# CONTENTS

1 **User Interfaces** 3

2 **Graphics** 5

3 **Mathematics** 7
   3.1 Parents and Categories .................................................. 7
   3.2 Basic Rings and Fields .................................................. 7
   3.3 Linear Algebra .............................................................. 7
   3.4 Calculus and Analysis .................................................... 8
   3.5 Probability and Statistics ............................................... 8
   3.6 Mathematical Structures ................................................ 8
   3.7 Discrete Mathematics .................................................... 8
   3.8 Geometry and Topology .................................................. 9
   3.9 Homological Algebra ..................................................... 9
   3.10 Number Fields, Function Fields, and Valuations .................... 9
   3.11 Number Theory ............................................................ 10
   3.12 Algebraic and Arithmetic Geometry ................................... 10
   3.13 Miscellaneous ............................................................. 10

4 **Infrastructure** 11
   4.1 Programming Facilities ................................................ 11
   4.2 Subsystem Interfaces ..................................................... 11
   4.3 Documentation System .................................................. 11

5 **General Information** 13

6 **Indices and Tables** 15
Here you find documentation for all of Sage’s features, illustrated with lots of examples. A thematic index follows.

This documentation is licensed under the Creative Commons Attribution-Share Alike 3.0 License.
CHAPTER ONE

USER INTERFACES

• Command Line Interface
• Jupyter Notebook Interface
CHAPTER TWO

GRAPHICS

• 2D Graphics
• 3D Graphics
3.1 Parents and Categories

• Parents and Elements
• Coercion
• Categories

3.2 Basic Rings and Fields

• Integers and Rational Numbers
• Real and Complex Numbers
• Commutative Polynomials
• Power Series and Laurent Series
• Finite Rings and Fields
• $p$-adic Numbers
• Noncommutative Polynomials
• Quaternion Algebras

3.3 Linear Algebra

• Matrices and Spaces of Matrices
• Vectors and Modules
• Tensors on Free Modules of Finite Rank
3.4 Calculus and Analysis

• Symbolic Calculus
• Mathematical Constants
• Elementary and Special Functions
• Asymptotic Expansions
• Numerical Optimization

3.5 Probability and Statistics

• Probability
• Statistics
• Quantitative Finance

3.6 Mathematical Structures

• Sets
• Monoids
• Groups
• Semirings
• Rings
• Algebras

3.7 Discrete Mathematics

• Combinatorics
• Graph Theory
• Quivers
• Matroid Theory
• Discrete Dynamics
• Coding Theory
• Cryptography
• Game Theory
• Symbolic Logic
• SAT solvers
3.8 Geometry and Topology

- Euclidean Spaces and Vector Calculus
- Combinatorial and Discrete Geometry
- Cell Complexes, Simplicial Complexes, and Simplicial Sets
- Manifolds and Differential Geometry
- Hyperbolic Geometry
- Parametrized Surfaces
- Knot Theory

3.9 Homological Algebra

- Chain Complexes and their Homology
- Resolutions

3.10 Number Fields, Function Fields, and Valuations

- Number Fields
- Function Fields
- Discrete Valuations
- Drinfeld Modules

3.11 Number Theory

- Diophantine Approximation
- Quadratic Forms
- $L$-Functions
- Arithmetic Subgroups of $\text{SL}_2(\mathbb{Z})$
- General Hecke Algebras and Hecke Modules
- Modular Forms
- Modular Symbols
- Modular Abelian Varieties
3.12 Algebraic and Arithmetic Geometry

- Schemes
- Plane and Space Curves
- Elliptic and Hyperelliptic Curves

3.13 Miscellaneous

- Databases
- Games
CHAPTER
FOUR

INFRASTRUCTURE

4.1 Programming Facilities

• Data Structures
• Utilities
• Test Framework
• Parallel Computing
• Python Technicalities

4.2 Subsystem Interfaces

• Interpreter Interfaces
• C/C++ Library Interfaces

4.3 Documentation System

• Documentation System
CHAPTER
FIVE

GENERAL INFORMATION

• External Packages
• Bibliographic References
• History and License
INDICES AND TABLES

- genindex
- modindex
- search