x, y>)
sage: g.inverse_of_unit()
Traceback (most recent call last):
...
ValueError: this series in not invertible
```

The notation \( O(2^5) \) in the result above hides a series which lies in \( 2^5 \) times the integer ring of \( A \), that is a series which is bounded by \( |2^5| \) (2-adic norm) on the domain of convergence.

We can also evaluate series in a point of the domain of convergence (in the base field or in an extension):

```python
sage: L.<a> = Qq(2^3, 5)
sage: f(a^2, 2*a)
1 + 2^2 + a*2^4 + O(2^5)
sage: var('u')
u
sage: L.<pi> = K.change(print_mode="series").extension(u^3 - 2)
sage: g(pi, 2*pi)
pi^7 + pi^8 + pi^19 + pi^20 + O(pi^21)
```

Computations with ideals in Tate algebras are also supported:

```python
sage: f = 7*x^3*y + 2*x*y - x*y^2 - 6*y^5
sage: g = x*y^4 + 8*x^3 - 3*y^3 + 1
sage: I = A.ideal([f, g])
sage: I.groebner_basis()
[...00001*x^2*y^3 + ...00001*y^4 + ...00001*x^2*y + ... + O(2^5 * <x, y>),
...00001*x*y^4 + ...111011*x*y^3 + ...00001 + ... + O(2^5 * <x, y>),
...00001*y^5 + ...111111*x*y^3 + ...00001*x^2*y + ... + O(2^5 * <x, y>),
...00001*x^3 + ...00001*y^4 + ...00001*x + O(2^5 * <x, y>)]
sage: (x^2 + 3*y)*f + 1/2*(x^3*y + x*y)*g in I
True
```
class sage.rings.tate_algebra.TateAlgebraFactory

Construct a Tate algebra over a $p$-adic field.

Given a $p$-adic field $K$, variables $X_1, \ldots, X_k$ and convergence log radii $v_1, \ldots, v_n$ in $R$, the corresponding Tate algebra $K[X_1, \ldots, X_k]$ consists of power series with coefficients $a_{i_1, \ldots, i_n}$ in $K$ such that
\[\text{val}(a_{i_1, \ldots, i_n}) - (i_1v_1 + \cdots + i_nv_n)\]
tends to infinity as $i_1, \ldots, i_n$ go towards infinity.

INPUT:

- **base** – a $p$-adic ring or field; if a ring is given, the Tate algebra over its fraction field will be constructed
- **prec** – an integer or None (default: None), the precision cap; it is used if an exact object must be truncated in order to do an arithmetic operation. If left as None, it will be set to the precision cap of the base field.
- **log_radii** – an integer or a list or a tuple of integers (default: 0), the value(s) $v_i$. If an integer is given, this will be the common value for all $v_i$.
- **names** – names of the indeterminates
- **order** – the monomial ordering (default: degrevlex) used to break ties when comparing terms with the same coefficient valuation

EXAMPLES:

```
sage: R = Zp(2, 10, print_mode='digits'); R
2-adic Ring with capped relative precision 10
sage: A.<x,y> = TateAlgebra(R, order='lex'); A
Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative
˓→precision 10
```

We observe that the result is the Tate algebra over the fraction field of $R$ and not $R$ itself:

```
sage: A.base_ring()
2-adic Field with capped relative precision 10
sage: A.base_ring() is R.fraction_field()
True
```

If we want to construct the ring of integers of the Tate algebra, we must use the method `integer_ring()`:

```
sage: Ao = A.integer_ring(); Ao
Integer ring of the Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field
˓→with capped relative precision 10
sage: Ao.base_ring()
2-adic Ring with capped relative precision 10
sage: Ao.base_ring() is R
True
```

The term ordering is used (in particular) to determine how series are displayed. Terms are compared first according to the valuation of their coefficient, and ties are broken using the monomial ordering:
Here are examples of Tate algebra with smaller radii of convergence:

```
sage: B.<x,y> = TateAlgebra(R, log_radii=-1); B
Tate Algebra in x (val >= 1), y (val >= 1) over 2-adic Field with capped relative
→ precision 10
sage: C.<x,y> = TateAlgebra(R, log_radii=(-1,-2)); C
Tate Algebra in x (val >= 1), y (val >= 2) over 2-adic Field with capped relative
→ precision 10
```

AUTHORS:

- Xavier Caruso, Thibaut Verron (2018-09)

create_key(base, prec=None, log_radii=0, names=None, order='degrevlex')

Create a key from the input parameters.

INPUT:

- base -- a $p$-adic ring or field
- prec -- an integer or None (default: None)
- log_radii -- an integer or a list or a tuple of integers (default: 0)
- names -- names of the indeterminates
- order -- a monomial ordering (default: degrevlex)

EXAMPLES:

```
sage: TateAlgebra.create_key(Zp(2), names=['x','y'])
(2-adic Field with capped relative precision 20,
(0, 0), ('x', 'y'),
Degree reverse lexicographic term order)
```

create_object(version, key)

Create an object using the given key.

class sage.rings.tate_algebra.TateAlgebra_generic(field, prec, log_radii, names, order, integral=False)

Bases: sage.rings.ring.CommutativeAlgebra

Initialize the Tate algebra

absolute_e()

Return the absolute index of ramification of this Tate algebra.

It is equal to the absolute index of ramification of the field of coefficients.
**EXAMPLES:**

```
sage: R = Zp(2)
sage: A.<u,v> = TateAlgebra(R)
sage: A.absolute_e()
1
sage: R.<a> = Zq(2^3)
sage: A.<u,v> = TateAlgebra(R)
sage: A.absolute_e()
1
sage: S.<a> = R.extension(x^2 - 2)
sage: A.<u,v> = TateAlgebra(S)
sage: A.absolute_e()
2
```

**characteristic()**

Return the characteristic of this algebra.

**EXAMPLES:**

```
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: A.characteristic()
0
```

**gen**(n=0)

Return the n-th generator of this Tate algebra.

**INPUT:**

- n - an integer (default: 0), the index of the requested generator

**EXAMPLES:**

```
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: A.gen()
...0000000001*x
sage: A.gen(0)
...0000000001*x
sage: A.gen(1)
...0000000001*y
sage: A.gen(2)
Traceback (most recent call last):
... ValueError: generator not defined
```

**gens()**

Return the list of generators of this Tate algebra.

**EXAMPLES:**

```
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: A.gens()
(...0000000001*x, ...0000000001*y)
```
integer_ring()
Return the ring of integers (consisting of series bounded by 1 in the domain of convergence) of this Tate
algebra.

EXAMPLES:

```
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: Ao = A.integer_ring()
sage: Ao
Integer ring of the Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative precision 10
sage: x in Ao
True
sage: x/2 in Ao
False
```

is_integral_domain()
Return True since any Tate algebra is an integral domain.

EXAMPLES:

```
sage: A.<x,y> = TateAlgebra(Zp(3))
sage: A.is_integral_domain()
True
```

log_radii()
Return the list of the log-radii of convergence radii defining this Tate algebra.

EXAMPLES:

```
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: A.log_radii()
(0, 0)
sage: B.<x,y> = TateAlgebra(R, log_radii=1)
sage: B.log_radii()
(1, 1)
sage: C.<x,y> = TateAlgebra(R, log_radii=(1,-1))
sage: C.log_radii()
(1, -1)
```

monoid_of_terms()
Return the monoid of terms of this Tate algebra.

EXAMPLES:

```
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: A.monoid_of_terms()
Monoid of terms in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative precision 10
```

ngens()
Return the number of generators of this algebra.

EXAMPLES:
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: A.ngens()
2

precision_cap()

Return the precision cap of this Tate algebra.

NOTE:
The precision cap is the truncation precision used for arithmetic operations computed by successive approximations (as inversion).

EXAMPLES:
By default the precision cap is the precision cap of the field of coefficients:

sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: A.precision_cap()
10

But it could be different (either smaller or larger) if we ask to:

sage: A.<x,y> = TateAlgebra(R, prec=5)
sage: A.precision_cap()
5

sage: A.<x,y> = TateAlgebra(R, prec=20)
sage: A.precision_cap()
20

prime()

Return the prime, that is the characteristic of the residue field.

EXAMPLES:

sage: R = Zp(3)
sage: A.<x,y> = TateAlgebra(R)
sage: A.prime()
3

random_element(degree=2, terms=5, integral=False, prec=None)

Return a random element of this Tate algebra.

INPUT:

• degree – an integer (default: 2), an upper bound on the total degree of the result
• terms – an integer (default: 5), the maximal number of terms of the result
• integral – a boolean (default: False); if True the result will be in the ring of integers
• prec – (optional) an integer, the precision of the result

EXAMPLES:

sage: R = Zp(2, prec=10, print_mode="digits")
sage: A.<x,y> = TateAlgebra(R)

(continues on next page)
Note that if we are already working on the ring of integers, specifying integral=False has no effect:

```
sage: Ao = A.integer_ring()
sage: f = Ao.random_element(integral=False); f
random
...1100111101*x^2 + ...1110100101*x + ...1100001101*y + ...1110110001 + ...
˓→01011010110*y^2
```

When the log radii are negative, integral series may have non integral coefficients:

```
sage: B.<x,y> = TateAlgebra(R, log_radii=[-1,-2])
sage: B.random_element(integral=True)
random
(...1111111.001)*x*y + (...111000101.1)*x + (...11010111.01)*y^2 + ...
˓→0010011011*y + ...0010100011000
```

some_elements()
Return a list of elements in this Tate algebra.

EXAMPLES:

```
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: A.some_elements()
[0,
 ...00000000010,
 ...0000000001*x,
 ...0000000001*y,
 ...00000000010*x*y,
 ...00000000100,
 ...0000000001*x + ...00000000010,
 ...0000000001*y + ...00000000010,
 ...00000000010*x*y + ...00000000010,
 ...00000000010*x*y,
 ...0000000001*x + ...0000000001*y,
 ...00000000010*x*y,
 ...00000000010*x*y,
 ...00000000010*x*y]
```

term_order()
Return the monomial order used in this algebra.

EXAMPLES:
variable_names()
Return the names of the variables of this algebra.

EXAMPLES:

```
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: A.variable_names()
('x', 'y')
```

class sage.rings.tate_algebra.TateTermMonoid(A)
Bases: sage.monoids.monoid.Monoid_class, sage.structure.unique_representation.UniqueRepresentation

A base class for Tate algebra terms

A term in a Tate algebra $\mathbb{K}\{X_1,\ldots,X_n\}$ (resp. in its ring of integers) is a monomial in this ring.

Those terms form a pre-ordered monoid, with term multiplication and the term order of the parent Tate algebra.

Element
alias of sage.rings.tate_algebra_element.TateAlgebraTerm

algebra_of_series()
Return the Tate algebra corresponding to this Tate term monoid.

EXAMPLES:

```
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.algebra_of_series()
Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative precision 10
sage: T.algebra_of_series() is A
True
```

base_ring()
Return the base ring of this Tate term monoid.

EXAMPLES:

```
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.base_ring()
2-adic Field with capped relative precision 10
```

We observe that the base field is not $\mathbb{R}$ but its fraction field:
If we really want to create an integral Tate algebra, we have to invoke the method `integer_ring()`:

```python
sage: Ao = A.integer_ring(); Ao
Integer ring of the Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative precision 10
sage: Ao.base_ring()
2-adic Ring with capped relative precision 10
sage: Ao.base_ring() is R
True
```

### `gen(n=0)`

Return the $n$-th generator of this monoid of terms.

**INPUT:**

- $n$ - an integer (default: 0), the index of the requested generator

**EXAMPLES:**

```python
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.gen()
...0000000001*x
sage: T.gen(0)
...0000000001*x
sage: T.gen(1)
...0000000001*y
sage: T.gen(2)
Traceback (most recent call last):
... ValueError: generator not defined
```

### `gens()`

Return the list of generators of this monoid of terms.

**EXAMPLES:**

```python
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.gens()
(...0000000001*x, ...0000000001*y)
```

### `log_radii()`

Return the log radii of convergence of this Tate term monoid.

**EXAMPLES:**

```python
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.log_radii()
(0, 0)
```
ngens()

Return the number of variables in the Tate term monoid

EXAMPLES:

```python
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.ngens()
2
```

prime()

Return the prime, that is the characteristic of the residue field.

EXAMPLES:

```python
sage: R = Zp(3)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.prime()
3
```

some_elements()

Return a list of elements in this monoid of terms.

EXAMPLES:

```python
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.some_elements()
[...0000000001x, ...0000000001*y, ...00000000010*x*y]
```

term_order()

Return the term order on this Tate term monoid.

EXAMPLES:

```python
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.term_order() # default term order is grevlex
Degree reverse lexicographic term order
sage: A.<x,y> = TateAlgebra(R, order='lex')
sage: T = A.monoid_of_terms()
sage: T.term_order()
Lexicographic term order
```

variable_names()

Return the names of the variables of this Tate term monoid.

EXAMPLES:
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.variable_names()
('x', 'y')
INDICES AND TABLES

• Index
• Module Index
• Search Page
PYTHON MODULE INDEX

r
sage.rings.laurent_series_ring, 73
sage.rings.laurent_series_ring_element, 79
sage.rings.lazy_laurent_series, 93
sage.rings.lazy_laurent_series_operator, 103
sage.rings.lazy_laurent_series_ring, 99
sage.rings.multi_power_series_ring, 49
sage.rings.multi_power_series_ring_element, 57
sage.rings.power_series_pari, 43
sage.rings.power_series_poly, 37
sage.rings.power_series_ring, 1
sage.rings.power_series_ring_element, 11
sage.rings.puiseux_series_ring, 107
sage.rings.puiseux_series_ring_element, 111
sage.rings.tate_algebra, 119
A

absolute_e() (sage.rings.tate_algebra.TateAlgebra_generic method), 122
add_bigoh() (sage.rings.laurent_series_ring_element.LaurentSeries method), 80
add_bigoh() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 62
add_bigoh() (sage.rings.power_series_ring_element.PowerSeries method), 12
add_bigoh() (sage.rings.puiseux_series_ring_element.PowerSeries method), 113
algebra_of_series() (sage.rings.tate_algebra.TateTermMonoid method), 127
apply_to_coefficients() (sage.rings.lazy_laurent_series.LazyLaurentSeries method), 95
approximate_series() (sage.rings.lazy_laurent_series.LazyLaurentSeries method), 95

B

base_extend() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 74
base_extend() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 5
base_extend() (sage.rings.power_series_ring_element.PowerSeries method), 13
base_extend() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 107
base_ring() (sage.rings.power_series_ring_element.PowerSeries method), 13
base_ring() (sage.rings.tate_algebra.TateTermMonoid method), 127
bigoh() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 52

C

change_ring() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 74
change_ring() (sage.rings.laurent_series_ring_element.LaurentSeries method), 81
change_ring() (sage.rings.lazy_laurent_series.LazyLaurentSeries method), 95
change_ring() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 53
change_ring() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 5
change_ring() (sage.rings.power_series_ring_element.PowerSeries method), 13
change_ring() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 107
change_var() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 6
characteristic() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 74
characteristic() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 53
characteristic() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 6
characteristic() (sage.rings.tate_algebra.TateAlgebra_generic method), 123
coefficient() (sage.rings.lazy_laurent_series.LazyLaurentSeries method), 96
coefficients() (sage.rings.laurent_series_ring_element.LaurentSeries method), 81
coefficients() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 62
coefficients() (sage.rings.power_series_ring_element.PowerSeries method), 14
coefficients() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 113
common_prec() (sage.rings.laurent_series_ring_element.LaurentSeries method), 81
common_prec() (sage.rings.power_series_ring_element.PowerSeries method), 14
common_prec() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 114
common_valuation() (sage.rings.laurent_series_ring_element.LaurentSeries method), 82
construction() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 75
construction() (sage.rings.multi_power_series_ring.MPowerSeriesRing method), 53
cos() (sage.rings.power_series_ring_element.PowerSeries method), 14
cosh() (sage.rings.power_series_ring_element.PowerSeries method), 15
create_key() (sage.rings.tate_algebra.TateAlgebraFactory method), 122
create_object() (sage.rings.tate_algebra.TateAlgebraFactory method), 122

d
default_prec() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 75
default_prec() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 108
degree() (sage.rings.laurent_series_ring_element.LaurentSeries method), 82
degree() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 63
degree() (sage.rings.power_series_poly.PowerSeries_poly method), 37
degree() (sage.rings.power_series_ring_element.PowerSeries method), 16
degree() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 114
derivative() (sage.rings.laurent_series_ring_element.LaurentSeries method), 82
derivative() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 63
derivative() (sage.rings.power_series_ring_element.PowerSeries method), 16
dict() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 63
dict() (sage.rings.power_series_pari.PowerSeries_pari method), 44
dict() (sage.rings.power_series_poly.PowerSeries_poly method), 38

E
egf() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 63
egf_to_ogf() (sage.rings.power_series_ring_element.PowerSeries method), 17
Element (sage.rings.laurent_series_ring.LaurentSeriesRing attribute), 74
Element (sage.rings.lazy_laurent_series_ring.LazyLaurentSeriesRing attribute), 100
Element (sage.rings.multi_power_series_ring_element.MPowerSeriesRing_generic attribute), 52
Element (sage.rings.puiseux_series_ring.PuiseuxSeriesRing attribute), 107
Element (sage.rings.tate_algebra.TateTermMonoid attribute), 127
exp() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 64
exp() (sage.rings.power_series_ring_element.PowerSeries method), 17
exponents() (sage.rings.laurent_series_ring_element.LaurentSeries method), 83
exponents() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 64
exponents() (sage.rings.power_series_ring_element.PowerSeries method), 18
exponents() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 114

F
fraction_field() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 75
fraction_field() (sage.rings.power_series_ring.PowerSeriesRing_domain method), 5
fraction_field() (sage.rings.power_series_ring.PowerSeriesRing_over_field method), 10
fraction_field() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 108
G

gen() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 76

gen() (sage.rings.lazy_laurent_series_ring.LazyLaurentSeriesRing method), 100

gen() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 54

gen() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 6

gen() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 108

gen() (sage.rings.tate_algebra.TateAlgebra_generic method), 123

gens() (sage.rings.lazy_laurent_series_ring.LazyLaurentSeriesRing method), 100

gens() (sage.rings.tate_algebra.TateAlgebra_generic method), 123

gens() (sage.rings.tate_algebra.TateTermMonoid method), 128

I

integer_ring() (sage.rings.tate_algebra.TateAlgebra_generic method), 123

integral() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 65

integral() (sage.rings.power_series_pari.PowerSeries_pari method), 44

integral() (sage.rings.power_series_poly.PowerSeries_poly method), 38

inverse() (sage.rings.laurent_series_ring_element.LaurentSeries method), 84

inverse() (sage.rings.power_series_ring_element.PowerSeries method), 18

inverse() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 114

is_dense() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 76

is_dense() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 54

is_dense() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 7

is_dense() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 108

is_exact() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 76

is_exact() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 7

is_exact() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 108

is_field() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 76

is_field() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 7

is_field() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 108

is_finite() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 7

is_integral_domain() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 19

is_integral_domain() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 54

is_integral_domain() (sage.rings.tate_algebra.TateAlgebra_generic method), 124

is_LaurentSeries() (in module sage.rings.laurent_series_ring_element), 91

is_LaurentSeriesRing() (in module sage.rings.laurent_series_ring), 78

is_monomial() (sage.rings.laurent_series_ring_element.LaurentSeries method), 84

is_monomial() (sage.rings.power_series_ring_element.PowerSeries method), 19

is_monomial() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 114

is_MPowerSeries() (in module sage.rings.multi_power_series_ring_element), 72

is_MPowerSeriesRing() (in module sage.rings.multi_power_series_ring), 56

is_nilpotent() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 66

is_noetherian() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 54

is_PowerSeries() (in module sage.rings.power_series_ring_element), 34

is_PowerSeriesRing() (in module sage.rings.power_series_ring), 10

is_sparse() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 76

is_sparse() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 54

is_sparse() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 7

is_sparse() (sage.rings.power_series_ring_element.PowerSeries method), 19
is_sparse() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 109
is_square() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 66
is_square() (sage.rings.power_series_ring_element.PowerSeries method), 20
is_unit() (sage.rings.laurent_series_ring_element.LaurentSeries method), 84
is_unit() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 66
is_unit() (sage.rings.power_series_ring_element.PowerSeries method), 20
is_unit() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 115
is_zero() (sage.rings.laurent_series_ring_element.LaurentSeries method), 85
is_zero() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 115

J
jacobi_continued_fraction() (sage.rings.power_series_ring_element.PowerSeries method), 20

L
laurent_part() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 115
laurent_polynomial() (sage.rings.laurent_series_ring_element.LaurentSeries method), 85
laurent_polynomial_ring() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 76
laurent_series() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 67
laurent_series() (sage.rings.power_series_ring_element.PowerSeries method), 21
laurent_series() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 115
laurent_series_ring() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 55
laurent_series_ring() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 7
laurent_series_ring() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 109
LaurentSeries (class in sage.rings.laurent_series_ring_element), 79
LaurentSeriesRing (class in sage.rings.laurent_series_ring), 73
LazyLaurentSeries (class in sage.rings.lazy_laurent_series), 94
LazyLaurentSeriesBinaryOperator (class in sage.rings.lazy_laurent_series_operator), 104
LazyLaurentSeriesOperator (class in sage.rings.lazy_laurent_series_operator), 104
LazyLaurentSeriesOperator_add (class in sage.rings.lazy_laurent_series_operator), 104
LazyLaurentSeriesOperator_apply (class in sage.rings.lazy_laurent_series_operator), 104
LazyLaurentSeriesOperator_change_ring (class in sage.rings.lazy_laurent_series_operator), 104
LazyLaurentSeriesOperator_constant (class in sage.rings.lazy_laurent_series_operator), 105
LazyLaurentSeriesOperator_div (class in sage.rings.lazy_laurent_series_operator), 105
LazyLaurentSeriesOperator_gen (class in sage.rings.lazy_laurent_series_operator), 105
LazyLaurentSeriesOperator_inv (class in sage.rings.lazy_laurent_series_operator), 105
LazyLaurentSeriesOperator_list (class in sage.rings.lazy_laurent_series_operator), 105
LazyLaurentSeriesOperator_mul (class in sage.rings.lazy_laurent_series_operator), 105
LazyLaurentSeriesOperator_neg (class in sage.rings.lazy_laurent_series_operator), 105
LazyLaurentSeriesOperator_polynomial (class in sage.rings.lazy_laurent_series_operator), 106
LazyLaurentSeriesOperator_scale (class in sage.rings.lazy_laurent_series_operator), 106
LazyLaurentSeriesOperator_sub (class in sage.rings.lazy_laurent_series_operator), 106
LazyLaurentSeriesOperator_truncate (class in sage.rings.lazy_laurent_series_operator), 106
LazyLaurentSeriesRing (class in sage.rings.lazy_laurent_series_ring), 99
LazyLaurentSeriesUnaryOperator (class in sage.rings.lazy_laurent_series_operator), 106
lift_to_precision() (sage.rings.laurent_series_ring_element.LaurentSeries method), 85
lift_to_precision() (sage.rings.power_series_ring_element.PowerSeries method), 21
list() (sage.rings.laurent_series_ring_element.LaurentSeries method), 85
list() (sage.rings.power_series_ring_element.MPowerSeries method), 67
list() (sage.rings.power_series_pari.PowerSeries_pari method), 44
list() (sage.rings.power_series_poly.PowerSeries_poly method), 38
Index
ogf_to_egf() (sage.rings.power_series_ring_element.PowerSeries method), 24
one() (sage.rings.lazy_laurent_series_ring.LazyLaurentSeriesRing method), 100

P
padded_list() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 68
padded_list() (sage.rings.power_series_pari.PowerSeries_pari method), 45
padded_list() (sage.rings.power_series_ring_element.PowerSeries method), 24
pade() (sage.rings.power_series_poly.PowerSeries_poly method), 38
polynomial() (sage.rings.lazy_laurent_series.LazyLaurentSeries method), 96
polynomial() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 68
polynomial() (sage.rings.power_series_pari.PowerSeries_pari method), 45
polynomial() (sage.rings.power_series_poly.PowerSeries_poly method), 39
polynomial() (sage.rings.power_series_ring_element.PowerSeries method), 25
polynomial_ring() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 76
power_series() (sage.rings.power_series_pari.PowerSeries_pari method), 86
power_series() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 77
PowerSeries (class in sage.rings.power_series_ring_element), 12
PowerSeries_pari (class in sage.rings.power_series_pari), 44
PowerSeries_poly (class in sage.rings.power_series_poly), 37
PowerSeriesRing() (in module sage.rings.power_series_ring), 2
PowerSeriesRing_domain (class in sage.rings.power_series_ring), 5
PowerSeriesRing_generic (class in sage.rings.power_series_ring), 5
PowerSeriesRing_over_field (class in sage.rings.power_series_ring), 9
prec() (sage.rings.laurent_series_ring_element.LaurentSeries method), 86
prec() (sage.rings.lazy_laurent_series.LazyLaurentSeries method), 97
prec() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 68
prec() (sage.rings.power_series_ring_element.PowerSeries method), 25
prec() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 116
prec_ideal() (sage.rings.multi_power_series_ring_element.MPowerSeriesRing_generic method), 55
precision_absolute() (sage.rings.power_series_ring_element.LaurentSeries method), 86
precision_absolute() (sage.rings.power_series_ring_element.PowerSeries method), 25
precision_absolute() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 116
precision_cap() (sage.rings.tate_algebra.TateAlgebra_generic method), 125
precision_relative() (sage.rings.laurent_series_ring_element.LaurentSeries method), 87
precision_relative() (sage.rings.power_series_ring_element.PowerSeries method), 25
precision_relative() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 116
prime() (sage.rings.tate_algebra.TateAlgebra_generic method), 125
prime() (sage.rings.tate_algebra.TateTermMonoid method), 129
PuiseuxSeries (class in sage.rings.puiseux_series_ring_element), 112
PuiseuxSeriesRing (class in sage.rings.puiseux_series_ring), 107

Q
quo_rem() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 69

R
ramification_index() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 117
random_element() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 77
random_element() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 8
random_element() (sage.rings.tate_algebra.TateAlgebra_generic method), 125
remove_var() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 55
residue() (sage.rings.laurent_series_ring_element.LaurentSeries method), 87
residue_field() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 77
residue_field() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 9
residue_field() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 109
reverse() (sage.rings.laurent_series_ring_element.LaurentSeries method), 87
reverse() (sage.rings.power_series_pari.PowerSeries_pari method), 45
reverse() (sage.rings.power_series_poly.PowerSeries_poly method), 39

S

sage.rings.laurent_series_ring
  module, 73
sage.rings.laurent_series_ring_element
  module, 79
sage.rings.lazy_laurent_series
  module, 93
sage.rings.lazy_laurent_series_operator
  module, 103
sage.rings.lazy_laurent_series_ring
  module, 99
sage.rings.multi_power_series_ring
  module, 49
sage.rings.multi_power_series_ring_element
  module, 57
sage.rings.power_series_pari
  module, 43
sage.rings.power_series_poly
  module, 37
sage.rings.power_series_ring
  module, 1
sage.rings.power_series_ring_element
  module, 11
sage.rings.puiseux_series_ring
  module, 107
sage.rings.puiseux_series_ring_element
  module, 111
sage.rings.tate_algebra
  module, 119
series() (sage.rings.lazy_laurent_series_ring.LazyLaurentSeriesRing method), 100
shift() (sage.rings.laurent_series_ring_element.LaurentSeries method), 89
shift() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 70
shift() (sage.rings.power_series_ring_element.PowerSeries method), 26
shift() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 117
sin() (sage.rings.power_series_ring_element.PowerSeries method), 26
sinh() (sage.rings.power_series_ring_element.PowerSeries method), 27
solve_linear_de() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 70
solve_linear_de() (sage.rings.power_series_ring_element.PowerSeries method), 28
some_elements() (sage.rings.tate_algebra.TateAlgebra_generic method), 126
some_elements() (sage.rings.tate_algebra.TateTermMonoid method), 129
sqrt() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 70
sqrt() (sage.rings.power_series_ring_element.PowerSeries method), 29
square_root() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 70
square_root() (sage.rings.power_series_ring_element.PowerSeries method), 30
stieltjes_continued_fraction() (sage.rings.power_series_ring_element.PowerSeries method), 31

T

tan() (sage.rings.power_series_ring_element.PowerSeries method), 31
tanh() (sage.rings.power_series_ring_element.PowerSeries method), 32
TateAlgebra_generic (class in sage.rings.tate_algebra), 122
TateAlgebraFactory (class in sage.rings.tate_algebra), 121
TateTermMonoid (class in sage.rings.tate_algebra), 127
term_order() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 55
term_order() (sage.rings.tate_algebra.TateAlgebra_generic method), 126
term_order() (sage.rings.tate_algebra.TateTermMonoid method), 129
trailing_monomial() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 70
truncate() (sage.rings.laurent_series_ring_element.LaurentSeries method), 90
truncate() (sage.rings.lazy_laurent_series.LazyLaurentSeries method), 97
truncate() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 71
truncate() (sage.rings.power_series_poly.PowerSeries_poly method), 41
truncate() (sage.rings.power_series_ring_element.PowerSeries method), 33
truncate() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 117
truncate_laurentseries() (sage.rings.laurent_series_ring_element.LaurentSeries method), 90
truncate_neg() (sage.rings.laurent_series_ring_element.LaurentSeries method), 90
truncate_powerseries() (sage.rings.power_series_poly.PowerSeries_poly method), 41

U

uniformizer() (sage.rings.laurent_series_ring_element.LaurentSeries method), 77
uniformizer() (sage.rings.power_series_ring_element.PowerSeriesRing_generic method), 9
uniformizer() (sage.rings.puiseux_series_ring_element.PuiseuxSeriesRing method), 109
unpickle_multi_power_series_ring_v0() (in module sage.rings.multi_power_series_ring), 56
unpickle_power_series_ring_v0() (in module sage.rings.power_series_ring), 10

V

V() (sage.rings.laurent_series_ring_element.LaurentSeries method), 80
V() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 61
V() (sage.rings.power_series_ring_element.PowerSeries method), 12
valuation() (sage.rings.laurent_series_ring_element.LaurentSeries method), 90
valuation() (sage.rings.lazy_laurent_series.LazyLaurentSeries method), 97
valuation() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 71
valuation() (sage.rings.power_series_pari.PowerSeries_pari method), 47
valuation() (sage.rings.power_series_poly.PowerSeries_poly method), 42
valuation() (sage.rings.power_series_ring_element.PowerSeries method), 33
valuation() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 117
valuation_zero_part() (sage.rings.laurent_series_ring_element.LaurentSeries method), 90
valuation_zero_part() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 72
valuation_zero_part() (sage.rings.power_series_ring_element.PowerSeries method), 34
variable() (sage.rings.laurent_series_ring_element.LaurentSeries method), 91
variable() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 72
variable() (sage.rings.power_series_ring_element.PowerSeries method), 34
variable() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 118
variable_names() (sage.rings.tate_algebra.TateAlgebra_generic method), 127
variable_names() (sage.rings.tate_algebra.TateTermMonoid method), 129
variable_names_recursive() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 9
variables() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 72
verschiebung() (sage.rings.laurent_series_ring_element.LaurentSeries method), 91

Z

zero() (sage.rings.lazy_laurent_series_ring.LazyLaurentSeriesRing method), 101