Quadratic Forms

Release 9.7

The Sage Development Team

Sep 20, 2022
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Quadratic Forms Overview</td>
<td>1</td>
</tr>
<tr>
<td>2 Binary Quadratic Forms with Integer Coefficients</td>
<td>85</td>
</tr>
<tr>
<td>3 Some Extras</td>
<td>99</td>
</tr>
<tr>
<td>4 Random Quadratic Forms</td>
<td>101</td>
</tr>
<tr>
<td>5 Routines for computing special values of L-functions</td>
<td>105</td>
</tr>
<tr>
<td>6 Optimised Cython code for counting congruence solutions</td>
<td>109</td>
</tr>
<tr>
<td>7 Quadratic form extras</td>
<td>111</td>
</tr>
<tr>
<td>8 Genus</td>
<td>113</td>
</tr>
<tr>
<td>9 Normal forms for (p)-adic quadratic and bilinear forms.</td>
<td>141</td>
</tr>
<tr>
<td>10 Solving quadratic equations</td>
<td>145</td>
</tr>
<tr>
<td>11 Helper code for ternary quadratic forms</td>
<td>149</td>
</tr>
<tr>
<td>12 Ternary Quadratic Form with integer coefficients</td>
<td>151</td>
</tr>
<tr>
<td>13 Evaluation</td>
<td>165</td>
</tr>
<tr>
<td>14 Indices and Tables</td>
<td>167</td>
</tr>
<tr>
<td>Python Module Index</td>
<td>169</td>
</tr>
<tr>
<td>Index</td>
<td>171</td>
</tr>
</tbody>
</table>
CHAPTER
ONE

QUADRATIC FORMS OVERVIEW

AUTHORS:

• Jon Hanke (2007-06-19)
• Anna Haensch (2010-07-01): Formatting and ReSTification
• Simon Brandhorst (2019-10-15): \texttt{quadratic_form_from_invariants()}

\begin{verbatim}
sage.quadratic_forms.quadratic_form.DiagonalQuadraticForm(R, diag)

Return a quadratic form over \(R\) which is a sum of squares.

\textbf{INPUT:}

- \(R\) – ring
- \texttt{diag} – list/tuple of elements coercible to \(R\)

\textbf{OUTPUT:}

quadratic form

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Q = DiagonalQuadraticForm(ZZ, [1,3,5,7])
sage: Q
Quadratic form in 4 variables over Integer Ring with coefficients:
[1 0 0 0]
[* 3 0 0]
[* * 5 0]
[* * * 7]
\end{verbatim}
\end{verbatim}

\begin{verbatim}
class sage.quadratic_forms.quadratic_form.QuadraticForm(R, n=None, entries=None, unsafe_initialization=False, number_of_automorphisms=None, determinant=None)

Bases: sage.structure.sage_object.SageObject

The \texttt{QuadraticForm} class represents a quadratic form in \(n\) variables with coefficients in the ring \(R\).

\textbf{INPUT:}

The constructor may be called in any of the following ways.

1. \texttt{QuadraticForm(R, n, entries)}, where
 - \(R\) – ring for which the quadratic form is defined
 - \(n\) – an integer \(\geq 0\)
\end{verbatim}
• entries – a list of \(n(n+1)/2 \) coefficients of the quadratic form in \(R \) (given lexicographically, or equivalently, by rows of the matrix)

2. \texttt{QuadraticForm(R, n)}, where
 • \(R \) – a ring
 • \(n \) – a symmetric \(n \times n \) matrix with even diagonal (relative to \(R \))

3. \texttt{QuadraticForm(R)}, where
 • \(R \) – a symmetric \(n \times n \) matrix with even diagonal (relative to its base ring)

If the keyword argument \texttt{unsafe_initialize} is True, then the subsequent fields may by used to force the external initialization of various fields of the quadratic form. Currently the only fields which can be set are:

• \texttt{number_of_automorphisms}
• \texttt{determinant}

OUTPUT:
quadratic form

EXAMPLES:

\begin{verbatim}
sage: Q = QuadraticForm(ZZ, 3, [1,2,3,4,5,6])
sage: Q
Quadratic form in 3 variables over Integer Ring with coefficients:
[1 2 3]
[* 4 5]
[* * 6]
sage: Q[0,0]
1
sage: Q[0,0].parent()
Rational Field

sage: Q = QuadraticForm(QQ, 3, [1,2,3,4/3,5,6])
sage: Q
Quadratic form in 3 variables over Rational Field with coefficients:
[1 2 3]
[* 4/3 5]
[* * 6]
sage: Q[0,0]
1
sage: Q[0,0].parent()
Rational Field

sage: Q = QuadraticForm(QQ, 7, range(28))
sage: Q
Quadratic form in 7 variables over Rational Field with coefficients:
[0 1 2 3 4 5 6]
[* 7 8 9 10 11 12]
[* * 13 14 15 16 17]
[* * * 18 19 20 21]
[* * * * 22 23 24]
[* * * * * 25 26]
[* * * * * * 27]

sage: Q = QuadraticForm(QQ, 2, range(1,4))
sage: A = Matrix(ZZ,2,2,[-1,0,0,1])
sage: Q(A)
\end{verbatim}
Quadratic form in 2 variables over Rational Field with coefficients:

\[
\begin{bmatrix}
1 & -2 \\
* & 3
\end{bmatrix}
\]

```
sage: m = matrix(2,2,[1,2,3,4])
sage: m + m.transpose()
\begin{bmatrix}
2 & 5 \\
5 & 8
\end{bmatrix}
sage: QuadraticForm(m + m.transpose())
Quadratic form in 2 variables over Integer Ring with coefficients:

\[
\begin{bmatrix}
1 & 5 \\
* & 4
\end{bmatrix}
\]
```

```
sage: QuadraticForm(ZZ, m + m.transpose())
Quadratic form in 2 variables over Integer Ring with coefficients:

\[
\begin{bmatrix}
1 & 5 \\
* & 4
\end{bmatrix}
\]
```

```
sage: QuadraticForm(QQ, m + m.transpose())
Quadratic form in 2 variables over Rational Field with coefficients:

\[
\begin{bmatrix}
1 & 5 \\
* & 4
\end{bmatrix}
\]
```

CS_genus_symbol_list(force_recomputation=False)

Return the list of Conway-Sloane genus symbols in increasing order of primes dividing 2*det.

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3,4])
sage: Q.CS_genus_symbol_list()
[Genus symbol at 2: \[2^{-2} 4^{1} 8^{1}\]_6, Genus symbol at 3: \[1^{-3} 3^{-1}\]]
```

GHY_mass_maximal()

Use the GHY formula to compute the mass of a (maximal?) quadratic lattice. This works for any number field.

Reference: See [GHY, Prop 7.4 and 7.5, p121] and [GY, Thrm 10.20, p25].

OUTPUT:

a rational number

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: Q.GHY_mass_maximal()
```

Gram_det()

Gives the determinant of the Gram matrix of Q.

(Note: This is defined over the fraction field of the ring of the quadratic form, but is often not defined over the same ring as the quadratic form.)

EXAMPLES:
sage: Q = QuadraticForm(ZZ, 2, [1,2,3])
sage: Q.Gram_det()
2

Gram_matrix()

Return a (symmetric) Gram matrix A for the quadratic form Q, meaning that

$$Q(x) = x^t A x,$$

defined over the base ring of Q. If this is not possible, then a TypeError is raised.

EXAMPLES:

sage: Q = DiagonalQuadraticForm(ZZ, [1,3,5,7])
sage: A = Q.Gram_matrix(); A
[1 0 0 0]
[0 3 0 0]
[0 0 5 0]
[0 0 0 7]
sage: A.base_ring()
Integer Ring

Gram_matrix_rational()

Return a (symmetric) Gram matrix A for the quadratic form Q, meaning that

$$Q(x) = x^t A x,$$

defined over the fraction field of the base ring.

EXAMPLES:

sage: Q = DiagonalQuadraticForm(ZZ, [1,3,5,7])
sage: A = Q.Gram_matrix_rational(); A
[1 0 0 0]
[0 3 0 0]
[0 0 5 0]
[0 0 0 7]
sage: A.base_ring()
Rational Field

Hessian_matrix()

Return the Hessian matrix A for which $Q(X) = (1/2) * X^t A X$.

EXAMPLES:

sage: Q = QuadraticForm(QQ, 2, range(1,4))
sage: Q
Quadratic form in 2 variables over Rational Field with coefficients:
[1 2]
[* 3]
sage: Q.Hessian_matrix()
[2 2]
[2 6]
sage: Q.matrix().base_ring()
Rational Field
Kitaoka_mass_at_2()
Returns the local mass of the quadratic form when \(p = 2 \), according to Theorem 5.6.3 on pp108–9 of Kitaoka’s Book “The Arithmetic of Quadratic Forms”.

INPUT:
none

OUTPUT:
a rational number > 0

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: Q.Kitaoka_mass_at_2()  # WARNING: WE NEED TO CHECK THIS CAREFULLY!
1/2
```

Pall_mass_density_at_odd_prime(\(p \))
Returns the local representation density of a form (for representing itself) defined over \(\mathbb{Z} \), at some prime \(p > 2 \).

REFERENCES:

INPUT:
\(p \) – a prime number > 2.

OUTPUT:
a rational number.

EXAMPLES:

```
sage: Q = QuadraticForm(ZZ, 3, [1,0,0,1,0,1])
sage: Q.Pall_mass_density_at_odd_prime(3)
[(0, Quadratic form in 3 variables over Integer Ring with coefficients:

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\] [8/9] 8/9
```

Watson_mass_at_2()
Returns the local mass of the quadratic form when \(p = 2 \), according to Watson’s Theorem 1 of “The 2-adic density of a quadratic form” in Mathematika 23 (1976), pp 94–106.

INPUT:
none

OUTPUT:
a rational number

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])  
sage: Q.Watson_mass_at_2()  # WARNING: WE NEED TO CHECK THIS CAREFULLY!
```

add_symmetric$(c, i, j, \text{in_place}=False)$

Performs the substitution $x_j \rightarrow x_j + c \cdot x_i$, which has the effect (on associated matrices) of symmetrically adding $c \cdot j$-th row/column to the i-th row/column.

NOTE: This is meant for compatibility with previous code, which implemented a matrix model for this class. It is used in the local_normal_form() method.

INPUT:

- c – an element of Q.base_ring()
- i, j – integers ≥ 0

OUTPUT:

a QuadraticForm (by default, otherwise none)

EXAMPLES:

```
sage: Q = QuadraticForm(ZZ, 3, range(1,7)); Q
Quadratic form in 3 variables over Integer Ring with coefficients:
[ 1 2 3 ]
[ * 4 5 ]
[ * * 6 ]
sage: Q.add_symmetric(-1, 1, 0)
Quadratic form in 3 variables over Integer Ring with coefficients:
[ 1 0 3 ]
[ * 3 2 ]
[ * * 6 ]
sage: Q.add_symmetric(-3/2, 2, 0) # ERROR: -3/2 isn't in the base ring ZZ
Traceback (most recent call last):
  ...)
RuntimeError: this coefficient cannot be coerced to an element of the base ring...
```

```
sage: Q = QuadraticForm(QQ, 3, range(1,7)); Q
Quadratic form in 3 variables over Rational Field with coefficients:
[ 1 2 3 ]
[ * 4 5 ]
[ * * 6 ]
sage: Q.add_symmetric(-3/2, 2, 0)
Quadratic form in 3 variables over Rational Field with coefficients:
[ 1 2 0 ]
[ * 4 2 ]
[ * * 15/4 ]
```

adjoint()

This gives the adjoint (integral) quadratic form associated to the given form, essentially defined by taking the adjoint of the matrix.

EXAMPLES:

```
sage: Q = QuadraticForm(ZZ, 2, [1,2,5])
sage: Q.adjoint()
Quadratic form in 2 variables over Integer Ring with coefficients:
[ 5 -2 ]
[ * 1 ]
```
sage: Q = QuadraticForm(ZZ, 3, [1, 0, -1, 2, -1, 5])
sage: Q.adjoint()
Quadratic form in 3 variables over Integer Ring with coefficients:
[39 2 8]
[* 19 4]
[* * 8]

adjoint_primitive()
Return the primitive adjoint of the quadratic form, which is the smallest discriminant integer-valued quadratic form whose matrix is a scalar multiple of the inverse of the matrix of the given quadratic form.

EXAMPLES:

sage: Q = QuadraticForm(ZZ, 2, [1,2,3])
sage: Q.adjoint_primitive()
Quadratic form in 2 variables over Integer Ring with coefficients:
[3 -2]
[* 1]

anisotropic_primes()
Return a list with all of the anisotropic primes of the quadratic form.

The infinite place is denoted by -1.

EXAMPLES:

sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: Q.anisotropic_primes()
[2, -1]
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1])
sage: Q.anisotropic_primes()
[2, -1]
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1,1])
sage: Q.anisotropic_primes()
[-1]

antiadjoint()
This gives an (integral) form such that its adjoint is the given form.

EXAMPLES:

sage: Q = QuadraticForm(ZZ, 3, [1, 0, -1, 2, -1, 5])
sage: Q.adjoint().antiadjoint()
Quadratic form in 3 variables over Integer Ring with coefficients:
[1 0 -1]
[* 2 -1]
[* * 5]
sage: Q.antiadjoint()
Traceback (most recent call last):
 ...
ValueError: not an adjoint

automorphism_group()
Return the group of automorphisms of the quadratic form.
OUTPUT: a MatrixGroup

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: Q.automorphism_group()
Matrix group over Rational Field with 3 generators (
[-1 0 0] [0 0 1] [0 0 1]
[0 -1 0] [0 1 0] [-1 0 0]
[0 0 -1], [1 0 0], [0 1 0]
)
```

```python
sage: DiagonalQuadraticForm(ZZ, [1,3,5,7]).automorphism_group()
Matrix group over Rational Field with 4 generators (
[-1 0 0 0] [1 0 0 0] [1 0 0 0] [1 0 0 0]
[0 -1 0 0] [0 -1 0 0] [0 1 0 0] [0 1 0 0]
[0 0 -1 0] [0 0 1 0] [0 0 -1 0] [0 0 1 0]
[0 0 0 -1], [0 0 0 1], [0 0 0 1], [0 0 0 -1]
)
```

The smallest possible automorphism group has order two, since we can always change all signs:

```python
sage: Q = QuadraticForm(ZZ, 3, [2, 1, 2, 2, 1, 3])
sage: Q.automorphism_group()
Matrix group over Rational Field with 1 generators (
[-1 0 0]
[0 -1 0]
[0 0 -1]
)
```

`automorphisms()`

Return the list of the automorphisms of the quadratic form.

OUTPUT: a list of matrices

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: Q.number_of_automorphisms()
48
sage: 2^3 * factorial(3)
48
sage: len(Q.automorphisms())
48
```

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,3,5,7])
sage: Q.number_of_automorphisms()
16
sage: aut = Q.automorphisms()
sage: len(aut)
16
sage: all(Q(M) == Q for M in aut)
True
sage: Q = QuadraticForm(ZZ, 3, [2, 1, 2, 2, 1, 3])
```
sage: sorted(Q.automorphisms())
[
[-1 0 0] [1 0 0]
[0 -1 0] [0 1 0]
[0 0 -1], [0 0 1]
]

base_change_to(R)
Alters the quadratic form to have all coefficients defined over the new base_ring R. Here R must be coercible to from the current base ring.

Note: This is preferable to performing an explicit coercion through the base_ring() method, which does not affect the individual coefficients. This is particularly useful for performing fast modular arithmetic evaluations.

INPUT: R – a ring
OUTPUT: quadratic form

EXAMPLES:

```sage
sage: Q = DiagonalQuadraticForm(ZZ,[1,1]); Q
Quadratic form in 2 variables over Integer Ring with coefficients:
[ 1 0 ]
[ * 1 ]
```

```sage
sage: Q1 = Q.base_change_to(IntegerModRing(5)); Q1
Quadratic form in 2 variables over Ring of integers modulo 5 with coefficients:
[ 1 0 ]
[ * 1 ]
```

```sage
sage: Q1([35,11])
1
```

base_ring()
Gives the ring over which the quadratic form is defined.

EXAMPLES:

```sage
sage: Q = QuadraticForm(ZZ, 2, [1,2,3])
sage: Q.base_ring()
Integer Ring
```

basiclemma(M)
Find a number represented by self and coprime to M.

EXAMPLES:

```sage
sage: Q = QuadraticForm(ZZ, 2, [1,2,3])
sage: Q.basiclemma(6)
71
```

basiclemmavec(M)
Find a vector where the value of the quadratic form is coprime to M.

EXAMPLES:
bilinear_map(v, w)
Return the value of the associated bilinear map on two vectors.
Given a quadratic form Q over some base ring R with characteristic not equal to 2, this gives the image of two vectors with coefficients in R under the associated bilinear map B, given by the relation $2B(v, w) = Q(v) + Q(w) - Q(v + w)$.

INPUT:
v, w – two vectors

OUTPUT:
an element of the base ring R.

EXAMPLES:
First, an example over \mathbb{Z}:

```
sage: Q = QuadraticForm(ZZ, 3, [1,4,0,1,4,1])
sage: v = vector(ZZ,(1,2,0))
sage: w = vector(ZZ,(0,1,1))
sage: Q.bilinear_map(v,w)
8
```

This also works over \mathbb{Q}:
Quadratic Forms, Release 9.7

```
sage: Q = QuadraticForm(QQ,2,[1/2,2,1])
sage: v = vector(QQ,(1,1))
sage: w = vector(QQ,(1/2,2))
sage: Q.bilinear_map(v,w)
19/4
```

The vectors must have the correct length:

```
sage: Q = DiagonalQuadraticForm(ZZ,[1,7,7])
sage: v = vector((1,2))
sage: w = vector((1,1,1))
sage: Q.bilinear_map(v,w)
Traceback (most recent call last):
...
TypeError: vectors must have length 3
```

This does not work if the characteristic is 2:

```
sage: Q = DiagonalQuadraticForm(GF(2),[1,1,1])
sage: v = vector((1,1,1))
sage: w = vector((1,1,1))
sage: Q.bilinear_map(v,w)
Traceback (most recent call last):
...
TypeError: not defined for rings of characteristic 2
```

```
cholesky_decomposition(bit_prec=53)
```

Give the Cholesky decomposition of this quadratic form Q as a real matrix of precision `bit_prec`.

RESTRICTIONS:

Q must be given as a QuadraticForm defined over \mathbb{Z}, Q, or some real field. If it is over some real field, then an error is raised if the precision given is not less than the defined precision of the real field defining the quadratic form!

REFERENCE:

From Cohen’s “A Course in Computational Algebraic Number Theory” book, p 103.

INPUT:

- `bit_prec` – a natural number (default 53).

OUTPUT:

- an upper triangular real matrix of precision `bit_prec`.

TO DO: If we only care about working over the real double field (RDF), then we can use the `cholesky()` method present for square matrices over that.

Note: There is a note in the original code reading

```
### //////////////////////////////////////////////////////////////////////
/// Finds the Cholesky decomposition of a quadratic form -- as an upper-
/// triangular matrix!
```

(continues on next page)
EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: Q.cholesky_decomposition()
[ 1.00000000000000 0.000000000000000 0.000000000000000]
[0.000000000000000 1.00000000000000 0.000000000000000]
[0.000000000000000 0.000000000000000 1.000000000000000]
```

```python
sage: Q = QuadraticForm(QQ, 3, range(1,7)); Q
Quadratic form in 3 variables over Rational Field with coefficients:
[ 1 2 3 ]
[ * 4 5 ]
[ * * 6 ]
sage: Q.cholesky_decomposition()
[ 1.00000000000000 1.00000000000000 1.50000000000000]
[0.000000000000000 3.00000000000000 0.333333333333333]
[0.000000000000000 0.000000000000000 3.41666666666667]
```

`clifford_conductor()`

This is the product of all primes where the Clifford invariant is -1

.. NOTE:

For ternary forms, this is the discriminant of the quaternion algebra associated to the quadratic space (i.e. the even Clifford algebra).

EXAMPLES:

```python
sage: Q = QuadraticForm(ZZ, 3, [1, 0, -1, 2, -1, 5])
sage: Q.clifford_invariant(2)
1
sage: Q.clifford_invariant(37)
-1
sage: Q.clifford_conductor()
37
```

```python
sage: DiagonalQuadraticForm(ZZ, [1, 1, 1]).clifford_conductor()
2
```

```python
sage: QuadraticForm(ZZ, 3, [2, -2, 0, 2, 0, 5]).clifford_conductor()
30
```

For hyperbolic spaces, the clifford conductor is 1:

```python
sage: H = QuadraticForm(ZZ, 2, [0, 1, 0])
sage: H.clifford_conductor()
1
```
sage: (H + H).clifford_conductor()
1
sage: (H + H + H).clifford_conductor()
1
sage: (H + H + H + H).clifford_conductor()
1

clifford_invariant\((p) \)

This is the Clifford invariant, i.e. the class in the Brauer group of the Clifford algebra for even dimension, of the even Clifford Algebra for odd dimension.

See Lam (AMS GSM 67) p. 117 for the definition, and p. 119 for the formula relating it to the Hasse invariant.

EXAMPLES:

For hyperbolic spaces, the clifford invariant is +1:

sage: H = QuadraticForm(ZZ, 2, [0, 1, 0])
sage: H.clifford_invariant(2)
1
sage: (H + H).clifford_invariant(2)
1
sage: (H + H + H).clifford_invariant(2)
1
sage: (H + H + H + H).clifford_invariant(2)
1

coefficients()

Gives the matrix of upper triangular coefficients, by reading across the rows from the main diagonal.

EXAMPLES:

sage: Q = QuadraticForm(ZZ, 2, [1,2,3])
sage: Q.coefficients()
[1, 2, 3]

complementary_subform_to_vector\((v) \)

Finds the \((n - 1)\)-dim'l quadratic form orthogonal to the vector \(v\).

Note: This is usually not a direct summand!

Technical Notes: There is a minor difference in the cancellation code here (form the C++ version) since the notation \(Q[i,j] \) indexes coefficients of the quadratic polynomial here, not the symmetric matrix. Also, it produces a better splitting now, for the full lattice (as opposed to a sublattice in the C++ code) since we now extend \(v \) to a unimodular matrix.

INPUT:

\(v \) – a list of self.dim() integers

OUTPUT:

a QuadraticForm over ZZ

EXAMPLES:
sage: Q1 = DiagonalQuadraticForm(ZZ, [1,3,5,7])
sage: Q1.complementary_subform_to_vector([1,0,0,0])
Quadratic form in 3 variables over Integer Ring with coefficients:
[7 0 0]
[* 5 0]
[* * 3]

sage: Q1.complementary_subform_to_vector([1,1,0,0])
Quadratic form in 3 variables over Integer Ring with coefficients:
[7 0 0]
[* 5 0]
[* * 12]

sage: Q1.complementary_subform_to_vector([1,1,1,1])
Quadratic form in 3 variables over Integer Ring with coefficients:
[880 -480 -160]
[* 624 -96]
[* * 240]

compute_definiteness()
Computes whether the given quadratic form is positive-definite, negative-definite, indefinite, degenerate,
or the zero form.

This caches one of the following strings in self.__definiteness_string: “pos_def”, “neg_def”, “indef”,
“zero”, “degenerate”. It is called from all routines like:

 is_positive_definite(), is_negative_definite(), is_indefinite(), etc.

Note: A degenerate form is considered neither definite nor indefinite. Note: The zero-dim’l form is con-
sidered both positive definite and negative definite.

INPUT:
 QuadraticForm

OUTPUT:
 boolean

EXAMPLES:

sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1,1])
sage: Q.compute_definiteness()
sage: Q.is_positive_definite()
True
sage: Q.is_negative_definite()
False
sage: Q.is_indefinite()
False
sage: Q.is_definite()
True

sage: Q = DiagonalQuadraticForm(ZZ, [])
sage: Q.compute_definiteness()
sage: Q.is_positive_definite()
True
(continues on next page)
sage: Q.is_negative_definite()
True
sage: Q.is_indefinite()
False
sage: Q.is_definite()
True

sage: Q = DiagonalQuadraticForm(ZZ, [1,0,-1])
sage: Q.compute_definiteness()
False
sage: Q.is_positive_definite()
False
sage: Q.is_negative_definite()
False
sage: Q.is_indefinite()
False
sage: Q.is_definite()
False

compute_definiteness_string_by_determinants()

Compute the (positive) definiteness of a quadratic form by looking at the signs of all of its upper-left sub-determinants. See also self.compute_definiteness() for more documentation.

INPUT:

None

OUTPUT:

string describing the definiteness

EXAMPLES:

sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1,1])
sage: Q.compute_definiteness_string_by_determinants()
'pos_def'

sage: Q = DiagonalQuadraticForm(ZZ, [])
sage: Q.compute_definiteness_string_by_determinants()
'zero'

sage: Q = DiagonalQuadraticForm(ZZ, [1,0,-1])
sage: Q.compute_definiteness_string_by_determinants()
'degenerate'

sage: Q = DiagonalQuadraticForm(ZZ, [1,1])
sage: Q.compute_definiteness_string_by_determinants()
'indefinite'

sage: Q = DiagonalQuadraticForm(ZZ, [-1,-1])
sage: Q.compute_definiteness_string_by_determinants()
'neg_def'

content()

Return the GCD of the coefficients of the quadratic form.
Warning: Only works over Euclidean domains (probably just \(\mathbb{Z} \)).

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1, 1])
sage: Q.matrix().gcd()
2
sage: Q.content()
1
sage: DiagonalQuadraticForm(ZZ, [1, 1]).is_primitive()
True
sage: DiagonalQuadraticForm(ZZ, [2, 4]).is_primitive()
False
sage: DiagonalQuadraticForm(ZZ, [2, 4]).primitive()
Quadratic form in 2 variables over Integer Ring with coefficients:
[ 1 0 ]
[ * 2 ]
```

conway_cross_product_doubled_power\((p)\)

Computes twice the power of \(p \) which evaluates the ‘cross product’ term in Conway’s mass formula.

INPUT:

\(p \) – a prime number > 0

OUTPUT:

a rational number

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, range(1,8))
sage: Q.conway_cross_product_doubled_power(2)
18
sage: Q.conway_cross_product_doubled_power(3)
10
sage: Q.conway_cross_product_doubled_power(5)
6
sage: Q.conway_cross_product_doubled_power(7)
6
sage: Q.conway_cross_product_doubled_power(11)
0
sage: Q.conway_cross_product_doubled_power(13)
0
```

conway_diagonal_factor\((p)\)

Computes the diagonal factor of Conway’s \(p \)-mass.

INPUT:

\(p \) – a prime number > 0

OUTPUT:

a rational number > 0

EXAMPLES:

```python
```
```python
sage: Q = DiagonalQuadraticForm(ZZ, range(1,6))
sage: Q.conway_diagonal_factor(3)
81/256
```

conway_mass()
Compute the mass by using the Conway-Sloane mass formula.

OUTPUT:
a rational number > 0

EXAMPLES:
```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: Q.conway_mass()
1/48

sage: Q = DiagonalQuadraticForm(ZZ, [7,1,1])
sage: Q.conway_mass()
3/16

sage: Q = QuadraticForm(ZZ, 3, [7, 2, 2, 2, 0, 2]) + DiagonalQuadraticForm(ZZ, [1])
sage: Q.conway_mass()
3/32

sage: Q = QuadraticForm(Matrix(ZZ,2,[2,1,1,2]))
sage: Q.conway_mass()
1/12
```

conway_octane_of_this_unimodular_Jordan_block_at_2()
Determines the ‘octane’ of this full unimodular Jordan block at the prime $p = 2$. This is an invariant defined $(\mod 8)$, ad.

This assumes that the form is given as a block diagonal form with unimodular blocks of size ≤ 2 and the 1x1 blocks are all in the upper leftmost position.

INPUT:
none

OUTPUT:
an integer $0 \leq x \leq 7$

EXAMPLES:
```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,3,5,7])
sage: Q.conway_octane_of_this_unimodular_Jordan_block_at_2()
0

sage: Q = DiagonalQuadraticForm(ZZ, [1,5,13])
sage: Q.conway_octane_of_this_unimodular_Jordan_block_at_2()
3

sage: Q = DiagonalQuadraticForm(ZZ, [3,7,13])
sage: Q.conway_octane_of_this_unimodular_Jordan_block_at_2()
7
```
conway_p_mass *(p)*

Computes Conway's *p*-mass.

INPUT:

p – a prime number > 0

OUTPUT:

a rational number > 0

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, range(1, 6))
sage: Q.conway_p_mass(2)
16/3
sage: Q.conway_p_mass(3)
729/256
```
sage: Q = DiagonalQuadraticForm(ZZ, range(1,10))
sage: Q.conway_species_list_at_odd_prime(3)
[6, 2, 1]

sage: Q = DiagonalQuadraticForm(ZZ, range(1,8))
sage: Q.conway_species_list_at_odd_prime(3)
[5, 2]
sage: Q.conway_species_list_at_odd_prime(5)
[-6, 1]

conway_standard_mass()
Returns the infinite product of the standard mass factors.

INPUT:
none

OUTPUT:
a rational number > 0

EXAMPLES:

sage: Q = QuadraticForm(ZZ, 3, [2, -2, 0, 3, -5, 4])
sage: Q.conway_standard_mass()
1/6

sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: Q.conway_standard_mass()
1/6

conway_standard_p_mass(p)
Computes the standard (generic) Conway-Sloane \(p \)-mass.

INPUT:
\(p \) – a prime number > 0

OUTPUT:
a rational number > 0

EXAMPLES:

sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: Q.conway_standard_p_mass(2)
2/3

conway_type_factor()
This is a special factor only present in the mass formula when \(p = 2 \).

INPUT:
none

OUTPUT:
a rational number

EXAMPLES:
sage: Q = DiagonalQuadraticForm(ZZ, range(1,8))
sage: Q.conway_type_factor()
4

count_congruence_solutions(p, k, m, zvec, nzvec)
Counts all solutions of $Q(x) = m \mod p^k$ satisfying the additional congruence conditions described in QuadraticForm.count_congruence_solutions_as_vector().

INPUT:
- p – prime number > 0
- k – an integer > 0
- m – an integer (depending only on mod p^k)
- $zvec, nzvec$ – a list of integers in range(self.dim()), or None

EXAMPLES:
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3])
sage: Q.count_congruence_solutions(3, 1, 0, None, None)
15

count_congruence_solutions__bad_type(p, k, m, zvec, nzvec)
Counts the bad-type solutions of $Q(x) = m \mod p^k$ satisfying the additional congruence conditions described in QuadraticForm.count_congruence_solutions_as_vector().

INPUT:
- p – prime number > 0
- k – an integer > 0
- m – an integer (depending only on mod p^k)
- $zvec, nzvec$ – a list of integers up to dim(Q)

EXAMPLES:
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3])
sage: Q.count_congruence_solutions__bad_type(3, 1, 0, None, None)
2

count_congruence_solutions__bad_type_I(p, k, m, zvec, nzvec)
Counts the bad-typeI solutions of $Q(x) = m \mod p^k$ satisfying the additional congruence conditions described in QuadraticForm.count_congruence_solutions_as_vector().

INPUT:
- p – prime number > 0
- k – an integer > 0
- m – an integer (depending only on mod p^k)
- $zvec, nzvec$ – a list of integers up to dim(Q)

EXAMPLES:
```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3])
sage: Q.count_congruence_solutions__bad_type_I(3, 1, 0, None, None)
0
```

count_congruence_solutions__bad_type_II\((p, k, m, zvec, nzvec)\)

Counts the bad-type II solutions of \(Q(x) = m \pmod{p^k}\) satisfying the additional congruence conditions described in QuadraticForm.count_congruence_solutions_as_vector().

INPUT:

- \(p\) – prime number > 0
- \(k\) – an integer > 0
- \(m\) – an integer (depending only on \(\pmod{p^k}\))
- \(zvec, nzvec\) – a list of integers up to \(\dim(Q)\)

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3])
sage: Q.count_congruence_solutions__bad_type_II(3, 1, 0, None, None)
2
```

count_congruence_solutions__good_type\((p, k, m, zvec, nzvec)\)

Counts the good-type solutions of \(Q(x) = m \pmod{p^k}\) satisfying the additional congruence conditions described in QuadraticForm.count_congruence_solutions_as_vector().

INPUT:

- \(p\) – prime number > 0
- \(k\) – an integer > 0
- \(m\) – an integer (depending only on \(\pmod{p^k}\))
- \(zvec, nzvec\) – a list of integers up to \(\dim(Q)\)

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3])
sage: Q.count_congruence_solutions__good_type(3, 1, 0, None, None)
12
```

count_congruence_solutions__zero_type\((p, k, m, zvec, nzvec)\)

Counts the zero-type solutions of \(Q(x) = m \pmod{p^k}\) satisfying the additional congruence conditions described in QuadraticForm.count_congruence_solutions_as_vector().

INPUT:

- \(p\) – prime number > 0
- \(k\) – an integer > 0
- \(m\) – an integer (depending only on \(\pmod{p^k}\))
- \(zvec, nzvec\) – a list of integers up to \(\dim(Q)\)

EXAMPLES:
Quadratic Forms, Release 9.7

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3])
sage: Q.count_congruence_solutions__zero_type(3, 1, 0, None, None)
1
```

`count_congruence_solutions_as_vector(p, k, m, zvec, nzvec)`

Gives the number of integer solution vectors x satisfying the congruence $Q(x) = m(\text{mod} p^k)$ of each solution type (i.e. All, Good, Zero, Bad, BadI, BadII) which satisfy the additional congruence conditions of having certain coefficients = 0 (mod p) and certain collections of coefficients not congruent to the zero vector (mod p).

A solution vector x satisfies the additional congruence conditions specified by zvec and nzvec (and therefore is counted) iff both of the following conditions hold:

1) $x[i] == 0(\text{mod} p)$ for all i in zvec
2) $x[i]! = 0(\text{mod} p)$ for all i in nzvec

REFERENCES:
See Hanke's (????) paper “Local Densities and explicit bounds...”, p??? for the definitions of the solution types and congruence conditions.

INPUT:
- p – prime number > 0
- k – an integer > 0
- m – an integer (depending only on mod p^k)
- zvec, nzvec – a list of integers in range(self.dim()), or None

OUTPUT:
a list of six integers ≥ 0 representing the solution types: [All, Good, Zero, Bad, BadI, BadII]

EXAMPLES:
```
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3])
sage: Q.count_congruence_solutions_as_vector(3, 1, 1, [], [])
[0, 0, 0, 0, 0, 0]
sage: Q.count_congruence_solutions_as_vector(3, 1, 1, None, [])
[0, 0, 0, 0, 0, 0]
sage: Q.count_congruence_solutions_as_vector(3, 1, 1, [], None)
[6, 6, 0, 0, 0, 0]
sage: Q.count_congruence_solutions_as_vector(3, 1, 1, None, None)
[6, 6, 0, 0, 0, 0]
sage: Q.count_congruence_solutions_as_vector(3, 1, 2, None, None)
[6, 6, 0, 0, 0, 0]
sage: Q.count_congruence_solutions_as_vector(3, 1, 0, None, None)
[15, 12, 1, 2, 0, 2]
```

`count_modp_solutions__by_Gauss_sum(p, m)`

Return the number of solutions of $Q(x) = m(\text{mod} p)$ of a non-degenerate quadratic form over the finite field $\mathbb{Z}/p\mathbb{Z}$, where p is a prime number > 2.

Note: We adopt the useful convention that a zero-dimensional quadratic form has exactly one solution always (i.e. the empty vector).
These are defined in Table 1 on p363 of Hanke’s “Local Densities...” paper.

INPUT:
- p – a prime number > 2
- m – an integer

OUTPUT: an integer ≥ 0

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: [Q.count_modp_solutions__by_Gauss_sum(3, m) for m in range(3)]
[9, 6, 12]
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,2])
sage: [Q.count_modp_solutions__by_Gauss_sum(3, m) for m in range(3)]
[9, 12, 6]
```

delta()
- This is the omega of the adjoint form, which is the same as the omega of the reciprocal form.

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,37])
sage: Q.delta()
148
```

det()
- Gives the determinant of the Gram matrix of $2Q$, or equivalently the determinant of the Hessian matrix of Q.

(Note: This is always defined over the same ring as the quadratic form.)

EXAMPLES:

```
sage: Q = QuadraticForm(ZZ, 2, [1,2,3])
sage: Q.det()
8
```

dim()
- Gives the number of variables of the quadratic form.

EXAMPLES:

```
sage: Q = QuadraticForm(ZZ, 2, [1,2,3])
sage: Q.dim()
2
sage: parent(Q.dim())
Integer Ring
sage: Q = QuadraticForm(Q.matrix())
sage: Q.dim()
2
sage: parent(Q.dim())
Integer Ring
```

disc()
- Return the discriminant of the quadratic form, defined as
Quadratic Forms, Release 9.7

- \((-1)^n \det(B)\) for even dimension \(2n\)
- \(\det(B)/2\) for odd dimension

where \(2Q(x) = x^t B x\).

This agrees with the usual discriminant for binary and ternary quadratic forms.

EXAMPLES:

```python
sage: DiagonalQuadraticForm(ZZ, [1]).disc()
sage: DiagonalQuadraticForm(ZZ, [1,1]).disc()
sage: DiagonalQuadraticForm(ZZ, [1,1,1]).disc()
sage: DiagonalQuadraticForm(ZZ, [1,1,1,1]).disc()
```

`discrec()`

Return the discriminant of the reciprocal form.

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,37])
sage: Q.disc()
sage: Q.discrec()
sage: [4 * 37, 4 * 37^2]
```

`divide_variable(c, i, in_place=False)`

Replace the variables \(x_i\) by \((x_i)/c\) in the quadratic form (replacing the original form if the `in_place` flag is True).

Here \(c\) must be an element of the base ring defining the quadratic form, and the division must be defined in the base ring.

INPUT:

- \(c\) – an element of `Q.base_ring()`
- \(i\) – an integer \(\geq 0\)

OUTPUT:

a QuadraticForm (by default, otherwise none)

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,9,5,7])
sage: Q.divide_variable(3,1)
Quadratic form in 4 variables over Integer Ring with coefficients:
[ 1 0 0 0]
[ * 1 0 0]
[ * * 5 0]
[ * * * 7]
```

`elementary_substitution(c, i, j, in_place=False)`

Perform the substitution \(x_i \rightarrow x_i + c x_j\) (replacing the original form if the `in_place` flag is True).
INPUT:

- \(c \) – an element of \(Q.\text{base_ring}() \)
- \(i, j \) – integers >= 0

OUTPUT:

a QuadraticForm (by default, otherwise none)

EXAMPLES:

```
sage: Q = QuadraticForm(ZZ, 4, range(1,11))
sage: Q
Quadratic form in 4 variables over Integer Ring with coefficients:
[ 1 2 3 4 ]
[ * 5 6 7 ]
[ * * 8 9 ]
[ * * * 10 ]
sage: Q.elementary_substitution(c=1, i=0, j=3)
Quadratic form in 4 variables over Integer Ring with coefficients:
[ 1 2 3 6 ]
[ * 5 6 9 ]
[ * * 8 12 ]
[ * * * 15 ]
sage: R = QuadraticForm(ZZ, 4, range(1,11))
sage: R
Quadratic form in 4 variables over Integer Ring with coefficients:
[ 1 2 3 4 ]
[ * 5 6 7 ]
[ * * 8 9 ]
[ * * * 10 ]
sage: M = Matrix(ZZ, 4, 4, [1,0,0,1,0,1,0,0,1,0,0,0,1,0,0,0,1])
sage: M
[1 0 0 1]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: R(M)
Quadratic form in 4 variables over Integer Ring with coefficients:
[ 1 2 3 6 ]
[ * 5 6 9 ]
[ * * 8 12 ]
[ * * * 15 ]
```

\textbf{extract_variables}(\textit{QF}, \textit{var_indices})

Extract the variables (in order) whose indices are listed in \textit{var_indices}, to give a new quadratic form.

INPUT:

- \textit{var_indices} – a list of integers >= 0

OUTPUT:

a QuadraticForm
EXAMPLES:

```python
sage: Q = QuadraticForm(ZZ, 4, range(10)); Q
Quadratic form in 4 variables over Integer Ring with coefficients:
[ 0 1 2 3 ]
[ * 4 5 6 ]
[ * * 7 8 ]
[ * * * 9 ]
sage: Q.extract_variables([1,3])
Quadratic form in 2 variables over Integer Ring with coefficients:
[ 4 6 ]
[ * 9 ]
```

find_entry_with_minimal_scale_at_prime (*p*)

Finds the entry of the quadratic form with minimal scale at the prime *p*, preferring diagonal entries in case of a tie. (I.e. If we write the quadratic form as a symmetric matrix *M*, then this entry *M*[i,j] has the minimal valuation at the prime *p*.)

Note: This answer is independent of the kind of matrix (Gram or Hessian) associated to the form.

INPUT:

- *p* – a prime number > 0

OUTPUT:

- a pair of integers >= 0

EXAMPLES:

```python
sage: Q = QuadraticForm(ZZ, 2, [6, 2, 20]); Q
Quadratic form in 2 variables over Integer Ring with coefficients:
[ 6 2 ]
[ * 20 ]
sage: Q.find_entry_with_minimal_scale_at_prime(2)
(0, 1)
sage: Q.find_entry_with_minimal_scale_at_prime(3)
(1, 1)
sage: Q.find_entry_with_minimal_scale_at_prime(5)
(0, 0)
```

find_p_neighbor_from_vec (*p*, *y*)

Return the *p*-neighbor of self defined by *y*.

Let (*L*, *q*) be a lattice with *b*(*L*, *L*) ⊆ ℤ which is maximal at *p*. Let *y* ∈ *L* with *b*(*y*, *y*) ∈ *p*²ℤ then the *p*-neighbor of *L* at *y* is given by ℤ*y*/*p* + *L*₀ where *L*₀ = {*x* ∈ *L*|*b*(*x*, *y*) ∈ *pℤ*} and *b*(*x*, *y*) = *q*(*x* + *y*) − *q*(*x*) − *q*(*y*) is the bilinear form associated to *q*.

INPUT:

- *p* – a prime number
- *y* – a vector with *q*(*y*) ∈ *pℤ*.
- odd – (default=`False`) if *p* = 2 return also odd neighbors

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ,[1,1,1,1])
sage: v = vector([0,2,1,1])
```
\begin{verbatim}
 sage: X = Q.find_p_neighbor_from_vec(3,v); X
 Quadratic form in 4 variables over Integer Ring with coefficients:
 [1 0 0 0]
 [* 1 4 4]
 [* * 5 12]
 [* * * 9]

 Since the base ring and the domain are not yet separate, for rational, half integral forms we just pretend the base ring is \(\mathbb{Z} \):

 sage: Q = QuadraticForm(QQ,matrix.diagonal([1,1,1,1]))
 sage: v = vector([1,1,1,1])
 sage: Q.find_p_neighbor_from_vec(2,v)
 Quadratic form in 4 variables over Rational Field with coefficients:
 [1/2 1 1 1]
 [* 1 1 2]
 [* * 1 2]
 [* * * 2]

 \texttt{find_primitive_p_divisible_vector__next}(p, v=None)
 Find the next \(p \)-primitive vector (up to scaling) in \(L/pL \) whose value is \(p \)-divisible, where the last vector returned was \(v \). For an initial call, no \(v \) needs to be passed.

 Returns vectors whose last non-zero entry is normalized to 0 or 1 (so no lines are counted repeatedly). The ordering is by increasing the first non-normalized entry. If we have tested all (lines of) vectors, then return None.

 OUTPUT:
 vector or None

 EXAMPLES:

 sage: Q = QuadraticForm(ZZ, 2, [10,1,4])
 sage: v = Q.find_primitive_p_divisible_vector__next(5); v
 (1, 1)
 sage: v = Q.find_primitive_p_divisible_vector__next(5, v); v
 (1, 0)
 sage: v = Q.find_primitive_p_divisible_vector__next(5, v); v
 sage: Q = QuadraticForm(QQ,matrix.diagonal([1,1,1,1]))
 sage: v = Q.find_primitive_p_divisible_vector__next(2)
 sage: Q(v)
 2

 \texttt{find_primitive_p_divisible_vector__random}(p)
 Find a random \(p \)-primitive vector in \(L/pL \) whose value is \(p \)-divisible.

 \textbf{Note:} Since there are about \(p^{(n-2)} \) of these lines, we have a \(1/p \) chance of randomly finding an appropriate vector.

 EXAMPLES:

 sage: Q = QuadraticForm(ZZ, 2, [10,1,4])
 sage: v = Q.find_primitive_p_divisible_vector__random(5)
\end{verbatim}
Quadratic Forms, Release 9.7

(continued from previous page)

\begin{Verbatim}
sage: tuple(v) in ((1, 0), (1, 1), (2, 0), (2, 2), (3, 0), (3, 3), (4, 0), (4, ˓→4))
True
sage: 5.divides(Q(v))
True
sage: Q = QuadraticForm(QQ,matrix.diagonal([1,1,1,1]))
sage: v = Q.find_primitive_p_divisible_vector__random(2)
sage: Q(v)
2
gcd()
Return the greatest common divisor of the coefficients of the quadratic form (as a polynomial).

EXAMPLES:

\begin{Verbatim}
sage: Q = QuadraticForm(ZZ, 4, range(1, 21, 2))
sage: Q.gcd()
1
sage: Q = QuadraticForm(ZZ, 4, range(0, 20, 2))
sage: Q.gcd()
2
\end{Verbatim}

static genera(sig_pair, determinant, max_scale=None, even=False)
Return a list of all global genera with the given conditions.

Here a genus is called global if it is non-empty.

INPUT:

• \texttt{sig_pair} – a pair of non-negative integers giving the signature
• \texttt{determinant} – an integer; the sign is ignored
• \texttt{max_scale} – (default: None) an integer; the maximum scale of a jordan block
• \texttt{even} – boolean (default: False)

OUTPUT:

A list of all (non-empty) global genera with the given conditions.

EXAMPLES:

\begin{Verbatim}
sage: QuadraticForm.genera((4,0), 125, even=True)
[Genus of
None
Signature: (4, 0)
Genus symbol at 2: 1^-4
Genus symbol at 5: 1^1 5^3, Genus of
None
Signature: (4, 0)
Genus symbol at 2: 1^-4
Genus symbol at 5: 1^-2 5^1 25^-1, Genus of
None
Signature: (4, 0)
Genus symbol at 2: 1^-4
\]
\end{Verbatim}
Genus symbol at 5: $1^2 \ 5^1 \ 25^1$, Genus of
None
Signature: (4, 0)
Genus symbol at 2: 1^{-4}
Genus symbol at 5: $1^3 \ 125^1$

global_genus_symbol()

Return the genus of two times a quadratic form over \mathbb{Z}.

These are defined by a collection of local genus symbols (a la Chapter 15 of Conway-Sloane [CS1999]), and a signature.

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3,4])
sage: Q.global_genus_symbol()
Genus of
[2 0 0 0]
[0 4 0 0]
[0 0 6 0]
[0 0 0 8]
Signature: (4, 0)
Genus symbol at 2: $[2^{-2} \ 4^1 \ 8^1]_6$
Genus symbol at 3: $1^3 \ 3^{-1}$
```

```python
sage: Q = QuadraticForm(ZZ, 4, range(10))
sage: Q.global_genus_symbol()
Genus of
[ 0  1  2  3]
[ 1  8  5  6]
[ 2  5 14  8]
[ 3  6  8 18]
Signature: (3, 1)
Genus symbol at 2: $1^{-4}$
Genus symbol at 563: $1^3 \ 563^{-1}$
```

has_equivalent_Jordan_decomposition_at_prime(other, p)

Determines if the given quadratic form has a Jordan decomposition equivalent to that of self.

INPUT:

a QuadraticForm

OUTPUT:

boolean

EXAMPLES:

```python
sage: Q1 = QuadraticForm(ZZ, 3, [1, 0, -1, 1, 0, 3])
sage: Q2 = QuadraticForm(ZZ, 3, [1, 0, 0, 2, -2, 6])
sage: Q3 = QuadraticForm(ZZ, 3, [1, 0, 0, 1, 0, 11])
sage: [Q1.level(), Q2.level(), Q3.level()]
[44, 44, 44]
sage: Q1.has_equivalent_Jordan_decomposition_at_prime(Q2,2)
```
False
sage: Q1.has_equivalent_Jordan_decomposition_at_prime(Q2,11)
False
sage: Q1.has_equivalent_Jordan_decomposition_at_prime(Q3,2)
False
sage: Q1.has_equivalent_Jordan_decomposition_at_prime(Q3,11)
True
sage: Q2.has_equivalent_Jordan_decomposition_at_prime(Q3,2)
True
sage: Q2.has_equivalent_Jordan_decomposition_at_prime(Q3,11)
False

has_integral_Gram_matrix()
Return whether the quadratic form has an integral Gram matrix (with respect to its base ring).
A warning is issued if the form is defined over a field, since in that case the return is trivially true.
EXAMPLES:

sage: Q = QuadraticForm(ZZ, 2, [7,8,9])
sage: Q.has_integral_Gram_matrix()
True
sage: Q = QuadraticForm(ZZ, 2, [4,5,6])
sage: Q.has_integral_Gram_matrix()
False

hasse_invariant(p)
Computes the Hasse invariant at a prime \(p \) or at infinity, as given on p55 of Cassels’s book. If \(Q \) is diagonal with coefficients \(a_i \), then the (Cassels) Hasse invariant is given by
\[
e_p = \prod_{i<j} (a_i, a_j)_p
\]
where \((a, b)_p\) is the Hilbert symbol at \(p \). The underlying quadratic form must be non-degenerate over \(Q_p \) for this to make sense.
Warning: This is different from the O’Meara Hasse invariant, which allows $i \leq j$ in the product. That is given by the method `hasse_invariant__OMeara(p)`.

Note: We should really rename this `hasse_invariant__Cassels()`, and set `hasse_invariant()` as a front-end to it.

INPUT:
- p – a prime number > 0 or -1 for the infinite place

OUTPUT:
1 or -1

EXAMPLES:

```sage
sage: Q = QuadraticForm(ZZ, 2, [1,2,3])
sage: Q.rational_diagonal_form()
Quadratic form in 2 variables over Rational Field with coefficients:
[ 1 0 ]
[ * 2 ]
sage: [Q.hasse_invariant(p) for p in prime_range(20)]
[1, 1, 1, 1, 1, 1, 1, 1]
sage: [Q.hasse_invariant__OMeara(p) for p in prime_range(20)]
[1, 1, 1, 1, 1, 1, 1, 1]
```

```sage
sage: Q = DiagonalQuadraticForm(ZZ, [1,-1])
sage: [Q.hasse_invariant(p) for p in prime_range(20)]
[1, 1, 1, 1, 1, 1, 1, 1]
sage: [Q.hasse_invariant__OMeara(p) for p in prime_range(20)]
[-1, 1, 1, 1, 1, 1, 1, 1]
```

```sage
sage: Q = DiagonalQuadraticForm(ZZ, [1,-1,5])
sage: [Q.hasse_invariant(p) for p in prime_range(20)]
[1, 1, 1, 1, 1, 1, 1, 1]
sage: [Q.hasse_invariant__OMeara(p) for p in prime_range(20)]
[-1, 1, 1, 1, 1, 1, 1, 1]
```

```sage
sage: K.<a>=NumberField(x^2-23)
sage: Q=DiagonalQuadraticForm(K,[-a,a+2])
sage: [Q.hasse_invariant(p) for p in K.primes_above(19)]
[-1, 1]
```

hasse_invariant__OMeara(p)

Compute the O’Meara Hasse invariant at a prime p.

This is defined on p167 of O’Meara’s book. If Q is diagonal with coefficients a_i, then the (Cassels) Hasse invariant is given by

$$c_p = \prod_{i \leq j} (a_i, a_j)_p$$

where $(a, b)_p$ is the Hilbert symbol at p.
Warning: This is different from the (Cassels) Hasse invariant, which only allows $i < j$ in the product. That is given by the method hasse_invariant(p).

INPUT:
- p – a prime number > 0 or -1 for the infinite place

OUTPUT:
1 or -1

EXAMPLES:

```sage
sage: Q = QuadraticForm(ZZ, 2, [1,2,3])
sage: Q.rational_diagonal_form()
Quadratic form in 2 variables over Rational Field with coefficients:
[ 1 0 ]
[ * 2 ]
sage: [Q.hasse_invariant(p) for p in prime_range(20)]
[1, 1, 1, 1, 1, 1, 1, 1]
sage: [Q.hasse_invariant__OMeara(p) for p in prime_range(20)]
[1, 1, 1, 1, 1, 1, 1, 1]
```

```sage
sage: Q = DiagonalQuadraticForm(ZZ, [1,-1])
sage: [Q.hasse_invariant(p) for p in prime_range(20)]
[1, 1, 1, 1, 1, 1, 1, 1]
sage: [Q.hasse_invariant__OMeara(p) for p in prime_range(20)]
[-1, 1, 1, 1, 1, 1, 1, 1]
```

```sage
sage: Q = DiagonalQuadraticForm(ZZ,[1,-1,-1])
sage: [Q.hasse_invariant(p) for p in prime_range(20)]
[-1, 1, 1, 1, 1, 1, 1, 1]
sage: [Q.hasse_invariant__OMeara(p) for p in prime_range(20)]
[-1, 1, 1, 1, 1, 1, 1, 1]
```

```sage
sage: K.<a>=NumberField(x^2-23)
sage: Q = DiagonalQuadraticForm(K,[-a,a+2])
sage: [Q.hasse_invariant__OMeara(p) for p in K.primes_above(19)]
[1, 1]
```

is_adjoint()
Determine if the given form is the adjoint of another form.

EXAMPLES:

```sage
sage: Q = QuadraticForm(ZZ, 3, [1, 0, -1, 2, -1, 5])
sage: Q.is_adjoint()
False
sage: Q.adjoint().is_adjoint()
True
```

is_anisotropic(p)
Check if the quadratic form is anisotropic over the p-adic numbers \mathbb{Q}_p or \mathbb{R}.

INPUT:
• \(p \) – a prime number > 0 or \(-1\) for the infinite place

OUTPUT:

boolean

EXAMPLES:

```sage
sage: Q = DiagonalQuadraticForm(ZZ, [1,1])
sage: Q.is_anisotropic(2)
True
sage: Q.is_anisotropic(3)
True
sage: Q.is_anisotropic(5)
False

sage: Q = DiagonalQuadraticForm(ZZ, [1,-1])
sage: Q.is_anisotropic(2)
False
sage: Q.is_anisotropic(3)
False
sage: Q.is_anisotropic(5)
False

sage: [DiagonalQuadraticForm(ZZ, [1, -least_quadratic_nonresidue(p)]).is_anisotropic(p)  for p in prime_range(3, 30)]
[True, True, True, True, True, True, True, True, True]

sage: [DiagonalQuadraticForm(ZZ, [1, -least_quadratic_nonresidue(p), p, -p*least_quadratic_nonresidue(p)]).is_anisotropic(p)  for p in prime_range(3, 30)]
[True, True, True, True, True, True, True, True, True]
```

is_definite()

Determines if the given quadratic form is (positive or negative) definite.

Note: A degenerate form is considered neither definite nor indefinite. Note: The zero-dim’l form is considered indefinite.

INPUT:

None

OUTPUT:

boolean – True or False

EXAMPLES:

```sage
sage: Q = DiagonalQuadraticForm(ZZ, [-1,-3,-5])
sage: Q.is_definite()
True

sage: Q = DiagonalQuadraticForm(ZZ, [1,-3,5])
sage: Q.is_definite()
False
```
is_even(allow_rescaling_flag=True)
Returns true iff after rescaling by some appropriate factor, the form represents no odd integers. For more details, see parity().

Requires that Q is defined over \(\mathbb{Z} \).

EXAMPLES:

```
sage: Q = QuadraticForm(ZZ, 2, [1, 0, 1])
sage: Q.is_even()
False
sage: Q = QuadraticForm(ZZ, 2, [1, 1, 1])
sage: Q.is_even()
True
```

is_globally_equivalent_to(other, return_matrix=False)
Determine if the current quadratic form is equivalent to the given form over \(\mathbb{Z} \).

If return_matrix is True, then we return the transformation matrix \(M \) so that self(\(M \)) == other.

INPUT:

- self, other – positive definite integral quadratic forms
- return_matrix – (boolean, default False) return the transformation matrix instead of a boolean

OUTPUT:

- if return_matrix is False: a boolean
- if return_matrix is True: either False or the transformation matrix

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1])
sage: M = Matrix(ZZ, 4, 4, [1,2,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1])
sage: Q1 = Q(M)
sage: Q.is_globally_equivalent_to(Q1)
True
sage: MM = Q.is_globally_equivalent_to(Q1, return_matrix=True)
sage: Q1(MM) == Q1
True
```

```
sage: Q1 = QuadraticForm(ZZ, 3, [1, 0, -1, 2, -1, 5])
sage: Q2 = QuadraticForm(ZZ, 3, [2, 1, 2, 2, 1, 3])
sage: Q3 = QuadraticForm(ZZ, 3, [8, 6, 5, 3, 4, 2])
sage: Q1.is_globally_equivalent_to(Q2)
False
sage: Q1.is_globally_equivalent_to(Q2, return_matrix=True)
False
sage: Q1.is_globally_equivalent_to(Q3)
True
sage: M = Q1.is_globally_equivalent_to(Q3, True); M
[-1 -1 0]
[ 1  1  1]
[-1  0  0]
sage: Q1(M) == Q3
True
```
sage: Q = DiagonalQuadraticForm(ZZ, [1, -1])
sage: Q.is_globally_equivalent_to(Q)
Traceback (most recent call last):
...
ValueError: not a definite form in QuadraticForm.is_globally_equivalent_to()

ALGORITHM: this uses the PARI function pari:qfisom, implementing an algorithm by Plesken and Souvignier.

is_hyperbolic *(p)*

Check if the quadratic form is a sum of hyperbolic planes over the \(p \)-adic numbers \(\mathbb{Q}_p \) or over the real numbers \(\mathbb{R} \).

REFERENCES:

This criteria follows from Cassels’s “Rational Quadratic Forms”:

- local invariants for hyperbolic plane (Lemma 2.4, p58)
- direct sum formulas (Lemma 2.3, p58)

INPUT:

- \(p \) – a prime number > 0 or \(-1\) for the infinite place

OUTPUT:

boolean

EXAMPLES:

```sage
sage: Q = DiagonalQuadraticForm(ZZ, [1,1])
sage: Q.is_hyperbolic(-1)
False
sage: Q.is_hyperbolic(2)
False
sage: Q.is_hyperbolic(3)
False
sage: Q.is_hyperbolic(5)  # Here -1 is a square, so it's true.
True
sage: Q.is_hyperbolic(7)
False
sage: Q.is_hyperbolic(13)  # Here -1 is a square, so it's true.
True
```

is_indefinite

Determines if the given quadratic form is indefinite.

Note: A degenerate form is considered neither definite nor indefinite. Note: The zero-dim’l form is not considered indefinite.

INPUT:

None

OUTPUT:

boolean – True or False

EXAMPLES:
Quadratic Forms, Release 9.7

```
sage: Q = DiagonalQuadraticForm(ZZ, [-1,-3,-5])
sage: Q.is_indefinite()
False

sage: Q = DiagonalQuadraticForm(ZZ, [1,-3,5])
sage: Q.is_indefinite()
True
```

is_indefinite()
Checks if Q is indefinite over the integers.

INPUT:

• None

OUTPUT:

boolean

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,1])
sage: Q.is_indefinite()
False
sage: Q.is_indefinite(3)
False
sage: Q.is_indefinite(5)
True
sage: Q = DiagonalQuadraticForm(ZZ, [1,-1])
sage: Q.is_indefinite()
True
sage: Q.is_indefinite(2)
True
sage: Q.is_indefinite(3)
True
sage: Q.is_indefinite(5)
True
```

is_isotropic(p)
Checks if Q is isotropic over the p-adic numbers Q_p or RR.

INPUT:

• p – a prime number > 0 or -1 for the infinite place

OUTPUT:

boolean

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,1])
sage: Q.is_isotropic(2)
False
sage: Q.is_isotropic(3)
False
sage: Q.is_isotropic(5)
True
sage: Q = DiagonalQuadraticForm(ZZ, [1,-1])
sage: Q.is_isotropic(2)
True
sage: Q.is_isotropic(3)
True
sage: Q.is_isotropic(5)
True
```

```
sage: [DiagonalQuadraticForm(ZZ, [1, -least_quadratic_nonresidue(p)]).is_isotropic(p) for p in prime_range(3, 30)]
[False, False, False, False, False, False, False, False, False]
```

is_locally_equivalent_to(other, check_primes_only=False, force_jordan_equivalence_test=False)
Determine if the current quadratic form (defined over ZZ) is locally equivalent to the given form over the real numbers and the p-adic integers for every prime p.

This works by comparing the local Jordan decompositions at every prime, and the dimension and signature at the real place.

INPUT:

a QuadraticForm
OUTPUT:

boolean

EXAMPLES:

```
sage: Q1 = QuadraticForm(ZZ, 3, [1, 0, -1, 2, -1, 5])
sage: Q2 = QuadraticForm(ZZ, 3, [2, 1, 2, 2, 1, 3])
sage: Q1.is_globally_equivalent_to(Q2)
False
sage: Q1.is_locally_equivalent_to(Q2)
True
```

is_locally_represented_number(m)

Determine if the rational number \(m \) is locally represented by the quadratic form.

INPUT:

- \(m \) – an integer

OUTPUT:

boolean

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: Q.is_locally_represented_number(2)
True
sage: Q.is_locally_represented_number(7)
False
sage: Q.is_locally_represented_number(-1)
False
sage: Q.is_locally_represented_number(28)
False
sage: Q.is_locally_represented_number(0)
True
```

is_locally_represented_number_at_place(m, p)

Determine if the rational number \(m \) is locally represented by the quadratic form at the (possibly infinite) prime \(p \).

INPUT:

- \(m \) – an integer
- \(p \) – a prime number > 0 or ‘infinity’

OUTPUT:

boolean

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: Q.is_locally_represented_number_at_place(7, infinity)
True
sage: Q.is_locally_represented_number_at_place(7, 2)
False
sage: Q.is_locally_represented_number_at_place(7, 3)
```

(continues on next page)
is_locally_represented_number_at_place()
Determine if the quadratic form represents \mathbb{Z}_p at place p.

OUTPUT:
boolean

EXAMPLES:

```sage
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1,-1])
sage: Q.is_locally_represented_number_at_place(7, 5)
True
sage: Q.is_locally_represented_number_at_place(-1, infinity)
False
sage: Q.is_locally_represented_number_at_place(-1, 2)
False
```

is_locally_universal_at_all_places()
Determine if the quadratic form represents \mathbb{Z}_p for all finite/non-archimedean primes, and represents all real numbers.

OUTPUT:
boolean

EXAMPLES:

```sage
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1,-1])
sage: Q.is_locally_universal_at_all_places()
True
```

is_locally_universal_at_all_primes()
Determine if the quadratic form represents \mathbb{Z}_p for all finite/non-archimedean primes.

OUTPUT:
boolean

EXAMPLES:

```sage
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1,-1])
sage: Q.is_locally_universal_at_all_primes()
True
```
```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1])
sage: Q.is_locally_universal_at_all_primes()
True

sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: Q.is_locally_universal_at_all_primes()
False
```

is_locally_universal_at_prime(*p*)

Determine if the (integer-valued/rational) quadratic form represents all of \(\mathbb{Z}_p \).

INPUT:

- *p* – a positive prime number or “infinity”.

OUTPUT:

boolean

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,3,5,7])
sage: Q.is_locally_universal_at_prime(2)
True
sage: Q.is_locally_universal_at_prime(3)
True
sage: Q.is_locally_universal_at_prime(5)
True
sage: Q.is_locally_universal_at_prime(infinity)
False

sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: Q.is_locally_universal_at_prime(2)
False
sage: Q.is_locally_universal_at_prime(3)
True
sage: Q.is_locally_universal_at_prime(5)
True
sage: Q.is_locally_universal_at_prime(infinity)
False

sage: Q = DiagonalQuadraticForm(ZZ, [1,1,-1])
sage: Q.is_locally_universal_at_prime(infinity)
True
```

is_negative_definite()

Determines if the given quadratic form is negative-definite.

Note: A degenerate form is considered neither definite nor indefinite. Note: The zero-dim’l form is considered both positive definite and negative definite.

INPUT:

None

OUTPUT:

boolean – True or False
EXAMPLES:

```sage
sage: Q = DiagonalQuadraticForm(ZZ, [-1,-3,-5])
sage: Q.is_negative_definite()
True
```

```sage
sage: Q = DiagonalQuadraticForm(ZZ, [1,-3,5])
sage: Q.is_negative_definite()
False
```

is_odd(allow_rescaling_flag=True)

Returns true iff after rescaling by some appropriate factor, the form represents some odd integers. For more details, see parity().

Requires that Q is defined over \(\mathbb{Z}\).

EXAMPLES:

```sage
sage: Q = QuadraticForm(ZZ, 2, [1, 0, 1])
sage: Q.is_odd()
True
```

```sage
sage: Q = QuadraticForm(ZZ, 2, [1, 1, 1])
sage: Q.is_odd()
False
```

is_positive_definite()

Determines if the given quadratic form is positive-definite.

Note: A degenerate form is considered neither definite nor indefinite. Note: The zero-dim’l form is considered both positive definite and negative definite.

INPUT:

None

OUTPUT:

boolean – True or False

EXAMPLES:

```sage
sage: Q = DiagonalQuadraticForm(ZZ, [1,3,5])
sage: Q.is_positive_definite()
True
```

```sage
sage: Q = DiagonalQuadraticForm(ZZ, [1,-3,5])
sage: Q.is_positive_definite()
False
```

is_primitive()

Determines if the given integer-valued form is primitive (i.e. not an integer (>1) multiple of another integer-valued quadratic form).

EXAMPLES:

```sage
sage: Q = QuadraticForm(ZZ, 2, [2,3,4])
sage: Q.is_primitive()
True
```

(continues on next page)
sage: Q = QuadraticForm(ZZ, 2, [2, 4, 8])
sage: Q.is_primitive()
False

is_rationally_isometric(other, return_matrix=False)

Determine if two regular quadratic forms over a number field are isometric.

INPUT:

- other – a quadratic form over a number field
- return_matrix – (boolean, default False) return the transformation matrix instead of a boolean; this is currently only implemented for forms over QQ

OUTPUT:

- if return_matrix is False: a boolean
- if return_matrix is True: either False or the transformation matrix

EXAMPLES:

sage: V = DiagonalQuadraticForm(QQ, [1, 1, 2])
sage: W = DiagonalQuadraticForm(QQ, [2, 2, 2])
sage: V.is_rationally_isometric(W)
True

sage: K.<a> = NumberField(x^2-3)
sage: V = QuadraticForm(K, 4, [1, 0, 0, 0, 2*a, 0, 0, a, 0, 2]); V
Quadratic form in 4 variables over Number Field in a with defining polynomial x^2 - 3 with coefficients:
[1 0 0 0]
[* 2*a 0 0]
[* * a 0]
[* * * 2]
sage: W = QuadraticForm(K, 4, [1, 2*a, 4, 6, 3, 10, 2, 1, 2, 5]); W
Quadratic form in 4 variables over Number Field in a with defining polynomial x^2 - 3 with coefficients:
[1 2*a 4 6]
[* 3 10 2]
[* * 1 2]
[* * * 5]
sage: V.is_rationally_isometric(W)
False

sage: K.<a> = NumberField(x^4 + 2*x + 6)
sage: V = DiagonalQuadraticForm(K, [a, 2, 3, 2, 1]); V
Quadratic form in 5 variables over Number Field in a with defining polynomial x^4 + 2*x + 6 with coefficients:
[a 0 0 0 0]
[* 2 0 0 0]
[* * 3 0 0]
[* * * 2 0]
[* * * * 1]
sage: W = DiagonalQuadraticForm(K, [a, a, a, 2, 1]); W

(continues on next page)
Quadratic form in 5 variables over Number Field in a with defining polynomial $x^4 + 2x + 6$ with coefficients:

\[
\begin{bmatrix}
 a & 0 & 0 & 0 & 0 \\
 * & a & 0 & 0 & 0 \\
 * & * & a & 0 & 0 \\
 * & * & * & 2 & 0 \\
 * & * & * & * & 1
\end{bmatrix}
\]

```
sage: V.is_rationally_isometric(W)
False
```

```
sage: K.<a> = NumberField(x^2 - 3)
esage: V = DiagonalQuadraticForm(K, [-1, a, -2*a])
esage: W = DiagonalQuadraticForm(K, [-1, -a, 2*a])
esage: V.is_rationally_isometric(W)
True
```

```
esage: T = V.is_rationally_isometric(W, True); T
\begin{bmatrix}
  0 & 0 & 1 \\
  -1/2 & -1/2 & 0 \\
  1/2 & -1/2 & 0
\end{bmatrix}
esage: V.Gram_matrix() == T.transpose() * W.Gram_matrix() * T
True
```

```
esage: W.is_rationally_isometric(V, True); T
\begin{bmatrix}
  0 & -1 & 1 \\
  0 & -1 & -1 \\
  1 & 0 & 0
\end{bmatrix}
esage: W.Gram_matrix() == T.T * V.Gram_matrix() * T
True
```

```
sage: L = QuadraticForm(QQ, 3, [2, 2, 0, 2, 2, 5])
sage: M = QuadraticForm(QQ, 3, [2, 2, 0, 3, 2, 3])
sage: L.is_rationally_isometric(M, True)
False
```

```
sage: A = DiagonalQuadraticForm(QQ, [1, 5])
sage: B = QuadraticForm(QQ, 2, [1, 12, 81])
sage: T = A.is_rationally_isometric(B, True); T
\begin{bmatrix}
  1 & -2 \\
  0 & 1/3
\end{bmatrix}
esage: A.Gram_matrix() == T.T * B.Gram_matrix() * T
True
```

```
sage: C = DiagonalQuadraticForm(QQ, [1, 5, 9])
sage: D = DiagonalQuadraticForm(QQ, [6, 30, 1])
sage: T = C.is_rationally_isometric(D, True); T
\begin{bmatrix}
  0 & -5/6 & 1/2 \\
  0 & 1/6 & 1/2 \\
  -1 & 0 & 0
\end{bmatrix}
```
sage: C.Gram_matrix() == T.T * D.Gram_matrix() * T
True

sage: E = DiagonalQuadraticForm(QQ, [1, 1])
sage: F = QuadraticForm(QQ, 2, [17, 94, 130])
sage: T = F.is_rationally_isometric(E, True); T
[[-4, -189/17],
[1, -43/17]]
sage: F.Gram_matrix() == T.T * E.Gram_matrix() * T
True

is_zero(v, p=0)
Determine if the vector v is on the conic Q(x) = 0 (mod p).

EXAMPLES:

sage: Q1 = QuadraticForm(ZZ, 3, [1, 0, -1, 2, -1, 5])
sage: Q1.is_zero([0,1,0], 2)
True
sage: Q1.is_zero([1,1,1], 2)
True
sage: Q1.is_zero([1,1,0], 2)
False

is_zero_nonsingular(v, p=0)
Determine if the vector v is on the conic Q(x) = 0 (mod p), and that this point is non-singular point of the conic.

EXAMPLES:

sage: Q1 = QuadraticForm(ZZ, 3, [1, 0, -1, 2, -1, 5])
sage: Q1.is_zero_nonsingular([1,1,1], 2)
True
sage: Q1.is_zero([1, 19, 2], 37)
True
sage: Q1.is_zero_nonsingular([1, 19, 2], 37)
False

is_zero_singular(v, p=0)
Determine if the vector v is on the conic Q(x) = 0 (mod p), and that this point is singular point of the conic.

EXAMPLES:

sage: Q1 = QuadraticForm(ZZ, 3, [1, 0, -1, 2, -1, 5])
sage: Q1.is_zero([1,1,1], 2)
True
sage: Q1.is_zero_singular([1,1,1], 2)
False
sage: Q1.is_zero_singular([1, 19, 2], 37)
True

jordan_blocks_by_scale_and_unimodular(p, safe_flag=True)
Return a list of pairs (s, Li) where Li is a maximal \(p^{s_i}\)-unimodular Jordan component which is further decomposed into block diagonals of block size \(\leq 2\).
For each \(L_i \) the 2x2 blocks are listed after the 1x1 blocks (which follows from the convention of the \texttt{local_normal_form()} method).

\textbf{Note:} The decomposition of each \(L_i \) into smaller blocks is not unique!

The \texttt{safe_flag} argument allows us to select whether we want a copy of the output, or the original output. By default \texttt{safe_flag = True}, so we return a copy of the cached information. If this is set to \texttt{False}, then the routine is much faster but the return values are vulnerable to being corrupted by the user.

\textbf{INPUT:}

- \(p \) – a prime number > 0.

\textbf{OUTPUT:}

A list of pairs \((s_i, L_i)\) where:

- \(s_i \) is an integer,
- \(L_i \) is a block-diagonal unimodular quadratic form over \(\mathbb{Z}_p \).

\textbf{Note:} These forms \(L_i \) are defined over the \(p \)-adic integers, but by a matrix over \(\mathbb{Z} \) (or \(\mathbb{Q} \)).

\textbf{EXAMPLES:}

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,9,5,7])
sage: Q.jordan_blocks_by_scale_and_unimodular(3)
[(0, Quadratic form in 3 variables over Integer Ring with coefficients:
  [ 1 0 0 ]
  [ * 5 0 ]
  [ * * 7 ]), (2, Quadratic form in 1 variables over Integer Ring with coefficients:
  [ 1 ])]
```

```
sage: Q2 = QuadraticForm(ZZ, 2, [1,1,1])
sage: Q2.jordan_blocks_by_scale_and_unimodular(2)
[(-1, Quadratic form in 2 variables over Integer Ring with coefficients:
  [ 2 2 ]
  [ * 2 ]), (0, Quadratic form in 2 variables over Integer Ring with coefficients:
  [ 2 2 ]
  [ * 2 ])]
```

\texttt{jordan_blocks_in_unimodular_list_by_scale_power}(p)

Returns a list of Jordan components, whose component at index \(i \) should be scaled by the factor \(p^i \).

This is only defined for integer-valued quadratic forms (i.e. forms with \texttt{base_ring ZZ}), and the indexing only works correctly for \(p=2 \) when the form has an integer Gram matrix.

\textbf{INPUT:}

- \(\text{self} \) – a quadratic form over \(\mathbb{Z} \), which has integer Gram matrix if \(p == 2 \) – a prime number > 0

Chapter 1. Quadratic Forms Overview
OUTPUT:

a list of p-unimodular quadratic forms

EXAMPLES:

```
sage: Q = QuadraticForm(ZZ, 3, [2, -2, 0, 3, -5, 4])
sage: Q.jordan_blocks_in_unimodular_list_by_scale_power(2)
Traceback (most recent call last):
  ...  
TypeError: the given quadratic form has a Jordan component with a negative scale exponent

sage: Q.scale_by_factor(2).jordan_blocks_in_unimodular_list_by_scale_power(2)
[Quadratic form in 2 variables over Integer Ring with coefficients: 
  [ 0 2 ]
  [ * 0 ], Quadratic form in 0 variables over Integer Ring with coefficients: ]
[Quadratic form in 1 variables over Integer Ring with coefficients: 
  [ 345 ]]

sage: Q.jordan_blocks_in_unimodular_list_by_scale_power(3)
[Quadratic form in 2 variables over Integer Ring with coefficients: 
  [ 2 0 ]
  [ * 10 ], Quadratic form in 1 variables over Integer Ring with coefficients: 
  [ 2 ]]
```

level()
Determines the level of the quadratic form over a PID, which is a generator for the smallest ideal \(N \) of \(R \) such that \(N \times (\text{the matrix of } 2^*Q)^{-1} \) is in \(R \) with diagonal in \(2^n R \).

Over \(\mathbb{Z} \) this returns a non-negative number.
(Caveat: This always returns the unit ideal when working over a field!)

EXAMPLES:

```
sage: Q = QuadraticForm(ZZ, 2, range(1,4))
sage: Q.level()  
8

sage: Q1 = QuadraticForm(QQ, 2, range(1,4))

sage: Q1.level()  # random
UserWarning: Warning -- The level of a quadratic form over a field is always 1.  
Do you really want to do this??
1

sage: Q = DiagonalQuadraticForm(ZZ, [1,3,5,7])
sage: Q.level()  
420
```

level__Tornaria()
Return the level of the quadratic form, defined as

\[\text{level}(B) \text{ for even dimension level}(B)/4 \text{ for odd dimension} \]

where \(2Q(x) = x^t \times \mathbf{B} \times x \).
This agrees with the usual level for even dimension...
level_ideal()
Determines the level of the quadratic form (over R), which is the smallest ideal N of R such that N * (the matrix of 2*Q)^(-1) is in R with diagonal in 2*R. (Caveat: This always returns the principal ideal when working over a field!)

WARNING: THIS ONLY WORKS OVER A PID RING OF INTEGERS FOR NOW! (Waiting for Sage fractional ideal support.)

EXAMPLES:

```
sage: Q = QuadraticForm(ZZ, 2, range(1,4))  
sage: Q.level_ideal()  
Principal ideal (8) of Integer Ring  
sage: Q1 = QuadraticForm(QQ, 2, range(1,4))  
sage: Q1.level_ideal()  
Principal ideal (1) of Rational Field  
sage: Q = DiagonalQuadraticForm(ZZ, [1,3,5,7])  
sage: Q.level_ideal()  
Principal ideal (420) of Integer Ring
```

list_external_initializations()
Return a list of the fields which were set externally at creation, and not created through the usual Quadratic-Form methods. These fields are as good as the external process that made them, and are thus not guaranteed to be correct.

EXAMPLES:

```
sage: Q = QuadraticForm(ZZ, 2, [1,0,5])  
sage: Q.list_external_initializations()  
[]  
sage: T = Q.theta_series()  
sage: Q.list_external_initializations()  
[]  
sage: Q = QuadraticForm(ZZ, 2, [1,0,5], unsafe_initialization=False, number_of_automorphisms=3, determinant=0)  
sage: Q.list_external_initializations()  
[]
```

(continues on next page)
sage: Q = QuadraticForm(ZZ, 2, [1,0,5], unsafe_initialization=True, number_of_→automorphisms=3, determinant=0)
sage: Q.list_external_initializations()
[‘number_of_automorphisms’, ‘determinant’]

lll()
Return an LLL-reduced form of Q (using Pari).

EXAMPLES:
sage: Q = QuadraticForm(ZZ, 4, range(1,11))
sage: Q.is_definite()
True
sage: Q.lll()
Quadratic form in 4 variables over Integer Ring with coefficients:
| 1 0 1 0 |
| * 4 3 3 |
| * * 6 3 |
| * * * 6 |

local_badII_density_congruence(p, m, Zvec=None, NZvec=None)
Find the Bad-type II local density of Q representing m at p. (Assuming that p > 2 and Q is given in local diagonal form.)

INPUT:
• Q – quadratic form assumed to be block diagonal and p-integral
• p – a prime number
• m – an integer
• Zvec, NZvec – non-repeating lists of integers in range(self.dim()) or None

OUTPUT: a rational number

EXAMPLES:
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3])
sage: Q.local_badII_density_congruence(2, 1, None, None)
0
sage: Q.local_badII_density_congruence(2, 2, None, None)
0
sage: Q.local_badII_density_congruence(2, 4, None, None)
0
sage: Q.local_badII_density_congruence(3, 1, None, None)
0
sage: Q.local_badII_density_congruence(3, 6, None, None)
0
sage: Q.local_badII_density_congruence(3, 9, None, None)
0
sage: Q.local_badII_density_congruence(3, 27, None, None)
0

sage: Q = DiagonalQuadraticForm(ZZ, [1,3,3,9,9])
sage: Q.local_badII_density_congruence(3, 1, None, None)

(continues on next page)
sage: Q.local_badII_density_congruence(3, 3, None, None)
0
sage: Q.local_badII_density_congruence(3, 6, None, None)
0
sage: Q.local_badII_density_congruence(3, 9, None, None)
4/27
sage: Q.local_badII_density_congruence(3, 18, None, None)
4/9

local_badI_density_congruence\((p, m, Zvec=None, NZvec=None) \)

Find the Bad-type I local density of \(Q \) representing \(m \) at \(p \). (Assuming that \(p > 2 \) and \(Q \) is given in local diagonal form.)

INPUT:

- \(Q \) – quadratic form assumed to be block diagonal and \(p \)-integral
- \(p \) – a prime number
- \(m \) – an integer
- \(Zvec, NZvec \) – non-repeating lists of integers in range(self.dim()) or None

OUTPUT: a rational number

EXAMPLES:

sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3])
sage: Q.local_badI_density_congruence(2, 1, None, None)
0
sage: Q.local_badI_density_congruence(2, 2, None, None)
1
sage: Q.local_badI_density_congruence(2, 4, None, None)
0
sage: Q.local_badI_density_congruence(3, 1, None, None)
0
sage: Q.local_badI_density_congruence(3, 6, None, None)
0
sage: Q.local_badI_density_congruence(3, 9, None, None)
0

sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1])
sage: Q.local_badI_density_congruence(2, 1, None, None)
0
sage: Q.local_badI_density_congruence(2, 2, None, None)
0
sage: Q.local_badI_density_congruence(2, 4, None, None)
0
sage: Q.local_badI_density_congruence(3, 2, None, None)
0
sage: Q.local_badI_density_congruence(3, 6, None, None)
0
sage: Q.local_badI_density_congruence(3, 9, None, None)
0
sage: Q = DiagonalQuadraticForm(ZZ, [1,3,3,9])
sage: Q.local_badI_density_congruence(3, 1, None, None)
0
sage: Q.local_badI_density_congruence(3, 3, None, None)
4/3
sage: Q.local_badI_density_congruence(3, 6, None, None)
4/3
sage: Q.local_badI_density_congruence(3, 9, None, None)
0
sage: Q.local_badI_density_congruence(3, 18, None, None)
0

local_bad_density_congruence(p, m, Zvec=None, NZvec=None)
Find the Bad-type local density of Q representing m at p, allowing certain
congruence conditions mod p.

INPUT:
- Q – quadratic form assumed to be block diagonal and p-integral
- p – a prime number
- m – an integer
- Zvec, NZvec – non-repeating lists of integers in range(self.dim()) or None

OUTPUT: a rational number

EXAMPLES:

sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3])
sage: Q.local_bad_density_congruence(2, 1, None, None)
1
sage: Q.local_bad_density_congruence(2, 2, None, None)
1
sage: Q.local_bad_density_congruence(2, 4, None, None)
0
sage: Q.local_bad_density_congruence(3, 1, None, None)
0
sage: Q.local_bad_density_congruence(3, 6, None, None)
0
sage: Q.local_bad_density_congruence(3, 9, None, None)
0
sage: Q.local_bad_density_congruence(3, 27, None, None)
0

sage: Q = DiagonalQuadraticForm(ZZ, [1,3,3,9,9])
sage: Q.local_bad_density_congruence(3, 1, None, None)
0
sage: Q.local_bad_density_congruence(3, 3, None, None)
4/3
sage: Q.local_bad_density_congruence(3, 6, None, None)
4/3
sage: Q.local_bad_density_congruence(3, 9, None, None)
4/27
sage: Q.local_bad_density_congruence(3, 18, None, None)
4/9

(continues on next page)
local_density\((p, m)\)
Return the local density.

Note: This screens for imprimitive forms, and puts the quadratic form in local normal form, which is a requirement of the routines performing the computations!

INPUT:
- \(p\) – a prime number > 0
- \(m\) – an integer

OUTPUT:
a rational number

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1])  # NOTE: This is already in local normal form for *all* primes \(p\!\)!
sage: Q.local_density(p=2, m=1)
1
sage: Q.local_density(p=3, m=1)
8/9
sage: Q.local_density(p=5, m=1)
24/25
sage: Q.local_density(p=7, m=1)
48/49
sage: Q.local_density(p=11, m=1)
120/121
```

local_density_congruence\((p, m, Zvec=None, NZvec=None)\)
Find the local density of \(Q\) representing \(m\) at \(p\), allowing certain congruence conditions mod \(p\).

INPUT:
- \(Q\) – quadratic form assumed to be block diagonal and \(p\)-integral
- \(p\) – a prime number
- \(m\) – an integer
- \(Zvec, NZvec\) – non-repeating lists of integers in range(self.dim()) or None

OUTPUT: a rational number

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1])
sage: Q.local_density_congruence(p=2, m=1, Zvec=None, NZvec=None)
1
sage: Q.local_density_congruence(p=3, m=1, Zvec=None, NZvec=None)
8/9
sage: Q.local_density_congruence(p=5, m=1, Zvec=None, NZvec=None)
24/25
sage: Q.local_density_congruence(p=7, m=1, Zvec=None, NZvec=None)
48/49
sage: Q.local_density_congruence(p=11, m=1, Zvec=None, NZvec=None)
120/121
```

(continues on next page)
sage: Q.local_density_congruence(p=7, m=1, Zvec=None, NZvec=None)

sage: Q.local_density_congruence(p=11, m=1, Zvec=None, NZvec=None)

sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3])
sage: Q.local_density_congruence(2, 1, None, None)
1
sage: Q.local_density_congruence(2, 2, None, None)
3/2
sage: Q.local_density_congruence(2, 4, None, None)
2/3
sage: Q.local_density_congruence(3, 1, None, None)
2/3
sage: Q.local_density_congruence(3, 6, None, None)
4/3
sage: Q.local_density_congruence(3, 9, None, None)
14/9
sage: Q.local_density_congruence(3, 27, None, None)
2

sage: Q = DiagonalQuadraticForm(ZZ, [1,3,3,9,9])
sage: Q.local_density_congruence(3, 1, None, None)
2
sage: Q.local_density_congruence(3, 3, None, None)
4/3
sage: Q.local_density_congruence(3, 6, None, None)
4/3
sage: Q.local_density_congruence(3, 9, None, None)
2/9
sage: Q.local_density_congruence(3, 18, None, None)
4/9

local_genus_symbol(p)
Return the Conway-Sloane genus symbol of 2 times a quadratic form defined over \(\mathbb{Z}\) at a prime number \(p\).

This is defined (in the Genus_Symbol_p_adic_ring() class in the quadratic_forms/genera subfolder) to be a list of tuples (one for each Jordan component \(p^m A\) at \(p\), where \(A\) is a unimodular symmetric matrix with coefficients the \(p\)-adic integers) of the following form:

1. If \(p>2\) then return triples of the form \([m, n, d]\) where
 \(m = \text{valuation of the component}\)
 \(n = \text{rank of } A\)
 \(d = \det(A)\) in \(\{1,u\}\) for normalized quadratic non-residue \(u\).

2. If \(p=2\) then return quintuples of the form \([m, n, s, d, o]\) where
 \(m = \text{valuation of the component}\)
 \(n = \text{rank of } A\)
 \(d = \det(A)\) in \(\{1,3,5,7\}\)
\[s = 0 \text{ (or 1) if } A \text{ is even (or odd)} \]
\[o = \text{oddity of } A \text{ (} o = 0 \text{ if } s = 0 \text{) in } \mathbb{Z}/8\mathbb{Z} \text{ = the trace of the diagonalization of } A \]

Note: The Conway-Sloane convention for describing the prime \(p = -1 \) is not supported here, and neither is the convention for including the ‘prime’ Infinity. See note on p370 of Conway-Sloane (3rd ed) [CS1999] for a discussion of this convention.

INPUT:
- \(p \) – a prime number > 0

OUTPUT:
a Conway-Sloane genus symbol at \(p \), which is an instance of the Genus_Symbol_p_adic_ring class.

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3,4])
sage: Q.local_genus_symbol(2)
Genus symbol at 2: [2^-2 4^1 8^1]_6
sage: Q.local_genus_symbol(3)
Genus symbol at 3: 1^3 3^-1
sage: Q.local_genus_symbol(5)
Genus symbol at 5: 1^4
```

****local_good_density_congruence**\((p, m, \text{Zvec=None, NZvec=None}) \)**

Find the Good-type local density of \(Q \) representing \(m \) at \(p \). (Front end routine for parity specific routines for \(p \).)

Todo: Add Documentation about the additional congruence conditions \(\text{Zvec} \) and \(\text{NZvec} \).

INPUT:
- \(Q \) – quadratic form assumed to be block diagonal and \(p \)-integral
- \(p \) – a prime number
- \(m \) – an integer
- \(\text{Zvec, NZvec} \) – non-repeating lists of integers in range(\(\text{self.dim}() \)) or None

OUTPUT: a rational number

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3])
sage: Q.local_good_density_congruence(2, 1, None, None)
1
sage: Q.local_good_density_congruence(3, 1, None, None)
2/3

sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1])
sage: Q.local_good_density_congruence(2, 1, None, None)
1
sage: Q.local_good_density_congruence(3, 1, None, None)
8/9
```
local_good_density_congruence_even(*m, Zvec, NZvec*)

Find the Good-type local density of *Q* representing *m* at *p* = 2. (Assuming *Q* is given in local diagonal form.)

The additional congruence condition arguments *Zvec* and *NZvec* can be either a list of indices or None. *Zvec* = [] is equivalent to *Zvec* = None which both impose no additional conditions, but *NZvec* = [] returns no solutions always while *NZvec* = None imposes no additional condition.

WARNING: Here the indices passed in *Zvec* and *NZvec* represent indices of the solution vector *x* of *Q*(*) = *m*(mod *p*^*k*), and not the Jordan components of *Q*. They therefore are required (and assumed) to include either all or none of the indices of a given Jordan component of *Q*. This is only important when *p* = 2 since otherwise all Jordan blocks are 1x1, and so there the indices and Jordan blocks coincide.

Todo: Add type checking for *Zvec*, *NZvec*, and that *Q* is in local normal form.

INPUT:
- *Q* – quadratic form assumed to be block diagonal and 2-integral
- *p* – a prime number
- *m* – an integer
- *Zvec*, *NZvec* – non-repeating lists of integers in range(self.dim()) or None

OUTPUT: a rational number

EXAMPLES:

```sage
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3])
sage: Q.local_good_density_congruence_even(1, None, None)
1

sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1])
sage: Q.local_good_density_congruence_even(1, None, None)
1
sage: Q.local_good_density_congruence_even(2, None, None)
3/2
sage: Q.local_good_density_congruence_even(3, None, None)
1
sage: Q.local_good_density_congruence_even(4, None, None)
1/2

sage: Q = QuadraticForm(ZZ, 4, range(10))
sage: Q[0,0] = 5
sage: Q[1,1] = 10
sage: Q[2,2] = 15
sage: Q[3,3] = 20
sage: Q
Quadratic form in 4 variables over Integer Ring with coefficients:
[ 5  1  2  3 ]
[  10*  6 ]
[  15*  8 ]
[  20*  ]
sage: Q.theta_series(20)
1 + 2*q^5 + 2*q^10 + 2*q^14 + 2*q^15 + 2*q^16 + 2*q^18 + 0(q^20)
```

(continues on next page)
sage: Q.local_normal_form(2)
Quadratic form in 4 variables over Integer Ring with coefficients:
[0 1 0 0]
[* 0 0 0]
[* * 0 1]
[* * * 0]
sage: Q.local_good_density_congruence_even(1, None, None)
3/4
sage: Q.local_good_density_congruence_even(2, None, None)
1
sage: Q.local_good_density_congruence_even(5, None, None)
3/4

local_good_density_congruence_odd(*p*, *m*, *Zvec*, *NZvec*)

Find the Good-type local density of Q representing *m* at *p*. (Assuming that *p* > 2 and Q is given in local diagonal form.)

The additional congruence condition arguments *Zvec* and *NZvec* can be either a list of indices or None. *Zvec* = [] is equivalent to *Zvec* = None which both impose no additional conditions, but *NZvec* = [] returns no solutions always while *NZvec* = None imposes no additional condition.

Todo: Add type checking for *Zvec*, *NZvec*, and that Q is in local normal form.

INPUT:
- *Q* – quadratic form assumed to be diagonal and *p*-integral
- *p* – a prime number
- *m* – an integer
- *Zvec*, *NZvec* – non-repeating lists of integers in range(self.dim()) or None

OUTPUT: a rational number

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3])
sage: Q.local_good_density_congruence_odd(3, 1, None, None)
2/3
```

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1])
sage: Q.local_good_density_congruence_odd(3, 1, None, None)
8/9
```

local_normal_form(*p*)

Return a locally integrally equivalent quadratic form over the *p*-adic integers \(\mathbb{Z}_p \) which gives the Jordan decomposition.

The Jordan components are written as sums of blocks of size \(\leq 2 \) and are arranged by increasing scale, and then by increasing norm. This is equivalent to saying that we put the 1x1 blocks before the 2x2 blocks in each Jordan component.

INPUT:
- *p* – a positive prime number.
a quadratic form over \(\mathbb{Z} \)

Warning: Currently this only works for quadratic forms defined over \(\mathbb{Z} \).

EXAMPLES:

```
sage: Q = QuadraticForm(ZZ, 2, [10,4,1])
sage: Q.local_normal_form(5)
Quadratic form in 2 variables over Integer Ring with coefficients:
[ 1 0 ]
[ * 6 ]
```

```
sage: Q = QuadraticForm(ZZ, 4, range(10))
sage: Q[0,0] = 5
sage: Q[1,1] = 10
sage: Q[2,2] = 15
sage: Q[3,3] = 20
sage: Q
Quadratic form in 4 variables over Integer Ring with coefficients:
[ 5 1 2 3 ]
[ * 10 5 6 ]
[ * * 15 8 ]
[ * * * 20 ]
sage: Q.theta_series(20)
1 + 2*q^5 + 2*q^10 + 2*q^14 + 2*q^15 + 2*q^16 + 2*q^18 + O(q^20)
sage: Q.local_normal_form(2)
```

local_primitive_density(\(p, m \))

Gives the local primitive density – should be called by the user. =)

NOTE: This screens for imprimitive forms, and puts the quadratic form in local normal form, which is a *requirement* of the routines performing the computations!

INPUT:

- \(p \) – a prime number > 0
- \(m \) – an integer

OUTPUT:

a rational number

EXAMPLES:

```
sage: Q = QuadraticForm(ZZ, 4, range(10))
sage: Q[0,0] = 5
sage: Q[1,1] = 10
sage: Q[2,2] = 15
sage: Q[3,3] = 20
sage: Q
Quadratic form in 4 variables over Integer Ring with coefficients:
[ 5 1 2 3 ]
[ * 10 5 6 ]
[ * * 15 8 ]
[ * * * 20 ]
sage: Q.theta_series(20)
1 + 2*q^5 + 2*q^10 + 2*q^14 + 2*q^15 + 2*q^16 + 2*q^18 + O(q^20)
sage: Q.local_normal_form(2)
Quadratic form in 4 variables over Integer Ring with coefficients:
```

(continues on next page)
local_primitive_density_congruence\((p, m, Zvec=None, NZvec=None) \)

Find the primitive local density of \(Q \) representing \(m \) at \(p \), allowing certain congruence conditions mod \(p \).

Note: The following routine is not used internally, but is included for consistency.

INPUT:

- \(Q \) – quadratic form assumed to be block diagonal and \(p \)-integral
- \(p \) – a prime number
- \(m \) – an integer
- \(Zvec, NZvec \) – non-repeating lists of integers in range(self.dim()) or None

OUTPUT: a rational number

EXAMPLES:

\[
\begin{bmatrix}
0 & 1 & 0 & 0 \\
* & 0 & 0 & 0 \\
* & * & 0 & 1 \\
* & * & * & 0 \\
\end{bmatrix}
\]

sage: Q.local_primitive_density(2, 1)
3/4
sage: Q.local_primitive_density(5, 1)
24/25
sage: Q.local_primitive_density(2, 5)
3/4
sage: Q.local_density(2, 5)
3/4
sage: Q.local_primitive_density_congruence(3, 6, None, None)

sage: Q.local_primitive_density_congruence(3, 9, None, None)

sage: Q.local_primitive_density_congruence(3, 27, None, None)

sage: Q = DiagonalQuadraticForm(ZZ, [1,3,3,9,9])

sage: Q.local_primitive_density_congruence(3, 1, None, None)

sage: Q.local_primitive_density_congruence(3, 3, None, None)

sage: Q.local_primitive_density_congruence(3, 6, None, None)

sage: Q.local_primitive_density_congruence(3, 9, None, None)

sage: Q.local_primitive_density_congruence(3, 18, None, None)

sage: Q.local_primitive_density_congruence(3, 27, None, None)

sage: Q.local_primitive_density_congruence(3, 81, None, None)

sage: Q.local_primitive_density_congruence(3, 243, None, None)

local_representation_conditions(recompute_flag=False, silent_flag=False)

Warning: THIS ONLY WORKS CORRECTLY FOR FORMS IN >=3 VARIABLES, WHICH ARE LOCALLY UNIVERSAL AT ALMOST ALL PRIMES!

This class finds the local conditions for a number to be integrally represented by an integer-valued quadratic form. These conditions are stored in “self.__local_representability_conditions” and consist of a list of 9 element vectors, with one for each prime with a local obstruction (though only the first 5 are meaningful unless \(p = 2 \)). The first element is always the prime \(p \) where the local obstruction occurs, and the next 8 (or 4) entries represent square-classes in the \(p \)-adic integers \(\mathbb{Z}_p \), and are labeled by the \(Q_p \) square-classes \(t^*(Q_p)^2 \) with \(t \) given as follows:

\[
p > 2 \implies [* 1 \ \ 3 \ \ 5 \ \ 7 \ \ 2 \ \ 6 \ \ 10 \ \ 14]
\]

\[
p = 2 \implies [* 1 \ \ 5 \ \ 17 \ \ 41 \ \ 97]
\]

The integer appearing in each place tells us how \(p \)-divisible a number needs to be in that square-class in order to be locally represented by \(Q \). A negative number indicates that the entire \(Q_p \) square-class is not represented, while a positive number \(x \) indicates that \(t * p^{(2x-1)}(Z_p)^2 \) is locally represented but \(t * p^{(2x)}(Z_p)^2 \) is not.

As an example, the vector

\[
[2 \ 3 \ 0 \ 0 \ 0 \ 2 \ 0 \ \ \infty]
\]

tells us that all positive integers are locally represented at \(p=2 \) except those of the forms:

\[
2^6 * u * r^2 \text{ with } u \equiv 1 (mod 8)
\]

\[
2^5 * u * r^2 \text{ with } u \equiv 3 (mod 8)
\]
\[2 \ast u \ast r^2 \text{ with } u \equiv 7 \pmod{8} \]

At the real numbers, the vector which looks like

\[[\infty, 0, \infty, \text{None}, \text{None}, \text{None}, \text{None}, \text{None}, \text{None}] \]

means that \(Q \) is negative definite (i.e. the 0 tells us all positive reals are represented). The real vector always appears, and is listed before the other ones.

OUTPUT:
A list of 9-element vectors describing the representation obstructions at primes dividing the level.

EXAMPLES:

```sage
def Q = DiagonalQuadraticForm(ZZ, [])
sage: Q.local_representation_conditions()
This 0-dimensional form only represents zero.

def Q = DiagonalQuadraticForm(ZZ, [5])
sage: Q.local_representation_conditions()
This 1-dimensional form only represents square multiples of 5.

def Q1 = DiagonalQuadraticForm(ZZ, [1,1])
sage: Q1.local_representation_conditions()
This 2-dimensional form represents the \( p \)-adic integers of even valuation for all primes \( p \) except \( 2 \).
For these and the reals, we have:
\[
\begin{align*}
\text{Reals:} & \quad [0, +\infty] \\
\text{p = 2:} & \quad [0, +\infty, 0, +\infty, 0, +\infty, 0, +\infty, 0, +\infty]
\end{align*}
\]

def Q1 = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: Q1.local_representation_conditions()
This form represents the \( p \)-adic integers \( \mathbb{Z}_p \) for all primes \( p \) except \( [2] \).
For these and the reals, we have:
\[
\begin{align*}
\text{Reals:} & \quad [0, +\infty] \\
\text{p = 2:} & \quad [0, 0, 0, +\infty, 0, 0, 0, 0]
\end{align*}
\]

def Q1 = DiagonalQuadraticForm(ZZ, [1,1,1,1])
sage: Q1.local_representation_conditions()
This form represents the \( p \)-adic integers \( \mathbb{Z}_p \) for all primes \( p \) except \( [] \). For these and the reals, we have:
\[
\begin{align*}
\text{Reals:} & \quad [0, +\infty] \\
\text{p = 3:} & \quad [0, 1, 0, 0]
\end{align*}
\]

def Q2 = DiagonalQuadraticForm(ZZ, [2,3,3,3])
sage: Q2.local_representation_conditions()
This form represents the \( p \)-adic integers \( \mathbb{Z}_p \) for all primes \( p \) except \( [3] \). For these and the reals, we have:
\[
\begin{align*}
\text{Reals:} & \quad [0, +\infty] \\
\text{p = 3:} & \quad [0, 1, 0, 0]
\end{align*}
\]
```
\(p = 3: \) \[[1, 0, 0, 0] \]

```python
sage: Q3 = DiagonalQuadraticForm(ZZ, [1,3,5,7])
sage: Q3.local_representation_conditions()
```

This form represents the \(p \)-adic integers \(\mathbb{Z}_p \) for all primes \(p \) except 2. For these and the reals, we have:

Reals: \([0, +\infty]\)

local_zero_density_congruence \((p, m, \text{Zvec}=\text{None}, \text{NZvec}=\text{None})\)

Find the Zero-type local density of \(Q \) representing \(m \) at \(p \), allowing certain congruence conditions mod \(p \).

INPUT:

- \(Q \) – quadratic form assumed to be block diagonal and \(p \)-integral
- \(p \) – a prime number
- \(m \) – an integer
- \(\text{Zvec}, \text{NZvec} \) – non-repeating lists of integers in range(self.dim()) or None

OUTPUT: a rational number

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3])
sage: Q.local_zero_density_congruence(2, 2, None, None)
0
sage: Q.local_zero_density_congruence(2, 4, None, None)
1/2
sage: Q.local_zero_density_congruence(3, 6, None, None)
0
sage: Q.local_zero_density_congruence(3, 9, None, None)
2/9
```

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1])
sage: Q.local_zero_density_congruence(2, 2, None, None)
0
sage: Q.local_zero_density_congruence(2, 4, None, None)
1/4
sage: Q.local_zero_density_congruence(3, 6, None, None)
0
sage: Q.local_zero_density_congruence(3, 9, None, None)
8/81
```

mass__by_Siegel_densities \((\text{odd_algorithm}='\text{Pall}', \text{even_algorithm}='\text{Watson}')\)

Gives the mass of transformations \((\det 1 \text{ and } -1)\).

WARNING: THIS IS BROKEN RIGHT NOW... =(

Optional Arguments:

- When \(p > 2 \) – odd_algorithm = “Pall” (only one choice for now)
- When \(p = 2 \) – even_algorithm = “Kitaoka” or “Watson”

REFERENCES:

- Nipp’s Book “Tables of Quaternary Quadratic Forms”.
• Papers of Pall (only for p>2) and Watson (for \(p = 2 \) – tricky!).

• Siegel, Milnor-Hussemoller, Conway-Sloane Paper IV, Kitoaka (all of which have problems…)

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1])
sage: m = Q.mass_by_Siegel_densities(); m
1/384
sage: m - (2^Q.dim() * factorial(Q.dim()))^(-1)
0

sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: m = Q.mass_by_Siegel_densities(); m
1/48
sage: m - (2^Q.dim() * factorial(Q.dim()))^(-1)
0
```

```
mass_at_two_by_counting_mod_power(k)

Computes the local mass at \( p = 2 \) assuming that it's stable \((mod2^k)\).

Note: This is way too slow to be useful, even when k=1!!!

Todo: Remove this routine, or try to compile it!

INPUT:
• k – an integer >= 1

OUTPUT:

a rational number

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: Q.mass_at_two_by_counting_mod_power(1)
4
```

```
matrix()

Return the Hessian matrix \(A \) for which \(Q(X) = (1/2) \ast X^t \ast A \ast X \).

EXAMPLES:

```python
sage: Q = QuadraticForm(ZZ, 3, range(6))
sage: Q.matrix()
[ 0 1 2]
[ 1 6 4]
[ 2 4 10]
```

```
minkowski_reduction()

Find a Minkowski-reduced form equivalent to the given one. This means that

\[
Q(v_k) \leq Q(s_1 \ast v_1 + \ldots + s_n \ast v_n)
\]

for all \( s_i \) where GCD\((s_k, \ldots s_n) = 1\).

Note: When \( Q \) has dim <= 4 we can take all \( s_i \) in \{1, 0, -1\}.```
References:


EXAMPLES:

```python
sage: Q = QuadraticForm(ZZ,4,[30, 17, 11, 12, 29, 25, 62, 64, 25, 110])
sage: Q
Quadratic form in 4 variables over Integer Ring with coefficients:
[30 17 11 12]
[* 29 25 62]
[* * 64 25]
[* * * 110]
sage: Q.minkowski_reduction()
(Quadratic form in 4 variables over Integer Ring with coefficients:
[30 17 11 -5]
[* 29 25 4]
[* * 64 0]
[* * * 77],
[1 0 0 0]
[0 1 0 -1]
[0 0 1 0]
[0 0 0 1])
sage: Q = QuadraticForm(ZZ,4,[1, -2, 0, 0, 2, 0, 0, 2, 0, 2])
sage: Q
Quadratic form in 4 variables over Integer Ring with coefficients:
[1 -2 0 0]
[* 2 0 0]
[* * 2 0]
[* * * 2]
sage: Q.minkowski_reduction()
(Quadratic form in 4 variables over Integer Ring with coefficients:
[1 0 0 0]
[* 1 0 0]
[* * 2 0]
[* * * 2],
[1 1 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1])
sage: Q = QuadraticForm(ZZ,5,[2,2,0,0,0,2,2,0,0,2,2,0,2,0,2,2,0,2,2,2])
sage: Q.Gram_matrix()
[2 1 0 0 0]
[1 2 1 0 0]
```
minkowski_reduction_for_4vars__SP()

Find a Minkowski-reduced form equivalent to the given one. This means that

\[ Q(v_k) \leq Q(s_1 * v_1 + ... + s_n * v_n) \]

for all \( s_i \) where \( \gcd(s_k, ..., s_n) = 1 \).

Note: When \( Q \) has \( \dim \leq 4 \) we can take all \( s_i \) in \{1, 0, -1\}.

References:


EXAMPLES:

```sage
sage: Q = QuadraticForm(ZZ,4,[30,17,11,12,29,25,62,64,25,110])
sage: Q
Quadratic form in 4 variables over Integer Ring with coefficients:
[30 17 11 12]
[* 29 25 62]
[* * 64 25]
[* * * 110]
sage: Q.minkowski_reduction_for_4vars__SP()
(Quadratic form in 4 variables over Integer Ring with coefficients:
[29 -17 25 4]
[* 30 -11 5]
[* * 64 0]
[* * * 77] ,

[0 1 0 0]
[1 0 0 -1]
[0 0 1 0]
[0 0 0 1]
)
```

multiply_variable(c, i, in_place=False)

Replace the variables \( x_i \) by \( c * x_i \) in the quadratic form (replacing the original form if the in_place flag is True).

Here \( c \) must be an element of the base_ring defining the quadratic form.

INPUT:

- \( c \) – an element of \( Q.base_ring() \)
- \( i \) – an integer \( \geq 0 \)
OUTPUT:

a QuadraticForm (by default, otherwise none)

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,9,5,7])
sage: Q.multiply_variable(5,0)
Quadratic form in 4 variables over Integer Ring with coefficients:
[25 0 0 0]
[* 9 0 0]
[* * 5 0]
[* * * 7]
```

`neighbor_iteration(seeds, p, mass=None, max_classes=1000, algorithm=None, max_neighbors=1000, verbose=False)`

Return all classes in the $p$-neighbor graph of `self`.

Starting from the given seeds, this function successively finds $p$-neighbors until no new quadratic form (class) is obtained.

INPUT:

- `seeds` – a list of quadratic forms in the same genus
- `p` – a prime number
- `mass` – (optional) a rational number; the mass of this genus
- `max_classes` – (default: 1000) break the computation when `max_classes` are found
- `algorithm` – (optional) one of ‘orbits’, ‘random’, ‘exhaustion’
- `max_random_trys` – (default: 1000) the maximum number of neighbors computed for a single lattice

OUTPUT:

- a list of quadratic forms

EXAMPLES:

```python
sage: from sage.quadratic_forms.quadratic_form__neighbors import neighbor_iteration
sage: Q = QuadraticForm(ZZ, 3, [1, 0, 0, 2, 1, 3])
sage: Q.det() 46
sage: mass = Q.conway_mass()
sage: g1 = neighbor_iteration([Q],3, mass=mass, algorithm = 'random') # long time
sage: g2 = neighbor_iteration([Q],3, algorithm = 'exhaustion') # long time
g3 = neighbor_iteration([Q],3, algorithm = 'orbits')
sage: mass == sum(1/q.number_of_automorphisms() for q in g1) # long time
True
sage: mass == sum(1/q.number_of_automorphisms() for q in g2) # long time
True
sage: mass == sum(1/q.number_of_automorphisms() for q in g3)
True
```

`number_of_automorphisms()`

Return the number of automorphisms (of det 1 and -1) of the quadratic form.
OUTPUT:

an integer $\geq 2$.

EXAMPLES:

```python
sage: Q = QuadraticForm(ZZ, 3, [1, 0, 0, 1, 0, 1], unsafe_initialization=True)
sage: Q.number_of_automorphisms()
48
```

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1])
sage: Q.number_of_automorphisms()
384
sage: 2^4 * factorial(4)
384
```

omega()

This is the content of the adjoint of the primitive associated quadratic form.

Ref: See Dickson’s “Studies in Number Theory”.

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,37])
sage: Q.omega()
4
```

orbits_lines_mod_p(p)

Let $(L, q)$ be a lattice. This returns representatives of the orbits of lines in $L/pL$ under the orthogonal group of $q$.

INPUT:

- $p$ – a prime number

OUTPUT:

- a list of vectors over $\text{GF}(p)$

EXAMPLES:

```python
sage: from sage.quadratic_forms.quadratic_form__neighbors import orbits_lines_mod_p
sage: Q = QuadraticForm(ZZ, 3, [1, 0, 0, 2, 1, 3])
sage: Q.orbits_lines_mod_p(2)
[(0, 0, 1),
 (0, 1, 0),
 (0, 1, 1),
 (1, 0, 0),
 (1, 0, 1),
 (1, 1, 0),
 (1, 1, 1)]
```

parity(allow_rescaling_flag=True)

Return the parity (“even” or “odd”) of an integer-valued quadratic form over $\mathbb{Z}$, defined up to similarity/rescaling of the form so that its Jordan component of smallest scale is unimodular. After this rescaling, we say a form is even if it only represents even numbers, and odd if it represents some odd number.
If the ‘allow_rescaling_flag’ is set to False, then we require that the quadratic form have a Gram matrix with coefficients in \( \mathbb{Z} \), and look at the unimodular Jordan block to determine its parity. This returns an error if the form is not integer-matrix, meaning that it has Jordan components at \( p = 2 \) which do not have an integer scale.

We determine the parity by looking for a 1x1 block in the 0-th Jordan component, after a possible rescaling.

**INPUT:**

- A quadratic form with base ring \( \mathbb{Z} \), which we may require to have integer Gram matrix.

**OUTPUT:**

One of the strings: “even” or “odd”

**EXAMPLES:**

```sage
sage: Q = QuadraticForm(ZZ, 3, [4, -2, 0, 2, 3, 2]); Q
Quadratic form in 3 variables over Integer Ring with coefficients:
[4 -2 0]
[* 2 3]
[* * 2]
sage: Q.parity()
'even'
```

```sage
sage: Q = QuadraticForm(ZZ, 3, [4, -2, 0, 2, 3, 1]); Q
Quadratic form in 3 variables over Integer Ring with coefficients:
[4 -2 0]
[* 2 3]
[* * 1]
sage: Q.parity()
'even'
```

```sage
sage: Q = QuadraticForm(ZZ, 3, [4, -2, 0, 2, 2, 2]); Q
Quadratic form in 3 variables over Integer Ring with coefficients:
[4 -2 0]
[* 2 2]
[* * 2]
sage: Q.parity()
'even'
```

```sage
sage: Q = QuadraticForm(ZZ, 3, [4, -2, 0, 2, 2, 1]); Q
Quadratic form in 3 variables over Integer Ring with coefficients:
[4 -2 0]
[* 2 2]
[* * 1]
sage: Q.parity()
'odd'
```

**polynomial**(names='x')

Return the polynomial in ‘n’ variables of the quadratic form in the ring ‘R[names].’

**INPUT:**

- ‘self’ - a quadratic form over a commutative ring. - ‘names’ - the name of the variables. Digits will be appended to the name for each different canonical variable e.g x1, x2, x3 etc.
OUTPUT:

The polynomial form of the quadratic form.

EXAMPLES:

```python
sage: Q = DiagonalQuadraticForm(QQ,[1, 3, 5, 7])
sage: P = Q.polynomial(); P
x0^2 + 3*x1^2 + 5*x2^2 + 7*x3^2
```

```python
sage: F.<a> = NumberField(x^2 - 5)
sage: Z = F.ring_of_integers()
sage: Q = QuadraticForm(Z,3,[2*a, 3*a, 0 , 1 - a, 0, 2*a + 4])
sage: P = Q.polynomial(names='y'); P
2*a*y0^2 + 3*a*y0*y1 + (-a + 1)*y1^2 + (2*a + 4)*y2^2
```

```python
sage: Q = QuadraticForm(F,4,[a, 3*a, 0, 1 - a, a - 3, 0, 2*a + 4, 4 + a, 0, 1])
sage: Q.polynomial(names='z')
a*z0^2 + (3*a)*z0*z1 + (a - 3)*z1^2 + (a + 4)*z2^2 + (-a + 1)*z0*z3 + (2*a + 4)*z1*z3 + z3^2
```

```python
sage: B.<i,j,k> = QuaternionAlgebra(F,-1,-1)
sage: Q = QuadraticForm(B, 3, [2*a, 3*a, i, 1 - a, 0, 2*a + 4])
sage: Q.polynomial()
Traceback (most recent call last):
... ValueError: Can only create polynomial rings over commutative rings.
```

**primitive()**

Return a primitive version of an integer-valued quadratic form, defined over \( \mathbb{Z} \).

EXAMPLES:

```python
sage: Q = QuadraticForm(ZZ, 2, [2,3,4])
sage: Q.primitive()
Quadratic form in 2 variables over Integer Ring with coefficients:
[2 3]
[* 4]
sage: Q = QuadraticForm(ZZ, 2, [2,4,8])
sage: Q.primitive()
Quadratic form in 2 variables over Integer Ring with coefficients:
[1 2]
[* 4]
```

**rational_diagonal_form**(\(\text{return\_matrix}=\text{False}\))

Return a diagonal form equivalent to the given quadratic from over the fraction field of its defining ring.

INPUT:

- \(\text{return\_matrix}\) – (boolean, default: False) also return the transformation matrix

OUTPUT: either \(D\) (if \(\text{return\_matrix}\) is false) or \((D,T)\) (if \(\text{return\_matrix}\) is true) where

- \(D\) – the diagonalized form of this quadratic form.
- \(T\) – transformation matrix. This is such that \(T\cdot\text{transpose}() \ast \text{self\_matrix}() \ast T\) gives \(D\)\cdot\text{matrix}().

Both \(D\) and \(T\) are defined over the fraction field of the base ring of the given form.

EXAMPLES:
sage: Q = QuadraticForm(ZZ, 2, [0,1,-1])
sage: Q
Quadratic form in 2 variables over Integer Ring with coefficients:
[ 0 1 ]
[ * -1 ]
sage: Q.rational_diagonal_form()
Quadratic form in 2 variables over Rational Field with coefficients:
[ 1/4 0 ]
[ * -1 ]

If we start with a diagonal form, we get back the same form defined over the fraction field:

sage: Q = DiagonalQuadraticForm(ZZ, [1,3,5,7])
sage: Q.rational_diagonal_form()
Quadratic form in 4 variables over Rational Field with coefficients:
[ 1 0 0 0 ]
[ * 3 0 0 ]
[ * * 5 0 ]
[ * * * 7 ]

In the following example, we check the consistency of the transformation matrix:

sage: Q = QuadraticForm(ZZ, 4, range(10))
sage: D, T = Q.rational_diagonal_form(return_matrix=True)
sage: D
Quadratic form in 4 variables over Rational Field with coefficients:
[ -1/16 0 0 0 ]
[ * 4 0 0 ]
[ * * 13 0 ]
[ * * * 563/52 ]
sage: T
[ 1 0 11 149/26]
[ -1/8 1 -2 -10/13]
[ 0 0 1 -29/26]
[ 0 0 0 1]
sage: T.transpose() * Q.matrix() * T
[ -1/8 0 0 0 ]
[ 0 8 0 0 ]
[ 0 0 26 0 ]
[ 0 0 0 563/26]
sage: D.matrix()
[ -1/8 0 0 0 ]
[ 0 8 0 0 ]
[ 0 0 26 0 ]
[ 0 0 0 563/26]

sage: Q1 = QuadraticForm(ZZ, 4, [1, 1, 0, 0, 1, 0, 0, 1, 0, 18])
sage: Q1
Quadratic form in 4 variables over Integer Ring with coefficients:
[ 1 1 0 0 ]
[ * 1 0 0 ]
[ * * 1 0 ]
[ * * * 18 ]
sage: Q1.rational_diagonal_form(return_matrix=True)
(Quadratic form in 4 variables over Rational Field with coefficients:
  \[
  \begin{bmatrix}
  1 & 0 & 0 & 0 \\
  \ast & 3/4 & 0 & 0 \\
  \ast & \ast & 1 & 0 \\
  \ast & \ast & \ast & 18 \\
  \end{bmatrix},
  \\
  \begin{bmatrix}
  1 & -1/2 & 0 & 0 \\
  0 & 1 & 0 & 0 \\
  0 & 0 & 1 & 0 \\
  0 & 0 & 0 & 1 \\
  \end{bmatrix}
\)

PARI returns a singular transformation matrix for this case:

sage: Q = QuadraticForm(QQ, 2, [1/2, 1, 1/2])
sage: Q.rational_diagonal_form()
Quadratic form in 2 variables over Rational Field with coefficients:
  \[
  \begin{bmatrix}
  1/2 & 0 \\
  \ast & 0 \\
  \end{bmatrix}
\]

This example cannot be computed by PARI:

sage: Q = QuadraticForm(RIF, 4, range(10))
sage: Q.__pari__()
Traceback (most recent call last):
  ...
TypeError
sage: Q.rational_diagonal_form()
Quadratic form in 4 variables over Real Interval Field with 53 bits of →
  precision with coefficients:
  \[
  \begin{bmatrix}
  5 & 0.\text{e-14} & 0.\text{e-13} & 0.\text{e-13} \\
  \ast & -0.05000000000000000000 & 0.\text{e-12} & 0.\text{e-12} \\
  \ast & 13.000000000000000000 & 0.\text{e-10} \\
  \ast & \ast & 10.826923076900000000 & 0.\text{e-10} \\
  \end{bmatrix}
\]

\textbf{reciprocal()}\)

This gives the reciprocal quadratic form associated to the given form. This is defined as the multiple of the
  primitive adjoint with the same content as the given form.

\textbf{EXAMPLES:}

sage: Q = DiagonalQuadraticForm(ZZ, [1,1,37])
sage: Q.reciprocal()
Quadratic form in 3 variables over Integer Ring with coefficients:
  \[
  \begin{bmatrix}
  37 & 0 & 0 \\
  \ast & 37 & 0 \\
  \ast & \ast & 1 \\
  \end{bmatrix}
\]
sage: Q.reciprocal().reciprocal()
Quadratic form in 3 variables over Integer Ring with coefficients:
  \[
  \begin{bmatrix}
  1 & 0 & 0 \\
  \ast & 1 & 0 \\
  \end{bmatrix}
\]
Reduced Binary Form

Find a form which is reduced in the sense that no further binary form reductions can be done to reduce the original form.

**Examples:**
```python
sage: Q = QuadraticForm(ZZ, 2, [5, 5, 2]).reduced_binary_form()
(Quadratic form in 2 variables over Integer Ring with coefficients:
 [2 -1]
 [* 2] ,
 [0 -1]
 [1 1])
```

Reduced Binary Form 1

Reduce the form $ax^2 + bxy + cy^2$ to satisfy the reduced condition $|b| \leq a \leq c$, with $b \geq 0$ if $a = c$. This reduction occurs within the proper class, so all transformations are taken to have determinant 1.

**Examples:**
```python
sage: Q = QuadraticForm(ZZ, 2, [5, 5, 2]).reduced_binary_form1()
(Quadratic form in 2 variables over Integer Ring with coefficients:
 [2 -1]
 [* 2] ,
 [0 -1]
 [1 1])
```

Reduced Ternary Form Dickson

Find the unique reduced ternary form according to the conditions of Dickson’s “Studies in the Theory of Numbers”, pp164-171.

**Examples:**
```python
sage: Q = DiagonalQuadraticForm(ZZ, [1, 1, 1])
sage: Q.reduced_ternary_form__Dickson()
Traceback (most recent call last):
 ... Not Implemented Error
```

Representation Number List($B$)

Return the vector of representation numbers $< B$.

**Examples:**
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1,1,1,1,1])
sage: Q.representation_number_list(10)
[1, 16, 112, 448, 1136, 2016, 3136, 5504, 9328, 12112]

representation_vector_list(B, maxvectors=100000000)

Find all vectors \(v\) where \(Q(v) < B\).

This only works for positive definite quadratic forms.

EXAMPLES:

sage: Q = DiagonalQuadraticForm(ZZ, [1, 1])
sage: Q.representation_vector_list(10)

\[
\begin{bmatrix}
(0, 0),
(0, 1), (0, -1), (1, 0), (-1, 0),
(1, 1), (-1, -1), (1, -1), (-1, 1),
(0, 2), (0, -2), (2, 0), (-2, 0),
(1, 2), (-1, -2), (1, -2), (-1, 2), (2, 1), (-2, -1), (2, -1), (-2, 1),
(2, 2), (-2, -2), (2, -2), (-2, 2),
(0, 3), (0, -3), (3, 0), (-3, 0)
\end{bmatrix}
\]

sage: list(map(len, _))
[1, 4, 4, 0, 4, 8, 0, 0, 4, 4]
sage: Q.representation_number_list(10)
[1, 4, 4, 0, 4, 8, 0, 0, 4, 4]

scale_by_factor(c, change_value_ring_flag=False)

Scale the values of the quadratic form by the number \(c\), if this is possible while still being defined over its base ring.

If the flag is set to true, then this will alter the value ring to be the field of fractions of the original ring (if necessary).

INPUT:

\(c\) – a scalar in the fraction field of the value ring of the form.

OUTPUT:

A quadratic form of the same dimension

EXAMPLES:

sage: Q = DiagonalQuadraticForm(ZZ, [3,9,18,27])
sage: Q.scale_by_factor(3)

Quadratic form in 4 variables over Integer Ring with coefficients:

\[
\begin{bmatrix}
9 0 0 0 \\
* 27 0 0 \\
* * 54 0 \\
* * * 81
\end{bmatrix}
\]
sage: Q.scale_by_factor(1/3)

Quadratic form in 4 variables over Integer Ring with coefficients:

\[
\begin{bmatrix}
1 0 0 0 \\
* 3 0 0
\end{bmatrix}
\]

(continues on next page)
set_number_of_automorphisms(num_autos)

Set the number of automorphisms to be the value given. No error checking is performed, to this may lead to erroneous results.

The fact that this result was set externally is recorded in the internal list of external initializations, accessible by the method list_external_initializations().

OUTPUT: None

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1, 1, 1])
sage: Q.list_external_initializations()
[]
sage: Q.set_number_of_automorphisms(-3)
sage: Q.number_of_automorphisms()
-3
sage: Q.list_external_initializations()
['number_of_automorphisms']
```

shimura_mass_maximal()

Use Shimura's exact mass formula to compute the mass of a maximal quadratic lattice. This works for any totally real number field, but has a small technical restriction when $n$ is odd.

OUTPUT:

a rational number

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1, 1, 1])
sage: Q.shimura_mass_maximal()
```

short_primitive_vector_list_up_to_length(len_bound, up_to_sign_flag=False)

Return a list of lists of short primitive vectors $v$, sorted by length, with $Q(v) < \text{len_bound}$. The list in output $i$ indexes all vectors of length $i$. If the up_to_sign_flag is set to True, then only one of the vectors of the pair $[v, -v]$ is listed.

Note: This processes the PARI/GP output to always give elements of type $\mathbb{Z}$.

OUTPUT: a list of lists of vectors.

EXAMPLES:

```
sage: Q = DiagonalQuadraticForm(ZZ, [1, 3, 5, 7])
sage: Q.short_vector_list_up_to_length(5, True)
[[[0, 0, 0, 0],
 [[1, 0, 0, 0],
 [],
 [[0, 1, 0, 0],
 [[1, 1, 0, 0], (1, -1, 0, 0), (2, 0, 0, 0)]]
```
sage: Q.short_primitive_vector_list_up_to_length(5, True)

[[], [(1, 0, 0, 0)], [], [(0, 1, 0, 0)], [(1, 1, 0, 0), (1, -1, 0, 0)]]

**short_vector_list_up_to_length**(len_bound, up_to_sign_flag=False)

Return a list of lists of short vectors $v$, sorted by length, with $Q(v) < \text{len_bound}$.

**INPUT:**

- **len_bound** – bound for the length of the vectors.
- **up_to_sign_flag** – (default: False) if set to True, then only one of the vectors of the pair $[v, -v]$ is listed.

**OUTPUT:**

A list of lists of vectors such that entry $[i]$ contains all vectors of length $i$.

**EXAMPLES:**

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,3,5,7])
sage: Q.short_vector_list_up_to_length(3)

[[0, 0, 0, 0], [1, 0, 0, 0], -1, 0, 0, 0], []]
sage: Q.short_vector_list_up_to_length(5)

[[0, 0, 0, 0], [1, 0, 0, 0], (-1, 0, 0, 0), [0, 1, 0, 0], (0, -1, 0, 0),
(1, 1, 0, 0), (-1, -1, 0, 0), (1, -1, 0, 0), (-1, 1, 0, 0), (2, 0, 0, 0),
(-2, 0, 0, 0)]]
sage: Q.short_vector_list_up_to_length(5, True)

[[0, 0, 0, 0], [1, 0, 0, 0], [], [(0, 1, 0, 0), (1, -1, 0, 0), (2, 0, 0, 0),
(-2, 0, 0, 0)]]
sage: Q = QuadraticForm(matrix(6, [2, 1, 1, 1, -1, -1, 1, 2, 1, 1, -1, -1, 1, 1,
----2, 0, -1, -1, 1, 1, 0, 2, 0, -1, -1, -1, 0, 2, 1, -1, -1, -1, -1, 2]))
sage: vs = Q.short_vector_list_up_to_length(8)
sage: [len(vs[i]) for i in range(len(vs))]
[1, 72, 270, 720, 936, 2160, 2214, 3600]
sage: vs = Q.short_vector_list_up_to_length(30) # long time (28s on sage.math, 2014)

[1, 72, 270, 720, 936, 2160, 2214, 3600, 4590, 6552, 5184, 10800, 9360, 12240, 13500, 17712, 14760, 25920, 19710, 26064, 28080, 36000, 25920, 47520, 37638, 43272, 45900, 59040, 46800, 75600]
```
The cases of $\text{len\_bound} < 2$ led to exception or infinite runtime before.

```
sage: Q.short_vector_list_up_to_length(-1)
[]
sage: Q.short_vector_list_up_to_length(0)
[]
sage: Q.short_vector_list_up_to_length(1)
[(0, 0, 0, 0, 0, 0)]
```

In the case of quadratic forms that are not positive definite an error is raised.

```
sage: QuadraticForm(matrix(2, [2, 0, 0, -2])).short_vector_list_up_to_length(3)
Traceback (most recent call last):
 ...
ValueError: Quadratic form must be positive definite in order to enumerate short vectors
```

Check that PARI does not return vectors which are too long:

```
sage: Q = QuadraticForm(matrix(2, [72, 12, 12, 120]))
sage: len_bound_pari = 2*22953421 - 2; len_bound_pari
45906840
sage: vs = list(Q.__pari__().qfminim(len_bound_pari)[2]) # long time (18s on sage.math, 2014)
sage: v = vs[0]; v # long time
[66, -623]
sage: v.Vec() * Q.__pari__() * v # long time
45902280
```

**siegel_product($u$)**

Computes the infinite product of local densities of the quadratic form for the number $u$.

**EXAMPLES:**

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1])
sage: Q.theta_series(11)
1 + 8*q + 24*q^2 + 32*q^3 + 48*q^4 + 64*q^5 + 96*q^6 + 64*q^7 + 24*q^8 + 104*q^9 + O(q^11)
sage: Q.siegel_product(1)
8
sage: Q.siegel_product(2) # This one is wrong -- expect 24, and the higher powers of 2 don't work... =(
24
sage: Q.siegel_product(3)
32
sage: Q.siegel_product(5)
48
sage: Q.siegel_product(6)
96
sage: Q.siegel_product(7)
64
sage: Q.siegel_product(9)
104
```

(continues on next page)
Quadratic Forms, Release 9.7

sage: Q.local_density(2,1)
1
sage: M = 4; len([v for v in mrange([M,M,M,M]) if Q(v) % M == 1]) / M^3
1
sage: M = 16; len([v for v in mrange([M,M,M,M]) if Q(v) % M == 1]) / M^3
# long time (2s on sage.math, 2014)
1
sage: Q.local_density(2,2)
3/2
sage: M = 4; len([v for v in mrange([M,M,M,M]) if Q(v) % M == 2]) / M^3
3/2
sage: M = 16; len([v for v in mrange([M,M,M,M]) if Q(v) % M == 2]) / M^3
# long time (2s on sage.math, 2014)
3/2

signature()
Returns the signature of the quadratic form, defined as:

\[ \text{number of positive eigenvalues - number of negative eigenvalues} \]

of the matrix of the quadratic form.

INPUT:
None

OUTPUT:
an integer

EXAMPLES:

sage: Q = DiagonalQuadraticForm(ZZ, [1,0,0,-4,3,11,3])
sage: Q.signature()
3

sage: Q = DiagonalQuadraticForm(ZZ, [1,2,-3,-4])
sage: Q.signature()
0

sage: Q = QuadraticForm(ZZ, 4, range(10)); Q
Quadratic form in 4 variables over Integer Ring with coefficients:
[ 0 1 2 3 ]
[ * 4 5 6 ]
[ * * 7 8 ]
[ * * * 9 ]
sage: Q.signature()
2

signature_vector()
Returns the triple \((p, n, z)\) of integers where

- \(p\) = number of positive eigenvalues
- \(n\) = number of negative eigenvalues
- \( z \) = number of zero eigenvalues

for the symmetric matrix associated to \( Q \).

**INPUT:**

(none)

**OUTPUT:**

a triple of integers \( \geq 0 \)

**EXAMPLES:**

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,0,0,-4])
sage: Q.signature_vector()
(1, 1, 2)
```

```python
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,-3,-4])
sage: Q.signature_vector()
(2, 2, 0)
```

```python
sage: Q = QuadraticForm(ZZ, 4, range(10)); Q
Quadratic form in 4 variables over Integer Ring with coefficients:
[0 1 2 3]
[* 4 5 6]
[* * 7 8]
[* * * 9]
sage: Q.signature_vector()
(3, 1, 0)
```

**solve** (\( c=0 \))

Return a vector \( x \) such that \( \text{self}(x) = c \).

**INPUT:**

- \( c \) – (default: 0) a rational number.

**OUTPUT:**

- A non-zero vector \( x \) satisfying \( \text{self}(x) = c \).

**ALGORITHM:**

Uses PARI’s qfsolve(). Algorithm described by Jeroen Demeyer; see comments on trac ticket #19112

**EXAMPLES:**

```python
sage: F = DiagonalQuadraticForm(QQ, [1, -1]); F
Quadratic form in 2 variables over Rational Field with coefficients:
[1 0]
[* -1]
sage: F.solve()
(1, 1)
sage: F.solve(1)
(1, 0)
sage: F.solve(2)
(3/2, -1/2)
sage: F.solve(3)
(2, -1)
```
sage: F = DiagonalQuadraticForm(QQ, [1, 1, 1, 1])  
  sage: F.solve(7)  
  (1, 2, -1, -1)  
  sage: F.solve()  
  Traceback (most recent call last):  
    ...  
    ArithmeticError: no solution found (local obstruction at -1)

sage: Q = QuadraticForm(QQ, 2, [17, 94, 130])  
  sage: x = Q.solve(5); x  
  (17, -6)  
  sage: Q(x)  
  5  
  sage: Q.solve(6)  
  Traceback (most recent call last):  
    ...  
    ArithmeticError: no solution found (local obstruction at 3)

sage: G = DiagonalQuadraticForm(QQ, [5, -3, -2])  
  sage: x = G.solve(10); x  
  (3/2, -1/2, 1/2)  
  sage: G(x)  
  10  
  sage: F = DiagonalQuadraticForm(QQ, [1, -4])  
  sage: x = F.solve(); x  
  (2, 1)  
  sage: F(x)  
  0

sage: F = QuadraticForm(QQ, 4, [0, 0, 1, 0, 0, 0, 1, 0, 0, 0]); F  
Quadratic form in 4 variables over Rational Field with coefficients:  
[ 0 0 1 0 ]  
[ * 0 0 1 ]  
[ * 0 0 0 ]  
[ * 0 0 0 ]  
  sage: F.solve(23)  
  (23, 0, 1, 0)

Other fields besides the rationals are currently not supported:

sage: F = DiagonalQuadraticForm(GF(11), [1, 1])  
  sage: F.solve()  
  Traceback (most recent call last):  
    ...  
    TypeError: solving quadratic forms is only implemented over QQ

split_local_cover()  

Tries to find subform of the given (positive definite quaternary) quadratic form Q of the form  

\[ d \cdot x^2 + T(y, z, w) \]

where \( d > 0 \) is as small as possible.
This is done by exhaustive search on small vectors, and then comparing the local conditions of its sum with it’s complementary lattice and the original quadratic form Q.

INPUT:

none

OUTPUT:

a QuadraticForm over ZZ

EXAMPLES:

```
sage: Q1 = DiagonalQuadraticForm(ZZ, [7,5,3])
sage: Q1.split_local_cover()
Quadratic form in 3 variables over Integer Ring with coefficients:

[3 0 0]
[* 5 0]
[* * 7]
```

`sum_by_coefficients_with(right)`

Return the sum (on coefficients) of two quadratic forms of the same size.

EXAMPLES:

```
sage: Q = QuadraticForm(ZZ, 2, [1,4,10])
sage: Q
Quadratic form in 2 variables over Integer Ring with coefficients:

[1 4]
[* 10]
sage: Q+Q
Quadratic form in 4 variables over Integer Ring with coefficients:

[1 4 0 0]
[* 10 0 0]
[* * 1 4]
[* * * 10]
sage: Q2 = QuadraticForm(ZZ, 2, [1,4,-10])
sage: Q.sum_by_coefficients_with(Q2)
Quadratic form in 2 variables over Integer Ring with coefficients:

[2 8]
[* 0]
```

`swap_variables(r, s, in_place=False)`

Switch the variables \(x_r\) and \(x_s\) in the quadratic form (replacing the original form if the in_place flag is True).

INPUT:

- \(r, s\) – integers >= 0

OUTPUT:

a QuadraticForm (by default, otherwise none)

EXAMPLES:

```
sage: Q = QuadraticForm(ZZ, 4, range(1,11))
sage: Q
(continues on next page)
```
Quadratic form in 4 variables over Integer Ring with coefficients:

\[
\begin{bmatrix}
1 & 2 & 3 & 4 \\
* & 5 & 6 & 7 \\
* * & 8 & 9 \\
* * * & 10 \\
\end{bmatrix}
\]

\textit{sage: Q.swap_variables(0,2)}
Quadratic form in 4 variables over Integer Ring with coefficients:

\[
\begin{bmatrix}
8 & 6 & 3 & 9 \\
* & 5 & 2 & 7 \\
* * & 1 & 4 \\
* * * & 10 \\
\end{bmatrix}
\]

\textit{sage: Q.swap_variables(0,2).swap_variables(0,2)}
Quadratic form in 4 variables over Integer Ring with coefficients:

\[
\begin{bmatrix}
1 & 2 & 3 & 4 \\
* & 5 & 6 & 7 \\
* & 8 & 9 \\
* * * & 10 \\
\end{bmatrix}
\]

\textbf{theta\_by\_cholesky}(q\_prec)

Uses the real Cholesky decomposition to compute (the \(q\)-expansion of) the theta function of the quadratic form as a power series in \(q\) with terms correct up to the power \(q^{q\text{\_prec}}\). (So its error is \(O(q^{q\text{\_prec}+1})\).)

\textbf{REFERENCE:}


\textbf{EXAMPLES:}

\begin{verbatim}
# Check the sum of 4 squares form against Jacobi's formula
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1])
sage: Theta = Q.theta_by_cholesky(10)
sage: Theta
1 + 8*q + 24*q^2 + 32*q^3 + 24*q^4 + 48*q^5 + 96*q^6 + 64*q^7 + 24*q^8 + 104*q^9 + 144*q^10
sage: Expected = [1] + [8*sum([d for d in divisors(n) if d%4 != 0]) for n in range(1,11)]
sage: Expected
[1, 8, 24, 32, 24, 48, 96, 64, 24, 104, 144]
sage: Theta.list() == Expected
True
\end{verbatim}

# Check the form \(x^2 + 3y^2 + 5z^2 + 7w^2\) represents everything except 2 and 22.
\begin{verbatim}
sage: Q = DiagonalQuadraticForm(ZZ, [1,3,5,7])
sage: Theta = Q.theta_by_cholesky(50)
sage: Theta_list = Theta.list()
sage: [m for m in range(len(Theta_list)) if Theta_list[m] == 0]
[2, 22]
\end{verbatim}

\textbf{theta\_by\_pari}(Max, var\_str='q', safe\_flag=True)

Use PARI/GP to compute the theta function as a power series (or vector) up to the precision \(O(q^{Max})\).
This also caches the result for future computations.

If var_str = '', then we return a vector \( v \) where \( v[i] \) counts the number of vectors of length \( i \).

The safe_flag allows us to select whether we want a copy of the output, or the original output. It is only meaningful when a vector is returned, otherwise a copy is automatically made in creating the power series. By default safe_flag = True, so we return a copy of the cached information. If this is set to False, then the routine is much faster but the return values are vulnerable to being corrupted by the user.

**INPUT:**

Max – an integer >=0 var_str – a string

**OUTPUT:**

- a power series or a vector

**EXAMPLES:**

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1])
sage: Prec = 100
sage: compute = Q.theta_by_pari(Prec, '')
sage: exact = [1] + [8 * sum([d for d in divisors(i) if d % 4 != 0]) for i in range(1, Prec)]
sage: compute == exact
True
```

**theta_series(Max=10, var_str='q', safe_flag=True)**

Compute the theta series as a power series in the variable given in var_str (which defaults to ‘q’), up to the specified precision \( O(q^\text{Max}) \).

This uses the PARI/GP function `pari:qfrep`, wrapped by the `theta_by_pari()` method. This caches the result for future computations.

The safe_flag allows us to select whether we want a copy of the output, or the original output. It is only meaningful when a vector is returned, otherwise a copy is automatically made in creating the power series. By default safe_flag = True, so we return a copy of the cached information. If this is set to False, then the routine is much faster but the return values are vulnerable to being corrupted by the user.

**Todo:** Allow the option Max='mod_form' to give enough coefficients to ensure we determine the theta series as a modular form. This is related to the Sturm bound, but we will need to be careful about this (particularly for half-integral weights!).

**EXAMPLES:**

```
sage: Q = DiagonalQuadraticForm(ZZ, [1,3,5,7])
sage: Q.theta_series()
1 + 2*q + 2*q^3 + 6*q^4 + 2*q^5 + 4*q^6 + 6*q^7 + 8*q^8 + 14*q^9 + O(q^10)
sage: Q.theta_series(25)
1 + 2*q + 2*q^3 + 6*q^4 + 2*q^5 + 4*q^6 + 6*q^7 + 8*q^8 + 14*q^9 + 4*q^10 +
˓→12*q^11 + 18*q^12 + 12*q^13 + 12*q^14 + 8*q^15 + 34*q^16 + 12*q^17 + 8*q^18 +
˓→32*q^19 + 10*q^20 + 28*q^21 + 16*q^23 + 44*q^24 + O(q^25)
```

**theta_series_degree_2(Q, prec)**

Compute the theta series of degree 2 for the quadratic form Q.

**INPUT:**
• prec – an integer.

OUTPUT:

dictionary, where:
• keys are GL₂(ℤ)-reduced binary quadratic forms (given as triples of coefficients)
• values are coefficients

EXAMPLES:

```sage
sage: Q2 = QuadraticForm(ZZ, 4, [1,1,1,1, 1,0,0, 1,0, 1])
sage: S = Q2.theta_series_degree_2(10)
sage: S[(0,0,2)]
24
sage: S[(1,0,1)]
144
sage: S[(1,1,1)]
192
```

AUTHORS:
• Gonzalo Tornaria (2010-03-23)

REFERENCE:
• Raum, Ryan, Skoruppa, Tornaria, ‘On Formal Siegel Modular Forms’ (preprint)

`vectors_by_length`(bound)

Returns a list of short vectors together with their values.
This is a naive algorithm which uses the Cholesky decomposition, but does not use the LLL-reduction algorithm.

INPUT:
• bound – an integer >= 0

OUTPUT:
A list L of length (bound + 1) whose entry L [𝑖] is a list of all vectors of length 𝑖.

Reference: This is a slightly modified version of Cohn’s Algorithm 2.7.5 in “A Course in Computational Number Theory”, with the increment step moved around and slightly re-indexed to allow clean looping.

Note:
We could speed this up for very skew matrices by using LLL first, and then changing coordinates back, but for our purposes the simpler method is efficient enough.

EXAMPLES:

```sage
sage: Q = DiagonalQuadraticForm(ZZ, [1,1])
sage: Q.vectors_by_length(5)
[[[0, 0]],
 [[0, -1], [-1, 0]],
 [[-1, -1], [1, -1]],
 [],
...
```

sage: Q1 = DiagonalQuadraticForm(ZZ, [1,3,5,7])
sage: Q1.vectors_by_length(5)
[[[0, 0, 0, 0]],
 [[-1, 0, 0, 0]],
 [],
 [[-1, -1, 0, 0], [1, -1, 0, 0], [-2, 0, 0, 0]],
 [[0, 0, -1, 0]]]

sage: Q = QuadraticForm(ZZ, 4, [1,1,1,1, 1,0,0, 1,0, 1])
sage: list(map(len, Q.vectors_by_length(2)))
[1, 12, 12]

sage: Q = QuadraticForm(ZZ, 4, [1,-1,-1,-1, 1,0,0, 4,-3, 4])
sage: list(map(len, Q.vectors_by_length(3)))
[1, 3, 0, 3]

\xi(p)

Return the value of the genus characters \( \Xi_p \ldots \) which may be missing one character. We allow -1 as a prime.

Reference: Dickson’s “Studies in the Theory of Numbers”

EXAMPLES:

sage: Q1 = QuadraticForm(ZZ, 3, [1, 1, 1, 14, 3, 14])
sage: Q2 = QuadraticForm(ZZ, 3, [2, -1, 0, 2, 0, 50])
sage: [Q1.omega(), Q2.omega()]
[5, 5]

sage: [Q1.hasse_invariant(5), Q2.hasse_invariant(5)]  # equivalent over \( \mathbb{Q}_5 \)
[1, 1]

sage: [Q1.xi(5), Q2.xi(5)]  # not equivalent over \( \mathbb{Z}_5 \)
[1, -1]

\xi_{rec}(p)

Return \( \Xi(p) \) for the reciprocal form.

EXAMPLES:

sage: Q1 = QuadraticForm(ZZ, 3, [1, 1, 1, 14, 3, 14])
sage: Q2 = QuadraticForm(ZZ, 3, [2, -1, 0, 2, 0, 50])
sage: [Q1.clifford_conductor(), Q2.clifford_conductor()]  # equivalent over \( \mathbb{Q} \)
[3, 3]

sage: Q1.is_locally_equivalent_to(Q2)  # not in the same genus
False

sage: [Q1.delta(), Q2.delta()]
[480, 480]

sage: factor(480)
\[ 2^5 \times 3 \times 5 \]
```
sage: list(map(Q1.xi_rec, [-1,2,3,5]))
[-1, -1, -1, 1]
sage: list(map(Q2.xi_rec, [-1,2,3,5]))
[-1, -1, -1, -1]
```

```
sage.quadratic_forms.quadratic_form.QuadraticForm__constructor(R, n=None, entries=None)
Wrapper for the QuadraticForm class constructor. This is meant for internal use within the QuadraticForm class code only. You should instead directly call QuadraticForm().

EXAMPLES:
```
sage: from sage.quadratic_forms.quadratic_form import QuadraticForm__constructor
sage: QuadraticForm__constructor(ZZ, 3)  # Makes a generic quadratic form over the integers
Quadratic form in 3 variables over Integer Ring with coefficients:
[ 0 0 0 ]
[ * 0 0 ]
[ * * 0 ]
```

```
sage.quadratic_forms.quadratic_form.is_QuadraticForm(Q)
Determine if the object Q is an element of the QuadraticForm class.

EXAMPLES:
```
sage: Q = QuadraticForm(ZZ, 2, [1,2,3])
sage: from sage.quadratic_forms.quadratic_form import is_QuadraticForm
sage: is_QuadraticForm(Q) # ##random
True
sage: is_QuadraticForm(2) # ##random
False
```

```
sage.quadratic_forms.quadratic_form.quadratic_form_from_invariants(F, rk, det, P, sminus)
Return a rational quadratic form with given invariants.

INPUT:
• F – the base field; currently only QQ is allowed
• rk – integer; the rank
• det – rational; the determinant
• P – a list of primes where Cassel’s Hasse invariant is negative
• sminus – integer; the number of negative eigenvalues of any Gram matrix

OUTPUT:
• a quadratic form with the specified invariants

Let \((a_1, \ldots, a_n)\) be the gram marix of a regular quadratic space. Then Cassel’s Hasse invariant is defined as
\[
\prod_{i<j} (a_i, a_j),
\]
where \((a_i, a_j)\) denotes the Hilbert symbol.

ALGORITHM:
We follow [Kir2016].

EXAMPLES:

```
sage: P = [3,5]
sage: q = quadratic_form_from_invariants(QQ,2,-15,P,1)
sage: q
Quadratic form in 2 variables over Rational Field with coefficients:
[ 5 0 ]
[ * -3 ]
sage: all(q.hasse_invariant(p) == -1 for p in P)
True
```
This module provides a specialized class for working with a binary quadratic form \(ax^2 + bxy + cy^2 \), stored as a triple of integers \((a, b, c)\).

EXAMPLES:

```python
sage: Q = BinaryQF([1, 2, 3])
sage: Q
x^2 + 2*x*y + 3*y^2
sage: Q.discriminant()
-8
sage: Q.reduced_form()
x^2 + 2*y^2
sage: Q(1, 1)
6
```

AUTHORS:

- Jon Hanke (2006-08-08):
 - Appended to add the methods `BinaryQF_reduced_representatives()`, `is_reduced()`, and `__add__` on 8-3-2006 for Coding Sprint #2.
 - Added Documentation and `complex_point()` method on 8-8-2006.
- Nick Alexander: add doctests and clean code for Doc Days 2
- Justin C. Walker (2011-02-06): Add support for indefinite forms.

class `sage.quadratic_forms.binary_qf.BinaryQF`

Bases: `sage.structure.sage_object.SageObject`

A binary quadratic form over \(\mathbb{Z} \).

INPUT:

One of the following:

- \(a \) – either a 3-tuple of integers, or a quadratic homogeneous polynomial in two variables with integer coefficients

- \(a, b, c \) – three integers

OUTPUT:

The binary quadratic form \(ax^2 + bxy + cy^2 \).
EXAMPLES:

```python
sage: b = BinaryQF([1, 2, 3])
sage: b.discriminant()
-8
sage: b1 = BinaryQF(1, 2, 3)
sage: b1 == b
True
sage: R.<x, y> = ZZ[]
sage: BinaryQF(x^2 + 2*x*y + 3*y^2) == b
True
sage: BinaryQF(1, 0, 1)
x^2 + y^2
```

`complex_point()`
Return the point in the complex upper half-plane associated to `self`.

This form, \(ax^2 + bxy + cy^2 \), must be definite with negative discriminant \(b^2 - 4ac < 0 \).

OUTPUT:

• the unique complex root of \(ax^2 + bx + c \) with positive imaginary part

EXAMPLES:

```python
sage: Q = BinaryQF([1, 0, 1])
sage: Q.complex_point()
1.00000000000000*I
```

`content()`
Return the content of the form, i.e., the gcd of the coefficients.

EXAMPLES:

```python
sage: Q = BinaryQF(22, 14, 10)
sage: Q.content()
2
sage: Q = BinaryQF(4, 4, -15)
sage: Q.content()
1
```

`cycle(proper=False)`
Return the cycle of reduced forms to which `self` belongs.

This is based on Algorithm 6.1 of [BUVO2007].

INPUT:

• `self` – reduced, indefinite form of non-square discriminant

• `proper` – boolean (default: `False`); if `True`, return the proper cycle

The proper cycle of a form \(f \) consists of all reduced forms that are properly equivalent to \(f \). This is useful when testing for proper equivalence (or equivalence) between indefinite forms.

The cycle of \(f \) is a technical tool that is used when computing the proper cycle. Our definition of the cycle is slightly different from the one in [BUVO2007]. In our definition, the cycle consists of all reduced forms \(g \), such that the \(a \)-coefficient of \(g \) has the same sign as the \(a \)-coefficient of \(f \), and \(g \) can be obtained from \(f \) by performing a change of variables, and then multiplying by the determinant of the change-of-variables matrix. It is important to note that \(g \) might not be equivalent to \(f \) (because of multiplying by the
determinant). However, either g or $-g$ must be equivalent to f. Also note that the cycle does contain f. (Under the definition in [BUVO2007], the cycle might not contain f, because all forms in the cycle are required to have positive a-coefficient, even if the a-coefficient of f is negative.)

EXAMPLES:

```sage
sage: Q = BinaryQF(14, 17, -2)
sage: Q.cycle()
[14*x^2 + 17*x*y - 2*y^2,
  2*x^2 + 19*x*y - 5*y^2,
  5*x^2 + 11*x*y - 14*y^2]
sage: Q.cycle(proper=True)
[14*x^2 + 17*x*y - 2*y^2,
  -2*x^2 + 19*x*y + 5*y^2,
  5*x^2 + 11*x*y - 14*y^2,
  -14*x^2 + 17*x*y + 2*y^2,
  2*x^2 + 19*x*y - 5*y^2,
  -5*x^2 + 11*x*y + 14*y^2]
sage: Q = BinaryQF(1, 8, -3)
sage: Q.cycle()
[x^2 + 8*x*y - 3*y^2,
  3*x^2 + 4*x*y - 5*y^2,
  5*x^2 + 6*x*y - 2*y^2,
  2*x^2 + 6*x*y - 5*y^2,
  5*x^2 + 4*x*y - 3*y^2,
  3*x^2 + 8*x*y - y^2]
sage: Q.cycle(proper=True)
[x^2 + 8*x*y - 3*y^2,
  -3*x^2 + 4*x*y + 5*y^2,
  5*x^2 + 6*x*y - 2*y^2,
  -2*x^2 + 6*x*y + 5*y^2,
  5*x^2 + 4*x*y - 3*y^2,
  -3*x^2 + 8*x*y + y^2]
sage: Q = BinaryQF(1, 7, -6)
sage: Q.cycle()
[x^2 + 7*x*y - 6*y^2,
  6*x^2 + 5*x*y - 2*y^2,
  2*x^2 + 7*x*y - 3*y^2,
  3*x^2 + 5*x*y - 4*y^2,
  4*x^2 + 3*x*y - 4*y^2,
  4*x^2 + 5*x*y - 3*y^2,
  3*x^2 + 7*x*y - 2*y^2,
  2*x^2 + 5*x*y - 6*y^2,
  6*x^2 + 7*x*y - y^2]
```

det()

Return the determinant of the matrix associated to `self`.

The determinant is used by Gauss and by Conway-Sloane, for whom an integral quadratic form has coefficients $(a, 2b, c)$ with a, b, c integers.

OUTPUT:

The determinant of the matrix:
as a rational.

REMARK:
This is just \(-D/4\) where \(D\) is the discriminant. The return type is rational even if \(b\) (and hence \(D\)) is even.

EXAMPLES:
```
sage: q = BinaryQF(1, -1, 67)
sage: q.determinant()
267/4
```

determinant()
Return the determinant of the matrix associated to self.

The determinant is used by Gauss and by Conway-Sloane, for whom an integral quadratic form has coefficients \((a, 2b, c)\) with \(a, b, c\) integers.

OUTPUT:
The determinant of the matrix:

\[
\begin{bmatrix}
 a & b/2 \\
 b/2 & c
\end{bmatrix}
\]
as a rational.

REMARK:
This is just \(-D/4\) where \(D\) is the discriminant. The return type is rational even if \(b\) (and hence \(D\)) is even.

EXAMPLES:
```
sage: q = BinaryQF(1, -1, 67)
sage: q.determinant()
267/4
```

discriminant()
Return the discriminant of self.

Given a form \(ax^2 + bxy + cy^2\), this returns \(b^2 - 4ac\).

EXAMPLES:
```
sage: Q = BinaryQF([1, 2, 3])
sage: Q.discriminant()
-8
```

has_fundamental_discriminant()
Return whether the discriminant \(D\) of this form is a fundamental discriminant (i.e. \(D\) is the smallest element of its squareclass with \(D = 0\) or 1 modulo 4).

EXAMPLES:
```
sage: Q = BinaryQF([1, 0, 1])
sage: Q.discriminant()
-4
```
```python
sage: Q.has_fundamental_discriminant()
True

sage: Q = BinaryQF([2, 0, 2])
sage: Q.discriminant()
-16
sage: Q.has_fundamental_discriminant()
False
```

is_equivalent(other, proper=True)

Return whether self is equivalent to other.

INPUT:

- proper – bool (default: True); if True use proper equivalence
- other – a binary quadratic form

EXAMPLES:

```python
sage: Q3 = BinaryQF(4, 4, 15)
sage: Q2 = BinaryQF(4, -4, 15)
sage: Q2.is_equivalent(Q3)
True
sage: a = BinaryQF([33, 11, 5])
sage: b = a.reduced_form(); b
5*x^2 - x*y + 27*y^2
sage: a.is_equivalent(b)
True
sage: a.is_equivalent(BinaryQF((3, 4, 5)))
False
```

Some indefinite examples:

```python
sage: Q1 = BinaryQF(9, 8, -7)
sage: Q2 = BinaryQF(9, -8, -7)
sage: Q1.is_equivalent(Q2, proper=True)
False
sage: Q1.is_equivalent(Q2, proper=False)
True
```

is_indef()

Return whether self is indefinite, i.e., has positive discriminant.

EXAMPLES:

```python
sage: Q = BinaryQF(1, 3, -5)
sage: Q.is_indef()
True
```

is_indefinite()

Return whether self is indefinite, i.e., has positive discriminant.

EXAMPLES:

```python
sage: Q = BinaryQF(1, 3, -5)
sage: Q.is_indef()  # The same as Q.is_indefinite() for binary quadratic forms
True
```
sage: Q = BinaryQF(1, 3, -5)
sage: Q.is_indef()
True

is_negative_definite()

Return True if self is negative definite, i.e., has negative discriminant with $a < 0$.

EXAMPLES:

```sage
sage: Q = BinaryQF(-1, 3, -5)
sage: Q.is_positive_definite()
False
sage: Q.is_negative_definite()
True
```

is_negdef()

Return True if self is negative definite, i.e., has negative discriminant with $a < 0$.

EXAMPLES:

```sage
sage: Q = BinaryQF(-1, 3, -5)
sage: Q.is_positive_definite()
False
sage: Q.is_negative_definite()
True
```

is_nonsingular()

Return whether this form is nonsingular, i.e., has non-zero discriminant.

EXAMPLES:

```sage
sage: Q = BinaryQF(1, 3, -5)
sage: Q.is_nonsingular()
True
sage: Q = BinaryQF(1, 2, 1)
sage: Q.is_nonsingular()
False
```

is_posdef()

Return True if self is positive definite, i.e., has negative discriminant with $a > 0$.

EXAMPLES:

```sage
sage: Q = BinaryQF(195751, 37615, 1807)
sage: Q.is_positive_definite()
True
sage: Q = BinaryQF(195751, 1212121, -1876411)
sage: Q.is_positive_definite()
False
```

is_positive_definite()

Return True if self is positive definite, i.e., has negative discriminant with $a > 0$.

EXAMPLES:
is_positive_definite()

Return whether the form $ax^2 + bxy + cy^2$ satisfies $gcd(a, b, c) = 1$, i.e., is primitive.

EXAMPLES:

```python
sage: Q = BinaryQF([6, 3, 9])
```

```python
sage: Q.is_positive_definite()
```

```
False
```

```python
sage: Q = BinaryQF([1, 1, 1])
```

```python
sage: Q.is_positive_definite()
```

```
True
```

```python
sage: Q = BinaryQF([2, 2, 2])
```

```python
sage: Q.is_positive_definite()
```

```
False
```

```python
sage: rqf = BinaryQF_reduced_representatives(-23*9, primitive_only=False)
```

```python
sage: [qf.is_positive_definite() for qf in rqf]
```

```
[True, True, True, False, True, True, False, False, True]
```

```python
sage: rqf
```

```
[x^2 + x*y + 52*y^2,
 2*x^2 - x*y + 26*y^2,
 2*x^2 + x*y + 26*y^2,
 3*x^2 + 3*x*y + 18*y^2,
 4*x^2 - x*y + 13*y^2,
 4*x^2 + x*y + 13*y^2,
 6*x^2 - 3*x*y + 9*y^2,
 6*x^2 + 3*x*y + 9*y^2,
 8*x^2 + 7*x*y + 8*y^2]
```

```python
sage: [qf for qf in rqf if qf.is_positive_definite()]
```

```
[x^2 + x*y + 52*y^2,
 2*x^2 - x*y + 26*y^2,
 2*x^2 + x*y + 26*y^2,
 4*x^2 - x*y + 13*y^2,
 4*x^2 + x*y + 13*y^2,
 8*x^2 + 7*x*y + 8*y^2]
```

See also:

content()

is_reduced()

Return whether self is reduced.

Let $f = ax^2 + bxy + cy^2$ be a binary quadratic form of discriminant D.

- If f is positive definite ($D < 0$ and $a > 0$), then f is reduced if and only if $|b| \leq a \leq c$, and $b \geq 0$ if either $a = b$ or $a = c$.

91
• If \(f \) is negative definite (\(D < 0 \) and \(a < 0 \)), then \(f \) is reduced if and only if the positive definite form with coefficients \((-a, b, -c)\) is reduced.

• If \(f \) is indefinite (\(D > 0 \)), then \(f \) is reduced if and only if \(|\sqrt{D} - 2|a| < b < \sqrt{D} \) or \([a = 0 \text{ and } -b < 2c \leq b] \) or \([c = 0 \text{ and } -b < 2a \leq b] \).

EXAMPLES:

```
sage: Q = BinaryQF([1, 2, 3])
sage: Q.is_reduced()
False
sage: Q = BinaryQF([2, 1, 3])
sage: Q.is_reduced()
True
sage: Q = BinaryQF([1, -1, 1])
sage: Q.is_reduced()
False
sage: Q = BinaryQF([1, 1, 1])
sage: Q.is_reduced()
True
```

Examples using indefinite forms:

```
sage: f = BinaryQF(-1, 2, 2)
sage: f.is_reduced()
True
sage: BinaryQF(1, 9, 4).is_reduced()
False
sage: BinaryQF(1, 5, -1).is_reduced()
True
```

is_reducible()
Return whether this form is reducible and cache the result.

A binary form \(q \) is called reducible if it is the product of two linear forms \(q = (ax + by)(cx + dy) \), or equivalently if its discriminant is a square.

EXAMPLES:

```
sage: q = BinaryQF([1, 0, -1])
sage: q.is_reducible()
True
```

Warning: Despite the similar name, this method is unrelated to reduction of binary quadratic forms as implemented by `reduced_form()` and `is_reduced()`.

is_singular()
Return whether `self` is singular, i.e., has zero discriminant.

EXAMPLES:
Quadratic Forms, Release 9.7

```python
sage: Q = BinaryQF(1, 3, -5)
sage: Q.is_singular()
False
sage: Q = BinaryQF(1, 2, 1)
sage: Q.is_singular()
True
```

is_weakly_reduced()
Check if the form $ax^2 + bxy + cy^2$ satisfies $|b| \leq a \leq c$, i.e., is weakly reduced.

EXAMPLES:

```python
sage: Q = BinaryQF([1, 2, 3])
sage: Q.is_weakly_reduced()
False
sage: Q = BinaryQF([2, 1, 3])
sage: Q.is_weakly_reduced()
True
sage: Q = BinaryQF([1, -1, 1])
sage: Q.is_weakly_reduced()
True
```

is_zero()
Return whether `self` is identically zero.

EXAMPLES:

```python
sage: Q = BinaryQF(195751, 37615, 1807)
sage: Q.is_zero()
False
sage: Q = BinaryQF(0, 0, 0)
sage: Q.is_zero()
True
```

matrix_action_left(M)
Return the binary quadratic form resulting from the left action of the 2-by-2 matrix M on `self`.

Here the action of the matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on the form $Q(x, y)$ produces the form $Q(ax + cy, bx + dy)$.

EXAMPLES:

```python
sage: Q = BinaryQF([2, 1, 3]); Q
2*x^2 + x*y + 3*y^2
sage: M = matrix(ZZ, [[1, 2], [3, 5]])
sage: Q.matrix_action_left(M)
16*x^2 + 83*x*y + 108*y^2
```

matrix_action_right(M)
Return the binary quadratic form resulting from the right action of the 2-by-2 matrix M on `self`.

Here the action of the matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on the form $Q(x, y)$ produces the form $Q(ax + by, cx + dy)$.

EXAMPLES:
sage: Q = BinaryQF([2, 1, 3]); Q
2*x^2 + x*y + 3*y^2
sage: M = matrix(ZZ, [[1, 2], [3, 5]])
sage: Q.matrix_action_right(M)
32*x^2 + 109*x*y + 93*y^2

polynomial()
Return self as a homogeneous 2-variable polynomial.

EXAMPLES:

sage: Q = BinaryQF([1, 2, 3])
sage: Q.polynomial()
x^2 + 2*x*y + 3*y^2
sage: Q = BinaryQF([-1, -2, 3])
sage: Q.polynomial()
-x^2 - 2*x*y + 3*y^2
sage: Q = BinaryQF([0, 0, 0])
sage: Q.polynomial()
0

reduced_form(transformation=False, algorithm='default')
Return a reduced form equivalent to self.

INPUT:

• self – binary quadratic form of non-square discriminant
• transformation – boolean (default: False): if True, return both the reduced form and a matrix whose matrix_action_right() transforms self into the reduced form.
• algorithm – string; the algorithm to use. Valid options are:
 – 'default' – let Sage pick an algorithm (default)
 – 'pari' – use PARI (pari:qfbred or pari:qfbredsl2)
 – 'sage' – use Sage

See also:

• is_reduced()
• is_equivalent()

EXAMPLES:

sage: a = BinaryQF([33, 11, 5])
sage: a.is_reduced()
False
sage: b = a.reduced_form(); b
5*x^2 - x*y + 27*y^2
sage: b.is_reduced()
True
sage: a = BinaryQF([15, 0, 15])
Examples of reducing indefinite forms:

```python
sage: f = BinaryQF(1, 0, -3)
sage: f.is_reduced()
False
sage: g = f.reduced_form(); g
x^2 + 2*x*y - 2*y^2
sage: g.is_reduced()
True
```

```python
sage: q = BinaryQF(1, 0, -1)
sage: q.reduced_form()
x^2 + 2*x*y
```

```python
sage: BinaryQF(1, 9, 4).reduced_form(transformation=True)
(     
    [ 0 -1]
4*x^2 + 7*x*y - y^2, [ 1  2]
)
sage: BinaryQF(3, 7, -2).reduced_form(transformation=True)
(     
    [1  0]
3*x^2 + 7*x*y - 2*y^2, [0  1]
)
sage: BinaryQF(-6, 6, -1).reduced_form(transformation=True)
(     
    [ 0 -1]
-x^2 + 2*x*y + 2*y^2, [ 1 -4]
)
```

small_prime_value(Bmax=1000)

Returns a prime represented by this (primitive positive definite) binary form.

INPUT:

- **Bmax** – a positive bound on the representing integers.

OUTPUT:

A prime number represented by the form.

Note: This is a very elementary implementation which just substitutes values until a prime is found.

EXAMPLES:
sage: [Q.small_prime_value() for Q in BinaryQF_reduced_representatives(-23, primitive_only=True)]
[23, 2, 2]
sage: [Q.small_prime_value() for Q in BinaryQF_reduced_representatives(-47, primitive_only=True)]
[47, 2, 2, 3, 3]

solve_integer(n)
Solve $Q(x, y) = n$ in integers x and y where Q is this quadratic form.

INPUT:
• n – a positive integer

OUTPUT:
A tuple (x, y) of integers satisfying $Q(x, y) = n$, or None if no solution exists.

ALGORITHM: pari:qfbsolve

EXAMPLES:
sage: Q = BinaryQF([1, 0, 419])
sage: Q.solve_integer(773187972)
(4919, 1337)
sage: Qs = BinaryQF_reduced_representatives(-23, primitive_only=True)
sage: Qs
[x^2 + x*y + 6*y^2, 2*x^2 - x*y + 3*y^2, 2*x^2 + x*y + 3*y^2]
sage: [Q.solve_integer(3) for Q in Qs]
[None, (0, -1), (0, -1)]
sage: [Q.solve_integer(5) for Q in Qs]
[None, None, None]
sage: [Q.solve_integer(6) for Q in Qs]
[(1, -1), (1, -1), (-1, -1)]

sage.quadratic_forms.binary_qf.BinaryQF_reduced_representatives(D, primitive_only=False, proper=True)

Return representatives for the classes of binary quadratic forms of discriminant D.

INPUT:
• D – (integer) a discriminant
• primitive_only – (boolean; default: True): if True, only return primitive forms.
• proper – (boolean; default: True)

OUTPUT:
(list) A lexicographically-ordered list of inequivalent reduced representatives for the (im)proper equivalence classes of binary quadratic forms of discriminant D. If primitive_only is True then imprimitive forms (which only exist when D is not fundamental) are omitted; otherwise they are included.

EXAMPLES:
sage: BinaryQF_reduced_representatives(-163)
[x^2 + x*y + 41*y^2]

sage: BinaryQF_reduced_representatives(-12)
[x^2 + 3*y^2, 2*x^2 + 2*x*y + 2*y^2]

sage: BinaryQF_reduced_representatives(-16)
[x^2 + 4*y^2, 2*x^2 + 2*y^2]

sage: BinaryQF_reduced_representatives(-63)
[x^2 + x*y + 16*y^2, 2*x^2 - x*y + 8*y^2, 2*x^2 + x*y + 8*y^2, 3*x^2 + 3*x*y + 6*y^2 - 2, 4*x^2 + x*y + 4*y^2]

The number of inequivalent reduced binary forms with a fixed negative fundamental discriminant D is the class number of the quadratic field $\mathbb{Q}(\sqrt{D})$:

sage: len(BinaryQF_reduced_representatives(-13*4))
2
sage: QuadraticField(-13*4, 'a').class_number()
2
sage: p = next_prime(2^20); p
1048583
sage: len(BinaryQF_reduced_representatives(-p))
689
sage: QuadraticField(-p, 'a').class_number()
689

sage: BinaryQF_reduced_representatives(-23*9)
[x^2 + x*y + 52*y^2, 2*x^2 + x*y + 26*y^2, 2*x^2 + x*y + 26*y^2, 3*x^2 + 3*x*y + 18*y^2, 4*x^2 - x*y + 13*y^2, 4*x^2 + x*y + 13*y^2, 6*x^2 - 3*x*y + 9*y^2, 6*x^2 + 3*x*y + 9*y^2, 8*x^2 + 7*x*y + 8*y^2]

sage: BinaryQF_reduced_representatives(-23*9, primitive_only=True)
[x^2 + x*y + 52*y^2, 2*x^2 + x*y + 26*y^2, 2*x^2 + x*y + 26*y^2, 4*x^2 - x*y + 13*y^2, 4*x^2 + x*y + 13*y^2, 8*x^2 + 7*x*y + 8*y^2]
sage.quadratic_forms.constructions.BezoutianQuadraticForm(f, g)

Compute the Bezoutian of two polynomials defined over a common base ring. This is defined by

$$\text{Bez}(f, g) := \frac{f(x)g(y) - f(y)g(x)}{y - x}$$

and has size defined by the maximum of the degrees of f and g.

INPUT:
- f, g – polynomials in $R[x]$, for some ring R

OUTPUT:
a quadratic form over R

EXAMPLES:

```python
sage: R = PolynomialRing(ZZ, 'x')
sage: f = R([1,2,3])
sage: g = R([2,5])
sage: Q = BezoutianQuadraticForm(f, g) ; Q
Quadratic form in 2 variables over Integer Ring with coefficients:
[ 1 -12 ]
[ * -15 ]
```

AUTHORS:
- Fernando Rodriguez-Villegas, Jonathan Hanke – added on 11/9/2008

sage.quadratic_forms.constructions.HyperbolicPlane_quadratic_form(R, r=1)

Constructs the direct sum of r copies of the quadratic form xy representing a hyperbolic plane defined over the base ring R.

INPUT:
- R: a ring
- n (integer, default 1) number of copies

EXAMPLES:

```python
sage: HyperbolicPlane_quadratic_form(ZZ)
Quadratic form in 2 variables over Integer Ring with coefficients:
[ 1 -12 ]
[ * -15 ]
```
This file contains a set of routines to create a random quadratic form.

`sage.quadratic_forms.random_quadraticform.random_quadraticform(R, n, rand_arg_list=[])`

Create a random quadratic form in n variables defined over the ring R.

The last (and optional) argument `rand_arg_list` is a list of at most 3 elements which is passed (as at most 3 separate variables) into the method `R.random_element()`.

INPUT:

- R – a ring.
- n – an integer ≥ 0
- `rand_arg_list` – a list of at most 3 arguments which can be taken by `R.random_element()`.

OUTPUT:

A quadratic form over the ring R.

EXAMPLES:

```sage
sage: random_quadraticform(ZZ, 3, [1,5])  # random
Quadratic form in 3 variables over Integer Ring with coefficients:
[ 3 2 3 ]
[ * 1 4 ]
[ * * 3 ]

sage: random_quadraticform(ZZ, 3, [-5,5])  # random
Quadratic form in 3 variables over Integer Ring with coefficients:
[ 3 2 -5 ]
[ * 2 -2 ]
[ * * -5 ]

sage: random_quadraticform(ZZ, 3, [-50,50])  # random
Quadratic form in 3 variables over Integer Ring with coefficients:
[ 1 8 -23 ]
[ * 0 0 ]
[ * * 6 ]
```

`sage.quadratic_forms.random_quadraticform.random_quadraticform_with_conditions(R, n, condi-
tion_list=[], rand_arg_list=[])`

Create a random quadratic form in n variables defined over the ring R satisfying a list of boolean (i.e. True/False) conditions.
The conditions c appearing in the list must be boolean functions which can be called either as $Q.c()$ or $c(Q)$, where Q is the random quadratic form.

The last (and optional) argument `rand_arg_list` is a list of at most 3 elements which is passed (as at most 3 separate variables) into the method `R.random_element()`.

EXAMPLES:

```
sage: check = QuadraticForm.is_positive_definite
sage: Q = random_quadraticform_with_conditions(ZZ, 3, [check], [-5, 5])
sage: Q
# random
Quadratic form in 3 variables over Integer Ring with coefficients:
[ 3 -2 -5 ]
[ * 2 2 ]
[ * * 3 ]
```

`sage.quadratic_forms.random_quadraticform.random_ternaryqf`(`rand_arg_list=[]`)

Create a random ternary quadratic form.

The last (and optional) argument `rand_arg_list` is a list of at most 3 elements which is passed (as at most 3 separate variables) into the method `R.random_element()`.

INPUT:

- `rand_arg_list` – a list of at most 3 arguments which can be taken by `R.random_element()`.

OUTPUT:

A ternary quadratic form.

EXAMPLES:

```
sage: random_ternaryqf()  # random
Ternary quadratic form with integer coefficients:
[1 1 4]
[1 1 -1]
sage: random_ternaryqf([-1, 2])  # random
Ternary quadratic form with integer coefficients:
[1 0 1]
[-1 -1 -1]
sage: random_ternaryqf([-10, 10, "uniform"],)  # random
Ternary quadratic form with integer coefficients:
[7 -8 2]
[0 3 -6]
```

`sage.quadratic_forms.random_quadraticform.random_ternaryqf_with_conditions`(`condition_list=[], ` `rand_arg_list=[]`)

Create a random ternary quadratic form satisfying a list of boolean (i.e. True/False) conditions.

The conditions c appearing in the list must be boolean functions which can be called either as $Q.c()$ or $c(Q)$, where Q is the random ternary quadratic form.

The last (and optional) argument `rand_arg_list` is a list of at most 3 elements which is passed (as at most 3 separate variables) into the method `R.random_element()`.

EXAMPLES:

```
sage: check = TernaryQF.is_positive_definite
sage: Q = random_ternaryqf_with_conditions([check], [-5, 5])
```
sage: Q # random
Ternary quadratic form with integer coefficients:
[3 4 2]
[2 -2 -1]
CHAPTER
FIVE

ROUTINES FOR COMPUTING SPECIAL VALUES OF L-FUNCTIONS

- \texttt{gamma_exact()} – Exact values of the Γ function at integers and half-integers
- \texttt{zeta_exact()} – Exact values of the Riemann ζ function at critical values
- \texttt{quadratic_L_function_exact()} – Exact values of the Dirichlet L-functions of quadratic characters at critical values
- \texttt{quadratic_L_function_numerical()} – Numerical values of the Dirichlet L-functions of quadratic characters in the domain of convergence

\texttt{sage.quadratic_forms.special_values.QuadraticBernoulliNumber}(k,d)

Compute k-th Bernoulli number for the primitive quadratic character associated to $\chi(x) = (\frac{d}{x})$.

\textbf{EXAMPLES:}

Let us create a list of some odd negative fundamental discriminants:

\begin{verbatim}
sage: test_set = [d for d in range(-163, -3, 4) if is_fundamental_discriminant(d)]
\end{verbatim}

In general, we have $B_{1,\chi_d} = -2h/w$ for odd negative fundamental discriminants:

\begin{verbatim}
sage: all(QuadraticBernoulliNumber(1, d) == -len(BinaryQF_reduced_representatives(d)) for d in test_set)
True
\end{verbatim}

\textbf{REFERENCES:}

- [Iwa1972], pp 7-16.

\texttt{sage.quadratic_forms.special_values.gamma_exact}(n)

Evaluates the exact value of the Γ function at an integer or half-integer argument.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: gamma_exact(4)
6
sage: gamma_exact(3)
2
sage: gamma_exact(2)
1
sage: gamma_exact(1)
1
sage: gamma_exact(1/2)
sqrt(pi)
\end{verbatim}

(continues on next page)
sage: gamma__exact(3/2)
1/2*sqrt(pi)
sage: gamma__exact(5/2)
3/4*sqrt(pi)
sage: gamma__exact(7/2)
15/8*sqrt(pi)
sage: gamma__exact(-1/2)
-2*sqrt(pi)
sage: gamma__exact(-3/2)
4/3*sqrt(pi)
sage: gamma__exact(-5/2)
-8/15*sqrt(pi)
sage: gamma__exact(-7/2)
16/105*sqrt(pi)

sage.quadratic_forms.special_values.quadratic_L_function__exact(n, d)
Returns the exact value of a quadratic twist of the Riemann Zeta function by \(\chi_d(x) = \left(\frac{d}{x} \right) \).

The input \(n \) must be a critical value.

EXAMPLES:

sage: quadratic_L_function__exact(1, -4)
1/4*pi
sage: quadratic_L_function__exact(-4, -4)
5/2
sage: quadratic_L_function__exact(2, 1)
1/6*pi^2

REFERENCES:
- [Iwa1972], pp 16-17, Special values of \(L(1 - n, \chi) \) and \(L(n, \chi) \)
- [IR1990]
- [Was1997]

sage.quadratic_forms.special_values.quadratic_L_function__numerical(n, d, num_terms=1000)
Evaluate the Dirichlet L-function (for quadratic character) numerically (in a very naive way).

EXAMPLES:

First, let us test several values for a given character:

sage: RR = RealField(100)
sage: for i in range(5):
 : print("L({}, (-4/)): {}".format(1+2*i, RR(quadratic_L_function__exact(1+2*i, -4)) - quadratic_L_function__numerical(RR(1+2*i), -4, 10000)))
L(1, (-4/)): 0.0000499999995000000224999996962707
L(3, (-4/)): 4.99999700000003...e-13
L(5, (-4/)): 4.9999992759382...e-21
L(7, (-4/)): ...e-29
L(9, (-4/)): ...e-29

This procedure fails for negative special values, as the Dirichlet series does not converge here:
sage: quadratic_L_function__numerical(-3,-4, 10000)
Traceback (most recent call last):
 ...
ValueError: the Dirichlet series does not converge here

Test for several characters that the result agrees with the exact value, to a given accuracy

sage: for d in range(-20,0): # long time (2s on sage.math 2014)
 : if abs(RR(quadratic_L_function__numerical(1, d, 10000) - quadratic_L_
 → function__exact(1, d))) > 0.001:
 : print("We have a problem at d = {}: exact = {}, numerical = {}".format(d, RR(quadratic_L_function__exact(1, d)), RR(quadratic_L_function__numerical(1, d))))

sage.quadratic_forms.special_values.zeta__exact(n)
Returns the exact value of the Riemann Zeta function

The argument must be a critical value, namely either positive even or negative odd.

See for example [Iwa1972], p13, Special value of $\zeta(2k)$

EXAMPLES:

Let us test the accuracy for negative special values:

sage: RR = RealField(100)
sage: for i in range(1,10):
 : print("zeta({}):{}".format(1-2*i, RR(zeta__exact(1-2*i)) - zeta(RR(1-
 → 2*i)))))

zeta(-1): 0.00000000000000000000000000000
zeta(-3): 0.00000000000000000000000000000
zeta(-5): 0.00000000000000000000000000000
zeta(-7): 0.00000000000000000000000000000
zeta(-9): 0.00000000000000000000000000000
zeta(-11): 0.00000000000000000000000000000
zeta(-13): 0.00000000000000000000000000000
zeta(-15): 0.00000000000000000000000000000
zeta(-17): 0.00000000000000000000000000000

Let us test the accuracy for positive special values:

sage: all(abs(RR(zeta__exact(2*i)) - zeta(RR(2*i))) < 10**(-28) for i in range(1,10))
True

REFERENCES:

• [Iwa1972]
• [IR1990]
• [Was1997]
OPTIMISED CYTHON CODE FOR COUNTING CONGRUENCE SOLUTIONS

sage.quadratic_forms.count_local_2.CountAllLocalTypesNaive(Q, p, k, m, zvec, nzvec)

This is an internal routine, which is called by sage.quadratic_forms.quadratic_form.QuadraticForm.count_congruence_solutions_by_type(). See the documentation of that method for more details.

INPUT:
• Q – quadratic form over \(\mathbb{Z} \)
• p – prime number > 0
• k – an integer > 0
• m – an integer (depending only on \(\text{mod } p^k \))
• zvec, nzvec – a list of integers in \(\text{range}(Q.\text{dim}) \), or None

OUTPUT:
a list of six integers \(\geq 0 \) representing the solution types: [All, Good, Zero, Bad, BadI, BadII]

EXAMPLES:

```python
sage: from sage.quadratic_forms.count_local_2 import CountAllLocalTypesNaive
sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3])
sage: CountAllLocalTypesNaive(Q, 3, 1, 1, None, None)
[6, 6, 0, 0, 0, 0]
sage: CountAllLocalTypesNaive(Q, 3, 1, 2, None, None)
[6, 6, 0, 0, 0, 0]
sage: CountAllLocalTypesNaive(Q, 3, 1, 0, None, None)
[15, 12, 1, 2, 0, 2]
```

sage.quadratic_forms.count_local_2.count_modp__by_gauss_sum(n, p, m, Qdet)

Returns the number of solutions of \(Q(x) = m \) over the finite field \(\mathbb{Z}/p\mathbb{Z} \), where \(p \) is a prime number > 2 and \(Q \) is a non-degenerate quadratic form of dimension \(n \geq 1 \) and has Gram determinant \(Qdet \).

REFERENCE: These are defined in Table 1 on p363 of Hanke’s “Local Densities...” paper.

INPUT:
• n – an integer \(\geq 1 \)
• p – a prime number > 2
• m – an integer
• Qdet – a integer which is non-zero mod \(p \)
OUTPUT: an integer ≥ 0

EXAMPLES:

```python
sage: from sage.quadratic_forms.count_local_2 import count_modp__by_gauss_sum

sage: count_modp__by_gauss_sum(3, 3, 0, 1)  # for $Q = x^2 + y^2 + z^2$ => Gram,
\rightarrow Det = 1 (mod 3)
9

sage: count_modp__by_gauss_sum(3, 3, 1, 1)  # for $Q = x^2 + y^2 + z^2$ => Gram,
\rightarrow Det = 1 (mod 3)
6

sage: count_modp__by_gauss_sum(3, 3, 2, 1)  # for $Q = x^2 + y^2 + z^2$ => Gram,
\rightarrow Det = 1 (mod 3)
12

sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
sage: [Q.count_congruence_solutions(3, 1, m, None, None) == count_modp__by_gauss_sum(3, 3, m, 1) \text{ for } m \text{ in range}(3)]
[True, True, True]

sage: count_modp__by_gauss_sum(3, 3, 0, 2)  # for $Q = x^2 + y^2 + 2z^2$ => Gram,
\rightarrow Det = 2 (mod 3)
9

sage: count_modp__by_gauss_sum(3, 3, 1, 2)  # for $Q = x^2 + y^2 + 2z^2$ => Gram,
\rightarrow Det = 2 (mod 3)
12

sage: count_modp__by_gauss_sum(3, 3, 2, 2)  # for $Q = x^2 + y^2 + 2z^2$ => Gram,
\rightarrow Det = 2 (mod 3)
6

sage: Q = DiagonalQuadraticForm(ZZ, [1,1,2])
sage: [Q.count_congruence_solutions(3, 1, m, None, None) == count_modp__by_gauss_sum(3, 3, m, 2) \text{ for } m \text{ in range}(3)]
[True, True, True]
```

110 Chapter 6. Optimised Cython code for counting congruence solutions
CHAPTER
SEVEN

QUADRATIC FORM EXTRAS

sage.quadratic_forms.extras.extend_to_primitive(A_input)

Given a matrix (resp. list of vectors), extend it to a square matrix (resp. list of vectors), such that its determinant is the gcd of its minors (i.e. extend the basis of a lattice to a "maximal" one in \(\mathbb{Z}^n\)).

Author(s): Gonzalo Tornaria and Jonathan Hanke.

INPUT:

a matrix, or a list of length \(n\) vectors (in the same space)

OUTPUT:

a square matrix, or a list of \(n\) vectors (resp.)

EXAMPLES:

```
sage: A = Matrix(ZZ, 3, 2, range(6))
sage: extend_to_primitive(A)
[ 0 1 -1]
[ 2 3 0]
[ 4 5 0]
sage: extend_to_primitive(vector([1,2,3]))
[(1, 2, 3), (0, 1, 1), (-1, 0, 0)]
```

sage.quadratic_forms.extras.is_triangular_number(n, return_value=False)

Return whether \(n\) is a triangular number.

A triangular number is a number of the form \(k(k+1)/2\) for some non-negative integer \(n\). See Wikipedia article Triangular_number. The sequence of triangular number is references as A000217 in the Online encyclopedia of integer sequences (OEIS).

If you want to get the value of \(k\) for which \(n = k(k+1)/2\) set the argument return_value to True (see the examples below).

INPUT:

- \(n\) - an integer
- return_value - a boolean set to False by default. If set to True the function returns a pair made of a boolean and the value \(v\) such that \(v(v+1)/2 = n\).

EXAMPLES:

```
sage: is_triangular_number(3)
True
sage: is_triangular_number(3, return_value=True)
(True, 1)
```

(continues on next page)
sage: is_triangular_number(2)
False
sage: is_triangular_number(2, return_value=True)
(True, None)

sage: is_triangular_number(25*(25+1)/2)
True

sage: is_triangular_number(10^6 * (10^6 +1)/2, return_value=True)
(True, 1000000)

sage.quadratic_forms.extras.least_quadratic_nonresidue(p)
Return the smallest positive integer quadratic non-residue in Z/pZ for primes p>2.

EXAMPLES:

sage: least_quadratic_nonresidue(5)
2
sage: [least_quadratic_nonresidue(p) for p in prime_range(3,100)]
[2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5]
AUTHORS:

- David Kohel & Gabriele Nebe (2007): First created
- Simon Brandhorst (2018): various bugfixes and printing
- Simon Brandhorst (2018): enumeration of genera
- Simon Brandhorst (2020): genus representative

`sage.quadratic_forms.genera.genus.Genus(A, factored_determinant=None)`

Given a nonsingular symmetric matrix A, return the genus of A.

INPUT:
- A – a symmetric matrix with integer coefficients
- `factored_determinant` – (default: None) a factorization object the factored determinant of A

OUTPUT:

A `GenusSymbol_global_ring` object, encoding the Conway-Sloane genus symbol of the quadratic form whose Gram matrix is A.

EXAMPLES:

```python
sage: A = Matrix(ZZ, 2, 2, [1, 1, 1, 2])
sage: Genus(A)
Genus of
[1 1]
[1 2]
Signature: (2, 0)
Genus symbol at 2: [1^2]_2
sage: A = Matrix(ZZ, 2, 2, [2, 1, 1, 2])
sage: Genus(A, A.det().factor())
Genus of
[2 1]
[1 2]
Signature: (2, 0)
Genus symbol at 2: 1^-2
Genus symbol at 3: 1^-1 3^-1
```

`class sage.quadratic_forms.genera.genus.GenusSymbol_global_ring(signature_pair, local_symbols, representative=None, check=True)`

Bases: `object`
This represents a collection of local genus symbols (at primes) and signature information which represent the

INPUT:

- **signature_pair** – a tuple of two non-negative integers
- **local_symbols** – a list of `Genus_Symbol_p_adic_ring` instances sorted by their primes
- **representative** – (default: `None`) integer symmetric matrix; the gram matrix of a representative of this
genus
- **check** – (default: `True`) a boolean; checks the input

EXAMPLES:

```sage
definitions...
```

See also:

`Genus()` to create a `GenusSymbol_global_ring` from the gram matrix directly.

det()

Return the determinant of this genus, where the determinant is the Hessian determinant of the quadratic
form whose Gram matrix is the Gram matrix giving rise to this global genus symbol.

OUTPUT:

an integer

EXAMPLES:

```sage
definitions...
```

determinant()

Return the determinant of this genus, where the determinant is the Hessian determinant of the quadratic
form whose Gram matrix is the Gram matrix giving rise to this global genus symbol.

OUTPUT:

an integer

EXAMPLES:

```sage
definitions...
```
sage: A = matrix.diagonal(ZZ, [1, -2, 3, 4])
sage: GS = Genus(A)
sage: GS.determinant()
-24

dim()
Return the dimension of this genus.

EXAMPLES:

sage: A = Matrix(ZZ, 2, 2, [1, 1, 1, 2])
sage: G = Genus(A)
sage: G.dimension()
2

dimension()
Return the dimension of this genus.

EXAMPLES:

sage: A = Matrix(ZZ, 2, 2, [1, 1, 1, 2])
sage: G = Genus(A)
sage: G.dimension()
2

direct_sum(other)
Return the genus of the direct sum of self and other.

The direct sum is defined as the direct sum of representatives.

EXAMPLES:

sage: G = IntegralLattice("A4").twist(3).genus()
sage: G.direct_sum(G)
Genus of None
Signature: (8, 0)
Genus symbol at 2: 1^8
Genus symbol at 3: 3^8
Genus symbol at 5: 1^6 5^2

discriminant_form()
Return the discriminant form associated to this genus.

EXAMPLES:

sage: A = matrix.diagonal(ZZ, [2, -4, 6, 8])
sage: GS = Genus(A)
sage: GS.discriminant_form()
Finite quadratic module over Integer Ring with invariants (2, 2, 4, 24)
Gram matrix of the quadratic form with values in \(\mathbb{Q}/2\mathbb{Z}\):
\[
\begin{bmatrix}
0.5 & 0 & 0.5 & 0 \\
0 & 1.5 & 0 & 0 \\
0.5 & 0 & 0.75 & 0 \\
0 & 0 & 0 & 12.5/24
\end{bmatrix}
n\]
sage: A = matrix.diagonal(ZZ, [1, -4, 6, 8])
sage: GS = Genus(A)
sage: GS.discriminant_form()
Finite quadratic module over Integer Ring with invariants (2, 4, 24)
Gram matrix of the quadratic form with values in Q/Z:

\[
\begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{3}{4} & 0 \\
0 & 0 & \frac{1}{24}
\end{bmatrix}
\]

\(\text{is_even}()\)
Return if this genus is even.

EXAMPLES:

```
sage: G = Genus(Matrix(ZZ,2,[2,1,1,2]))
sage: G.is_even()
True
```

\(\text{level}()\)
Return the level of this genus.
This is the denominator of the inverse gram matrix of a representative.

EXAMPLES:

```
sage: G = Genus(matrix.diagonal([2, 4, 18]))
sage: G.level()
36
```

\(\text{local_symbol}(p)\)
Return a copy of the local symbol at the prime \(p\).

EXAMPLES:

```
sage: A = matrix.diagonal(ZZ, [2, -4, 6, 8])
sage: GS = Genus(A)
sage: GS.local_symbol(3)
Genus symbol at 3: 1^-3 3^-1
```

\(\text{local_symbols}()\)
Return a copy of the list of local symbols of this symbol.

EXAMPLES:

```
sage: A = matrix.diagonal(ZZ, [2, -4, 6, 8])
sage: GS = Genus(A)
sage: GS.local_symbols()
[Genus symbol at 2: [2^-2 4^1 8^1]_4,
Genus symbol at 3: 1^-3 3^-1]
```

\(\text{mass}(\text{backend}=\text{\{sage\}})\)
Return the mass of this genus.
The genus must be definite. Let \(L_1, \ldots, L_n\) be a complete list of representatives of the isometry classes in this genus. Its mass is defined as

\[
\sum_{i=1}^{n} \frac{1}{|O(L_i)|}.
\]
INPUT:
• backend – default: 'sage', or 'magma'

OUTPUT:
a rational number

EXAMPLES:

```python
sage: from sage.quadratic_forms.genera.genus import genera
sage: G = genera((8,0), 1, even=True)[0]
sage: G.mass()
1/696729600

sage: G.mass(backend='magma')  # optional - magma
1/696729600
```

The E_8 lattice is unique in its genus:

```python
sage: E8 = QuadraticForm(G.representative())
sage: E8.number_of_automorphisms()
696729600
```

norm()
Return the norm of this genus.

Let L be a lattice with bilinear form b. The scale of (L, b) is defined as the ideal generated by \{ $b(x, x) | x \in L$ \}.

EXAMPLES:

```python
sage: G = Genus(matrix.diagonal([6, 4, 18]))
sage: G.norm()
2

sage: G = Genus(matrix(ZZ, 2, [0, 1, 1, 0]))
sage: G.norm()
2
```

rank()
Return the dimension of this genus.

EXAMPLES:

```python
sage: A = Matrix(ZZ, 2, 2, [1, 1, 1, 2])
sage: G = Genus(A)
sage: G.dimension()
2
```

rational_representative()
Return a representative of the rational bilinear form defined by this genus.

OUTPUT:
A diagonal matrix.

EXAMPLES:

```python
sage: from sage.quadratic_forms.genera.genus import genera
sage: G = genera((8,0), 1)[0]
```
sage: G
Genus of
None
Signature: (8, 0)
Genus symbol at 2: 1^8
sage: G.rational_representative()
\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{bmatrix}
\]

representative()
Return a representative in this genus.

EXAMPLES:

sage: from sage.quadratic_forms.genera.genus import genera
sage: g = genera([1,3], 24)[0]
sage: g
Genus of
None
Signature: (1, 3)
Genus symbol at 2: [1]^-1 2^3_0
Genus symbol at 3: 1^3 3^1

A representative of g is not known yet. Let us trigger its computation:

sage: g.representative() \[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -6 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
sage: g == Genus(g.representative()) True

representatives(backend=None, algorithm=None)
Return a list of representatives for the classes in this genus

INPUT:

• backend – (default:None)
• algorithm – (default:None)

OUTPUT:

• a list of gram matrices

EXAMPLES:

sage: from sage.quadratic_forms.genera.genus import genera
sage: G = Genus(matrix.diagonal([1, 1, 7]))
sage: G.representatives()
\[
\begin{bmatrix}
[1 0 0] [1 0 0] \\
[0 2 1] [0 1 0] \\
[0 1 4], [0 0 7]
\end{bmatrix}
\]
Indefinite genera work as well:

```sage
G = Genus(matrix(ZZ, 3, [6,3,0, 3,6,0, 0,0,2]))
sage: G.representatives()
( [2 0 0]  [ 2 -1 0]
 [0 6 3]  [-1 2 0]
 [0 3 6], [ 0 0 18]
 )
```

For positive definite forms the magma backend is available:

```sage
G = Genus(matrix.diagonal([1, 1, 7]))
sage: G.representatives(backend="magma")  # optional - magma
( [1 0 0]  [ 1 0 0]
 [0 1 0]  [ 0 2 -1]
 [0 0 7], [ 0 -1 4]
 )
```

scale()

Return the scale of this genus.

Let \(L \) be a lattice with bilinear form \(b \). The scale of \((L, b)\) is defined as the ideal \(b(L, L) \).

OUTPUT:

an integer

EXAMPLES:

```sage
G = Genus(matrix.diagonal([2, 4, 18]))
sage: G.scale()
2
```

signature()

Return the signature of this genus.

The signature is \(p - n \) where \(p \) is the number of positive eigenvalues and \(n \) the number of negative eigenvalues.

EXAMPLES:

```sage
A = matrix.diagonal(ZZ, [1, -2, 3, 4, 8, -11])
sage: GS = Genus(A)
sage: GS.signature()
2
```

signature_pair()

Return the signature pair \((p, n)\) of the (non-degenerate) global genus symbol, where \(p \) is the number of positive eigenvalues and \(n \) is the number of negative eigenvalues.

OUTPUT:

a pair of integers \((p, n)\) each \(>= 0 \)

EXAMPLES:
signature_pair_of_matrix()

Return the signature pair \((p, n)\) of the (non-degenerate) global genus symbol, where \(p\) is the number of positive eigenvalues and \(n\) is the number of negative eigenvalues.

OUTPUT:

a pair of integers \((p, n)\) each \(\geq 0\)

EXAMPLES:

```
sage: A = matrix.diagonal(ZZ, [1, -2, 3, 4, 8, -11])
sage: GS = Genus(A)
sage: GS.signature_pair()
(4, 2)
```

spinor_generators

Return the spinor generators.

INPUT:

- **proper** – boolean

OUTPUT:

a list of primes not dividing the determinant

EXAMPLES:

```
sage: g = matrix(ZZ, 3, [2,1,0, 1,2,0, 0,0,18])
sage: gen = Genus(g)
sage: gen.spinor_generators(False)
[5]
```

class `sage.quadratic_forms.genera.genus.Genus_Symbol_p_adic_ring(prime, symbol, check=True)`

Local genus symbol over a p-adic ring.

The genus symbol of a component \(p^mA\) for odd prime \(p\) is of the form \((m, n, d)\), where

- \(m\) = valuation of the component
- \(n\) = rank of \(A\)
- \(d = \det(A) \in \{1, u\}\) for a normalized quadratic non-residue \(u\).

The genus symbol of a component \(2^mA\) is of the form \((m, n, s, d, o)\), where

- \(m\) = valuation of the component
- \(n\) = rank of \(A\)
- \(d = \det(A)\) in \(\{1, 3, 5, 7\}\)
- \(s = 0\) (or 1) if even (or odd)
- \(o = \text{oddity of } A\) (= 0 if \(s = 0\)) in \(Z/8Z\) = the trace of the diagonalization of \(A\)
Quadratic Forms, Release 9.7

The genus symbol is a list of such symbols (ordered by m) for each of the Jordan blocks $A_1, ..., A_t$.

Warning: This normalization seems non-standard, and we should review this entire class to make sure that we have our doubling conventions straight throughout! This is especially noticeable in the determinant and excess methods!!

INPUT:
- prime – a prime number
- symbol – the list of invariants for Jordan blocks $A_1, ..., A_t$ given as a list of lists of integers

EXAMPLES:

```sage
from sage.quadratic_forms.genera.genus import p_adic_symbol
from sage.quadratic_forms.genera.genus import Genus_Symbol_p_adic_ring

A = diagonal_matrix(ZZ, [1, 2, 3, 4])
p = 2
s2 = p_adic_symbol(A, p, 2); s2
[[0, 2, 3, 1, 4], [1, 1, 1, 1, 1], [2, 1, 1, 1, 1]]
G2 = Genus_Symbol_p_adic_ring(p, s2); G2
Genus symbol at 2: [1^-2 2^1 4^1]_6

A = diagonal_matrix(ZZ, [1, 2, 3, 4])
p = 3
s3 = p_adic_symbol(A, p, 1); s3
[[0, 3, -1], [1, 1, 1]]
G3 = Genus_Symbol_p_adic_ring(p, s3); G3
Genus symbol at 3: [1^-3 3^1]
```

`automorphous_numbers()`

Return generators of the automorphous square classes at this prime.

A p-adic square class r is called automorphous if it is the spinor norm of a proper p-adic integral automorphism of this form. These classes form a group. See [CS1999] Chapter 15, 9.6 for details.

OUTPUT:
- a list of integers representing the square classes of generators of the automorphous numbers

EXAMPLES:

The following examples are given in [CS1999] 3rd edition, Chapter 15, 9.6 pp. 392:

```sage
A = matrix.diagonal([[3, 16]])
G = Genus(A)
sym2 = G.local_symbols()[0]
sym2
Genus symbol at 2: [1^-1 3:16^1]_3

sym2.automorphous_numbers()
[3, 5]

A = matrix(ZZ,[[2,1,0,1,2,0,0,18]])
G = Genus(A)
```
sage: sym = G.local_symbols()
sage: sym[0]
Genus symbol at 2: 1^-2 [2^1]_1
sage: sym[0].automorphous_numbers()
[1, 3, 5, 7]
sage: sym[1]
Genus symbol at 3: 1^-1 3^-1 9^-1
sage: sym[1].automorphous_numbers()
[1, 3]

Note that the generating set given is not minimal. The first supplementation rule is used here:

sage: A = matrix.diagonal([2, 2, 4])
sage: G = Genus(A)
sage: sym = G.local_symbols()
sage: sym[0]
Genus symbol at 2: [2^2 4^1]_3
sage: sym[0].automorphous_numbers()
[1, 2, 3, 5, 7]

but not there:

sage: A = matrix.diagonal([2, 2, 32])
sage: G = Genus(A)
sage: sym = G.local_symbols()
sage: sym[0]
Genus symbol at 2: [2^2 4^1]_3
sage: sym[0].automorphous_numbers()
[1, 2, 5]

Here the second supplementation rule is used:

sage: A = matrix.diagonal([2, 2, 64])
sage: G = Genus(A)
sage: sym = G.local_symbols()
sage: sym[0]
Genus symbol at 2: [2^2 4^1]_3
sage: sym[0].automorphous_numbers()
[1, 2, 5]

canonical_symbol()

Return (and cache) the canonical p-adic genus symbol. This is only really affects the 2-adic symbol, since when \(p > 2 \) the symbol is already canonical.

OUTPUT:

a list of lists of integers

EXAMPLES:

sage: from sage.quadratic_forms.genera.genus import p_adic_symbol
sage: from sage.quadratic_forms.genera.genus import Genus_Symbol_p_adic_ring
sage: A = Matrix(ZZ, 2, 2, [1, 1, 1, 2])
(continues on next page)
sage: p = 2
sage: G2 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G2.symbol_tuple_→list()
[[0, 2, 1, 1, 2]]
sage: G2.canonical_symbol()
[[0, 2, 1, 1, 2]]

sage: A = Matrix(ZZ, 2, 2, [1, 0, 0, 2])
sage: p = 2
sage: G2 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G2.symbol_tuple_→list()
[[0, 1, 1, 1, 1], [1, 1, 1, 1, 1]]
sage: G2.canonical_symbol() # Oddity fusion occurred here!
[[0, 1, 1, 1, 2], [1, 1, 1, 1, 0]]

sage: A = DiagonalQuadraticForm(ZZ, [1,2,3,4]).Hessian_matrix()
sage: p = 2
sage: G2 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G2.symbol_tuple_→list()
[[1, 2, 3, 1, 4], [2, 1, 1, 1, 1], [3, 1, 1, 1, 1]]
sage: G2.canonical_symbol() # Oddity fusion occurred here!
[[1, 2, -1, 1, 6], [2, 1, 1, 1, 0], [3, 1, 1, 1, 0]]

sage: A = Matrix(ZZ, 2, 2, [2, 1, 1, 2])
sage: p = 2
sage: G2 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G2.symbol_tuple_→list()
[[0, 2, 3, 0, 0]]
sage: G2.canonical_symbol()
[[0, 2, -1, 0, 0]]

sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 3
sage: G3 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G3.symbol_tuple_→list()
[[0, 3, 1, [1, 1, -1]]
sage: G3.canonical_symbol()
[[0, 3, 1, [1, 1, -1]]

Todo: Add an example where sign walking occurs!

compartmentsof()
Compute the indices for each of the compartments in this local genus symbol if it is associated to the prime p=2 (and raise an error for all other primes).

OUTPUT:

a list of non-negative integers
EXAMPLES:

```
sage: from sage.quadratic_forms.genera.genus import p_adic_symbol
sage: from sage.quadratic_forms.genera.genus import Genus_Symbol_p_adic_ring

sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 2
sage: G2 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G2
Genus symbol at 2: \([2^{-2} 4^{1} 8^{1}]_{6}\)

sage: G2.compartments()
[[0, 1, 2]]
```

\texttt{det()}\

Returns the \((p\text{-part of the})\) determinant (square-class) of the Hessian matrix of the quadratic form (given by regarding the integral symmetric matrix which generated this genus symbol as the Gram matrix of \(Q\)) associated to this local genus symbol.

\textbf{OUTPUT:}

an integer

\textbf{EXAMPLES:}

```
sage: from sage.quadratic_forms.genera.genus import p_adic_symbol
sage: from sage.quadratic_forms.genera.genus import Genus_Symbol_p_adic_ring

sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 2
sage: G2 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G2
Genus symbol at 2: \([2^{-2} 4^{1} 8^{1}]_{6}\)

sage: G2.determinant()
128

sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 3
sage: G3 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G3
Genus symbol at 3: \(1^{3} 3^{-1}\)

sage: G3.determinant()
3
```

determinant()\

Returns the \((p\text{-part of the})\) determinant (square-class) of the Hessian matrix of the quadratic form (given by regarding the integral symmetric matrix which generated this genus symbol as the Gram matrix of \(Q\)) associated to this local genus symbol.

\textbf{OUTPUT:}

an integer

\textbf{EXAMPLES:}

```
sage: from sage.quadratic_forms.genera.genus import p_adic_symbol
sage: from sage.quadratic_forms.genera.genus import Genus_Symbol_p_adic_ring

sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 2
sage: G2 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G2
Genus symbol at 2: \([2^{-2} 4^{1} 8^{1}]_{6}\)

sage: G2.determinant()
128
```

(continues on next page)
Genus symbol at 2: \([2^{-2} 4^1 8^1]_6\)

sage: G2.determinant()
128

sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 3
sage: G3 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G3
Genus symbol at 3: \(1^3 3^{-1}\)

sage: G3.determinant()
3

dim()

Return the dimension of a quadratic form associated to this genus symbol.

OUTPUT:

an non-negative integer

EXAMPLES:

sage: from sage.quadratic_forms.genera.genus import p_adic_symbol
sage: from sage.quadratic_forms.genera.genus import Genus_Symbol_p_adic_ring
sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 2
sage: G2 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G2
Genus symbol at 2: \([2^{-2} 4^1 8^1]_6\)

sage: G2.dimension()
4

sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 3
sage: G3 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G3
Genus symbol at 3: \(1^3 3^{-1}\)

sage: G3.dimension()
4

dimension()

Return the dimension of a quadratic form associated to this genus symbol.

OUTPUT:

an non-negative integer

EXAMPLES:

sage: from sage.quadratic_forms.genera.genus import p_adic_symbol
sage: from sage.quadratic_forms.genera.genus import Genus_Symbol_p_adic_ring
sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 2
sage: G2 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G2
Genus symbol at 2: \([2^{-2} 4^1 8^1]_6\)

sage: G2.dimension()
4

(continues on next page)
sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 3
sage: G3 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G3
Genus symbol at 3: 1^3 3^-1
sage: G3.dimension()
4

direct_sum(other)
Return the local genus of the direct sum of two representatives.

EXAMPLES:
sage: from sage.quadratic_forms.genera.genus import p_adic_symbol
efrom sage.quadratic_forms.genera.genus import Genus_Symbol_p_adic_ring
sage: A = matrix.diagonal([1, 2, 3, 4])
sage: p = 2
sage: G2 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G2
Genus symbol at 2: [1^-2 2^1 4^1]_6
sage: G2.direct_sum(G2)
Genus symbol at 2: [1^4 2^2 4^2]_4

excess()
Returns the p-excess of the quadratic form whose Hessian matrix is the symmetric matrix A. When p = 2 the p-excess is called the oddity.

Warning: This normalization seems non-standard, and we should review this entire class to make sure that we have our doubling conventions straight throughout!

REFERENCE:

OUTPUT:
an integer

EXAMPLES:
sage: from sage.quadratic_forms.genera.genus import p_adic_symbol
efrom sage.quadratic_forms.genera.genus import Genus_Symbol_p_adic_ring
sage: AC = diagonal_matrix(ZZ, [1, 3, -3])
sage: p=2; Genus_Symbol_p_adic_ring(p, p_adic_symbol(AC, p, 2)).excess()
1
sage: p=3; Genus_Symbol_p_adic_ring(p, p_adic_symbol(AC, p, 2)).excess()
0
sage: p=5; Genus_Symbol_p_adic_ring(p, p_adic_symbol(AC, p, 2)).excess()
0
sage: p=7; Genus_Symbol_p_adic_ring(p, p_adic_symbol(AC, p, 2)).excess()
0
sage: p=11; Genus_Symbol_p_adic_ring(p, p_adic_symbol(AC, p, 2)).excess()
sage: AC = 2 * diagonal_matrix(ZZ, [1, 3, -3])
sage: p=2; Genus_Symbol_p_adic_ring(p, p_adic_symbol(AC, p, 2)).excess()
 1
sage: p=3; Genus_Symbol_p_adic_ring(p, p_adic_symbol(AC, p, 2)).excess()
 0
sage: p=5; Genus_Symbol_p_adic_ring(p, p_adic_symbol(AC, p, 2)).excess()
 0
sage: p=7; Genus_Symbol_p_adic_ring(p, p_adic_symbol(AC, p, 2)).excess()
 0
sage: p=11; Genus_Symbol_p_adic_ring(p, p_adic_symbol(AC, p, 2)).excess()
 0
sage: A = 2*diagonal_matrix(ZZ, [1, 2, 3, 4])
sage: p = 2; Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)).excess()
 2
sage: p = 3; Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)).excess()
 6
sage: p = 5; Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)).excess()
 0
sage: p = 7; Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)).excess()
 0
sage: p = 11; Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)).excess()
 0

\texttt{gram_matrix(check=True)}

Return a gram matrix of a representative of this local genus.

\textbf{INPUT:}

\begin{itemize}
 \item check (default: True) – double check the result
\end{itemize}

\textbf{EXAMPLES:}

\begin{center}
\begin{verbatim}
sage: from sage.quadratic_forms.genera.genus import p_adic_symbol
c sage: from sage.quadratic_forms.genera.genus import Genus_Symbol_p_adic_ring
sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 2
sage: G2 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2))
sage: G2.gram_matrix()
[2 0 0 0]
[0 6 0 0]
[---+++]
[0 0 4 0]
[---+++]
[0 0 0 8]
\end{verbatim}
\end{center}

\texttt{is_even()}

Return if the underlying \(p\)-adic lattice is even.

If \(p\) is odd, every lattice is even.

\textbf{EXAMPLES:}
```python
sage: from sage.quadratic_forms.genera.genus import LocalGenusSymbol
sage: M0 = matrix(ZZ, [[1]])
sage: G0 = LocalGenusSymbol(M0, 2)

sage: G0.is_even()
False

sage: G1 = LocalGenusSymbol(M0, 3)

sage: G1.is_even()
True

sage: M2 = matrix(ZZ, [[2]])

sage: G2 = LocalGenusSymbol(M2, 2)

sage: G2.is_even()
True
```

level()

Return the maximal scale of a jordan component.

EXAMPLES:

```python
sage: G = Genus(matrix.diagonal([2, 4, 18]))

sage: G.local_symbol(2).level()
4
```

mass()

Return the local mass m_p of this genus as defined by Conway.

See Equation (3) in [CS1988].

EXAMPLES:

```python
sage: G = Genus(matrix.diagonal([1, 3, 9]))

sage: G.local_symbol(3).mass()
9/8
```

norm()

Return the norm of this local genus.

Let L be a lattice with bilinear form b. The norm of (L, b) is defined as the ideal generated by \{b(x, x) \mid x \in L\}.

EXAMPLES:

```python
sage: G = Genus(matrix.diagonal([2, 4, 18]))

sage: G.local_symbol(2).norm()
2

sage: G = Genus(matrix(ZZ, 2, [[0, 1, 1, 0]]))

sage: G.local_symbol(2).norm()
2
```

number_of_blocks()

Return the number of positive dimensional symbols/Jordan blocks.

OUTPUT:

A non-negative integer

EXAMPLES:

```python
```
```python
sage: from sage.quadratic_forms.genera.genus import p_adic_symbol
sage: from sage.quadratic_forms.genera.genus import Genus_Symbol_p_adic_ring

sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 2
sage: G2 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G2.symbol_tuple_list()
\([[[1, 2, 3, 1, 4], [2, 1, 1, 1, 1], [3, 1, 1, 1, 1]]\]
sage: G2.number_of_blocks() 3

sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 3
sage: G3 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G3.symbol_tuple_list()
\([[[0, 3, 1], [1, 1, -1]]\]
sage: G3.number_of_blocks() 2
```

prime()

Return the prime number p of this p-adic local symbol.

OUTPUT:

- an integer

EXAMPLES:

```python
sage: from sage.quadratic_forms.genera.genus import LocalGenusSymbol
sage: M1 = matrix(ZZ, [2])
sage: p = 2
sage: G0 = LocalGenusSymbol(M1, 2)
sage: G0.prime() 2
```

rank()

Return the dimension of a quadratic form associated to this genus symbol.

OUTPUT:

- an non-negative integer

EXAMPLES:

```python
sage: from sage.quadratic_forms.genera.genus import p_adic_symbol
sage: from sage.quadratic_forms.genera.genus import Genus_Symbol_p_adic_ring

sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 2
sage: G2 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G2
Genus symbol at 2: \([2^{-2} 4^{1} 8^{1}]_6\)
sage: G2.dimension() 4

sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 3
```
scale()

Return the scale of this local genus.

Let L be a lattice with bilinear form b. The scale of (L, b) is defined as the ideal $b(L, L)$.

OUTPUT:

an integer

EXAMPLES:

```python
sage: G = Genus(matrix.diagonal([2, 4, 18]))
sage: G.local_symbol(2).scale()
2
sage: G.local_symbol(3).scale()
1
```

symbol_tuple_list()

Return a copy of the underlying list of lists of integers defining the genus symbol.

OUTPUT:

a list of lists of integers

EXAMPLES:

```python
sage: from sage.quadratic_forms.genera.genus import p_adic_symbol
sage: from sage.quadratic_forms.genera.genus import Genus_Symbol_p_adic_ring
sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 3
sage: G3 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G3
Genus symbol at 3: 1^3 3^-1
sage: G3.symbol_tuple_list()
[[0, 3, 1], [1, 1, -1]]
sage: type(G3.symbol_tuple_list())
<... 'list'>

sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 2
sage: G2 = Genus_Symbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G2
Genus symbol at 2: [2^-2 4^1 8^1]_6
sage: G2.symbol_tuple_list()
[[1, 2, 3, 1, 4], [2, 1, 1, 1, 1], [3, 1, 1, 1, 1]]
sage: type(G2.symbol_tuple_list())
<... 'list'>
```

trains()

Compute the indices for each of the trains in this local genus symbol if it is associated to the prime $p=2$ (and raise an error for all other primes).

OUTPUT:
a list of non-negative integers

EXAMPLES:

```
sage: from sage.quadratic_forms.genera.genus import p_adic_symbol
sage: from sage.quadratic_forms.genera.genus import GenusSymbol_p_adic_ring
sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p = 2
sage: G2 = GenusSymbol_p_adic_ring(p, p_adic_symbol(A, p, 2)); G2
Genus symbol at 2: [2^-2 4^1 8^1]_6
sage: G2.trains()
[[0, 1, 2]]
```

```
sage.quadratic_forms.genera.genus.LocalGenusSymbol(A, p)
Return the local symbol of $A$ at the prime $p$.

INPUT:
- $A$ – a symmetric, non-singular matrix with coefficients in $\mathbb{Z}$
- $p$ – a prime number

OUTPUT:
A `GenusSymbol_p_adic_ring` object, encoding the Conway-Sloane genus symbol at $p$ of the quadratic form whose Gram matrix is $A$.

EXAMPLES:

```
sage: from sage.quadratic_forms.genera.genus import LocalGenusSymbol
sage: A = Matrix(ZZ, 2, 2, [1, 0, 0, 2])
sage: LocalGenusSymbol(A, 2)
Genus symbol at 2: [1^1 2^1]_2
sage: LocalGenusSymbol(A, 3)
Genus symbol at 3: 1^-2
```

```
sage.quadratic_forms.genera.genus.M_p(species, p)
Return the diagonal factor M_p as a function of the species.

EXAMPLES:
These examples are taken from Table 2 of [CS1988]:

```
sage: from sage.quadratic_forms.genera.genus import M_p
sage: M_p(0, 2)
1
sage: M_p(1, 2)
1/2
sage: M_p(-2, 2)
1/3
sage: M_p(2, 2)
(continues on next page)
```
sage.quadratic_forms.genera.genus.basis_complement(B)

Given an echelonized basis matrix B (over a field), calculate a matrix whose rows form a basis complement (to the rows of B).

INPUT:

- B – matrix over a field in row echelon form

OUTPUT:

a rectangular matrix over a field

EXAMPLES:

```python
sage: from sage.quadratic_forms.genera.genus import basis_complement

sage: A = Matrix(ZZ, 2, 2, [1, 1, 1, 1])
sage: B = A.kernel().echelonized_basis_matrix(); B
[ 1 -1]
sage: basis_complement(B)
[0 1]
```

sage.quadratic_forms.genera.genus.canonical_2_adic_compartments($genus_symbol_quintuple_list$)

Given a 2-adic local symbol (as the underlying list of quintuples) this returns a list of lists of indices of the genus_symbol_quintuple_list which are in the same compartment. A compartment is defined to be a maximal interval of Jordan components all (scaled) of type I (i.e. odd).

INPUT:

- $genus_symbol_quintuple_list$ – a quintuple of integers (with certain restrictions).

OUTPUT:

a list of lists of integers.

EXAMPLES:

```python
sage: from sage.quadratic_forms.genera.genus import LocalGenusSymbol
sage: from sage.quadratic_forms.genera.genus import canonical_2_adic_compartments
sage: A = Matrix(ZZ, 2, 2, [1, 1, 1, 2])
sage: G2 = LocalGenusSymbol(A, 2); G2.symbol_tuple_list()
[[0, 2, 1, 1, 2]]
sage: canonical_2_adic_compartments(G2.symbol_tuple_list())
[[0]]
sage: A = Matrix(ZZ, 2, 2, [1, 0, 0, 2])
```
sage: G2 = LocalGenusSymbol(A, 2); G2.symbol_tuple_list()
[[0, 1, 1, 1, 1], [1, 1, 1, 1, 1]]
sage: canonical_2_adic_compartments(G2.symbol_tuple_list())
[[0, 1]]

sage: A = DiagonalQuadraticForm(ZZ, [1,2,3,4]).Hessian_matrix()
sage: G2 = LocalGenusSymbol(A, 2); G2.symbol_tuple_list()
[[1, 2, 3, 1, 4], [2, 1, 1, 1, 1], [3, 1, 1, 1, 1]]
sage: canonical_2_adic_compartments(G2.symbol_tuple_list())
[[0, 1, 2]]

sage: A = Matrix(ZZ, 2, 2, [2,1,1,2])
sage: G2 = LocalGenusSymbol(A, 2); G2.symbol_tuple_list()
[[0, 2, 3, 0, 0]]
sage: canonical_2_adic_compartments(G2.symbol_tuple_list()) # No compartments
[[]]

sage.quadratic_forms.genera.genus.canonical_2_adic_reduction(genus_symbol_quintuple_list)
Given a 2-adic local symbol (as the underlying list of quintuples) this returns a canonical 2-adic symbol (again as a raw list of quintuples of integers) which has at most one minus sign per train and this sign appears on the smallest dimensional Jordan component in each train. This results from applying the “sign-walking” and “oddity fusion” equivalences.

INPUT:

- genus_symbol_quintuple_list – a quintuple of integers (with certain restrictions)
- compartments – a list of lists of distinct integers (optional)

OUTPUT:

a list of lists of distinct integers.

EXAMPLES:

sage: from sage.quadratic_forms.genera.genus import LocalGenusSymbol
sage: from sage.quadratic_forms.genera.genus import canonical_2_adic_reduction
sage: A = Matrix(ZZ, 2, 2, [1, 1, 1, 2])
sage: G2 = LocalGenusSymbol(A, 2); G2.symbol_tuple_list()
[[0, 2, 1, 1, 2]]
sage: canonical_2_adic_reduction(G2.symbol_tuple_list()) # Oddity fusion occurred
[[0, 1, 1, 1, 2], [1, 1, 1, 1, 0]]
sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: G2 = LocalGenusSymbol(A, 2); G2.symbol_tuple_list()
[[1, 2, 3, 1, 4], [2, 1, 1, 1, 1], [3, 1, 1, 1, 1]]
sage: canonical_2_adic_reduction(G2.symbol_tuple_list()) # Oddity fusion occurred.
 → here!
[[1, 2, -1, 1, 6], [2, 1, 1, 1, 0], [3, 1, 1, 1, 0]]
sage: A = Matrix(ZZ, 2, 2, [2, 1, 1, 2])
sage: G2 = LocalGenusSymbol(A, 2); G2.symbol_tuple_list()
[[0, 2, 3, 0, 0]]
sage: canonical_2_adic_reduction(G2.symbol_tuple_list())
[[0, 2, -1, 0, 0]]

Todo: Add an example where sign walking occurs!

sage.quadratic_forms.genera.genus.canonical_2_adic_trains(genus_symbol_quintuple_list, compartments=None)

Given a 2-adic local symbol (as the underlying list of quintuples) this returns a list of lists of indices of the genus_symbol_quintuple_list which are in the same train. A train is defined to be a maximal interval of Jordan components so that at least one of each adjacent pair (allowing zero-dimensional Jordan components) is (scaled) of type I (i.e. odd). Note that an interval of length one respects this condition as there is no pair in this interval. In particular, every Jordan component is part of a train.

INPUT:

- genus_symbol_quintuple_list – a quintuple of integers (with certain restrictions).
- compartments – this argument is deprecated

OUTPUT:

a list of lists of distinct integers.

EXAMPLES:

sage: from sage.quadratic_forms.genera.genus import LocalGenusSymbol
sage: from sage.quadratic_forms.genera.genus import canonical_2_adic_compartments
sage: from sage.quadratic_forms.genera.genus import canonical_2_adic_trains

sage: A = Matrix(ZZ, 2, 2, [1, 1, 1, 2])

sage: G2 = LocalGenusSymbol(A, 2); G2.symbol_tuple_list()
[[0, 2, 1, 1, 2]]

sage: canonical_2_adic_trains(G2.symbol_tuple_list())
[[0]]

sage: A = Matrix(ZZ, 2, 2, [1, 0, 0, 2])

sage: G2 = LocalGenusSymbol(A, 2); G2.symbol_tuple_list()
[[0, 1, 1, 1, 1], [1, 1, 1, 1, 1]]

sage: canonical_2_adic_compartments(G2.symbol_tuple_list())
[[0, 1]]
sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: G2 = LocalGenusSymbol(A, 2); G2.symbol_tuple_list()
[[[1, 2, 3, 1, 4], [2, 1, 1, 1, 1], [3, 1, 1, 1, 1]]
sage: canonical_2_adic_trains(G2.symbol_tuple_list())
[[0, 1, 2]]

sage: A = Matrix(ZZ, 2, 2, [2, 1, 1, 2])
sage: G2 = LocalGenusSymbol(A, 2); G2.symbol_tuple_list()
[[0, 2, 3, 0, 0]]
sage: canonical_2_adic_trains(G2.symbol_tuple_list())
[[0]]

sage: symbol = [[0, 1, 1, 1, 1], [1, 2, -1, 0, 0], [2, 1, 1, 1, 1], [3, 1, 1, 1, 1], [-1], [4, 1, 1, 1, 1], [5, 2, -1, 0, 0], [7, 1, 1, 1, 1], [10, 1, 1, 1, 1], [11, -1, 1, 1, 1], [12, 1, 1, 1, 1]]
sage: canonical_2_adic_trains(symbol)
[[0, 1, 2, 3, 4, 5], [6], [7, 8, 9]]

Check that trac ticket #24818 is fixed:

sage: symbol = [[0, 1, 1, 1, 1], [1, 3, 1, 1, 1]]
sage: canonical_2_adic_trains(symbol)
[[0, 1]]

Note: See [CS1999], pp. 381-382 for definitions and examples.

sage.quadratic_forms.genera.genus.genera(sig_pair, determinant, max_scale=None, even=False)
Return a list of all global genera with the given conditions.

Here a genus is called global if it is non-empty.

INPUT:
- sig_pair – a pair of non-negative integers giving the signature
- determinant – an integer; the sign is ignored
- max_scale – (default: None) an integer; the maximum scale of a jordan block
- even – boolean (default: False)

OUTPUT:
A list of all (non-empty) global genera with the given conditions.

EXAMPLES:

sage: QuadraticForm.genera((4,0), 125, even=True)
[Genus of None
Signature: (4, 0)
Genus symbol at 2: 1^4
Genus symbol at 5: 1^1 5^3, Genus of None
Signature: (4, 0)
sage.quadratic_forms.genera.genus.is_2adic_genus(genus_symbol_quintuple_list)

Given a 2-adic local symbol (as the underlying list of quintuples) check whether it is the 2-adic symbol of a 2-adic form.

INPUT:

• genus_symbol_quintuple_list — a quintuple of integers (with certain restrictions).

OUTPUT:

boolean

EXAMPLES:

sage: from sage.quadratic_forms.genera.genus import LocalGenusSymbol, is_2adic__
˓→genus
sage: A = Matrix(ZZ, 2, 2, [1,1,1,2])
 sage: G2 = LocalGenusSymbol(A, 2)
 sage: is_2adic_genus(G2.symbol_tuple_list())
True

sage: A = Matrix(ZZ, 2, 2, [1,1,1,2])
 sage: G3 = LocalGenusSymbol(A, 3)
 sage: is_2adic_genus(G3.symbol_tuple_list()) # This raises an error
 Traceback (most recent call last):
 ... TypeError: The genus symbols are not quintuples, so it's not a genus symbol for the
 ˓→prime p=2.

sage: A = Matrix(ZZ, 2, 2, [1,0,0,2])
 sage: G2 = LocalGenusSymbol(A, 2)
 sage: is_2adic_genus(G2.symbol_tuple_list())
True

sage.quadratic_forms.genera.genus.is_GlobalGenus(G)

Return if G represents the genus of a global quadratic form or lattice.

INPUT:

• G — GenusSymbol_global_ring object

OUTPUT:

• boolean

EXAMPLES:
sage: from sage.quadratic_forms.genera.genus import is_GlobalGenus
sage: A = Matrix(ZZ, 2, 2, [1, 1, 1, 2])
sage: G = Genus(A)
True
sage: G=Genus(matrix.diagonal([2, 2, 2, 2]))

sage: G._local_symbols[0]._symbol=[[0,2,3,0,0], [1,2,5,1,0]]

sage: G._representative=None

sage: is_GlobalGenus(G)
False

sage.quadratic_forms.genera.genus.is_even_matrix(A)
Determines if the integral symmetric matrix \(A \) is even (i.e. represents only even numbers). If not, then it returns the index of an odd diagonal entry. If it is even, then we return the index -1.

INPUT:
- \(A \) – symmetric integer matrix

OUTPUT:
a pair of the form (boolean, integer)

EXAMPLES:

sage: from sage.quadratic_forms.genera.genus import is_even_matrix

sage: A = Matrix(ZZ, 2, 2, [1, 1, 1, 1])

sage: is_even_matrix(A)
(False, 0)

sage: A = Matrix(ZZ, 2, 2, [2, 1, 1, 2])

sage: is_even_matrix(A)
(True, -1)

sage.quadratic_forms.genera.genus.p_adic_symbol(A, p, val)
Given a symmetric matrix \(A \) and prime \(p \), return the genus symbol at \(p \).

Todo: Some description of the definition of the genus symbol.

INPUT:
- \(A \) – symmetric matrix with integer coefficients
- \(p \) – prime number
- \(\text{val} \) – non-negative integer; valuation of the maximal elementary divisor of \(A \) needed to obtain enough precision. Calculation is modulo \(p \) to the \(\text{val}+3 \).

OUTPUT:
a list of lists of integers

EXAMPLES:
\begin{verbatim}
sage: A = DiagonalQuadraticForm(ZZ, [1, 2, 3, 4]).Hessian_matrix()
sage: p_adic_symbol(A, 2, 2)
[[1, 2, 3, 1, 4], [2, 1, 1, 1, 1], [3, 1, 1, 1, 1]]
sage: p_adic_symbol(A, 3, 1)
[[0, 3, 1], [1, 1, -1]]
\end{verbatim}

\texttt{sage.quadratic_forms.genera.genus.signature_pair_of_matrix(A)}

Computes the signature pair \((p, n)\) of a non-degenerate symmetric matrix, where

- \(p\) is the number of positive eigenvalues of \(A\)
- \(n\) is the number of negative eigenvalues of \(A\)

INPUT:
- \(A\) – symmetric matrix (assumed to be non-degenerate)

OUTPUT:
- \((p, n)\) – a pair (tuple) of integers.

EXAMPLES:

\begin{verbatim}
sage: from sage.quadratic_forms.genera.genus import signature_pair_of_matrix

sage: A = Matrix(ZZ, 2, 2, [-1, 0, 0, 3])
sage: signature_pair_of_matrix(A)
(1, 1)

sage: A = Matrix(ZZ, 2, 2, [-1, 1, 1, 7])
sage: signature_pair_of_matrix(A)
(1, 1)

sage: A = Matrix(ZZ, 2, 2, [3, 1, 1, 7])
sage: signature_pair_of_matrix(A)
(2, 0)

sage: A = Matrix(ZZ, 2, 2, [-3, 1, 1, -11])
sage: signature_pair_of_matrix(A)
(0, 2)

sage: A = Matrix(ZZ, 2, 2, [1, 1, 1, 1])
sage: signature_pair_of_matrix(A)
Traceback (most recent call last):
...
ArithmeticError: given matrix is not invertible
\end{verbatim}

\texttt{sage.quadratic_forms.genera.genus.split_odd(A)}

Given a non-degenerate Gram matrix \(A\) (\(\mod 8\)), return a splitting \([u] + B\) such that \(u\) is odd and \(B\) is not even.

INPUT:
- \(A\) – an odd symmetric matrix with integer coefficients (which admits a splitting as above).

OUTPUT:
a pair \((u, B)\) consisting of an odd integer \(u\) and an odd integral symmetric matrix \(B\).

EXAMPLES:

```python
sage: from sage.quadratic_forms.genera.genus import is_even_matrix
sage: from sage.quadratic_forms.genera.genus import split_odd

sage: A = Matrix(ZZ, 2, 2, [1, 2, 2, 3])
sage: is_even_matrix(A)
(False, 0)
sage: split_odd(A)
(1, [-1])

sage: A = Matrix(ZZ, 2, 2, [1, 2, 2, 5])
sage: split_odd(A)
(1, [1])

sage: A = Matrix(ZZ, 2, 2, [1, 1, 1, 1])
sage: is_even_matrix(A)
(False, 0)
sage: split_odd(A)  # This fails because no such splitting exists. =(  
Traceback (most recent call last):
  ...  
RuntimeError: The matrix A does not admit a non-even splitting.

sage: A = Matrix(ZZ, 2, 2, [1, 2, 2, 6])
sage: split_odd(A)  # This fails because no such splitting exists. =(  
Traceback (most recent call last):
  ...  
RuntimeError: The matrix A does not admit a non-even splitting.
```

\[\text{sage.quadratic_forms.genera.genus.$\text{trace_diag_mod_8}(A)$}\]

Return the trace of the diagonalised form of \(A\) of an integral symmetric matrix which is diagonalizable \(\mod 8\). (Note that since the Jordan decomposition into blocks of size \(\leq 2\) is not unique here, this is not the same as saying that \(A\) is always diagonal in any 2-adic Jordan decomposition!)

INPUT:

- \(A\) – symmetric matrix with coefficients in \(\mathbb{Z}\) which is odd in \(\mathbb{Z}/2\mathbb{Z}\) and has determinant not divisible by 8.

OUTPUT:

an integer

EXAMPLES:

```python
sage: from sage.quadratic_forms.genera.genus import is_even_matrix
sage: from sage.quadratic_forms.genera.genus import split_odd
sage: from sage.quadratic_forms.genera.genus import trace_diag_mod_8

sage: A = Matrix(ZZ, 2, 2, [1, 2, 2, 3])
sage: is_even_matrix(A)
(False, 0)
sage: split_odd(A)
(1, [-1])
sage: trace_diag_mod_8(A)
0
```

(continues on next page)
Given a symmetric matrix A and prime p, return the genus symbol at p.

The genus symbol of a component $2^m f$ is of the form $(m, n, s, d[,o])$, where

- m = valuation of the component
- n = dimension of f
- d = $\text{det}(f)$ in $\{1, 3, 5, 7\}$
- s = 0 (or 1) if even (or odd)
- o = oddity of f (= 0 if $s = 0$) in $\mathbb{Z}/8\mathbb{Z}$

INPUT:

- A – symmetric matrix with integer coefficients, non-degenerate
- val – non-negative integer; valuation of maximal 2-elementary divisor

OUTPUT:

a list of lists of integers (representing a Conway-Sloane 2-adic symbol)

EXAMPLES:

```python
sage: from sage.quadratic_forms.genera.genus import two_adic_symbol
sage: A = diagonal_matrix(ZZ, [1, 2, 3, 4])
sage: two_adic_symbol(A, 2)
[[[0, 2, 3, 1, 4], [1, 1, 1, 1, 1], [2, 1, 1, 1, 1]]
```
NORMA L FORMS FOR P-ADIC QUADRATIC AND BILINEAR FORMS.

We represent a quadratic or bilinear form by its $n \times n$ Gram matrix G. Then two p-adic forms G and G' are integrally equivalent if and only if there is a matrix B in $GL(n, \mathbb{Z}_p)$ such that $G' = BGB^T$.

This module allows the computation of a normal form. This means that two p-adic forms are integrally equivalent if and only if they have the same normal form. Further, we can compute a transformation into normal form (up to finite precision).

EXAMPLES:

```python
sage: from sage.quadratic_forms.genera.normal_form import p_adic_normal_form
dsage: G1 = Matrix(ZZ, 4, [2, 0, 0, 1, 0, 2, 0, 1, 0, 0, 4, 2, 1, 1, 2, 6])
sage: G1
[2 0 0 1]
[0 2 0 1]
[0 0 4 2]
[1 1 2 6]
sage: G2 = Matrix(ZZ, 4, [2, 1, 1, 0, 1, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, 16])
sage: G2
[ 2 1 1 0]
[ 1 2 0 0]
[ 1 0 2 0]
[ 0 0 0 16]
```

A computation reveals that both forms are equivalent over \mathbb{Z}_2:

```python
sage: D1, U1 = p_adic_normal_form(G1, 2, precision=30)
sage: D2, U2 = p_adic_normal_form(G1, 2, precision=30)
sage: D1
[ 2 1 0 0]
[ 1 2 0 0]
[ 0 0 2^2 + 2^3 0]
[ 0 0 0 2^4]
sage: D2
[ 2 1 0 0]
[ 1 2 0 0]
[ 0 0 2^2 + 2^3 0]
[ 0 0 0 2^4]
```

Moreover, we have computed the 2-adic isomorphism:

```python
sage: U = U2.inverse()*U1
sage: U*G1*U.T
```

(continues on next page)
As you can see this isomorphism is only up to the precision we set before:

\[
\begin{bmatrix}
2 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 4 & 2 \\
1 & 1 & 2 & 6
\end{bmatrix}
\]

If you are only interested if the forms are isomorphic, there are much faster ways:

\[
sage: \text{q1} = \text{QuadraticForm}(G1) \\
sage: \text{q2} = \text{QuadraticForm}(G2) \\
sage: \text{q1.is_locally_equivalent_to}(q2, 2) \\
\text{True}
\]

SEE ALSO:

- :mod:`sage.quadratic_forms.genera.genus`
- :meth:`sage.quadratic_forms.quadratic_form.QuadraticForm.is_locally_equivalent_to`
- :meth:`sage.modules.torsion_quadratic_module.TorsionQuadraticModule.normal_form`

AUTHORS:

- Simon Brandhorst (2018-01): initial version

\[
sage.quadratic_forms.genera.normal_form.collect_small_blocks(G)
\]

Return the blocks as list.

INPUT:

- G – a block_diagonal matrix consisting of 1 by 1 and 2 by 2 blocks

OUTPUT:

- a list of 1 by 1 and 2 by 2 matrices – the blocks

EXAMPLES:

\[
sage: \text{from sage.quadratic_forms.genera.normal_form import collect_small_blocks} \\
sage: W1 = \text{Matrix}([1]) \\
sage: V = \text{Matrix}((ZZ, 2, [2, 1, 1, 2])) \\
sage: L = [W1, V, V, W1, W1, V, W1, V] \\
sage: G = \text{Matrix.block_diagonal}(L) \\
sage: L == collect_small_blocks(G) \\
\text{True}
\]

\[
sage.quadratic_forms.genera.normal_form.p_adic_normal_form(G, p, precision=None, partial=False, debug=False)
\]

Return the transformation to the \(p\)-adic normal form of a symmetric matrix.

Two \(p\)-adic quadratic forms are integrally equivalent if and only if their Gram matrices have the same normal form.
Let p be odd and u be the smallest non-square modulo p. The normal form is a block diagonal matrix with blocks $p^k G_k$ such that G_k is either the identity matrix or the identity matrix with the last diagonal entry replaced by u.

If $p = 2$ is even, define the 1 by 1 matrices:

```
sage: W1 = Matrix([1]); W1
[1]
sage: W3 = Matrix([3]); W3
[3]
sage: W5 = Matrix([5]); W5
[5]
sage: W7 = Matrix([7]); W7
[7]
```

and the 2 by 2 matrices:

```
sage: U = Matrix(2,[0,1,1,0]); U
[0 1]
[1 0]
sage: V = Matrix(2,[2,1,1,2]); V
[2 1]
[1 2]
```

For $p = 2$ the partial normal form is a block diagonal matrix with blocks $2^k G_k$ such that G_k is a block diagonal matrix of the form $[U, \ldots, U, V, W_a, W_b]$ where we allow V, W_a, W_b to be 0×0 matrices.

Further restrictions to the full normal form apply. We refer to [MirMor2009] IV Definition 4.6. for the details.

INPUT:

- G – a symmetric n by n matrix in \mathbb{Q}
- p – a prime number – it is not checked whether it is prime
- precision – if not set, the minimal possible is taken
- partial – boolean (default: False) if set, only the partial normal form is returned.

OUTPUT:

- D – the jordan matrix over \mathbb{Q}_p
- B – invertible transformation matrix over \mathbb{Z}_p, i.e, $D = B \cdot G \cdot B^T$

EXAMPLES:

```
sage: from sage.quadratic_forms.genera.normal_form import p_adic_normal_form
sage: D4 = Matrix(ZZ, 4, [2,-1,-1,-1,-1,2,0,0,-1,0,2,0,-1,0,0,2])
sage: D4
[ 2 -1 -1 -1]
[-1 2 0 0]
[-1 0 2 0]
[-1 0 0 2]
sage: D, B = p_adic_normal_form(D4, 2)
sage: D
[ 2 1 0 0]
[ 1 2 0 0]
[ 0 0 2^2 2]
[ 0 0 2 2^2]
```

(continues on next page)
Quadratic Forms, Release 9.7

(continued from previous page)

\begin{verbatim}
 sage: D == B * D4 * B.T
 True
 sage: A4 = Matrix(ZZ, 4, [2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2])
 sage: A4
 [2 -1 0 0]
[-1 2 -1 0]
[0 -1 2 -1]
[0 0 -1 2]
 sage: D, B = p_adic_normal_form(A4, 2)
 sage: D
[0 1 0 0]
[1 0 0 0]
[0 0 1 0]
[0 0 0 1]

We can handle degenerate forms:

\begin{verbatim}
 sage: A4_extended = Matrix(ZZ, 5, [2, -1, 0, 0, -1, -1, 2, -1, 0, 0, 0, -1, 2, -1, 0, 0, -1, 2])
 sage: D, B = p_adic_normal_form(A4_extended, 5)
 sage: D
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 5 0]
[0 0 0 0 0]
\end{verbatim}

and denominators:

\begin{verbatim}
 sage: A4dual = A4.inverse()
 sage: D, B = p_adic_normal_form(A4dual, 5)
 sage: D
[5^-1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
\end{verbatim}
\end{verbatim}

144 Chapter 9. Normal forms for p-adic quadratic and bilinear forms.
SOLVING QUADRATIC EQUATIONS

Interface to the PARI/GP quadratic forms code of Denis Simon.

AUTHORS:

• Denis Simon (GP code)
• Nick Alexander (Sage interface)
• Jeroen Demeyer (2014-09-23): use PARI instead of GP scripts, return vectors instead of tuples (trac ticket #16997).
• Tyler Gaona (2015-11-14): added the \texttt{solve} method

\begin{verbatim}
sage: from sage.quadratic_forms.qfsolve import qfsolve, qfparam
sage: M = Matrix(QQ, [[0, 0, -12], [0, -12, 0], [-12, 0, -1]]); M
\end{verbatim}

\begin{verbatim}
[0 0 -12]
[0 -12 0]
[-12 0 -1]
sage: sol = qfsolve(M)
sage: ret = qfparam(M, sol); ret
(-12*t^2 - 1, 24*t, 24)
sage: ret.parent()
Ambient free module of rank 3 over the principal ideal domain Univariate Polynomial Ring in t over Rational Field
\end{verbatim}

\texttt{sage.quadratic_forms.qfsolve.qfsolve}(G)

Find a solution \(x = (x_0, \ldots, x_n) \) to \(xGx^t = 0 \) for an \(n \times n \)-matrix \(G \) over \(\mathbb{Q} \).

OUTPUT:
If a solution exists, return a vector of rational numbers \(x\). Otherwise, returns \(-1\) if no solution exists over the reals or a prime \(p\) if no solution exists over the \(p\)-adic field \(\mathbb{Q}_p\).

ALGORITHM:
Uses PARI/GP function `qfsolve`.

EXAMPLES:

```python
sage: from sage.quadratic_forms.qfsolve import qfsolve
sage: M = Matrix(QQ, [[0, 0, -12], [0, -12, 0], [-12, 0, -1]]); M
[ 0 0 -12]
[ 0 -12 0]
[-12 0 -1]
sage: sol = qfsolve(M); sol
(1, 0, 0)
sage: sol.parent()
Vector space of dimension 3 over Rational Field
sage: M = Matrix(QQ, [[1, 0, 0], [0, 1, 0], [0, 0, 1]])
sage: ret = qfsolve(M); ret
-1
sage: ret.parent()
Integer Ring
sage: M = Matrix(QQ, [[1, 0, 0], [0, 1, 0], [0, 0, -7]])
sage: qfsolve(M)
7
sage: M = Matrix(QQ, [[3, 0, 0, 0], [0, 5, 0, 0], [0, 0, -7, 0], [0, 0, 0, -11]])
sage: qfsolve(M)
(3, -4, -3, -2)
```

`sage.quadratic_forms.qfsolve.solve(self, c=0)`
Return a vector \(x\) such that \(\text{self}(x) == c\).

INPUT:
- \(c\) – (default: 0) a rational number.

OUTPUT:
- A non-zero vector \(x\) satisfying \(\text{self}(x) == c\).

ALGORITHM:
Uses PARI’s `qfsolve()`. Algorithm described by Jeroen Demeyer; see comments on trac ticket #19112

EXAMPLES:

```python
sage: F = DiagonalQuadraticForm(QQ, [1, -1]); F
Quadratic form in 2 variables over Rational Field with coefficients:
[ 1 0 ]
[ * -1 ]
sage: F.solve()
(1, 1)
sage: F.solve(1)
(1, 0)
sage: F.solve(2)
```

(continues on next page)
(3/2, -1/2)
sage: F.solve(3)
(2, -1)

sage: F = DiagonalQuadraticForm(QQ, [1, 1, 1, 1])
sage: F.solve(7)
(1, 2, -1, -1)
sage: F.solve()
Traceback (most recent call last):
 ... ArithmeticError: no solution found (local obstruction at -1)

sage: Q = QuadraticForm(QQ, 2, [17, 94, 130])
sage: x = Q.solve(5); x
(17, -6)
sage: Q(x)
5
sage: Q.solve(6)
Traceback (most recent call last):
 ... ArithmeticError: no solution found (local obstruction at 3)

sage: G = DiagonalQuadraticForm(QQ, [5, -3, -2])
sage: x = G.solve(10); x
(3/2, -1/2, 1/2)
sage: G(x)
10
sage: F = DiagonalQuadraticForm(QQ, [1, -4])
sage: x = F.solve(); x
(2, 1)
sage: F(x)
0

sage: F = QuadraticForm(QQ, 4, [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]); F
Quadratic form in 4 variables over Rational Field with coefficients:
[0 0 1 0]
[* 0 0 1]
[* * 0 0]
[* * * 0]
sage: F.solve(23)
(23, 0, 1, 0)

Other fields besides the rationals are currently not supported:

sage: F = DiagonalQuadraticForm(GF(11), [1, 1])
sage: F.solve()
Traceback (most recent call last):
 ... TypeError: solving quadratic forms is only implemented over QQ
HELPER CODE FOR TERNARY QUADRATIC FORMS

`sage.quadratic_forms.ternary.evaluate(a, b, c, r, s, t, v)`
Function to evaluate the ternary quadratic form \((a, b, c, r, s, t)\) in a 3-tuple \(v\).

EXAMPLES:

```
sage: from sage.quadratic_forms.ternary import evaluate
sage: Q = TernaryQF([1, 2, 3, -1, 0, 0])
sage: v = (1, -1, 19)
sage: Q(v)
1105
sage: evaluate(1, 2, 3, -1, 0, 0, v)
1105
```

`sage.quadratic_forms.ternary.extend(v)`
Return the coefficients of a matrix \(M\) such that \(M\) has determinant \(\gcd(v)\) and the first column is \(v\).

EXAMPLES:

```
sage: from sage.quadratic_forms.ternary import extend
sage: v = (6, 4, 12)
sage: m = extend(v)
sage: M = matrix(3, m)
sage: M
[ 6 1 0]
[ 4 1 0]
[12 0 1]
sage: M.det()
2
sage: v = (-12, 20, 30)
sage: m = extend(v)
sage: M = matrix(3, m)
sage: M
[-12 1 0]
[20 -2 1]
[30 0 -7]
sage: M.det()
2
```

`sage.quadratic_forms.ternary.primitivize(v0, v1, v2, p)`
Given a 3-tuple \(v\) not singular mod \(p\), it returns a primitive 3-tuple version of \(v\) mod \(p\).

EXAMPLES:
sage: from sage.quadratic_forms.ternary import primitivize
sage: primitivize(12, 13, 14, 5)
(3, 2, 1)
sage: primitivize(12, 13, 15, 5)
(4, 1, 0)

sage.quadratic_forms.ternary.pseudorandom_primitive_zero_mod_p(a, b, c, r, s, t, p)
Find a zero of the form (a, b, 1) of the ternary quadratic form given by the coefficients (a, b, c, r, s, t) mod p, where p is an odd prime that doesn’t divide the discriminant.

EXAMPLES:

sage: from sage.quadratic_forms.ternary import pseudorandom_primitive_zero_mod_p
sage: Q = TernaryQF([1, 2, 2, -1, 0, 0])
sage: p = 1009
sage: v = pseudorandom_primitive_zero_mod_p(1, 2, 2, -1, 0, 0, p)
sage: v[2]
1
sage: Q(v) % p
0

sage.quadratic_forms.ternary.red_mfact(a, b)
Auxiliary function for reduction that finds the reduction factor of a, b integers.

INPUT:
• a, b integers

OUTPUT:
Integer

EXAMPLES:

sage: from sage.quadratic_forms.ternary import red_mfact
sage: red_mfact(0, 3)
0
sage: red_mfact(-5, 100)
9
TERNARY QUADRATIC FORM WITH INTEGER COEFFICIENTS

AUTHOR:

• Gustavo Rama

Based in code of Gonzalo Tornaria

The form \(a * x^2 + b * y^2 + c * z^2 + r * yz + s * xz + t * xy\) is stored as a tuple \((a, b, c, r, s, t)\) of integers.

```python
class sage.quadratic_forms.ternary_qf.TernaryQF(v):
    Bases: sage.structure.sage_object.SageObject

    The TernaryQF class represents a quadratic form in 3 variables with coefficients in \(\mathbb{Z}\).

    INPUT:
    • \(v\) – a list or tuple of 6 entries: \([a,b,c,r,s,t]\)

    OUTPUT:
    • the ternary quadratic form \(a*x^2 + b*y^2 + c*z^2 + r*yz + s*xz + t*xy\).

    EXAMPLES:

    sage: Q = TernaryQF([1, 2, 3, 4, 5, 6])
    sage: Q
    Ternary quadratic form with integer coefficients:
    \[
    \begin{bmatrix}
    1 & 2 & 3 \\
    4 & 5 & 6
    \end{bmatrix}
    \]

    sage: A = matrix(ZZ, 3, [1, -7, 1, 0, -2, 1, 0, -1, 0])
    sage: Q(A)
    Ternary quadratic form with integer coefficients:
    \[
    \begin{bmatrix}
    1 & 187 & 9 \\
    -85 & 8 & -31
    \end{bmatrix}
    \]

    sage: TestSuite(TernaryQF).run()
```

`adjoint()`

Return the adjoint form associated to the given ternary quadratic form.

That is, the Hessian matrix of the adjoint form is twice the classical adjoint matrix of the Hessian matrix of the given form.

EXAMPLES:

```python
sage: Q = TernaryQF([1, 1, 17, 0, 0, 1])

sage: Q
Ternary quadratic form with integer coefficients:

sage: Q.adjoint()
Ternary quadratic form with integer coefficients:
```

(continues on next page)
automorphism_spin_norm(A)

Return the spin norm of the automorphism A.

EXAMPLES:

```sage
Q = TernaryQF([9, 12, 30, -26, -28, 20])
A = matrix(ZZ, 3, [9, 10, -10, -6, -7, 6, 2, 2, -3])
A.det()
1
Q(A) == Q
True
Q.automorphism_spin_norm(A)
7
```

automorphism_symmetries(A)

Given the automorphism A, returns two vectors v1, v2 if A is not the identity. Such that the product of the symmetries of the ternary quadratic form given by the two vectors is A.

EXAMPLES:

```sage
Q = TernaryQF([9, 12, 30, -26, -28, 20])
A = matrix(ZZ, 3, [9, 10, -10, -6, -7, 6, 2, 2, -3])
Q(A) == Q
True
v1, v2 = Q.automorphism_symmetries(A)
v1, v2
((8, -6, 2), (1, -5/4, -1/4))
A1 = Q.symmetry(v1)
A1
[ 9 9 -13]
[ -6 -23/4 39/4]
[ 2 9/4 -9/4]
A2 = Q.symmetry(v2)
A2
[ 1 1 3]
[ 0 -1/4 -15/4]
[ 0 -1/4 1/4]
A1*A2 == A
True
Q.automorphism_symmetries(identity_matrix(ZZ, 3))
[]
```

automorphisms(slow=True)

Return a list with the automorphisms of the definite ternary quadratic form.

EXAMPLES:

```sage
Q = TernaryQF([1, 1, 7, 0, 0, 0])
auts = Q.automorphisms()
auts
(continues on next page)
\[
\begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}
- \begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix},
- \begin{bmatrix}
0 & -1 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
- \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & -1
\end{bmatrix},
- \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 0 & 1
\end{bmatrix},
- \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & -1
\end{bmatrix}
- \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

sage: all(Q == Q(A) for A in auts)
True
sage: Q = TernaryQF([3, 4, 5, 3, 3, 2])
sage: Q.automorphisms(slow = False)
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

sage: Q = TernaryQF([4, 2, 4, 3, -4, -5])
sage: auts = Q.automorphisms(slow = False)
sage: auts
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
2 & -1 & -1 \\
3 & -2 & -1 \\
0 & 0 & 1
\end{bmatrix}
\]

sage: A = auts[1]
sage: Q(A) == Q
True
sage: Qr, M_red = Q.reduced_form_eisenstein()
sage: Qr
Ternary quadratic form with integer coefficients:
\[
\begin{bmatrix}
1 & 2 & 3 \\
-1 & 0 & -1
\end{bmatrix}
\]

sage: Q(A*M_red) == Qr
True

basic_lemma(p)

Finds a number represented by self and coprime to the prime p.

EXAMPLES:

sage: Q = TernaryQF([3, 3, 3, -2, 0, -1])
sage: Q.basic_lemma(3)
4

coefficient(n)

Return the n-th coefficient of the ternary quadratic form, with 0<=n<=5.

EXAMPLES:

sage: Q = TernaryQF([1, 2, 3, 4, 5, 6])
sage: Q
Ternary quadratic form with integer coefficients:
coefficients()
Return the list coefficients of the ternary quadratic form.

EXAMPLES:

```python
sage: Q = TernaryQF([1, 2, 3, 4, 5, 6])
sage: Q
Ternary quadratic form with integer coefficients:
[1 2 3]
[4 5 6]
sage: Q.coefficients()
(1, 2, 3, 4, 5, 6)
```

content()
Return the greatest common divisor of the coefficients of the given ternary quadratic form.

EXAMPLES:

```python
sage: Q = TernaryQF([1, 1, 2, 0, 0, 0])
sage: Q.content()
1
sage: Q = TernaryQF([2, 4, 6, 0, 0, 0])
sage: Q.content()
2
sage: Q.scale_by_factor(100).content()
200
```

delta()
Return the omega of the adjoint of the given ternary quadratic form, which is the same as the omega of the reciprocal form.

EXAMPLES:

```python
sage: Q = TernaryQF([1, 2, 2, -1, 0, -1])
sage: Q.delta()
208
sage: Q.adjoint().omega()
208
sage: Q = TernaryQF([1, -1, 1, 0, 0, 0])
sage: Q.delta()
4
sage: Q.omega()
4
```

disc()
Return the discriminant of the ternary quadratic form, this is the determinant of the matrix divided by 2.

EXAMPLES:
sage: Q = TernaryQF([1, 1, 2, 0, -1, 4])
sage: Q.disc()
-25
sage: Q.matrix().det()
-50

divisor()
Return the content of the adjoint form associated to the given form.

EXAMPLES:

sage: Q = TernaryQF([1, 1, 17, 0, 0, 0])
sage: Q.divisor()
4

find_p_neighbor_from_vec(p, v, mat=False)
Finds the reduced equivalent of the p-neighbor of this ternary quadratic form associated to a given vector v satisfying:
1. Q(v) = 0 mod p
2. v is a non-singular point of the conic Q(v) = 0 mod p.
Reference: Gonzalo Tornaria’s Thesis, Thrm 3.5, p34.

EXAMPLES:

sage: Q = TernaryQF([1, 3, 3, -2, 0, -1])

sage: Q
Ternary quadratic form with integer coefficients:
[1 3 3]
[-2 0 -1]
sage: Q.disc()
29
sage: v = (9, 7, 1)
sage: v in Q.find_zeros_mod_p(11)
True
sage: Q11, M = Q.find_p_neighbor_from_vec(11, v, mat=True)
sage: Q11
Ternary quadratic form with integer coefficients:
[1 2 4]
[-1 -1 0]
sage: M
[ -1 -5/11 7/11]
[ 0 -10/11 3/11]
[ 0 -3/11 13/11]
sage: Q(M) == Q11
True

find_p_neighbors(p, mat=False)
Find a list with all the reduced equivalent of the p-neighbors of this ternary quadratic form, given by the zeros mod p of the form. See find_p_neighbor_from_vec for more information.

EXAMPLES:
sage: Q0 = TernaryQF([1, 3, 3, -2, 0, -1])
sage: Q0
Ternary quadratic form with integer coefficients:
[ 1  3  3]
[-2  0 -1]
sage: neig = Q0.find_p_neighbors(5)
sage: len(neig)
6
sage: Q1 = TernaryQF([1, 1, 10, 1, 1, 1])


find_zeros_mod_p(p)
Find the zeros of the given ternary quadratic positive definite form modulo a prime p, where p doesn’t
divides the discriminant of the form.

EXAMPLES:

sage: Q = TernaryQF([4, 7, 8, -4, -1, -3])
sage: Q.is_positive_definite()
True
sage: Q.disc().factor()
3 * 13 * 19
sage: Q.find_zeros_mod_p(2)
[(1, 0, 0), (1, 1, 0), (0, 0, 1)]

sage: zeros_17 = Q.find_zeros_mod_p(17)
sage: len(zeros_17)
18
sage: [Q(v)%17 for v in zeros_17]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

is_definite()
Determine if the ternary quadratic form is definite.

EXAMPLES:

sage: Q = TernaryQF([10, 10, 1, -1, 2, 3])


sage: (-Q).is_definite()  # True

is_eisenstein_reduced()
Determine if the ternary quadratic form is Eisenstein reduced.

That is, if we have a ternary quadratic form:
\[
\begin{bmatrix}
  a & b & c \\
  r & s & t
\end{bmatrix}
\]

then

1. \(a \leq b \leq c\);
2. \(r, s, \) and \(t\) are all positive or all nonpositive;
3. \(a = |t|; a = |s|; b = |r|\);
4. \(a + b + r + s + t = 0\);
5. \(a = t\) implies \(s = 2*r; a = s\) implies \(t = 2*s; b = r\) implies \(t = 2*s;\)
6. \(a = -t\) implies \(s = 0; a = -s\) implies \(t = 0; b = -r\) implies \(t = 0;\)
7. \(a + b + r + s + t = 0\) implies \(2*a + 2*s + t = 0;\)
8. \(a + b\) implies \(|r| = |s|; b + c\) implies \(|s| = |t|.\)

**EXAMPLES:**

```
sage: Q = TernaryQF([1, 1, 1, 0, 0, 0])
sage: Q.is_eisenstein_reduced()
True
sage: Q = TernaryQF([34, 14, 44, 12, 25, -22])
sage: Q.is_eisenstein_reduced()
False
```

**is_negative_definite()**

Determine if the ternary quadratic form is negative definite.

**EXAMPLES:**

```
sage: Q = TernaryQF([-8, -9, -10, 1, 9, -3])
sage: Q.is_negative_definite()
True
sage: Q = TernaryQF([-4, -1, 6, -5, 1, -5])
sage: Q((0, 0, 1))
6
sage: Q.is_negative_definite()
False
```

**is_positive_definite()**

Determine if the ternary quadratic form is positive definite.

**EXAMPLES:**

```
sage: Q = TernaryQF([10, 10, 1, -1, 2, 3])
sage: Q.is_positive_definite()
True
sage: (-Q).is_positive_definite()
False
sage: Q = TernaryQF([1, 1, 0, 0, 0, 0])
sage: Q.is_positive_definite()
False
sage: Q = TernaryQF([1, 1, 1, -1, -2, -3])
sage: Q((1,1,1))
-3
sage: Q.is_positive_definite()
False
```
**is_primitive()**
Determine if the ternary quadratic form is primitive.

This means that the greatest common divisor of the coefficients of the form is 1.

**EXAMPLES:**

```
sage: Q = TernaryQF([1, 2, 3, 4, 5, 6])
sage: Q.is_primitive()
True
sage: Q.content()
1
sage: Q = TernaryQF([10, 10, 10, 5, 5, 5])
sage: Q.content()
5
sage: Q.is_primitive()
False
```

**level()**
Return the level of the ternary quadratic form, which is 4 times the discriminant divided by the divisor.

**EXAMPLES:**

```
sage: Q = TernaryQF([1, 2, 2, -1, 0, -1])
sage: Q.level()
52
sage: 4*Q.disc()/Q.divisor()
52
```

**matrix()**
Return the Hessian matrix associated to the ternary quadratic form. That is, if \( Q \) is a ternary quadratic form, \( Q(x, y, z) = a*x^2 + b*y^2 + c*z^2 + r*y*z + s*x*z + t*x*y \), then the Hessian matrix associated to \( Q \) is

\[
\begin{bmatrix}
2a & t & s \\
t & 2b & r \\
s & r & 2c
\end{bmatrix}
\]

**EXAMPLES:**

```
sage: Q = TernaryQF([1,1,2,0,-1,4])
sage: Q
Ternary quadratic form with integer coefficients:
[[1 1 2]
 [0 -1 4]]
sage: M = Q.matrix()
sage: M
[2 4 -1]
[4 2 0]
[-1 0 4]
sage: v = vector((1, 2, 3))
sage: Q(v)
28
sage: (v*M*v.column())[0]/2
28
```
**number_of_automorphisms**(*slow=True*)

Return the number of automorphisms of the definite ternary quadratic form.

EXAMPLES:

```
sage: Q = TernaryQF([1, 1, 7, 0, 0, 0])
sage: A = matrix(ZZ, 3, [0, 1, 0, -1, 5, 0, -8, -1, 1])
sage: A.det()
1
sage: Q1 = Q(A)
sage: Q1
Ternary quadratic form with integer coefficients:
[449 33 7]
[-14 -112 102]
sage: Q1.number_of_automorphisms()
8
sage: Q = TernaryQF([-19, -7, -6, -12, 20, 23])
sage: Q.is_negative_definite()
True
sage: Q.number_of_automorphisms(slow = False)
24
```

**omega()**

Return the content of the adjoint of the primitive associated ternary quadratic form.

EXAMPLES:

```
sage: Q = TernaryQF([4, 11, 12, 0, -4, 0])
sage: Q.omega()
176
sage: Q.primitive().adjoint().content()
176
```

**polynomial**(*names='x,y,z'*)

Return the polynomial associated to the ternary quadratic form.

EXAMPLES:

```
sage: Q = TernaryQF([1, 1, 0, 2, -3, -1])
sage: Q
Ternary quadratic form with integer coefficients:
[1 1 0]
[2 -3 -1]
```

```
sage: p = Q.polynomial()
sage: p
x^2 - x*y + y^2 - 3*x*z + 2*y*z
sage: p.parent()
Multivariate Polynomial Ring in x, y, z over Integer Ring
```

**primitive()**

Return the primitive version of the ternary quadratic form.

EXAMPLES:

```
sage: Q = TernaryQF([2, 2, 2, 1, 1, 1])
sage: Q.is_primitive()
159
```

(continues on next page)
True
sage: Q.primitive()
Ternary quadratic form with integer coefficients:
[2 2 2]
[1 1 1]
sage: Q.primitive() == Q
True
sage: Q = TernaryQF([10, 10, 10, 5, 5, 5])
sage: Q.primitive()
Ternary quadratic form with integer coefficients:
[2 2 2]
[1 1 1]

\texttt{pseudorandom\_primitive\_zero\_mod\_p}(p)

Return a tuple of the form \( v = (a, b, 1) \) such that \( v \) is a zero of the given ternary quadratic positive definite form modulo an odd prime \( p \), where \( p \) doesn’t divides the discriminant of the form.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Q = TernaryQF([1, 1, 11, 0, -1, 0])
sage: Q.disc()
43
sage: Q.pseudorandom_primitive_zero_mod_p(3)  # random
(1, 2, 1)
sage: Q((1, 2, 1))
15
sage: v = Q.pseudorandom_primitive_zero_mod_p(1009)
sage: Q(v) % 1009
0
sage: v[2]
1
\end{verbatim}

\texttt{quadratic\_form}()

Return the object \texttt{QuadraticForm} with the same coefficients as \( Q \) over \texttt{ZZ}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Q = TernaryQF([1, 2, 3, 1, 1, 1])
sage: QF1 = Q.quadratic_form()
sage: QF1
Quadratic form in 3 variables over Integer Ring with coefficients:
[ 1 1 1 ]
[ * 2 1 ]
[ * * 3 ]
sage: QF2 = QuadraticForm(ZZ, 3, [1, 1, 1, 2, 1, 3])
sage: bool(QF1 == QF2)
True
\end{verbatim}

\texttt{reciprocal}()

Return the reciprocal quadratic form associated to the given form.

This is defined as the multiple of the primitive adjoint with the same content as the given form.

\textbf{EXAMPLES:}
sage: Q = TernaryQF([2, 2, 14, 0, 0, 0])
sage: Q.reciprocal()
Ternary quadratic form with integer coefficients:
[14 14 2]
[0 0 0]
sage: Q.content()
2
sage: Q.reciprocal().content()
2
sage: Q.adjoint().content()
16

reciprocal_reduced()
Return the reduced form of the reciprocal form of the given ternary quadratic form.

EXAMPLES:

sage: Q = TernaryQF([1, 1, 3, 0, -1, 0])
sage: Qrr = Q.reciprocal_reduced()
sage: Qrr
Ternary quadratic form with integer coefficients:
[4 11 12]
[0 -4 0]
sage: Q.is_eisenstein_reduced()
True
sage: Qr = Q.reciprocal()
sage: Qr.reduced_form_eisenstein(matrix = False) == Qrr
True

reduced_form_eisenstein(matrix=True)
Return the Eisenstein reduced form equivalent to the given positive ternary quadratic form, which is unique.

EXAMPLES:

sage: Q = TernaryQF([293, 315, 756, 908, 929, 522])
sage: Qr, m = Q.reduced_form_eisenstein()
sage: Qr
Ternary quadratic form with integer coefficients:
[1 2 2]
[-1 0 -1]
sage: Qr.is_eisenstein_reduced()
True
sage: m
[ -54 137 -38]
[ -23 58 -16]
[ 47 -119 33]
sage: m.det()
1
sage: Q(m) == Qr
True
sage: Q = TernaryQF([12,36,3,14,-7,-19])
sage: Q.reduced_form_eisenstein(matrix = False)
Ternary quadratic form with integer coefficients:
[3 8 20]

(continues on next page)
scale_by_factor($k$)
Scale the values of the ternary quadratic form by the number $c$, if $c$ times the content of the ternary quadratic form is an integer it returns a ternary quadratic form, otherwise returns a quadratic form of dimension 3.

EXAMPLES:

```sage
sage: Q = TernaryQF([2, 2, 4, 0, -2, 8])
sage: Q
Ternary quadratic form with integer coefficients:
[2 2 4]
[0 -2 8]
sage: Q.scale_by_factor(5)
Ternary quadratic form with integer coefficients:
[10 10 20]
[0 -10 40]
sage: Q.scale_by_factor(1/2)
Ternary quadratic form with integer coefficients:
[1 1 2]
[0 -1 4]
sage: Q.scale_by_factor(1/3)
Quadratic form in 3 variables over Rational Field with coefficients:
[2/3 8/3 -2/3]
[* 2/3 0]
[* * 4/3]
```

symmetry($v$)
Return $A$ the automorphism of the ternary quadratic form such that:

- $A*v = -v$.
- $A*u = 0$, if $u$ is orthogonal to $v$.

where $v$ is a given vector.

EXAMPLES:

```sage
sage: Q = TernaryQF([4, 5, 8, 5, 2, 2])
sage: v = vector((1,1,1))
sage: M = Q.symmetry(v)
sage: M
[7/13 -17/26 -23/26]
[-6/13 9/26 -23/26]
[-6/13 -17/26 3/26]
sage: M.det()
-1
sage: M*v
(-1, -1, -1)
sage: v1 = vector((23, 0, -12))
sage: v2 = vector((0, 23, -17))
sage: v1*Q.matrix()*v
0
sage: v2*Q.matrix()*v
0
```

(continues on next page)
sage: \(M^*v1 == v1\)
True
sage: \(M^*v2 == v2\)
True

\(\xi(p)\)
Return the value of the genus characters \(\Xi_p\...\) which may be missing one character. We allow -1 as a prime.

Reference: Dickson’s “Studies in the Theory of Numbers”

EXAMPLES:

sage: Q1 = TernaryQF([26, 42, 53, -36, -17, -3])
sage: Q2 = Q1.find_p_neighbors(2)[1]
sage: Q1.omega()
3
sage: Q1.xi(3), Q2.xi(3)
(-1, -1)

\(\xi_{\text{rec}}(p)\)
Return \(\Xi(p)\) for the reciprocal form.

EXAMPLES:

sage: Q1 = TernaryQF([1, 1, 7, 0, 0, 0])
sage: Q2 = Q1.find_p_neighbors(3)[0]
sage: Q1.delta()
28
sage: Q1.xi_rec(7), Q2.xi_rec(7)
(1, 1)

sage.quadratic_forms.ternary_qf.find_a_ternary_qf_by_level_disc\((N, d)\)
Find a reduced ternary quadratic form given its discriminant \(d\) and level \(N\). If \(N|4d\) and \(d|N^2\), then it may be a form with that discriminant and level.

EXAMPLES:

sage: Q1 = find_a_ternary_qf_by_level_disc(44, 11)
sage: Q1
Ternary quadratic form with integer coefficients:
[1 1 3]
[0 -1 0]
sage: Q2 = find_a_ternary_qf_by_level_disc(44, 11^2 * 16)
sage: Q2
Ternary quadratic form with integer coefficients:
[3 15 15]
[-14 -2 -2]
sage: Q1.is_eisenstein_reduced()
True
sage: Q1.level()
44
sage: Q1.disc()
11
sage: find_a_ternary_qf_by_level_disc(44, 22)
sage: find_a_ternary_qf_by_level_disc(44, 33)
Traceback (most recent call last):
...
ValueError: There are no ternary forms of this level and discriminant

sage.quadratic_forms.ternary_qf.find_all_ternary_qf_by_level_disc(N, d)
Find the coefficients of all the reduced ternary quadratic forms given its discriminant d and level N.
If N|4d and d|N^2, then it may be some forms with that discriminant and level.

EXAMPLES:

sage: find_all_ternary_qf_by_level_disc(44, 11)
[Ternary quadratic form with integer coefficients:
 [1 1 3]
[0 -1 0], Ternary quadratic form with integer coefficients:
 [1 1 4]
 [1 1 1]]
sage: find_all_ternary_qf_by_level_disc(44, 11^2 * 16)
[Ternary quadratic form with integer coefficients:
 [3 15 15]
[-14 -2 -2], Ternary quadratic form with integer coefficients:
 [4 11 12]
 [0 -4 0]]
sage: Q = TernaryQF([1, 1, 3, 0, -1, 0])
sage: Q.is_eisenstein_reduced()
True
sage: Q.reciprocal_reduced()
Ternary quadratic form with integer coefficients:
 [4 11 12]
[0 -4 0]
sage: find_all_ternary_qf_by_level_disc(44, 22)
[]
sage: find_all_ternary_qf_by_level_disc(44, 33)
Traceback (most recent call last):
...
ValueError: There are no ternary forms of this level and discriminant
EVALUATION

sage.quadratic_forms.quadratic_form__evaluate.QFEvaluateMatrix(Q, M, Q2)
Evaluate this quadratic form Q on a matrix M of elements coercible to the base ring of the quadratic form, which in matrix notation is given by:

\[ Q_2 = M^t \ast Q \ast M. \]

Note: This is a Python wrapper for the fast evaluation routine QFEvaluateMatrix_cdef(). This routine is for internal use and is called more conveniently as Q(M). The inclusion of Q2 as an argument is to avoid having to create a QuadraticForm here, which for now creates circular imports.

INPUT:
• Q – QuadraticForm over a base ring R
• M – a Q.dim() x Q2.dim() matrix of elements of R

OUTPUT:
• Q2 – a QuadraticForm over R

EXAMPLES:

```
sage: from sage.quadratic_forms.quadratic_form__evaluate import QFEvaluateMatrix
sage: Q = QuadraticForm(ZZ, 4, range(10)); Q
Quadratic form in 4 variables over Integer Ring with coefficients:
[0 1 2 3]
[* 4 5 6]
[* * 7 8]
[* * * 9]
sage: Q2 = QuadraticForm(ZZ, 2)
sage: M = Matrix(ZZ, 4, 2, [1,0,0,0, 0,1,0,0]); M
[1 0]
[0 0]
[0 1]
[0 0]
sage: QFEvaluateMatrix(Q, M, Q2)
Quadratic form in 2 variables over Integer Ring with coefficients:
[0 2]
[* 7]
```

sage.quadratic_forms.quadratic_form__evaluate.QFEvaluateVector(Q, v)
Evaluate this quadratic form Q on a vector or matrix of elements coercible to the base ring of the quadratic form. If a vector is given then the output will be the ring element Q(v), but if a matrix is given then the output will be the quadratic form Q' which in matrix notation is given by:

\[ Q' = v^t \ast Q \ast v. \]
Note: This is a Python wrapper for the fast evaluation routine QFEvaluateVector_cdef(). This routine is for internal use and is called more conveniently as Q(M).

INPUT:
- Q – QuadraticForm over a base ring R
- v – a tuple or list (or column matrix) of Q.dim() elements of R

OUTPUT:
an element of R

EXAMPLES:

```python
sage: from sage.quadratic_forms.quadratic_form__evaluate import QFEvaluateVector
sage: Q = QuadraticForm(ZZ, 4, range(10)); Q
Quadratic form in 4 variables over Integer Ring with coefficients:
[0 1 2 3]
[* 4 5 6]
[* * 7 8]
[* * * 9]
sage: QFEvaluateVector(Q, (1,0,0,0))
0
sage: QFEvaluateVector(Q, (1,0,1,0))
9
```
• Index
• Module Index
• Search Page
q

sage.quadratic_forms.binary_qf, 85
sage.quadratic_forms.constructions, 99
sage.quadratic_forms.count_local_2, 109
sage.quadratic_formsextras, 111
sage.quadratic_forms.genera.genus, 113
sage.quadratic_forms.genera.normal_form, 141
sage.quadratic_forms.qfsolve, 145
sage.quadratic_forms.quadratic_form, 1
sage.quadratic_forms.quadratic_form__evaluate, 165
sage.quadratic_forms.random_quadraticform, 101
sage.quadratic_forms.special_values, 105
sage.quadratic_forms.ternary, 149
sage.quadratic_forms.ternary_qf, 151
compartments() (sage.quadratic_forms.genera.genus.Genus_Symbol_p_adic_ring.method), 123
complementary_subform_to_vector() count_congruence_solutions__bad_type_II() (sage.quadratic_forms.quadratic_form.QuadraticForm.method), 13 (sage.quadratic_forms.quadratic_form.QuadraticForm.method), 20
complex_point() count_congruence_solutions__good_type() (sage.quadratic_forms.binary_qf.BinaryQF.method), 86 (sage.quadratic_forms.quadratic_form.QuadraticForm.method), 21
compute_definiteness() count_congruence_solutions__zero_type() (sage.quadratic_forms.quadratic_form.QuadraticForm.method), 14 (sage.quadratic_forms.quadratic_form.QuadraticForm.method), 21
compute_definiteness_string_by_determinants() count_congruence_solutions_as_vector() (sage.quadratic_forms.quadratic_form.QuadraticForm.method), 15 (sage.quadratic_forms.quadratic_form.QuadraticForm.method), 22
count_modp__by_gauss_sum() (in module sage.quadratic_forms.quadratic_form.CountAllLocalTypesNaive() (in module sage.quadratic_forms.quadratic_form.CountAllLocalTypesNaive() (in module sage.quadratic_forms.quadratic_form.CountAllLocalTypesNaive() (in module
sage.quadratic_forms.count_local_2), 109 sage.quadratic_forms.count_local_2), 109 sage.quadratic_forms.count_local_2), 109
cycle() sage.quadratic_forms.binary_qf.BinaryQF
det() sage.quadratic_forms.ternary_qf.TernaryQF
determinant() sage.quadratic_forms.binary_qf.BinaryQF
determine() sage.quadratic_forms.quadratic_form.QuadraticForm
determinant() sage.quadratic_forms.binary_qf.BinaryQF
determinant() sage.quadratic_forms.quadratic_form.QuadraticForm
determinant() sage.quadratic_forms.quadratic_form.QuadraticForm
DiagonalQuadraticForm() (in module sage.quadratic_forms.quadratic_form)
dim() (sage.quadratic_forms.quadratic_form)
dim() (sage.quadratic_forms.quadratic_form)
dim() (sage.quadratic_forms.quadratic_form)
Index
hasse_invariant() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 37
hasse_invariant__OMeara() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 31
Hessian_matrix() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 4
HyperbolicPlane_quadratic_form() (in module sage.quadratic_forms.constructions), 99

| is_2_adic_genus() (in module sage.quadratic_forms.genera.genus), 136 is_adjoint() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 32
| is_anisotropic() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 32
| is_definite() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 33
| is_definite() (sage.quadratic_forms.ternary_qf.TernaryQF method), 156
| is_eisenstein_reduced() (sage.quadratic_forms.ternary_qf.TernaryQF method), 156
| is_equivalent() (sage.quadratic_forms.binary_qf.BinaryQF method), 89
| is_even() (sage.quadratic_forms.genera.genus.Genus_Symbol_p_adic_ring method), 127
| is_even() (sage.quadratic_forms.genera.genus.GenusSymbol_global_ring method), 116
| is_even() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 33
| is_even_matrix() (in module sage.quadratic_forms.genera.genus), 137
| is_GlobalGenus() (in module sage.quadratic_forms.genera.genus), 136
| is_globally_equivalent_to() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 34
| is_hyperbolic() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 35
| is_indef() (sage.quadratic_forms.binary_qf.BinaryQF method), 89
| is_indefinite() (sage.quadratic_forms.binary_qf.BinaryQF method), 89
| is_indefinite() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 35
| is_isotropic() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 36
| is_locally_equivalent_to() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 36
| is_locally_reduced_number() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 37
| is_locally_universal_at_all_places() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 38
| is_locally_universal_at_all_primes() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 38
| is_locally_universal_at_prime() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 38

Index
Index 175
mass_at_two_by_counting_mod_power()  (sage.quadratic_forms.quadratic_form.QuadraticForm method), 59

matrix()  (sage.quadratic_forms.quadratic_form.QuadraticForm method), 60

matrix()  (sage.quadratic_forms.ternary_qf.TernaryQF method), 158

matrix_action_left()  (sage.quadratic_forms.binary_qf.BinaryQF method), 93

matrix_action_right()  (sage.quadratic_forms.binary_qf.BinaryQF method), 93

minkowski_reduction()  (sage.quadratic_forms.quadratic_form.QuadraticForm method), 60

minkowski_reduction_for_4vars__SP()  (sage.quadratic_forms.quadratic_form.QuadraticForm method), 62

module

sage.quadratic_forms.binary_qf, 85
sage.quadratic_forms.constructions, 99
sage.quadratic_forms.count_local_2, 109
sage.quadratic_forms.extras, 111
sage.quadratic_forms.genera.genus, 113
sage.quadratic_forms.genera.normal_form, 141
sage.quadratic_forms.qfsolve, 145
sage.quadratic_forms.quadratic_form, 1
sage.quadratic_forms.quadratic_form__evaluate, 165
sage.quadratic_forms.random_quadraticform, 101
sage.quadratic_forms.special_values, 105
sage.quadratic_forms.ternary, 149
sage.quadratic_forms.ternary_qf, 151

multiply_variable()  (sage.quadratic_forms.quadratic_form.QuadraticForm method), 62

neighbor_iteration()  (sage.quadratic_forms.quadratic_form.QuadraticForm method), 63

norm()  (sage.quadratic_forms.genera.genus.Genus_Symbol_p_adic_ring method), 128

norm()  (sage.quadratic_forms.genera.genus.GenusSymbol_global_ring method), 117

number_of_automorphisms()  (sage.quadratic_forms.quadratic_form.QuadraticForm method), 63

number_of_automorphisms()  (sage.quadratic_forms.ternary_qf.TernaryQF method), 158

number_of_blocks()  (sage.quadratic_forms.genera.genus.Genus_Symbol_p_adic_ring method), 128

omega()  (sage.quadratic_forms.quadratic_form.QuadraticForm method), 64

omega()  (sage.quadratic_forms.ternary_qf.TernaryQF method), 159

orbits_lines_mod_p()  (sage.quadratic_forms.quadratic_form.QuadraticForm method), 64

P

p_adic_normal_form()  (in module sage.quadratic_forms.genera.normal_form), 142

p_adic_symbol()  (in module sage.quadratic_forms.genera.genus), 137

Pall_mass_density_at_odd_prime()  (sage.quadratic_forms.quadratic_form.QuadraticForm method), 5

parity()  (sage.quadratic_forms.quadratic_form.QuadraticForm method), 64

polynomial()  (sage.quadratic_forms.binary_qf.BinaryQF method), 94

polynomial()  (sage.quadratic_forms.quadratic_form.QuadraticForm method), 65

polynomial()  (sage.quadratic_forms.ternary_qf.TernaryQF method), 159

polynomial()  (sage.quadratic_forms.ternary_qf.TernaryQF method), 159

primitivize()  (in module sage.quadratic_forms.ternary), 149

primitivize()  (in module sage.quadratic_forms.ternary_qf.TernaryQF method), 159

pseudorandom_primitive_zero_mod_p()  (in module sage.quadratic_forms.ternary), 150

pseudorandom_primitive_zero_mod_p()  (sage.quadratic_forms.ternary_qf.TernaryQF method), 160

Q

QFEvaluateMatrix()  (in module sage.quadratic_forms.quadratic_form__evaluate), 165

QFEvaluateVector()  (in module sage.quadratic_forms.quadratic_form__evaluate), 165

qfparam()  (in module sage.quadratic_forms.qfsolve), 145
scale_by_factor() (sage.quadratic_forms.ternary_qf.TernaryQF method), 162
set_number_of_automorphisms() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 71
shimura_mass__maximal() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 71
short_primitive_vector_list_up_to_length() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 71
short_vector_list_up_to_length() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 71
signature() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 74
signature() (sage.quadratic_forms.genera.genus.GenusSymbol_global_ring method), 119
signature_pair() (sage.quadratic_forms.genera.genus.GenusSymbol_global_ring method), 119
signature_pair_of_matrix() (in module sage.quadratic_forms.genera.genus), 138
signature_pair_of_matrix() (sage.quadratic_forms.genera.genus.GenusSymbol_global_ring method), 120
signature_vector() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 74
small_prime_value() (sage.quadratic_forms.binary_qf.BinaryQF method), 95
solve() (in module sage.quadratic_forms.ternary_qf), 146
solve() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 75
solve_integer() (sage.quadratic_forms.binary_qf.BinaryQF method), 96
spinor_generators() (sage.quadratic_forms.genera.genus.GenusSymbol_global_ring method), 120
split_local_cover() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 76
split_odd() (in module sage.quadratic_forms.genera.genus), 138
sum_by_coefficients_with() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 77
swap_variables() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 77
symbol_tuple_list() (sage.quadratic_forms.genera.genus.GenusSymbol_p_adic_ring method), 130
symmetry() (sage.quadratic_forms.ternary_qf.TernaryQF method), 151
theta_by_cholesky() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 78
theta_by_pari() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 78
theta_series() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 79
theta_series_degree_2() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 79
two_adic_symbol() (in module sage.quadratic_forms.genera.genus), 140
vectors_by_length() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 80
Watson_mass_at_2() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 5
xi() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 81
xi() (sage.quadratic_forms.ternary_qf.TernaryQF method), 163
xi_rec() (sage.quadratic_forms.quadratic_form.QuadraticForm method), 81
xi_rec() (sage.quadratic_forms.ternary_qf.TernaryQF method), 163
zeta__exact() (in module sage.quadratic_forms.special_values), 107