Power Series Rings and Laurent Series Rings

Release 10.0

The Sage Development Team

May 25, 2023
CONTENTS

1 Power Series Rings
2 Power Series
3 Power Series Methods
4 Power series implemented using PARI
5 Multivariate Power Series Rings
6 Multivariate Power Series
7 Laurent Series Rings
8 Laurent Series
9 Lazy Series
10 Lazy Series Rings
11 Puiseux Series Ring
12 Puiseux Series Ring Element
13 Tate algebras
14 Indices and Tables
Python Module Index
Index
CHAPTER ONE

POWER SERIES RINGS

Power series rings are constructed in the standard Sage fashion. See also Multivariate Power Series Rings.

EXAMPLES:

Construct rings and elements:

```
sage: R.<t> = PowerSeriesRing(QQ)
sage: R.random_element(6)  # random
-4 - 1/2*t^2 - 1/95*t^3 + 1/2*t^4 - 12*t^5 + O(t^6)
```

```
sage: R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
sage: p = -t + 1/2*t^3*u - 1/4*t^4*u + 2/3*v^5 + R.O(6); p
-t + 1/2*t^3*u - 1/4*t^4*u + 2/3*v^5 + O(t, u, v)^6
sage: p in R
True
```

The default precision is specified at construction, but does not bound the precision of created elements.

```
sage: R.<t> = PowerSeriesRing(QQ, default_prec=5)
sage: R.random_element(6)  # random
1/2 - 1/4*t + 2/3*t^2 - 5/2*t^3 + 2/3*t^5 + O(t^6)
```

Construct univariate power series from a list of coefficients:

```
sage: S = R([1, 3, 5, 7]); S
1 + 3*t + 5*t^2 + 7*t^3
```

The default precision of a power series ring stays fixed and cannot be changed. To work with different default precision, create a new power series ring:

```
sage: R.<x> = PowerSeriesRing(QQ, default_prec=10)
sage: sin(x)
x - 1/6*x^3 + 1/120*x^5 - 1/5040*x^7 + 1/362880*x^9 + O(x^10)
sage: R.<x> = PowerSeriesRing(QQ, default_prec=15)
sage: sin(x)
x - 1/6*x^3 + 1/120*x^5 - 1/5040*x^7 + 1/362880*x^9 - 1/39916800*x^11 + 1/6227020800*x^13 + O(x^15)
```

An iterated example:
Sage can compute with power series over the symbolic ring.

```sage
K.<t> = PowerSeriesRing(SR, default_prec=5)
an, b, c = var('a,b,c')
f = a + b*t + c*t^2 + O(t^3)
f*f
```

```
a^2 + 2*a*b*t + (b^2 + 2*a*c)*t^2 + O(t^3)
```

Elements are first coerced to constants in base_ring, then coerced into the PowerSeriesRing:

```sage
R.<t> = PowerSeriesRing(ZZ)
f = Mod(2, 3) * t; (f, f.parent())
```

```
(2*t, Power Series Ring in t over Ring of integers modulo 3)
```

We make a sparse power series.

```sage
R.<x> = PowerSeriesRing(QQ, sparse=True); R
f = 1 + x^1000000
g = f*f
g.degree()
```

```
2000000
```

We make a sparse Laurent series from a power series generator:

```sage
R.<t> = PowerSeriesRing(QQ, sparse=True)
llatex(-2/3*(1/t^3) + 1/t + 3/5*t^2 + O(t^5))
```

```
\frac{-\frac{2}{3}}{t^{3}} + \frac{1}{t} + \frac{3}{5}t^{2} + O(t^{5})
```

Choose another implementation of the attached polynomial ring:

```sage
R.<t> = PowerSeriesRing(ZZ)
type(t.polynomial())
```

```
<... 'sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint ...
```

```sage
S.<s> = PowerSeriesRing(ZZ, implementation='NTL')
type(s.polynomial())
```

```
<... 'sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl'>
```

AUTHORS:

- William Stein: the code
- Jeremy Cho (2006-05-17): some examples (above)
sage.rings.power_series_ring.PowerSeriesRing(base_ring, name=None, arg2=None, names=None, sparse=False, default_prec=None, order='negdeglex', num_gens=None, implementation=None)

Create a univariate or multivariate power series ring over a given (commutative) base ring.

INPUT:

- **base_ring** - a commutative ring
- **name, names** - name(s) of the indeterminate
- **default_prec** - the default precision used if an exact object must be changed to an approximate object in order to do an arithmetic operation. If left as `None`, it will be set to the global default (20) in the univariate case, and 12 in the multivariate case.
- **sparse** - (default: `False`) whether power series are represented as sparse objects.
- **order** - (default: `negdeglex`) term ordering, for multivariate case
- **num_gens** - number of generators, for multivariate case

There is a unique power series ring over each base ring with given variable name. Two power series over the same base ring with different variable names are not equal or isomorphic.

EXAMPLES (Univariate):

`sage: R = PowerSeriesRing(QQ, 'x'); R
Power Series Ring in x over Rational Field`

`sage: S = PowerSeriesRing(QQ, 'y'); S
Power Series Ring in y over Rational Field`

`sage: R = PowerSeriesRing(QQ, 10); R
Traceback (most recent call last):
... Value Error: variable name '10' does not start with a letter`

`sage: S = PowerSeriesRing(QQ, 'x', default_prec = 15); S
Power Series Ring in x over Rational Field
sage: S.default_prec()
15`

EXAMPLES (Multivariate) See also **Multivariate Power Series Rings:**

`sage: R = PowerSeriesRing(QQ, 't,u,v'); R
Multivariate Power Series Ring in t, u, v over Rational Field`

`sage: N = PowerSeriesRing(QQ,'w',num_gens=5); N
Multivariate Power Series Ring in w0, w1, w2, w3, w4 over Rational Field`

Number of generators can be specified before variable name without using keyword:

`sage: M = PowerSeriesRing(QQ,4,'k'); M
Multivariate Power Series Ring in k0, k1, k2, k3 over Rational Field`
Multivariate power series can be constructed using angle bracket or double square bracket notation:

\begin{verbatim}sage: R.<t,u,v> = PowerSeriesRing(QQ, 't,u,v'); R
Multivariate Power Series Ring in t, u, v over Rational Field
sage: ZZ[[s,t,u]]
Multivariate Power Series Ring in s, t, u over Integer Ring\end{verbatim}

Sparse multivariate power series ring:

\begin{verbatim}sage: M = PowerSeriesRing(QQ,4,'k',sparse=True); M
Sparse Multivariate Power Series Ring in k0, k1, k2, k3 over Rational Field\end{verbatim}

Power series ring over polynomial ring:

\begin{verbatim}sage: H = PowerSeriesRing(PolynomialRing(ZZ,3,'z'),4,'f'); H
Multivariate Power Series Ring in f0, f1, f2, f3 over Multivariate Polynomial Ring in z0, z1, z2 over Integer Ring\end{verbatim}

Power series ring over finite field:

\begin{verbatim}sage: S = PowerSeriesRing(GF(65537),'x,y'); S
Multivariate Power Series Ring in x, y over Finite Field of size 65537\end{verbatim}

Power series ring with many variables:

\begin{verbatim}sage: R = PowerSeriesRing(ZZ, [x%p for p in primes(100)]); R
Multivariate Power Series Ring in x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, x31, x37, x41, x43, x47, x53, x59, x61, x67, x71, x73, x79, x83, x89, x97 over Integer Ring\end{verbatim}

- Use \texttt{inject_variables()} to make the variables available for interactive use.

\begin{verbatim}sage: R.inject_variables()
Defining x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, x31, x37, x41, x43, x47, x53, x59, x61, x67, x71, x73, x79, x83, x89, x97
sage: f = x47 + 3*x11*x29 - x19 + R.O(3)
sage: f
True\end{verbatim}

Variable ordering determines how series are displayed:

\begin{verbatim}sage: T.<a,b> = PowerSeriesRing(ZZ, order='deglex'); T
Multivariate Power Series Ring in a, b over Integer Ring
sage: T.term_order()
Degree lexicographic term order
sage: p = - 2*a^6 + a^5*b^2 + a^7 - b^2 - a*b^3 + T.O(9); p
a^7 + a^5*b^2 - 2*a^6 - a*b^3 - b^2 + 0(a, b)^9
sage: U = PowerSeriesRing(ZZ, 'a,b', order='negdeglex'); U
Multivariate Power Series Ring in a, b over Integer Ring\end{verbatim}

(continues on next page)
sage: U.term_order()
Negative degree lexicographic term order
sage: U(p)
-b^2 - a*b^3 - 2*b^6 + a^7 + a^5*b^2 + O(a, b)^9

See also:

• sage.misc.defaults.set_series_precision()

class sage.rings.power_series_ring.PowerSeriesRing_domain(base_ring, name=None, default_prec=None, sparse=False, implementation=None, category=None)

Bases: PowerSeriesRing_generic, IntegralDomain

class sage.rings.power_series_ring.PowerSeriesRing_generic(base_ring, name=None, default_prec=None, sparse=False, implementation=None, category=None)

Bases: UniqueRepresentation, CommutativeRing, Nonexact

A power series ring.

base_extend(R)

Return the power series ring over R in the same variable as self, assuming there is a canonical coerce map from the base ring of self to R.

EXAMPLES:

sage: R.<T> = GF(7)[[]]; R
Power Series Ring in T over Finite Field of size 7
sage: R.change_ring(ZZ)
Power Series Ring in T over Integer Ring
sage: R.base_extend(ZZ)
Traceback (most recent call last):
...
TypeError: no base extension defined

change_ring(R)

Return the power series ring over R in the same variable as self.

EXAMPLES:
change_var(*var*)

Return the power series ring in variable *var* over the same base ring.

characteristic()

Return the characteristic of this power series ring, which is the same as the characteristic of the base ring of the power series ring.

construction()

Return the functorial construction of self, namely, completion of the univariate polynomial ring with respect to the indeterminate (to a given precision).

gen(*n=0*)

Return the generator of this power series ring.
EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.gen()
t
sage: R.gen(3)
Traceback (most recent call last):
  ...
  IndexError: generator n>0 not defined
```

is_dense()

EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(ZZ)
sage: t.is_dense()
True
sage: R.<t> = PowerSeriesRing(ZZ, sparse=True)
sage: t.is_dense()
False
```

is_exact()

Returns False since the ring of power series over any ring is not exact.

EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.is_exact()
False
```

is_field(proof=True)

Returns False since the ring of power series over any ring is never a field.

EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.is_field()
False
```

is_finite()

Returns False since the ring of power series over any ring is never finite.

EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.is_finite()
False
```

is Sparse()

EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(ZZ)
sage: t.is_sparse()
False
sage: R.<t> = PowerSeriesRing(ZZ, sparse=True)
```

(continues on next page)
sage: t.is_sparse()
True

laurent_series_ring()

If this is the power series ring $R[[t]]$, return the Laurent series ring $R((t))$.

EXAMPLES:

sage: R.<t> = PowerSeriesRing(ZZ, default_prec=5)
sage: S = R.laurent_series_ring(); S
Laurent Series Ring in t over Integer Ring
sage: S.default_prec()
5
sage: f = 1+t; g=1/f; g
1 - t + t^2 - t^3 + t^4 + O(t^5)

ngens()

Return the number of generators of this power series ring.

This is always 1.

EXAMPLES:

sage: R.<t> = ZZ[[[]]

sage: R.ngens()
1

random_element(prec=None, *args, **kwds)

Return a random power series.

INPUT:

- prec - Integer specifying precision of output (default: default precision of self)
- *args, **kwds - Passed on to the random_element method for the base ring

OUTPUT:

- Power series with precision prec whose coefficients are random elements from the base ring, randomized subject to the arguments *args and **kwds

ALGORITHM:

Call the random_element method on the underlying polynomial ring.

EXAMPLES:

sage: R.<t> = PowerSeriesRing(QQ)
sage: R.random_element(5) # random
-4 - 1/2*t^2 - 1/95*t^3 + 1/2*t^4 + O(t^5)
sage: R.random_element(10) # random
-1/2 + 2*t - 2/7*t^2 - 25*t^3 - t^4 + 2*t^5 - 4*t^7 - 1/3*t^8 - t^9 + O(t^10)

If given no argument, random_element uses default precision of self:

sage: T = PowerSeriesRing(ZZ, 't')
sage: T.default_prec()
Further arguments are passed to the underlying base ring (github issue #9481):

```sage
sage: SZ = PowerSeriesRing(ZZ, 'v')
sage: SQ = PowerSeriesRing(QQ, 'v')
sage: SR = PowerSeriesRing(RR, 'v')

sage: SZ.random_element(x=4, y=6) # random
4 + 5*v + 5*v^2 + 5*v^3 + 4*v^4 + 5*v^5 + 5*v^6 + 5*v^7 + 4*v^8 + 5*v^9 + 4*v^10 + 4*v^11 + 5*v^12 + 5*v^13 + 5*v^14 + 5*v^15 + 5*v^16 + 5*v^17 + 4*v^18 + 5*v^19 + O(v^20)
sage: SZ.random_element(3, x=4, y=6) # random
5 + 4*v + 5*v^2 + 0(v^3)
sage: SQ.random_element(3, num_bound=3, den_bound=100) # random
1/87 - 3/70*v - 3/44*v^2 + O(v^3)
sage: SR.random_element(3, max=10, min=-10) # random
2.85948321262904 - 9.73071330911226*v - 6.60414378519265*v^2 + O(v^3)
```

residue_field()

Return the residue field of this power series ring.

EXAMPLES:

```sage
sage: R.<x> = PowerSeriesRing(GF(17))
sage: R.residue_field()
Finite Field of size 17
sage: R.<x> = PowerSeriesRing(Zp(5))
sage: R.residue_field()
Finite Field of size 5
```

uniformizer()

Return a uniformizer of this power series ring if it is a discrete valuation ring (i.e., if the base ring is actually a field). Otherwise, an error is raised.

EXAMPLES:

```sage
sage: R.<t> = PowerSeriesRing(QQ)
sage: R.uniformizer()
t
sage: R.<t> = PowerSeriesRing(ZZ)
sage: R.uniformizer()
Traceback (most recent call last):
  ...
TypeError: The base ring is not a field
```
variable_names_recursive(depth=None)

Return the list of variable names of this and its base rings.

EXAMPLES:

```python
sage: R = QQ[['x']][['y']][['z']]
sage: R.variable_names_recursive()
('x', 'y', 'z')
sage: R.variable_names_recursive(2)
('y', 'z')
```

class sage.rings.power_series_ring.PowerSeriesRing_over_field(base_ring, name=None, default_prec=None, sparse=False, implementation=None, category=None)

Bases: PowerSeriesRing_domain

fraction_field()

Return the fraction field of this power series ring, which is defined since this is over a field.

This fraction field is just the Laurent series ring over the base field.

EXAMPLES:

```python
sage: R.<t> = PowerSeriesRing(GF(7))
sage: R.fraction_field()
Laurent Series Ring in t over Finite Field of size 7
sage: Frac(R)
Laurent Series Ring in t over Finite Field of size 7
```

is_PowerSeriesRing(R)

Return True if this is a univariate power series ring. This is in keeping with the behavior of is_PolynomialRing versus is_MPolynomialRing.

EXAMPLES:

```python
sage: from sage.rings.power_series_ring import is_PowerSeriesRing
sage: is_PowerSeriesRing(10)  # indirect doctest
False
sage: is_PowerSeriesRing(QQ[['x']])
True
```

unpickle_power_series_ring_v0(base_ring, name, default_prec, sparse)

Unpickle (deserialize) a univariate power series ring according to the given inputs.

EXAMPLES:

```python
sage: P.<x> = PowerSeriesRing(QQ)
sage: loads(dumps(P)) == P  # indirect doctest
True
```
Sage provides an implementation of dense and sparse power series over any Sage base ring. This is the base class of the implementations of univariate and multivariate power series ring elements in Sage (see also Power Series Methods, Multivariate Power Series).

AUTHORS:

- William Stein
- David Harvey (2006-09-11): added solve_linear_de() method
- Simon King (2012-08): use category and coercion framework, github issue #13412

EXAMPLES:

```python
sage: R.<x> = PowerSeriesRing(ZZ)
sage: TestSuite(R).run()
sage: R([1,2,3])
1 + 2*x + 3*x^2
sage: R([1,2,3], 10)
1 + 2*x + 3*x^2 + O(x^10)
sage: f = 1 + 2*x - 3*x^3 + O(x^4); f
1 + 2*x - 3*x^3 + O(x^4)
sage: f^10
1 + 20*x + 180*x^2 + 930*x^3 + O(x^4)
sage: g = 1/f; g
1 - 2*x + 4*x^2 - 5*x^3 + O(x^4)
sage: g * f
1 + O(x^4)
```

In Python (as opposed to Sage) create the power series ring and its generator as follows:

```python
sage: R = PowerSeriesRing(ZZ, 'x')
sage: x = R.gen()
sage: parent(x)
```

```console
Power Series Ring in x over Integer Ring
```

EXAMPLES:

This example illustrates that coercion for power series rings is consistent with coercion for polynomial rings.
The generator of the first ring gets coerced in as itself, since it is the base ring.

```
sage: huge_ring(gen1)
gen1
```

The generator of the second ring gets mapped via the natural map sending one generator to the other.

```
sage: huge_ring(gen2)
x
```

With power series the behavior is the same.

```
sage: power_ring1.<gen1> = PowerSeriesRing(QQ)
sage: power_ring2.<gen2> = PowerSeriesRing(QQ)
sage: huge_power_ring.<x> = PowerSeriesRing(power_ring1)
sage: huge_power_ring(gen1)
gen1
sage: huge_power_ring(gen2)
x
```

```class sage.rings.power_series_ring_element.PowerSeries

Bases: AlgebraElement

A power series. Base class of univariate and multivariate power series. The following methods are available with both types of objects.

\(O(prec)\)

Return this series plus \(O(x^{\text{prec}})\). Does not change \texttt{self}.

EXAMPLES:

```
sage: R.<x> = PowerSeriesRing(ZZ)
sage: p = 1 + x^2 + x^10; p
1 + x^2 + x^10
sage: p.O(15)
1 + x^2 + x^10 + O(x^15)
sage: p.O(5)
1 + x^2 + O(x^5)
sage: p.O(-5)
Traceback (most recent call last):
...
ValueError: prec (= -5) must be non-negative
```
```
\(V(n)\)

If \(f = \sum a_m x^m\), then this function returns \(\sum a_m x^{nm}\).

EXAMPLES:

```
sage: R.<x> = PowerSeriesRing(ZZ)
sage: p = 1 + x^2 + x^10; p
1 + x^2 + x^10
```
```
Power Series Rings and Laurent Series Rings, Release 10.0

\begin{verbatim}
(continued from previous page)

\texttt{sage: p.V(3)}
1 + x^6 + x^30
\texttt{sage: (p+O(x^20)).V(3)}
1 + x^6 + x^30 + O(x^60)

\texttt{add_bigoh(prec)}
Return the power series of precision at most \texttt{prec} got by adding $O(q^{\texttt{prec}})$ to $f$, where $q$ is the variable.

\textbf{EXAMPLES:}

\texttt{sage: R.<A> = RDF[[[]]
\texttt{sage: f = (1+A+O(A^5))^5; f}
1.0 + 5.0*A + 10.0*A^2 + 10.0*A^3 + 5.0*A^4 + O(A^5)
\texttt{sage: f.add_bigoh(3)}
1.0 + 5.0*A + 10.0*A^2 + O(A^3)
\texttt{sage: f.add_bigoh(5)}
1.0 + 5.0*A + 10.0*A^2 + 10.0*A^3 + 5.0*A^4 + O(A^5)

\texttt{base_extend(R)}
Return a copy of this power series but with coefficients in R.

The following coercion uses \texttt{base_extend} implicitly: \texttt{

\texttt{sage: R.<t> = ZZ[[t]]
\texttt{sage: (t - t^2) * Mod(1, 3)}
t + 2*t^2
}

\texttt{base_ring()}
Return the base ring that this power series is defined over.

\textbf{EXAMPLES:}

\texttt{sage: R.<t> = GF(49, 'alpha')[[]]
\texttt{sage: (t^2 + O(t^3)).base_ring()}
Finite Field in alpha of size 7^2

\texttt{change_ring(R)}
Change if possible the coefficients of self to lie in R.

\textbf{EXAMPLES:}

\texttt{sage: R.<T> = QQ[[[]]; R
Power Series Ring in T over Rational Field
\texttt{sage: f = 1 - 1/2*T + 1/3*T^2 + O(T^3)}
\texttt{sage: f.base_extend(GF(5))}
Traceback (most recent call last):
...
TypeError: no base extension defined
\texttt{sage: f.change_ring(GF(5))}
1 + 2*T + 2*T^2 + O(T^3)
\texttt{sage: f.change_ring(GF(3))}
Traceback (most recent call last):
...
ZeroDivisionError: inverse of Mod(0, 3) does not exist
\end{verbatim}
We can only change the ring if there is a \_call\_ coercion defined. The following succeeds because \( \mathbb{Z}(K(4)) \) is defined.

\begin{verbatim}
sage: K.<a> = NumberField(cyclotomic_polynomial(3), 'a')
sage: R.<t> = K[[t]]
sage: (4*t).change_ring(ZZ)
4*t
\end{verbatim}

This does not succeed because \( \mathbb{Z}(K(a+1)) \) is not defined.

\begin{verbatim}
sage: K.<a> = NumberField(cyclotomic_polynomial(3), 'a')
sage: R.<t> = K[[t]]
sage: ((a+1)*t).change_ring(ZZ)
Traceback (most recent call last):
  ...TypeError: Unable to coerce a + 1 to an integer
\end{verbatim}

**coefficients()**

Return the nonzero coefficients of self.

**EXAMPLES:**

\begin{verbatim}
sage: R.<t> = PowerSeriesRing(QQ)
sage: f = t + t^2 - 10/3*t^3
sage: f.coefficients()
[1, 1, -10/3]
\end{verbatim}

**common_prec\( (f) \)**

Return minimum precision of \( f \) and self.

**EXAMPLES:**

\begin{verbatim}
sage: R.<t> = PowerSeriesRing(QQ)

sage: f = t + t^2 + O(t^3)
sage: g = t + t^3 + t^4 + O(t^4)
sage: f.common_prec(g)
3
sage: g.common_prec(f)
3
sage: f = t + t^2 + O(t^3)

sage: g = t^2

sage: f.common_prec(g)
+Infinity
\end{verbatim}
\textbf{cos}(\textit{prec}='\textit{infinity}')

Apply \(\cos\) to the formal power series.

INPUT:

\begin{itemize}
  \item \textit{prec} – Integer or \textit{infinity}. The degree to truncate the result to.
\end{itemize}

OUTPUT:

A new power series.

EXAMPLES:

For one variable:

\begin{verbatim}
sage: t = PowerSeriesRing(QQ, 't').gen()
sage: f = (t + t**2).O(4)
sage: cos(f)
1 - 1/2*t^2 - t^3 + O(t^4)
\end{verbatim}

For several variables:

\begin{verbatim}
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a*b + T.O(3)
sage: cos(f)
1 - 1/2*a^2 - a*b + O(a, b)^3
sage: f.cos()
1 - 1/2*a^2 - a*b + O(a, b)^3
sage: f.cos(prec=2)
1 + O(a, b)^2
\end{verbatim}

If the power series has a non-zero constant coefficient \(c\), one raises an error:

\begin{verbatim}
sage: g = 2+f
sage: cos(g)
Traceback (most recent call last):
  ...
ValueError: can only apply cos to formal power series with zero constant term
\end{verbatim}

If no precision is specified, the default precision is used:

\begin{verbatim}
sage: T.default_prec()
12
sage: cos(a)
1 - 1/2*a^2 + 1/24*a^4 - 1/720*a^6 + 1/40320*a^8 - 1/3628800*a^10 + O(a, b)^12
sage: a.cos(prec=5)
1 - 1/2*a^2 + 1/24*a^4 + O(a, b)^5
sage: cos(a + T.O(5))
1 - 1/2*a^2 + 1/24*a^4 + O(a, b)^5
\end{verbatim}

\textbf{cosh}(\textit{prec}='\textit{infinity}')

Apply \(\cosh\) to the formal power series.

INPUT:

\begin{itemize}
  \item \textit{prec} – Integer or \textit{infinity}. The degree to truncate the result to.
\end{itemize}

OUTPUT:
A new power series.

EXAMPLES:

For one variable:

```sage
t = PowerSeriesRing(QQ, 't').gen()
f = (t + t**2).O(4)
cosh(f)
1 + 1/2*t^2 + t^3 + O(t^4)
```

For several variables:

```sage
T.<a,b> = PowerSeriesRing(ZZ,2)
f = a + b + a*b + T.O(3)
cosh(f)
1 + 1/2*a^2 + a*b + 1/2*b^2 + O(a, b)^3
f.cosh()
1 + 1/2*a^2 + a*b + 1/2*b^2 + O(a, b)^3
f.cosh(prec=2)
1 + O(a, b)^2
```

If the power series has a non-zero constant coefficient \( c \), one raises an error:

```sage
f = 2+f
cosh(g)
Traceback (most recent call last):
... ValueError: can only apply cosh to formal power series with zero constant term
```

If no precision is specified, the default precision is used:

```sage
T.default_prec()
12
cosh(a)
1 + 1/2*a^2 + 1/24*a^4 + 1/720*a^6 + 1/40320*a^8 + 1/3628800*a^10 + O(a, b)^12
a.cosh(prec=5)
1 + 1/2*a^2 + 1/24*a^4 + O(a, b)^5
```

\[ \text{degree}() \]

Return the degree of this power series, which is by definition the degree of the underlying polynomial.

```sage
R.<t> = PowerSeriesRing(QQ, sparse=True)
f = t^100000 + O(t^1000000)
f.degree()
100000
```

\[ \text{derivative}(*\text{args}) \]

The formal derivative of this power series, with respect to variables supplied in args.
Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

**See also:**

_derivative()

**EXAMPLES:**

```
sage: R.<x> = PowerSeriesRing(QQ)
sage: g = -x + x^2/2 - x^4 + O(x^6)
sage: g.derivative()
-1 + x - 4*x^3 + O(x^5)
sage: g.derivative(x)
-1 + x - 4*x^3 + O(x^5)
sage: g.derivative(x, x)
1 - 12*x^2 + O(x^4)
sage: g.derivative(x, 2)
1 - 12*x^2 + O(x^4)
```

**egf_to_ogf()**

Return the ordinary generating function power series, assuming self is an exponential generating function power series.

This function is known as serlaplace in PARI/GP.

**EXAMPLES:**

```
sage: R.<t> = PowerSeriesRing(QQ)
sage: f = t + t^2/factorial(2) + 2*t^3/factorial(3)
sage: f.egf_to_ogf()
t + t^2 + 2*t^3
```

**exp**(prec=None)

Return exp of this power series to the indicated precision.

**INPUT:**

- prec - integer; default is self.parent().default_prec

**ALGORITHM:** See solve_linear_de().

**Note:**

- Screwy things can happen if the coefficient ring is not a field of characteristic zero. See solve_linear_de().

**AUTHORS:**

- David Harvey (2006-09-08): rewrote to use simplest possible “lazy” algorithm.
- David Harvey (2006-09-10): rewrote to use divide-and-conquer strategy.
- David Harvey (2006-09-11): factored functionality out to solve_linear_de().
- Sourav Sen Gupta, David Harvey (2008-11): handle constant term

**EXAMPLES:**
Power Series Rings and Laurent Series Rings, Release 10.0

```sage
R.<t> = PowerSeriesRing(QQ, default_prec=10)
```

Check that \( \exp(t) \) is, well, \( \exp(t) \):

```sage
(t + O(t^10)).exp()
```

1 + t + 1/2*t^2 + 1/6*t^3 + 1/120*t^4 + 1/720*t^5 + 1/5040*t^6 + 1/40320*t^7 + 1/362880*t^8 + 1/3628800*t^9 + O(t^10)

Check that \( \exp(\log(1 + t)) \) is \( 1 + t \):

```sage
(sum([-(-t)^n/n for n in range(1, 10)]) + O(t^10)).exp()
```

1 + t + O(t^10)

Check that \( \exp(2t + t^2 - t^5) \) is whatever it is:

```sage
(2*t + t^2 - t^5 + O(t^10)).exp()
```

1 + 2*t + 3*t^2 + 10/3*t^3 + 19/6*t^4 + 8/5*t^5 - 7/90*t^6 - 538/315*t^7 - 425/168*t^8 - 30629/11340*t^9 + O(t^10)

Check requesting lower precision:

```sage
(t + t^2 - t^5 + O(t^10)).exp(5)
```

1 + t + 3/2*t^2 + 7/6*t^3 + 25/24*t^4 + O(t^5)

Can't get more precision than the input:

```sage
(t + t^2 + O(t^3)).exp(10)
```

1 + t + 3/2*t^2 + O(t^3)

Check some boundary cases:

```sage
(t + O(t^2)).exp(1)
```

1 + O(t)

```sage
(t + O(t^2)).exp(0)
```

O(t^0)

Handle nonzero constant term (fixes github issue #4477):

```sage
R.<x> = PowerSeriesRing(RR)
R.<x> = PowerSeriesRing(ZZ)
```

```sage
(1 + x + x^2 + O(x^3)).exp()
```

2.71828182845905 + 2.71828182845905*x + 4.07742274268857*x^2 + O(x^3)

```sage
(1 + x + O(x^2)).exp()
```

Traceback (most recent call last):
...
ArithmeticError: exponential of constant term does not belong to coefficient ring (consider working in a larger ring)

```sage
R.<x> = PowerSeriesRing(GF(5))
```

```sage
(1 + x + O(x^2)).exp()
```

Traceback (most recent call last):
...
ArithmeticError: constant term of power series does not support exponentiation
exponents()

Return the exponents appearing in self with nonzero coefficients.

EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(QQ)
sage: f = t + t^2 - 10/3*t^3
sage: f.exponents()
[1, 2, 3]
```

inverse()

Return the inverse of self, i.e., self^(-1).

EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(QQ, sparse=True)
sage: t.inverse()
t^-1
sage: type(_)
<class 'sage.rings.laurent_series_ring_element.LaurentSeries'>
sage: (1-t).inverse()
1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + ...
```

is_dense()

EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(ZZ)
sage: t.is_dense()
True
sage: R.<t> = PowerSeriesRing(ZZ, sparse=True)
sage: t.is_dense()
False
```

is_gen()

Return True if this is the generator (the variable) of the power series ring.

EXAMPLES:

```
sage: R.<t> = QQ[[[]]

sage: t.is_gen()
True
sage: (1 + 2*t).is_gen()
False
```

Note that this only returns True on the actual generator, not on something that happens to be equal to it.

```
sage: (1*t).is_gen()
False
sage: 1*t == t
True
```

is_monomial()

Return True if this element is a monomial. That is, if self is x^n for some non-negative integer n.

EXAMPLES:

```
```
is_monomial()

```python
sage: k.<z> = PowerSeriesRing(QQ, 'z')
sage: z.is_monomial() # True
sage: k(1).is_monomial() # True
sage: (z+1).is_monomial() # False
sage: (z^2909).is_monomial() # True
sage: (3*z^2909).is_monomial() # False
```

is_sparse()

EXAMPLES:

```python
sage: R.<t> = PowerSeriesRing(ZZ)
sage: t.is_sparse() # False
sage: R.<t> = PowerSeriesRing(ZZ, sparse=True)
sage: t.is_sparse() # True
```

is_square()

Return True if this function has a square root in this ring, e.g., there is an element \( y \) in \( \text{self}.parent() \) such that \( y^2 \) equals \( \text{self} \).

ALGORITHM: If the base ring is a field, this is true whenever the power series has even valuation and the leading coefficient is a perfect square.

For an integral domain, it attempts the square root in the fraction field and tests whether or not the result lies in the original ring.

EXAMPLES:

```python
sage: K.<t> = PowerSeriesRing(QQ, 't', 5)
sage: (1+t).is_square() # True
sage: (2+t).is_square() # False
sage: (2+t.change_ring(RR)).is_square() # True
sage: t.is_square() # False
sage: K.<t> = PowerSeriesRing(ZZ, 't', 5)
sage: (1+t).is_square() # False
sage: f = (1+t)^100
sage: f.is_square() # True
```

is_unit()

Return True if this power series is invertible.

A power series is invertible precisely when the constant term is invertible.

EXAMPLES:
AUTHORS:
- David Harvey (2006-09-03)

\textbf{jacobi\_continued\_fraction()}

Return the Jacobi continued fraction of \texttt{self}.

The J-fraction or Jacobi continued fraction of a power series is a continued fraction expansion with steps of size two. We use the following convention

\[
\frac{1}{1 + A_0 t + B_0 t^2 / (1 + A_1 t + B_1 t^2 / (1 + \cdots ))}
\]

\textbf{OUTPUT:}

tuple of pairs \((A_n, B_n)\) for \(n \geq 0\)

The expansion is done as long as possible given the precision. Whenever the expansion is not well-defined, because it would require to divide by zero, an exception is raised.

See section 2.7 of [Kra1999det] for the close relationship of this kind of expansion with Hankel determinants and orthogonal polynomials.

\textbf{EXAMPLES:}

\texttt{sage: t = PowerSeriesRing(QQ, \textquoteleft t\textquoteright).gen()}
\texttt{sage: s = sum(factorial(k) * t**k for k in range(12)).O(12)}
\texttt{sage: s.jacobi\_continued\_fraction()}
\[((-1, -1), (-3, -4), (-5, -9), (-7, -16), (-9, -25))\]

Another example:

\texttt{sage: (log(1+t)/t).jacobi\_continued\_fraction()}
\[
((1/2, -1/12),
(1/2, -1/15),
(1/2, -9/140),
(1/2, -4/63),
(1/2, -25/396),
(1/2, -9/143),
(1/2, -49/780),
(1/2, -16/255),
(1/2, -81/1292))
\]

\textbf{laurent\_series()}

Return the Laurent series associated to this power series, i.e., this series considered as a Laurent series.

\textbf{EXAMPLES:}

\texttt{sage: k.<w> = QQ[[w]]}
\texttt{sage: f = 1+17*w+15*w^3+O(w^5)}
sage: parent(f)
Power Series Ring in w over Rational Field
sage: g = f.laurent_series(); g
1 + 17*w + 15*w^3 + O(w^5)

lift_to_precision(absprec=None)
Return a congruent power series with absolute precision at least absprec.

INPUT:

• absprec – an integer or None (default: None), the absolute precision of the result. If None, lifts to an
  exact element.

EXAMPLES:

sage: A.<t> = PowerSeriesRing(GF(5))
sage: x = t + t^2 + O(t^5)
sage: x.lift_to_precision(10)
t + t^2 + O(t^10)
sage: x.lift_to_precision()
t + t^2

list()
See this method in derived classes:

• sage.rings.power_series_poly.PowerSeries_poly.list(),
  • sage.rings.multi_power_series_ring_element.MPowerSeries.list()

Implementations MUST override this in the derived class.

EXAMPLES:

sage: R.<x> = PowerSeriesRing(ZZ)
sage: PowerSeries.list(1+x^2)
Traceback (most recent call last):
  ...
NotImplementedError

log(prec=None)
Return log of this power series to the indicated precision.

This works only if the constant term of the power series is 1 or the base ring can take the logarithm of the
constant coefficient.

INPUT:

• prec – integer; default is self.parent().default_prec()

ALGORITHM: See solve_linear_de().

Warning: Screwy things can happen if the coefficient ring is not a field of characteristic zero. See
solve_linear_de().

EXAMPLES:
\begin{verbatim}
from sage import *
R.<t> = PowerSeriesRing(QQ, default_prec=10)
sage: (1 + t + O(t^10)).log()
t - 1/2*t^2 + 1/3*t^3 - 1/4*t^4 + 1/5*t^5 - 1/6*t^6 + 1/7*t^7 - 1/8*t^8 + 1/9*t^9 + O(t^10)
sage: t.exp().log()
t + O(t^10)
sage: (1+t).log().exp()
1 + t + O(t^10)
sage: (-1 + t + O(t^10)).log()
Traceback (most recent call last):
  ... ArithmeticError: constant term of power series is not 1
R.<t> = PowerSeriesRing(RR)
sage: (2+t).log().exp()
2.00000000000000 + 1.00000000000000*t + O(t^20)
\end{verbatim}

map_coefficients(f, new_base_ring=None)

Return the series obtained by applying \( f \) to the non-zero coefficients of \( self \).

If \( f \) is a \texttt{sage.categories.map.Map}, then the resulting series will be defined over the codomain of \( f \). Otherwise, the resulting polynomial will be over the same ring as \( self \). Set \texttt{new_base_ring} to override this behaviour.

INPUT:

- \( f \) – a callable that will be applied to the coefficients of \( self \).
- \texttt{new_base_ring} (optional) – if given, the resulting polynomial will be defined over this ring.

EXAMPLES:

\begin{verbatim}
sage: R.<x> = SR[]
sage: f = (1+I)*x^2 + 3*x - I
sage: f.map_coefficients(lambda z: z.conjugate())
I + 3*x + (-I + 1)*x^2
sage: R.<x> = ZZ[]
sage: f = x^2 + 2
sage: f.map_coefficients(lambda a: a + 42)
44 + 43*x^2

Examples with different base ring:

sage: R.<x> = ZZ[]
sage: k = GF(2)
sage: residue = lambda x: k(x)
sage: f = 4*x^2+x+3
sage: g = f.map_coefficients(residue); g
1 + x
sage: g.parent()
Power Series Ring in x over Integer Ring
sage: g = f.map_coefficients(residue, new_base_ring = k); g
\end{verbatim}
1 + x

```
sage: g.parent()
```
```
Power Series Ring in x over Finite Field of size 2
```

```
sage: residue = k.coerce_map_from(ZZ)
sage: g = f.map_coefficients(residue); g
```
```
1 + x
```

```
sage: g.parent()
```
```
Power Series Ring in x over Finite Field of size 2
```

Tests other implementations:

```
sage: R.<q> = PowerSeriesRing(GF(11), implementation='pari')
sage: f = q - q^3 + O(q^10)
sage: f.map_coefficients(lambda c: c - 2)
```
```
10*q + 8*q^3 + O(q^10)
```

```
nth_root(n, prec=None)
```

Return the n-th root of this power series.

**INPUT:**

- n – integer
- prec – integer (optional) - precision of the result. Though, if this series has finite precision, then the result cannot have larger precision.

**EXAMPLES:**

```
sage: R.<x> = QQ[[[]]
sage: (1+x).nth_root(5)
```
```
1 + 1/5*x - 2/25*x^2 + ... + 12039376311816/2384185791015625*x^19 + O(x^20)
```

```
sage: (1 + x + O(x^5)).nth_root(5)
```
```
1 + 1/5*x - 2/25*x^2 + 6/125*x^3 - 21/625*x^4 + O(x^5)
```

Check that the results are consistent with taking log and exponential:

```
sage: R.<x> = PowerSeriesRing(QQ, default_prec=100)
sage: p = (1 + 2*x - x^4)**200
sage: p1 = p.nth_root(1000, prec=100)
sage: p2 = (p.log()/1000).exp()
```
```
True
sage: p1.polynomial() == p2.polynomial()
```
```
True
```

Positive characteristic:

```
sage: R.<u> = GF(3)[[]]
sage: p = 1 + 2 * u^2
sage: p.nth_root(4)
```
```
1 + 2*u^2 + u^6 + 2*u^8 + u^12 + 2*u^14 + O(u^20)
```

```
sage: p.nth_root(4)**4
```
```
1 + 2*u^2 + O(u^20)
```
ogf_to_egf()

Return the exponential generating function power series, assuming self is an ordinary generating function power series.

This can also be computed as \texttt{serconvol(f, \exp(t))} in PARI/GP.

EXAMPLES:

\begin{verbatim}
sage: R.<t> = PowerSeriesRing(QQ)
sage: f = t + t^2 + 2*t^3
sage: f.ogf_to_egf()
t + 1/2*t^2 + 1/3*t^3
\end{verbatim}

padded_list\(_{(n=\text{None})}\)

Return a list of coefficients of self up to (but not including) \(q^n\).

Includes 0’s in the list on the right so that the list has length \(n\).

INPUT:

• \(n\) - (optional) an integer that is at least 0. If \(n\) is not given, it will be taken to be the precision of self, unless this is \(+\text{Infinity}\), in which case we just return \texttt{self.list()}.

EXAMPLES:

\begin{verbatim}
sage: R.<q> = PowerSeriesRing(QQ)
sage: f = 1 - 17*q + 13*q^2 + 10*q^4 + O(q^7)
sage: f.list()
[1, -17, 13, 0, 10]
sage: f.padded_list(7)
[1, -17, 13, 0, 10, 0, 0]
sage: f.padded_list(10)
[1, -17, 13, 0, 10, 0, 0, 0, 0, 0]
sage: f.padded_list(3)
[1, -17, 13]
sage: f.padded_list()
[1, -17, 13, 0, 10, 0, 0]
sage: g = 1 - 17*q + 13*q^2 + 10*q^4
sage: g.list()
[1, -17, 13, 0, 10]
sage: g.padded_list()
[1, -17, 13, 0, 10]
sage: g.padded_list(10)
[1, -17, 13, 0, 10, 0, 0, 0, 0, 0]
\end{verbatim}

polynomial()

See this method in derived classes:

• \texttt{sage.rings.power_series_poly.PowerSeries_poly.polynomial()},

• \texttt{sage.rings.multi_power_series_ring_element.MPowerSeries.polynomial()}

Implementations \textit{MUST} override this in the derived class.

EXAMPLES:

\begin{verbatim}
sage: R.<x> = PowerSeriesRing(ZZ)
sage: PowerSeries.polynomial(1+x^2)
\end{verbatim}
prec()

The precision of \( ... + O(x^r) \) is by definition \( r \).

EXAMPLES:

```python
sage: R.<t> = ZZ[[t]]
sage: (t^2 + O(t^3)).prec()
3
sage: (1 - t^2 + O(t^100)).prec()
100
```

precision_absolute()

Return the absolute precision of this series.

By definition, the absolute precision of \( ... + O(x^r) \) is \( r \).

EXAMPLES:

```python
sage: R.<t> = ZZ[[t]]
sage: (t^2 + O(t^3)).precision_absolute()
3
sage: (1 - t^2 + O(t^100)).precision_absolute()
100
```

precision_relative()

Return the relative precision of this series, that is the difference between its absolute precision and its valuation.

By convention, the relative precision of 0 (or \( O(x^r) \) for any \( r \)) is 0.

EXAMPLES:

```python
sage: R.<t> = ZZ[[t]]
sage: (t^2 + O(t^3)).precision_relative()
1
sage: (1 - t^2 + O(t^100)).precision_relative()
100
sage: O(t^4).precision_relative()
0
```

shift(n)

Return this power series multiplied by the power \( t^n \).

If \( n \) is negative, terms below \( t^{-n} \) are discarded.

This power series is left unchanged.

**Note:** Despite the fact that higher order terms are printed to the right in a power series, right shifting decreases the powers of \( t \), while left shifting increases them. This is to be consistent with polynomials, integers, etc.
EXAMPLES:

```python
sage: R.<t> = PowerSeriesRing(QQ['y'], 't', 5)
sage: f = ~(1+t); f
1 - t + t^2 - t^3 + t^4 + O(t^5)
sage: f.shift(3)
t^3 - t^4 + t^5 - t^6 + t^7 + O(t^8)
sage: f >> 2
1 - t + t^2 + O(t^3)
sage: f << 10
t^10 - t^11 + t^12 - t^13 + t^14 + O(t^15)
sage: t << 29
t^30
```

AUTHORS:

- Robert Bradshaw (2007-04-18)

```python
sin(prec='infinity')
```

Apply sin to the formal power series.

**INPUT:**

- prec – Integer or infinity. The degree to truncate the result to.

**OUTPUT:**

A new power series.

**EXAMPLES:**

For one variable:

```python
sage: t = PowerSeriesRing(QQ, 't').gen()
sage: f = (t + t**2).O(4)
sage: sin(f)
t + t^2 - 1/6*t^3 + O(t^4)
```

For several variables:

```python
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a*b + T.O(3)
sage: sin(f)
a + b + a*b + O(a, b)^3
sage: f.sin()
a + b + a*b + O(a, b)^3
sage: f.sin(prec=2)
a + b + O(a, b)^2
```

If the power series has a non-zero constant coefficient 𝑐, one raises an error:

```python
sage: g = 2+f
sage: sin(g)
Traceback (most recent call last):
...
ValueError: can only apply sin to formal power series with zero constant term
```

If no precision is specified, the default precision is used:
```python
sage: T.default_prec()
12
sage: sin(a)
a - 1/6*a^3 + 1/120*a^5 - 1/5040*a^7 + 1/362880*a^9 - 1/39916800*a^11 + O(a, b)^-12
sage: a.sin(prec=5)
a - 1/6*a^3 + O(a, b)^5
```

**sinh**(prec='infinity')

Apply sinh to the formal power series.

**INPUT:**

- prec – Integer or infinity. The degree to truncate the result to.

**OUTPUT:**

A new power series.

**EXAMPLES:**

For one variable:

```python
sage: t = PowerSeriesRing(QQ, 't').gen()
sage: f = (t + t**2).O(4)
sage: sinh(f)
t + t^2 + 1/6*t^3 + O(t^4)
```

For several variables:

```python
sage: T.<a,b> = PowerSeriesRing(ZZ, 2)
sage: f = a + b + a*b + T.O(3)
sage: sin(f)
a + b + a*b + 0(a, b)^3
sage: f.sinh()
a + b + a*b + 0(a, b)^3
sage: f.sinh(prec=2)
a + b + 0(a, b)^2
```

If the power series has a non-zero constant coefficient, one raises an error:

```python
sage: g = 2+f
sage: sinh(g)
Traceback (most recent call last):
 ...
ValueError: can only apply sinh to formal power series with zero constant term
```

If no precision is specified, the default precision is used:

```python
sage: T.default_prec()
12
sage: sinh(a)
a + 1/6*a^3 + 1/120*a^5 + 1/5040*a^7 + 1/362880*a^9 +
```

(continues on next page)
\[ \frac{1}{39916800}a^{11} + O(a, b)^{12} \]

```
sage: a.sinh(prec=5)
a + 1/6*a^3 + O(a, b)^5
```

Obtain a power series solution to an inhomogeneous linear differential equation of the form:

\[ f'(t) = a(t)f(t) + b(t). \]

**INPUT:**
- `self` - the power series \( a(t) \)
- `b` - the power series \( b(t) \) (default is zero)
- `f0` - the constant term of \( f \) (“initial condition”) (default is 1)
- `prec` - desired precision of result (this will be reduced if either \( a \) or \( b \) have less precision available)

**OUTPUT:** the power series \( f \), to indicated precision

**ALGORITHM:** A divide-and-conquer strategy; see the source code. Running time is approximately \( M(n) \log n \), where \( M(n) \) is the time required for a polynomial multiplication of length \( n \) over the coefficient ring. (If you’re working over something like \( \mathbb{Q} \), running time analysis can be a little complicated because the coefficients tend to explode.)

**Note:**
- If the coefficient ring is a field of characteristic zero, then the solution will exist and is unique.
- For other coefficient rings, things are more complicated. A solution may not exist, and if it does it may not be unique. Generally, by the time the \( n \)th term has been computed, the algorithm will have attempted divisions by \( n! \) in the coefficient ring. So if your coefficient ring has enough ‘precision’, and if your coefficient ring can perform divisions even when the answer is not unique, and if you know in advance that a solution exists, then this function will find a solution (otherwise it will probably crash).

**AUTHORS:**
- David Harvey (2006-09-11): factored functionality out from `exp()` function, cleaned up precision tests a bit

**EXAMPLES:**

```
sage: R.<t> = PowerSeriesRing(QQ, default_prec=10)
sage: a = 2 - 3*t + 4*t^2 + O(t^10)
sage: b = 3 - 4*t^2 + O(t^7)
sage: f = a.solve_linear_de(prec=5, b=b, f0=3/5)
sage: f
3/5 + 21/5*t + 33/10*t^2 - 38/15*t^3 + 11/24*t^4 + O(t^5)
sage: f.derivative() - a*f - b
O(t^4)
```
sage: a = 2 - 3*t + 4*t^2
sage: b = b = 3 - 4*t^2
sage: f = a.solve_linear_de(b=b, f0=3/5)
Traceback (most recent call last):
...  
ValueError: cannot solve differential equation to infinite precision

sage: a.solve_linear_de(prec=5, b=b, f0=3/5)
3/5 + 21/5*t + 33/10*t^2 - 38/15*t^3 + 11/24*t^4 + O(t^5)

sqrt(prec=None, extend=False, all=False, name=None)

Return a square root of self.

INPUT:

• prec - integer (default: None): if not None and the series has infinite precision, truncates series at precision prec.

• extend - bool (default: False); if True, return a square root in an extension ring, if necessary. Otherwise, raise a ValueError if the square root is not in the base power series ring. For example, if extend is True the square root of a power series with odd degree leading coefficient is defined as an element of a formal extension ring.

• name - string; if extend is True, you must also specify the print name of the formal square root.

• all - bool (default: False); if True, return all square roots of self, instead of just one.

ALGORITHM: Newton’s method

\[ x_{i+1} = \frac{1}{2} (x_i + \text{self}/x_i) \]

EXAMPLES:

sage: K.<t> = PowerSeriesRing(QQ, 't', 5)
sage: sqrt(t^2)
t
sage: sqrt(1+t)  
1 + 1/2*t - 1/8*t^2 + 1/16*t^3 - 5/128*t^4 + O(t^5)
sage: sqrt(4+t)  
2 + 1/4*t - 1/64*t^2 + 1/512*t^3 - 5/16384*t^4 + O(t^5)
sage: u = sqrt(2+t, prec=2, extend=True, name='alpha'); u
alpha
sage: u^2
2 + t
sage: u.parent()  
Univariate Quotient Polynomial Ring in alpha over Power Series Ring in t over Rational Field with modulus x^2 - 2 - t
sage: K.<t> = PowerSeriesRing(QQ, 't', 50)
sage: sqrt(1+2*t+t^2)  
1 + t
sage: sqrt(t^2 +2*t^4 + t^6)  
t + t^3
sage: sqrt(1 + t + t^2 + 7*t^3)^2  
1 + t + t^2 + 7*t^3 + O(t^50)
sage: sqrt(K(0))
(continues on next page)
sage: t = sqrt(t^2)

sage: K.<t> = PowerSeriesRing(CDF, 5)
sage: v = sqrt(-1 + t + t^3, all=True); v
[1.0*I - 0.5*I*t - 0.125*I*t^2 - 0.5625*I*t^3 - 0.2890625*I*t^4 + O(t^5),
  -1.0*I + 0.5*I*t + 0.125*I*t^2 + 0.5625*I*t^3 + 0.2890625*I*t^4 + O(t^5)]
sage: [a^2 for a in v]
[-1.0 + 1.0*t + 0.0*t^2 + 1.0*t^3 + O(t^5), -1.0 + 1.0*t + 0.0*t^2 + 1.0*t^3 +
  → O(t^5)]

A formal square root:

sage: K.<t> = PowerSeriesRing(QQ, 5)
sage: f = 2*t + t^3 + O(t^4)
sage: s = f.sqrt(extend=True, name='sqrtf'); s
sqrtf

sage: s^2
2*t + t^3 + O(t^4)
sage: parent(s)
Univariate Quotient Polynomial Ring in sqrtf over Power Series Ring in t over Rational Field with modulus x^2 - 2*t - t^3 + O(t^4)

AUTHORS:

• Robert Bradshaw
• William Stein

square_root()

Return the square root of self in this ring. If this cannot be done then an error will be raised.

This function succeeds if and only if self. is_square()

EXAMPLES:

sage: K.<t> = PowerSeriesRing(QQ, 't', 5)
sage: (1+t).square_root()
1 + 1/2*t - 1/8*t^2 + 1/16*t^3 - 5/128*t^4 + O(t^5)
sage: (2*t).square_root()
Traceback (most recent call last):
  ...
ValueError: Square root does not live in this ring.
sage: (2*t.change_ring(RR)).square_root()
1.4142135623709 + 0.353553390593274*t - 0.0441941738241592*t^2 + 0.
  → 0.010485434560398*t^3 - 0.00345266983001244*t^4 + O(t^5)
sage: t.square_root()
Traceback (most recent call last):
  ...
ValueError: Square root not defined for power series of odd valuation.
sage: K.<t> = PowerSeriesRing(ZZ, 't', 5)
sage: f = (1+t)^20
sage: f.square_root()
AUTHORS:

• Robert Bradshaw

**stieltjes_continued_fraction()**

Return the Stieltjes continued fraction of **self**.

The S-fraction or Stieltjes continued fraction of a power series is a continued fraction expansion with steps of size one. We use the following convention

\[
\frac{1}{1 - A_1 t/(1 - A_2 t/(1 - A_3 t/(1 - \cdots)))}
\]

**OUTPUT:**

\(A_n\) for \(n \geq 1\)

The expansion is done as long as possible given the precision. Whenever the expansion is not well-defined, because it would require to divide by zero, an exception is raised.

**EXAMPLES:**

```sage
sage: t = PowerSeriesRing(QQ, 't').gen()

sage: s = sum(catalan_number(k) * t**k for k in range(12)).O(12)
sage: s.stieltjes_continued_fraction()
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
```

Another example:

```sage
sage: (exp(t)).stieltjes_continued_fraction()
(1,
 -1/2,
 1/6,
 -1/6,
 1/10,
 -1/10,
 1/14,
 -1/14,
 1/18,
 -1/18,
 1/22,
 -1/22,
 1/26,
 -1/26,
 1/30,
 -1/30,
 1/34,
 -1/34,
 1/38)
```
\texttt{tan(\textit{prec=}'infinity')} \\
Apply \texttt{tan} to the formal power series. \\

\textbf{INPUT:}

- \textit{prec} – Integer or \textit{infinity}. The degree to truncate the result to.

\textbf{OUTPUT:}

A new power series.

\textbf{EXAMPLES:}

For one variable:

\begin{verbatim}
sage: t = PowerSeriesRing(QQ, \texttt{'t'}).gen()
sage: f = (t + t**2).O(4)
sage: tan(f)
t + t^2 + 1/3*t^3 + O(t^4)
\end{verbatim}

For several variables:

\begin{verbatim}
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a*b + T.O(3)
sage: tan(f)
a + b + a*b + 0(a, b)^3
sage: f.tan()
a + b + a*b + 0(a, b)^3
sage: f.tan(\texttt{prec=2})
a + b + O(a, b)^2
\end{verbatim}

If the power series has a non-zero constant coefficient \(c\), one raises an error:

\begin{verbatim}
sage: g = 2+f
sage: tan(g)
Traceback (most recent call last):
...
ValueError: can only apply \texttt{tan} to formal power series with zero constant term
\end{verbatim}

If no precision is specified, the default precision is used:

\begin{verbatim}
sage: T.default_prec()
12
sage: tan(a)
a + 1/3*a^3 + 2/15*a^5 + 17/315*a^7 + 62/2835*a^9 + 1382/155925*a^11 + O(a, b)^\rightarrow 12
sage: a.tan(\texttt{prec=5})
a + 1/3*a^3 + 0(a, b)^5
sage: tan(a + T.O(5))
a + 1/3*a^3 + 0(a, b)^5
\end{verbatim}

\texttt{tanh(\textit{prec=}'infinity')} \\
Apply \texttt{tanh} to the formal power series.

\textbf{INPUT:}

- \textit{prec} – Integer or \textit{infinity}. The degree to truncate the result to.
OUTPUT:

A new power series.

EXAMPLES:

For one variable:

```
sage: t = PowerSeriesRing(QQ, 't').gen()
sage: f = (t + t**2).O(4)
sage: tanh(f)
t + t^2 - 1/3*t^3 + O(t^4)
```

For several variables:

```
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a*b + T.O(3)
sage: tanh(f)
a + b + a*b + O(a, b)^3
sage: f.tanh()
a + b + a*b + O(a, b)^3
sage: f.tanh(prec=2)
a + b + O(a, b)^2
```

If the power series has a non-zero constant coefficient \(c\), one raises an error:

```
sage: g = 2+f
sage: tanh(g)
Traceback (most recent call last):
 ... ValueError: can only apply tanh to formal power series with zero constant term
```

If no precision is specified, the default precision is used:

```
sage: T.default_prec()
12
sage: tanh(a)
a - 1/3*a^3 + 2/15*a^5 - 17/315*a^7 + 62/2835*a^9 -
1382/155925*a^11 + O(a, b)^12
sage: a.tanh(prec=5)
a - 1/3*a^3 + O(a, b)^5
sage: tanh(a + T.O(5))
a - 1/3*a^3 + O(a, b)^5
```

**truncate** (\texttt{prec='infinity'})

The polynomial obtained from power series by truncation.

EXAMPLES:

```
sage: R.<I> = GF(2)[[]]
sage: f = 1/(1+I0(I^8)); f
1 + I + I^2 + I^3 + I^4 + I^5 + I^6 + I^7 + O(I^8)
sage: f.truncate(5)
I^4 + I^3 + I^2 + I + 1
```
valuation()  
Return the valuation of this power series.

This is equal to the valuation of the underlying polynomial.

EXAMPLES:

Sparse examples:

sage: R.<t> = PowerSeriesRing(QQ, sparse=True)  
sage: f = t^100000 + O(t^1000000)  
sage: f.valuation()  
100000

sage: R(0).valuation()  
+Infinity

Dense examples:

sage: R.<t> = PowerSeriesRing(ZZ)  
sage: f = 17*t^100 + O(t^110)  
sage: f.valuation()  
100

sage: t.valuation()  
1

valuation_zero_part()  
Factor self as $q^n \cdot (a_0 + a_1q + \cdots)$ with $a_0$ nonzero. Then this function returns $a_0 + a_1q + \cdots$.

Note: This valuation zero part need not be a unit if, e.g., $a_0$ is not invertible in the base ring.

EXAMPLES:

sage: R.<t> = PowerSeriesRing(QQ)  
sage: ((1/3)*t^5*(17-2/3*t^3)).valuation_zero_part()  
17/3 - 2/9*t^3

In this example the valuation 0 part is not a unit:

sage: R.<t> = PowerSeriesRing(ZZ, sparse=True)  
sage: u = (-2*t^5*(17-t^3)).valuation_zero_part(); u  
-34 + 2*t^3

sage: u.is_unit()  
False

sage: u.valuation()  
0

variable()  
Return a string with the name of the variable of this power series.

EXAMPLES:

sage: R.<x> = PowerSeriesRing(Rationals())  
sage: f = x^2 + 3*x^4 + O(x^7)  
sage: f.variable()  
'x'
AUTHORS:

- David Harvey (2006-08-08)

`sage.rings.power_series_ring_element.is_PowerSeries(x)`

Return True if `x` is an instance of a univariate or multivariate power series.

EXAMPLES:

```python
sage: R.<x> = PowerSeriesRing(ZZ)
sage: from sage.rings.power_series_ring_element import is_PowerSeries
sage: is_PowerSeries(1+x^2)
True
sage: is_PowerSeries(x-x)
True
sage: is_PowerSeries(0)
False
sage: var('x')
x
sage: is_PowerSeries(1+x^2)
False
```

`sage.rings.power_series_ring_element.make_element_from_parent_v0(parent, *args)`

`sage.rings.power_series_ring_element.make_powerseries_poly_v0(parent, f, prec, is_gen)`
POWER SERIES METHODS

The class `PowerSeries_poly` provides additional methods for univariate power series.

```
class sage.rings.power_series_poly.BaseRingFloorDivAction
 Bases: Action
 The floor division action of the base ring on a formal power series.

class sage.rings.power_series_poly.PowerSeries_poly
 Bases: PowerSeries
 EXAMPLES:
 sage: R.<q> = PowerSeriesRing(CC)
 sage: R
 Power Series Ring in q over Complex Field with 53 bits of precision
 sage: loads(q.dumps()) == q
 True
 sage: R.<t> = QQ[[[]]
 sage: f = 3 - t^3 + O(t^5)
 sage: a = f^3; a
 27 - 27*t^3 + O(t^5)
 sage: b = f^-3; b
 1/27 + 1/27*t^3 + O(t^5)
 sage: a*b
 1 + O(t^5)
```

Check that github issue #22216 is fixed:

```
sage: R.<T> = PowerSeriesRing(QQ)
sage: R(pari('1 + O(T)'))
1 + 0(T)
sage: R(pari('1/T + O(T)'))
Traceback (most recent call last):
 ...
ValueError: series has negative valuation
```

`degree()`

Return the degree of the underlying polynomial of `self`.

That is, if `self` is of the form $f(x) + O(x^n)$, we return the degree of $f(x)$. Note that if $f(x)$ is 0, we return $-1$, just as with polynomials.

EXAMPLES:
dict()
Return a dictionary of coefficients for self.
This is simply a dict for the underlying polynomial, so need not have keys corresponding to every number smaller than self.prec().

EXAMPLES:

```sage
sage: R.<t> = ZZ[[[]]
(5 + t^3 + O(t^4)).degree()
3
sage: (5 + O(t^4)).degree()
0
sage: O(t^4).degree()
-1
```

integral(var=None)
Return the integral of this power series.
By default, the integration variable is the variable of the power series.
Otherwise, the integration variable is the optional parameter var.

Note: The integral is always chosen so the constant term is 0.

EXAMPLES:

```sage
sage: k.<w> = QQ[[[]]
(1+17*w+15*w^3+O(w^5)).integral()
w + 17/2*w^2 + 15/4*w^4 + O(w^6)
(2*w^3 + 4*w^4 + O(w^7)).integral()
1/4*w^4 + 4/5*w^5 + O(w^8)
(3*w^2).integral()
w^3
```

list()
Return the list of known coefficients for self.
This is just the list of coefficients of the underlying polynomial, so in particular, need not have length equal to self.prec().

EXAMPLES:

```sage
sage: R.<t> = ZZ[[[]]
(f = 1 - 5*t^3 + t^5 + O(t^7)
(f.list()
[1, 0, 0, -5, 0, 1]
```

pade(m, n)
Return the Padé approximant of self of index (m, n).
The Padé approximant of index \((m, n)\) of a formal power series \(f\) is the quotient \(Q/P\) of two polynomials \(Q\) and \(P\) such that \(\deg(Q) \leq m\), \(\deg(P) \leq n\) and
\[
f(z) - Q(z)/P(z) = O(z^{m+n+1}).
\]
The formal power series \(f\) must be known up to order \(n + m\).

See [Wikipedia article Padé approximant](https://en.wikipedia.org/wiki/Pad%C3%A9_approximant)

**INPUT:**
- \(m, n\) – integers, describing the degrees of the polynomials

**OUTPUT:**
- a ratio of two polynomials

**Warning:** The current implementation uses a very slow algorithm and is not suitable for high orders.

**ALGORITHM:**
This method uses the formula as a quotient of two determinants.

**See also:**
- `sage.matrix.berlekamp_massey`,
- `sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint.rational_reconstruction()`

**EXAMPLES:**

```
sage: z = PowerSeriesRing(QQ, 'z').gen()
sage: exp(z).pade(4, 0)
1/24*z^4 + 1/6*z^3 + 1/2*z^2 + z + 1
sage: exp(z).pade(1, 1)
(-z - 2)/(z - 2)
sage: exp(z).pade(3, 3)
(-z^3 - 12*z^2 - 60*z + 120)/(z^3 - 12*z^2 + 60*z - 120)
sage: log(1-z).pade(4, 4)
(25/6*z^4 - 130/3*z^3 + 105*z^2 - 70*z)/(z^4 - 20*z^3 + 90*z^2 - 140*z + 70)
sage: sqrt(1+z).pade(3, 2)
(1/6*z^3 + 3*z^2 + 8*z + 16/3)/(z^2 + 16/3*z + 16/3)
sage: exp(2*z).pade(3, 3)
(-z^3 - 6*z^2 - 15*z - 15)/(z^3 - 6*z^2 + 15*z - 15)
```

**polynomial()**

Return the underlying polynomial of `self`.

**EXAMPLES:**

```
sage: R.<t> = GF(7)[[]]
sage: f = 3 - t^3 + O(t^5)
sage: f.polynomial()
6*t^3 + 3
```
Return the reverse of \( f \), i.e., the series \( g \) such that \( g(f(x)) = x \).

Given an optional argument \( \text{precision} \), return the reverse with given precision (note that the reverse can have precision at most \( f.prec() \)). If \( f \) has infinite precision, and the argument \( \text{precision} \) is not given, then the precision of the reverse defaults to the default precision of \( f.parent() \).

Note that this is only possible if the valuation of self is exactly 1.

ALGORITHM:

We first attempt to pass the computation to pari; if this fails, we use Lagrange inversion. Using \texttt{sage}:
\texttt{set_verbose(1)} will print a message if passing to pari fails.

If the base ring has positive characteristic, then we attempt to lift to a characteristic zero ring and perform the reverse there. If this fails, an error is raised.

EXAMPLES:

\begin{verbatim}
sage: R.<x> = PowerSeriesRing(QQ)
sage: f = 2*x + 3*x^2 - x^4 + O(x^5)
sage: g = f.reverse()
sage: g
1/2*x - 3/8*x^2 + 9/16*x^3 - 131/128*x^4 + O(x^5)
sage: g(f)
x + O(x^5)
sage: f(g)
x + O(x^5)
sage: A.<t> = PowerSeriesRing(ZZ)
sage: a = t - t^2 - 2*t^4 + t^5 + O(t^6)
sage: b = a.reverse(); b
1/2*t + 1/4*t^2 + 1/8*t^3 - 1/16*t^4 - 23/128*t^5 + O(t^6)
sage: a(b)
t + O(t^6)
sage: b(a)
t + O(t^6)
sage: B.<b,c> = PolynomialRing(ZZ)
sage: A.<t> = PowerSeriesRing(B)
sage: f = t + b*t^2 + c*t^3 + O(t^4)
sage: g = f.reverse(); g
t - b*t^2 + (2*b^2 - c)*t^3 + O(t^4)
sage: f(g)
t + O(t^4)
sage: g(f)
t + O(t^4)
sage: A.<t> = PowerSeriesRing(ZZ)
sage: B.<s> = A[[[]]]
sage: f = (1 - 3*t + 4*t^3 + O(t^4))*s^2 + (2 + t + t^2 + O(t^3))*s^2 + O(s^3)
sage: from sage.misc.verbose import set_verbose
sage: set_verbose(1)
sage: g = f.reverse(); g
verbose 1 (<module>) passing to pari failed; trying Lagrange inversion
(1 + 3*t + 9*t^2 + 23*t^3 + 0(t^4))*s + (-2 - 19*t - 118*t^2 + 0(t^3))*s^2 + ...
\end{verbatim}
If the leading coefficient is not a unit, we pass to its fraction field if possible:

```python
sage: A.<t> = PowerSeriesRing(ZZ)
sage: a = 2*t - 4*t^2 + t^4 - t^5 + O(t^6)
sage: a.reverse()
1/2*t + 1/2*t^2 + t^3 + 79/32*t^4 + 437/64*t^5 + O(t^6)

sage: B. = PolynomialRing(ZZ)
sage: A.<t> = PowerSeriesRing(B)
sage: f = 2*b*t + b^2*t^2 + 3*b^3*t^3 + O(t^4)
sage: g = f.reverse(); g
1/(2*b)*t - 1/(8*b^2)*t^2 + ((-3*b + 1)/(16*b^3))*t^3 + O(t^4)

sage: f(g)
t + O(t^4)
sage: g(f)
t + O(t^4)
```

We can handle some base rings of positive characteristic:

```python
sage: A8.<t> = PowerSeriesRing(Zmod(8))
sage: a = t - 15*t^2 - 2*t^4 + t^5 + O(t^6)
sage: b = a.reverse(); b
t + 7*t^2 + 2*t^3 + 5*t^4 + t^5 + O(t^6)

sage: a(b)
t + O(t^6)
sage: b(a)
t + O(t^6)
```

The optional argument `precision` sets the precision of the output:

```python
sage: R.<x> = PowerSeriesRing(QQ)
sage: f = 2*x + 3*x^2 - 7*x^3 + x^4 + O(x^5)
sage: g = f.reverse(precision=3); g
1/2*x - 3/8*x^2 + O(x^3)

sage: f(g)
x + O(x^3)
sage: g(f)
x + O(x^3)
```

If the input series has infinite precision, the precision of the output is automatically set to the default precision of the parent ring:

```python
sage: R.<x> = PowerSeriesRing(QQ, default_prec=20)
sage: (x - x^2).reverse() # get some Catalan numbers
x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + ...
-4862*x^10 + 16796*x^11 + 58786*x^12 + 208012*x^13 + 742900*x^14 + 2674440*x^15 + 9694845*x^16 + 35357670*x^17 + 129644790*x^18 + 477638700*x^19 + O(x^20)
```

\textbf{truncate}(\textit{prec}='infinity')

The polynomial obtained from power series by truncation at precision \textit{prec}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<I> = GF(2)[[]]
sage: f = 1/(1+I+O(I^8)); f
1 + I + I^2 + I^3 + I^4 + I^5 + I^6 + I^7 + O(I^8)
sage: f.truncate(5)
I^4 + I^3 + I^2 + I + 1
\end{verbatim}

\textbf{truncate_powerseries}(\textit{prec})

Given input \textit{prec} = \(n\), returns the power series of degree < \(n\) which is equivalent to self modulo \(x^n\).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<I> = GF(2)[[]]
sage: f = 1/(1+I+O(I^8)); f
1 + I + I^2 + I^3 + I^4 + I^5 + I^6 + I^7 + O(I^8)
sage: f.truncate_powerseries(5)
1 + I + I^2 + I^3 + I^4 + O(I^5)
\end{verbatim}

\textbf{valuation}()

Return the valuation of \textit{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<t> = QQ[[[]]
sage: (5 - t^8 + O(t^11)).valuation()
0
sage: (-t^8 + O(t^11)).valuation()
8
sage: O(t^7).valuation()
7
sage: R(0).valuation()
+Infinity
\end{verbatim}

\textbf{sage.rings.power_series_poly.make_powerseries_poly_v0}(\textit{parent}, \textit{f}, \textit{prec}, \textit{is_gen})

Return the power series specified by \textit{f}, \textit{prec}, and \textit{is_gen}.

This function exists for the purposes of pickling. Do not delete this function – if you change the internal representation, instead make a new function and make sure that both kinds of objects correctly unpickle as the new type.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<t> = QQ[[[]]
sage: sage.rings.power_series_poly.make_powerseries_poly_v0(R, t, infinity, True)
t
\end{verbatim}
CHAPTER
FOUR

POWER SERIES IMPLEMENTED USING PARI

EXAMPLES:
This implementation can be selected for any base ring supported by PARI by passing the keyword `implementation='pari'` to the `PowerSeriesRing()` constructor:

```
sage: R.<q> = PowerSeriesRing(ZZ, implementation='pari'); R
Power Series Ring in q over Integer Ring
sage: S.<t> = PowerSeriesRing(CC, implementation='pari'); S
Power Series Ring in t over Complex Field with 53 bits of precision
```

Note that only the type of the elements depends on the implementation, not the type of the parents:

```
sage: type(R)
<class 'sage.rings.power_series_ring.PowerSeriesRing_domain_with_category'>
sage: type(q)
<class 'sage.rings.power_series_pari.PowerSeries_pari'>
sage: type(S)
<class 'sage.rings.power_series_ring.PowerSeriesRing_over_field_with_category'>
sage: type(t)
<class 'sage.rings.power_series_pari.PowerSeries_pari'>
```

If $k$ is a finite field implemented using PARI, this is the default implementation for power series over $k$:

```
sage: k.<c> = GF(5^12)
sage: type(c)
<class 'sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt'>
sage: A.<x> = k[[]
```

**Warning:** Because this implementation uses the PARI interface, the PARI variable ordering must be respected in the sense that the variable name of the power series ring must have higher priority than any variable names occurring in the base ring:

```
sage: R.<y> = QQ[]
sage: S.<x> = PowerSeriesRing(R, implementation='pari'); S
Power Series Ring in x over Univariate Polynomial Ring in y over Rational Field
```

Reversing the variable ordering leads to errors:
AUTHORS:

- Peter Bruin (December 2013): initial version

class sage.rings.power_series_pari.PowerSeries_pari

Bases: PowerSeries

A power series implemented using PARI.

INPUT:

- `parent` – the power series ring to use as the parent
- `f` – object from which to construct a power series
- `prec` – (default: infinity) precision of the element to be constructed
- `check` – ignored, but accepted for compatibility with `PowerSeries_poly`

dict()

Return a dictionary of coefficients for `self`.

This is simply a dict for the underlying polynomial; it need not have keys corresponding to every number smaller than `self.prec()`.

EXAMPLES:

```sage
sage: R.<t> = PowerSeriesRing(ZZ, implementation='pari')
sage: f = 1 + t^10 + O(t^12)
sage: f.dict()
{0: 1, 10: 1}
```

integral(var=None)

Return the formal integral of `self`.

By default, the integration variable is the variable of the power series. Otherwise, the integration variable is the optional parameter `var`.

**Note:** The integral is always chosen so the constant term is 0.

EXAMPLES:

```sage
sage: k.<w> = PowerSeriesRing(QQ, implementation='pari')
sage: (1+17*w+15*w^3+O(w^5)).integral()
w + 17/2*w^2 + 15/4*w^4 + O(w^6)
sage: (w^3 + 4*w^4 + O(w^7)).integral()
1/4*w^4 + 4/5*w^5 + O(w^8)
sage: (3*w^2).integral()
w^3
```
list()

Return the list of known coefficients for self.
This is just the list of coefficients of the underlying polynomial; it need not have length equal to self.prec().

EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(ZZ, implementation='pari')
sage: f = 1 - 5*t^3 + t^5 + O(t^7)
sage: f.list()
[1, 0, 0, -5, 0, 1]
sage: S.<u> = PowerSeriesRing(pAdicRing(5), implementation='pari')
sage: (2 + u).list()
[2 + O(5^20), 1 + O(5^20)]
```

padded_list(n=None)

Return a list of coefficients of self up to (but not including) \(q^n\).
The list is padded with zeroes on the right so that it has length \(n\).

INPUT:

* n – a non-negative integer (optional); if \(n\) is not given, it will be taken to be the precision of self, unless this is `+Infinity`, in which case we just return self.list()

EXAMPLES:

```
sage: R.<q> = PowerSeriesRing(QQ, implementation='pari')
sage: f = 1 - 17*q + 13*q^2 + 10*q^4 + O(q^7)
sage: f.list()
[1, -17, 13, 0, 10]
sage: f.padded_list(7)
[1, -17, 13, 0, 10, 0, 0]
sage: f.padded_list(10)
[1, -17, 13, 0, 10, 0, 0, 0, 0, 0]
sage: f.padded_list(3)
[1, -17, 13]
sage: f.padded_list() # +Infinity
[1, -17, 13, 0, 10]
sage: g = 1 - 17*q + 13*q^2 + 10*q^4
sage: g.list()
[1, -17, 13, 0, 10]
sage: g.padded_list() # +Infinity
[1, -17, 13, 0, 10]
sage: g.padded_list(10)
[1, -17, 13, 0, 10, 0, 0, 0, 0, 0]
```

polynomial()

Convert self to a polynomial.

EXAMPLES:

```
sage: R.<t> = PowerSeriesRing(GF(7), implementation='pari')
sage: f = 3 - t^3 + O(t^5)
```

(continues on next page)
reverse\(\text{(precision= None)}\)

Return the reverse of self.

The reverse of a power series \(f\) is the power series \(g\) such that \(g(f(x)) = x\). This exists if and only if the valuation of self is exactly 1 and the coefficient of \(x\) is a unit.

If the optional argument precision is given, the reverse is returned with this precision. If \(f\) has infinite precision and the argument precision is not given, then the reverse is returned with the default precision of \(f\_\text{parent}\(\).

EXAMPLES:

\[
\begin{align*}
sage: &R.<x> = PowerSeriesRing(QQ, implementation='pari') \\
sage: &f = 2*x + 3*x^2 - x^4 + O(x^5) \\
sage: &g = f.reverse() \\
sage: &g \quad \text{1/2*x - 3/8*x^2 + 9/16*x^3 - 131/128*x^4 + O(x^5)} \\
sage: &f(g) \\
sage: &x + 0(x^5) \\
sage: &g(f) \\
sage: &x + 0(x^5) \\
sage: &A.<t> = PowerSeriesRing(ZZ, implementation='pari') \\
sage: &a = t - t^2 - 2*t^4 + t^5 + O(t^6) \\
sage: &b = a.reverse(); b \\
sage: &t + t^2 + 2*t^3 + 7*t^4 + 25*t^5 + O(t^6) \\
sage: &a(b) \\
sage: &t + 0(t^6) \\
sage: &b(a) \\
sage: &t + 0(t^6) \\
sage: &B.<b,c> = PolynomialRing(ZZ) \\
sage: &A.<t> = PowerSeriesRing(B, implementation='pari') \\
sage: &f = t + b*t^2 + c*t^3 + O(t^4) \\
sage: &g = f.reverse(); g \\
sage: &t - b*t^2 + (2*b^2 - c)*t^3 + O(t^4) \\
sage: &f(g) \\
sage: &t + 0(t^4) \\
sage: &g(f) \\
sage: &t + 0(t^4) \\
sage: &A.<t> = PowerSeriesRing(ZZ, implementation='pari') \\
sage: &B.<x> = PowerSeriesRing(A, implementation='pari') \\
sage: &f = (1 - 3*t + 4*t^3 + O(t^4))*x + (2 + t + t^2 + O(t^3))*x^2 + O(x^3) \\
sage: &g = f.reverse(); g \\
sage: &(1 + 3*t + 9*t^2 + 23*t^3 + O(t^4))*x + (-2 - 19*t - 118*t^2 + O(t^3))*x^2 + \ldots + 0(x^3) \\
\end{align*}
\]

The optional argument precision sets the precision of the output:
sage: R.<x> = PowerSeriesRing(QQ, implementation='pari')
sage: f = 2*x + 3*x^2 - 7*x^3 + x^4 + O(x^5)
sage: g = f.reverse(precision=3); g
1/2*x - 3/8*x^2 + O(x^3)
sage: f(g)
x + O(x^3)
sage: g(f)
x + O(x^3)

If the input series has infinite precision, the precision of the output is automatically set to the default precision of the parent ring:

sage: R.<x> = PowerSeriesRing(QQ, default_prec=20, implementation='pari')
sage: (x - x^2).reverse()  # get some Catalan numbers
x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + 16796*x^11 + 58786*x^12 + 208012*x^13 + 742900*x^14 + 2674440*x^15 + 9694845*x^16 + 35357670*x^17 + 129644790*x^18 + 477638700*x^19 + O(x^20)
sage: (x - x^2).reverse(precision=3)
x + x^2 + O(x^3)

valuation()

Return the valuation of self.

EXAMPLES:

sage: R.<t> = PowerSeriesRing(QQ, implementation='pari')
sage: (5 - t^8 + O(t^11)).valuation()
0
sage: (-t^8 + O(t^11)).valuation()
8
sage: O(t^7).valuation()
7
sage: R(0).valuation()
+Infinity
Construct a multivariate power series ring (in finitely many variables) over a given (commutative) base ring.

EXAMPLES:

Construct rings and elements:

```
sage: R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
sage: TestSuite(R).run()
sage: p = -t + 1/2*t^3*u - 1/4*t^4*u + 2/3*v^5 + R.O(6); p
-t + 1/2*t^3*u - 1/4*t^4*u + 2/3*v^5 + O(t, u, v)^6
sage: p in R
True
sage: g = 1 + v + 3*t^2*u - 2*t^2*v^2; g
1 + v + 3*t^2*u - 2*t^2*v^2
sage: g in R
True
```

Add big O as with single variable power series:

```
sage: g.add_bigoh(3)
1 + v + O(t, u, v)^3
sage: g = g.O(5); g
1 + v + 3*t^2*u - 2*t^2*v^2 + O(t, u, v)^5
```

Sage keeps track of total-degree precision:

```
sage: f = (g-1)^2 - g + 1; f
-v + v^2 - 3*t^2*u + 6*t^2*u*v + 2*t^2*v^2 + O(t, u, v)^5
sage: f in R
True
sage: f.prec()
5
sage: ((g-1-v)^2).prec()
8
```

Construct multivariate power series rings over various base rings.

```
sage: M = PowerSeriesRing(QQ, 4, 'k'); M
Multivariate Power Series Ring in k0, k1, k2, k3 over Rational Field
sage: loads(dumps(M)) is M
```

(continues on next page)
True
\begin{verbatim}
sage: TestSuite(M).run()

sage: H = PowerSeriesRing(PolynomialRing(ZZ,3,'z'),4,'f'); H
Multivariate Power Series Ring in f0, f1, f2, f3 over Multivariate
Polynomial Ring in z0, z1, z2 over Integer Ring
\end{verbatim}
\begin{verbatim}
sage: TestSuite(H).run()
sage: loads(dumps(H)) is H
True
\end{verbatim}
\begin{verbatim}
sage: z = H.base_ring().gens()
sage: f = H.gens()
sage: h in H
True
\end{verbatim}

• Use angle-bracket notation:
\begin{verbatim}
sage: S.<x,y> = PowerSeriesRing(GF(65537)); S
Multivariate Power Series Ring in x, y over Finite Field of size 65537
sage: s = -30077*x + 9485*x*y - 6260*y^3 + 12870*x^2*y^2 - 20289*y^4 + S.O(5); s
-30077*x + 9485*x*y - 6260*y^3 + 12870*x^2*y^2 - 20289*y^4 + O(x, y)^5
sage: s in S
True
sage: TestSuite(S).run()
sage: loads(dumps(S)) is S
True
\end{verbatim}

• Use double square bracket notation:
\begin{verbatim}
sage: ZZ[['s,t,u']]
Multivariate Power Series Ring in s, t, u over Integer Ring
sage: GF(127931)[['x,y']]
Multivariate Power Series Ring in x, y over Finite Field of size 127931
\end{verbatim}

Variable ordering determines how series are displayed.
\begin{verbatim}
sage: T.<a,b> = PowerSeriesRing(ZZ,order='deglex'); T
Multivariate Power Series Ring in a, b over Integer Ring
sage: TestSuite(T).run()
sage: loads(dumps(T)) is T
True
sage: T.term_order()
\end{verbatim}
Degree lexicographic term order

```sage
p = - 2*b^6 + a^5*b^2 + a^7 - b^2 - a*b^3 + T.O(9); p
a^7 + a^5*b^2 - 2*b^6 - a*b^3 - b^2 + O(a, b)^9
```

```sage
U = PowerSeriesRing(ZZ, 'a,b', order='negdeglex'); U
Multivariate Power Series Ring in a, b over Integer Ring
```

```sage
U.term_order()
Negative degree lexicographic term order
```

```sage
U(p)
-b^2 - a*b^3 - 2*b^6 + a^7 + a^5*b^2 + O(a, b)^9
```

Change from one base ring to another:

```sage
R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
```

```sage
R.base_extend(RR)
Multivariate Power Series Ring in t, u, v over Real Field with 53 bits of precision
```

```sage
R.change_ring(IntegerModRing(10))
Multivariate Power Series Ring in t, u, v over Ring of integers modulo 10
```

```sage
S = PowerSeriesRing(GF(65537),2, 'x,y'); S
Multivariate Power Series Ring in x, y over Finite Field of size 65537
```

```sage
S.change_ring(GF(5))
Multivariate Power Series Ring in x, y over Finite Field of size 5
```

Coercion from polynomial ring:

```sage
R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
```

```sage
A = PolynomialRing(ZZ,3, 't,u,v')
sage: g = A.gens()
sage: a = 2*g[0]*g[2] - 2*g[0] - 2; a
2*t*v - 2*t - 2
```

```sage
R(a)
-2 - 2*t + 2*t*v
```

```sage
R(a).O(4)
-2 - 2*t + 2*t*v + O(t, u, v)^4
```

```sage
a.parent()
Multivariate Polynomial Ring in t, u, v over Integer Ring
```

```sage
a in R
True
```

Coercion from polynomial ring in subset of variables:

```sage
R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
```

```sage
A = PolynomialRing(QQ,2, 't,v')
sage: g = A.gens()
sage: a = -2*g[0]*g[1] - 1/27*g[1]*v + g[0] - 1/2*g[1]; a
-2*t*v - 1/27*v^2 + t - 1/2*v
```
Coercion from symbolic ring:

```python
sage: x, y = var('x, y')
sage: S = PowerSeriesRing(GF(11), 2, 'x,y'); S
Multivariate Power Series Ring in x, y over Finite Field of size 11
sage: type(x)
<class 'sage.symbolic.expression.Expression'>
sage: type(S(x))
<class 'sage.rings.multi_power_series_ring.MPowerSeriesRing_generic_with_category._element_class'>
sage: f = S(2/7 - 100*x^2 + 1/3*x*y + y^2).O(3); f
5 - x^2 + 4*x*y + y^2 + O(x, y)^3
sage: f.parent()
Multivariate Power Series Ring in x, y over Finite Field of size 11
sage: f.parent() == S
True
```

The implementation of the multivariate power series ring uses a combination of multivariate polynomials and univariate power series. Namely, in order to construct the multivariate power series ring \( R[[x_1, x_2, \cdots, x_n]] \), we consider the univariate power series ring \( S[[T]] \) over the multivariate polynomial ring \( S := R[x_1, x_2, \cdots, x_n] \), and in it we take the subring formed by all power series whose \( i \)-th coefficient has degree \( i \) for all \( i \geq 0 \). This subring is isomorphic to \( R[[x_1, x_2, \cdots, x_n]] \). This is how \( R[[x_1, x_2, \cdots, x_n]] \) is implemented in this class. The ring \( S \) is called the foreground polynomial ring, and the ring \( S[[T]] \) is called the background univariate power series ring.

AUTHORS:
- Niles Johnson (2010-07): initial code
- Simon King (2012-08, 2013-02): Use category and coercion framework, github issue #13412 and github issue #14084

```python
class sage.rings.multi_power_series_ring.MPowerSeriesRing_generic(base_ring, num_gens, name_list, order='negdeglex', default_prec=10, sparse=False)

Bases: PowerSeriesRing_generic, Nonexact
```

A multivariate power series ring. This class is implemented as a single variable power series ring in the variable \( T \) over a multivariable polynomial ring in the specified generators. Each generator \( g \) of the multivariable polynomial ring (called the “foreground ring”) is mapped to \( g^i T \) in the single variable power series ring (called the “background ring”). The background power series ring is used to do arithmetic and track total-degree precision. The foreground polynomial ring is used to display elements.

For usage and examples, see above, and `PowerSeriesRing()`.

**Element**

alias of `MPowerSeries`

**O(prec)**

Return big oh with precision \( \text{prec} \). This function is an alias for `bigoh`.

**EXAMPLES:**
sage: T.<a,b> = PowerSeriesRing(ZZ,2); T
Multivariate Power Series Ring in a, b over Integer Ring
sage: T.O(10)
0 + O(a, b)^10
sage: T.bigoh(10)
0 + O(a, b)^10

bigoh(prec)
Return big oh with precision prec. The function O does the same thing.

EXAMPLES:

sage: T.<a,b> = PowerSeriesRing(ZZ,2); T
Multivariate Power Series Ring in a, b over Integer Ring
sage: T.bigoh(10)
0 + O(a, b)^10
sage: T.O(10)
0 + O(a, b)^10

change_ring(R)
Returns the power series ring over R in the same variable as self. This function ignores the question of whether the base ring of self is or can extend to the base ring of R; for the latter, use base_extend.

EXAMPLES:

sage: R.<t,u,v> = PowerSeriesRing(QQ); R
Multivariate Power Series Ring in t, u, v over Rational Field
sage: R.base_extend(RR)
Multivariate Power Series Ring in t, u, v over Real Field with 53 bits of precision
sage: R.change_ring(IntegerModRing(10))
Multivariate Power Series Ring in t, u, v over Ring of integers modulo 10
sage: R.base_extend(IntegerModRing(10))
Traceback (most recent call last):
  ... TypeError: no base extension defined

sage: S = PowerSeriesRing(GF(65537),2,'x,y'); S
Multivariate Power Series Ring in x, y over Finite Field of size 65537
sage: S.change_ring(GF(5))
Multivariate Power Series Ring in x, y over Finite Field of size 5

characteristic()
Return characteristic of base ring, which is characteristic of self.

EXAMPLES:

sage: H = PowerSeriesRing(GF(65537),4,'f'); H
Multivariate Power Series Ring in f0, f1, f2, f3 over Finite Field of size 65537
sage: H.characteristic()
65537
construction()

Returns a functor F and base ring R such that F(R) == self.

EXAMPLES:

```
sage: M = PowerSeriesRing(QQ,4,'f'); M
Multivariate Power Series Ring in f0, f1, f2, f3 over Rational Field

sage: (c,R) = M.construction(); (c,R)
(Completion[('f0', 'f1', 'f2', 'f3'), prec=12],
Multivariate Polynomial Ring in f0, f1, f2, f3 over Rational Field)

sage: c
Completion[('f0', 'f1', 'f2', 'f3'), prec=12]

sage: c(R)
Multivariate Power Series Ring in f0, f1, f2, f3 over Rational Field

sage: c(R) == M
True
```

gen(n=0)

Return the nth generator of self.

EXAMPLES:

```
sage: M = PowerSeriesRing(ZZ,10,'v')
sage: M.gen(6)
v6
```

is_dense()

Is self dense? (opposite of sparse)

EXAMPLES:

```
sage: M = PowerSeriesRing(ZZ,3,'s,t,u'); M
Multivariate Power Series Ring in s, t, u over Integer Ring

sage: M.is_dense()
True

sage: N = PowerSeriesRing(ZZ,3,'s,t,u',sparse=True); N
Sparse Multivariate Power Series Ring in s, t, u over Integer Ring

sage: N.is_dense()
False
```

is_integral_domain(proof=False)

Return True if the base ring is an integral domain; otherwise return False.

EXAMPLES:

```
sage: M = PowerSeriesRing(QQ,4,'v'); M
Multivariate Power Series Ring in v0, v1, v2, v3 over Rational Field

sage: M.is_integral_domain()
True
```

is_noetherian(proof=False)

Power series over a Noetherian ring are Noetherian.

EXAMPLES:
sage: M = PowerSeriesRing(QQ,4,'v'); M
Multivariate Power Series Ring in v0, v1, v2, v3 over Rational Field
sage: M.is_noetherian()
True
sage: W = PowerSeriesRing(InfinitePolynomialRing(ZZ),'a'),2,'x,y')

is_sparse()
Is self sparse?
EXAMPLES:

sage: M = PowerSeriesRing(ZZ,3,'s,t,u'); M
Multivariate Power Series Ring in s, t, u over Integer Ring
sage: M.is_sparse()
False
sage: N = PowerSeriesRing(ZZ,3,'s,t,u',sparse=True); N
Sparse Multivariate Power Series Ring in s, t, u over Integer Ring
sage: N.is_sparse()
True

laurent_series_ring()
Laurent series not yet implemented for multivariate power series rings

ngens()
Return number of generators of self.
EXAMPLES:

sage: M = PowerSeriesRing(ZZ,10,'v')
sage: M.ngens()
10

prec_ideal()
Return the ideal which determines precision; this is the ideal generated by all of the generators of our
background polynomial ring.
EXAMPLES:

sage: A.<s,t,u> = PowerSeriesRing(ZZ)
sage: A.prec_ideal()
Ideal (s, t, u) of Multivariate Polynomial Ring in s, t, u over
Integer Ring

remove_var(*var)
Remove given variable or sequence of variables from self.
EXAMPLES:

sage: A.<s,t,u> = PowerSeriesRing(ZZ)
sage: A.remove_var(t)
Multivariate Power Series Ring in s, u over Integer Ring
sage: A.remove_var(s,t)
Power Series Ring in \( u \) over Integer Ring

\begin{verbatim}

sage: M = PowerSeriesRing(GF(5),5,'t'); M
Multivariate Power Series Ring in t0, t1, t2, t3, t4 over
Finite Field of size 5
sage: M.remove_var(M.gens()[3])
Multivariate Power Series Ring in t0, t1, t2, t4 over Finite
Field of size 5

Removing all variables results in the base ring:

sage: M.remove_var(*M.gens())
Finite Field of size 5

\end{verbatim}

\texttt{term_order()}

Print term ordering of self. Term orderings are implemented by the \texttt{TermOrder} class.

EXAMPLES:

\begin{verbatim}

sage: M.<x,y,z> = PowerSeriesRing(ZZ,3)
sage: M.term_order()
Negative degree lexicographic term order
sage: m = y^12*z - y^6*z^8 - x^7*y^5*z^2 + x*y^2*z + M.O(15); m
x*y^2*z + y*z^12 - x^7*y^5*z^2 - y^6*z^8 + O(x, y, z)^15
sage: N = PowerSeriesRing(ZZ,3,'x,y,z', order="deglex")
sage: N.term_order()
Degree lexicographic term order
sage: N(m)
-x^7*y^5*z^2 - y^6*z^8 + y*z^12 + x*y^2*z + O(x, y, z)^15

\end{verbatim}

\texttt{sage.rings.multi_power_series_ring.is_MPowerSeriesRing(x)}

Return true if input is a multivariate power series ring.

\texttt{sage.rings.multi_power_series_ring.unpickle_multi_power_series_ring_v0(base_ring, num_gens, names, order, default_prec, sparse)}

Unpickle (deserialize) a multivariate power series ring according to the given inputs.

EXAMPLES:

\begin{verbatim}

sage: P.<x,y> = PowerSeriesRing(QQ)
sage: loads(dumps(P)) == P # indirect doctest
True

\end{verbatim}
Construct and manipulate multivariate power series (in finitely many variables) over a given commutative ring. Multivariate power series are implemented with total-degree precision.

EXAMPLES:

Power series arithmetic, tracking precision:

```
sage: R.<s,t> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in s, t over Integer Ring

sage: f = 1 + s + 3*s^2; f
1 + s + 3*s^2
sage: g = t^2*s + 3*t^2*s^2 + R.O(5); g
s*t^2 + 3*s^2*t^2 + O(s, t)^5
sage: g = t^2*s + 3*t^2*s^2 + O(s, t)^5; g
s*t^2 + 3*s^2*t^2 + O(s, t)^5
sage: f = f.O(7); f
1 + s + 3*s^2 + O(s, t)^7
sage: f += s; f
1 + 2*s + 3*s^2 + O(s, t)^7
sage: f*g
s*t^2 + 5*s^2*t^2 + O(s, t)^5
sage: (f-1)*g
2*s^2*t^2 + 9*s^3*t^2 + O(s, t)^6
sage: f*g - g
2*s^2*t^2 + O(s, t)^5
sage: f*=s; f
s + 2*s^2 + 3*s^3 + O(s, t)^8
sage: f%2
s + s^3 + O(s, t)^8
sage: (f%2).parent()
Multivariate Power Series Ring in s, t over Ring of integers modulo 2
```

As with univariate power series, comparison of \( f \) and \( g \) is done up to the minimum precision of \( f \) and \( g \):

```
sage: f = 1 + t + s + s^2 + t + R.O(3); f
1 + s + t + s^2 + 0(s, t)^3
sage: g = s^2 + 2*s^4 - s^5 + s^2*t^3 + R.O(6); g
s^2 + 2*s^4 - s^5 + s^2*t^3 + 0(s, t)^6
sage: f == g
False
```
sage: g == g.add_bigoh(3)
True
sage: f < g
False
sage: f > g
True

Calling:

sage: f = s^2 + s*t + s^3 + s^2*t + 3*s^4 + 3*s^3*t + R.O(5); f
s^2 + s*t + s^3 + s^2*t + 3*s^4 + 3*s^3*t + O(s, t)^5
sage: f(t,s)
s^2 + t^2 + s*t^2 + 3*s^4 + 3*t^4 + O(s, t)^5
sage: f(t^2,s^2)
s^2*t^2 + t^4 + s^2*t^4 + t^6 + 3*s^2*t^6 + 3*t^8 + O(s, t)^10

Substitution is defined only for elements of positive valuation, unless \( f \) has infinite precision:

sage: f(t^2,s^2+1)
Traceback (most recent call last):
  ...
TypeError: Substitution defined only for elements of positive valuation, unless self has infinite precision.

sage: g = f.truncate()
sage: g(t^2,s^2+1)
t^2 + s^2*t^2 + 2*t^4 + O(s, t)^5
sage: g(t^2,(s^2+1).O(3))
t^2 + s^2*t^2 + 2*t^4 + O(s, t)^5

0 has valuation +Infinity:

sage: f(t^2,0)
t^4 + t^6 + 3*t^8 + O(s, t)^10
sage: f(t^2,s^2+s)
s^2*t^2 + s^2*t^2 + t^4 + O(s, t)^5

Substitution of power series with finite precision works too:

sage: f(s.O(2),t)
s^2 + s*t + O(s, t)^3
sage: f(f,f)
2*s^4 + 4*s^3*t + 2*s^2*t^2 + 4*s^4 + 8*s^4*t + 4*s^3*t^2 + 16*s^6 +
34*s^5*t + 20*s^4*t^2 + 2*s^3*t^3 + O(s, t)^7
sage: t(f,f)
s^2 + s*t + s^3 + s^2*t + 3*s^4 + 3*s^3*t + O(s, t)^5
sage: t(0,f) == s(f,0)
True

The subs syntax works as expected:

sage: r0 = -t^2 - s^2*t^3 - 2*t^6 + s^7 + s^5*t^2 + R.O(10)
sage: r1 = s^4 - s^2*t^4 + s^6*t - 4*s^2*t^5 - 6*s^3*t^5 + R.O(10)
Construct ring homomorphisms from one power series ring to another:

```python
sage: A.<a,b> = PowerSeriesRing(QQ)
sage: X.<x,y> = PowerSeriesRing(QQ)
sage: phi = Hom(A,X)([x,2*y]); phi
Ring morphism:
 From: Multivariate Power Series Ring in a, b over Rational Field
 To: Multivariate Power Series Ring in x, y over Rational Field
 Defn: a |--> x
 b |--> 2*y
sage: phi(a+b+3*a*b^2 + A.O(5))
x + 2*y + 12*x*y^2 + O(x, y)^5
```

Multiplicative inversion of power series:

```python
sage: h = 1 + s + t + s*t + s^2*t^2 + 3*s^4 + 3*s^3*t + R.O(5)
sage: k = h^-1; k
1 - s - t + s^2 + s*t + t^2 - s^3 - s^2*t - t^3 - 2*s^4 - 2*s^3*t + s*t^3 + t^4 + O(s, t)^5
sage: h*k
1 + O(s, t)^5
```
sage: R.<u,v> = QQ[[[[]]]]
sage: m = O(u, v)
sage: m^4
0 + O(u, v)^4
sage: m^1
0 + O(u, v)^1
sage: T.<a,b,c> = PowerSeriesRing(ZZ,3)
sage: z = O(a, b, c)
sage: z^1
0 + O(a, b, c)^1
sage: 1 + a + z^1
1 + O(a, b, c)^1
sage: w = 1 + a + O(a, b, c)^2; w
1 + a + O(a, b, c)^2
sage: w^2
1 + 2*a + O(a, b, c)^2

class sage.rings.multi_power_series_ring_element.MPowerSeries(parent, x=0, prec=+Infinity, is_gen=False, check=False)

Bases: PowerSeries

Multivariate power series; these are the elements of Multivariate Power Series Rings.

INPUT:

* parent – A multivariate power series.
* x – The element (default: 0). This can be another MPowerSeries object, or an element of one of the following:
  – the background univariate power series ring
  – the foreground polynomial ring
  – a ring that coerces to one of the above two
* prec – (default: infinity) The precision
* is_gen – (default: False) Is this element one of the generators?
* check – (default: False) Needed by univariate power series class

EXAMPLES:

Construct multivariate power series from generators:

sage: S.<s,t> = PowerSeriesRing(ZZ)
sage: f = s + 4*t + 3*s*t
sage: f in S
True
sage: f = f.add_bigoh(4); f
s + 4*t + 3*s*t + O(s, t)^4
sage: g = 1 + s + t - s*t + S.O(5); g
1 + s + t - s*t + O(s, t)^5

(continues on next page)
sage: T = PowerSeriesRing(GF(3),5,'t'); T
Multivariate Power Series Ring in t0, t1, t2, t3, t4 over Finite Field of size 3
sage: t = T.gens()
t0 + t1*t3 - t4^3 - t0^3*t2^2
sage: w = w.add_bigoh(5); w
 t0 + t1*t3 - t4^3 + O(t0, t1, t2, t3, t4)^5
sage: w in T
True
sage: w
 t0 + t0*t2 - t4^3 - t0^3*t2^2 + O(t0, t1, t2, t3, t4)^6

Get random elements:

sage: S.random_element(4) # random
-2*t + t^2 - 12*s^3 + O(s, t)^4
sage: T.random_element(10) # random
-t1^2*t3^2*t4^2 + t1^5*t3^3*t4 + O(t0, t1, t2, t3, t4)^10

Convert elements from polynomial rings:

sage: R = PolynomialRing(ZZ,5,T.variable_names())
sage: t = R.gens()
sage: T(r)
-t2*t3 + t3^2 + t4^2
sage: r.parent()
Multivariate Polynomial Ring in t0, t1, t2, t3, t4 over Integer Ring
sage: r in T
True

O(prec)
Return a multivariate power series of precision prec obtained by truncating self at precision prec.
This is the same as add_bigoh().

EXAMPLES:

sage: B.<x,y> = PowerSeriesRing(QQ); B
Multivariate Power Series Ring in x, y over Rational Field
sage: r = 1 - x*y + x^2
sage: r.O(4)
1 + x^2 - x*y + O(x, y)^4
sage: r.O(2)
1 + O(x, y)^2

Note that this does not change self:

sage: r
1 + x^2 - x*y
\[ V(n) \]

If
\[
f = \sum a_{m_0, \ldots, m_k} x_0^{m_0} \cdots x_k^{m_k},
\]
then this function returns
\[
\sum a_{m_0, \ldots, m_k} x_0^{nm_0} \cdots x_k^{nm_k}.
\]

The total-degree precision of the output is \( n \) times the precision of \( \text{self} \).

EXAMPLES:

```python
sage: H = QQ[['x,y,z']]
sage: (x,y,z) = H.gens()
sage: h = -x*y^4*z^7 - 1/4*y*z^12 + 1/2*x^7*y^5*z^2
 + 2/3*y^6*z^8 + H.O(15)
sage: h.V(3)
-x^3*y^12*z^21 - 1/4*y^3*z^36 + 1/2*x^21*y^15*z^6 + 2/3*y^18*z^24 + O(x, y, z)^45
```

\textit{add\_bigoh}(\textit{prec})

Return a multivariate power series of precision \( \text{prec} \) obtained by truncating \( \text{self} \) at precision \( \text{prec} \).

This is the same as \( O() \).

EXAMPLES:

```python
sage: B.<x,y> = PowerSeriesRing(QQ); B
Multivariate Power Series Ring in x, y over Rational Field
sage: r = 1 - x*y + x^2
sage: r.add_bigoh(4)
1 + x^2 - x*y + O(x, y)^4
sage: r.add_bigoh(2)
1 + O(x, y)^2
```

Note that this does not change \( \text{self} \):

```python
sage: r
1 + x^2 - x*y
```

\textit{coefficients}()

Return a dict of monomials and coefficients.

EXAMPLES:

```python
sage: R.<s,t> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in s, t over Integer Ring
sage: f = 1 + t + s + s^t + R.O(3)
sage: f.coefficients()
{s^t: 1, t: 1, s: 1, 1: 1}
sage: (f^2).coefficients()
{t^2: 1, s^t: 4, s^2: 1, t: 2, s: 2, 1: 1}
sage: g = f^2 + f - 2; g
3*s + 3*t + s^2 + 5*s*t + t^2 + O(s, t)^3
```

(continues on next page)
sage: cd = g.coefficients()
sage: g2 = sum(k*v for (k,v) in cd.items()); g2
3*s + 3*t + s^2 + 5*s*t + t^2
sage: g2 == g.truncate()
True

**constant_coefficient()**

Return constant coefficient of self.

**EXAMPLES:**

```
sage: R.<a,b,c> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in a, b, c over Integer Ring
sage: f = 3 + a + b - a*b - b*c - a*c + R.O(4)
sage: f.constant_coefficient()
3
sage: f.constant_coefficient().parent()
Integer Ring
```

**degree()**

Return degree of underlying polynomial of self.

**EXAMPLES:**

```
sage: B.<x,y> = PowerSeriesRing(QQ)
sage: B
Multivariate Power Series Ring in x, y over Rational Field
sage: r = 1 - x*y + x^2
sage: r = r.add_bigoh(4); r
1 + x^2 - x*y + O(x, y)^4
sage: r.degree()
2
```

**derivative(*args)**

The formal derivative of this power series, with respect to variables supplied in args.

**EXAMPLES:**

```
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a^2*b + T.O(5)
sage: f.derivative(a)
1 + 2*a*b + O(a, b)^4
sage: f.derivative(a,2)
2*b + O(a, b)^3
sage: f.derivative(a,a)
2*b + O(a, b)^3
sage: f.derivative([a,a])
2*b + O(a, b)^3
sage: f.derivative(a,5)
0 + O(a, b)^0
sage: f.derivative(a,6)
0 + O(a, b)^0
```
dict()

Return underlying dictionary with keys the exponents and values the coefficients of this power series.

EXAMPLES:

```
sage: M = PowerSeriesRing(QQ,4,'t',sparse=True); M
Sparse Multivariate Power Series Ring in t0, t1, t2, t3 over Rational Field
sage: M.inject_variables()
Defining t0, t1, t2, t3
sage: m = 2/3*t0*t1^15*t3^48 - t0^15*t1^21*t2^28*t3^5
sage: m2 = 1/2*t0^12*t1^29*t2^46*t3^6 - 1/4*t0^39*t1^5*t2^23*t3^30 + M.O(100)
sage: s = m + m2
sage: s.dict()
{(1, 15, 0, 48): 2/3,
 (12, 29, 46, 6): 1/2,
 (15, 21, 28, 5): -1,
 (39, 5, 23, 30): -1/4}
```

egf()

Method from univariate power series not yet implemented

exp(prec=+Infinity)

Exponentiate the formal power series.

INPUT:

- prec – Integer or infinity. The degree to truncate the result to.

OUTPUT:

The exponentiated multivariate power series as a new multivariate power series.

EXAMPLES:

```
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + b + a*b + T.O(3)
sage: exp(f)
1 + a + b + 1/2*a^2 + 2*a*b + 1/2*b^2 + O(a, b)^3
sage: f.exp()
1 + a + b + 1/2*a^2 + 2*a*b + 1/2*b^2 + O(a, b)^3
sage: f.exp(prec=2)
1 + a + b + O(a, b)^2
sage: log(exp(f)) - f
O + O(a, b)^3
```

If the power series has a constant coefficient \(c\) and \(\exp(c)\) is transcendental, then \(\exp(f)\) would have to be a power series over the SymbolicRing. These are not yet implemented and therefore such cases raise an error:

```
sage: g = 2+f
sage: exp(g)
Traceback (most recent call last):
 ...
TypeError: unsupported operand parent(s) for *: 'Symbolic Ring' and
```

(continues on next page)
Another workaround for this limitation is to change base ring to one which is closed under exponentiation, such as \( \mathbb{R} \) or \( \mathbb{C} \):

\[
\text{sage: } \exp(g.\text{change\_ring}(\text{RDF}))
\]

\[
7.38905609... + 7.38905609...*a + 7.38905609...*b + 3.69452804...*a^2 + 14.7781121...*a*b + 3.69452804...*b^2 + O(a, b)^3
\]

If no precision is specified, the default precision is used:

\[
\text{sage: } T.\text{default\_prec()}
\]

12

\[
\text{sage: } \exp(a)
\]

\[
1 + a + 1/2*a^2 + 1/6*a^3 + 1/24*a^4 + 1/120*a^5 + 1/720*a^6 + 1/5040*a^7 + 1/40320*a^8 + 1/362880*a^9 + 1/3628800*a^10 + 1/39916800*a^11 + O(a, b)^12
\]

\[
\text{sage: } a.\exp(prec=5)
\]

\[
1 + a + 1/2*a^2 + 1/6*a^3 + 1/24*a^4 + 0(a, b)^5
\]

\[
\text{sage: } \exp(a + T.\text{O}(5))
\]

\[
1 + a + 1/2*a^2 + 1/6*a^3 + 1/24*a^4 + 0(a, b)^5
\]

**exponents()**

Return a list of tuples which hold the exponents of each monomial of \( \text{self} \).

**integral(**\*\text{args}**)**

The formal integral of this multivariate power series, with respect to variables supplied in \( \text{args} \).

The variable sequence \( \text{args} \) can contain both variables and counts; for the syntax, see \( \text{derivative\_parse()} \).

**EXAMPLES:**

\[
\text{sage: } H = \mathbb{Q}[\{'x', 'y'\}]
\]

\[
\text{sage: } (x, y) = H.\text{gens()}
\]

\[
\text{sage: } h = -y^2 - x*y^3 - 6/5*y^6 - x^7 + 2*x^5*y^2 + H.\text{O}(10)
\]

\[
\text{sage: } h
\]

\[
-y^2 - x*y^3 - 6/5*y^6 - x^7 + 2*x^5*y^2 + 0(x, y)^{10}
\]

\[
\text{sage: } h.\text{exponents()}
\]

\[
[(0, 2), (1, 3), (0, 6), (7, 0), (5, 2)]
\]

\[
\text{sage: } H.\text{O}(2)
\]

\[
1/2*a^2 + 1/2*a*b + 1/6*a^3*b^2 + 0(a, b)^7
\]

\[
\text{sage: } h.\text{integral}(a, 5)
\]

\[
1/720*a^6 + 1/120*a^5*b + 1/2520*a^7*b + 0(a, b)^{10}
\]

Only integration with respect to variables works:
```python
sage: f.integral(a+b)
Traceback (most recent call last):
...
ValueError: a + b is not a variable
```

**Warning:** Coefficient division.

If the base ring is not a field (e.g. $\mathbb{Z}$), or if it has a non-zero characteristic, (e.g. $\mathbb{Z}/3\mathbb{Z}$), integration is not always possible while staying with the same base ring. In the first case, Sage will report that it has not been able to coerce some coefficient to the base ring:

```python
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = a + T.O(5)
sage: f.integral(a)
Traceback (most recent call last):
...
TypeError: no conversion of this rational to integer
```

One can get the correct result by changing the base ring first:

```python
sage: f.change_ring(QQ).integral(a)
1/2*a^2 + O(a, b)^6
```

However, a correct result is returned even without base change if the denominator cancels:

```python
sage: f = 2*b + T.O(5)
sage: f.integral(b)
b^2 + O(a, b)^6
```

In non-zero characteristic, Sage will report that a zero division occurred:

```python
sage: T.<a,b> = PowerSeriesRing(Zmod(3),2)
sage: (a^3).integral(a)
a^4
sage: (a^2).integral(a)
Traceback (most recent call last):
...
ZeroDivisionError: inverse of Mod(0, 3) does not exist
```

**is_nilpotent()**

Return True if self is nilpotent. This occurs if

- self has finite precision and positive valuation, or
- self is constant and nilpotent in base ring.

Otherwise, return False.

**Warning:** This is so far just a sufficient condition, so don’t trust a False output to be legit!

**Todo:** What should we do about this method? Is nilpotency of a power series even decidable (assuming a nilpotency oracle in the base ring)? And I am not sure that returning True just because the series has finite...
precision and zero constant term is a good idea.

EXAMPLES:

```python
sage: R.<a,b,c> = PowerSeriesRing(Zmod(8)); R
Multivariate Power Series Ring in a, b, c over Ring of integers modulo 8
sage: f = a + b + c + a^2*c
sage: f.is_nilpotent()
False
sage: f = f.O(4); f
a + b + c + a^2*c + O(a, b, c)^4
sage: f.is_nilpotent()
True
sage: g = R(2)
```

```python
sage: g.is_nilpotent()
True
sage: (g.O(4)).is_nilpotent()
True
sage: S = R.change_ring(QQ)
```

```python
sage: S(g).is_nilpotent()
False
sage: S(g.O(4)).is_nilpotent()
False
```

**is_square()**

Method from univariate power series not yet implemented.

**is_unit()**

A multivariate power series is a unit if and only if its constant coefficient is a unit.

EXAMPLES:

```python
sage: R.<a,b> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in a, b over Integer Ring
sage: f = 2 + a^2 + a*b + a^3 + R.O(9)
```

```python
sage: f.is_unit()
False
sage: f.base_extend(QQ).is_unit()
True
sage: (O(a,b)^0).is_unit()
False
```

**laurent_series()**

Not implemented for multivariate power series.

**list()**

Doesn’t make sense for multivariate power series. Multivariate polynomials don’t have list of coefficients either.

**log**(prec=+Infinity)

Return the logarithm of the formal power series.

INPUT:
• \( \text{prec} \) – Integer or \( \text{infinity} \). The degree to truncate the result to.

OUTPUT:

The logarithm of the multivariate power series as a new multivariate power series.

EXAMPLES:

```
sage: T.<a,b> = PowerSeriesRing(ZZ,2)
sage: f = 1 + a + b + a*b + T.O(5)
sage: f.log()
a + b - 1/2*a^2 - 1/2*b^2 + 1/3*a^3 + 1/3*b^3 - 1/4*a^4 - 1/4*b^4 + 0(a, b)^5
sage: log(f)
a + b - 1/2*a^2 - 1/2*b^2 + 1/3*a^3 + 1/3*b^3 - 1/4*a^4 - 1/4*b^4 + 0(a, b)^5
sage: exp(log(f)) - f
0 + O(a, b)^5
```

If the power series has a constant coefficient \( c \) and \( \exp(c) \) is transcendental, then \( \exp(f) \) would have to be a power series over the \( \text{SymbolicRing} \). These are not yet implemented and therefore such cases raise an error:

```
sage: g = 2+f
sage: log(g)
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for -: 'Symbolic Ring' and 'Power Series Ring in Tbg over Multivariate Polynomial Ring in a, b over Rational Field '
```

Another workaround for this limitation is to change base ring to one which is closed under exponentiation, such as \( \mathbb{R} \) or \( \mathbb{C} \):

```
sage: log(g.change_ring(RDF))
1.09861228... + 0.333333333...*a + 0.333333333...*b - 0.055555555...*a^2 + 0.222222222...*a*b - 0.055555555...*b^2 + 0.0123456790...*a^3 - 0.0740740740...*a^2*b - 0.0740740740...*a*b^2 + 0.0123456790...*b^3 - 0.00308641975...*a^4 + 0.0246913580...*a^3*b + 0.0246913580...*a*b^3 - 0.00308641975...*b^4 + 0(a, b)^5
```

\text{monomials}() 

Return a list of monomials of \text{self}. 

These are the keys of the dict returned by \text{coefficients}().

EXAMPLES:

```
sage: R.<a,b,c> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in a, b, c over Integer Ring
sage: f = 1 + a + b - a*b - b*c - a*c + R.O(4)
sage: sorted(f.monomials())
[b*c, a*c, a*b, b, a, 1]
sage: f = 1 + 2*a + 7*b - 2*a*b - 4*b*c - 13*a*c + R.O(4)
sage: sorted(f.monomials())
[b*c, a*c, a*b, b, a, 1]
sage: f = R.zero()
sage: f.monomials()
[]
```
ogf()
Method from univariate power series not yet implemented

padded_list()
Method from univariate power series not yet implemented.

polynomial()
Return the underlying polynomial of \texttt{self} as an element of the underlying multivariate polynomial ring (the “foreground polynomial ring”).

EXAMPLES:

```python
sage: M = PowerSeriesRing(QQ,4, 't'); M
Multivariate Power Series Ring in t0, t1, t2, t3 over Rational Field
sage: t = M.gens()
sage: f
1/2*t0^3*t1^3*t2^2 + 2/3*t0^2*t2^2 + 3/4*t1^3*t3^3 - 1/4*t0*t1*t2*t3 + O(t0, t1, t2, t3)^10
sage: f.polynomial()
1/2*t0^3*t1^3*t2^2 + 2/3*t0^2*t2^2 + 3/4*t1^3*t3^3 - 1/4*t0*t1*t2*t3
sage: f.polynomial().parent()
Multivariate Polynomial Ring in t0, t1, t2, t3 over Rational Field
```

Contrast with \texttt{truncate()}:

```python
sage: f.truncate()
1/2*t0^3*t1^3*t2^2 + 2/3*t0^2*t2^2 + 3/4*t1^3*t3^3 - 1/4*t0*t1*t2*t3
sage: f.truncate().parent()
Multivariate Power Series Ring in t0, t1, t2, t3 over Rational Field
```

prec()
Return precision of \texttt{self}.

EXAMPLES:

```python
sage: R.<a,b,c> = PowerSeriesRing(ZZ); R
Multivariate Power Series Ring in a, b, c over Integer Ring
sage: f = 3 + a + b - a*b - b*c - a*c + R.O(4)
sage: f.prec()
4
sage: f.truncate().prec()
+Infinity
```

quo_rem(\texttt{other}, \texttt{precision=}None)
Return the pair of quotient and remainder for the increasing power division of \texttt{self} by \texttt{other}.

If \(a\) and \(b\) are two elements of a power series ring \(R[[x_1, x_2, \cdots, x_n]]\) such that the trailing term of \(b\) is invertible in \(R\), then the pair of quotient and remainder for the increasing power division of \(a\) by \(b\) is the unique pair \((u, v) \in R[[x_1, x_2, \cdots, x_n]] \times R[x_1, x_2, \cdots, x_n]\) such that \(a = bu + v\) and such that no
monomial appearing in \( v \) divides the trailing monomial (\text{trailing\_monomial()}) of \( b \). Note that this depends on the order of the variables.

This method returns both quotient and remainder as power series, even though in mathematics, the remainder for the increasing power division of two power series is a polynomial. This is because Sage’s power series come with a precision, and that precision is not always sufficient to determine the remainder completely. Disregarding this issue, the \texttt{polynomial()} method can be used to recast the remainder as an actual polynomial.

INPUT:

- \texttt{other} – an element of the same power series ring as \texttt{self} such that the trailing term of \texttt{other} is invertible in \texttt{self} (this is automatically satisfied if the base ring is a field, unless \texttt{other} is zero)
- \texttt{precision} – (default: the default precision of the parent of \texttt{self}) nonnegative integer, determining the precision to be cast on the resulting quotient and remainder if both \texttt{self} and \texttt{other} have infinite precision (ignored otherwise); note that the resulting precision might be lower than this integer

EXAMPLES:

```python
sage: R.<a,b,c> = PowerSeriesRing(ZZ)
sage: f = 1 + a + b - a*b + R.O(3)
sage: g = 1 + 2*a - 3*a*b + R.O(3)
sage: q, r = f.quo_rem(g); q, r
(1 - a + b + 2*a^2 + O(a, b, c)^3, 0 + O(a, b, c)^3)
sage: f == q*g+r
True
sage: q, r = (a*f).quo_rem(g); q, r
(a - a^2 + a*b + 2*a^3 + O(a, b, c)^4, 0 + O(a, b, c)^4)
sage: a*f == q*(a*g)+r
True
sage: q, r = (a*f).quo_rem(a*g); q, r
(1 - a + b + 2*a^2 + O(a, b, c)^3, 0 + O(a, b, c)^4)
```

Trying to divide two polynomials, we run into the issue that there is no natural setting for the precision of the quotient and remainder (and if we wouldn’t set a precision, the algorithm would never terminate). Here, default precision comes to our help:

```
sage: (1+a^3).quo_rem(a+a^2)
(a^2 - a^3 + a^4 - a^5 + a^6 - a^7 + a^8 - a^9 + a^10 + O(a, b, c)^11, 1 + O(a, b, c)^12)
sage: (1+a^3+a*b).quo_rem(b+c)
(a + O(a, b, c)^11, 1 - a*c + a^3 + O(a, b, c)^12)
sage: (1+a^3+a*b).quo_rem(b+c, precision=17)
(a + O(a, b, c)^16, 1 - a*c + a^3 + O(a, b, c)^17)
```

(continues on next page)
Illustrating the dependency on the ordering of variables:

```
sage: (1+a+b).quo_rem(b+c)
(1 + O(a, b, c)^11, 1 + a - c + O(a, b, c)^12)
sage: (1+b+c).quo_rem(c+a)
(0 + O(a, b, c)^11, 1 + b + c + O(a, b, c)^12)
sage: (1+c+a).quo_rem(a+b)
(1 + O(a, b, c)^11, 1 - b + c + O(a, b, c)^12)
```

`shift(n)`

Doesn’t make sense for multivariate power series.

`solve_linear_de(prec=+Infinity, b=None, f0=None)`

Not implemented for multivariate power series.

`sqrt()`

Method from univariate power series not yet implemented. Depends on square root method for multivariate polynomials.

`square_root()`

Method from univariate power series not yet implemented. Depends on square root method for multivariate polynomials.

`trailing_monomial()`

Return the trailing monomial of `self`.

This is defined here as the lowest term of the underlying polynomial.

**EXAMPLES:**

```
sage: R.<a,b,c> = PowerSeriesRing(ZZ)
sage: f = 1 + a + b - a^2*b + R.O(3)
sage: f.trailing_monomial()
1
sage: f = a^2*b^3 + a^3*b^3 + a^2*b^4 - a^3*b^4 + O(a, b, c)^8
```

(continues on next page)
\texttt{sage: f.trailing_monomial()}
\texttt{a^2*b^3}

\textbf{truncate} \((\texttt{prec=+Infinity})\)

Return infinite precision multivariate power series formed by truncating \texttt{self} at precision \texttt{prec}.

\textbf{EXAMPLES:}

\begin{verbatim}sage: M = PowerSeriesRing(QQ,4,'t'); M
Multivariate Power Series Ring in t0, t1, t2, t3 over Rational Field
sage: t = M.gens()
sage: f = \frac{1}{2}*t[0]^3*t[1]^3*t[2]^2 + \frac{2}{3}*t[0]*t[2]^6*t[3] - t[0]^3*t[1]^3*t[3]^3 - \frac{1}{4}*t[0]*t[1]*t[2]^7 + M.O(10)
sage: f
1/2*t0^3*t1^3*t2^2 + 2/3*t0*t2^6*t3 - t0^3*t1^3*t3^3 - 1/4*t0*t1*t2^7 + O(t0, t1, t2, t3)\text{^10}
sage: f.truncate()
1/2*t0^3*t1^3*t2^2 + 2/3*t0*t2^6*t3 - t0^3*t1^3*t3^3 - 1/4*t0*t1*t2^7
sage: f.truncate().parent()
Multivariate Power Series Ring in t0, t1, t2, t3 over Rational Field
\end{verbatim}

Contrast with polynomial:

\begin{verbatim}sage: f.polynomial()
1/2*t0^3*t1^3*t2^2 + 2/3*t0*t2^6*t3 - t0^3*t1^3*t3^3 - 1/4*t0*t1*t2^7
sage: f.polynomial().parent()
Multivariate Polynomial Ring in t0, t1, t2, t3 over Rational Field
\end{verbatim}

\textbf{valuation()}

Return the valuation of \texttt{self}.

The valuation of a power series \(f\) is the highest nonnegative integer \(k\) less or equal to the precision of \(f\) and such that the coefficient of \(f\) before each term of degree \(< k\) is zero. (If such an integer does not exist, then the valuation is the precision of \(f\) itself.)

\textbf{EXAMPLES:}

\begin{verbatim}sage: R.<a,b> = PowerSeriesRing(GF(4949717)); R
Multivariate Power Series Ring in a, b over Finite Field of size 4949717
sage: f = a^2 + a*b + a^3 + R.O(9)
sage: f
2
sage: f.valuation()
0
sage: g = 1 + a + a^3
sage: g.valuation()
0
sage: R.zero().valuation()
+Infinity
\end{verbatim}

\textbf{valuation_zero_part()}

Doesn’t make sense for multivariate power series; valuation zero with respect to which variable?
variable()  

Doesn’t make sense for multivariate power series.

variables()  

Return tuple of variables occurring in self.

EXAMPLES:

```
sage: T = PowerSeriesRing(GF(3),5,'t'); T
Multivariate Power Series Ring in t0, t1, t2, t3, t4 over
Finite Field of size 3
sage: t = T.gens()
sage: w
"t0 + t0*t2 - t4^3 - t0^3*t2^2 + O(t0, t1, t2, t3, t4)^6"
sage: w.variables()
(t0, t2, t4)
```

`sage.rings.multi_power_series_ring_element.is_MPowerSeries(f)`  

Return True if `f` is a multivariate power series.
EXAMPLES:

```python
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.base_ring()
Rational Field
sage: S = LaurentSeriesRing(GF(17)['x', 'y'])
sage: S
Laurent Series Ring in y over Univariate Polynomial Ring in x over Finite Field of size 17
sage: S.base_ring()
Univariate Polynomial Ring in x over Finite Field of size 17
```

See also:

- `sage.misc.defaults.set_series_precision()`

class `sage.rings.laurent_series_ring.LaurentSeriesRing(power_series)`

Bases: `UniqueRepresentation`, `CommutativeRing`

Univariate Laurent Series Ring.

EXAMPLES:

```python
sage: R = LaurentSeriesRing(QQ, 'x'); R
Laurent Series Ring in x over Rational Field
sage: x = R.0
sage: g = 1 - x + x^2 - x^4 +O(x^8); g
1 - x + x^2 - x^4 + O(x^8)
```

You can also use more mathematical notation when the base is a field:

```python
sage: Frac(QQ[['x']])
Laurent Series Ring in x over Rational Field
sage: Frac(GF(5)['y'])
Fraction Field of Univariate Polynomial Ring in y over Finite Field of size 5
```

When the base ring is a domain, the fraction field is the Laurent series ring over the fraction field of the base ring:

```python
sage: Frac(ZZ[['t']])
Laurent Series Ring in t over Rational Field
```
Laurent series rings are determined by their variable and the base ring, and are globally unique:

```sage
K = Qp(5, prec = 5)
sage: L = Qp(5, prec = 200)
sage: R.<x> = LaurentSeriesRing(K)
sage: S.<y> = LaurentSeriesRing(L)
sage: R is S
False
sage: T.<y> = LaurentSeriesRing(Qp(5,prec=200))
sage: S is T
True
sage: W.<y> = LaurentSeriesRing(Qp(5,prec=199))
sage: W is T
False

sage: K = LaurentSeriesRing(CC, 'q')
sage: K
Laurent Series Ring in q over Complex Field with 53 bits of precision
sage: loads(K.dumps()) == K
True
sage: P = QQ['x']
sage: F = Frac(P)
sage: TestSuite(F).run()
```

When the base ring \( k \) is a field, the ring \( k((x)) \) is a CDVF, that is a field equipped with a discrete valuation for which it is complete. The appropriate (sub)category is automatically set in this case:

```sage
k = GF(11)
sage: R.<x> = k[]
sage: F = Frac(R)
sage: F.category()
Join of Category of complete discrete valuation fields and Category of commutative algebras over (finite enumerated fields and subquotients of monoids and quotients of semigroups) and Category of infinite sets
sage: TestSuite(F).run()
```

**Element**

alias of `LaurentSeries`

**base_extend**(*R*)

Return the Laurent series ring over \( R \) in the same variable as self, assuming there is a canonical coerce map from the base ring of self to \( R \).

**EXAMPLES:**

```sage
K.<x> = LaurentSeriesRing(QQ, default_prec=4)
sage: K.base_extend(QQ['t'])
Laurent Series Ring in x over Univariate Polynomial Ring in t over Rational
Field
```

**change_ring**(*R*)

**EXAMPLES:**
```python
sage: K.<x> = LaurentSeriesRing(QQ, default_prec=4)
sage: R = K.change_ring(ZZ); R
Laurent Series Ring in x over Integer Ring
sage: R.default_prec()
4
```

**characteristic()**

EXAMPLES:

```python
sage: R.<x> = LaurentSeriesRing(GF(17))
sage: R.characteristic()
17
```

**construction()**

Return the functorial construction of this Laurent power series ring.

The construction is given as the completion of the Laurent polynomials.

EXAMPLES:

```python
sage: L.<t> = LaurentSeriesRing(ZZ, default_prec=42)
sage: phi, arg = L.construction()
sage: phi
Completion[t, prec=42]
sage: arg
Univariate Laurent Polynomial Ring in t over Integer Ring
sage: phi(arg) is L
True
```

Because of this construction, pushout is automatically available:

```python
sage: 1/2 * t
1/2*t
sage: parent(1/2 * t)
Laurent Series Ring in t over Rational Field
sage: QQbar.gen() * t
I*t
sage: parent(QQbar.gen() * t)
Laurent Series Ring in t over Algebraic Field
```

**default_prec()**

Get the precision to which exact elements are truncated when necessary (most frequently when inverting).

EXAMPLES:

```python
sage: R.<x> = LaurentSeriesRing(QQ, default_prec=5)
sage: R.default_prec()
5
```

**fraction_field()**

Return the fraction field of this ring of Laurent series.

If the base ring is a field, then Laurent series are already a field. If the base ring is a domain, then the Laurent series over its fraction field is returned. Otherwise, raise a ValueError.

```python
```

77
EXAMPLES:

```python
sage: R = LaurentSeriesRing(ZZ, 't', 30).fraction_field()
sage: R
Laurent Series Ring in t over Rational Field
sage: R.default_prec()
30
sage: LaurentSeriesRing(Zmod(4), 't').fraction_field()
Traceback (most recent call last):
...
ValueError: must be an integral domain
```

```python
gen(n=0)
```

EXAMPLES:

```python
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.gen()
x
```

```python
is_dense()
```

EXAMPLES:

```python
sage: K.<x> = LaurentSeriesRing(QQ, sparse=True)
sage: K.is_dense()
False
```

```python
is_exact()
```

Laurent series rings are inexact.

EXAMPLES:

```python
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.is_exact()
False
```

```python
is_field(proof=True)
```

A Laurent series ring is a field if and only if the base ring is a field.

```python
is_sparse()
```

Return if self is a sparse implementation.

EXAMPLES:

```python
sage: K.<x> = LaurentSeriesRing(QQ, sparse=True)
sage: K.is_sparse()
True
```

```python
laurent_polynomial_ring()
```

If this is the Laurent series ring $R((t))$, return the Laurent polynomial ring $R[t, 1/t]$.

EXAMPLES:

```python
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.laurent_polynomial_ring() # Univariate Laurent Polynomial Ring in x over Rational Field
```
ngens()
Laurent series rings are univariate.

EXAMPLES:

```
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.ngens()
sage: R.ngens()
sage: R.ngens()
1
```

polynomial_ring()
If this is the Laurent series ring \( R((t)) \), return the polynomial ring \( R[t] \).

EXAMPLES:

```
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.polynomial_ring()
sage: R.polynomial_ring()
sage: R.polynomial_ring()
Univariate Polynomial Ring in x over Rational Field
```

to_non laurent()
If this is the Laurent series ring \( R((t)) \), return the power series ring \( R[[t]] \).

EXAMPLES:

```
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.power_series_ring()
sage: R.power_series_ring()
sage: R.power_series_ring()
Power Series Ring in x over Rational Field
```

random_element(algorithm='default')
Return a random element of this Laurent series ring.
The optional algorithm parameter decides how elements are generated. Algorithms currently implemented:

- 'default': Choose an integer shift using the standard distribution on the integers. Then choose a list of coefficients using the random_element function of the base ring, and construct a new element based on those coefficients, so that the i-th coefficient corresponds to the (i+shift)-th power of the uniformizer. The amount of coefficients is determined by the default_prec of the ring. Note that this method only creates non-exact elements.

EXAMPLES:

```
sage: S.<s> = LaurentSeriesRing(GF(3))
sage: S.random_element() # random
s^-8 + s^-7 + s^-6 + s^-5 + s^-1 + s + s^3 + s^4
+ s^5 + 2*s^6 + s^7 + s^11 + O(s^12)
```

residue_field()
Return the residue field of this Laurent series field if it is a complete discrete valuation field (i.e. if the base ring is a field, in which base it is also the residue field).

EXAMPLES:

```
sage: R.<x> = LaurentSeriesRing(GF(17))
sage: R.residue_field()
sage: R.residue_field()
sage: R.residue_field()
Finite Field of size 17
```

(continues on next page)
sage: R.<x> = LaurentSeriesRing(ZZ)
sage: R.residue_field()
Traceback (most recent call last):
...  
TypeError: the base ring is not a field

\texttt{uniformizer()}

Return a uniformizer of this Laurent series field if it is a discrete valuation field (i.e. if the base ring is actually a field). Otherwise, an error is raised.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<t> = LaurentSeriesRing(QQ)
sage: R.uniformizer()
t
sage: R.<t> = LaurentSeriesRing(ZZ)
sage: R.uniformizer()
Traceback (most recent call last):
...
TypeError: the base ring is not a field
\end{verbatim}

\textbf{sage.rings.laurent_series_ring.\texttt{is_LaurentSeriesRing}(x)}

Return \texttt{True} if this is a univariate Laurent series ring.

This is in keeping with the behavior of \texttt{is_PolynomialRing} versus \texttt{is_MPolynomialRing}. 
EXAMPLES:

```
sage: R.<t> = LaurentSeriesRing(GF(7), 't'); R
Laurent Series Ring in t over Finite Field of size 7
sage: f = 1/(1-t+O(t^10)); f
1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + t^9 + O(t^10)
```

Laurent series are immutable:

```
sage: f[2]
1
Traceback (most recent call last):
 ... IndexError: Laurent series are immutable
```

We compute with a Laurent series over the complex mpfr numbers.

```
sage: K.<q> = Frac(CC[['q']])
sage: K
Laurent Series Ring in q over Complex Field with 53 bits of precision
sage: q
1.00000000000000*q
```

Saving and loading.

```
sage: loads(q.dumps()) == q
True
sage: loads(K.dumps()) == K
True
```

IMPLEMENTATION: Laurent series in Sage are represented internally as a power of the variable times the unit part (which need not be a unit - it’s a polynomial with nonzero constant term). The zero Laurent series has unit part 0.

AUTHORS:

- William Stein: original version
- David Joyner (2006-01-22): added examples
- Robert Bradshaw: Cython version
class sage.rings.laurent_series_ring_element.LaurentSeries

Bases: AlgebraElement

A Laurent Series.

We consider a Laurent series of the form \( t^n \cdot f \) where \( f \) is a power series.

INPUT:

- parent – a Laurent series ring
- \( f \) – a power series (or something can be coerced to one); note that \( f \) does not have to be a unit
- \( n \) – (default: 0) integer

\( O(prec) \)

Return the Laurent series of precision at most \( prec \) obtained by adding \( O(q^{\text{prec}}) \), where \( q \) is the variable.

The precision of \( self \) and the integer \( prec \) can be arbitrary. The resulting Laurent series will have precision equal to the minimum of the precision of \( self \) and \( prec \). The term \( O(q^{\text{prec}}) \) is the zero series with precision \( prec \).

See also \( \text{add\_bigoh()} \).

EXAMPLES:

```
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = t^-5 + t^-4 + t^3 + O(t^10); f
 t^-5 + t^-4 + t^3 + O(t^10)
sage: f.O(-4)
 t^-5 + O(t^-4)
sage: f.O(15)
 t^-5 + t^-4 + t^3 + O(t^10)
```

\( V(n) \)

Return the \( n \)-th Verschiebung of \( self \).

If \( f = \sum a_m x^m \) then this function returns \( \sum a_m x^{mn} \).

EXAMPLES:

```
sage: R.<x> = LaurentSeriesRing(QQ)
sage: f = -1/x + 1 + 2*x^2 + 5*x^5
sage: f.V(2)
 -x^-2 + 1 + 2*x^4 + 5*x^10
sage: f.V(-1)
 5*x^-5 + 2*x^-2 + 1 - x
sage: h = f.add_bigoh(7)
sage: h.V(2)
 -x^-2 + 1 + 2*x^4 + 5*x^10 + O(x^14)
sage: h.V(-2)
 Traceback (most recent call last):
 ...
 ValueError: For finite precision only positive arguments allowed
```

\( \text{add\_bigoh}(prec) \)

Return the truncated series at chosen precision \( prec \).

See also \( O() \).

INPUT:
• `prec` – the precision of the series as an integer

EXAMPLES:
```
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = t^2 + t^3 + O(t^10); f
t^2 + t^3 + O(t^10)
sage: f.add_bigoh(5)
t^2 + t^3 + O(t^5)
```

`change_ring(R)`
Change the base ring of `self`.

EXAMPLES:
```
sage: R.<q> = LaurentSeriesRing(ZZ)
sage: p = R([1,2,3]); p
1 + 2*q + 3*q^2
sage: p.change_ring(GF(2))
1 + q^2
```

`coefficients()`
Return the nonzero coefficients of `self`.

EXAMPLES:
```
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = -5/t^(2) + t + t^2 - 10/3*t^3
sage: f.coefficients()
[-5, 1, 1, -10/3]
```

`common_prec(other)`
Return the minimum precision of `self` and `other`.

EXAMPLES:
```
sage: R.<t> = LaurentSeriesRing(QQ)

sage: f = t^(-1) + t + t^2 + O(t^3)
sage: g = t + t^3 + t^4 + O(t^4)
sage: f.common_prec(g)
3
sage: g.common_prec(f)
3
sage: f = t + t^2 + O(t^3)
sage: g = t^(-3) + t^2
sage: f.common_prec(g)
3
sage: g.common_prec(f)
3
```
sage: f.common_prec(g)
+Infinity

sage: f = t^(-3) + O(t^(-2))
sage: g = t^(-5) + O(t^(-1))
sage: f.common_prec(g)
-2

sage: f = 0(t^2)
sage: g = 0(t^5)
sage: f.common_prec(g)
2

**common_valuation**(other)

Return the minimum valuation of self and other.

EXAMPLES:

sage: R.<t> = LaurentSeriesRing(QQ)

sage: f = t^(-1) + t + t^2 + O(t^3)
sage: g = t + t^3 + t^4 + O(t^4)
sage: f.common_valuation(g)
-1
sage: g.common_valuation(f)
-1

sage: f = t + t^2 + O(t^3)
sage: g = t^(-3) + t^2
sage: f.common_valuation(g)
-3
sage: g.common_valuation(f)
-3

sage: f = t + t^2
sage: g = t^2
sage: f.common_valuation(g)
1

sage: f = t^(-3) + O(t^(-2))
sage: g = t^(-5) + O(t^(-1))
sage: f.common_valuation(g)
-5

sage: f = 0(t^2)
sage: g = 0(t^5)
sage: f.common_valuation(g)
+Infinity

**degree()**

Return the degree of a polynomial equivalent to this power series modulo big oh of the precision.
EXAMPLES:

```python
sage: x = Frac(QQ[['x']]).0
sage: g = x^2 - x^4 + O(x^8)
sage: g.degree()
4
sage: g = -10/x^5 + x^2 - x^4 + O(x^8)
sage: g.degree()
4
sage: (x^-2 + O(x^0)).degree()
-2
```

derivative(*args)

The formal derivative of this Laurent series, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also:

_derivative()

EXAMPLES:

```python
sage: R.<x> = LaurentSeriesRing(QQ)
sage: g = 1/x^10 - x + x^2 - x^4 + O(x^8)
sage: g.derivative()
-10*x^-11 - 1 + 2*x - 4*x^3 + O(x^7)
sage: g.derivative(x)
-10*x^-11 - 1 + 2*x - 4*x^3 + O(x^7)
sage: R.<t> = PolynomialRing(ZZ)
sage: S.<x> = LaurentSeriesRing(R)
sage: f = 2*t/x + (3*t^2 + 6*t)*x + O(x^2)
sage: f.derivative()
-2*t*x^-2 + (3*t^2 + 6*t) + O(x)
sage: f.derivative(x)
-2*t*x^-2 + (3*t^2 + 6*t) + O(x)
sage: f.derivative(t)
2*x^-1 + (6*t + 6)*x + O(x^2)
```

exponents()

Return the exponents appearing in self with nonzero coefficients.

EXAMPLES:

```python
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = -5/t^2 + t + t^2 - 10/3*t^3
sage: f.exponents()
[-2, 1, 2, 3]
```

integral()

The formal integral of this Laurent series with 0 constant term.

EXAMPLES: The integral may or may not be defined if the base ring is not a field.
sage: t = LaurentSeriesRing(ZZ, 't').0
sage: f = 2*t^-3 + 3*t^2 + O(t^4)
sage: f.integral()
-t^-2 + t^3 + O(t^5)

sage: f = t^3
sage: f.integral()
Traceback (most recent call last):
  ... ArithmetricError: Coefficients of integral cannot be coerced into the base ring

The integral of 1/t is $\log(t)$, which is not given by a Laurent series:

sage: t = Frac(QQ[['t']]).0
sage: f = -1/t^3 - 31/t + O(t^3)
sage: f.integral()
Traceback (most recent call last):
  ... ArithmetricError: The integral of $t^{-1}$ is not a Laurent series, since $t^{-1}$ has a nonzero coefficient.

Another example with just one negative coefficient:

sage: A.<t> = QQ[]
sage: f = -2*t^(-4) + O(t^8)
sage: f.integral()
2/3*t^-3 + O(t^9)
sage: f.integral().derivative() == f
True

inverse()  
Return the inverse of self, i.e., self^(-1).

EXAMPLES:

sage: R.<t> = LaurentSeriesRing(ZZ)
sage: t.inverse()
t^-1
sage: (1-t).inverse()
1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + ... 

is_monomial()  
Return True if this element is a monomial. That is, if self is $x^n$ for some integer $n$.

EXAMPLES:

sage: k.<z> = LaurentSeriesRing(QQ, 'z')
sage: (30*z).is_monomial()
False
sage: k(1).is_monomial()
True
sage: (z+1).is_monomial()
False
sage: (z^-2909).is_monomial()  
(continues on next page)
is_unit()

Return True if this is Laurent series is a unit in this ring.

EXAMPLES:

```
sage: R.<t> = LaurentSeriesRing(QQ)
sage: (2+t).is_unit()
True
sage: f = 2+t^2+O(t^10); f.is_unit()
True
sage: 1/f
1/2 - 1/4*t^2 + 1/8*t^4 - 1/16*t^6 + 1/32*t^8 + O(t^10)
sage: R(0).is_unit()
False
```

ALGORITHM: A Laurent series is a unit if and only if its “unit part” is a unit.

is_zero()

EXAMPLES:

```
sage: x = Frac(QQ[['x']]).0
sage: f = 1/x + x + x^2 + 3*x^4 + O(x^7)
sage: f.is_zero()
0
sage: z = 0*f
sage: z.is_zero()
1
```

laurent_polynomial()

Return the corresponding Laurent polynomial.

EXAMPLES:

```
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = t^-3 + t + 7*t^2 + O(t^5)
sage: g = f.laurent_polynomial(); g
t^-3 + t + 7*t^2
sage: g.parent()
Univariate Laurent Polynomial Ring in t over Rational Field
```

lift_to_precision(absprec=None)

Return a congruent Laurent series with absolute precision at least absprec.
INPUT:

- absprec – an integer or None (default: None), the absolute precision of the result. If None, lifts to an exact element.

EXAMPLES:

```python
sage: A.<t> = LaurentSeriesRing(GF(5))
sage: x = t^(-1) + t^2 + O(t^5)
sage: x.lift_to_precision(10)
t^(-1) + t^2 + O(t^10)
sage: x.lift_to_precision()
t^(-1) + t^2
```

`list()`

EXAMPLES:

```python
sage: R.<t> = LaurentSeriesRing(QQ)
sage: f = -5/t^(2) + t + t^2 - 10/3*t^3
sage: f.list()
[-5, 0, 0, 1, 1, -10/3]
```

`nth_root(n, prec=None)`

Return the n-th root of this Laurent power series.

INPUT:

- n – integer
- prec – integer (optional) - precision of the result. Though, if this series has finite precision, then the result cannot have larger precision.

EXAMPLES:

```python
sage: R.<x> = LaurentSeriesRing(QQ)
sage: (x^-2 + 1 + x).nth_root(2)
x^-1 + 1/2*x + 1/2*x^2 - ... - 19437/65536*x^18 + O(x^19)
sage: (x^-2 + 1 + x).nth_root(2)**2
x^-2 + 1 + x + O(x^18)
sage: j = j_invariant_qexp()
sage: q = j.parent().gen()
sage: j(q^3).nth_root(3)
q^-1 + 248*q^2 + 4124*q^5 + ... + O(q^29)
sage: (j(q^2) - 1728).nth_root(2)
q^-1 - 492*q - 22590*q^3 - ... + O(q^19)
```

`power_series()`

Convert this Laurent series to a power series.

An error is raised if the Laurent series has a term (or an error term $O(x^k)$) whose exponent is negative.

EXAMPLES:

```python
sage: R.<t> = LaurentSeriesRing(ZZ)
sage: f = 1/(1-t+O(t^10)); f.parent()
Laurent Series Ring in t over Integer Ring
```

(continues on next page)
sage: g = f.power_series(); g
1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + t^7 + t^8 + t^9 + O(t^10)
sage: parent(g)
Power Series Ring in t over Integer Ring
sage: f = 3/t^2 + t^2 + t^3 + O(t^10)
sage: f.power_series()
Traceback (most recent call last):
  ...
TypeError: self is not a power series

prec()
This function returns the n so that the Laurent series is of the form (stuff) + \(O(t^n)\). It doesn’t matter how many negative powers appear in the expansion. In particular, prec could be negative.

EXAMPLES:
sage: x = Frac(QQ[['x']]).0
sage: f = x^2 + 3*x^4 + O(x^7)
sage: f.prec()
7
sage: g = 1/x^10 - x + x^2 - x^4 + O(x^8)
sage: g.prec()
8

precision_absolute()
Return the absolute precision of this series.
By definition, the absolute precision of \(...) + O(x^r)\) is r.

EXAMPLES:
sage: R.<t> = ZZ[[[]]

precision_relative()
Return the relative precision of this series, that is the difference between its absolute precision and its valuation.
By convention, the relative precision of 0 (or \(O(x^r)\) for any r) is 0.

EXAMPLES:

residue()
Return the residue of self.
Consider the Laurent series
\[ f = \sum_{n \in \mathbb{Z}} a_n t^n = \cdots + \frac{a_{-2}}{t^2} + \frac{a_{-1}}{t} + a_0 + a_1 t + a_2 t^2 + \cdots, \]
then the residue of \( f \) is \( a_{-1} \). Alternatively this is the coefficient of \( 1/t \).

**EXAMPLES:**

```python
sage: t = LaurentSeriesRing(ZZ, 't').gen()
sage: f = 1/t**2+2/t+3+4*t
sage: f.residue()
2
sage: f = t+t**2
sage: f.residue()
0
sage: f.residue().parent()
Integer Ring
```

**reverse**(precision=None)

Return the reverse of \( f \), i.e., the series \( g \) such that \( g(f(x)) = x \). Given an optional argument `precision`, return the reverse with given precision (note that the reverse can have precision at most \( f.prec() \)). If \( f \) has infinite precision, and the argument `precision` is not given, then the precision of the reverse defaults to the default precision of \( f.parent() \).

Note that this is only possible if the valuation of self is exactly 1.

The implementation depends on the underlying power series element implementing a reverse method.

**EXAMPLES:**

```python
sage: R.<x> = Frac(QQ[[x]])
sage: f = 2*x + 3*x^2 - x^4 + O(x^5)
sage: g = f.reverse()
sage: g
1/2*x - 3/8*x^2 + 9/16*x^3 - 131/128*x^4 + O(x^5)
sage: f(g)
x + O(x^5)
sage: g(f)
x + O(x^5)
sage: A.<t> = LaurentSeriesRing(ZZ)
sage: a = t - t^2 - 2*t^4 + t^5 + O(t^6)
sage: b = a.reverse(); b
t + t^2 + 2*t^3 + 7*t^4 + 25*t^5 + O(t^6)
sage: a(b)
t + O(t^6)
sage: b(a)
t + O(t^6)
sage: B.<b,c> = ZZ[]
sage: A.<t> = LaurentSeriesRing(B)
sage: f = t + b*t^2 + c*t^3 + O(t^4)
sage: g = f.reverse(); g
t - b*t^2 + (2*b^2 - c)*t^3 + O(t^4)
sage: f(g)
```

(continues on next page)


\[ t + O(t^4) \]
\[ \text{sage: } g(f) \]
\[ t + O(t^4) \]

\[ \text{sage: } A.<t> = PowerSeriesRing(ZZ) \]
\[ \text{sage: } B.<s> = LaurentSeriesRing(A) \]
\[ \text{sage: } f = (1 - 3*t + 4*t^3 + O(t^4))*s + (2 + t + t^2 + O(t^3))*s^2 + O(s^3) \]
\[ \text{sage: } \text{set\_verbose}(1) \]
\[ \text{sage: } g = f.reverse(); g \]
\[ \text{verbose 1 (<module>) passing to pari failed; trying Lagrange inversion} \]
\[ (1 + 3*t + 9*t^2 + 23*t^3 + O(t^4))*s + (-2 - 19*t - 118*t^2 + O(t^3))*s^2 + O(s^3) \]
\[ \text{sage: } \text{set\_verbose}(0) \]
\[ \text{sage: } f(g) == g(f) == s \]
\[ \text{True} \]

If the leading coefficient is not a unit, we pass to its fraction field if possible:

\[ \text{sage: } A.<t> = LaurentSeriesRing(ZZ) \]
\[ \text{sage: } a = 2*t - 4*t^2 + t^4 - t^5 + O(t^6) \]
\[ \text{sage: } a.reverse() \]
\[ 1/2*t + 1/2*t^2 + t^3 + 79/32*t^4 + 437/64*t^5 + O(t^6) \]

\[ \text{sage: } B.<b> = PolynomialRing(ZZ) \]
\[ \text{sage: } A.<t> = LaurentSeriesRing(B) \]
\[ \text{sage: } f = 2*b*t + b*t^2 + 3*b^2*t^3 + O(t^4) \]
\[ \text{sage: } g = f.reverse(); g \]
\[ 1/(2*b)*t - 1/(8*b^2)*t^2 + ((-3*b + 1)/(16*b^3))*t^3 + O(t^4) \]
\[ \text{sage: } f(g) \]
\[ t + O(t^4) \]
\[ \text{sage: } g(f) \]
\[ t + O(t^4) \]

We can handle some base rings of positive characteristic:

\[ \text{sage: } A8.<t> = LaurentSeriesRing(Zmod(8)) \]
\[ \text{sage: } a = t - 15*t^2 - 2*t^4 + t^5 + O(t^6) \]
\[ \text{sage: } b = a.reverse(); b \]
\[ t + 7*t^2 + 2*t^3 + 5*t^4 + t^5 + O(t^6) \]
\[ \text{sage: } a(b) \]
\[ t + O(t^6) \]
\[ \text{sage: } b(a) \]
\[ t + O(t^6) \]

The optional argument precision sets the precision of the output:

\[ \text{sage: } R.<x> = LaurentSeriesRing(QQ) \]
\[ \text{sage: } f = 2*x + 3*x^2 - 7*x^3 + x^4 + O(x^5) \]
\[ \text{sage: } g = f.reverse(precision=3); g \]
\[ 1/2*x - 3/8*x^2 + O(x^3) \]
\[ \text{sage: } f(g) \]
\[ x + O(x^3) \]
sage: g(f)  
x + O(x^3)

If the input series has infinite precision, the precision of the output is automatically set to the default precision of the parent ring:

sage: R.<x> = LaurentSeriesRing(QQ, default_prec=20)  
sage: (x - x^2).reverse()  
# get some Catalan numbers
x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + 16796*x^11 + 58786*x^12 + 208012*x^13 + 742900*x^14 + 2674440*x^15 + 9694845*x^16 + 35357670*x^17 + 129644790*x^18 + 477638700*x^19 + O(x^20)

sage: (x - x^2).reverse(precision=3)  
x + x^2 + O(x^3)

shift(k)
Returns this Laurent series multiplied by the power $t^n$. Does not change this series.

Note: Despite the fact that higher order terms are printed to the right in a power series, right shifting decreases the powers of $t$, while left shifting increases them. This is to be consistent with polynomials, integers, etc.

EXAMPLES:

sage: R.<t> = LaurentSeriesRing(QQ[['y']])  
sage: f = (t+t^-1)^4; f  
t^-4 + 4*t^-2 + 6 + 4*t^2 + t^4

sage: f.shift(10)  
t^6 + 4*t^8 + 6*t^10 + 4*t^12 + t^14

sage: f >> 10  
t^-14 + 4*t^-12 + 6*t^-10 + 4*t^-8 + t^-6

sage: t << 4  
t^5

sage: t + O(t^3) >> 4  
t^-3 + O(t^-1)

AUTHORS:
- Robert Bradshaw (2007-04-18)

truncate(n)
Return the Laurent series of degree $\leq n$ which is equivalent to self modulo $x^n$.

EXAMPLES:

sage: A.<x> = LaurentSeriesRing(ZZ)  
sage: f = 1/(1-x)  
sage: f
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + O(x^20)

sage: f.truncate(10)  
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9
**truncate_laurentseries** (*n*)

Replace any terms of degree >= n by big oh.

**EXAMPLES:**

```sage
sage: A.<x> = LaurentSeriesRing(ZZ)
sage: f = 1/(1-x)
sage: f
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + O(x^20)
sage: f.truncate_laurentseries(10)
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + O(x^10)
```

**truncate_neg** (*n*)

Return the Laurent series equivalent to *self* except without any degree n terms.

This is equivalent to:

```sage
self - self.truncate(n)
```

**EXAMPLES:**

```sage
sage: A.<t> = LaurentSeriesRing(ZZ)
sage: f = 1/(1-t)
sage: f.truncate_neg(15)
t^15 + t^16 + t^17 + t^18 + t^19 + O(t^20)
```

**valuation** ()

**EXAMPLES:**

```sage
sage: R.<x> = LaurentSeriesRing(QQ)
sage: f = 1/x + x^2 + 3*x^4 + O(x^7)
sage: g = 1 - x + x^2 - x^4 + O(x^8)
sage: f.valuation()
-1
sage: g.valuation()
0
```

Note that the valuation of an element undistinguishable from zero is infinite:

```sage
sage: h = f - f; h
0(x^7)
sage: h.valuation()
+Infinity
```

**valuation_zero_part** ()

**EXAMPLES:**

```sage
sage: x = Frac(QQ[['x']]).0
sage: f = x + x^2 + 3*x^4 + O(x^7)
sage: f/x
1 + x + 3*x^3 + 0(x^6)
sage: f.valuation_zero_part()
1 + x + 3*x^3 + 0(x^6)
```

(continues on next page)
Coefficients of lazy series are computed on demand. They have infinite precision, although equality can only be decided in special cases.

AUTHORS:

- Kwankyu Lee (2019-02-24): initial version
- Tejasvi Chebrolu, Martin Rubey, Travis Scrimshaw (2021-08): refactored and expanded functionality

EXAMPLES:

Laurent series over the integer ring are particularly useful as generating functions for sequences arising in combinatorics.

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
```

The generating function of the Fibonacci sequence is:

```python
sage: f = 1 / (1 - z - z^2)
sage: f
1 + z + 2*z^2 + 3*z^3 + 5*z^4 + 8*z^5 + 13*z^6 + O(z^7)
```

In principle, we can now compute any coefficient of $f$:

```python
sage: f.coefficient(100)
573147844013817084101
```

Which coefficients are actually computed depends on the type of implementation. For the sparse implementation, only the coefficients which are needed are computed.

```python
sage: s = L(lambda n: n, valuation=0); s
z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7)
sage: s.coefficient(10)
10
sage: s._coeff_stream._cache
{1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 10: 10}
```

Using the dense implementation, all coefficients up to the required coefficient are computed.

```python
sage: L.<x> = LazyLaurentSeriesRing(ZZ, sparse=False)
sage: s = L(lambda n: n, valuation=0); s
x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + O(x^7)
sage: s.coefficient(10)
10
```

(continues on next page)
We can do arithmetic with lazy power series:

\begin{verbatim}
sage: f
1 + z + 2*z^2 + 3*z^3 + 5*z^4 + 8*z^5 + 13*z^6 + O(z^7)
sage: f^-1
1 - z - z^2 + O(z^7)
sage: f + f^-1
2 + z^2 + 3*z^3 + 5*z^4 + 8*z^5 + 13*z^6 + O(z^7)
sage: g = (f + f^-1)*(f - f^-1); g
4*z + 6*z^2 + 8*z^3 + 19*z^4 + 38*z^5 + 71*z^6 + O(z^7)
\end{verbatim}

We call lazy power series whose coefficients are known to be eventually constant ‘exact’. In some cases, computations with such series are much faster. Moreover, these are the series where equality can be decided. For example:

\begin{verbatim}
sage: L.<z> = LazyPowerSeriesRing(ZZ)
sage: f = 1 + 2*z^2 / (1 - z)
sage: f - 2 / (1 - z) + 1 + 2*z
0
\end{verbatim}

However, multivariate Taylor series are actually represented as streams of multivariate polynomials. Therefore, the only exact series in this case are polynomials:

\begin{verbatim}
sage: L.<x,y> = LazyPowerSeriesRing(ZZ)
sage: 1 / (1-x)
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + O(x,y)^7
\end{verbatim}

A similar statement is true for lazy symmetric functions:

\begin{verbatim}
sage: h = SymmetricFunctions(QQ).h()
sage: L = LazySymmetricFunctions(h)
sage: 1 / (1-L(h[1]))
h[] + h[1] + (h[1,1]) + (h[1,1,1]) + (h[1,1,1,1]) + (h[1,1,1,1,1]) + \cdots + O^7
\end{verbatim}

We can change the base ring:

\begin{verbatim}
sage: h = g.change_ring(QQ)
sage: h.parent()
Lazy Laurent Series Ring in z over Rational Field
sage: h
4*z + 6*z^2 + 8*z^3 + 19*z^4 + 38*z^5 + 71*z^6 + 130*z^7 + O(z^8)
sage: hinv = h^-1; hinv
1/4*z^-1 - 3/8 + 1/16*z - 17/32*z^2 + 5/64*z^3 - 29/128*z^4 + 165/256*z^5 + 0(z^6)
sage: hinv.valuation()
-1
\end{verbatim}

\textbf{class} \texttt{sage.rings.lazy_series.LazyCauchyProductSeries}(\textit{parent, coeff_stream})

Bases: \texttt{LazyModuleElement}

A class for series where multiplication is the Cauchy product.

\textbf{EXAMPLES}:
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: f = 1 / (1 - z)
sage: f
1 + z + z^2 + O(z^3)
sage: f * (1 - z)
1

sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=True)
sage: f = 1 / (1 - z)
sage: f
1 + z + z^2 + O(z^3)

exp()  
Return the exponential series of self.  
We use the identity

\[ \exp(s) = 1 + \int s' \exp(s). \]

EXAMPLES:

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: exp(z)
1 + z + 1/2*z^2 + 1/6*z^3 + 1/24*z^4 + 1/120*z^5 + 1/720*z^6 + O(z^7)
sage: exp(z + z^2)
1 + z + 3/2*z^2 + 7/6*z^3 + 25/24*z^4 + 27/40*z^5 + 331/720*z^6 + O(z^7)
sage: exp(0)
1
sage: exp(1 + z)
Traceback (most recent call last):
...  
ValueError: can only compose with a positive valuation series

sage: L.<x, y> = LazyPowerSeriesRing(QQ)
sage: exp(x+y)[4].factor()
(1/24) * (x + y)^4
sage: exp(x/(1-y)).polynomial(3)
1/6*x^3 + x^2*y + x*y^2 + 1/2*x^2 + x*y + x + 1

log()  
Return the series for the natural logarithm of self.  
We use the identity

\[ \log(s) = \int s'/s. \]

EXAMPLES:

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: log(1/(1-z))
z + 1/2*z^2 + 1/3*z^3 + 1/4*z^4 + 1/5*z^5 + 1/6*z^6 + 1/7*z^7 + O(z^8)

sage: L.<x, y> = LazyPowerSeriesRing(QQ)
valuation()

Return the valuation of self.

This method determines the valuation of the series by looking for a nonzero coefficient. Hence if the series happens to be zero, then it may run forever.

EXAMPLES:

```
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: s = 1/(1 - z) - 1/(1 - 2^z)
sage: s.valuation()
1
sage: t = z - z
sage: t.valuation()
+Infinity
sage: M = L(lambda n: n^2, 0)
sage: M.valuation()
1
sage: (M - M).valuation()
+Infinity
```

class sage.rings.lazy_series.LazyCompletionGradedAlgebraElement

Bases: LazyCauchyProductSeries

An element of a completion of a graded algebra that is computed lazily.

class sage.rings.lazy_series.LazyDirichletSeries

Bases: LazyModuleElement

A Dirichlet series where the coefficients are computed lazily.

EXAMPLES:

```
sage: L = LazyDirichletSeriesRing(ZZ, "z")
sage: f = L(constant=1)^2; f
1 + 2/2^z + 2/3^z + 3/4^z + 2/5^z + 4/6^z + 2/7^z + O(1/(8^z))
sage: f.coefficient(100) == number_of_divisors(100)
True
```

Lazy Dirichlet series is picklable:

```
sage: g = loads(dumps(f))
sage: g
1 + 2/2^z + 2/3^z + 3/4^z + 2/5^z + 4/6^z + 2/7^z + O(1/(8^z))
sage: g == f
True
```

is_unit()

Return whether this element is a unit in the ring.

EXAMPLES:
valuation()

Return the valuation of self.

This method determines the valuation of the series by looking for a nonzero coefficient. Hence if the series happens to be zero, then it may run forever.

EXAMPLES:

```python
sage: L = LazyDirichletSeriesRing(ZZ, "z")
sage: mu = L(moebius); mu.valuation()
0
sage: (mu - mu).valuation()
+Infinity
sage: g = L(constant=1, valuation=2)
sage: g.valuation()
log(2)
sage: (g*g).valuation()
2*log(2)
```

class `sage.rings.lazy_series.LazyLaurentSeries`(parent, coeff_stream)

Bases: `LazyCauchyProductSeries`

A Laurent series where the coefficients are computed lazily.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
```

We can build a series from a function and specify if the series eventually takes a constant value:

```python
sage: f = L(lambda i: i, valuation=-3, constant=-1, degree=3)
sage: f
-3*z^-3 - 2*z^-2 - z^-1 + z + 2*z^2 - z^3 - z^4 - z^5 + O(z^6)
sage: f[-2]
-2
sage: f[10]
-1
sage: f[-5]
0
sage: f = L(lambda i: i, valuation=-3)
```

(continues on next page)
sage: f
-3*z^-3 - 2*z^-2 - z^-1 + z + 2*z^2 + 3*z^3 + O(z^4)
sage: f[20]
20

Anything that converts into a polynomial can be input, where we can also specify the valuation or if the series eventually takes a constant value:

sage: L([-5,2,0,5])
-5 + 2*z + 5*z^3
sage: L([-5,2,0,5], constant=6)
-5 + 2*z + 5*z^3 + 6*z^4 + 6*z^5 + 6*z^6 + O(z^7)
sage: L([-5,2,0,5], degree=6, constant=6)
-5 + 2*z + 5*z^3 + 6*z^4 + 6*z^5 + 6*z^6 + O(z^9)
sage: L([-5,2,0,5], valuation=-2, degree=3, constant=6)
-5*z^-2 + 2*z^-1 + 5*z + 6*z^3 + 6*z^4 + 6*z^5 + O(z^6)
sage: L([-5,2,0,5], valuation=5)
-5*z^5 + 2*z^6 + 5*z^8
sage: L([-2:9, 3:4], constant=2, degree=5)
9*z^-2 + 4*z^3 + 2*z^5 + 2*z^6 + 2*z^7 + O(z^8)

We can also perform arithmetic:

sage: f = 1 / (1 - z - z^2)
sage: f
1 + z + 2*z^2 + 3*z^3 + 5*z^4 + 8*z^5 + 13*z^6 + O(z^7)
sage: f.coefficient(100)
573147844013817084101

However, we may not always be able to know when a result is exactly a polynomial:

sage: f * (z^-1 - z^2 + O(z^5))
z^-2 - 1 + 2*z + O(z^5)

approximate_series(prec, name=None)
Return the Laurent series with absolute precision prec approximated from this series.

INPUT:
• prec – an integer
• name – name of the variable; if it is None, the name of the variable of the series is used

OUTPUT: a Laurent series with absolute precision prec

EXAMPLES:

sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: z = L.gen()
sage: f = (z - 2*z^3)^5/(1 - 2*z)
sage: f
z^5 + 2*z^6 - 6*z^7 - 12*z^8 + 16*z^9 + 32*z^10 - 16*z^11 + O(z^12)
sage: g = f.approximate_series(10)
sage: g
z^5 + 2*z^6 - 6*z^7 - 12*z^8 + 16*z^9 + O(z^10)
sage: g.parent()
Power Series Ring in z over Integer Ring
sage: h = (f^-1).approximate_series(3)
sage: h
z^-5 - 2*z^-4 + 10*z^-3 - 20*z^-2 + 60*z^-1 - 120 + 280*z - 560*z^2 + O(z^3)
sage: h.parent()
Laurent Series Ring in z over Integer Ring

compose(g, check)
Return the composition of self with g.

Given two Laurent series $f$ and $g$ over the same base ring, the composition $(f \circ g)(z) = f(g(z))$ is defined if and only if:

$\bullet$ $g = 0$ and val($f$) $\geq 0$,

$\bullet$ $g$ is non-zero and $f$ has only finitely many non-zero coefficients,

$\bullet$ $g$ is non-zero and val($g$) $> 0$.

INPUT:

- $g$ – other series

EXAMPLES:

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: f = z^2 + 1 + z
sage: f(0)
1
sage: f(L(0))
1
sage: f(f)
3 + 3*z + 4*z^2 + 2*z^3 + z^4
sage: g = z^-3/(1-2*z); g
z^-3 + 2*z^-2 + 4*z^-1 + 8 + 16*z + 32*z^2 + 64*z^3 + O(z^4)
sage: f(g)
z^-6 + 4*z^-5 + 12*z^-4 + 33*z^-3 + 82*z^-2 + 196*z^-1 + 457 + O(z)
sage: g^2 + 1 + g
z^-6 + 4*z^-5 + 12*z^-4 + 33*z^-3 + 82*z^-2 + 196*z^-1 + 457 + O(z)
sage: f(int(2))
7
sage: f = z^-2 + z + 4*z^3
sage: f(f)
4*z^-6 + 12*z^-3 + z^-2 + 48*z^-1 + 12 + 0(z)
sage: f^-2 + f + 4*f^3
4*z^-6 + 12*z^-3 + z^-2 + 48*z^-1 + 12 + 0(z)
sage: f(g)
4*z^-9 + 24*z^-8 + 96*z^-7 + 320*z^-6 + 960*z^-5 + 2688*z^-4 + 7169*z^-3 + O(z^-2)
sage: g^-2 + g + 4*g^3

(continues on next page)
4*z^-9 + 24*z^-8 + 96*z^-7 + 320*z^-6 + 960*z^-5 + 2688*z^-4 + 7169*z^-3 + O(z^-2)

sage: f = z^-3 + z^-2 + 1 / (1 + z^2); f
z^-3 + z^-2 + 1 + O(z^4)
sage: g = z^3 / (1 + z^2); g
z^3 - z^4 + z^5 - z^7 + 2*z^8 - 2*z^9 + O(z^10)
sage: f(g)
z^-9 + 3*z^-8 + 3*z^-7 - z^-6 - 4*z^-5 - 2*z^-4 + z^-3 + O(z^-2)
sage: g^-3 + g^-2 + 1 / (1 + g^2)
z^-9 + 3*z^-8 + 3*z^-7 - z^-6 - 4*z^-5 - 2*z^-4 + z^-3 + O(z^-2)

sage: f = z^-3
sage: g = z^-2 + z^-1
sage: g^(-3)
z^-6 - 3*z^-5 + 6*z^-4 - 12*z^-3 + 18*z^-2 - 25*z^-1 + 33 + O(z)

We compose a Laurent polynomial with a generic element:

sage: R.<x> = QQ[]
sage: f = z^2 + 1 + z^-1
sage: g = x^2 + x + 3
sage: f(g)
(x^6 + 3*x^5 + 12*x^4 + 19*x^3 + 37*x^2 + 28*x + 31)/(x^2 + x + 3)
sage: f(g) == g^2 + 1 + g^-1
True

We compose with another lazy Laurent series:
```python
sage: LS.<y> = LazyLaurentSeriesRing(QQ)
sage: f = z^2 + 1 + z^-1
sage: fy = f(y); fy
y^-1 + 1 + y^2
sage: fy.parent() is LS
True
sage: g = y - y
sage: f(g)
Traceback (most recent call last):
...
ZeroDivisionError: the valuation of the series must be nonnegative
sage: g = 1 - y
sage: f(g)
3 - y + 2*y^2 + y^3 + y^4 + y^5 + O(y^6)
sage: g^2 + 1 + g^-1
3 - y + 2*y^2 + y^3 + y^4 + y^5 + O(y^6)
sage: f = L(lambda n: n, valuation=0); f
z + z^2 + z^3 + z^4 + z^5 + z^6 + O(z^7)
sage: f(0)
0
sage: f(y)
y + 2*y^2 + 3*y^3 + 4*y^4 + 5*y^5 + 6*y^6 + 7*y^7 + O(y^8)
sage: fp = f(y - y)
sage: fp == 0
True
sage: fp.parent() is LS
True
sage: f = z^2 + 3 + z
sage: f(y - y)
3
```

With both of them sparse:

```python
sage: L.<z> = LazyLaurentSeriesRing(QQ, sparse=True)
sage: LS.<y> = LazyLaurentSeriesRing(QQ, sparse=True)
sage: f = L(lambda n: 1, valuation=0); f
1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + O(z^7)
sage: f(y^2)
1 + y^2 + y^4 + y^6 + O(y^7)
sage: fp = f - 1 + z^-2; fp
z^-2 + z + z^2 + z^3 + z^4 + O(z^5)
sage: fpy = fp(y^2); fpy
y^-4 + y^2 + O(y^3)
sage: fpy.parent() is LS
True
sage: [fpy[i] for i in range(-4,11)]
[1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
sage: g = LS(valuation=2, constant=1); g
```

(continues on next page)
y^2 + y^3 + y^4 + O(y^5)
\textbf{sage}: \text{fg} = f(g); \text{fg}
1 + y^2 + y^3 + 2*y^4 + 3*y^5 + 5*y^6 + O(y^7)
\textbf{sage}: \text{fg} + 1 + g + g^2 + g^3 + g^4 + g^5 + g^6
1 + y^2 + y^3 + 2*y^4 + 3*y^5 + 5*y^6 + O(y^7)
\textbf{sage}: h = LS(\text{lambda} n: 1 \text{ if } n \% 2 \text{ else } 0, \text{valuation}=2); h
y^3 + y^5 + y^7 + O(y^9)
\textbf{sage}: fgh = fg(h); fgh
1 + y^6 + O(y^7)
\textbf{sage}: [fgh[i] \text{ for } i \text{ in } \text{range}(0, 15)]
[1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 6, 13]
\textbf{sage}: \text{t} = 1 + h^2 + h^3 + 2*h^4 + 3*h^5 + 5*h^6
\textbf{sage}: [\text{t}[i] \text{ for } i \text{ in } \text{range}(0, 15)]
[1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 6, 13]

We look at mixing the sparse and the dense:

\textbf{sage}: \text{L.<z>} = \text{LazyLaurentSeriesRing(QQ)}
\textbf{sage}: \text{f} = \text{L(\text{lambda} n: 1, \text{valuation}=0); f}
1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + O(z^7)
\textbf{sage}: \text{g} = \text{LS(\text{lambda} n: 1, \text{valuation}=1); g}
y + y^2 + y^3 + y^4 + y^5 + y^6 + y^7 + O(y^8)
\textbf{sage}: \text{f}(g)
1 + y + 2*y^2 + 4*y^3 + 8*y^4 + 16*y^5 + 32*y^6 + O(y^7)
\textbf{sage}: \text{f} = z^-2 + 1 + z
\textbf{sage}: \text{g} = 1/(y^*(1-y)); g
y^-1 + 1 + y + 0(y^2)
\textbf{sage}: \text{f}(g)
y^-1 + 2 + y + 2*y^2 + y^3 + 2*y^4 + y^5 + y^6 + y^7 + O(y^8)
\textbf{sage}: \text{g^-2} + 1 + g == \text{f}(g)
True
\textbf{sage}: \text{f} = z^-3 + z^-2 + 1
\textbf{sage}: \text{g} = 1/(y^2*(1-y)); g
y^-2 + y^-1 + 1 + 0(y)
\textbf{sage}: \text{f}(g)
1 + y^4 - 2*y^5 + 2*y^6 - 3*y^7 + 3*y^8 - y^9
\textbf{sage}: \text{g^-3} + \text{g^-2} + 1 == \text{f}(g)
True
\textbf{sage}: z(y)
y

We look at cases where the composition does not exist. $g = 0$ and $\text{val}(f) < 0$:

\textbf{sage}: \text{g} = \text{L(0)}
\textbf{sage}: \text{f} = z^-1 + z^-2
\textbf{sage}: \text{f}.\text{valuation()} < 0
True
\textbf{sage}: \text{f}(g)
Traceback (most recent call last):
ZeroDivisionError: the valuation of the series must be nonnegative

\[ g \neq 0 \text{ and } \text{val}(g) \leq 0 \text{ and } f \text{ has infinitely many non-zero coefficients:} \]

```sage
sage: g = z^{-1} + z^{-2}
sage: g.valuation() <= 0
True
sage: f = L(lambda n: n, valuation=0)
sage: f(g)
Traceback (most recent call last):
 ... ValueError: can only compose with a positive valuation series
sage: f = L(lambda n: n, valuation=1)
sage: f(1 + z)
Traceback (most recent call last):
 ... ValueError: can only compose with a positive valuation series
```

We compose the exponential with a Dirichlet series:

```sage
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: e = L(lambda n: 1/factorial(n), 0)
sage: D = LazyDirichletSeriesRing(QQ, "s")
sage: g = D(constant=1)-1; g
1/(2^s) + 1/(3^s) + 1/(4^s) + O(1/(5^s))
sage: e(g)[0:10]
[0, 1, 1, 1, 3/2, 1, 2, 1, 13/6, 3/2]
sage: sum(g^k/factorial(k) for k in range(10))[0:10]
[0, 1, 1, 1, 3/2, 1, 2, 1, 13/6, 3/2]
```

```sage
sage: g = D([0,1,0,1,1,2]); g
1/(2^s) + 1/(4^s) + 1/(5^s) + 2/6^s
sage: e(g)[0:10]
[0, 1, 1, 0, 3/2, 1, 2, 0, 7/6, 0]
sage: sum(g^k/factorial(k) for k in range(10))[0:10]
[0, 1, 1, 0, 3/2, 1, 2, 0, 7/6, 0]
```

```sage
sage: e(D([1,0,1]))
Traceback (most recent call last):
 ... ValueError: can only compose with a positive valuation series
```

```sage
sage: e5 = L(e, degree=5); e5
1 + z + 1/2*z^2 + 1/6*z^3 + 1/24*z^4
sage: e5(g)
1 + 1/(2^s) + 3/2/4^s + 1/(5^s) + 2/6^s + O(1/(8^s))
sage: sum(e5[k] * g^k for k in range(5))
1 + 1/(2^s) + 3/2/4^s + 1/(5^s) + 2/6^s + O(1/(8^s))
```
The output parent is always the common parent between the base ring of \( f \) and the parent of \( g \) or extended to the corresponding lazy series:

\[
\text{sage: } L.<z> = \text{LazyLaurentSeriesRing(QQ)} \\
\text{sage: } R.<x> = \text{ZZ[]} \\
\text{sage: } \text{parent}(z(x)) \\
\text{Univariate Polynomial Ring in x over Rational Field} \\
\text{sage: } \text{parent}(z(R.\text{zero}())) \\
\text{Univariate Polynomial Ring in x over Rational Field} \\
\text{sage: } \text{parent}(z(0)) \\
\text{Rational Field} \\
\text{sage: } f = 1 / (1 - z) \\
\text{sage: } f(x) \\
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + O(x^7) \\
\text{sage: } \text{three} = L(3)(x^2); \text{three} \\
3 \\
\text{sage: } \text{parent}(\text{three}) \\
\text{Univariate Polynomial Ring in x over Rational Field}
\]

Consistency check when \( g \) is an uninitialized series between a polynomial \( f \) as both a polynomial and a lazy series:

\[
\text{sage: } L.<z> = \text{LazyLaurentSeriesRing(QQ)} \\
\text{sage: } f = 1 + z \\
\text{sage: } g = L.\text{undefined(valuation=0)} \\
\text{sage: } f(g) == f.\text{polynomial()}(g) \\
\text{True}
\]

**compositional_inverse()**

Return the compositional inverse of \( \text{self} \).

Given a Laurent series \( f \), the compositional inverse is a Laurent series \( g \) over the same base ring, such that \((f \circ g)(z) = f(g(z)) = z\).

The compositional inverse exists if and only if:

- \( \text{val}(f) = 1 \), or
- \( f = a + bz \) with \( a, b \neq 0 \), or
- \( f = a/z \) with \( a \neq 0 \).

**EXAMPLES:**

\[
\text{sage: } L.<z> = \text{LazyLaurentSeriesRing(QQ)} \\
\text{sage: } (2^z).\text{revert()} \\
1/2^z \\
\text{sage: } (2/z).\text{revert()} \\
2^z^\text{-1} \\
\text{sage: } (z-z^2).\text{revert()} \\
z + z^2 + 2^z^3 + 5^z^4 + 14^z^5 + 42^z^6 + 132^z^7 + O(z^8) \\
\text{sage: } s = L(\text{degree=1, constant=-1}) \\
\text{sage: } s.\text{revert()} \\
-z - z^2 - z^3 + O(z^4) \\
\text{sage: } s = L(\text{degree=1, constant=1})
\]

(continues on next page)
**Warning:** For series not known to be eventually constant (e.g., being defined by a function) with approximate valuation \( \leq 1 \) (but not necessarily its true valuation), this assumes that this is the actual valuation:

```
sage: f = L(lambda n: n if n > 2 else 0, valuation=1)
sage: f.revert()
<repr... failed: ValueError: inverse does not exist>
```

**derivative(**args**)

Return the derivative of the Laurent series.

Multiple variables and iteration counts may be supplied; see the documentation of `sage.calculus.functional.derivative()` function for details.

**EXAMPLES:**

```
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: z.derivative()
1
sage: (1+z+z^2).derivative(3)
0
sage: (1/z).derivative()
-z^-2
sage: (1/(1-z)).derivative(z)
1 + 2*z + 3*z^2 + 4*z^3 + 5*z^4 + 6*z^5 + 7*z^6 + O(z^7)
```

**is_unit()**

Return whether this element is a unit in the ring.

**EXAMPLES:**

```
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: (2*z).is_unit()
False
sage: (1 + 2*z).is_unit()
True
sage: (1 + 2*z^1).is_unit()
False
sage: (z^3 + 4 - z^-2).is_unit()
True
```

**polynomial**(degree=None, name=None)

Return `self` as a Laurent polynomial if `self` is actually so.

**INPUT:**

- degree – None or an integer
• name – name of the variable; if it is None, the name of the variable of the series is used

OUTPUT:

A Laurent polynomial if the valuation of the series is negative or a polynomial otherwise.

If degree is not None, the terms of the series of degree greater than degree are first truncated. If degree is None and the series is not a polynomial or a Laurent polynomial, a ValueError is raised.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: f = L([1,0,0,2,0,0,0,3], valuation=5); f
z^5 + 2*z^8 + 3*z^12
sage: f.polynomial()
3*z^12 + 2*z^8 + z^5
```

revert()

Return the compositional inverse of self.

Given a Laurent series $f$, the compositional inverse is a Laurent series $g$ over the same base ring, such that $(f \circ g)(z) = f(g(z)) = z$.

The compositional inverse exists if and only if:

• $\text{val}(f) = 1$, or
• $f = a + bz$ with $a, b \neq 0$, or
• $f = a/z$ with $a \neq 0$.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: (2*z).revert()
1/2*z
sage: (2/z).revert()
2*z^-1
sage: (z-z^2).revert()
z + z^2 + 2*z^3 + 5*z^4 + 14*z^5 + 42*z^6 + 132*z^7 + O(z^8)
sage: s = L(degree=1, constant=-1)
sage: s.revert()
-z - z^2 - z^3 + O(z^4)
sage: s = L(degree=1, constant=1)
sage: s.revert()
z - z^2 + z^3 - z^4 + z^5 - z^6 + z^7 + O(z^8)
```

Warning: For series not known to be eventually constant (e.g., being defined by a function) with approximate valuation $\leq 1$ (but not necessarily its true valuation), this assumes that this is the actual valuation:

```python
sage: f = L(lambda n: n if n > 2 else 0, valuation=1)
sage: f.revert()
<repr... failed: ValueError: inverse does not exist>
```
class sage.rings.lazy_seriesLazyModuleElement(parent, coeff_stream)

Bases: Element

A lazy sequence with a module structure given by term-wise addition and scalar multiplication.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: M = L(lambda n: n, valuation=0)
sage: N = L(lambda n: 1, valuation=0)
sage: M[0:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: N[0:10]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```

Two sequences can be added:

```python
sage: O = M + N
sage: O[0:10]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

Two sequences can be subtracted:

```python
sage: P = M - N
sage: P[0:10]
[-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]
```

A sequence can be multiplied by a scalar:

```python
sage: Q = 2 * M
sage: Q[0:10]
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
```

The negation of a sequence can also be found:

```python
sage: R = -M
sage: R[0:10]
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
```

arccos()  
Return the arccosine of self.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(RR)
sage: arccos(z)
1.57079632679490 - 1.00000000000000*z + 0.000000000000000*z^2
- 0.166666666666667*z^3 + 0.000000000000000*z^4
- 0.0750000000000000*z^5 + O(1.00000000000000*z^7)
sage: L.<z> = LazyLaurentSeriesRing(SR)
sage: arccos(z/(1-z))
1/2*pi - z - z^2 - 7/6*z^3 - 3/2*z^4 - 83/40*z^5 - 73/24*z^6 + O(z^7)
```
sage: arccos(x/(1-y))
1/2*pi + (-x) + (-x*y) + ((-1/6)*x^3-x*y^2) + ((-1/2)*x^3*y-x*y^3)
+ ((-3/40)*x^5-x^3*y^2-x*y^4) + ((-3/8)*x^5*y+(-5/3)*x^3*y^3-x*y^5) + O(x,y)^7

arccot()

Return the arctangent of self.

EXAMPLES:

sage: L.<z> = LazyLaurentSeriesRing(RR)
sage: arccot(z)
1.57079632679490 - 1.00000000000000*z + 0.000000000000000*z^2
+ 0.333333333333333*z^3 + 0.000000000000000*z^4
- 0.200000000000000*z^5 + O(1.00000000000000*z^7)

sage: L.<z> = LazyLaurentSeriesRing(SR)
sage: arccot(z/(1-z))
1/2*pi - z - z^2 - 2/3*z^3 + 4/5*z^5 + 4/3*z^6 + O(z^7)

sage: L.<x,y> = LazyPowerSeriesRing(SR)
sage: acot(x/(1-y))
1/2*pi + (-x) + (-x*y) + (1/3*x^3+x*y^2) + (1/2*x^3*y+x*y^3)
+ ((-1/5)*x^5+2*x^3*y^2+x*y^4) + (3/40*x^5*y+5/3*x^3*y^3+x*y^5)
+ (5/112*x^7+9/8*x^5*y^2+5/2*x^3*y^4+x*y^6) + O(x,y)^7

arcsin()

Return the arcsine of self.

EXAMPLES:

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: arcsin(z)
z + 1/6*z^3 + 3/40*z^5 + 5/112*z^7 + O(z^8)

sage: L.<x,y> = LazyPowerSeriesRing(QQ)
sage: asin(x/(1-y))
x + x*y + (1/6*x^3+x*y^2) + (1/2*x^3*y+x*y^3)
+ (3/40*x^5+x^3*y^2+x*y^4) + (3/8*x^5*y+5/3*x^3*y^3+x*y^5)
+ (5/112*x^7+9/8*x^5*y^2+5/2*x^3*y^4+x*y^6) + O(x,y)^8

arcsinh()

Return the inverse of the hyperbolic sine of self.

EXAMPLES:

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: asinh(z)
z - 1/6*z^3 + 3/40*z^5 - 5/112*z^7 + O(z^8)

arcsinh is an alias:

sage: arcsinh(z)
z - 1/6*z^3 + 3/40*z^5 - 5/112*z^7 + O(z^8)

sage: L.<x,y> = LazyPowerSeriesRing(QQ)
Power Series Rings and Laurent Series Rings, Release 10.0

sage: asinh(x/(1-y))

\( x + x^2y + (-1/6)x^3y^2 + (-1/2)x^3y + x^4y^3 + (3/40)x^5 - x^3y^2 + x^4y^4 + (3/8)x^5y - 5/3x^3y^3 + x^4y^5 + (-5/112)x^7 + 9/8x^5y^2 - 5/2x^3y^4 + x^6y^6) + \ldots \)

\(--O(x,y)^8

\)

arctan()

Return the arctangent of self.

EXAMPLES:

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: arctan(z)
z - 1/3*z^3 + 1/5*z^5 - 1/7*z^7 + O(z^8)

sage: L.<x,y> = LazyPowerSeriesRing(QQ)
sage: atan(x/(1-y))
x + x^2y + (-1/3)x^3y^2 + (-x^3y + x^5y^3 + (1/5)x^5 - 2x^3y^2 + x^4y^4) + (x^5y - 10/3x^3y^3 + x^4y^5) + (-1/7)x^7 + 3x^5y^2 - 5x^3y^4 + x^6y^6) + O(x,y)^8

arctanh()

Return the inverse of the hyperbolic tangent of self.

EXAMPLES:

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: arctanh(z)
z + 1/3*z^3 + 1/5*z^5 + 1/7*z^7 + O(z^8)

arctanh is an alias:

sage: arctanh(z)
z + 1/3*z^3 + 1/5*z^5 + 1/7*z^7 + O(z^8)

sage: L.<x, y> = LazyPowerSeriesRing(QQ)
sage: atanh(x/(1-y))
x + x^2y + (1/3)x^3y^2 + (x^3y + x^5y^3 + (1/5)x^5 + 2x^3y^2 + x^4y^4) + (x^5y + 10/3x^3y^3 + x^4y^5) + (1/7)x^7 + 3x^5y^2 + 5x^3y^4 + x^6y^6) + O(x,y)^8

change_ring(ring)

Return self with coefficients converted to elements of ring.

INPUT:

• ring – a ring

EXAMPLES:

Dense Implementation:

sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=False)
sage: s = 2 + z
sage: t = s.change_ring(QQ)
sage: t^-1
1/2 - 1/4*z^2 - 1/16*z^4 + 1/32*z^6 + 1/128*z^8 + O(z^7)

sage: M = L(lambda n: n, valuation=0); M

(continues on next page)
(continued from previous page)

```
z + 2·z^2 + 3·z^3 + 4·z^4 + 5·z^5 + 6·z^6 + O(z^7)
sage: N = M.change_ring(QQ)
sage: N.parent()
Lazy Laurent Series Ring in z over Rational Field
sage: M.parent()
Lazy Laurent Series Ring in z over Integer Ring
Sparse Implementation:
```
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=True)
sage: M = L(lambda n: n, valuation=0); M
z + 2·z^2 + 3·z^3 + 4·z^4 + 5·z^5 + 6·z^6 + O(z^7)
sage: M.parent()
Lazy Laurent Series Ring in z over Integer Ring
sage: N = M.change_ring(QQ)
sage: N.parent()
Lazy Laurent Series Ring in z over Rational Field
sage: M^-1
z^-1 - 2 + z + O(z^6)
```

A Dirichlet series example:
```
sage: L = LazyDirichletSeriesRing(ZZ, 'z')
sage: s = L(constant=2)
sage: t = s.change_ring(QQ)
sage: t.parent()
Lazy Dirichlet Series Ring in z over Rational Field
sage: t^-1
1/2 - 1/2/2^z - 1/2/3^z - 1/2/5^z + 1/2/6^z - 1/2/7^z + O(1/(8^z))
```

A Taylor series example:
```
sage: L.<z> = LazyPowerSeriesRing(ZZ)
sage: s = 2 + z
sage: t = s.change_ring(QQ)
sage: t^-1
1/2 - 1/4·z + 1/8·z^2 - 1/16·z^3 + 1/32·z^4 - 1/64·z^5 + 1/128·z^6 + O(z^7)
sage: t.parent()
Lazy Taylor Series Ring in z over Rational Field
```

coefficient(n)

Return the homogeneous degree n part of the series.

INPUT:

* n – integer; the degree

For a series f, the slice $f[start:stop]$ produces the following:

* if $start$ and $stop$ are integers, return the list of terms with given degrees
* if $start$ is None, return the list of terms beginning with the valuation
* if $stop$ is None, return a lazy_list_generic instead.

EXAMPLES:
```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: f = z / (1 - 2*z^3)
sage: [f[n] for n in range(20)]
[0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, 16, 0, 0, 32, 0, 0, 64]
sage: f[0:20]
[0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, 16, 0, 0, 32, 0, 0, 64]
sage: f[:20]
[1, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, 16, 0, 0, 32, 0, 0, 64]
sage: f[:3]
lazy list [1, 2, 4, ...]
sage: M = L(lambda n: n, valuation=0)
sage: [M[n] for n in range(20)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=True)
sage: M = L(lambda n: n, valuation=0)
sage: [M[n] for n in range(20)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
```

Similarly for multivariate series:
```
sage: L.<x,y> = LazyPowerSeriesRing(QQ)
sage: sin(x*y)[:11]
x*y, 0, 0, 0, -1/6*x^3*y^3, 0, 0, 0, 1/120*x^5*y^5
sage: sin(x*y)[2::4]
lazy list [x*y, -1/6*x^3*y^3, 1/120*x^5*y^5, ...]
```

Similarly for Dirichlet series:
```
sage: L = LazyDirichletSeriesRing(ZZ, "z")
sage: L(lambda n: n)[1:11]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

coefficients(n=None)

Return the first \(n \) non-zero coefficients of \(\text{self} \).

INPUT:

- \(n \) – (optional) the number of non-zero coefficients to return

If the series has fewer than \(n \) non-zero coefficients, only these are returned.

If \(n \) is None, a lazy_list_generic with all non-zero coefficients is returned instead.

Warning: If there are fewer than \(n \) non-zero coefficients, but this cannot be detected, this method will not return.

EXAMPLES:
```
sage: L.<x> = LazyPowerSeriesRing(QQ)
sage: f = L([1,2,3])
sage: f.coefficients(5)
doctest:...: DeprecationWarning: the method coefficients now only returns the...
```
non-zero coefficients. Use \texttt{__getitem__} instead.

See https://github.com/sagemath/sage/issues/32367 for details.

\begin{Verbatim}
[1, 2, 3]
\end{Verbatim}

\begin{verbatim}
sage: f = sin(x)
sage: f.coefficients(5)
[1, -1/6, 1/120, -1/5040, 1/362880]
sage: L.<x, y> = LazyPowerSeriesRing(QQ)
sage: f = sin(x^2+y^2)
sage: f.coefficients(5)
[1, 1, -1/6, -1/2, -1/2]
sage: f.coefficients()
lazy list [1, 1, -1/6, ...]
sage: L.<x> = LazyPowerSeriesRing(GF(2))
sage: f = L(lambda n: n)
sage: f.coefficients(5)
[1, 1, 1, 1, 1]
\end{verbatim}

\textbf{\texttt{cos()}}

Return the cosine of \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: cos(z)
1 - 1/2*z^2 + 1/24*z^4 - 1/720*z^6 + O(z^7)
sage: L.<x,y> = LazyPowerSeriesRing(QQ)
sage: cos(x/(1-y)).polynomial(4)
1/24*x^4 - 3/2*x^2*y^2 - x^2*y - 1/2*x^2 + 1
\end{verbatim}

\textbf{\texttt{cosh()}}

Return the hyperbolic cosine of \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: cosh(z)
1 + 1/2*z^2 + 1/24*z^4 + 1/720*z^6 + O(z^7)
sage: L.<x,y> = LazyPowerSeriesRing(QQ)
sage: cosh(x/(1-y))
1 + 1/2*x^2 + x^2*y + (1/24*x^4+3/2*x^2*y^2) + (1/6*x^4*y+2*x^2*y^3)
+ (1/720*x^6+5/12*x^4*y^2+5/2*x^2*y^4) + O(x,y)^7
\end{verbatim}

\textbf{\texttt{cot()}}

Return the cotangent of \texttt{self}.

\textbf{EXAMPLES:}
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: cot(z)
z^-1 - 1/3*z - 1/45*z^3 - 2/945*z^5 + O(z^6)

sage: L.<x> = LazyLaurentSeriesRing(QQ)
sage: cot(x/(1-x)).polynomial(4)
x^-1 - 1 - 1/3*x - 1/3*x^2 - 16/45*x^3 - 2/5*x^4

coth()

Return the hyperbolic cotangent of self.

EXAMPLES:

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: coth(z)
z^-1 + 1/3*z - 1/45*z^3 + 2/945*z^5 + O(z^6)

sage: coth(z + z^2)
z^-1 - 1 + 4/3*z - 2/3*z^2 + 44/45*z^3 - 16/15*z^4 + 884/945*z^5 + O(z^6)

csc()

Return the cosecant of self.

EXAMPLES:

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: csc(z)
z^-1 + 1/6*z + 7/360*z^3 + 31/15120*z^5 + O(z^6)

sage: csc(x/(1-x)).polynomial(4)
x^-1 - 1 + 1/6*x + 1/6*x^2 + 67/360*x^3 + 9/40*x^4

csch()

Return the hyperbolic cosecant of self.

EXAMPLES:

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: csch(z)
z^-1 - 1/6*z + 7/360*z^3 - 31/15120*z^5 + O(z^6)

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: csch(z/(1-z))
z^-1 - 1 - 1/6*z - 1/6*z^2 - 53/360*z^3 - 13/120*z^4 - 787/15120*z^5 + O(z^6)

define(s)

Define an equation by self = s.

INPUT:

• s – a lazy series

EXAMPLES:

We begin by constructing the Catalan numbers:
The Catalan numbers but with a valuation 1:

```sage
B = L.undefined(valuation=1)
sage: B.define(z + B^2)
sage: B
z + z^2 + 2*z^3 + 5*z^4 + 14*z^5 + 42*z^6 + 132*z^7 + O(z^8)
```

We can define multiple series that are linked:

```sage
s = L.undefined()
st = L.undefined()
sage: s.define(1 + z*t^3)
sage: t.define(1 + z*s^2)
sage: s[0:9]
[1, 1, 3, 9, 34, 132, 546, 2327, 10191]
sage: t[0:9]
[1, 1, 2, 7, 24, 95, 386, 1641, 7150]
```

A bigger example:

```sage
L.<z> = LazyPowerSeriesRing(ZZ)
A = L.undefined(valuation=5)
B = L.undefined()
C = L.undefined(valuation=2)
sage: A.define(z^5 + B^2)
sage: B.define(z^5 + C^2)
sage: C.define(z^2 + C^2 + A^2)
sage: A[0:15]
[0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 5, 4, 14, 10, 48]
sage: B[0:15]
[0, 0, 0, 0, 1, 1, 2, 0, 5, 0, 14, 0, 44, 0, 138]
sage: C[0:15]
[0, 0, 1, 0, 1, 0, 2, 0, 5, 0, 15, 0, 44, 2, 142]
```

Counting binary trees:

```sage
L.<z> = LazyPowerSeriesRing(QQ)
sage: s = L.undefined(valuation=1)
sage: s.define(z + (s^2+s(z^2))/2)
sage: s[0:9]
[0, 1, 1, 2, 3, 6, 11, 23]
```

The \(q\)-Catalan numbers:

```sage
R.<q> = ZZ[]
sage: L.<z> = LazyLaurentSeriesRing(R)
```
We count unlabeled ordered trees by total number of nodes and number of internal nodes:

```
sage: R.<q> = QQ[]
sage: Q.<z> = LazyPowerSeriesRing(R)
sage: leaf = z
sage: internal_node = q * z
sage: L = Q(constant=1, degree=1)
sage: T = Q.undefined(valuation=1)
sage: T.define(leaf + internal_node * L(T))
sage: T[:6]
[0, 1, q, q^2 + q, q^3 + 3*q^2 + q, q^4 + 6*q^3 + 6*q^2 + q]
```

Similarly for Dirichlet series:

```
sage: L = LazyDirichletSeriesRing(ZZ, "z")
sage: g = L(constant=1, valuation=2)
sage: F = L.undefined()
sage: F.define(1 + g*F)
sage: F[:16]
[1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3]
sage: oeis(_)
# optional, internet
0: A002033: Number of perfect partitions of n.
...
```

We can compute the Frobenius character of unlabeled trees:

```
sage: m = SymmetricFunctions(QQ).m()
sage: s = SymmetricFunctions(QQ).s()
sage: L = LazySymmetricFunctions(m)
sage: E = L(lambdab n: s[n], valuation=0)
sage: X = L(s[1])
sage: A = L.undefined()
sage: A.define(X*E(A, check=False))
sage: A[:6]
[m[1],
```

(continued on next page)
euler()

Return the Euler function evaluated at self.

The Euler function is defined as

\[\phi(z) = (z; z)_\infty = \sum_{n=0}^{\infty} (-1)^n q^{(3n^2-n)/2}. \]

See also:

`sage.rings.lazy_series_ring.LazyLaurentSeriesRing.euler()`

EXAMPLES:

```
sage: L.<q> = LazyLaurentSeriesRing(ZZ)
sage: phi = L.euler()
sage: (q + q^2).euler() - phi(q + q^2)
O(q^7)
```

exp()

Return the exponential series of self.

EXAMPLES:

```
sage: L = LazyDirichletSeriesRing(QQ, "s")
sage: Z = L(constant=1, valuation=2)
sage: exp(Z)
1 + 1/(2^s) + 1/(3^s) + 3/2/4^s + 1/(5^s) + 2/6^s + 1/(7^s) + O(1/(8^s))
```

hypergeometric(a, b)

Return the \(p F_q \)-hypergeometric function \(p F_q \) where \((p, q)\) is the parameterization of self.

INPUT:

- `a` – the first parameter of the hypergeometric function
- `b` – the second parameter of the hypergeometric function

EXAMPLES:

```
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: z.hypergeometric([1, 1], [1])
1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + O(z^7)
sage: z.hypergeometric([], []) - exp(z)
O(z^7)
sage: L.<x,y> = LazyPowerSeriesRing(QQ)
sage: (x+y).hypergeometric([1, 1], [1]).polynomial(4)
x^4 + 4*x^3*y + 6*x^2*y^2 + 4*x*y^3 + y^4 + x^3 + 3*x^2*y + 3*x*y^2 + y^3 + x^2 + 2*x*y + y^2 + x + y + 1
```
lift_to_precision(absprec=None)

Return another element of the same parent with absolute precision at least absprec, congruent to this element modulo the precision of this element.

Since the precision of a lazy series is infinity, this method returns the series itself, and the argument is ignored.

EXAMPLES:

```
sage: P.<t> = PowerSeriesRing(QQ, default_prec=2)
sage: R.<z> = LazyPowerSeriesRing(P)
sage: f = R(lambda n: 1/(1-t)^n)
sage: f
1 + ((1+t+O(t^2))*z) + ((1+2*t+O(t^2))*z^2) + ((1+3*t+O(t^2))*z^3) + ((1+4*t+O(t^2))*z^4) + ((1+5*t+O(t^2))*z^5) + ((1+6*t+O(t^2))*z^6) + O(z^7)
sage: f.lift_to_precision()
1 + ((1+t+O(t^2))*z) + ((1+2*t+O(t^2))*z^2) + ((1+3*t+O(t^2))*z^3) + ((1+4*t+O(t^2))*z^4) + ((1+5*t+O(t^2))*z^5) + ((1+6*t+O(t^2))*z^6) + 0(z^7)
```

log()

Return the series for the natural logarithm of *self*.

EXAMPLES:

```
sage: L = LazyDirichletSeriesRing(QQ, "s")
sage: Z = L(constant=1)
sage: log(Z)
1/(2^s) + 1/(3^s) + 1/2/4^s + 1/(5^s) + 1/(7^s) + O(1/(8^s))
```

map_coefficients(f)

Return the series with *f* applied to each nonzero coefficient of *self*.

INPUT:

- func – function that takes in a coefficient and returns a new coefficient

EXAMPLES:

```
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: m = L(lambda n: n, valuation=0); m
z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7)
sage: m.map_coefficients(lambda c: c + 1)
2*z + 3*z^2 + 4*z^3 + 5*z^4 + 6*z^5 + 7*z^6 + 8*z^7 + 0(z^8)
```

Similarly for Dirichlet series:

```
sage: L = LazyDirichletSeriesRing(ZZ, "z")
sage: s = L(lambda n: n-1); s
1/(2*z) + 2/3*z + 3/4*z + 4/5*z + 5/6*z + 6/7*z + 0(1/(8*z))
sage: s.map_coefficients(lambda c: c + 1)
2/2*z + 3/3*z + 4/4*z + 5/5*z + 6/6*z + 7/7*z + 8/8*z + 0(1/(9*z))
```
Similarly for multivariate power series:

```
sage: L.<x, y> = LazyPowerSeriesRing(QQ)
sage: f = 1/(1-(x+y)); f
1 + (x+y) + (x^2+2*x*y+y^2) + (x^3+3*x^2*y+3*x*y^2+y^3) + (x^4+4*x^3*y+6*x^2*y^2+4*x*y^3+y^4) + (x^5+5*x^4*y+10*x^3*y^2+10*x^2*y^3+5*x*y^4+y^5) + (x^6+6*x^5*y+15*x^4*y^2+20*x^3*y^3+15*x^2*y^4+6*x*y^5+y^6) + O(x,y)^7
```

```
sage: f.map_coefficients(lambda c: c^2)
1 + (x+y) + (x^2+4*x*y+y^2) + (x^3+9*x^2*y+9*x*y^2+y^3) + (x^4+16*x^3*y+36*x^2*y^2+16*x*y^3+y^4) + (x^5+25*x^4*y+100*x^3*y^2+100*x^2*y^3+25*x*y^4+y^5) + (x^6+36*x^5*y+225*x^4*y^2+400*x^3*y^3+225*x^2*y^4+36*x*y^5+y^6) + O(x,y)^7
```

Similarly for lazy symmetric functions:

```
sage: p = SymmetricFunctions(QQ).p()
sage: L = LazySymmetricFunctions(p)
sage: f = 1/(1-2*L(p[1])); f
p[] + 2*p[1] + (4*p[1,1]) + (8*p[1,1,1]) + (16*p[1,1,1,1]) + (32*p[1,1,1,1,1]) + (64*p[1,1,1,1,1,1]) + O^7
```

```
sage: f.map_coefficients(lambda c: log(c, 2))
p[1] + (2*p[1,1]) + (3*p[1,1,1]) + (4*p[1,1,1,1]) + (5*p[1,1,1,1,1]) + (6*p[1,1,1,1,1,1]) + O^7
```

```
prec()

Return the precision of the series, which is infinity.

EXAMPLES:

```
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: f = 1/(1 - z)
sage: f.prec() +Infinity
```

```
q_pochhammer(q=None)

Return the infinite q-Pochhammer symbol \((a; q)_\infty\), where \(a\) is self.

This is also one version of the quantum dilogarithm or the \(q\)-Exponential function.

See also:

```
sage.rings.lazy_series_ring.LazyLaurentSeriesRing.q_pochhammer()
```

INPUT:

- \(q\) – (default: \(q \in \mathbb{Q}(q)\)) the parameter \(q\)

EXAMPLES:

```
sage: q = ZZ['q'].fraction_field().gen()
sage: L.<z> = LazyLaurentSeriesRing(q.parent())
sage: qp = L.q_pochhammer(q)
sage: (z + z^2).q_pochhammer(q) - qp(z + z^2)
0(z^7)
```
sec()

Return the secant of self.

EXAMPLES:

```sage
L.<z> = LazyLaurentSeriesRing(QQ)
sage: sec(z)
1 + 1/2*z^2 + 5/24*z^4 + 61/720*z^6 + O(z^7)
```

```sage
L.<x,y> = LazyPowerSeriesRing(QQ)
sage: sec(x/(1-y)).polynomial(4)
5/24*x^4 + 3/2*x^2*y^2 + x^2*y + 1/2*x^2 + 1
```

sech()

Return the hyperbolic secant of self.

EXAMPLES:

```sage
L.<z> = LazyLaurentSeriesRing(QQ)
sage: sech(z)
1 - 1/2*z^2 + 5/24*z^4 - 61/720*z^6 + O(z^7)
```

```sage
L.<x, y> = LazyPowerSeriesRing(QQ)
sage: sech(x/(1-y))
1 + (-1/2*x^2) + (-x^2*y) + (5/24*x^4-3/2*x^2*y^2) + (5/6*x^4*y-2*x^2*y^3) + (-61/720*x^6+25/12*x^4*y^2-5/2*x^2*y^4) + O(x,y)^7
```

set(s)

Define an equation by self = s.

INPUT:

• s – a lazy series

EXAMPLES:

We begin by constructing the Catalan numbers:

```sage
L.<z> = LazyPowerSeriesRing(ZZ)
sage: C = L.undefined()
sage: C.define(1 + z*C^2)
sage: C
1 + z + 2*z^2 + 5*z^3 + 14*z^4 + 42*z^5 + 132*z^6 + O(z^7)
```

```sage
binomial(2000, 1000) / C[1000]
1001
```

The Catalan numbers but with a valuation 1:

```sage
B = L.undefined(valuation=1)
sage: B.define(z + B^2)
sage: B
z + z^2 + 2*z^3 + 5*z^4 + 14*z^5 + 42*z^6 + 132*z^7 + O(z^8)
```

We can define multiple series that are linked:
A bigger example:

```sage
sage: L.<z> = LazyPowerSeriesRing(ZZ)
sage: A = L.undefined(valuation=5)
sage: B = L.undefined()
sage: C = L.undefined(valuation=2)
sage: A.define(z^5 + B^2)
sage: B.define(z^5 + C^2)
sage: C.define(z^2 + C^2 + A^2)
sage: A[0:15]
[0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 5, 4, 14, 10, 48]
sage: B[0:15]
[0, 0, 0, 0, 1, 1, 2, 0, 5, 0, 14, 0, 44, 0, 138]
sage: C[0:15]
[0, 0, 1, 0, 1, 0, 2, 0, 5, 0, 15, 0, 44, 2, 142]
```

Counting binary trees:

```sage
sage: L.<z> = LazyPowerSeriesRing(QQ)
sage: s = L.undefined(valuation=1)
sage: s.define(z + (s^2+s(z^2))/2)
sage: s[0:9]
[0, 1, 1, 1, 2, 3, 6, 11, 23]
```

The \(q\)-Catalan numbers:

```sage
sage: R.<q> = ZZ[]
sage: L.<z> = LazyLaurentSeriesRing(R)
sage: s = L.undefined(valuation=0)
sage: s.define(1+z^s*s(s(q*z))
sage: s
1 + z + (q + 1)*z^2 + (q^3 + q^2 + 2*q + 1)*z^3 + (q^6 + q^5 + 2*q^4 + 3*q^3 + 3*q^2 + 3*q + 1)*z^4 + (q^10 + q^9 + 2*q^8 + 3*q^7 + 5*q^6 + 5*q^5 + 7*q^4 + 7*q^3 + 6*q^2 + 4*q + 1)*z^5 + (q^15 + q^14 + 2*q^13 + 3*q^12 + 5*q^11 + 7*q^10 + 9*q^9 + 11*q^8 + 14*q^7 + 16*q^6 + 16*q^5 + 17*q^4 + 14*q^3 + 10*q^2 + 5*q + 1)*z^6 + O(z^7)
```

We count unlabeled ordered trees by total number of nodes and number of internal nodes:

```sage
sage: R.<q> = QQ[]
sage: Q.<z> = LazyPowerSeriesRing(R)
sage: leaf = z
```
sage: internal_node = q * z
sage: L = Q(constant=1, degree=1)

sage: T = Q.undefined(valuation=1)

sage: T.define(leaf + internal_node * L(T))

sage: T[0:6]
[0, 1, q, q^2 + q, q^3 + 3*q^2 + q, q^4 + 6*q^3 + 6*q^2 + q]

Similarly for Dirichlet series:

sage: L = LazyDirichletSeriesRing(ZZ, "z")

sage: g = L(constant=1, valuation=2)

sage: F = L.undefined()

sage: F.define(1 + g*F)

sage: F[:16]
[1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3]

sage: oeis(_)
optional, internet

\rightarrow internet

0: A002033: Number of perfect partitions of n.
...

sage: F = L.undefined()

sage: F.define(1 + g^2*F)

sage: F[:16]
[1, 1, 1, 3, 1, 5, 1, 10, 3, 5, 1, 24, 1, 5, 5]

We can compute the Frobenius character of unlabeled trees:

sage: m = SymmetricFunctions(QQ).m()

sage: s = SymmetricFunctions(QQ).s()

sage: L = LazySymmetricFunctions(m)

sage: E = L(lambda n: s[n], valuation=0)

sage: X = L(s[1])

sage: A = L.undefined()

sage: A.define(X*E(A, check=False))

sage: A[:6]

[m[1], 2*m[1, 1] + m[2], 9*m[1, 1, 1] + 5*m[2, 1] + 2*m[3], 64*m[1, 1, 1, 1] + 34*m[2, 1, 1] + 18*m[2, 2] + 13*m[3, 1] + 4*m[4], ...

\rightarrow 63*m[3, 2] + 35*m[4, 1] + 9*m[5]]

\textbf{shift}(n)

Return \texttt{self} with the indices shifted by \(n\).

For example, a Laurent series is multiplied by the power \(z^n\), where \(z\) is the variable of \texttt{self}. For series with a fixed minimal valuation (e.g., power series), this removes any terms that are less than the minimal valuation.

\textbf{INPUT:}

\begin{itemize}
 \item \(n\) – the amount to shift
\end{itemize}

\textbf{EXAMPLES:}
We compare the shifting with converting to the fraction field (see also github issue #35293):
```python
sage: M = L.fraction_field()
sage: f = L([1,2,3,4]); f
1 + 2*x + 3*x^2 + 4*x^3
sage: f.shift(-3)
4
sage: M(f).shift(-3)
x^-3 + 2*x^-2 + 3*x^-1 + 4
```

An example with a more general function:

```python
sage: fun = lambda n: 1 if ZZ(n).is_power_of(2) else 0
sage: f = L(fun); f
x + x^2 + x^4 + O(x^7)
sage: fs = f.shift(-4)
sage: fs
1 + x^4 + O(x^7)
sage: fs.shift(4)
x^4 + x^8 + O(x^11)
sage: M(f).shift(-4)
x^-3 + x^-2 + 1 + O(x^4)
```

sin()

Return the sine of `self`.

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: sin(z)
z - 1/6*z^3 + 1/120*z^5 - 1/5040*z^7 + O(z^8)
sage: Traceback (most recent call last):
  ... ValueError: can only compose with a positive valuation series
```

sinh()

Return the hyperbolic sine of `self`.

EXAMPLES:

```python
sage: L.<x,y> = LazyPowerSeriesRing(QQ)
sage: sinh(x/(1-y)).polynomial(3)
-1/6*x^3 + x*y^2 + x*y + x
```
sqrt()
Return self^(1/2).

EXAMPLES:

```sage
L.<z> = LazyLaurentSeriesRing(QQ)
sage: sqrt(1+z)
1 + 1/2*z - 1/8*z^2 + 1/16*z^3 - 5/128*z^4 + 7/256*z^5 - 21/1024*z^6 + O(z^7)

L.<x,y> = LazyPowerSeriesRing(QQ)
sage: sqrt(1+x/(1-y))
1 + 1/2*x + (-1/8*x^2+1/2*x*y) + (1/16*x^3-1/4*x^2*y+1/2*x*y^2) + (-5/128*x^4+3/16*x^3*y-3/8*x^2*y^2+1/2*x*y^3) + (7/256*x^5-5/32*x^4*y+3/8*x^3*y^2-1/2*x^2*y^3+1/2*x*y^4) + (-21/1024*x^6+35/256*x^5*y-25/64*x^4*y^2+5/8*x^3*y^3-5/8*x^2*y^4+1/2*x*y^5) + O(x,y)^7
```

This also works for Dirichlet series:

```sage
D = LazyDirichletSeriesRing(SR, "s")
sage: Z = D(constant=1)
sage: f = sqrt(Z)
sage: f
1 + 1/2/2^s + 1/2/3^s + 3/8/4^s + 1/2/5^s + 1/4/6^s + 1/2/7^s + O(1/(8^s))
sage: f*f - Z
O(1/(8^s))
```

tan()
Return the tangent of self.

EXAMPLES:

```sage
L.<z> = LazyLaurentSeriesRing(QQ)
sage: tan(z)
z + 1/3*z^3 + 2/15*z^5 + 17/315*z^7 + O(z^8)

L.<x,y> = LazyPowerSeriesRing(QQ)
sage: tan(x/(1-y)).polynomial(5)
2/15*x^5 + 2*x^3*y^2 + x*y^4 + x^3*y + x*y^3 + 1/3*x^3 + x*y^2 + x*y + x
```

tanh()
Return the hyperbolic tangent of self.

EXAMPLES:

```sage
L.<z> = LazyLaurentSeriesRing(QQ)
sage: tanh(z)
z - 1/3*z^3 + 2/15*z^5 + 17/315*z^7 + O(z^8)

L.<x,y> = LazyPowerSeriesRing(QQ)
sage: tanh(x/(1-y))
x + x*y + (-1/3*x^3+x*y^2) + (-x^3*y+x*y^3) + (2/15*x^5-2*x^3*y^2+x*y^4) + (2/3*x^5*y-10/3*x^3*y^3+x*y^5) + (-17/315*x^7+2*x^5*y^2-5*x^3*y^4+x*y^6) + O(x,y)^8
```
truncate\((d)\)

Return the series obtained by removing all terms of degree at least \(d\).

INPUT:

- \(d\) – integer; the degree from which the series is truncated

EXAMPLES:

Dense implementation:

```sage
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=False)
sage: alpha = 1/(1-z)
sage: alpha
1 + z + z^2 + O(z^3)
sage: beta = alpha.truncate(5)
sage: beta
1 + z + z^2 + z^3 + z^4
sage: alpha - beta
z^5 + z^6 + z^7 + O(z^8)
sage: M = L(lambda n: n, valuation=0); M
z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7)
sage: M.truncate(4)
z + 2*z^2 + 3*z^3
```

Sparse Implementation:

```sage
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=True)
sage: M = L(lambda n: n, valuation=0); M
z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7)
sage: M.truncate(4)
z + 2*z^2 + 3*z^3
```

Series which are known to be exact can also be truncated:

```sage
sage: M = z + z^2 + z^3 + z^4
sage: M.truncate(4)
z + z^2 + z^3
```

class `sage.rings.lazy_series.LazyPowerSeries`(parent, coeff_stream)

Bases: `LazyCauchyProductSeries`

A Taylor series where the coefficients are computed lazily.

EXAMPLES:

```sage
sage: L.<x, y> = LazyPowerSeriesRing(ZZ)
sage: f = 1 / (1 - x^2 + y^3); f
1 + x^2 + (-y^3) + x^4 + (-2*x^2*y^3) + (x^6+y^6) + O(x,y)^7
sage: P.<x, y> = PowerSeriesRing(ZZ, default_prec=101)
sage: g = 1 / (1 - x^2 + y^3); f[100] - g[100]
0
```

Lazy Taylor series is picklable:

```sage
sage: g = loads(dumps(f))
sage: g
```

(continues on next page)
1 + x^2 + (-y^3) + x^4 + (-2*x^2*y^3) + (x^6+y^6) + O(x,y)^7

sage: g == f
True

compose(check, *g)

Return the composition of self with g.

The arity of self must be equal to the number of arguments provided.

Given a Taylor series f of arity n and a tuple of Taylor series g = (g₁, . . . , gₙ) over the same base ring, the composition f ∘ g is defined if and only if for each 1 ≤ i ≤ n:

• gᵢ is zero, or
• setting all variables except the i-th in f to zero yields a polynomial, or
• val(gᵢ) > 0.

If f is a univariate ‘exact’ series, we can check whether f is a actually a polynomial. However, if f is a multivariate series, we have no way to test whether setting all but one variable of f to zero yields a polynomial, except if f itself is ‘exact’ and therefore a polynomial.

INPUT:

• g – other series, all can be coerced into the same parent

EXAMPLES:

```
sage: L.<x, y, z> = LazyPowerSeriesRing(QQ)
sage: M.<a, b> = LazyPowerSeriesRing(ZZ)
sage: g1 = 1 / (1 - x)
sage: g2 = x + y^2
sage: p = a^2 + b + 1
sage: p(g1, g2) - g1^2 - g2 - 1
O(x,y,z)^7
```

The number of mappings from a set with m elements to a set with n elements:

```
sage: M.<a> = LazyPowerSeriesRing(QQ)
sage: Ea = M(lambda n: 1/factorial(n))
sage: Ex = L(lambda n: 1/factorial(n)*x^n)
sage: Ea(Ex*y)[5]
1/24*x^4*y + 2/3*x^3*y^2 + 3/4*x^2*y^3 + 1/6*x*y^4 + 1/120*y^5
```

So, there are 3!2!/3 = 8 mappings from a three element set to a two element set.

We perform the composition with a lazy Laurent series:

```
sage: N.<w> = LazyLaurentSeriesRing(QQ)
sage: f1 = 1 / (1 - w)
sage: f2 = cot(w / (1 - w))
sage: p(f1, f2)
w^-1 + 1 + 5/3*w + 8/3*w^2 + 164/45*w^3 + 23/5*w^4 + 5227/945*w^5 + O(w^6)
```

We perform the composition with a lazy Dirichlet series:
sage: D = LazyDirichletSeriesRing(QQ, "s")
sage: g = D(constant=1)-1; g
1/(2^s) + 1/(3^s) + 1/(4^s) + O(1/(5^s))
sage: f = 1 / (1 - x - y^2); f
1 + x + (x^2+y^2) + (x^3+2*x^2*y^2+y^4) + (x^4+3*x^3*y^2+3*x^2*y^4+y^6) + O(x,y^2)
sage: fog = f(g, g, g); fog
1 + 1/(2^s) + 1/(3^s) + 3/4^s + 1/(5^s) + 5/6^s + O(1/(7^s))
sage: fg = 1 / (1 - g - g*g); fg
1 + 1/(2^s) + 1/(3^s) + 3/4^s + 1/(5^s) + 5/6^s + 1/(7^s) + O(1/(8^s))
sage: fog - fg
O(1/(8^s))
sage: f = 1 / (1 - 2*a)
sage: f(g)
1 + 2/2^s + 2/3^s + 6/4^s + 2/5^s + 10/6^s + 2/7^s + O(1/(8^s))
sage: 1 / (1 - 2*g)
1 + 2/2^s + 2/3^s + 6/4^s + 2/5^s + 10/6^s + 2/7^s + O(1/(8^s))

The output parent is always the common parent between the base ring of \(f \) and the parent of \(g \) or extended to the corresponding lazy series:

sage: T.<x,y> = LazyPowerSeriesRing(QQ)
sage: R.<a,b,c> = ZZ[]
sage: S.<v> = R[]
sage: L.<z> = LaurentPolynomialRing(ZZ)
sage: parent(x(a, b))
Multivariate Polynomial Ring in a, b, c over Rational Field
sage: parent(x(CC(2), a))
Multivariate Polynomial Ring in a, b, c over Complex Field with 53 bits of precision
sage: parent(x(0, 0))
Rational Field
sage: f = 1 / (1 - x - y); f
1 + (x+y) + (x^2+2*x*y+y^2) + (x^3+3*x^2*y+3*x*y^2+y^3) + (x^4+4*x^3*y+6*x^2*y^2+4*x*y^3+y^4) + (x^5+5*x^4*y+10*x^3*y^2+10*x^2*y^3+5*x*y^4+y^5) + (x^6+6*x^5*y+15*x^4*y^2+20*x^3*y^3+15*x^2*y^4+6*x*y^5+y^6) + O(x,y)^7
sage: f(a^2, b*c)
1 + (a^2+b*c) + (a^4+2*a^2*b*c+b^2*c^2) + (a^6+3*a^4*b*c+3*a^2*b^2*c+b^3*c^3) + O(a,b,c)^7
sage: f(v, v^2)
1 + v + 2*v^2 + 3*v^3 + 5*v^4 + 8*v^5 + 13*v^6 + O(v^7)

compositional_inverse()
Return the compositional inverse of self.

Given a Taylor series \(f \) in one variable, the compositional inverse is a power series \(g \) over the same base ring, such that \((f \circ g)(z) = f(g(z)) = z \).

The compositional inverse exists if and only if:

- \(\text{val}(f) = 1 \), or
- \(f = a + bz \) with \(a, b \neq 0 \).

EXAMPLES:

```python
sage: L.<z> = LazyPowerSeriesRing(QQ)
sage: (2*z).revert() 1/2*z
sage: (z-z^2).revert() z + z^2 + 2*z^3 + 5*z^4 + 14*z^5 + 42*z^6 + 132*z^7 + O(z^8)
sage: s = L(degree=1, constant=-1)
sage: s.revert() -z - z^2 - z^3 + O(z^4)
sage: s = L(degree=1, constant=1)
sage: s.revert() z - z^2 + z^3 - z^4 + z^5 - z^6 + z^7 + O(z^8)
```

Warning: For series not known to be eventually constant (e.g., being defined by a function) with approximate valuation \(\leq 1 \) (but not necessarily its true valuation), this assumes that this is the actual valuation:

```python
sage: f = L(lambda n: n if n > 2 else 0)
sage: f.revert()
<repr... failed: ValueError: generator already executing>
```

compute_coefficients(i)

Computes all the coefficients of self up to \(i \).

This method is deprecated, it has no effect anymore.

derivative(*args)

Return the derivative of the Taylor series.

Multiple variables and iteration counts may be supplied; see the documentation of `sage.calculus.functional.derivative()` function for details.

EXAMPLES:

```python
sage: T.<z> = LazyPowerSeriesRing(ZZ)
sage: z.derivative() 1
sage: (1+z+z^2).derivative(3) 0
sage: (1/(1-z)).derivative() 1 + 2*z + 3*z^2 + 4*z^3 + 5*z^4 + 6*z^5 + 7*z^6 + 0(z^7)
```

(continues on next page)
sage: R.<q> = QQ[]

sage: L.<x, y> = LazyPowerSeriesRing(R)

sage: f = 1/(1-q*x+y); f
1 + (q*x-y) + (q^2*x^2+(-2*q)*x*y+y^2)
 + (q^3*x^3+(-3*q^2)*x^2*y+3*q*x*y^2-y^3)
 + (q^4*x^4+(-4*q^3)*x^3*y+6*q^2*x^2*y^2+(-4*q)*x*y^3+y^4)
 + (q^5*x^5+(-5*q^4)*x^4*y+10*q^3*x^3*y^2+(-10*q^2)*x^2*y^3+5*q*x*y^4-y^5)
 + (q^6*x^6+(-6*q^5)*x^5*y+15*q^4*x^4*y^2+(-20*q^3)*x^3*y^3+15*q^2*x^2*y^4+(-
˓→6*q)*x*y^5+y^6)
+ O(x,y)^7

sage: f.derivative(q)
x + (2*q*x^2+(-2)*x*y) + (3*q^2*x^3+(-6*q)*x^2*y+3*q*x*y^2)
 + (4*q^3*x^4+(-12*q^2)*x^3*y+12*q^2*x^2*y^2+(-4)*x*y^3)
 + (5*q^4*x^5+(-20*q^3)*x^4*y+30*q^2*x^3*y^2+(-20*q)*x^2*y^3+5*q*x*y^4)
 + (6*q^5*x^6+(-30*q^4)*x^5*y+60*q^3*x^4*y^2+(-60*q^2)*x^3*y^3+30*q^2*x^2*y^4+(-
˓→6)*x*y^5)
+ 0(x,y)^7

exponential()
Return the exponential series of self.
This method is deprecated, use exp() instead.

is_unit()
Return whether this element is a unit in the ring.

EXAMPLES:

sage: L.<z> = LazyPowerSeriesRing(ZZ)

sage: (2*z).is_unit()
False

sage: (1 + 2*z).is_unit()
True

sage: (3 + 2*z).is_unit()
False

sage: L.<x,y> = LazyPowerSeriesRing(ZZ)

sage: (-1 + 2*x + 3*x*y).is_unit()
True

polynomial(degree=None, names=None)
Return self as a polynomial if self is actually so.

INPUT:
• degree – None or an integer
• names – names of the variables; if it is None, the name of the variables of the series is used

OUTPUT:
If degree is not None, the terms of the series of degree greater than degree are first truncated. If degree is None and the series is not a polynomial polynomial, a ValueError is raised.
EXAMPLES:

```python
sage: L.<x,y> = LazyPowerSeriesRing(ZZ)
sage: f = x^2 + y*x - x + 2; f
2 + (-x) + (x^2+x*y)
sage: f.polynomial()
x^2 + x*y - x + 2
```

revert()

Return the compositional inverse of `self`.

Given a Taylor series `f` in one variable, the compositional inverse is a power series `g` over the same base ring, such that `(f ∘ g)(z) = f(g(z)) = z`.

The compositional inverse exists if and only if:

- `val(f) = 1`, or
- `f = a + bz` with `a, b ≠ 0`.

EXAMPLES:

```python
sage: L.<z> = LazyPowerSeriesRing(QQ)
sage: (2*z).revert()
1/2*z
sage: (z-z^2).revert()
z + z^2 + 2*z^3 + 5*z^4 + 14*z^5 + 42*z^6 + 132*z^7 + O(z^8)
sage: s = L(degree=1, constant=-1)
sage: s.revert()
-z - z^2 - z^3 + O(z^4)
sage: s = L(degree=1, constant=1)
sage: s.revert()
z - z^2 + z^3 - z^4 + z^5 - z^6 + z^7 + O(z^8)
```

Warning: For series not known to be eventually constant (e.g., being defined by a function) with approximate valuation ≤ 1 (but not necessarily its true valuation), this assumes that this is the actual valuation:

```python
sage: f = L(lambda n: n if n > 2 else 0)
sage: f.revert()
<repr(... failed: ValueError: generator already executing>
```

```python
class sage.rings.lazy_series.LazyPowerSeries_gcd_mixin

Bases: object

A lazy power series that also implements the GCD algorithm.

**gcd(other)**

Return the greatest common divisor of `self` and `other`.

EXAMPLES:
```
```sage
sage: L.<x> = LazyPowerSeriesRing(QQ)
sage: a = 16*x^5 / (1 - 5*x)
sage: b = (22*x^2 + x^8) / (1 - 4*x^2)
sage: a.gcd(b)
x^2
```

xgcd(f)

Return the extended gcd of self and f.

OUTPUT:

A triple \((g, s, t)\) such that \(g\) is the gcd of self and f, and s and t are cofactors satisfying the Bezout identity

\[
g = s \cdot \text{self} + t \cdot f.
\]

EXAMPLES:

```sage
sage: L.<x> = LazyPowerSeriesRing(QQ)
sage: a = 16*x^5 / (1 - 2*x)
sage: b = (22*x^3 + x^8) / (1 - 3*x^2)
sage: g, s, t = a.xgcd(b)
sage: g
x^3
sage: s
1/22 - 41/242*x^2 - 8/121*x^3 + 120/1331*x^4 + 1205/5324*x^5 + 316/14641*x^6 + O(x^7)
sage: t
1/22 - 41/242*x^2 - 8/121*x^3 + 120/1331*x^4 + 1205/5324*x^5 + 316/14641*x^6 + O(x^7)
sage: g == s * a + t * b
True
```

```sage
sage: a = 16*x^5 / (1 - 2*x)
sage: b = (-16*x^5 + x^8) / (1 - 3*x^2)
sage: g, s, t = a.xgcd(b)
sage: g
x^5
sage: s
1/16 - 1/16*x - 3/16*x^2 + 1/8*x^3 - 17/256*x^4 + 9/128*x^5 + 1/128*x^6 + O(x^7)
sage: t
1/16*x - 1/16*x^2 - 3/16*x^3 + 1/8*x^4 - 17/256*x^5 + 9/128*x^6 + 1/128*x^7 + O(x^8)
sage: g == s * a + t * b
True
```

```sage
sage: L.<x> = LazyPowerSeriesRing(GF(2))
sage: a = L(lambda n: n % 2, valuation=3); a
x^3 + x^5 + x^7 + x^9 + O(x^10)
sage: b = L(lambda n: binomial(n,2) % 2, valuation=3); b
(continues on next page)
```
\[x^3 + x^6 + x^7 + O(x^{10}) \]
\[
\text{sage: } g, s, t = a.xgcd(b) \\
\text{sage: } g \\
\quad x^3 \\
\text{sage: } s \\
\quad 1 + x + x^3 + x^4 + x^5 + O(x^7) \\
\text{sage: } t \\
\quad x + x^2 + x^4 + x^5 + x^6 + O(x^8) \\
\text{sage: } g == s * a + t * b \\
\quad True \\
\text{sage: } \text{LazyPowerSeriesRing.options._reset() } \# \text{ reset the options}
\]

```python
class sage.rings.lazy_series.LazySymmetricFunction(parent, coeff_stream):
    Bases: LazyCompletionGradedAlgebraElement

    A symmetric function where each degree is computed lazily.

    EXAMPLES:

    \[
    \text{sage: } s = \text{SymmetricFunctions(ZZ).s()} \\
    \text{sage: } L = \text{LazySymmetricFunctions(s)}
    \]

    arithmetic_product(check, *args)

    Return the arithmetic product of \texttt{self} with \texttt{g}.

    The arithmetic product is a binary operation \( \Box \) on the ring of symmetric functions which is bilinear in its two arguments and satisfies

    \[
    p_\lambda \Box p_\mu = \prod_{i \geq 1, j \geq 1} \frac{gcd(\lambda_i, \mu_j)}{lcm(\lambda_i, \mu_j)} p_{gcd(\lambda_1, \mu_1)}
    \]

    for any two partitions \( \lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots) \) and \( \mu = (\mu_1, \mu_2, \mu_3, \ldots) \) (where \( p_\nu \) denotes the power-sum symmetric function indexed by the partition \( \nu \), and \( p_i \) denotes the \( i \)-th power-sum symmetric function). This is enough to define the arithmetic product if the base ring is torsion-free as a \( \mathbb{Z} \)-module; for all other cases the arithmetic product is uniquely determined by requiring it to be functorial in the base ring. See \url{http://mathoverflow.net/questions/138148/} for a discussion of this arithmetic product.

    Warning: The operation \( f \Box g \) was originally defined only for symmetric functions \( f \) and \( g \) without constant term. We extend this definition using the convention that the least common multiple of any integer with 0 is 0.
```

If \(f \) and \(g \) are two symmetric functions which are homogeneous of degrees \(a \) and \(b \), respectively, then \(f \Box g \) is homogeneous of degree \(ab \).

The arithmetic product is commutative and associative and has unity \(e_1 = p_1 = h_1 \).

For species \(M \) and \(N \) such that \(M[\emptyset] = N[\emptyset] = \emptyset \), their arithmetic product is the species \(M \Box N \) of “\(M \)-assemblies of cloned \(N \)-structures”. This operation is defined and several examples are given in [MM2008].

INPUT:

- \(g \) – a cycle index series having the same parent as \texttt{self}
- \texttt{check} – (default: \texttt{True}) a Boolean which, when set to \texttt{False}, will cause input checks to be skipped
The arithmetic product of self with g.

See also:
sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element.arithmetic_product()

EXAMPLES:
For C the species of (oriented) cycles and L_+ the species of nonempty linear orders, $C \boxtimes L_+$ corresponds to the species of “regular octopuses”; a $(C \boxtimes L_+)$-structure is a cycle of some length, each of whose elements is an ordered list of a length which is consistent for all the lists in the structure.

```
sage: R.<q> = QQ[]
sage: p = SymmetricFunctions(R).p()
sage: m = SymmetricFunctions(R).m()
sage: L = LazySymmetricFunctions(m)
sage: C = species.CycleSpecies().cycle_index_series()
sage: c = L(lambda n: C[n])
sage: Lplus = L(lambda n: p([1]*n), valuation=1)
sage: r = c.arithmetic_product(Lplus); r
m[1] + (3*m[1,1]+2*m[2])
+ (8*m[1,1,1]+4*m[2,1]+2*m[3])
+ (21*m[1,1,1,1]+9*m[2,1,1]+6*m[2,2]+3*m[3,1]+m[4])
+ (72*m[1,1,1,1,1]+36*m[2,1,1,1]+24*m[2,2,1]+12*m[3,1,1]+6*m[4,1,1]+3*m[5])
+ ... + O^7
```

In particular, the number of regular octopuses is:

```
sage: [r[n].coefficient([1]*n) for n in range(8)]
[0, 1, 3, 8, 42, 144, 1440, 5760]
```

It is shown in [MM2008] that the exponential generating function for regular octopuses satisfies $(C \boxtimes L_+)(x) = \sum_{n \geq 1} \sigma(n)(n-1)! \frac{x^n}{n!}$ (where $\sigma(n)$ is the sum of the divisors of n).

```
sage: [sum(divisors(i))*factorial(i-1) for i in range(1,9)]
[1, 3, 8, 42, 144, 1440, 5760]
```

AUTHORS:
• Andrew Gainer-Dewar (2013)

REFERENCES:
• [MM2008]

compositional_inverse()
Return the compositional inverse of self.
Given a symmetric function f, the compositional inverse is a symmetric function g over the same base ring, such that $f \circ g = p_1$. Thus, it is the inverse with respect to plethystic substitution.
The compositional inverse exists if and only if:
• $\text{val}(f) = 1$, or
• $f = a + bp_1$ with $a, b \neq 0$.

EXAMPLES:

```python
sage: h = SymmetricFunctions(QQ).h()
sage: L = LazySymmetricFunctions(h)
sage: f = L(lambda n: h[n]) - 1
sage: f(f.revert())
h[1] + O^8
```

ALGORITHM:

Let F be a symmetric function with valuation 1, i.e., whose constant term vanishes and whose degree one term equals bp_1. Then

$$(F - bp_1) \circ G = F \circ G - bp_1 \circ G = p_1 - bG,$$

and therefore $G = (p_1 - (F - bp_1) \circ G)/b$, which allows recursive computation of G.

See also:
The compositional inverse Ω of the symmetric function $h_1 + h_2 + \ldots$ can be handled much more efficiently using specialized methods. See LogarithmCycleIndexSeries()

AUTHORS:

• Andrew Gainer-Dewar
• Martin Rubey

derivative_with_respect_to_p1(n=1)

Return the symmetric function obtained by taking the derivative of self with respect to the power-sum symmetric function p_1 when the expansion of self in the power-sum basis is considered as a polynomial in p_k's (with $k \geq 1$).

This is the same as skewing self by the first power-sum symmetric function p_1.

INPUT:

• n – (default: 1) nonnegative integer which determines which power of the derivative is taken

EXAMPLES:

The species E of sets satisfies the relationship $E' = E$:

```python
sage: h = SymmetricFunctions(QQ).h()
sage: T = LazySymmetricFunctions(h)
sage: E = T(lambda n: h[n])
sage: E - E.derivative_with_respect_to_p1()
0^6
```

The species C of cyclic orderings and the species L of linear orderings satisfy the relationship $C' = L$:

```python
sage: p = SymmetricFunctions(QQ).p()
sage: C = T(lambda n: (sum(euler_phi(k)*p([k])***(n//k) for k in divisors(n))/n) if n > 0 else 0))
sage: L = T(lambda n: p([1]**n))
sage: L - C.derivative_with_respect_to_p1()
0^6
```
functorial_composition(*args)

Return the functorial composition of self and g.

Let X be a finite set of cardinality m. For a group action of the symmetric group $g : S_n \to S_X$ and a (possibly virtual) representation of the symmetric group on X, $f : S_X \to GL(V)$, the functorial composition is the (virtual) representation of the symmetric group $f \circ g : S_n \to GL(V)$ given by $\sigma \mapsto f(g(\sigma))$.

This is more naturally phrased in the language of combinatorial species. Let F and G be species, then their functorial composition is the species $F \Box G$ with $(F \Box G)[A] = F[G[A]]$. In other words, an $(F \Box G)$-structure on a set A of labels is an F-structure whose labels are the set of all G-structures on A.

The Frobenius character (or cycle index series) of $F \Box G$ can be computed as follows, see section 2.2 of [?]):

$$
\sum_{n \geq 0} \frac{1}{n!} \sum_{\sigma \in S_n} \text{fix}(F[G[\sigma]]_1, (G[\sigma])_2, \ldots, p_1^{\sigma_1} p_2^{\sigma_2} \cdots).
$$

Warning: The operation $f \Box g$ only makes sense when g corresponds to a permutation representation, i.e., a group action.

EXAMPLES:
The species G of simple graphs can be expressed in terms of a functorial composition: $G = p \Box p_2$, where p is the SubsetSpecies.:

```
sage: R.<q> = QQ[]
sage: h = SymmetricFunctions(R).h()
sage: m = SymmetricFunctions(R).m()
sage: L = LazySymmetricFunctions(m)
sage: P = L(lambda n: sum(q^k*h[n-k]*h[k] for k in range(n+1)))
sage: P2 = L(lambda n: h[2]*h[n-2], valuation=2)
sage: P.functorial_composition(P2)[:4]

[m[], m[1], (q+1)^*m[1, 1] + (q+1)^*m[2], (q^3+3*q^2+3*q+1)^*m[1, 1, 1] + (q^3+2*q^2+2*q+1)^*m[2, 1] + (q^3+q^2+q+1)^*m[3]]
```

For example, there are:

```
sage: P.functorial_composition(P2)[4].coefficient([4])[3]
3
```

unlabelled graphs on 4 vertices and 3 edges, and:

```
sage: P.functorial_composition(P2)[4].coefficient([2,2])[3]
8
```

labellings of their vertices with two 1’s and two 2’s.

The symmetric function $h_1 \sum_n h_n$ is the neutral element with respect to functorial composition:

```
sage: p = SymmetricFunctions(QQ).p()
sage: h = SymmetricFunctions(QQ).h()
sage: e = SymmetricFunctions(QQ).e()
```
sage: L = LazySymmetricFunctions(h)
sage: E = L(lambda n: h[n])
sage: Ep = p[1]*E.derivative_with_respect_to_p1(); Ep
h[1] + (h[1,1]) + (h[2,1]) + (h[3,1]) + (h[4,1]) + (h[5,1]) + O^7
sage: f = L(lambda n: h[n-n//2, n//2])
sage: f - Ep.functorial_composition(f)
O^7

The functorial composition distributes over the sum:

sage: F1 = L(lambda n: h[n])
sage: F2 = L(lambda n: e[n])
sage: f1 = F1.functorial_composition(f)
sage: f2 = F2.functorial_composition(f)
sage: (F1 + F2).functorial_composition(f) - f1 - f2 # long time
O^7

is_unit()

Return whether this element is a unit in the ring.

EXAMPLES:

sage: m = SymmetricFunctions(ZZ).m()
sage: L = LazySymmetricFunctions(m)
sage: L(2*m[1]).is_unit()
False
sage: L(-1 + 2*m[1]).is_unit()
True
sage: L(2 + m[1]).is_unit()
False

sage: m = SymmetricFunctions(QQ).m()
sage: L = LazySymmetricFunctions(m)
sage: L(2 + 3*m[1]).is_unit()
True

plethysm(check, *args)

Return the composition of self with g.

The arity of self must be equal to the number of arguments provided.

Given a lazy symmetric function f of arity n and a tuple of lazy symmetric functions g = (g_1, ..., g_n) over the same base ring, the composition (or plethysm) \(f \circ g \) is defined if and only if for each \(1 \leq i \leq n \):

- \(g_i = 0 \), or
- setting all alphabets except the \(i \)-th in \(f \) to zero yields a symmetric function with only finitely many non-zero coefficients, or
- \(\text{val}(g) > 0 \).
If \(f \) is a univariate ‘exact’ lazy symmetric function, we can check whether \(f \) has only finitely many non-zero coefficients. However, if \(f \) has larger arity, we have no way to test whether setting all but one alphabets of \(f \) to zero yields a polynomial, except if \(f \) itself is ‘exact’ and therefore a symmetric function with only finitely many non-zero coefficients.

INPUT:

- \(g \) – other (lazy) symmetric functions

Todo: Allow specification of degree one elements.

EXAMPLES:

```python
sage: P.<q> = QQ[]
sage: s = SymmetricFunctions(P).s()
sage: L = LazySymmetricFunctions(s)
sage: f = s[2]
sage: g = s[3]
sage: L(f)(L(g)) - L(f(g))
0
sage: f = s[2] + s[2,1]
sage: g = s[1] + s[2,2]
sage: L(f)(L(g)) - L(f(g))
0
sage: L(f)(g) - L(f(g))
0
sage: f = s[2] + s[2,1]
sage: g = s[1] + s[2,2]
sage: L(f)(L(q*g)) - L(f(q*g))
0
```

The Frobenius character of the permutation action on set partitions is a plethysm:

```python
sage: s = SymmetricFunctions(QQ).s()
sage: S = LazySymmetricFunctions(s)
sage: E1 = S(lambdab n: s[n], valuation=1)
sage: E = 1 + E1
sage: P = E(E1)
sage: P[:5]
[s[], s[1], 2*s[2], s[2, 1] + 3*s[3], 2*s[2, 2] + 2*s[3, 1] + 5*s[4]]
```

The plethysm with a tensor product is also implemented:

```python
sage: s = SymmetricFunctions(QQ).s()
sage: X = tensor([s[1],s[1]])
sage: Y = tensor([s[1],s[1]])
sage: S = LazySymmetricFunctions(s)
sage: S2 = LazySymmetricFunctions(tensor([s, s]))
sage: A = S(s[1,1,1])
sage: B = S2(X+Y)
sage: A(B)
```

(continues on next page)
plethystic_inverse()

Return the compositional inverse of self.

Given a symmetric function \(f \), the compositional inverse is a symmetric function \(g \) over the same base ring, such that \(f \circ g = p_1 \). Thus, it is the inverse with respect to plethystic substitution.

The compositional inverse exists if and only if:

- \(\text{val}(f) = 1 \), or
- \(f = a + b p_1 \) with \(a, b \neq 0 \).

EXAMPLES:

```python
sage: h = SymmetricFunctions(QQ).h()
sage: L = LazySymmetricFunctions(h)
sage: f = L(lambda n: h[n]) - 1
sage: f(f.revert())
h[1] + O^8
```

ALGORITHM:

Let \(F \) be a symmetric function with valuation 1, i.e., whose constant term vanishes and whose degree one term equals \(b p_1 \). Then

\[
(F - b p_1) \circ G = F \circ G - b p_1 \circ G = p_1 - b G,
\]

and therefore \(G = (p_1 - (F - b p_1) \circ G)/b \), which allows recursive computation of \(G \).

See also:

The compositional inverse \(\Omega \) of the symmetric function \(h_1 + h_2 + \ldots \) can be handled much more efficiently using specialized methods. See `LogarithmCycleIndexSeries()`.

AUTHORS:

- Andrew Gainer-Dewar
- Martin Rubey

revert()

Return the compositional inverse of self.

Given a symmetric function \(f \), the compositional inverse is a symmetric function \(g \) over the same base ring, such that \(f \circ g = p_1 \). Thus, it is the inverse with respect to plethystic substitution.
The compositional inverse exists if and only if:

- \(\text{val}(f) = 1 \), or
- \(f = a + bp_1 \) with \(a, b \neq 0 \).

EXAMPLES:

```
sage: h = SymmetricFunctions(QQ).h()
sage: L = LazySymmetricFunctions(h)
sage: f = L(lambda n: h[n]) - 1
sage: f(f.revert())
h[1] + O^8
```

ALGORITHM:

Let \(F \) be a symmetric function with valuation 1, i.e., whose constant term vanishes and whose degree one term equals \(bp_1 \). Then

\[
(F - bp_1) \circ G = F \circ G - bp_1 \circ G = p_1 - bG,
\]

and therefore \(G = (p_1 - (F - bp_1) \circ G)/b \), which allows recursive computation of \(G \).

See also:

The compositional inverse \(\Omega \) of the symmetric function \(h_1 + h_2 + \ldots \) can be handled much more efficiently using specialized methods. See `LogarithmCycleIndexSeries()`

AUTHORS:

- Andrew Gainer-Dewar
- Martin Rubey

symmetric_function(degree=None)

Return \(\text{self} \) as a symmetric function if \(\text{self} \) is actually so.

INPUT:

- degree – None or an integer

OUTPUT:

If \(\text{degree} \) is not None, the terms of the series of degree greater than \(\text{degree} \) are first truncated. If \(\text{degree} \) is None and the series is not a polynomial polynomial, a `ValueError` is raised.

EXAMPLES:

```
sage: s = SymmetricFunctions(QQ).s()
sage: S = LazySymmetricFunctions(s)
sage: elt = S(s[2])
sage: elt.symmetric_function()
s[2]
```
We provide lazy implementations for various \(\mathbb{N} \)-graded rings.

<table>
<thead>
<tr>
<th>LazyLaurentSeriesRing</th>
<th>The ring of lazy Laurent series.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LazyPowerSeriesRing</td>
<td>The ring of (possibly multivariate) lazy Taylor series.</td>
</tr>
<tr>
<td>LazyCompletionGradedAlgebra</td>
<td>The completion of a graded algebra consisting of formal series.</td>
</tr>
<tr>
<td>LazySymmetricFunctions</td>
<td>The ring of (possibly multivariate) lazy symmetric functions.</td>
</tr>
<tr>
<td>LazyDirichletSeriesRing</td>
<td>The ring of lazy Dirichlet series.</td>
</tr>
</tbody>
</table>

See also:

sage.rings.padics.generic_nodes.pAdicRelaxedGeneric, sage.rings.padics.factory.ZpER()

AUTHORS:

• Kwankyu Lee (2019-02-24): initial version
• Tejasvi Chebrolu, Martin Rubey, Travis Scrimshaw (2021-08): refactored and expanded functionality

class sage.rings.lazy_series_ring.LazyCompletionGradedAlgebra(basis, sparse=True, category=None)

Bases: LazySeriesRing

The completion of a graded algebra consisting of formal series.

For a graded algebra \(A \), we can form a completion of \(A \) consisting of all formal series of \(A \) such that each homogeneous component is a finite linear combination of basis elements of \(A \).

INPUT:

• basis – a graded algebra
• names – name(s) of the alphabets
• sparse – (default: True) whether we use a sparse or a dense representation

EXAMPLES:

sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: S = NCSF.Complete()
sage: L = S.formal_series_ring()
sage: L
Lazy completion of Non-Commutative Symmetric Functions over the Rational Field in...
 <-- the Complete basis

sage: f = 1 / (1 - L([1]))
sage: \(f \)
\[S[\] + S[1] + (S[1,1]) + (S[1,1,1]) + (S[1,1,1,1]) + (S[1,1,1,1,1, \ldots,1]) + O^7 \]
sage: \(g = 1 / (1 - L(S[2])) \)
sage: \(g \)
\[S[\] + S[2] + (S[2,2]) + (S[2,2,2]) + O^7 \]
sage: \(f \ast g \)
\[S[\] + S[1] + (S[1,1]+S[2]) + (S[1,1,1]+S[1,2]) + (S[1,1,1,1]+S[1,1,2]+S[2,2]) + (S[1,1,1,1,1]+S[1,1,1,2]+S[1,2,2]) + (S[1,1,1,1,1,1]+S[1,1,1,1,2]+S[1,1,2,2]+S[2,2,2]) + O^7 \]
sage: \(g \ast f \)
\[S[\] + S[1] + (S[1,1]+S[2]) + (S[2,1]) + (S[2,1,1]+S[2,2]) + (S[2,1,1,1]+S[2,2,1]) + (S[2,1,1,1,1]+S[2,2,1,1]+S[2,2,2]) + O^7 \]
sage: \(f \ast g - g \ast f \)
\[(S[1,2]-S[2,1]) + (S[1,1,2]-S[2,1,1]) + (S[1,1,1,2]+S[1,2,2]-S[2,1,1,1]-S[2,2,1]) + (S[1,1,1,1,2]+S[1,1,2,2]-S[2,1,1,1,1]-S[2,2,1,1]) + O^7 \]

Element

alias of `LazyCompletionGradedAlgebraElement`

some_elements()

Return a list of elements of `self`.

EXAMPLES:

```python
sage: m = SymmetricFunctions(GF(5)).m()  
sage: L = LazySymmetricFunctions(m)  
sage: L.some_elements()[:5]  
[0, m[], 2*m[] + 2*m[1] + 3*m[2], 2*m[1] + 3*m[2], 3*m[] + 2*m[1] + (m[1,1]+m[2]) + (2*m[1,1,1]+m[3]) + (2*m[1,1,1]+4*m[2,1,1]+2*m[2,2]) + (3*m[2,1,1]+3*m[3,1,1]+4*m[3,2]+m[5]) + (2*m[2,2,1,1]+m[2,2,2]+2*m[3,2,1]+2*m[3,3]+m[4,1,1]+3*m[4,2]+4*m[5, \ldots,1]+4*m[6]) + O^7]
```

```python
sage: NCSF = NonCommutativeSymmetricFunctions(QQ)  
sage: S = NCSF.Complete()  
sage: L = S.formal_series_ring()  
sage: L.some_elements()[:4]  
[0, S[], 2*S[] + 2*S[1] + (3*S[1,1]), 2*S[1] + (3*S[1,1])]
```

class `sage.rings.lazy_series_ring.LazyDirichletSeriesRing`

Bases: `LazySeriesRing`

The ring of lazy Dirichlet series.

INPUT:

- `base_ring` – base ring of this Dirichlet series ring
• names – name of the generator of this Dirichlet series ring
• sparse – (default: True) whether this series is sparse or not

Unlike formal univariate Laurent/power series (over a field), the ring of formal Dirichlet series is not a Wikipedia article discrete_valuation_ring. On the other hand, it is a Wikipedia article local_ring. The unique maximal ideal consists of all non-invertible series, i.e., series with vanishing constant term.

Todo: According to the answers in https://mathoverflow.net/questions/5522/dirichlet-series-with-integer-coefficients-as-a-ufd, (which, in particular, references arXiv math/0105219) the ring of formal Dirichlet series is actually a Wikipedia article Unique_factorization_domain over \(\mathbb{Z} \).

Note: An interesting valuation is described in Emil Daniel Schwab; Gheorghe Silberberg A note on some discrete valuation rings of arithmetical functions, Archivum Mathematicum, Vol. 36 (2000), No. 2, 103-109, http://dml.cz/dmlcz/107723. Let \(J_k \) be the ideal of Dirichlet series whose coefficient \(f[n] \) of \(n^k \) vanishes if \(n \) has less than \(k \) prime factors, counting multiplicities. For any Dirichlet series \(f \), let \(D(f) \) be the largest integer \(k \) such that \(f \) is in \(J_k \). Then \(D \) is surjective, \(D(fg) = D(f) + D(g) \) for nonzero \(f \) and \(g \), and \(D(f + g) \geq \min(D(f), D(g)) \) provided that \(f + g \) is nonzero.

For example, \(J_1 \) are series with no constant term, and \(J_2 \) are series such that \(f[1] \) and \(f[p] \) for prime \(p \) vanish.

Since this is a chain of increasing ideals, the ring of formal Dirichlet series is not a Wikipedia article Noetherian_ring.

Evidently, this valuation cannot be computed for a given series.

EXAMPLES:

```
sage: L = LazyDirichletSeriesRing(ZZ, 't')
Lazy Dirichlet Series Ring in t over Integer Ring
```

The ideal generated by \(2^{-s} \) and \(3^{-s} \) is not principal:

```
sage: L = LazyDirichletSeriesRing(QQ, 's')
sage: L in PrincipalIdealDomains
False
```

Element

alias of *LazyDirichletSeries*

one()

Return the constant series 1.

EXAMPLES:

```
sage: L = LazyDirichletSeriesRing(ZZ, 'z')
sage: L.one()
1
sage: ~L.one()
1 + O(1/(8^z))
```

some_elements()

Return a list of elements of *self*.

EXAMPLES:
```python
sage: L = LazyDirichletSeriesRing(ZZ, 'z')
sage: L.some_elements()
[0, 1, 
 1/(4^z) + 1/(5^z) + 1/(6^z) + O(1/(7^z)),
 1/(2^z) - 1/(3^z) + 2/4^z - 2/5^z + 3/6^z - 3/7^z + 4/8^z - 4/9^z,
 1/(2^z) - 1/(3^z) + 2/4^z - 2/5^z + 3/6^z - 3/7^z + 4/8^z - 4/9^z + 1/(10^z) +...
 1/(11^z) + 1/(12^z) + O(1/(13^z)),
 1 + 4/2^z + 9/3^z + 16/4^z + 25/5^z + 36/6^z + 49/7^z + O(1/(8^z))]
sage: L = LazyDirichletSeriesRing(QQ, 'z')
sage: L.some_elements()
[0, 1, 
 1/2/4^z + 1/2/5^z + 1/2/6^z + O(1/(7^z)),
 1/2 - 1/2/2^z + 2/3^z - 2/4^z + 1/(6^z) - 1/(7^z) + 42/8^z + 2/3/9^z,
 1/2 - 1/2/2^z + 2/3^z - 2/4^z + 1/(6^z) - 1/(7^z) + 42/8^z + 2/3/9^z + 1/2/10^...
 1/2/11^z + 1/2/12^z + O(1/(13^z)),
 1 + 4/2^z + 9/3^z + 16/4^z + 25/5^z + 36/6^z + 49/7^z + O(1/(8^z))]
```

```python
class sage.rings.lazy_series_ring.LazyLaurentSeriesRing(base_ring, names, sparse=True, category=None)

Bases: LazySeriesRing

The ring of lazy Laurent series.

The ring of Laurent series over a ring with the usual arithmetic where the coefficients are computed lazily.

INPUT:

- base_ring – base ring
- names – name of the generator
- sparse – (default: True) whether the implementation of the series is sparse or not

EXAMPLES:

```python
sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: 1 / (1 - z)
1 + z + z^2 + O(z^3)
sage: 1 / (1 - z) == 1 / (1 - z)
True
sage: L in Fields
True
```

Lazy Laurent series ring over a finite field:

```python
sage: L.<z> = LazyLaurentSeriesRing(GF(3)); L
Lazy Laurent Series Ring in z over Finite Field of size 3
sage: e = 1 / (1 + z)
sage: e.coefficient(100)
1
sage: e.coefficient(100).parent()
Finite Field of size 3
```

Series can be defined by specifying a coefficient function and a valuation:
sage: R.<x,y> = QQ[]
sage: L.<z> = LazyLaurentSeriesRing(R)
sage: def coeff(n):
....:     if n < 0:
....:         return -2 + n
....:     if n == 0:
....:         return 6
....:     return x + y^n
sage: f = L(coeff, valuation=-5)
sage: f
-7*z^-5 - 6*z^-4 - 5*z^-3 - 4*z^-2 - 3*z^-1 + 6 + (x + y)*z + O(z^2)
sage: 1 / (1 - f)
1/7*z^5 - 6/49*z^6 + 1/343*z^7 + 8/2401*z^8 + 64/16807*z^9 + 17319/117649*z^10 + (1/49*x + 1/49*y - 180781/823543)*z^11 + O(z^12)
sage: L(coeff, valuation=-3, degree=3, constant=x)
-5*z^-3 - 4*z^-2 - 3*z^-1 + 6 + (x + y)*z + (y^2 + x)*z^2 + x*z^3 + x*z^4 + x*z^5 + O(z^6)

We can also specify a polynomial or the initial coefficients. Additionally, we may specify that all coefficients are equal to a given constant, beginning at a given degree:

sage: L([1, x, y, 0, x+y])
1 + x*z + y*z^2 + (x + y)*z^4
sage: L([1, x, y, 0, x+y], constant=2)
1 + x*z + y*z^2 + (x + y)*z^4 + 2*z^5 + 2*z^6 + 2*z^7 + O(z^8)
sage: L([1, x, y, 0, x+y], degree=7, constant=2)
1 + x*z + y*z^2 + (x + y)*z^4 + 2*z^7 + 2*z^8 + 2*z^9 + O(z^10)
sage: L([1, x, y, 0, x+y], valuation=-2)
z^-2 + x*z^-1 + y + (x + y)*z^2
sage: L([1, x, y, 0, x+y], valuation=-2, constant=3)
z^-2 + x*z^-1 + y + (x + y)*z^2 + 3*z^3 + 3*z^4 + 3*z^5 + 3*z^6 + O(z^7)
sage: L([1, x, y, 0, x+y], valuation=-2, degree=4, constant=3)
z^-2 + x*z^-1 + y + (x + y)*z^2 + 3*z^4 + 3*z^5 + 3*z^6 + O(z^7)

Some additional examples over the integer ring:

sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: L in Fields
False
sage: 1 / (1 - 2*z)^3
1 + 6*z + 24*z^2 + 80*z^3 + 240*z^4 + 672*z^5 + 1792*z^6 + O(z^7)

sage: R.<x> = LaurentPolynomialRing(ZZ)
sage: L(x^-2 + 3 + x)
z^-2 + 3 + z
sage: L(x^-2 + 3 + x, valuation=-5, constant=2)
z^-5 + 3*z^-3 + z^-2 + 2*z^-1 + 2 + 2*z + O(z^2)
sage: L(x^-2 + 3 + x, valuation=-5, degree=0, constant=2)
z^-5 + 3*z^-3 + z^-2 + 2 + 2*z + 2*z^2 + O(z^3)

We can truncate a series, shift its coefficients, or replace all coefficients beginning with a given degree by a constant:
Power series can be defined recursively (see `sage.rings.lazy_series.LazyModuleElement.define()` for more examples):

```
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: s = L.undefined(valuation=0)
sage: s.define(1 + z*s^2)
sage: s
1 + z + 2*z^2 + 5*z^3 + 14*z^4 + 42*z^5 + 132*z^6 + O(z^7)
```

If the series is not specified by a finite number of initial coefficients and a constant for the remaining coefficients, then equality checking will depend on the coefficients which have already been computed. If this information is not enough to check that two series are different we raise an error:

```
sage: f = 1 / (z + z^2); f
z^-1 - 1 + z - z^2 + z^3 - z^4 + z^5 + O(z^6)
sage: f2 = f * 2 # currently no coefficients computed
sage: f3 = f * 3 # currently no coefficients computed
sage: f2 == f3
Traceback (most recent call last):
 ...
ValueError: undecidable
```

The implementation of the ring can be either be a sparse or a dense one. The default is a sparse implementation:

```
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: L.is_sparse()
True
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=False)
sage: L.is_sparse()
False
```

**Element**

alias of `LazyLaurentSeries`
The Euler function is defined as
\[ \phi(z) = (z; z)_\infty = \sum_{n=0}^{\infty} (-1)^n q^{(3n^2-n)/2}. \]

**EXAMPLES:**

```python
sage: L.<q> = LazyLaurentSeriesRing(ZZ)
sage: phi = q.euler()
sage: phi
1 - q - q^2 + q^5 + O(q^7)
```

We verify that \(1/\phi\) gives the generating function for all partitions:

```python
sage: P = 1 / phi; P
1 + q + 2*q^2 + 3*q^3 + 5*q^4 + 7*q^5 + 11*q^6 + O(q^7)
sage: P[:20] == [Partitions(n).cardinality() for n in range(20)]
True
```

**REFERENCES:**
- Wikipedia article Euler_function

**gen\(n=0\)**

Return the n-th generator of self.

**EXAMPLES:**

```python
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.gen()
z
sage: L.gen(3)
Traceback (most recent call last):
 ...
IndexError: there is only one generator
```

**gens**

Return the generators of self.

**EXAMPLES:**

```python
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: L.gens()
(z,)
sage: 1/(1 - z)
1 + z + z^2 + O(z^3)
```

**ngens**

Return the number of generators of self.

This is always 1.

**EXAMPLES:**
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: L.ngens()
1

q_pochhammer(q=None)

Return the infinite q-Pochhammer symbol \((a; q)_\infty\), where \(a\) is the variable of \self.

This is also one version of the quantum dilogarithm or the \(q\)-Exponential function.

INPUT:

- \(q\) – (default: \(q \in \mathbb{Q}(q)\)) the parameter \(q\)

EXAMPLES:

sage: q = ZZ['q'].fraction_field().gen()
sage: L.<z> = LazyLaurentSeriesRing(q.parent())
sage: qpoch = L.q_pochhammer(q)
sage: qpoch
1 + (-1/(-q + 1))*z + (q/(q^3 - q^2 - q + 1))*z^2 + (-q^3/(-q^6 + q^5 + q^4 - q^2 - q + 1))*z^3 + (q^6/(q^10 - q^9 - q^8 + 2*q^5 - q^2 - q + 1))*z^4 + (-q^10/(-q^15 + q^14 + q^13 - q^10 - q^9 - q^8 + q^7 + q^6 + q^5 - q^2 - q + \cdots))*z^5 + (q^15/(q^21 - q^20 - q^19 + q^16 + 2*q^14 - q^12 - q^11 - q^10 - q^9 + 2*q^7\cdots))*z^6 + O(z^7)

We show that \((z; q)_n = \frac{(z/q)_\infty}{(q^n/z)_\infty}\):

sage: qpoch / qpoch(q*z)
1 - z + O(z^7)
sage: qpoch / qpoch(q^2*z)
1 + (-q - 1)*z + q*z^2 + O(z^7)
sage: qpoch / qpoch(q^3*z)
1 + (-q^2 - q - 1)*z + (q^3 + q^2 + q)*z^2 - q^3*z^3 + O(z^7)
sage: qpoch / qpoch(q^4*z)
1 + (-q^3 - q^2 - q - 1)*z + (q^4 + q^3 + 2*q^3 + q^2 + q)*z^2 + (-q^6 - q^5 - q^4 - q^3)*z^3 + q^6*z^4 + O(z^7)

We can also construct part of Euler’s function:

sage: M.<a> = LazyLaurentSeriesRing(QQ)
sage: phi = sum(qpoch[i](q=a)*a^i for i in range(10))
True

REFERENCES:

- Wikipedia article Q-Pochhammer_symbol
- Wikipedia article Quantum_dilogarithm
- Wikipedia article Q-exponential
residue_field()
Return the residue field of the ring of integers of self.

EXAMPLES:

```python
sage: L = LazyLaurentSeriesRing(QQ, 'z')
sage: L.residue_field()
Rational Field
```

series(coefficient, valuation, degree=None, constant=None)
Return a lazy Laurent series.

INPUT:
• coefficient – Python function that computes coefficients or a list
• valuation – integer; approximate valuation of the series
• degree – (optional) integer
• constant – (optional) an element of the base ring

Let the coefficient of index $i$ mean the coefficient of the term of the series with exponent $i$.

Python function coefficient returns the value of the coefficient of index $i$ from input $s$ and $i$ where $s$ is the series itself.

Let valuation be $n$. All coefficients of index below $n$ are zero. If constant is not specified, then the coefficient function is responsible to compute the values of all coefficients of index $\geq n$. If degree or constant is a pair $(c, m)$, then the coefficient function is responsible to compute the values of all coefficients of index $\geq n$ and $< m$ and all the coefficients of index $\geq m$ is the constant $c$.

EXAMPLES:

```python
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.series(lambda s, i: i, 5, (1,10))
5*z^5 + 6*z^6 + 7*z^7 + 8*z^8 + 9*z^9 + z^10 + z^11 + z^12 + O(z^13)
sage: g(s, i):
 if i < 0:
 return 1
 else:
 return s.coefficient(i - 1) + i
sage: e = L.series(g, -5); e
z^-5 + z^-4 + z^-3 + z^-2 + z^-1 + 1 + 2*z + O(z^2)
sage: f = e^-1; f
z^5 - z^6 - z^11 + O(z^12)
sage: f.coefficient(10)
0
sage: f.coefficient(20)
9
sage: f.coefficient(30)
-219
```

Alternatively, the coefficient can be a list of elements of the base ring. Then these elements are read as coefficients of the terms of degrees starting from the valuation. In this case, constant may be just an element of the base ring instead of a tuple or can be simply omitted if it is zero.
sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: f = L.series([1,2,3,4], -5); f
z^-5 + 2*z^-4 + 3*z^-3 + 4*z^-2
sage: g = L.series([1,3,5,7,9], 5, constant=-1); g
z^5 + 3*z^6 + 5*z^7 + 7*z^8 + 9*z^9 - z^10 - z^11 - z^12 + O(z^13)

some_elements()

Return a list of elements of self.

EXAMPLES:

sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.some_elements()[:7]
[0, 1, z,
-3*z^-4 + z^-3 - 12*z^-2 - 2*z^-1 - 10 - 8*z + z^2 + z^3,
z^-2 + z^-3 + z^4 + z^5 + O(z^6),
-2*z^-3 - 2*z^-2 + 4*z^-1 + 11 - z - 34*z^2 - 31*z^3 + O(z^4),
4*z^-2 + z^-1 + z + 4*z^2 + 9*z^3 + 16*z^4 + O(z^5)]
sage: L = LazyLaurentSeriesRing(GF(2), 'z')
sage: L.some_elements()[:7]
[0, 1, z,
z^-4 + z^-3 + z^-2 + z^-1,
z^-2,
z^-1 + z + z^3 + O(z^7),
z^-1 + z + z^3 + 0(z^5)]
sage: L = LazyLaurentSeriesRing(GF(3), 'z')
sage: L.some_elements()[:7]
[0, 1, z,
z^-3 + z^-1 + 2 + z + z^2 + z^3,
z^-2,
z^-3 + z^-2 + z^-1 + 2 + z + 2*z^2 + O(z^3),
z^-2 + z^-1 + 2 + z + z^2 + 2*z^3 + O(z^5)]

uniformizer()

Return a uniformizer of self.

EXAMPLES:

sage: L = LazyLaurentSeriesRing(QQ, 'z')
sage: L.uniformizer()
z

class sage.rings.lazy_series_ring.LazyPowerSeriesRing

The ring of (possibly multivariate) lazy Taylor series.

INPUT:

- base_ring – base ring of this Taylor series ring
- names – name(s) of the generator of this Taylor series ring
- sparse – (default: True) whether this series is sparse or not
EXAMPLES:

```
sage: L.<x, y> = LazyPowerSeriesRing(QQ); L
Multivariate Lazy Taylor Series Ring in x, y over Rational Field
```

Element

alias of LazyPowerSeries

fraction_field()

Return the fraction field of self.

If this is with a single variable over a field, then the fraction field is the field of (lazy) formal Laurent series.

Todo: Implement other fraction fields.

EXAMPLES:

```
sage: L.<x> = LazyPowerSeriesRing(QQ)
sage: L.fraction_field()
Lazy Laurent Series Ring in x over Rational Field
```

gen(n=0)

Return the n-th generator of self.

EXAMPLES:

```
sage: L = LazyPowerSeriesRing(ZZ, 'z')
sage: L.gen()
z
sage: L.gen(3)
Traceback (most recent call last):
...
IndexError: there is only one generator
```

gens()

Return the generators of self.

EXAMPLES:

```
sage: L = LazyPowerSeriesRing(ZZ, 'x,y')
sage: L.gens()
(x, y)
```

ngens()

Return the number of generators of self.

EXAMPLES:

```
sage: L.<z> = LazyPowerSeriesRing(ZZ)
sage: L.ngens()
1
```
residue_field()

Return the residue field of the ring of integers of self.

EXAMPLES:

```
sage: L = LazyPowerSeriesRing(QQ, 'x')
sage: L.residue_field()
Rational Field
```

some_elements()

Return a list of elements of self.

EXAMPLES:

```
sage: L = LazyPowerSeriesRing(ZZ, 'z')
sage: L.some_elements()[:6]
[0, 1, z + z^2 + z^3 + O(z^4),
 -12 - 8*z + z^2 + z^3,
 1 + z - 2*z^2 - 7*z^3 - z^4 + 20*z^5 + 23*z^6 + O(z^7),
 z + 4*z^2 + 9*z^3 + 16*z^4 + 25*z^5 + 36*z^6 + O(z^7)]
```

uniformizer()

Return a uniformizer of self.

EXAMPLES:

```
sage: L = LazyPowerSeriesRing(QQ, 'x')
sage: L.uniformizer()
x
```

class sage.rings.lazy_series_ring.LazySeriesRing

Bases: UniqueRepresentation, Parent

Abstract base class for lazy series.

characteristic()

Return the characteristic of this lazy power series ring, which is the same as the characteristic of its base ring.

EXAMPLES:
sage: L.<t> = LazyLaurentSeriesRing(ZZ)
sage: L.characteristic()
0
sage: R.<w> = LazyLaurentSeriesRing(GF(11)); R
Lazy Laurent Series Ring in w over Finite Field of size 11
sage: R.characteristic()
11
sage: R.<x, y> = LazyPowerSeriesRing(GF(7)); R
Multivariate Lazy Taylor Series Ring in x, y over Finite Field of size 7
sage: R.characteristic()
7
sage: L = LazyDirichletSeriesRing(ZZ, "s")
sage: L.characteristic()
0

is_exact()

Return if self is exact or not.

EXAMPLES:

sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.is_exact()
True
sage: L = LazyLaurentSeriesRing(RR, 'z')
sage: L.is_exact()
False

is_sparse()

Return whether self is sparse or not.

EXAMPLES:

sage: L = LazyLaurentSeriesRing(ZZ, 'z', sparse=False)
sage: L.is_sparse()
False
sage: L = LazyLaurentSeriesRing(ZZ, 'z', sparse=True)
sage: L.is_sparse()
True

one()

Return the constant series 1.

EXAMPLES:

sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.one()
1
sage: L = LazyPowerSeriesRing(ZZ, 'z')
sage: L.one()
(continues on next page)
*sage: m = SymmetricFunctions(ZZ).m()
sage: L = LazySymmetricFunctions(m)
sage: L.one()
m[]

options = Current options for lazy series rings – constant_length: 3 – display_length: 7 – halting_precision: None

**undefined** *(valuation=None)*

Return an uninitialized series.

**INPUT:**

- **valuation** – integer; a lower bound for the valuation of the series

Power series can be defined recursively (see *sage.rings.lazy_series.LazyModuleElement.define()* for more examples).

**See also:**

*sage.rings.padics.generic_nodes.pAdicRelaxedGeneric.unknown()*

**EXAMPLES:**

```python
sage: L.<z> = LazyPowerSeriesRing(QQ)
sage: s = L.undefined(1)
sage: s.define(z + (s^2+s(z^2))/2)
sage: s
z + z^2 + z^3 + 2*z^4 + 3*z^5 + 6*z^6 + 11*z^7 + O(z^8)
```

Alternatively:

```python
sage: f = L(None, valuation=-1)
sage: f.define(z^-1 + z^2*f^2)
sage: f
z^-1 + 1 + 2*z + 5*z^2 + 14*z^3 + 42*z^4 + 132*z^5 + O(z^6)
```

**unknown** *(valuation=None)*

Return an uninitialized series.

**INPUT:**

- **valuation** – integer; a lower bound for the valuation of the series

Power series can be defined recursively (see *sage.rings.lazy_series.LazyModuleElement.define()* for more examples).

**See also:**

*sage.rings.padics.generic_nodes.pAdicRelaxedGeneric.unknown()*

**EXAMPLES:**

```python
sage: L.<z> = LazyPowerSeriesRing(QQ)
sage: s = L.undefined(1)
```

(continues on next page)
sage: s.define(z + (s^2+s(z^2))/2)
sage: s
z + z^2 + z^3 + 2*z^4 + 3*z^5 + 6*z^6 + 11*z^7 + O(z^8)

Alternatively:

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: f = L(None, valuation=-1)
sage: f.define(z^-1 + z^2*f^2)
sage: f
z^-1 + 1 + 2*z + 5*z^2 + 14*z^3 + 42*z^4 + 132*z^5 + O(z^6)

zero()

Return the zero series.

EXAMPLES:

sage: L = LazyLaurentSeriesRing(ZZ, 'z')
sage: L.zero()
0
sage: s = SymmetricFunctions(ZZ).s()
sage: L = LazySymmetricFunctions(s)
sage: L.zero()
0
sage: L = LazyDirichletSeriesRing(ZZ, 'z')
sage: L.zero()
0
sage: L = LazyPowerSeriesRing(ZZ, 'z')
sage: L.zero()
0

class sage.rings.lazy_series_ring.LazySymmetricFunctions(basis, sparse=True, category=None)

Bases: LazyCompletionGradedAlgebra

The ring of lazy symmetric functions.

INPUT:

- basis – the ring of symmetric functions
- names – name(s) of the alphabets
- sparse – (default: True) whether we use a sparse or a dense representation

EXAMPLES:

sage: s = SymmetricFunctions(ZZ).s()
sage: LazySymmetricFunctions(s)
Lazy completion of Symmetric Functions over Integer Ring in the Schur basis
sage: m = SymmetricFunctions(ZZ).m()
sage: LazySymmetricFunctions(tensor([s, m]))
Lazy completion of Symmetric Functions over Integer Ring in the Schur basis →
Symmetric Functions over Integer Ring in the monomial basis

**Element**

alias of `LazySymmetricFunction`
The ring of Puiseux series.

AUTHORS:

• Chris Swierczewski 2016: initial version on https://github.com/abelfunctions/abelfunctions/tree/master/abelfunctions

• Frédéric Chapoton 2016: integration of code

• Travis Scrimshaw, Sebastian Oehms 2019-2020: basic improvements and completions

REFERENCES:

• Wikipedia article Puiseux_series

class sage.rings.puiseux_series_ring.PuiseuxSeriesRing(laurent_series)

Bases: UniqueRepresentation, CommutativeRing

Rings of Puiseux series.

EXAMPLES:

```
sage: P = PuiseuxSeriesRing(QQ, 'y')
sage: y = P.gen()
sage: f = y**(4/3) + y**(-5/6); f
y^(-5/6) + y^(4/3)
sage: f.add_bigoh(2)
y^(-5/6) + y^(4/3) + O(y^2)
sage: f.add_bigoh(1)
y^(-5/6) + O(y)
```

Element

alias of PuiseuxSeries

base_extend(R)

Extend the coefficients.

INPUT:

• R – a ring

EXAMPLES:

```
sage: A = PuiseuxSeriesRing(ZZ, 'y')
sage: A.base_extend(QQ)
Puiseux Series Ring in y over Rational Field
```
change_ring$(R)$

Return a Puiseux series ring over another ring.

INPUT:

• $R$ – a ring

EXAMPLES:

```
sage: A = PuiseuxSeriesRing(ZZ, 'y')
sage: A.change_ring(QQ)
Puiseux Series Ring in y over Rational Field
```

default_prec()

Return the default precision of self.

EXAMPLES:

```
sage: A = PuiseuxSeriesRing(AA, 'z')
sage: A.default_prec()
20
```

cell_frac_field()

Return the fraction field of this ring of Laurent series.

If the base ring is a field, then Puiseux series are already a field. If the base ring is a domain, then the Puiseux series over its fraction field is returned. Otherwise, raise a ValueError.

EXAMPLES:

```
sage: R = PuiseuxSeriesRing(ZZ, 't', 30).fraction_field()
sage: R
Puiseux Series Ring in t over Rational Field
sage: R.default_prec()
30

sage: PuiseuxSeriesRing(Zmod(4), 't').fraction_field()
Traceback (most recent call last):
 ...
ValueError: must be an integral domain
```
gen$(n=0)$

Return the generator of self.

EXAMPLES:

```
sage: A = PuiseuxSeriesRing(AA, 'z')
sage: A.gen()
z
```

is_dense()

Return whether self is dense.

EXAMPLES:

```
sage: A = PuiseuxSeriesRing(ZZ, 'y')
sage: A.is_dense()
True
```
**is_field**(proof=True)
Return whether self is a field.

A Puiseux series ring is a field if and only its base ring is a field.

EXAMPLES:

```sage
sage: A = PuiseuxSeriesRing(ZZ, 'y')
sage: A.is_field()
False
sage: A.change_ring(QQ).is_field()
True
```

**is_sparse**
Return whether self is sparse.

EXAMPLES:

```sage
sage: A = PuiseuxSeriesRing(ZZ, 'y')
sage: A.is_sparse()
False
```

**laurent_series_ring**
Return the underlying Laurent series ring.

EXAMPLES:

```sage
sage: A = PuiseuxSeriesRing(AA, 'z')
sage: A.laurent_series_ring()
Laurent Series Ring in z over Algebraic Real Field
```

**ngens**
Return the number of generators of self, namely 1.

EXAMPLES:

```sage
sage: A = PuiseuxSeriesRing(AA, 'z')
sage: A.ngens()
1
```

**residue_field**
Return the residue field of this Puiseux series field if it is a complete discrete valuation field (i.e. if the base ring is a field, in which case it is also the residue field).

EXAMPLES:

```sage
sage: R.<x> = PuiseuxSeriesRing(GF(17))
sage: R.residue_field()
Finite Field of size 17
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: R.residue_field()
Traceback (most recent call last):
 ... TypeError: the base ring is not a field
```
uniformizer()  
Return a uniformizer of this Puiseux series field if it is a discrete valuation field (i.e. if the base ring is actually a field). Otherwise, an error is raised.

EXAMPLES:

```
sage: R.<t> = PuiseuxSeriesRing(QQ)
sage: R.uniformizer()
t
sage: R.<t> = PuiseuxSeriesRing(ZZ)
sage: R.uniformizer()
Traceback (most recent call last):
...
TypeError: the base ring is not a field
A Puiseux series is a series of the form

\[p(x) = \sum_{n=N}^{\infty} a_n (x - a)^{n/e}, \]

where the integer \(e \) is called the ramification index of the series and the number \(a \) is the center. A Puiseux series is essentially a Laurent series but with fractional exponents.

EXAMPLES:

We begin by constructing the ring of Puiseux series in \(x \) with coefficients in the rationals:

```
sage: R.<x> = PuiseuxSeriesRing(QQ)
```

This command also defines \(x \) as the generator of this ring.

When constructing a Puiseux series, the ramification index is automatically determined from the greatest common divisor of the exponents:

```
sage: p = x^(1/2); p
x^(1/2)
sage: p.ramification_index()
2
sage: q = x^(1/2) + x^(1/3); q
x^(1/3) + x^(1/2)
sage: q.ramification_index()
6
```

Other arithmetic can be performed with Puiseux Series:

```
sage: p + q
x^(1/3) + 2*x^(1/2)
sage: p - q
-x^(1/3)
sage: p * q
x^(5/6) + x
sage: (p / q).add_bigoh(4/3)
x^(1/6) - x^(1/3) + x^(1/2) - x^(2/3) + x^(5/6) - x + x^(7/6) + O(x^(4/3))
```

Mind the base ring. However, the base ring can be changed:

```
sage: I*q
Traceback (most recent call last):
```

(continues on next page)
...
TypeError: unsupported operand parent(s) for *: 'Number Field in I with defining polynomial x^2 + 1 with I = 1*I' and 'Puiseux Series Ring in x over Rational Field'

```python
sage: qz = q.change_ring(ZZ); qz
x^(1/3) + x^(1/2)
sage: qz.parent()
Puiseux Series Ring in x over Integer Ring
```

Other properties of the Puiseux series can be easily obtained:

```python
sage: r = (3*x^(-1/5) + 7*x^(2/5) + (1/2)*x).add_bigoh(6/5); r
3*x^(-1/5) + 7*x^(2/5) + 1/2*x + O(x^(6/5))
sage: r.valuation()
-1/5
sage: r.prec()
6/5
sage: r.precision_absolute()
6/5
sage: r.precision_relative()
7/5
sage: r.exponents()
[-1/5, 2/5, 1]
sage: r.coefficients()
[3, 7, 1/2]
```

Finally, Puiseux series are compatible with other objects in Sage. For example, you can perform arithmetic with Laurent series:

```python
sage: L.<x> = LaurentSeriesRing(ZZ)
sage: l = 3*x^(-2) + x^(-1) + 2 + x**3
sage: r + l
3*x^-2 + x^-1 + 3*x^(-1/5) + 2 + 7*x^(2/5) + 1/2*x + O(x^(6/5))
```

AUTHORS:
- Chris Swierczewski 2016: initial version on https://github.com/abelfunctions/abelfunctions/tree/master/abelfunctions
- Frédéric Chapoton 2016: integration of code
- Travis Scrimshaw, Sebastian Oehms 2019-2020: basic improvements and completions

REFERENCES:
- Wikipedia article Puiseux_series

```python
class sage.rings.puiseux_series_ring_element.PuiseuxSeries
    Bases: AlgebraElement
    A Puiseux series.

    \[ \sum_{n=-\infty}^{\infty} a_n x^{n/e} \]

    It is stored as a Laurent series:

    \[ \sum_{n=-\infty}^{\infty} a_n t^n \]
```
where \(t = x^{1/e} \).

INPUT:

- parent – the parent ring
- \(f \) – one of the following types of inputs:
 - instance of \texttt{PuiseuxSeries}
 - instance that can be coerced into the Laurent series ring of the parent
- \(e \) – integer (default: 1) the ramification index

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(1/2) + x**3; p
x^(1/2) + x^3
sage: q = x**(1/2) - x**(-1/2)
sage: r = q.add_bigoh(7/2); r
-x^(-1/2) + x^(1/2) + O(x^(7/2))
sage: r**2
x^-1 - 2 + x + O(x^3)
```

\texttt{add_bigoh(prec)}

Return the truncated series at chosen precision \(\text{prec} \).

INPUT:

- \(\text{prec} \) – the precision of the series as a rational number

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3
sage: p.add_bigoh(2)
x^(-7/2) + 3 + 5*x^(1/2) + O(x^2)
sage: p.add_bigoh(0)
x^(-7/2) + O(1)
sage: p.add_bigoh(-1)
x^(-7/2) + O(x^(-1))
```

\textbf{Note:} The precision passed to the method is adapted to the common ramification index:

```
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x**(-1/3) + 2*x**(1/5)
sage: p.add_bigoh(1/2)
x^(-1/3) + 2*x^(1/5) + O(x^(7/15))
```

\texttt{change_ring(R)}

Return \texttt{self} over the new ring \(R \).

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3
```
\begin{verbatim}
sage: q = p.change_ring(QQ); q
x^(-7/2) + 3 + 5*x^(1/2) - 7*x^3
sage: q.parent()
Puiseux Series Ring in x over Rational Field
\end{verbatim}

coefficients()
Return the list of coefficients.

EXAMPLES:
\begin{verbatim}
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x^(3/4) + 2*x^(4/5) + 3* x^(5/6)
sage: p.coefficients()
[1, 2, 3]
\end{verbatim}

common_prec(\textit{p})
Return the minimum precision of \textit{p} and \textit{self}.

EXAMPLES:
\begin{verbatim}
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = (x**(-1/3) + 2*x**3)**2
sage: q5 = p.add_bigoh(5); q5
x^(-2/3) + 4*x^(8/3) + O(x^5)
sage: q7 = p.add_bigoh(7); q7
x^(-2/3) + 4*x^(8/3) + 4*x^6 + O(x^7)
sage: q5.common_prec(q7)
5
sage: q7.common_prec(q5)
5
\end{verbatim}

degree()
Return the degree of \textit{self}.

EXAMPLES:
\begin{verbatim}
sage: P.<y> = PolynomialRing(GF(5))
sage: R.<x> = PuiseuxSeriesRing(P)
sage: p = 3*y*x**(-2/3) + 2*y**2*x**(1/5); p
3*y*x^(-2/3) + 2*y^2*x^(1/5)
sage: p.degree()
1/5
\end{verbatim}

exponents()
Return the list of exponents.

EXAMPLES:
\begin{verbatim}
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x^(3/4) + 2*x^(4/5) + 3* x^(5/6)
sage: p.exponents()
[3/4, 4/5, 5/6]
\end{verbatim}
inverse()

Return the inverse of self.

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x^3
sage: 1/p
x^(7/2) - 3*x^7 - 5*x^(15/2) + 7*x^10 + 9*x^(21/2) + 30*x^11 +
25*x^(23/2) + O(x^(27/2))
```

is_monomial()

Return whether self is a monomial.

This is True if and only if self is x^p for some rational p.

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(1/2) + 3/4 * x^(2/3)
sage: p.is_monomial()  
False
sage: q = x**((11/13))
```

is_unit()

Return whether self is a unit.

A Puiseux series is a unit if and only if its leading coefficient is.

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x^3
sage: p.is_unit()  
True
sage: q = 4 * x^(-7/2) + 3 * x^4
sage: q.is_unit() 
False
```

is_zero()

Return whether self is zero.

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(1/2) + 3/4 * x^(2/3)
sage: p.is_zero()  
False
sage: R.zero().is_zero()  
True
```
laurent_part()
Return the underlying Laurent series.

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(1/2) + 3/4 * x^(2/3)
sage: p.laurent_part()
x^3 + 3/4*x^4
```

laurent_series()
If self is a Laurent series, return it as a Laurent series.

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x**(1/2) - x**(-1/2)
sage: p.laurent_series()
Traceback (most recent call last):
  ...
ArithmeticError: self is not a Laurent series
sage: q = p**2
sage: q.laurent_series()
x^-1 - 2 + x
```

list()
Return the list of coefficients indexed by the exponents of the the corresponding Laurent series.

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = x^(3/4) + 2*x^(4/5) + 3* x^(5/6)
sage: p.list()
[1, 0, 0, 2, 0, 3]
```

power_series()
If self is a power series, return it as a power series.

EXAMPLES:

```
sage: R.<x> = PuiseuxSeriesRing(QQbar)
sage: p = x**(3/2) - QQbar(I)*x**(1/2)
sage: p.power_series()
Traceback (most recent call last):
  ...
ArithmeticError: self is not a power series
sage: q = p**2
sage: q.power_series()
-x - 2*I*x^2 + x^3
```

prec()
Return the precision of self.

EXAMPLES:
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = (x**(1/3) + 2*x**(3)**2); p
x^(-2/3) + 4*x^(8/3) + 4*x^6
sage: q = p.add_bigoh(5); q
x^(-2/3) + 4*x^(8/3) + O(x^5)
sage: q.prec()
5

precision_absolute()

Return the precision of self.

EXAMPLES:

sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = (x**(1/3) + 2*x**(3)**2); p
x^(-2/3) + 4*x^(8/3) + 4*x^6
sage: q = p.add_bigoh(5); q
x^(-2/3) + 4*x^(8/3) + O(x^5)
sage: q.prec()
5

precision_relative()

Return the relative precision of the series.

The relative precision of the Puiseux series is the difference between its absolute precision and its valuation.

EXAMPLES:

sage: R.<x> = PuiseuxSeriesRing(GF(3))
sage: p = (x**(1/3) + 2*x**(3)**2); p
x^(-2/3) + x^(8/3) + x^6
sage: q = p.add_bigoh(7); q
x^(-2/3) + x^(8/3) + x^6 + O(x^7)
sage: q.precision_relative()
23/3

ramification_index()

Return the ramification index.

EXAMPLES:

sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(1/2) + 3/4 * x^(2/3)
sage: p.ramification_index()
6

shift(r)

Return this Puiseux series multiplied by x^r.

EXAMPLES:

sage: P.<y> = LaurentPolynomialRing(ZZ)
sage: R.<x> = PuiseuxSeriesRing(P)
sage: p = y*x**(1/3) + 2*y**(2)*x**(1/2); p
y*x^(-1/3) + (2*y^2)*x^(1/2)
\begin{verbatim}
sage: p.shift(3)
y*x^(8/3) + (2*y^-2)*x^(7/2)
\end{verbatim}

truncate(r)

Return the Puiseux series of degree \(< r\). This is equivalent to \texttt{self} modulo \(x^r\).

EXAMPLES:

\begin{verbatim}
sage: R.<x> = PuiseuxSeriesRing(ZZ)
sage: p = (x^(-1/3) + 2*x^3)**2; p
x^(-2/3) + 4*x^(8/3) + 4*x^6
sage: q = p.truncate(5); q
x^(-2/3) + 4*x^(8/3)
sage: q == p.add_bigoh(5)
True
\end{verbatim}

valuation()

Return the valuation of \texttt{self}.

EXAMPLES:

\begin{verbatim}
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3
sage: p.valuation()
-7/2
\end{verbatim}

variable()

Return the variable of \texttt{self}.

EXAMPLES:

\begin{verbatim}
sage: R.<x> = PuiseuxSeriesRing(QQ)
sage: p = x^(-7/2) + 3 + 5*x^(1/2) - 7*x**3
sage: p.variable()
'x'
\end{verbatim}
Let K be a finite extension of \mathbb{Q}_p for some prime number p and let (v_1, \ldots, v_n) be a tuple of real numbers.

The associated Tate algebra consists of series of the form

$$\sum_{i_1, \ldots, i_n \in \mathbb{N}} a_{i_1, \ldots, i_n} x_1^{i_1} \cdots x_n^{i_n}$$

for which the quantity

$$\mathrm{val}(a_{i_1, \ldots, i_n}) - (v_1 i_1 + \cdots + v_n i_n)$$

goes to infinity when the multi-index (i_1, \ldots, i_n) goes to infinity.

These series converge on the closed disc defined by the inequalities $\mathrm{val}(x_i) \geq -v_i$ for all $i \in \{1, \ldots, n\}$. The v_i's are then the logarithms of the radii of convergence of the series in the above Tate algebra; they will be called the log radii of convergence.

We can create Tate algebras using the constructor `sage.rings.tate_algebra.TateAlgebra()`:

```python
sage: K = Qp(2, 5, print_mode='digits')
sage: A.<x,y> = TateAlgebra(K)
sage: A
Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative␣˓→precision 5
```

As we observe, the default value for the log radii of convergence is 0 (the series then converge on the closed unit disc).

We can specify different log radii using the following syntax:

```python
sage: B.<u,v> = TateAlgebra(K, log_radii=[1,2]); B
Tate Algebra in u (val >= -1), v (val >= -2) over 2-adic Field with capped relative␣˓→precision 5
```

Note that if we pass in the ring of integers of p-adic field, the same Tate algebra is returned:

```python
sage: A1.<x,y> = TateAlgebra(K.integer_ring()); A1
Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative␣˓→precision 5
sage: A is A1
True
```

However the method `integer_ring()` constructs the integer ring of a Tate algebra, that is the subring consisting of series bounded by 1 on the domain of convergence:
Power Series Rings and Laurent Series Rings, Release 10.0

\[
\text{sage: } \text{Ao} = A\text{.integer_ring()}
\]
\[
\text{sage: } \text{Ao}
\]
Integer ring of the Tate Algebra in \(x (\text{val} \geq 0) \), \(y (\text{val} \geq 0) \) over 2-adic Field with capped relative precision 5

Now we can build elements:

\[
\text{sage: } f = 5 + 2^x y^3 + 4^x 2^y^2; f
\]
\[
\ldots 01011 + \ldots 000010^x y^3 + \ldots 0000100^x 2^y^2
\]
\[
\text{sage: } g = x^3 y + 2^x y; g
\]
\[
\ldots 00001^x 3^y + \ldots 000010^x y
\]

and perform all usual arithmetic operations on them:

\[
\text{sage: } f + g
\]
\[
\ldots 00011^x 3^y + \ldots 01011 + \ldots 000010^x y^3 + \ldots 0000100^x 2^y^2
\]
\[
\text{sage: } f \times g
\]
\[
\ldots 01011^x 3^y + \ldots 000010^x 4^x y^4 + \ldots 01011^x y + \ldots 0000100^x 5^y^3 + \ldots 0000100^x 2^y^4 + \ldots 00001000^x 3^y^3
\]

An element in the integer ring is invertible if and only if its reduction modulo \(p \) is a nonzero constant. In our example, \(f \) is invertible (its reduction modulo 2 is 1) but \(g \) is not:

\[
\text{sage: } f\text{.inverse_of_unit()}
\]
\[
\ldots 01101 + \ldots 01110^x y^3 + \ldots 10100^x 2^y^6 + \ldots + O(2^5 \times <x, y>)
\]
\[
\text{sage: } g\text{.inverse_of_unit()}
\]
Traceback (most recent call last):

...
ValueError: this series in not invertible

The notation \(O(2^5) \) in the result above hides a series which lies in \(2^5 \) times the integer ring of \(A \), that is a series which is bounded by \(|2^5| \) (2-adic norm) on the domain of convergence.

We can also evaluate series in a point of the domain of convergence (in the base field or in an extension):

\[
\text{sage: } L.<a> = Qq(2^3, 5)
\]
\[
\text{sage: } f(a^2, 2^a)
\]
\[
1 + 2^2 + a 2^4 + O(2^5)
\]
\[
\text{sage: } \text{var}(\text{u}')
\]
\[
u
\]
\[
\text{sage: } L.<pi> = K\text{.change(print_mode="series")}.extension(u^3 - 2)
\]
\[
\text{sage: } g(pi, 2^pi)
\]
\[
\pi^7 + \pi^8 + \pi^19 + \pi^20 + O(\pi^21)
\]

Computations with ideals in Tate algebras are also supported:

\[
\text{sage: } f = 7^x 3^y + 2^x y - 6^y 5
\]
\[
g = x^y 4 + 8^x 3 - 3^y 3 + 1
\]
\[
\text{sage: } I = A\text{.ideal([f, g])}
\]
\[
\text{sage: } I\text{.groebner_basis()}
\]

[continues on next page]
AUTHORS:
 • Xavier Caruso, Thibaut Verron (2018-09)

class sage.rings.tate_algebra.TateAlgebraFactory
 Bases: UniqueFactory

Construct a Tate algebra over a \(p \)-adic field.

Given a \(p \)-adic field \(K \), variables \(X_1, \ldots, X_k \) and convergence log radii \(v_1, \ldots, v_n \) in \(R \), the corresponding Tate algebra \(KX_1, \ldots, X_k \) consists of power series with coefficients \(a_{i_1,\ldots,i_n} \) in \(K \) such that

\[
\text{val}(a_{i_1,\ldots,i_n}) - (i_1v_1 + \cdots + i_nv_n)
\]

tends to infinity as \(i_1, \ldots, i_n \) go towards infinity.

INPUT:
 • base – a \(p \)-adic ring or field; if a ring is given, the Tate algebra over its fraction field will be constructed
 • prec – an integer or None (default: None), the precision cap; it is used if an exact object must be truncated in order to do an arithmetic operation. If left as None, it will be set to the precision cap of the base field.
 • log_radii – an integer or a list or a tuple of integers (default: 0), the value(s) \(v_i \). If an integer is given, this will be the common value for all \(v_i \).
 • names – names of the indeterminates
 • order – the monomial ordering (default: degrevlex) used to break ties when comparing terms with the same coefficient valuation

EXAMPLES:

```
sage: R = Zp(2, 10, print_mode='digits'); R
2-adic Ring with capped relative precision 10
sage: A.<x,y> = TateAlgebra(R, order='lex'); A
Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative...
˓→precision 10
```

We observe that the result is the Tate algebra over the fraction field of \(R \) and not \(R \) itself:

```
sage: A.base_ring()
2-adic Field with capped relative precision 10
sage: A.base_ring() is R.fraction_field()
True
```

If we want to construct the ring of integers of the Tate algebra, we must use the method `integer_ring()`:

```
sage: Ao = A.integer_ring(); Ao
Integer ring of the Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field...
˓→with capped relative precision 10
sage: Ao.base_ring()
2-adic Ring with capped relative precision 10
```

(continues on next page)
The term ordering is used (in particular) to determine how series are displayed. Terms are compared first according to the valuation of their coefficient, and ties are broken using the monomial ordering:

```
sage: A.term_order()
Lexicographic term order
sage: f = 2 + y^5 + x^2; f
...0000000001*x^2 + ...0000000001*y^5 + ...00000000010
```

```
sage: B.<x,y> = TateAlgebra(R); B
Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative precision 10
sage: B(f)
...0000000001*y^5 + ...0000000001*x^2 + ...00000000010
```

Here are examples of Tate algebra with smaller radii of convergence:

```
sage: B.<x,y> = TateAlgebra(R, log_radii=-1); B
Tate Algebra in x (val >= 1), y (val >= 1) over 2-adic Field with capped relative precision 10
sage: C.<x,y> = TateAlgebra(R, log_radii=[-1,-2]); C
Tate Algebra in x (val >= 1), y (val >= 2) over 2-adic Field with capped relative precision 10
```

AUTHORS:

• Xavier Caruso, Thibaut Verron (2018-09)

create_key(base, prec=None, log_radii=0, names=None, order='degrevlex')

Create a key from the input parameters.

INPUT:

• base – a p-adic ring or field
• prec – an integer or None (default: None)
• log_radii – an integer or a list or a tuple of integers (default: 0)
• names – names of the indeterminates
• order - a monomial ordering (default: degrevlex)

EXAMPLES:

```
sage: TateAlgebra.create_key(Zp(2), names=['x','y'])
(2-adic Field with capped relative precision 20, 20, (0, 0), ('x', 'y'),
 Degree reverse lexicographic term order)
```

create_object(version, key)

Create an object using the given key.
class sage.rings.tate_algebra.TateAlgebra_generic(field, prec, log_radii, names, order,
 integral=False)
Bases: CommutativeAlgebra

Initialize the Tate algebra

absolute_e()
Return the absolute index of ramification of this Tate algebra.
It is equal to the absolute index of ramification of the field of coefficients.

EXAMPLES:

sage: R = Zp(2)
sage: A.<u,v> = TateAlgebra(R)
sage: A.absolute_e()
1
sage: R.<a> = Zq(2^3)
sage: A.<u,v> = TateAlgebra(R)
sage: A.absolute_e()
1
sage: S.<a> = R.extension(x^2 - 2)
sage: A.<u,v> = TateAlgebra(S)
sage: A.absolute_e()
2

characteristic()
Return the characteristic of this algebra.

EXAMPLES:

sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: A.characteristic()
0

gen(n=0)
Return the n-th generator of this Tate algebra.

INPUT:
• n - an integer (default: 0), the index of the requested generator

EXAMPLES:

sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: A.gen()
...0000000001*x
sage: A.gen(0)
...0000000001*x
sage: A.gen(1)
...0000000001*y
sage: A.gen(2)
Traceback (most recent call last):
ValueError: generator not defined

gens()
Return the list of generators of this Tate algebra.

EXAMPLES:

```
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: A.gens()
(...0000000001*x, ...0000000001*y)
```

integer_ring()
Return the ring of integers (consisting of series bounded by 1 in the domain of convergence) of this Tate algebra.

EXAMPLES:

```
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: Ao = A.integer_ring()
sage: Ao
Integer ring of the Tate Algebra in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative precision 10
sage: x in Ao
True
sage: x/2 in Ao
False
```

is_integral_domain(proof=True)
Return True since any Tate algebra is an integral domain.

EXAMPLES:

```
sage: A.<x,y> = TateAlgebra(Zp(3))
sage: A.is_integral_domain()
True
```

log_radii()
Return the list of the log-radii of convergence radii defining this Tate algebra.

EXAMPLES:

```
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: A.log_radii()
(0, 0)
sage: B.<x,y> = TateAlgebra(R, log_radii=1)
sage: B.log_radii()
(1, 1)
```

(continues on next page)
```
sage: C.<x,y> = TateAlgebra(R, log_radii=(1,-1))
sage: C.log_radii()
(1, -1)
```

monoid_of_terms()

Return the monoid of terms of this Tate algebra.

EXAMPLES:

```
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: A.monoid_of_terms()
Monoid of terms in x (val >= 0), y (val >= 0) over 2-adic Field with capped relative precision 10
```

ngens()

Return the number of generators of this algebra.

EXAMPLES:

```
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: A.ngens()
2
```

precision_cap()

Return the precision cap of this Tate algebra.

Note: The precision cap is the truncation precision used for arithmetic operations computed by successive approximations (as inversion).

EXAMPLES:

By default the precision cap is the precision cap of the field of coefficients:

```
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: A.precision_cap()
10
```

But it could be different (either smaller or larger) if we ask to:

```
sage: A.<x,y> = TateAlgebra(R, prec=5)
sage: A.precision_cap()
5
```

```
sage: A.<x,y> = TateAlgebra(R, prec=20)
sage: A.precision_cap()
20
```

prime()

Return the prime, that is the characteristic of the residue field.

EXAMPLES:
random_element *(degree=2, terms=5, integral=False, prec=None)*

Return a random element of this Tate algebra.

INPUT:
- **degree** – an integer (default: 2), an upper bound on the total degree of the result
- **terms** – an integer (default: 5), the maximal number of terms of the result
- **integral** – a boolean (default: `False`); if `True` the result will be in the ring of integers
- **prec** – (optional) an integer, the precision of the result

EXAMPLES:

```
sage: R = Zp(2, prec=10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: A.random_element()  # random
(...00101000.01)*y + ...1111011111*x^2 + ...0010000001*x*y + ...110000011 + ...
→ 010100100*y^2
```

Note that if we are already working on the ring of integers, specifying `integral=False` has no effect:

```
sage: Ao = A.integer_ring()
sage: f = Ao.random_element(integral=False); f
# random
...1100111011*x + ...1101110101 + ...00010010110*y + ...1110110001 + ...
→ 0010011011*y^2
```

When the log radii are negative, integral series may have non integral coefficients:

```
sage: B.<x,y> = TateAlgebra(R, log_radii=[-1,-2])
sage: B.random_element(integral=True)  # random
(...111111.001)*x*y + (...111000101.1)*x + (...11010111.01)*y^2 + ...
→ 011010000011*y^2
```

some_elements ()

Return a list of elements in this Tate algebra.

EXAMPLES:

```
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
```
sage: A.some_elements()
[0,
...00000000010,
...0000000001*x,
...0000000001*y,
...00000000010*x*y,
...00000000100,
...0000000001*x + ...00000000010,
...0000000001*y + ...00000000010,
...00000000010*x*y + ...00000000010,
...00000000010*x,
...0000000001*x + ...0000000001*y,
...0000000001*x + ...00000000010*x*y,
...00000000010*y,
...0000000001*y + ...00000000010*x*y,
...000000000100*x*y]

term_order()
Return the monomial order used in this algebra.

EXAMPLES:

sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: A.term_order()
Degree reverse lexicographic term order

sage: A.<x,y> = TateAlgebra(R, order='lex')
sage: A.term_order()
Lexicographic term order

variable_names()
Return the names of the variables of this algebra.

EXAMPLES:

sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: A.variable_names()
('x', 'y')

class sage.rings.tate_algebra.TateTermMonoid(A)
Bases: Monoid_class, UniqueRepresentation

A base class for Tate algebra terms
A term in a Tate algebra $\mathbb{K}\{X_1, \ldots, X_n\}$ (resp. in its ring of integers) is a monomial in this ring.
Those terms form a pre-ordered monoid, with term multiplication and the term order of the parent Tate algebra.

Element
alias of TateAlgebraTerm

algebra_of_series()
Return the Tate algebra corresponding to this Tate term monoid.
EXAMPLES:

```python
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
```

base_ring()

Return the base ring of this Tate term monoid.

EXAMPLES:

```python
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
```

gen

Return the \(n \)-th generator of this monoid of terms.

INPUT:

- \(n \) - an integer (default: 0), the index of the requested generator

EXAMPLES:

```python
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
```
...0000000001*y
sage: T.gen(2)
Traceback (most recent call last):
...
ValueError: generator not defined

gens()

Return the list of generators of this monoid of terms.

EXAMPLES:

sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.gens()
(...0000000001*x, ...0000000001*y)

log_radii()

Return the log radii of convergence of this Tate term monoid.

EXAMPLES:

sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.log_radii()
(0, 0)
sage: B.<x,y> = TateAlgebra(R, log_radii=[1,2])
sage: B.monoid_of_terms().log_radii()
(1, 2)

ngens()

Return the number of variables in the Tate term monoid

EXAMPLES:

sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.ngens()
2

prime()

Return the prime, that is the characteristic of the residue field.

EXAMPLES:

sage: R = Zp(3)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.prime()
3
some_elements()

Return a list of elements in this monoid of terms.

EXAMPLES:

```
sage: R = Zp(2, 10, print_mode='digits')
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.some_elements()
[...00000000010, ...0000000001*x, ...0000000001*y, ...00000000010*x*y]
```

term_order()

Return the term order on this Tate term monoid.

EXAMPLES:

```
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.term_order()  # default term order is grevlex
Degree reverse lexicographic term order

sage: A.<x,y> = TateAlgebra(R, order='lex')
sage: T = A.monoid_of_terms()
sage: T.term_order()
Lexicographic term order
```

variable_names()

Return the names of the variables of this Tate term monoid.

EXAMPLES:

```
sage: R = Zp(2, 10)
sage: A.<x,y> = TateAlgebra(R)
sage: T = A.monoid_of_terms()
sage: T.variable_names()
('x', 'y')
```
CHAPTER
FOURTEEN

INDICES AND TABLES

• Index
• Module Index
• Search Page
Python Module Index

r
sage.rings.laurent_series_ring, 75
sage.rings.laurent_series_ring_element, 81
sage.rings.lazy_series, 95
sage.rings.lazy_series_ring, 143
sage.rings.multi_power_series_ring, 49
sage.rings.multi_power_series_ring_element, 57
sage.rings.power_series_pari, 43
sage.rings.power_series_poly, 37
sage.rings.power_series_ring, 1
sage.rings.power_series_ring_element, 11
sage.rings.puiseux_series_ring, 159
sage.rings.puiseux_series_ring_element, 163
sage.rings.tate_algebra, 171
coefficients() (sage.rings.lazy_series.LazyModuleElement method), 113
coefficients() (sage.rings.multi_power_series_ring_element.MPowerSeriesRing_generic method), 62
coefficients() (sage.rings.power_series_ring_element.PowerSeries method), 14
coefficients() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 115
common_prec() (sage.rings.laurent_series_ring_element.LaurentSeries method), 83
compose() (sage.rings.lazy_series.LazyLaurentSeries method), 101
compose() (sage.rings.lazy_series.LazyPowerSeries method), 128
compositional_inverse() (sage.rings.lazy_series.LazyLaurentSeries method), 106
compositional_inverse() (sage.rings.lazy_series.LazyPowerSeries method), 129
compositional_inverse() (sage.rings.lazy_series.LazySymmetricFunction method), 135
compute_coefficients() (sage.rings.lazy_series.LazyPowerSeries method), 130
constant_coefficient() (sage.rings.multi_power_series_ring_element.MPowerSeriesRing_generic method), 63
construction() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 77
construction() (sage.rings.multi_power_series_ring_element.MPowerSeriesRing_generic method), 53
construction() (sage.rings.power_series_ring_element.PowerSeries method), 6
cos() (sage.rings.lazy_series.LazyModuleElement method), 114
cos() (sage.rings.power_series_ring_element.PowerSeries method), 14
cosh() (sage.rings.lazy_series.LazyModuleElement method), 114
cosh() (sage.rings.power_series_ring_element.PowerSeries method), 15
cot() (sage.rings.lazy_series.LazyModuleElement method), 114
coth() (sage.rings.lazy_series.LazyModuleElement method), 115
create_key() (sage.rings.tate_algebra.TateAlgebraFactory create_object() (sage.rings.tate_algebra.TateAlgebraFactory method), 174
csc() (sage.rings.lazy_series.LazyModuleElement method), 115
csch() (sage.rings.lazy_series.LazyModuleElement method), 115
default_prec() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 77
default_prec() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 160
define() (sage.rings.lazy_series.LazyModuleElement method), 115
degree() (sage.rings.laurent_series_ring_element.LaurentSeries method), 84
degree() (sage.rings.multi_power_series_ring_element.MPowerSeries Ring generic method), 63
degree() (sage.rings.power_series_poly.PowerSeries_poly method), 37
degree() (sage.rings.power_series_ring_element.PowerSeries method), 16
degree() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 166
derivative() (sage.rings.laurent_series_ring_element.LaurentSeries method), 85
derivative() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 107
derivative() (sage.rings.lazy_series.LazyPowerSeries method), 130
derivative() (sage.rings.multi_power_series_ring_element.MPowerSeries Ring generic method), 63
derivative() (sage.rings.power_series_ring_element.PowerSeries method), 16
derivative_with_respect_to_p1() (sage.rings.lazy_series.LazySymmetricFunction method), 136
dict() (sage.rings.multi_power_series_ring_element.MPowerSeries Ring generic method), 63
dict() (sage.rings.power_series_poly.PowerSeries_poly method), 44
dict() (sage.rings.power_series_ring_element.PowerSeries method), 38
<table>
<thead>
<tr>
<th>Method/Attribute</th>
<th>Module/Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>euler()</td>
<td>sage.rings.lazy.series.LazyModuleElement</td>
</tr>
<tr>
<td>euler()</td>
<td>sage.rings.lazy.series.LazyLaurentSeriesRing</td>
</tr>
<tr>
<td>euler()</td>
<td>sage.rings.lazy.series.LazyPowerSeriesRing</td>
</tr>
<tr>
<td>exp()</td>
<td>sage.rings.lazy.series.LazyCauchyProductSeries</td>
</tr>
<tr>
<td>exp()</td>
<td>sage.rings.lazy.series.LazyModuleElement</td>
</tr>
<tr>
<td>exp()</td>
<td>sage.rings.lazy.series.LazyLaurentSeriesRing</td>
</tr>
<tr>
<td>exp()</td>
<td>sage.rings.lazy.series.LazyPowerSeriesRing</td>
</tr>
<tr>
<td>exp()</td>
<td>sage.rings.power_series_ring_element.MPowerSeries</td>
</tr>
<tr>
<td>exponential()</td>
<td>sage.rings.lazy.series.LazyPowerSeries</td>
</tr>
<tr>
<td>exponential()</td>
<td>sage.rings.lazy.series.LazyLaurentSeriesRing</td>
</tr>
<tr>
<td>exponential()</td>
<td>sage.rings.lazy.series.LazyPowerSeriesRing</td>
</tr>
<tr>
<td>exponential()</td>
<td>sage.rings.multi_power_series_ring_element.MPowerSeries</td>
</tr>
<tr>
<td>exponential()</td>
<td>sage.rings.power_series_ring_element.PowerSeries</td>
</tr>
<tr>
<td>exponential()</td>
<td>sage.rings.puiseux_series_ring_element.PuiseuxSeries</td>
</tr>
<tr>
<td>fractional()</td>
<td>sage.rings.laurent_series_ring_element.LaurentSeries</td>
</tr>
<tr>
<td>fractional()</td>
<td>sage.rings.power_series_ring_element.PowerSeries</td>
</tr>
<tr>
<td>fractional()</td>
<td>sage.rings.puiseux_series_ring_element.PuiseuxSeries</td>
</tr>
<tr>
<td>fractional()</td>
<td>sage.rings.tate_algebra.TateAlgebra_generic</td>
</tr>
<tr>
<td>fractional()</td>
<td>sage.rings.tate_algebra.TateTermMonoid</td>
</tr>
<tr>
<td>fractional()</td>
<td>sage.rings.tate_algebra.TateAlgebra_generic</td>
</tr>
</tbody>
</table>

Index

189
is_dense() (sage.rings.power_series_ring_element.PowerSeries method), 19
is_dense() (sage.rings.puiseux_series_ring.PuiseuxSeries method), 160
is_exact() (sage.rings.power_series_ring_element.PowerSeries method), 7
is_exact() (sage.rings.power_series_ring_element.Powerseries method), 7
is_exact() (sage.rings.power_series_ring_element.Powerseries method), 20
is_exact() (sage.rings.power_series_ring_element.Powerseries method), 55
is_field() (sage.rings.laurent_series_ring.LaurentSeries method), 78
is_field() (sage.rings.laurent_series_ring.LaurentSeries method), 19
is_field() (sage.rings.laurent_series_ring.LaurentSeries method), 155
is_field() (sage.rings.laurent_series_ring.LaurentSeries method), 7
is_field() (sage.rings.puiseux_series_ring.PuiseuxSeries method), 7
is_field() (sage.rings.power_series_ring_element.PowerSeries method), 7
is_field() (sage.rings.power_series_ring_element.PowerSeries method), 20
is_integral_domain() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 7
is_integral_domain() (sage.rings.power_series_ring_element.PowerSeries method), 54
is_integral_domain() (sage.rings.tate_algebra.TateAlgebra_generic method), 176
is_LaurentSeries() (in module sage.rings.laurent_series_ring_element), 94
is_LaurentSeriesRing() (in module sage.rings.laurent_series_ring), 80
is_monomial() (sage.rings.power_series_ring_element.Powerseries method), 19
is_monomial() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 167
is_MPowerSeries() (in module sage.rings.multi_power_series_ring_element), 73
is_MPowerSeriesRing() (in module sage.rings.multi_power_series_ring), 56
is_nilpotent() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 66
is_noetherian() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 54
is_PowerSeries() (in module sage.rings.power_series_ring_element), 36
is_PowerSeriesRing() (in module sage.rings.power_series_ring), 10
is_sparse() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 78
is_sparse() (sage.rings.laurent_series_ring.LazySeriesRing method), 155
is_unit() (sage.rings.laurent_series_ring.LaurentSeries method), 87
is_unit() (sage.rings.laurent_series_ring.LaurentSeries method), 107
is_unit() (sage.rings.power_series_ring_element.MPowerSeries method), 67
is_unit() (sage.rings.power_series_ring_element.MPowerSeries method), 138
is_unit() (sage.rings.power_series_ring_element.Powerseries method), 67
is_unit() (sage.rings.power_series_ring_element.Powerseries method), 20
is_zero() (sage.rings.laurent_series_ring.LaurentSeries method), 87
is_zero() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 87
is_zero() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 167
jacobi_continued_fraction() (sage.rings.power_series_ring_element.PowerSeries method), 21
laurant_part() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 167
laurent_polynomial() (sage.rings.laurent_series_ring_element.LaurentSeries method), 87
laurent_polynomial_ring() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 78
laurent_series() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 78
laurent_series() (sage.rings.power_series_ring_element.MPowerSeries method), 67
laurent_series() (sage.rings.power_series_ring_element.PowerSeries method), 21
laurent_series() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 168
monomials() (sage.rings.multi_power_series_ring_element.monomials method), 68

MPowerSeries (class in sage.rings.multi_power_series_ring_element), 60

MPowerSeriesRing_generic (class in sage.rings.multi_power_series_ring), 52

N

ngens() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 78

ngens() (sage.rings.lazy_series_ring.LazyLaurentSeriesRing method), 149

ngens() (sage.rings.lazy_series_ring.LazyPowerSeriesRing method), 153

ngens() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 55

ngens() (sage.rings.power_series_ring/power_series_ring method), 8

ngens() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 161

ngens() (sage.rings.tate_algebra.TateAlgebra_generic method), 177

ngens() (sage.rings.tate_algebra.TateTermMonoid method), 181

nth_root() (sage.rings.laurent_series_ring_element.LaurentSeries method), 88

nth_root() (sage.rings.power_series_ring_element.PowerSeries method), 24

O

O() (sage.rings.laurent_series_ring_element.LaurentSeriesRing method), 82

O() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 52

O() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 61

O() (sage.rings.power_series_ring_element.PowerSeries method), 12

ogf() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 68

ogf_to_egf() (sage.rings.power_series_ring_element.PowerSeries method), 24

one() (sage.rings.lazy_series_ring.LazyDirichletSeriesRing method), 145

one() (sage.rings.lazy_series_ring.LazySeriesRing method), 155

options (sage.rings.lazy_series_ring.LazySeriesRing attribute), 156

P

padded_list() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 69

polynomial() (sage.rings.lazy_series.LazyLaurentSeriesRing method), 140

polynomial() (sage.rings.laurent_series.LazyLaurentSeriesRing method), 107

polynomial() (sage.rings.lazy_series.LazyPowerSeriesRing method), 131

polynomial() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 69

polynomial() (sage.rings.power_series_ring_element.PowerSeries method), 39

polynomial() (sage.rings.power_series_ring_element.PowerSeries method), 25

polynomial() (sage.rings.power_series_ring_element.PowerSeries method), 12

polynomial() (sage.rings.power_series_ring_element.PowerSeries method), 37

polynomial() (sage.rings.power_series_ring_element.PowerSeries method), 26

polynomial() (sage.rings.power_series_ring_element.PowerSeries method), 79

polynomial() (sage.rings.power_series_ring_element.PowerSeries method), 10

polynomial() (sage.rings.power_series_ring_element.PowerSeries method), 5

N

polynomial() (sage.rings.power_series_ring_element.PowerSeries method), 5

polynomial() (sage.rings.power_series_ring_element.PowerSeries method), 5

power_series() (sage.rings.laurent_series_ring_element.LaurentSeries method), 88

power_series() (sage.rings.puiseux_series_ring_element.PuiseuxSeriesRing method), 168

prec() (sage.rings.laurent_series_ring_element.LaurentSeries method), 10

prec() (sage.rings.laurent_series_ring_element.LaurentSeries method), 89

prec() (sage.rings.lazy_seriesRING_element.LazyModuleElement method), 120

prec() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 69

prec() (sage.rings.power_series_ring_element.PowerSeries method), 26
prec() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 168
prec_ideal() (sage.rings.multi_power_series_ring.MPowerSeriesRing_generic method), 55
precision_absolute() (sage.rings.laurent_series_ring_element.LaurentSeries method), 89
precision_absolute() (sage.rings.power_series_ring_element.PowerSeries method), 26
precision_absolute() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 169
precision_cap() (sage.rings.tate_algebra.TateAlgebra_generic method), 177
precision_relative() (sage.rings.laurent_series_ring_element.LaurentSeries method), 89
precision_relative() (sage.rings.power_series_ring_element.PowerSeries method), 26
precision_relative() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 169
precision_cap() (sage.rings.tate_algebra.TateAlgebra_generic method), 177
precision_relative() (sage.rings.laurent_series_ring_element.LaurentSeries method), 89
precision_relative() (sage.rings.power_series_ring_element.PowerSeries method), 26
precision_relative() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 169
prime() (sage.rings.tate_algebra.TateAlgebra_generic method), 177
prime() (sage.rings.tate_algebra.TateTermMonoid method), 181
PuiseuxSeries (class in sage.rings.puiseux_series_ring_element), 164
PuiseuxSeriesRing (class in sage.rings.puiseux_series_ring), 159
qua_rem() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 69
ramification_index() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 169
random_element() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 79
random_element() (sage.rings.power_series_ring_element.PowerSeries method), 8
random_element() (sage.rings.tate_algebra.TateRings module), 178
random_element() (sage.rings.multi_power_series_ring_element.MPowerSeriesRing_element method), 55
residue() (sage.rings.laurent_series_ring_element.LaurentSeries method), 89
residue_field() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 79
residue_field() (sage.rings.lazy_series_ring.LazyLaurentSeriesRing method), 150
residue_field() (sage.rings.lazy_series_ring.LazyPowerSeriesRing method), 153
residue_field() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 9
residue_field() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 161
reverse() (sage.rings.laurent_series_ring_element.LaurentSeries method), 90
reverse() (sage.rings.power_series_pari.PowerSeries_pari method), 46
reverse() (sage.rings.power_series_poly.PowerSeries_poly method), 39
revert() (sage.rings.lazy_series.LazyLaurentSeries method), 108
revert() (sage.rings.lazy_series.LazyPowerSeries method), 132
revert() (sage.rings.lazy_series.LazySymmetricFunction method), 140
sec() (sage.rings.lazy_series.LazyModuleElement method), 120

S
sage.rings.laurent_series_ring module, 75
sage.rings.laurent_series_ring_element module, 81
sage.rings.lazy_series module, 95
sage.rings.lazy_series_ring module, 143
sage.rings.multi_power_series_ring module, 49
sage.rings.multi_power_series_ring_element module, 57
sage.rings.power_series_pari module, 43
sage.rings.power_series_poly module, 37
sage.rings.power_series_ring module, 1
sage.rings.power_series_ring_element module, 11
sage.rings.puiseux_series_ring module, 159
sage.rings.puiseux_series_ring_element module, 159
sage.rings.tate_algebra module, 171
sage.rings.lazy_series.LazyModuleElement method), 120

R
ramification_index() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 169
random_element() (sage.rings.laurent_series_ring.LaurentSeriesRing method), 79
random_element() (sage.rings.power_series_ring_element.PowerSeries method), 8
random_element() (sage.rings.tate_algebra.TateRings method), 178
remove_var() (sage.rings.multi_power_series_ring_element.MPowerSeriesRing_element method), 55

Index
sech() (sage.rings.lazy_series.LazyModuleElement method), 121
series() (sage.rings.lazy_series_ring.LazyLaurentSeriesRing method), 151
set() (sage.rings.lazy_series.LazyModuleElement method), 121
shift() (sage.rings.laurent_series_ring_element.LaurentSeries method), 92
shift() (sage.rings.lazy_series.LazyModuleElement method), 123
shift() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 71
shift() (sage.rings.power_series_ring_element.PowerSeries method), 26
shift() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 169
sin() (sage.rings.lazy_series.LazyModuleElement method), 125
sin() (sage.rings.power_series_ring_element.PowerSeries method), 27
sinh() (sage.rings.power_series_ring_element.PowerSeries method), 125
solve_linear_de() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 71
solve_linear_de() (sage.rings.power_series_ring_element.PowerSeries method), 71
some_elements() (sage.rings.lazy_series_ring.LazyCompletionGradedAlgebra method), 144
some_elements() (sage.rings.lazy_series_ring.LazyCompletionRationalField method), 145
some_elements() (sage.rings.lazy_series_ring.LazyLaurentSeriesRing method), 152
some_elements() (sage.rings.lazy_series_ring.LazyPowerSeriesRing method), 154
some_elements() (sage.rings.tate_algebra.TateAlgebra generic method), 179
some_elements() (sage.rings.tate_algebra.TateAlgebraImplementation method), 182
sqrt() (sage.rings.lazy_series.LazyModuleElement method), 125
sqrt() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 71
sqrt() (sage.rings.power_series_ring_element.PowerSeries method), 30
square_root() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 71
square_root() (sage.rings.power_series_ring_element.PowerSeries method), 31
stieltjes_continued_fraction() (sage.rings.power_series_ring_element.PowerSeries method), 32
symmetric_function() (sage.rings.lazy_series.LazySymmetricFunction method), 141
tan() (sage.rings.lazy_series.LazyModuleElement method), 126
tanh() (sage.rings.lazy_series.LazyModuleElement method), 126
tanh() (sage.rings.power_series_ring_element.PowerSeries method), 33
term_order() (sage.rings.multi_power_series_ring_element.MPowerSeriesRing generic method), 56
term_order() (sage.rings.tate_algebra.TateAlgebra generic method), 179
term_order() (sage.rings.tate_algebra.TateTermMonoid method), 182
trailing_monomial() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 71
truncate_powerseries() (sage.rings.power_series_poly.PowerSeries_poly method), 42
truncation() (sage.rings.power_series_ring_element.PowerSeries method), 34
truncation() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 170
trac_tatealgebra() (sage.rings.lazy_series.LazyModuleElement method), 126
trac_tatealgebra() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 72
truncation() (sage.rings.power_series_poly.PowerSeries_poly method), 42
truncation() (sage.rings.tate_algebra.TateAlgebra Implementation method), 178
truncation() (sage.rings.tate_algebra.TateAlgebra generic method), 181
truncation() (sage.rings.tate_algebra.TateTermMonoid method), 181
truncation() (sage.rings.lazy_series_ring.LazyCompletionRationalField method), 156
truncation() (sage.rings.lazy_series_ring.LazyLaurentSeriesRing method), 80
uniformizer() (sage.rings.lazy_series_ring.LazyLaurentSeriesRing method), 152
uniformizer() (sage.rings.lazy_series_ring.LazyPowerSeriesRing method), 154
uniformizer() (sage.rings.power_series_ring.PowerSeriesRing_generic method), 9
uniformizer() (sage.rings.puiseux_series_ring.PuiseuxSeriesRing method), 161
unknown() (sage.rings.lazy_series_ring.LazySeriesRing method), 156
unpickle_multi_power_series_ring_v0() (in module sage.rings.multi_power_series_ring), 56
unpickle_power_series_ring_v0() (in module sage.rings.power_series_ring), 10
valuation() (sage.rings.laurent_series_ring_element.LaurentSeries method), 93
valuation() (sage.rings.lazy_series.LazyCauchyProductSeries method), 98
valuation() (sage.rings.lazy_series.LazyDirichletSeries method), 99
valuation() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 72
valuation() (sage.rings.power_series_part.PowerSeries_pari method), 47
valuation() (sage.rings.power_series_poly.PowerSeries_poly method), 42
valuation() (sage.rings.power_series_ring_element.PowerSeries method), 34
valuation() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 170
valuation_zero_part()
 (sage.rings.laurent_series_ring_element.LaurentSeries method), 93
valuation_zero_part()
 (sage.rings.multi_power_series_ring_element.MPowerSeries method), 72
valuation_zero_part()
 (sage.rings.power_series_ring_element.PowerSeries method), 35
variable() (sage.rings.laurent_series_ring_element.LaurentSeries method), 94
variable() (sage.rings.multi_power_series_ring_element.MPowerSeries method), 72
variable() (sage.rings.power_series_ring_element.PowerSeries method), 35
variable() (sage.rings.puiseux_series_ring_element.PuiseuxSeries method), 170