CONTENTS

1 User Interfaces ... 3

2 Graphics ... 5

3 Mathematics .. 7
 3.1 Parents and Categories 7
 3.2 Basic Rings and Fields 7
 3.3 Linear Algebra .. 7
 3.4 Calculus and Analysis 8
 3.5 Probability and Statistics 8
 3.6 Mathematical Structures 8
 3.7 Discrete Mathematics 8
 3.8 Geometry and Topology 9
 3.9 Homological Algebra 9
 3.10 Number Fields, Function Fields, and Valuations 9
 3.11 Number Theory ... 9
 3.12 Algebraic and Arithmetic Geometry 10
 3.13 Miscellaneous ... 10

4 Infrastructure .. 11
 4.1 Programming Facilities 11
 4.2 Subsystem Interfaces 11
 4.3 Documentation System 11

5 General Information ... 13

6 Indices and Tables .. 15
Here you find documentation for all of Sage’s features, illustrated with lots of examples. A thematic index follows. This documentation is licensed under the Creative Commons Attribution-Share Alike 3.0 License.
CHAPTER ONE

USER INTERFACES

• Command Line Interface
• Jupyter Notebook Interface
CHAPTER TWO

GRAPHICS

• 2D Graphics
• 3D Graphics
3.1 Parents and Categories

- Parents and Elements
- Coercion
- Categories

3.2 Basic Rings and Fields

- Integers and Rational Numbers
- Real and Complex Numbers
- Commutative Polynomials
- Power Series and Laurent Series
- Finite Rings and Fields
- p-adic Numbers
- Noncommutative Polynomials
- Quaternion Algebras

3.3 Linear Algebra

- Matrices and Spaces of Matrices
- Vectors and Modules
- Tensors on Free Modules of Finite Rank
3.4 Calculus and Analysis

- Symbolic Calculus
- Mathematical Constants
- Elementary and Special Functions
- Asymptotic Expansions
- Numerical Optimization

3.5 Probability and Statistics

- Probability
- Statistics
- Quantitative Finance

3.6 Mathematical Structures

- Sets
- Monoids
- Groups
- Semirings
- Rings
- Algebras

3.7 Discrete Mathematics

- Combinatorics
- Graph Theory
- Quivers
- Matroid Theory
- Discrete Dynamics
- Coding Theory
- Cryptography
- Game Theory
- Symbolic Logic
- SAT solvers
3.8 Geometry and Topology

- Euclidean Spaces and Vector Calculus
- Combinatorial and Discrete Geometry
- Cell Complexes, Simplicial Complexes, and Simplicial Sets
- Manifolds and Differential Geometry
- Hyperbolic Geometry
- Parametrized Surfaces
- Knot Theory

3.9 Homological Algebra

- Chain Complexes and their Homology
- Resolutions

3.10 Number Fields, Function Fields, and Valuations

- Number Fields
- Function Fields
- Discrete Valuations
- Drinfeld Modules

3.11 Number Theory

- Diophantine Approximation
- Quadratic Forms
- L-Functions
- Arithmetic Subgroups of $\text{SL}_2(\mathbb{Z})$
- General Hecke Algebras and Hecke Modules
- Modular Forms
- Modular Symbols
- Modular Abelian Varieties
3.12 Algebraic and Arithmetic Geometry

- Schemes
- Plane and Space Curves
- Elliptic and Hyperelliptic Curves

3.13 Miscellaneous

- Databases
- Games
4.1 Programming Facilities

- Data Structures
- Utilities
- Test Framework
- Parallel Computing
- Python Technicalities

4.2 Subsystem Interfaces

- Interpreter Interfaces
- C/C++ Library Interfaces

4.3 Documentation System

- Documentation System
CHAPTER
FIVE

GENERAL INFORMATION

- External Packages
- Bibliographic References
- History and License
INDICES AND TABLES

• genindex
• modindex
• search