CONTENTS

1 Base Classes for Rings, Algebras and Fields
1.1 Rings

2 Ideals
2.1 Ideals of commutative rings
2.2 Monoid of ideals in a commutative ring
2.3 Ideals of non-commutative rings

3 Ring Morphisms
3.1 Homomorphisms of rings
3.2 Space of homomorphisms between two rings

4 Quotient Rings
4.1 Quotient Rings
4.2 Quotient Ring Elements

5 Fraction Fields
5.1 Fraction Field of Integral Domains
5.2 Fraction Field Elements

6 Localization
6.1 Localization

7 Ring Extensions
7.1 Extension of rings
7.2 Elements lying in extension of rings
7.3 Morphisms between extension of rings

8 Utilities
8.1 Big O for various types (power series, p-adics, etc.)
8.2 Signed and Unsigned Infinities
8.3 Support Python’s numbers abstract base class

9 Derivation
9.1 Derivations

10 Indices and Tables

Python Module Index

Index
BASE CLASSES FOR RINGS, ALGEBRAS AND FIELDS

1.1 Rings

This module provides the abstract base class *Ring* from which all rings in Sage (used to) derive, as well as a selection of more specific base classes.

Warning: Those classes, except maybe for the lowest ones like *Ring, CommutativeRing, Algebra* and *CommutativeAlgebra*, are being progressively deprecated in favor of the corresponding categories, which are more flexible, in particular with respect to multiple inheritance.

The class inheritance hierarchy is:

- *Ring*
 - *Algebra*
 - *CommutativeRing*
 * *NoetherianRing*
 * *CommutativeAlgebra*
 * *IntegralDomain*
 * *DedekindDomain*
 * *PrincipalIdealDomain*

Subclasses of *PrincipalIdealDomain* are

- *EuclideanDomain*
- *Field*
 - *FiniteField*

Some aspects of this structure may seem strange, but this is an unfortunate consequence of the fact that Cython classes do not support multiple inheritance. Hence, for instance, *Field* cannot be a subclass of both *NoetherianRing* and *PrincipalIdealDomain*, although all fields are Noetherian PIDs.

(A distinct but equally awkward issue is that sometimes we may not know in advance whether or not a ring belongs in one of these classes; e.g., some orders in number fields are Dedekind domains, but others are not, and we still want to offer a unified interface, so orders are never instances of the *DedekindDomain* class.)

AUTHORS:

- David Harvey (2006-10-16): changed *CommutativeAlgebra* to derive from *CommutativeRing* instead of from *Algebra.*
class sage.rings.ring.Algebra

Bases: sage.rings.ring.Ring

Generic algebra

characteristic()

Return the characteristic of this algebra, which is the same as the characteristic of its base ring.

See objects with the base_ring attribute for additional examples. Here are some examples that explicitly use the Algebra class.

EXAMPLES:

```python
sage: A = Algebra(ZZ); A
<sage.rings.ring.Algebra object at ...>
sage: A.characteristic()
0
sage: A = Algebra(GF(7^3, 'a'))
sage: A.characteristic()
7
```

has_standard_involution()

Return True if the algebra has a standard involution and False otherwise. This algorithm follows Algorithm 2.10 from John Voight’s Identifying the Matrix Ring. Currently the only type of algebra this will work for is a quaternion algebra. Though this function seems redundant, once algebras have more functionality, in particular have a method to construct a basis, this algorithm will have more general purpose.

EXAMPLES:

```python
sage: B = QuaternionAlgebra(2)
sage: B.has_standard_involution()
True
sage: R.<x> = PolynomialRing(QQ)
sage: K.<u> = NumberField(x**2 - 2)
sage: A = QuaternionAlgebra(K,-2,5)
sage: A.has_standard_involution()
True
sage: L.<a,b> = FreeAlgebra(QQ,2)
sage: L.has_standard_involution()
Traceback (most recent call last):
...
NotImplementedError: has_standard_involution is not implemented for this algebra
```

class sage.rings.ring.CommutativeAlgebra

Bases: sage.rings.ring.CommutativeRing

Generic commutative algebra

is_commutative()

Return True since this algebra is commutative.

EXAMPLES:

Any commutative ring is a commutative algebra over itself:
Trying to create a commutative algebra over a non-commutative ring will result in a `TypeError`.

```python
class sage.rings.ring.CommutativeRing
    Bases: sage.rings.ring.Ring

    Generic commutative ring.

    derivation (arg=None, twist=None)
        Return the twisted or untwisted derivation over this ring specified by arg.

        Note: A twisted derivation with respect to \( \theta \) (or a \( \theta \)-derivation for short) is an additive map \( d \) satisfying the following axiom for all \( x, y \) in the domain:

        \[
        d(xy) = \theta(x)d(y) + d(x)y.
        \]

        INPUT:
        * arg – (optional) a generator or a list of coefficients that defines the derivation
        * twist – (optional) the twisting homomorphism

        EXAMPLES:
```

```python
sage: R.<x,y,z> = QQ[]
sage: R.derivation()
d/dx
```

In that case, `arg` could be a generator:

```python
sage: R.derivation(y)
d/dy
```

or a list of coefficients:

```python
sage: R.derivation([1,2,3])
d/dx + 2*d/dy + 3*d/dz
```

It is not possible to define derivations with respect to a polynomial which is not a variable:

```python
sage: R.derivation(x^2)
Traceback (most recent call last):
...:
ValueError: unable to create the derivation
```

Here is an example with twisted derivations:

```python
sage: R.<x,y,z> = QQ[]
sage: theta = R.hom([x^2, y^2, z^2])
sage: f = R.derivation(twist=theta); f
0
```

(continues on next page)
sage: f.parent()
Module of twisted derivations over Multivariate Polynomial Ring in x, y, z
over Rational Field (twisting morphism: x |--> x^2, y |--> y^2, z |--> z^2)

Specifying a scalar, the returned twisted derivation is the corresponding multiple of $\theta - id$:

```
sage: R.derivation(1, twist=theta)
[x |--> x^2, y |--> y^2, z |--> z^2] - id
sage: R.derivation(x, twist=theta)
x*(x |--> x^2, y |--> y^2, z |--> z^2) - id
```

```
derivation_module(codomain=None, twist=None)
Returns the module of derivations over this ring.

INPUT:

- codomain – an algebra over this ring or a ring homomorphism whose domain is this ring or None
  (default: None); if it is a morphism, the codomain of derivations will be the codomain of the
  morphism viewed as an algebra over self through the given morphism; if None, the codomain will be
  this ring
- twist – a morphism from this ring to codomain or None (default: None); if None, the coercion
  map from this ring to codomain will be used

Note: A twisted derivation with respect to $\theta$ (or a $\theta$-derivation for short) is an additive map $d$
 satisfying the following axiom for all $x, y$ in the domain:

\[ d(xy) = \theta(x)d(y) + d(x)y. \]

```

```
EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y, z over
 Rational Field
sage: M.gens()
(d/dx, d/dy, d/dz)
```

We can specify a different codomain:

```
sage: K = R.fraction_field()
sage: M = R.derivation_module(K); M
Module of derivations from Multivariate Polynomial Ring in x, y, z over
 Rational Field to Fraction Field of Multivariate Polynomial Ring in x, y, z
 over Rational Field
sage: M.gen() / x
1/x*d/dx
```

Here is an example with a non-canonical defining morphism:

```
sage: ev = R.hom([QQ(0), QQ(1), QQ(2)])
sage: ev
Ring morphism:
 From: Multivariate Polynomial Ring in x, y, z over Rational Field
```
To: Rational Field
Defn: x |--> 0
    y |--> 1
    z |--> 2
```
sage: M = R.derivation_module(ev)
sage: M
Module of derivations from Multivariate Polynomial Ring in x, y, z over
˓→Rational Field to Rational Field
```
Elements in $M$ acts as derivations at $(0, 1, 2)$:
```
sage: Dx = M.gen(0); Dx
d/dx
```
```
sage: Dy = M.gen(1); Dy
d/dy
```
```
sage: Dz = M.gen(2); Dz
d/dz
```
```
sage: f = x^2 + y^2 + z^2
```
```
sage: Dx(f) # = 2*x evaluated at (0,1,2)
0
```
```
sage: Dy(f) # = 2*y evaluated at (0,1,2)
2
```
```
sage: Dz(f) # = 2*z evaluated at (0,1,2)
4
```
An example with a twisting homomorphism:
```
sage: theta = R.hom([x^2, y^2, z^2])
sage: M = R.derivation_module(twist=theta); M
Module of twisted derivations over Multivariate Polynomial Ring in x, y, z
over Rational Field (twisting morphism: x |--> x^2, y |--> y^2, z |--> z^2)
```
See also:
```
derivation()
```
```
extension(poly, name=None, names=None, **kwds)
Algebraically extends self by taking the quotient self[x] / (f(x)).
```
INPUT:
```
• poly – A polynomial whose coefficients are coercible into self
• name – (optional) name for the root of f
```
Note: Using this method on an algebraically complete field does not return this field; the construction self[x] / (f(x)) is done anyway.

EXAMPLES:
```
sage: R = QQ['x']
sage: y = polygen(R)
sage: R.extension(y^2 - 5, 'a')
Univariate Quotient Polynomial Ring in a over Univariate Polynomial Ring in x
˓→over Rational Field with modulus a^2 - 5
```
sage: P.<x> = PolynomialRing(GF(5))
sage: F.<a> = GF(5).extension(x^2 - 2)
sage: P.<t> = F[]
sage: R.<b> = F.extension(t^2 - a); R
Univariate Quotient Polynomial Ring in b over Finite Field in a of size 5^2
    with modulus b^2 + 4*a

fraction_field()
    Return the fraction field of self.

EXAMPLES:
```
sage: R = Integers(389)['x,y']
sage: Frac(R)
Fraction Field of Multivariate Polynomial Ring in x, y over Ring of integers
 modulo 389
sage: R.fraction_field()
Fraction Field of Multivariate Polynomial Ring in x, y over Ring of integers
 modulo 389

frobenius_endomorphism(n=1)
 INPUT:
 • n -- a nonnegative integer (default: 1)
 OUTPUT:
 The n-th power of the absolute arithmetic Frobenius endomorphism on this finite field.

EXAMPLES:
```
sage: K.<u> = PowerSeriesRing(GF(5))
sage: Frob = K.frobenius_endomorphism(); Frob
Frobenius endomorphism x |--> x^5 of Power Series Ring in u over Finite Field of size 5
sage: Frob(u)
u^5

We can specify a power:
```
sage: f = K.frobenius_endomorphism(2); f
Frobenius endomorphism x |--> x^(5^2) of Power Series Ring in u over Finite Field of size 5
sage: f(1+u)
1 + u^25

ideal_monoid()
 Return the monoid of ideals of this ring.

EXAMPLES:
```
sage: ZZ.ideal_monoid()
Monoid of ideals of Integer Ring
sage: R.<x>=QQ[]; R.ideal_monoid()
Monoid of ideals of Univariate Polynomial Ring in x over Rational Field

is_commutative()
    Return True, since this ring is commutative.

EXAMPLES:
```
sage: QQ.is_commutative()
True
sage: ZpCA(7).is_commutative()
True
sage: A = QuaternionAlgebra(QQ, -1, -3, names=('i','j','k')); A
Quaternion Algebra (-1, -3) with base ring Rational Field
sage: A.is_commutative()
False

`krull_dimension()`
Return the Krull dimension of this commutative ring.

The Krull dimension is the length of the longest ascending chain of prime ideals.

`localization(additional_units, names=None, normalize=True, category=None)`
Return the localization of `self` at the given additional units.

EXAMPLES:

```sage
sage: R.<x, y> = GF(3)[]
sage: R.localization((x*y, x**2+y**2))
Multivariate Polynomial Ring in x, y over Finite Field of size 3 localized at
(y, x, x^2 + y^2)
sage: ~y in _
True
```

class sage.rings.ring.DedekindDomain

Bases: `sage.rings.ring.IntegralDomain`

Generic Dedekind domain class.

A Dedekind domain is a Noetherian integral domain of Krull dimension one that is integrally closed in its field of fractions.

This class is deprecated, and not actually used anywhere in the Sage code base. If you think you need it, please create a category `DedekindDomains`, move the code of this class there, and use it instead.

`integral_closure()`
Return `self` since Dedekind domains are integrally closed.

EXAMPLES:

```sage
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.integral_closure()
Gaussian Integers in Number Field in s with defining polynomial x^2 + 1
sage: OK.integral_closure() == OK
True
sage: QQ.integral_closure() == QQ
True
```

`is_integrally_closed()`
Return `True` since Dedekind domains are integrally closed.

EXAMPLES:

The following are examples of Dedekind domains (Noetherian integral domains of Krull dimension one that are integrally closed over its field of fractions).
These, however, are not Dedekind domains:

```python
sage: QQ.is_integrally_closed()
True
sage: S = ZZ[sqrt(5)]; S.is_integrally_closed()
False
sage: T.<x,y> = PolynomialRing(QQ,2); T
Multivariate Polynomial Ring in x, y over Rational Field
sage: T.is_integral_domain()
True
```

```python
is_noetherian()
```

Return True since Dedekind domains are Noetherian.

EXAMPLES:

The integers, \(\mathbb{Z} \), and rings of integers of number fields are Dedekind domains:

```python
sage: ZZ.is_noetherian()
True
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.is_noetherian()
True
sage: QQ.is_noetherian()
True
```

```python
krull_dimension()
```

Return 1 since Dedekind domains have Krull dimension 1.

EXAMPLES:

The following are examples of Dedekind domains (Noetherian integral domains of Krull dimension one that are integrally closed over its field of fractions):

```python
sage: ZZ.krull_dimension()
1
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.krull_dimension()
1
```

The following are not Dedekind domains but have a `krull_dimension` function:

```python
sage: QQ.krull_dimension()
0
sage: T.<x,y> = PolynomialRing(QQ,2); T
Multivariate Polynomial Ring in x, y over Rational Field
sage: T.krull_dimension()
2
sage: U.<x,y,z> = PolynomialRing(ZZ,3); U
```

(continues on next page)
Multivariate Polynomial Ring in x, y, z over Integer Ring
`sage: U.krull_dimension()`
4
`sage: K.<i> = QuadraticField(-1)`
sage: R = K.order(2*i); R
Order in Number Field in i with defining polynomial x^2 + 1 with i = 1*I
`sage: R.is_maximal()`
False
`sage: R.krull_dimension()`
1

class sage.rings.ring.EuclideanDomain

Bases: `sage.rings.ring.PrincipalIdealDomain`

Generic Euclidean domain class.

This class is deprecated. Please use the `EuclideanDomains` category instead.

parameter()

Return an element of degree 1.

EXAMPLES:

```python
sage: R.<x>=QQ[]
sage: R.parameter()
x
```

class sage.rings.ring.Field

Bases: `sage.rings.ring.PrincipalIdealDomain`

Generic field

algebraic_closure()

Return the algebraic closure of `self`.

Note: This is only implemented for certain classes of field.

EXAMPLES:

```python
sage: K = PolynomialRing(QQ,'x').fraction_field(); K
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: K.algebraic_closure()
Traceback (most recent call last):
... Not Implemented Error: Algebraic closures of general fields not implemented.
```

divides(x, y, coerce=True)

Return `True` if `x` divides `y` in this field (usually `True` in a field!). If `coerce` is `True` (the default), first coerce `x` and `y` into `self`.

EXAMPLES:

```python
sage: QQ.divides(2, 3/4)
True
sage: QQ.divides(0, 5)
False
```
fraction_field()
Return the fraction field of self.

EXAMPLES:
Since fields are their own field of fractions, we simply get the original field in return:

```
sage: QQ.fraction_field()
Rational Field
sage: RR.fraction_field()
Real Field with 53 bits of precision
sage: CC.fraction_field()
Complex Field with 53 bits of precision
sage: F = NumberField(x^2 + 1, 'i')
sage: F.fraction_field()
Number Field in i with defining polynomial x^2 + 1
```

ideal(*gens, **kwds)
Return the ideal generated by gens.

EXAMPLES:
```
sage: QQ.ideal(2)
Principal ideal (1) of Rational Field
sage: QQ.ideal(0)
Principal ideal (0) of Rational Field
```

integral_closure()
Return this field, since fields are integrally closed in their fraction field.

EXAMPLES:
```
sage: QQ.integral_closure()
Rational Field
sage: Frac(ZZ['x,y']).integral_closure()
Fraction Field of Multivariate Polynomial Ring in x, y over Integer Ring
```

is_field(*proof=True)
Return True since this is a field.

EXAMPLES:
```
sage: Frac(ZZ['x,y']).is_field()
True
```

is_integrally_closed()
Return True since fields are trivially integrally closed in their fraction field (since they are their own fraction field).

EXAMPLES:
```
sage: Frac(ZZ['x,y']).is_integrally_closed()
True
```

is_noetherian()
Return True since fields are Noetherian rings.

EXAMPLES:
sage: QQ.is_noetherian()
True

krull_dimension()
Return the Krull dimension of this field, which is 0.

EXAMPLES:

sage: QQ.krull_dimension()
0
sage: Frac(QQ['x,y']).krull_dimension()
0

prime_subfield()
Return the prime subfield of self.

EXAMPLES:

sage: k = GF(9, 'a')
sage: k.prime_subfield()
Finite Field of size 3

class sage.rings.ring.IntegralDomain
Bases: sage.rings.ring.CommutativeRing

Generic integral domain class.
This class is deprecated. Please use the sage.categories.integral_domains.IntegralDomains
category instead.

is_field (proof=True)
Return True if this ring is a field.

EXAMPLES:

sage: GF(7).is_field()
True

The following examples have their own is_field implementations:

sage: ZZ.is_field(); QQ.is_field()
False
True
sage: R.<x> = PolynomialRing(QQ); R.is_field()
False

is_integral_domain (proof=True)
Return True, since this ring is an integral domain.

(This is a naive implementation for objects with type IntegralDomain)

EXAMPLES:

sage: ZZ.is_integral_domain()
True
sage: QQ.is_integral_domain()
True
sage: ZZ['x'].is_integral_domain()
True

(continues on next page)
is_integrally_closed()
Return True if this ring is integrally closed in its field of fractions; otherwise return False.
When no algorithm is implemented for this, then this function raises a NotImplementedError.
Note that is_integrally_closed has a naive implementation in fields. For every field F, F is its
own field of fractions, hence every element of F is integral over F.

EXAMPLES:

```sage
sage: ZZ.is_integrally_closed()
True
sage: QQ.is_integrally_closed()
True
sage: QQbar.is_integrally_closed()
True
sage: GF(5).is_integrally_closed()
True
sage: Z5 = Integers(5); Z5
Ring of integers modulo 5
sage: Z5.is_integrally_closed()
Traceback (most recent call last):
...
AttributeError: 'IntegerModRing_generic_with_category' object has no_
attribute 'is_integrally_closed'
```

class sage.rings.ring.NoetherianRing
Bases: sage.rings.ring.CommutativeRing

Generic Noetherian ring class.
A Noetherian ring is a commutative ring in which every ideal is finitely generated.
This class is deprecated, and not actually used anywhere in the Sage code base. If you think you need it, please create
a category NoetherianRings, move the code of this class there, and use it instead.

is_noetherian()
Return True since this ring is Noetherian.

EXAMPLES:

```sage
sage: ZZ.is_noetherian()
True
sage: QQ.is_noetherian()
True
sage: R.<x> = PolynomialRing(QQ)
sage: R.is_noetherian()
True
```

class sage.rings.ring.PrincipalIdealDomain
Bases: sage.rings.ring.IntegralDomain

Generic principal ideal domain.
This class is deprecated. Please use the PrincipalIdealDomains category instead.

class_group()
Return the trivial group, since the class group of a PID is trivial.
EXAMPLES:

```
sage: QQ.class_group()
Trivial Abelian group
```

content (x, y, coerce=True)

Return the content of \(x \) and \(y \), i.e. the unique element \(c \) of \(\text{self} \) such that \(x/c \) and \(y/c \) are coprime and integral.

EXAMPLES:

```
sage: QQ.content(ZZ(42), ZZ(48)); type(QQ.content(ZZ(42), ZZ(48)))
6<type 'sage.rings.rational.Rational'>
sage: QQ.content(1/2, 1/3)
1/6
sage: factor(1/2); factor(1/3); factor(1/6)
2^-1
3^-1
2^-1 * 3^-1
sage: a = (2*3)/(7*11); b = (13*17)/(19*23)
sage: factor(a); factor(b); factor(QQ.content(a,b))
2 * 3 * 7^-1 * 11^-1
13 * 17 * 19^-1 * 23^-1
7^-1 * 11^-1 * 19^-1 * 23^-1
```

Note the changes to the second entry:

```
sage: c = (2*3)/(7*11); d = (13*17)/(7^3*19*23)
sage: factor(c); factor(d); factor(QQ.content(c,d))
2 * 3 * 7^-1 * 11^-1
7^-1 * 13 * 17 * 19^-1 * 23^-1
7^-1 * 11^-1 * 19^-1 * 23^-1
```

gcd(x, y, coerce=True)

Return the greatest common divisor of \(x \) and \(y \), as elements of \(\text{self} \).

EXAMPLES:

The integers are a principal ideal domain and hence a GCD domain:

```
sage: ZZ.gcd(42, 48)
6
sage: 42.factor(); 48.factor()
2 * 3 * 7
2^4 * 3
sage: ZZ.gcd(2^4+7^2+11, 2^3*11+13)
88
sage: 88.factor()
2^3 * 11
```

In a field, any nonzero element is a GCD of any nonempty set of nonzero elements. In previous versions, Sage used to return 1 in the case of the rational field. However, since trac ticket #10771, the rational field is
considered as the fraction field of the integer ring. For the fraction field of an integral domain that provides both GCD and LCM, it is possible to pick a GCD that is compatible with the GCD of the base ring:

```python
sage: QQ.gcd(ZZ(42), ZZ(48)); type(QQ.gcd(ZZ(42), ZZ(48)))
6
<type 'sage.rings.rational.Rational'>
sage: QQ.gcd(1/2, 1/3)
1/6
```

Polynomial rings over fields are GCD domains as well. Here is a simple example over the ring of polynomials over the rationals as well as over an extension ring. Note that \texttt{gcd} requires \(x\) and \(y\) to be coercible:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = NumberField(x^2 - 2, 'a')
sage: f = (x - a)*(x + a); g = (x - a)*(x^2 - 2)
sage: print(f); print(g)
x^2 - 2
x^3 - a*x^2 - 2*x + 2*a
sage: f in R
True
sage: g in R
False
sage: R.gcd(f,g)
Traceback (most recent call last):
  ...TypeError: Unable to coerce 2*a to a rational
sage: R.base_extend(S).gcd(f,g)
x^2 - 2
sage: R.base_extend(S).gcd(f, (x - a)*(x^2 - 3))
x - a
```

\texttt{is_noetherian}()

Every principal ideal domain is noetherian, so we return \texttt{True}.

EXAMPLES:

```python
sage: Zp(5).is_noetherian()
True
```

\texttt{class sage.rings.ring.Ring}

Bases: \texttt{sage.structure.parent_gens.ParentWithGens}

Generic ring class.

\texttt{base_extend}(\(R\))

EXAMPLES:

```python
sage: QQ.base_extend(GF(7))
Traceback (most recent call last):
  ...TypeError: no base extension defined
sage: ZZ.base_extend(GF(7))
Finite Field of size 7
```

\texttt{category}()

Return the category to which this ring belongs.

Note: This method exists because sometimes a ring is its own base ring. During initialisation of a ring
\(R \), it may be checked whether the base ring (hence, the ring itself) is a ring. Hence, it is necessary that \(R.category() \) tells that \(R \) is a ring, even before its category is properly initialised.

EXAMPLES:

```
sage: FreeAlgebra(QQ, 3, 'x').category() # todo: use a ring which is not an algebra!
Category of algebras with basis over Rational Field
```

Since a quotient of the integers is its own base ring, and during initialisation of a ring it is tested whether the base ring belongs to the category of rings, the following is an indirect test that the `category()` method of rings returns the category of rings even before the initialisation was successful:

```
sage: I = Integers(15)
sage: I.base_ring() is I
True
sage: I.category()
Join of Category of finite commutative rings
    and Category of subquotients of monoids
    and Category of quotients of semigroups
    and Category of finite enumerated sets
```

epsilon()

Return the precision error of elements in this ring.

EXAMPLES:

```
sage: RDF.epsilon()
2.220446049250313e-16
sage: ComplexField(53).epsilon()
2.22044604925031e-16
sage: RealField(10).epsilon()
0.0020
```

For exact rings, zero is returned:

```
sage: ZZ.epsilon()
0
```

This also works over derived rings:

```
sage: RR['x'].epsilon()
2.22044604925031e-16
sage: QQ['x'].epsilon()
0
```

For the symbolic ring, there is no reasonable answer:

```
sage: SR.epsilon()
Traceback (most recent call last):
  ... Not Implemented Error
```

ideal(args, **kwsds)**

Return the ideal defined by \(x \), i.e., generated by \(x \).

INPUT:

- \(*x \) – list or tuple of generators (or several input arguments)
• `coerce`—bool (default: `True`); this must be a keyword argument. Only set it to `False` if you are certain that each generator is already in the ring.

• `ideal_class`—callable (default: `self._ideal_class_()`); this must be a keyword argument. A constructor for ideals, taking the ring as the first argument and then the generators. Usually a subclass of `Ideal_generic` or `Ideal_nc`.

• Further named arguments (such as `side` in the case of non-commutative rings) are forwarded to the ideal class.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: R.ideal(x,y)
Ideal (x, y) of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ideal(x^2)
Ideal (x^2) of Multivariate Polynomial Ring in x, y over Rational Field
```

Here is an example over a non-commutative ring:

```python
sage: A = SteenrodAlgebra(2)
sage: A.ideal(A.1,A.2^2)
Twosided Ideal (Sq(2), Sq(2,2)) of mod 2 Steenrod algebra, milnor basis
sage: A.ideal(A.1,A.2^2,side='left')
Left Ideal (Sq(2), Sq(2,2)) of mod 2 Steenrod algebra, milnor basis
```

ideal_monoid()

Return the monoid of ideals of this ring.

EXAMPLES:

```python
sage: F.<x,y,z> = FreeAlgebra(ZZ, 3)
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = sage.rings.ring.Ring.quotient(F,I)
sage: Q.ideal_monoid()
Monoid of ideals of Quotient of Free Algebra on 3 generators (x, y, z) over Integer Ring by the ideal (x*y + y*z, x^2 + x*y - y*x - y^2)
sage: F.<x,y,z> = FreeAlgebra(ZZ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = F.quot(I)
```

is_commutative()

Return `True` if this ring is commutative.

EXAMPLES:

```python
sage: QQ.is_commutative()
True
sage: QQ['x,y,z'].is_commutative()
True
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -1,-1)
sage: Q.is_commutative()
```

is_exact()
Return True if elements of this ring are represented exactly, i.e., there is no precision loss when doing arithmetic.

Note: This defaults to True, so even if it does return True you have no guarantee (unless the ring has properly overloaded this).

EXAMPLES:

```python
sage: QQ.is_exact()  # indirect doctest
True
sage: ZZ.is_exact()
True
sage: Qp(7).is_exact()
False
sage: Zp(7, type='capped-abs').is_exact()
False
```

is_field(proof=True)
Return True if this ring is a field.

INPUT:

• proof – (default: True) Determines what to do in unknown cases

ALGORITHM:

If the parameter proof is set to True, the returned value is correct but the method might throw an error. Otherwise, if it is set to False, the method returns True if it can establish that self is a field and False otherwise.

EXAMPLES:

```python
sage: QQ.is_field()
True
sage: GF(9,'a').is_field()
True
sage: ZZ.is_field()
False
sage: QQ['x'].is_field()
False
sage: Frac(QQ['x']).is_field()
True
```

This illustrates the use of the proof parameter:

```python
sage: R.<a,b> = QQ[]
sage: S.<x,y> = R.quo((b^3))
sage: S.is_field(proof = True)
Traceback (most recent call last):
  ... NotImplementedError
sage: S.is_field(proof = False)
False
```

is_integral_domain(proof=True)
Return True if this ring is an integral domain.

INPUT:
• proof – (default: True) Determines what to do in unknown cases

ALGORITHM:

If the parameter proof is set to True, the returned value is correct but the method might throw an error. Otherwise, if it is set to False, the method returns True if it can establish that self is an integral domain and False otherwise.

EXAMPLES:

```
sage: QQ.is_integral_domain()
True
sage: ZZ.is_integral_domain()
True
sage: ZZ['x,y,z'].is_integral_domain()
True
sage: Integers(8).is_integral_domain()
False
sage: Zp(7).is_integral_domain()
True
sage: Qp(7).is_integral_domain()
True
sage: R.<a,b> = QQ[]
sage: S.<x,y> = R.quo((b^3))
sage: S.is_integral_domain()
False
```

This illustrates the use of the proof parameter:

```
sage: R.<a,b> = ZZ[]
sage: S.<x,y> = R.quo((b^3))
sage: S.is_integral_domain(proof = True)
Traceback (most recent call last):
... NotImplementedError
sage: S.is_integral_domain(proof = False)
False
```

is_noetherian()

Return True if this ring is Noetherian.

EXAMPLES:

```
sage: QQ.is_noetherian()
True
sage: ZZ.is_noetherian()
True
```

is_prime_field()

Return True if this ring is one of the prime fields \mathbb{Q} or \mathbb{F}_p.

EXAMPLES:

```
sage: QQ.is_prime_field()
True
sage: GF(3).is_prime_field()
True
sage: GF(9,'a').is_prime_field()
False
```

(continues on next page)
sage: ZZ.is_prime_field()
False
sage: QQ['x'].is_prime_field()
False
sage: Qp(19).is_prime_field()
False

\textbf{is_subring}(\textit{other})

Return True if the canonical map from self to other is injective.

Raises a \texttt{NotImplementedError} if not known.

\textbf{EXAMPLES:}

sage: ZZ.is_subring(QQ)
True
sage: ZZ.is_subring(GF(19))
False

\textbf{one}()

Return the one element of this ring (cached), if it exists.

\textbf{EXAMPLES:}

sage: ZZ.one()
1
sage: QQ.one()
1
sage: QQ['x'].one()
1

The result is cached:

sage: ZZ.one() is ZZ.one()
True

\textbf{order}()

The number of elements of self.

\textbf{EXAMPLES:}

sage: GF(19).order()
19
sage: QQ.order()
+Infinity

\textbf{principal_ideal}(\textit{gen}, \textit{coerce}=True)

Return the principal ideal generated by gen.

\textbf{EXAMPLES:}

sage: R.<x,y> = ZZ[]
sage: R.principal_ideal(x+2*y)
Ideal (x + 2*y) of Multivariate Polynomial Ring in x, y over Integer Ring

\textbf{quo}(\textit{I}, \textit{names}=None)

Create the quotient of \(R\) by the ideal \(I\). This is a synonym for \texttt{quotient()}.

\textbf{EXAMPLES:}
```python
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = R.quo((x^2, y))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the
→ideal (x^2, y)
sage: S.gens()
(a, 0)
sage: a == b
False
```

quotient(I, names=None)
Create the quotient of this ring by a twosided ideal I.

INPUT:

- I – a twosided ideal of this ring, R.
- names – (optional) names of the generators of the quotient (if there are multiple generators, you can specify a single character string and the generators are named in sequence starting with 0).

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient(I, 'a')
sage: S.gens()
(a,)

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = R.quotient((x^2, y))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the
→ideal (x^2, y)
sage: S.gens()
(a, 0)
sage: a == b
False
```

quotient_ring(I, names=None)
Return the quotient of self by the ideal I of self. (Synonym for self.quotient(I).)

INPUT:

- I – an ideal of R
- names – (optional) names of the generators of the quotient. (If there are multiple generators, you can specify a single character string and the generators are named in sequence starting with 0.)

OUTPUT:

- R/I – the quotient ring of R by the ideal I

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I, 'a')
sage: S.gens()
(a,)
```

(continues on next page)
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = R.quotient_ring((x^2, y))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the
ideal (x^2, y)
sage: S.gens()
(a, 0)
sage: a == b
False

random_element (bound=2)
Return a random integer coerced into this ring, where the integer is chosen uniformly from the interval
[-bound,bound].

INPUT:
 • bound – integer (default: 2)

ALGORITHM:
Uses Python’s randint.

unit_ideal ()
Return the unit ideal of this ring.

EXAMPLES:

sage: Zp(7).unit_ideal()
Principal ideal (1 + O(7^20)) of 7-adic Ring with capped relative precision 20

zero ()
Return the zero element of this ring (cached).

EXAMPLES:

sage: ZZ.zero()
0
sage: QQ.zero()
0
sage: QQ['x'].zero()
0

The result is cached:

sage: ZZ.zero() is ZZ.zero()
True

zero_ideal ()
Return the zero ideal of this ring (cached).

EXAMPLES:

sage: ZZ.zero_ideal()
Principal ideal (0) of Integer Ring
sage: QQ.zero_ideal()
Principal ideal (0) of Rational Field
sage: QQ['x'].zero_ideal()
Principal ideal (0) of Univariate Polynomial Ring in x over Rational Field

The result is cached:
sage: ZZ.zero_ideal() is ZZ.zero_ideal()
True

\textbf{zeta} \((n=2, \text{all}=False)\)

Return a primitive \(n\)-th root of unity in \texttt{self} if there is one, or raise a \texttt{ValueError} otherwise.

\textbf{INPUT}:

\begin{itemize}
 \item \(n\) – positive integer
 \item \texttt{all} – bool (default: \texttt{False}) - whether to return a list of all primitive \(n\)-th roots of unity. If True, raise a \texttt{ValueError} if \texttt{self} is not an integral domain.
\end{itemize}

\textbf{OUTPUT}:

Element of \texttt{self} of finite order

\textbf{EXAMPLES}:

\begin{verbatim}
sage: QQ.zeta()
-1
sage: QQ.zeta(1)
1
sage: CyclotomicField(6).zeta(6)
zeta6
sage: CyclotomicField(3).zeta(3)
zeta3
sage: CyclotomicField(3).zeta(3).multiplicative_order()
3
sage: a = GF(7).zeta(); a
3
sage: a.multiplicative_order()
6
sage: a = GF(49,'z').zeta(); a
z
sage: a.multiplicative_order()
48
sage: a = GF(49,'z').zeta(2); a
6
sage: a.multiplicative_order()
2
sage: QQ.zeta(3)
Traceback (most recent call last):
...
ValueError: no n-th root of unity in rational field
sage: 2p(7, prec=8).zeta()
3 + 4*7 + 6*7^2 + 3*7^3 + 2*7^5 + 6*7^6 + 2*7^7 + O(7^8)
\end{verbatim}

\textbf{zeta_order()}\n
Return the order of the distinguished root of unity in \texttt{self}.

\textbf{EXAMPLES}:

\begin{verbatim}
sage: CyclotomicField(19).zeta_order()
38
sage: GF(19).zeta_order()
18
sage: GF(5^3,'a').zeta_order()
124
\end{verbatim}

(continues on next page)
sage: Zp(7, prec=8).zeta_order()
6

sage.rings.ring.is_Ring(x)
Return True if x is a ring.

EXAMPLES:

sage: from sage.rings.ring import is_Ring
sage: is_Ring(ZZ)
True
sage: MS = MatrixSpace(QQ, 2)
sage: is_Ring(MS)
True
2.1 Ideals of commutative rings

Sage provides functionality for computing with ideals. One can create an ideal in any commutative or non-commutative ring R by giving a list of generators, using the notation $R.\text{ideal}([a,b,...])$. The case of non-commutative rings is implemented in $\text{noncommutative_ideals}$.

A more convenient notation may be $R*a,b,...$ or $[a,b,...]*R$. If R is non-commutative, the former creates a left and the latter a right ideal, and $R*[a,b,...]*R$ creates a two-sided ideal.

```
sage.rings.ideal.Cyclic (R, n=None, homog=False, singular=Singular)
Ideal of cyclic n-roots from 1-st n variables of R if R is coercible to Singular.
```

INPUT:

- R – base ring to construct ideal for
- n – number of cyclic roots (default: None). If None, then n is set to $R\text{.ngens()}$.
- homog – (default: False) if True a homogeneous ideal is returned using the last variable in the ideal
- singular – singular instance to use

Note: R will be set as the active ring in Singular

EXAMPLES:

An example from a multivariate polynomial ring over the rationals:

```
sage: P.<x,y,z> = PolynomialRing(QQ,3,order='lex')
sage: I = sage.rings.ideal.Cyclic(P)
sage: I
Ideal (x + y + z, x*y + x*z + y*z, x*y*z - 1) of Multivariate Polynomial Ring in x, y, z over Rational Field
sage: I.groebner_basis()
[x + y + z, y^2 + y*z + z^2, z^3 - 1]
```

We compute a Groebner basis for cyclic 6, which is a standard benchmark and test ideal:

```
sage: R.<x,y,z,t,u,v> = QQ['x,y,z,t,u,v']
sage: I = sage.rings.ideal.Cyclic(R,6)
sage: B = I.groebner_basis()
sage: len(B)
45
```
sage.rings.ideal.FieldIdeal(R)

Let \(q = R.\text{base_ring\().\text{order() \ and \ } (x_0, ..., x_n) = R.\text{gens()} \) then if \(q \) is finite this constructor returns

\[
(x_0^q - x_0, ..., x_n^q - x_n).
\]

We call this ideal the field ideal and the generators the field equations.

EXAMPLES:

The field ideal generated from the polynomial ring over two variables in the finite field of size 2:

```python
sage: P.<x,y> = PolynomialRing(GF(2),2)
sage: I = sage.rings.ideal.FieldIdeal(P); I
Ideal (x^2 + x, y^2 + y) of Multivariate Polynomial Ring in x, y over Finite Field of size 2
```

Another, similar example:

```python
sage: Q.<x1,x2,x3,x4> = PolynomialRing(GF(2^4,name='alpha'), 4)
sage: J = sage.rings.ideal.FieldIdeal(Q); J
Ideal (x1^16 + x1, x2^16 + x2, x3^16 + x3, x4^16 + x4) of Multivariate Polynomial Ring in x1, x2, x3, x4 over Finite Field in alpha of size 2^4
```

evals = sage.rings.ideal.Ideal(*args, **kwd)

Create the ideal in ring with given generators.

There are some shorthand notations for creating an ideal, in addition to using the `Ideal()` function:

- `R.ideal(gens, coerce=True)`
- `gens*R`
- `R*gens`

INPUT:

- `R` - A ring (optional; if not given, will try to infer it from `gens`)
- `gens` - list of elements generating the ideal
- `coerce` - bool (optional, default: True); whether `gens` need to be coerced into the ring.

OUTPUT: The ideal of ring generated by `gens`.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: I
Ideal (x^2 + 3*x + 4, x^2 + 1) of Univariate Polynomial Ring in x over Integer Ring
```

```python
sage: Ideal(R, [4 + 3*x + x^2, 1 + x^2])
Ideal (x^2 + 3*x + 4, x^2 + 1) of Univariate Polynomial Ring in x over Integer Ring
```

```python
sage: Ideal((4 + 3*x + x^2, 1 + x^2))
Ideal (x^2 + 3*x + 4, x^2 + 1) of Univariate Polynomial Ring in x over Integer Ring
```
This example illustrates how Sage finds a common ambient ring for the ideal, even though 1 is in the integers (in this case).

```sage
R.<t> = ZZ['t']
i = ideal(1,t,t^2)
i
Ideal (1, t, t^2) of Univariate Polynomial Ring in t over Integer Ring
```

This shows that the issues at trac ticket #1104 are resolved:

```sage
Ideal(3, 5)
Principal ideal (1) of Integer Ring
Ideal(2, 4, 6)
Principal ideal (2) of Integer Ring
```

You have to provide enough information that Sage can figure out which ring to put the ideal in.

```sage
I = Ideal([[]])
Traceback (most recent call last):
... ValueError: unable to determine which ring to embed the ideal in
```

Note that some rings use different ideal implementations than the standard, even if they are PIDs:

```sage
R.<x> = GF(5)[]
I = R*(x^2+3)
```

You can also pass in a specific ideal type:

```sage
from sage.rings.ideal import Ideal_pid
I = Ideal(x^2+3,ideal_class=Ideal_pid)
```

```python
class sage.rings.ideal.Ideal_fractional(ring, gens, coerce=True)
    Bases: sage.rings.ideal.Ideal_generic
```
Fractional ideal of a ring.

See \texttt{Ideal()}.

\begin{verbatim}
class sage.rings.ideal.Ideal_generic (ring, gens, coerce=True)
Bases: sage.structure.element.MonoidElement

An ideal.

See \texttt{Ideal()}.

\texttt{absolute_norm()}

Returns the absolute norm of this ideal.

In the general case, this is just the ideal itself, since the ring it lies in can’t be implicitly assumed to be an extension of anything.

We include this function for compatibility with cases such as ideals in number fields.

\textbf{Todo}: Implement this method.
\end{verbatim}

\textbf{EXAMPLES}:

\begin{verbatim}
sage: R.<t> = GF(9, names='a')[]
sage: I = R.ideal(t^4 + t + 1)
sage: I.absolute_norm()
Traceback (most recent call last):
 ...
NotImplementedError
\end{verbatim}

\texttt{apply_morphism(phi)}

Apply the morphism \(\phi\) to every element of this ideal. Returns an ideal in the domain of \(\phi\).

\textbf{EXAMPLES}:

\begin{verbatim}
sage: psi = CC['x'].hom([-CC['x'].0])
sage: J = ideal([CC['x'].0 + 1]); J
Principal ideal (x + 1.00000000000000) of Univariate Polynomial Ring in x ˓→over Complex Field with 53 bits of precision
sage: psi(J)
Principal ideal (x - 1.00000000000000) of Univariate Polynomial Ring in x ˓→over Complex Field with 53 bits of precision
sage: J.apply_morphism(psi)
Principal ideal (x - 1.00000000000000) of Univariate Polynomial Ring in x ˓→over Complex Field with 53 bits of precision

sage: psi = ZZ['x'].hom([-ZZ['x'].0])
sage: J = ideal([ZZ['x'].0, 2]); J
Ideal (x, 2) of Univariate Polynomial Ring in x over Integer Ring
sage: psi(J)
Ideal (-x, 2) of Univariate Polynomial Ring in x over Integer Ring
sage: J.apply_morphism(psi)
Ideal (-x, 2) of Univariate Polynomial Ring in x over Integer Ring
\end{verbatim}

\texttt{associated_primes()}

Return the list of associated prime ideals of this ideal.

\textbf{EXAMPLES}:

\begin{verbatim}
base_ring()

Returns the base ring of this ideal.

EXAMPLES:

```python
sage: R = ZZ
sage: I = 3*Z
sage: J = 2*I; J
Principal ideal (6) of Integer Ring
sage: I.base_ring(); J.base_ring()
Integer Ring
Integer Ring
```

We construct an example of an ideal of a quotient ring:

```python
sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 - 2)
sage: I.base_ring()
Rational Field
```

And p-adic numbers:

```python
sage: R = Zp(7, prec=10); R
7-adic Ring with capped relative precision 10
sage: I = 7*R; I
Principal ideal (7 + O(7^11)) of 7-adic Ring with capped relative precision 10
sage: I.base_ring()
7-adic Ring with capped relative precision 10
```

category()

Return the category of this ideal.

Note: category is dependent on the ring of the ideal.

EXAMPLES:

```python
sage: P.<x> = ZZ
sage: I = ZZ.ideal(7)
sage: J = P.ideal(7,x)
sage: K = P.ideal(7)
sage: I.category()
Category of ring ideals in Integer Ring
sage: J.category()
Category of ring ideals in Univariate Polynomial Ring in x
over Integer Ring
sage: K.category()
Category of ring ideals in Univariate Polynomial Ring in x
over Integer Ring
```
embedded_primes()
Return the list of embedded primes of this ideal.

EXAMPLES:

```
sage: R.<x, y> = QQ[]
sage: I = R.ideal(x^2, x*y)
sage: I.embedded_primes()
[Ideal (y, x) of Multivariate Polynomial Ring in x, y over Rational Field]
```

gen(i)
Return the i-th generator in the current basis of this ideal.

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.gen(1)
y + 1
sage: ZZ.ideal(5,10).gen()
5
```

gens()
Return a set of generators / a basis of self.

This is the set of generators provided during creation of this ideal.

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.gens()
[x, y + 1]
sage: ZZ.ideal(5,10).gens()
(5,)
```

gens_reduced()
Same as gens() for this ideal, since there is currently no special gens_reduced algorithm implemented for this ring.

This method is provided so that ideals in \(\mathbb{Z} \) have the method gens_reduced(), just like ideals of number fields.

EXAMPLES:

```
sage: ZZ.ideal(5).gens_reduced()
(5,)
```

is_maximal()
Return True if the ideal is maximal in the ring containing the ideal.

Todo: This is not implemented for many rings. Implement it!

EXAMPLES:
is_primary \((P=\text{None}) \)
Returns True if this ideal is primary (or \(P \)-primary, if a prime ideal \(P \) is specified).

Recall that an ideal \(I \) is primary if and only if \(I \) has a unique associated prime (see page 52 in [AM1969]). If this prime is \(P \), then \(I \) is said to be \(P \)-primary.

INPUT:

- \(P \) - (default: None) a prime ideal in the same ring

EXAMPLES:

```python
sage: R.<x, y> = QQ[]
sage: I = R.ideal([x^2, x*y])
sage: I.is_primary()
False
```

Some examples from the Macaulay2 documentation:

```python
sage: R.<x, y, z> = GF(101)[]
sage: I = R.ideal([y^6])
sage: I.is_primary()
True
```

Note: This uses the list of associated primes.
sage: R.<x, y> = QQ[]
sage: I = R.ideal([x, y])
sage: I.is_prime() # a maximal ideal
True
sage: I = R.ideal([x^2-y])
sage: I.is_prime() # a non-maximal prime ideal
True
sage: I = R.ideal([x^2, y])
sage: I.is_prime() # a non-prime primary ideal
False
sage: I = R.ideal([x^2, x*y])
sage: I.is_prime() # a non-prime non-primary ideal
False
sage: S = Integers(8)
sage: S.ideal(0).is_prime()
False
sage: S.ideal(2).is_prime()
True
sage: S.ideal(4).is_prime()
False

Note that this method is not implemented for all rings where it could be:

sage: R.<x> = ZZ[]
sage: I = R.ideal(7)
sage: I.is_prime() # when implemented, should be True
Traceback (most recent call last):
 ...
NotImplementedError

Note: For general rings, uses the list of associated primes.

is_principal()
Returns True if the ideal is principal in the ring containing the ideal.

Todo: Code is naive. Only keeps track of ideal generators as set during initialization of the ideal. (Can the base ring change? See example below.)

EXAMPLES:

sage: R = ZZ['x']
sage: I = R.ideal(2, x)
sage: I.is_principal() # when implemented, should be True
Traceback (most recent call last):
 ...
NotImplementedError
sage: J = R.base_extend(QQ).ideal(2, x)
sage: J.is_principal()
True

is_trivial()
Return True if this ideal is (0) or (1).
minimal-associated-primes()
Return the list of minimal associated prime ideals of this ideal.

EXAMPLES:

```
sage: R = ZZ['x']
sage: I = R.ideal(7)
sage: I.minimal_associated_primes()
Traceback (most recent call last):
  ...      
NotImplementedError
```

ngens()
Return the number of generators in the basis.

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.ngens()
2
sage: ZZ.ideal(5,10).ngens()
1
```

norm()
Returns the norm of this ideal.

In the general case, this is just the ideal itself, since the ring it lies in can't be implicitly assumed to be an
extension of anything.

We include this function for compatibility with cases such as ideals in number fields.

EXAMPLES:

```
sage: R.<t> = GF(8, names='a')[]
sage: I = R.ideal(t^4 + t + 1)
sage: I.norm()
Principal ideal (t^4 + t + 1) of Univariate Polynomial Ring in t over Finite
˓Field in a of size 2^3
```

primary-decomposition()
Return a decomposition of this ideal into primary ideals.

EXAMPLES:

```
sage: R = ZZ['x']
sage: I = R.ideal(7)
sage: I.primary_decomposition()
Traceback (most recent call last):
  ...      
NotImplementedError
```

random_element(*args, **kwds)
Return a random element in this ideal.

EXAMPLES:
reduce(f)
Return the reduction of the element of f modulo self.
This is an element of R that is equivalent modulo I to f where I is self.

EXAMPLES:

```python
sage: ZZ.ideal(5).reduce(17)
2
sage: parent(ZZ.ideal(5).reduce(17))
Integer Ring
```

ring()
Returns the ring containing this ideal.

EXAMPLES:

```python
sage: R = ZZ
sage: I = 3*R; I
Principal ideal (3) of Integer Ring
sage: J = 2*I; J
Principal ideal (6) of Integer Ring
sage: I.ring(); J.ring()
Integer Ring
Integer Ring
```

Note that self.ring() is different from self.base_ring()

```python
sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 - 2)
sage: I.base_ring()
Rational Field
sage: I.ring()
Univariate Polynomial Ring in x over Rational Field
```

Another example using polynomial rings:

```python
sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 - 3)
sage: I.ring()
Univariate Polynomial Ring in x over Rational Field
sage: Rbar = R.quotient(I, names='a')
sage: S = PolynomialRing(Rbar, 'y'); y = Rbar.gen(); S
Univariate Polynomial Ring in y over Univariate Quotient Polynomial Ring in a
˓→over Rational Field with modulus x^2 - 3
sage: J = S.ideal(y^2 + 1)
sage: J.ring()
Univariate Polynomial Ring in y over Univariate Quotient Polynomial Ring in a
˓→over Rational Field with modulus x^2 - 3
```

class sage.rings.ideal.Ideal_pid(ring, gen)
Bases: sage.rings.ideal.Ideal_principal
An ideal of a principal ideal domain.
See `Ideal()`.

```
gcd(other)
```

Returns the greatest common divisor of the principal ideal with the ideal other; that is, the largest principal ideal contained in both the ideal and other.

Todo: This is not implemented in the case when other is neither principal nor when the generator of self is contained in other. Also, it seems that this class is used only in PIDs—is this redundant?

Note: The second example is broken.

EXAMPLES:

An example in the principal ideal domain \mathbb{Z}:

```
sage: R = ZZ
sage: I = R.ideal(42)
sage: J = R.ideal(70)
sage: I.gcd(J)
Principal ideal (14) of Integer Ring
sage: J.gcd(I)
Principal ideal (14) of Integer Ring
```

```
is_maximal()
```

Returns whether this ideal is maximal.

Principal ideal domains have Krull dimension 1 (or 0), so an ideal is maximal if and only if it's prime (and nonzero if the ring is not a field).

EXAMPLES:

```
sage: R.<t> = GF(5)[]
sage: p = R.ideal(t^2 + 2)
sage: p.is_maximal()  
True
sage: p = R.ideal(t^2 + 1)
sage: p.is_maximal()  
False
sage: p = R.ideal(0)
sage: p.is_maximal()  
False
sage: p = R.ideal(1)
sage: p.is_maximal()  
False
```

```
is_prime()
```

Return True if the ideal is prime.

This relies on the ring elements having a method `is_irreducible()` implemented, since an ideal (a) is prime iff a is irreducible (or 0).

EXAMPLES:

```
sage: ZZ.ideal(2).is_prime()  
True
sage: ZZ.ideal(-2).is_prime()
```

(continues on next page)
True
\begin{verbatim}
sage: ZZ.ideal(4).is_prime()
False
sage: ZZ.ideal(0).is_prime()
True
sage: R.<x> = QQ[]
sage: P = R.ideal(x^2+1); P
Principal ideal (x^2 + 1) of Univariate Polynomial Ring in x over Rational Field
sage: P.is_prime()
True
\end{verbatim}

In fields, only the zero ideal is prime:

\begin{verbatim}
sage: RR.ideal(0).is_prime()
True
sage: RR.ideal(7).is_prime()
False
\end{verbatim}

reduce (*f*)

Return the reduction of *f* modulo *self*.

EXAMPLES:

\begin{verbatim}
sage: I = 8*ZZ
sage: I.reduce(10)
2
sage: n = 10; n.mod(I)
2
\end{verbatim}

residue_field()

Return the residue class field of this ideal, which must be prime.

Todo: Implement this for more general rings. Currently only defined for \(\mathbb{Z}\) and for number field orders.

EXAMPLES:

\begin{verbatim}
sage: P = ZZ.ideal(61); P
Principal ideal (61) of Integer Ring
sage: F = P.residue_field(); F
Residue field of Integers modulo 61
sage: pi = F.reduction_map(); pi
Partially defined reduction map:
 From: Rational Field
 To: Residue field of Integers modulo 61
sage: pi(123/234)
6
sage: pi(1/61)
Traceback (most recent call last):
 ...
ZeroDivisionError: Cannot reduce rational 1/61 modulo 61: it has negative valuation
sage: lift = F.lift_map(); lift
Lifting map:
 From: Residue field of Integers modulo 61
 To: Rational Field
\end{verbatim}

(continues on next page)
class sage.rings.ideal.Ideal_principal(ring, gens, coerce=True)

Bases: sage.rings.ideal.Ideal_generic

A principal ideal.

See :meth:`Ideal()`.

divides(other)

Return True if self divides other.

EXAMPLES:

```
sage: P.<x> = PolynomialRing(QQ)
sage: I = P.ideal(x)
sage: J = P.ideal(x^2)
sage: I.divides(J)
True
sage: J.divides(I)
False
```

gen()

Returns the generator of the principal ideal. The generators are elements of the ring containing the ideal.

EXAMPLES:

A simple example in the integers:

```
sage: R = ZZ
sage: I = R.ideal(7)
sage: J = R.ideal(7, 14)
sage: I.gen(); J.gen()
7
7
```

Note that the generator belongs to the ring from which the ideal was initialized:

```
sage: R.<x> = ZZ[]
sage: I = R.ideal(x)
sage: J = R.base_extend(QQ).ideal(2, x)
sage: a = I.gen(); a
x
sage: b = J.gen(); b
1
sage: a.base_ring()
Integer Ring
sage: b.base_ring()
Rational Field
```

is_principal()

Returns True if the ideal is principal in the ring containing the ideal. When the ideal construction is explicitly principal (i.e. when we define an ideal with one element) this is always the case.

EXAMPLES:

```
```
Note that Sage automatically coerces ideals into principal ideals during initialization:

```
sage: R.<x> = ZZ[]
sage: I = R.ideal(x)
sage: J = R.ideal(2,x)
sage: K = R.base_extend(QQ).ideal(2,x)
sage: I
Principal ideal (x) of Univariate Polynomial Ring in x
  over Integer Ring
sage: J
Ideal (2, x) of Univariate Polynomial Ring in x over Integer Ring
sage: K
Principal ideal (1) of Univariate Polynomial Ring in x
  over Rational Field
sage: I.is_principal()
True
sage: K.is_principal()
True
```

```
sage.rings.ideal.Katsura(R, n=None, homog=False, singular=Singular)
n-th katsura ideal of R if R is coercible to Singular.

INPUT:

- `R` – base ring to construct ideal for
- `n` – (default: None) which katsura ideal of R. If None, then n is set to R.ngens().
- `homog` – if True a homogeneous ideal is returned using the last variable in the ideal (default: False)
- `singular` – singular instance to use

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: I = sage.rings.ideal.Katsura(P,3); I
Ideal (x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y + 2*y*z - y)
 of Multivariate Polynomial Ring in x, y, z over Rational Field
sage: Q.<x> = PolynomialRing(QQ, implementation="singular")
sage: J = sage.rings.ideal.Katsura(Q,1); J
Ideal (x - 1) of Multivariate Polynomial Ring in x over Rational Field
```
```
sage.rings.ideal.is_Ideal(x)
Return True if object is an ideal of a ring.

EXAMPLES:

A simple example involving the ring of integers. Note that Sage does not interpret rings objects themselves as ideals. However, one can still explicitly construct these ideals:

```
sage: from sage.rings.ideal import is_Ideal
sage: R = ZZ
sage: is_Ideal(R)
False
sage: is_Ideal(1*R)
Principal ideal (1) of Integer Ring
True
sage: is_Ideal(0*R)
Principal ideal (0) of Integer Ring
True
```
Sage recognizes ideals of polynomial rings as well:

```python
sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 + 1); I
Principal ideal (x^2 + 1) of Univariate Polynomial Ring in x over Rational Field
sage: is_Ideal(I)
True
sage: is_Ideal((x^2 + 1)*R)
True
```

2.2 Monoid of ideals in a commutative ring

WARNING: This is used by some rings that are not commutative!

```python
sage: MS = MatrixSpace(QQ,3,3)
sage: type(MS.ideal(MS.one()).parent())
<class 'sage.rings.ideal_monoid.IdealMonoid_c_with_category'>
```

```python
class sage.rings.ideal_monoid.IdealMonoid(R)
    Return the monoid of ideals in the ring R.

    EXAMPLES:
    ```
sage: R = QQ['x']
sage: sage.rings.ideal_monoid.IdealMonoid(R)
Monoid of ideals of Univariate Polynomial Ring in x over Rational Field
```

```
class sage.rings.ideal_monoid.IdealMonoid_c(R)
 Bases: sage.structure.parent.Parent

 The monoid of ideals in a commutative ring.

 Element
 alias of sage.rings.ideal.Ideal_generic

 ring()
 Return the ring of which this is the ideal monoid.

 EXAMPLES:
    ```
sage: R = QuadraticField(-23, 'a')
sage: M = sage.rings.ideal_monoid.IdealMonoid(R); M.ring() is R
True
```

2.3 Ideals of non-commutative rings

Generic implementation of one- and two-sided ideals of non-commutative rings.

AUTHOR:

- Simon King (2011-03-21), <simon.king@uni-jena.de>, trac ticket #7797.

EXAMPLES:

```
sage: MS = MatrixSpace(ZZ,2,2)
sage: MS*MS([0,1,-2,3])
Left Ideal
  
  [ 0 1]
  [-2 3]

  of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring

sage: MS([0,1,-2,3])*MS
Right Ideal
  
  [ 0 1]
  [-2 3]

  of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring

sage: MS*MS([0,1,-2,3])*MS
Twosided Ideal
  
  [ 0 1]
  [-2 3]

  of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
```

See `letterplace_ideal` for a more elaborate implementation in the special case of ideals in free algebras.

```
class sage.rings.noncommutative_ideals.IdealMonoid_nc(R)

  Bases: sage.rings.ideal_monoid.IdealMonoid_c

  Base class for the monoid of ideals over a non-commutative ring.

  Note: This class is essentially the same as `IdealMonoid_c`, but does not complain about non-commutative rings.

  EXAMPLES:
```

```
sage: MS = MatrixSpace(ZZ,2,2)
sage: MS.ideal_monoid()
Monoid of ideals of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
```

```
class sage.rings.noncommutative_ideals.Ideal_nc(ring, gens, coerce=True, side='twosided')

  Bases: sage.rings.ideal.Ideal_generic

  Generic non-commutative ideal.

  All fancy stuff such as the computation of Groebner bases must be implemented in sub-classes. See `LetterplaceIdeal` for an example.

  EXAMPLES:
```

```
sage: MS = MatrixSpace(QQ,2,2)
sage: I = MS*[MS.1,MS.2]; I
Left Ideal
  
  [0 1]
  [0 0],
```

(continues on next page)
Right Ideal
\[
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 \\
1 & 0
\end{bmatrix}
\)

Twosided Ideal
\[
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 \\
1 & 0
\end{bmatrix}
\)

\texttt{side()}

Return a string that describes the sidedness of this ideal.

\textbf{EXAMPLES:}

\begin{verbatim}
\end{verbatim}
3.1 Homomorphisms of rings

We give a large number of examples of ring homomorphisms.

EXAMPLES:

Natural inclusion \(\mathbb{Z} \hookrightarrow \mathbb{Q} \):

\[
\begin{align*}
\text{sage: } & H = \text{Hom}(\mathbb{Z}, \mathbb{Q}) \\
\text{sage: } & \phi = H([1]) \\
\text{sage: } & \phi(10) = 10 \\
\text{sage: } & \phi(3/1) = 3 \\
\text{sage: } & \phi(2/3) \text{ Traceback (most recent call last):} \\
\text{...} \\
\text{TypeError: } 2/3 \text{ fails to convert into the map's domain Integer Ring, but a } \hookrightarrow \text{'pushforward' method is not properly implemented}
\end{align*}
\]

There is no homomorphism in the other direction:

\[
\begin{align*}
\text{sage: } & H = \text{Hom}(\mathbb{Q}, \mathbb{Z}) \\
\text{sage: } & H([1]) \text{ Traceback (most recent call last):} \\
\text{...} \\
\text{ValueError: relations do not all (canonically) map to 0 under map determined by } \hookrightarrow \text{'images of generators}
\end{align*}
\]

EXAMPLES:

Reduction to finite field:

\[
\begin{align*}
\text{sage: } & H = \text{Hom}(\mathbb{Z}, \text{GF}(9, 'a')) \\
\text{sage: } & \phi = H([1]) \\
\text{sage: } & \phi(5) = 2 \\
\text{sage: } & \psi = H([4]) \\
\text{sage: } & \psi(5) = 2
\end{align*}
\]

Map from single variable polynomial ring:
sage: R.<x> = ZZ[]
sage: phi = R.hom([2], GF(5))
sage: phi
Ring morphism:
 From: Univariate Polynomial Ring in x over Integer Ring
 To: Finite Field of size 5
 Defn: x |--> 2
sage: phi(x + 12)
4

Identity map on the real numbers:

sage: f = RR.hom([RR(1)]); f
Ring endomorphism of Real Field with 53 bits of precision
 Defn: 1.00000000000000 |--> 1.00000000000000
sage: f(2.5)
2.50000000000000

Homomorphism from one precision of field to another.
From smaller to bigger doesn’t make sense:

sage: R200 = RealField(200)
sage: f = RR.hom(R200)
Traceback (most recent call last):
 ...TypeError: natural coercion morphism from Real Field with 53 bits of precision to Real Field with 200 bits of precision not defined

From bigger to small does:

sage: f = RR.hom(RealField(15))
sage: f(2.5)
2.500
sage: f(RR.pi())
3.142

Inclusion map from the reals to the complexes:

sage: i = RR.hom([CC(1)]); i
Ring morphism:
 From: Real Field with 53 bits of precision
 To: Complex Field with 53 bits of precision
 Defn: 1.00000000000000 |--> 1.00000000000000
sage: i(RR('3.1'))
3.10000000000000

A map from a multivariate polynomial ring to itself:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: phi = R.hom([y,z,x^2]); phi
Ring endomorphism of Multivariate Polynomial Ring in x, y, z over Rational Field

(continues on next page)
An endomorphism of a quotient of a multi-variate polynomial ring:

```
sage: R.<x,y> = PolynomialRing(QQ)
sage: S.<a,b> = quo(R, ideal(1 + y^2))
sage: phi = S.hom([a^2, -b])
sage: phi
Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (y^2 + 1)
  Defn: a |--> a^2
  b |--> -b
sage: phi(b)
b
sage: phi(a^2 + b^2)
a^4 - 1
```

The reduction map from the integers to the integers modulo 8, viewed as a quotient ring:

```
sage: R = ZZ.quo(8*ZZ)
sage: pi = R.cover()
sage: pi
Ring morphism:
  From: Integer Ring
  To:   Ring of integers modulo 8
  Defn: Natural quotient map
sage: pi.domain()
Integer Ring
sage: pi.codomain()
Ring of integers modulo 8
sage: pi(10)
2
sage: pi.lift()
Set-theoretic ring morphism:
  From: Ring of integers modulo 8
  To:   Integer Ring
  Defn: Choice of lifting map
sage: pi.lift(13)
5
```

Inclusion of $\text{GF}(2)$ into $\text{GF}(4, 'a')$:

```
sage: k = GF(2)
sage: i = k.hom(GF(4, 'a'))
sage: i
Ring morphism:
  From: Finite Field of size 2
  To:   Finite Field in a of size 2^2
  Defn: 1 |--> 1
sage: i(0)
0
sage: a = i(1); a.parent()
Finite Field in a of size 2^2
```
We next compose the inclusion with reduction from the integers to GF(2):

```
sage: pi = ZZ.hom(k)
sage: pi
Natural morphism:
  From: Integer Ring
  To: Finite Field of size 2
sage: f = i * pi
sage: f
Composite map:
  From: Integer Ring
  To: Finite Field in a of size 2^2
  Defn: Natural morphism:
    From: Integer Ring
    To: Finite Field of size 2
    then
    Ring morphism:
      From: Finite Field of size 2
      To: Finite Field in a of size 2^2
      Defn: 1 |--> 1
sage: a = f(5); a
1
sage: a.parent()
Finite Field in a of size 2^2
```

Inclusion from \(\mathbb{Q} \) to the 3-adic field:

```
sage: phi = QQ.hom(Qp(3, print_mode = 'series'))
sage: phi
Ring morphism:
  From: Rational Field
  To: 3-adic Field with capped relative precision 20
sage: phi.codomain()
3-adic Field with capped relative precision 20
sage: phi(394)
1 + 2*3 + 3^2 + 2*3^3 + 3^4 + 3^5 + O(3^20)
```

An automorphism of a quotient of a univariate polynomial ring:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<sqrt2> = R.quo(x^2-2)
sage: sqrt2^2
2
sage: (3+sqrt2)^10
993054*sqrt2 + 1404491
sage: c = S.hom([-sqrt2])
sage: c(1+sqrt2)
-sqrt2 + 1
```

Note that Sage verifies that the morphism is valid:

```
sage: (1 - sqrt2)^2
-2*sqrt2 + 3
sage: c = S.hom([1-sqrt2])  # this is not valid
Traceback (most recent call last):
  ... ValueError: relations do not all (canonically) map to 0 under map determined by images of generators
```
Endomorphism of power series ring:

```python
sage: R.<t> = PowerSeriesRing(QQ); R
Power Series Ring in t over Rational Field
sage: f = R.hom([t^2]); f
Ring endomorphism of Power Series Ring in t over Rational Field
   Defn: t |--> t^2
sage: R.set_default_prec(10)
sage: s = 1/(1 + t); s
1 - t + t^2 - t^3 + t^4 - t^5 + t^6 - t^7 + t^8 - t^9 + O(t^10)
sage: f(s)
1 - t^2 + t^4 - t^6 - t^8 + t^10 + t^12 - t^14 + t^16 - t^18 + O(t^20)
```

Frobenius on a power series ring over a finite field:

```python
sage: R.<t> = PowerSeriesRing(GF(5))
sage: f = R.hom([t^5]); f
Ring endomorphism of Power Series Ring in t over Finite Field of size 5
   Defn: t |--> t^5
sage: a = 2 + t + 3*t^2 + 4*t^3 + O(t^4)
sage: b = 1 + t + 2*t^2 + t^3 + O(t^5)
sage: f(a)
2 + t^5 + 3*t^10 + 4*t^15 + O(t^20)
sage: f(b)
1 + t^5 + 2*t^10 + t^15 + O(t^25)
sage: f(a*b)
2 + 3*t^5 + 3*t^10 + t^15 + O(t^20)
sage: f(a)*f(b)
2 + 3*t^5 + 3*t^10 + t^15 + O(t^20)
```

Homomorphism of Laurent series ring:

```python
sage: R.<t> = LaurentSeriesRing(QQ, 10)
sage: f = R.hom([t^3 + t]); f
Ring endomorphism of Laurent Series Ring in t over Rational Field
   Defn: t |--> t + t^3
sage: s = 2/t^2 + 1/(1 + t); s
2*t^-2 + 1 - t + t^-2 - t^3 + t^-4 - t^5 + t^-6 - t^7 + t^-8 - t^9 + O(t^10)
sage: f(s)
2*t^-2 - 3 - t + 7*t^2 - 2*t^3 - 5*t^4 - 4*t^5 + 16*t^6 - 9*t^7 + O(t^8)
sage: f = R.hom([t^3]); f
Ring endomorphism of Laurent Series Ring in t over Rational Field
   Defn: t |--> t^3
sage: f(s)
2*t^-6 + 1 - t^3 + t^-6 - t^9 + t^-12 - t^15 + t^-18 - t^21 + t^24 - t^27 + O(t^30)
```

Note that the homomorphism must result in a converging Laurent series, so the valuation of the image of the generator must be positive:

```python
sage: R.hom([1/t])
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by...
   - images of generators
sage: R.hom([1])
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by...
   - images of generators
```

(continues on next page)
Complex conjugation on cyclotomic fields:

```python
sage: K.<zeta7> = CyclotomicField(7)
sage: c = K.hom([1/zeta7]); c
Ring endomorphism of Cyclotomic Field of order 7 and degree 6
   Defn: zeta7 |--> -zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - zeta7 - 1
sage: a = (1+zeta7)^5; a
zeta7^5 + 5*zeta7^4 + 10*zeta7^3 + 10*zeta7^2 + 5*zeta7 + 1
sage: c(a)
5*zeta7^5 + 5*zeta7^4 - 4*zeta7^2 - 5*zeta7 - 4
sage: c(zeta7 + 1/zeta7)
# this element is obviously fixed by inversion
-zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - 1
sage: zeta7 + 1/zeta7
-zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - 1
```

Embedding a number field into the reals:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: K.<beta> = NumberField(x^3 - 2)
sage: alpha = RR(2)^(1/3); alpha
1.25992104989487
sage: i = K.hom([alpha],check=False); i
Ring morphism:
   From: Number Field in beta with defining polynomial x^3 - 2
   To: Real Field with 53 bits of precision
   Defn: beta |--> 1.25992104989487
sage: i(beta)
1.25992104989487
sage: i(beta^3)
2.00000000000000
sage: i(beta^2 + 1)
2.58740105196820
```

An example from Jim Carlson:

```python
sage: K = QQ # by the way :-)
sage: R.<a,b,c,d> = K[]; R
Multivariate Polynomial Ring in a, b, c, d over Rational Field
sage: S.<u> = K[]; S
Univariate Polynomial Ring in u over Rational Field
sage: f = R.hom([0,0,0,u], S); f
Ring morphism:
   From: Multivariate Polynomial Ring in a, b, c, d over Rational Field
   To: Univariate Polynomial Ring in u over Rational Field
   Defn: a |--> 0
       b |--> 0
       c |--> 0
       d |--> u
sage: f(a+b+c+d)
u
sage: f( (a+b+c+d)^2 )
u^2
```

```python
class sage.rings.morphism.FrobeniusEndomorphism_generic
   Bases: sage.rings.morphism.RingHomomorphism
```

Chapter 3. Ring Morphisms
A class implementing Frobenius endomorphisms on rings of prime characteristic.

power()

Return an integer \(n \) such that this endomorphism is the \(n \)-th power of the absolute (arithmetic) Frobenius.

EXAMPLES:

```python
sage: K.<u> = PowerSeriesRing(GF(5))
sage: Frob = K.frobenius_endomorphism()
sage: Frob.power()
1
sage: (Frob^9).power()
9
```

class sage.rings.morphism.RingHomomorphism

Bases: sage.rings.morphism.RingMap

Homomorphism of rings.

inverse_image(I)

Return the inverse image of the ideal \(I \) under this ring homomorphism.

EXAMPLES:

This is not implemented in any generality yet:

```python
sage: f = ZZ.hom(Zp(2))
sage: f.inverse_image(ZZ.ideal(2))
Traceback (most recent call last):
  ...    NotImplementedError
```

lift(x=None)

Return a lifting homomorphism associated to this homomorphism, if it has been defined.

If \(x \) is not \(None \), return the value of the lift morphism on \(x \).

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: f = R.hom([x,x])
sage: f(x+y)
2*x
sage: f.lift()
Traceback (most recent call last):
  ...    ValueError: no lift map defined
sage: g = R.hom(R)
sage: f._set_lift(g)
sage: f.lift() == g
True
sage: f.lift(x)
x
```

pushforward(I)

Returns the pushforward of the ideal \(I \) under this ring homomorphism.

EXAMPLES:

3.1. Homomorphisms of rings
```python
sage: R.<x,y> = QQ[]; S.<xx,yy> = R.quo([x^2,y^2]); f = S.cover()
sage: f.pushforward(R.ideal([x,3*x+x*y+y^2]))
Ideal (xx, xx*yy + 3*xx) of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2, y^2)
```

```python
class sage.rings.morphism.RingHomomorphism_coercion
Bases: sage.rings.morphism.RingHomomorphism

A ring homomorphism that is a coercion.

**Warning:** This class is obsolete. Set the category of your morphism to a subcategory of Rings instead.
```
```
```python
class sage.rings.morphism.RingHomomorphism_cover
Bases: sage.rings.morphism.RingHomomorphism

A homomorphism induced by quotienting a ring out by an ideal.

EXAMPLES:
```
```python
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = R.quo(x^2 + y^2)
sage: phi = S.cover(); phi
Ring morphism:
 From: Multivariate Polynomial Ring in x, y over Rational Field
 To: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2)
 Defn: Natural quotient map
sage: phi(x+y)
a + b
```
```
```python
kernel()

Return the kernel of this covering morphism, which is the ideal that was quotiented out by.

**EXAMPLES:**
```
```python
sage: f = Zmod(6).cover()
sage: f.kernel()
Principal ideal (6) of Integer Ring
```
```
```python
class sage.rings.morphism.RingHomomorphism_from_base
Bases: sage.rings.morphism.RingHomomorphism

A ring homomorphism determined by a ring homomorphism of the base ring.

AUTHOR:
- Simon King (initial version, 2010-04-30)

EXAMPLES:
```
```python
We define two polynomial rings and a ring homomorphism:
```
```python
```python
sage: R.<x,y> = QQ[]
sage: S.<z> = QQ[]
sage: f = R.hom([2*z,3*z],S)
```
```
```python
Now we construct polynomial rings based on \(R \) and \(S \), and let \(f \) act on the coefficients:
```
Similarly, we can construct the induced homomorphism on a matrix ring over our polynomial rings:

```python
sage: MR = MatrixSpace(R, 2, 2)
sage: MS = MatrixSpace(S, 2, 2)
sage: M = MR([x^2 + 1/7*x*y - y^2, - 1/2*y^2 + 2*y + 1/6, 4*x^2 - 14*x, 1/2*y^2 + 13/4*x - 2/11*y])
sage: Mf = MR.hom(f, MS)
sage: Mf
Ring morphism:
 From: Full MatrixSpace of 2 by 2 dense matrices over Multivariate Polynomial Ring in x, y over Rational Field
 To: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring in z over Rational Field
 Defn: Induced from base ring by
 Ring morphism:
 From: Multivariate Polynomial Ring in x, y over Rational Field
 To: Univariate Polynomial Ring in z over Rational Field
 Defn: x |--> 2*z
 y |--> 3*z
sage: Mf(M)
[[-29/7*z^2 - 9/2*z^2 + 6*z + 1/6]
 [16*z^2 - 28*z 9/2*z^2 + 131/22*z]]
```

The construction of induced homomorphisms is recursive, and so we have:

```python
sage: MPR = MatrixSpace(PR, 2)
sage: MPS = MatrixSpace(PS, 2)
sage: M = MPR([(- x + y)*t^2 + 58*t - 3*x^2 + x*y, (- 1/7*x*y - 1/40*x)*t^2 + 5*x^2 + y^2)*t + 2*y, (- 1/3*y + 1)*t^2 + 1/3*x*y + y^2 + 5/2*y + 1/4, (x + 6*y + 1)*t^2])
sage: MPf = MPR.hom(f, MPS); MPf
Ring morphism:
 From: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring in t over Multivariate Polynomial Ring in x, y over Rational Field
 To: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring in t over Univariate Polynomial Ring in z over Rational Field
 Defn: Induced from base ring by
 Ring morphism:
 From: Multivariate Polynomial Ring in x, y over Rational Field
 To: Univariate Polynomial Ring in z over Rational Field
 Defn: x |--> 2*z
 y |--> 3*z
```

(continues on next page)
From: Univariate Polynomial Ring in t over Multivariate Polynomial Ring in x, y over Rational Field
To: Univariate Polynomial Ring in t over Univariate Polynomial Ring in z over Rational Field
Defn: Induced from base ring by
Ring morphism:
From: Multivariate Polynomial Ring in x, y over Rational Field
To: Univariate Polynomial Ring in z over Rational Field
Defn: x |--> 2*z
y |--> 3*z

sage: MPf(M)
\[
\begin{bmatrix}
  z \cdot t^2 + 58 \cdot t - 6 \cdot z^2 \\
  -6/7 \cdot z^2 - 1/20 \cdot z \cdot t^2 + 29 \cdot z^2 \cdot t + 6 \cdot z
\end{bmatrix}
\]
\[
\begin{bmatrix}
  (20 \cdot z + 1) \cdot t^2 + 11 \cdot z^2 + 15/2 \cdot z + 1/4
\end{bmatrix}
\]
underlying_map()
Return the underlying homomorphism of the base ring.

EXAMPLES:

sage: R.<x, y> = QQ[]
sage: S.<z> = QQ[]
sage: f = R.hom([2*z,3*z],S)
sage: MR = MatrixSpace(R,2)
sage: MS = MatrixSpace(S,2)
sage: g = MR.hom(f,MS)
sage: g.underlying_map() == f
True

class sage.rings.morphism.RingHomomorphism_from_fraction_field
Bases: sage.rings.morphism.RingHomomorphism

Morphisms between fraction fields.

class sage.rings.morphism.RingHomomorphism_from_quotient
Bases: sage.rings.morphism.RingHomomorphism

A ring homomorphism with domain a generic quotient ring.

INPUT:

- parent -- a ring homset \( \text{Hom}(R,S) \)
- phi -- a ring homomorphism \( C \to S \), where \( C \) is the domain of \( R.\text{cover()} \)

OUTPUT: a ring homomorphism

The domain \( R \) is a quotient object \( C \to R \), and \( R.\text{cover()} \) is the ring homomorphism \( \varphi : C \to R \). The condition on the elements \( \text{im}_\text{gens} \) of \( S \) is that they define a homomorphism \( C \to S \) such that each generator of the kernel of \( \varphi \) maps to 0.

EXAMPLES:

sage: R.<x, y, z> = PolynomialRing(QQ, 3)
sage: S.<a, b, c> = R.quo(x^3 + y^3 + z^3)
sage: phi = S.hom([b, c, a]); phi
Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y, z over Rational Field by the ideal (x^3 + y^3 + z^3)
Defn: a |--> b

(continues on next page)
Validity of the homomorphism is determined, when possible, and a TypeError is raised if there is no homomorphism sending the generators to the given images:

```python
sage: S.hom([b^2, c^2, a^2])
Traceback (most recent call last):
... ValueError: relations do not all (canonically) map to 0 under map determined by images of generators
```

**morphism_from_cover()**

Underlying morphism used to define this quotient map, i.e., the morphism from the cover of the domain.

**EXAMPLES:**

```python
sage: R.<x,y> = QQ[]; S.<xx,yy> = R.quo([x^2,y^2])
sage: S.hom([yy,xx]).morphism_from_cover()
```

class **sage.rings.morphism.RingHomomorphism_im_gens**

A ring homomorphism determined by the images of generators.

**base_map()**

Return the map on the base ring that is part of the defining data for this morphism. May return None if a coercion is used.

**EXAMPLES:**

```python
sage: R.<x> = ZZ[]
sage: K.<i> = NumberField(x^2 + 1)
sage: cc = K.hom([-i])
sage: S.<y> = K[]
sage: phi = S.hom([y^2], base_map=cc)
sage: phi
```

3.1. Homomorphisms of rings 53
From: Number Field in i with defining polynomial \( x^2 + 1 \)
To: Univariate Polynomial Ring in y over Number Field in i with defining polynomial \( x^2 + 1 \)
Defn: Ring endomorphism of Number Field in i with defining polynomial \( x^2 + 1 \) → \( -i \)
then
Polynomial base injection morphism:
From: Number Field in i with defining polynomial \( x^2 + 1 \)
To: Univariate Polynomial Ring in y over Number Field in i with defining polynomial \( x^2 + 1 \)

\textbf{im_gens()}

Return the images of the generators of the domain.

\textbf{OUTPUT:}

- list – a copy of the list of gens (it is safe to change this)

\textbf{EXAMPLES:}

sage: R.<x,y> = QQ[]
sage: f = R.hom([x,x+y])
sage: f.im_gens()
[x, x + y]

We verify that the returned list of images of gens is a copy, so changing it doesn’t change \( f \):

sage: f.im_gens()[0] = 5
sage: f.im_gens()
[x, x + y]

class \texttt{sage.rings.morphism.RingMap}

Bases: \texttt{sage.categories.morphism.Morphism}

Set-theoretic map between rings.

class \texttt{sage.rings.morphism.RingMap_lift}

Bases: \texttt{sage.rings.morphism.RingMap}

Given rings \( R \) and \( S \) such that for any \( x \in R \) the function \( x \cdot \text{lift}() \) is an element that naturally coerces to \( S \), this returns the set-theoretic ring map \( R \rightarrow S \) sending \( x \) to \( x \cdot \text{lift}() \).

\textbf{EXAMPLES:}

sage: R.<x,y> = QQ[]
sage: S.<xbar,ybar> = R.quo( (x^2 + y^2, y) )
sage: S.lift()
Set-theoretic ring morphism:
    From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2, y)
    To:   Multivariate Polynomial Ring in x, y over Rational Field
    Defn: Choice of lifting map
sage: S.lift() == 0
False

Since \texttt{trac ticket #11068}, it is possible to create quotient rings of non-commutative rings by two-sided ideals. It was needed to modify \texttt{RingMap_lift} so that rings can be accepted that are no instances of \texttt{sage.rings.ring.Ring}, as in the following example:
```
sage: MS = MatrixSpace(GF(5),2,2)
sage: I = MS*[MS.0*MS.1,MS.2+MS.3]*MS
sage: Q = MS.quo(I)
sage: Q.0*Q.1
indirect doctest
[0 1]
[0 0]
```

sage.rings.morphism.is_RingHomomorphism(phi)
Return True if phi is of type RingHomomorphism.

EXAMPLES:
```
sage: f = Zmod(8).cover()
sage: sage.rings.morphism.is_RingHomomorphism(f)
doctest:warning
DeprecationWarning: is_RingHomomorphism() should not be used anymore. Check
whether the category_for() your morphism is a subcategory of Rings() instead.
See http://trac.sagemath.org/23204 for details.
True
sage: sage.rings.morphism.is_RingHomomorphism(2/3)
False
```

3.2 Space of homomorphisms between two rings

sage.rings.homset.RingHomset (R, S, category=None)
Construct a space of homomorphisms between the rings R and S.
For more on homsets, see Hom().

EXAMPLES:
```
sage: Hom(ZZ, QQ)
Set of Homomorphisms from Integer Ring to Rational Field
```

class sage.rings.homset.RingHomset_generic (R, S, category=None)
Bases: sage.categories.homset.HomsetWithBase

A generic space of homomorphisms between two rings.

EXAMPLES:
```
sage: Hom(ZZ, QQ)
Set of Homomorphisms from Integer Ring to Rational Field
sage: QQ.Hom(ZZ)
Set of Homomorphisms from Rational Field to Integer Ring
```

Element
alias of sage.rings.morphism.RingHomomorphism

has_coerce_map_from (x)
The default for coercion maps between ring homomorphism spaces is very restrictive (until more imple-mentation work is done).
Currently this checks if the domains and the codomains are equal.

EXAMPLES:
sage: H = Hom(ZZ, QQ)
sage: H2 = Hom(QQ, ZZ)
sage: H.has_coerce_map_from(H2)
False

natural_map()
Returns the natural map from the domain to the codomain.

The natural map is the coercion map from the domain ring to the codomain ring.

EXAMPLES:

sage: H = Hom(ZZ, QQ)
sage: H.natural_map()
Natural morphism:
  From: Integer Ring
  To: Rational Field

zero()
Return the zero element of this homset.

EXAMPLES:

Since a ring homomorphism maps 1 to 1, there can only be a zero morphism when mapping to the trivial ring:

sage: Hom(ZZ, Zmod(1)).zero()
Ring morphism:
  From: Integer Ring
  To: Ring of integers modulo 1
  Defn: 1 |--> 0
sage: Hom(ZZ, Zmod(2)).zero()
Traceback (most recent call last):
  ... ValueError: homset has no zero element

class sage.rings.homset.RingHomset_quo_ring(R, S, category=None)
Bases: sage.rings.homset.RingHomset_generic

Space of ring homomorphisms where the domain is a (formal) quotient ring.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = R.quotient(x^2 + y^2)
sage: phi = S.hom([b,a]); phi
Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2)
  Defn: a |--> b
  b |--> a
sage: phi(a)
b
sage: phi(b)
a

Element
alias of sage.rings.morphism.RingHomomorphism_from_quotient

sage.rings.homset.is_RingHomset(H)
Return True if H is a space of homomorphisms between two rings.
EXAMPLES:

```python
sage: from sage.rings.homset import is_RingHomset as is_RH
sage: is_RH(Hom(ZZ, QQ))
True
sage: is_RH(ZZ)
False
sage: is_RH(Hom(RR, CC))
True
sage: is_RH(Hom(FreeModule(ZZ,1), FreeModule(QQ,1)))
False
```
4.1 Quotient Rings

AUTHORS:

- William Stein
- Simon King (2011-04): Put it into the category framework, use the new coercion model.
- Simon King (2011-04): Quotients of non-commutative rings by twosided ideals.

Todo: The following skipped tests should be removed once trac ticket #13999 is fixed:

```sage
sage: TestSuite(S).run(skip=['_test_nonzero_equal', '_test_elements', '_test_zero'])
```

In trac ticket #11068, non-commutative quotient rings $R/I$ were implemented. The only requirement is that the two-sided ideal $I$ provides a \texttt{reduce} method so that $I.\texttt{reduce}(x)$ is the normal form of an element $x$ with respect to $I$ (i.e., we have $I.\texttt{reduce}(x) = I.\texttt{reduce}(y)$ if $x - y \in I$, and $x - I.\texttt{reduce}(x) \in I$). Here is a toy example:

```python
sage: from sage.rings.noncommutative_ideals import Ideal_nc
sage: from itertools import product
sage: class PowerIdeal(Ideal_nc):
 : def __init__(self, R, n):
 : self._power = n
 : Ideal_nc.__init__(self, R, [R.prod(m) for m in product(R.gens(), repeat=n)])
 : def reduce(self,x):
 : R = self.ring()
 : return add([c*R(m) for m,c in x if len(m)<self._power],R(0))

sage: F.<x,y,z> = FreeAlgebra(QQ, 3)
sage: I3 = PowerIdeal(F,3); I3
Twosided Ideal (x^3, x^2*y, x^2*z, x*y*x, x*y^2, x*y*z, x*z*x, x*z*y, x*z^2, y*x^2, y*x*y, y*x*z, y^2*x, y^2*z, y*z*x, y*z*y, y*z^2, z*x^2, z*x*y, z*x*z, z*y*x, z*y^2, z*y*z, z^2*x, z^2*y, z^2*z) of Free Algebra on 3 generators (x, y, z) over Rational Field
```

Free algebras have a custom quotient method that serves at creating finite dimensional quotients defined by multiplication matrices. We are bypassing it, so that we obtain the default quotient:
sage: Q3.<a,b,c> = F.quotient(I3)
sage: Q3
Quotient of Free Algebra on 3 generators (x, y, z) over Rational Field by
the ideal (x^3, x^2*y, x^2*z, x*y*x, x*y^2, x*y*z, x*z*x, x*z*y, x*z^2,
y*x^2, y*x*y, y*x*z, y^2*x, y^2*z, y*z*x, y*z*y, y*z^2, z*x^2, z*x*y,
z*x*z, z*y*x, z*y^2, z*y*z, z^2*x, z^2*y, z^2*z)
sage: (a+b+2)^4
16 + 32*a + 32*b + 24*a^2 + 24*a*b + 24*b*a + 24*b^2
sage: Q3.is_commutative()
False

Even though $Q_3$ is not commutative, there is commutativity for products of degree three:

sage: a*(b+c)-(b+c)*a==F.zero()
True

If we quotient out all terms of degree two then of course the resulting quotient ring is commutative:

sage: I2 = PowerIdeal(F,2); I2
Twosided Ideal (x^2, x*y, x*z, y*x, y^2, y*z, z*x, z*y, z^2) of Free Algebra
on 3 generators (x, y, z) over Rational Field
sage: Q2.<a,b,c> = F.quotient(I2)
sage: Q2.is_commutative()
True
sage: (a+b+2)^4
16 + 32*a + 32*b

Since trac ticket #7797, there is an implementation of free algebras based on Singular’s implementation of the Letterplace Algebra. Our letterplace wrapper allows to provide the above toy example more easily:

sage: from itertools import product
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: Q3 = F.quo(F*[F.prod(m) for m in product(F.gens(), repeat=3)]*F)
sage: Q3
Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field by the ideal (x*x*x, x*x*y, x*x*z, x*y*x, x*y*y, x*y*z, x*z*x, x*z*y, x*z*z, y*x*x, y*x*y, y*x*z, y*y*x, y*y*y, y*y*z, y*z*x, y*z*y, y*z*z, z*x*x, z*x*y, z*x*z, z*y*x, z*y*y, z*y*z, z*z*x, z*z*y, z*z*z)
sage: Q3.0*Q3.1-Q3.1*Q3.0
xbar*ybar - ybar*xbar
sage: Q3.0*(Q3.1+Q3.2)-Q3.1*Q3.2+Q3.0*Q3.2
0
sage: Q2 = F.quo(F*[F.prod(m) for m in product(F.gens(), repeat=2)]*F)
sage: Q2.is_commutative()
True

`sage.rings.quotient_ring.QuotientRing(R, I, names=None)`
Creates a quotient ring of the ring $R$ by the twosided ideal $I$.

Variables are labeled by names (if the quotient ring is a quotient of a polynomial ring). If names isn’t given, ‘bar’ will be appended to the variable names in $R$.

INPUT:
- $R$ – a ring.
- $I$ – a twosided ideal of $R$.
- names – (optional) a list of strings to be used as names for the variables in the quotient ring $R/I$.  

Chapter 4. Quotient Rings
OUTPUT: $R/I$ - the quotient ring $R$ mod the ideal $I$

ASSUMPTION:

$I$ has a method $I.reduce(x)$ returning the normal form of elements $x \in R$. In other words, it is required that $I.reduce(x)==I.reduce(y)$ $\iff$ $x - y \in I$, and $x-I.reduce(x)$ in $I$, for all $x, y \in R$.

EXAMPLES:

Some simple quotient rings with the integers:

```sage
sage: R = QuotientRing(ZZ,7*ZZ); R
Quotient of Integer Ring by the ideal (7)
sage: R.gens()
(1,)
sage: 1*R(3); 6*R(3); 7*R(3)
3
4
0
```

```sage
sage: S = QuotientRing(ZZ,ZZ.ideal(8)); S
Quotient of Integer Ring by the ideal (8)
sage: 2*S(4)
0
```

With polynomial rings (note that the variable name of the quotient ring can be specified as shown below):

```sage
sage: P.<x> = QQ[]
sage: R.<xx> = QuotientRing(P, P.ideal(x^2 + 1))
sage: R
Univariate Quotient Polynomial Ring in xx over Rational Field with modulus x^2 + 1
sage: R.gens(); R.gen()
(xx,)
xx
sage: for n in range(4): xx^n
1
xx
-1
-xx
```

```sage
sage: P.<x> = QQ[]
sage: S = QuotientRing(P, P.ideal(x^2 - 2))
sage: S
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 - 2
sage: xbar = S.gen(); S.gen()
xbar
sage: for n in range(3): xbar^n
1
xbar
2
```

Sage coerces objects into ideals when possible:

```sage
sage: P.<x> = QQ[]
sage: R = QuotientRing(P, x^2 + 1); R
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 + 1
```

4.1. Quotient Rings
By Noether’s homomorphism theorems, the quotient of a quotient ring of $R$ is just the quotient of $R$ by the sum of the ideals. In this example, we end up modding out the ideal $(x)$ from the ring $\mathbb{Q}[x,y]$:

\begin{verbatim}
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = QuotientRing(R,R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S,S.ideal(a))
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x, y^2 + 1)
sage: R.gens(); S.gens(); T.gens()
(x, y) (a, b) (0, d)
sage: for n in range(4): d^n
1
d
-1
-d
\end{verbatim}

```
class sage.rings.quotient_ring.QuotientRing_generic(R, I, names, category=None)
Bases:
 sage.rings.quotient_ring.QuotientRing_nc, sage.rings.ring.CommutativeRing

Creates a quotient ring of a commutative ring R by the ideal I.

EXAMPLES:

\begin{verbatim}
sage: R.<x> = PolynomialRing(ZZ)
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I); S
Quotient of Univariate Polynomial Ring in x over Integer Ring by the ideal (x^2 + 3*x + 4, x^2 + 1)
\end{verbatim}

```

```
class sage.rings.quotient_ring.QuotientRing_nc(R, I, names, category=None)
Bases:
 sage.rings.ring.Ring, sage.structure.parent_gens.ParentWithGens

The quotient ring of R by a twosided ideal I.

This class is for rings that do not inherit from CommutativeRing.

EXAMPLES:

Here is a quotient of a free algebra by a twosided homogeneous ideal:

\begin{verbatim}
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q.<a,b,c> = F.quo(I); Q
Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field by the ideal (x*y + y*z, x*x + x*y - y*x - y*y)
sage: a*b
-b*c
sage: a^3
-b*c*a - b*c*b - b*c*c
\end{verbatim}

A quotient of a quotient is just the quotient of the original top ring by the sum of two ideals:

\begin{verbatim}
sage: J = Q*[a^3-b^3]*Q
sage: R.<i,j,k> = Q.quo(J); R
Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field by the ideal (-y*y*z - y*z*x - 2*y*z*z, x*y + y*z, x*x + x*y - y*x - y*y)
\end{verbatim}

(continues on next page)
For rings that do inherit from `CommutativeRing`, we provide a subclass `QuotientRing_generic`, for backwards compatibility.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ,'x')
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I); S
Quotient of Univariate Polynomial Ring in x over Integer Ring by the ideal (x^2 + 3*x + 4, x^2 + 1)
```

```python
sage: R.<x,y> = PolynomialRing(QQ)
sage: S.<a,b> = R.quo(x^2 + y^2)
sage: a^2 + b^2 == 0
True
sage: S(0) == a^2 + b^2
True
```

Again, a quotient of a quotient is just the quotient of the original top ring by the sum of two ideals.

```python
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = R.quo(1 + y^2)
sage: T.<c,d> = S.quo(a)
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x, y^2 + 1)
sage: T.gens()
(0, d)
```

Element

alias of `sage.rings.quotient_ring_element.QuotientRingElement`

ambient()

Returns the cover ring of the quotient ring: that is, the original ring R from which we modded out an ideal, I.

EXAMPLES:

```python
sage: Q = QuotientRing(ZZ,7*ZZ)
sage: Q.cover_ring()
Integer Ring
```

```python
sage: P.<x> = QQ[]
sage: Q = QuotientRing(P, x^2 + 1)
sage: Q.cover_ring()
Univariate Polynomial Ring in x over Rational Field
```

characteristic()

Return the characteristic of the quotient ring.

4.1. Quotient Rings 63
Todo: Not yet implemented!

EXAMPLES:

```
sage: Q = QuotientRing(ZZ,7*ZZ)
sage: Q.characteristic()
Traceback (most recent call last):
  ...  
NotImplementedError
```

colorization

construction()

Returns the functorial construction of self.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ,'x')
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: R.quotient_ring(I).construction()
(QuotientFunctor, Univariate Polynomial Ring in x over Integer Ring)
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+y*y-x*y-y^2]*F
sage: Q = F.quo(I)
sage: Q.construction()
(QuotientFunctor, Free Associative Unital Algebra on 3 generators (x, y, z) → over Rational Field)
```

cover()

The covering ring homomorphism $R \to R/I$, equipped with a section.

EXAMPLES:

```
sage: R = ZZ.quo(3*ZZ)
sage: pi = R.cover()
sage: pi
Ring morphism:
  From: Integer Ring
  To: Ring of integers modulo 3
  Defn: Natural quotient map
sage: pi(5)
2
sage: l = pi.lift()
sage: R.<x,y> = PolynomialRing(QQ)
sage: Q = R.quo( (x^2,y^2) )
sage: pi = Q.cover()
sage: pi(x^3+y)
ybar
sage: l = pi.lift(x+y^3)
sage: l
x
sage: l = pi.lift(); l
Set-theoretic ring morphism:
  From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field
    → by the ideal (x^2, y^2)
  To: Multivariate Polynomial Ring in x, y over Rational Field
  Defn: Choice of lifting map
```

(continues on next page)
cover_ring()

Returns the cover ring of the quotient ring: that is, the original ring R from which we moded out an ideal, I.

EXAMPLES:

```sage
sage: Q = QuotientRing(ZZ, 7*ZZ)
sage: Q.cover_ring()
Integer Ring
```

```sage
sage: P.<x> = QQ[]
sage: Q = QuotientRing(P, x^2 + 1)
sage: Q.cover_ring()
Univariate Polynomial Ring in x over Rational Field
```

defining_ideal()

Returns the ideal generating this quotient ring.

EXAMPLES:

In the integers:

```sage
sage: Q = QuotientRing(ZZ, 7*ZZ)
sage: Q.defining_ideal()
Principal ideal (7) of Integer Ring
```

An example involving a quotient of a quotient. By Noether’s homomorphism theorems, this is actually a quotient by a sum of two ideals:

```sage
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = QuotientRing(R, R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S, S.ideal(a))
sage: T.defining_ideal()
Ideal (y^2 + 1) of Multivariate Polynomial Ring in x, y over Rational Field
```

```sage
sage: T.defining_ideal()
Ideal (x, y^2 + 1) of Multivariate Polynomial Ring in x, y over Rational Field
```

gen($i=0$)

Returns the i-th generator for this quotient ring.

EXAMPLES:

```sage
sage: R = QuotientRing(ZZ, 7*ZZ)
sage: R.gen(0)
1
```

```sage
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = QuotientRing(R, R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S, S.ideal(a))
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the
  \rightarrow ideal (x, y^2 + 1)
sage: R.gen(0); R.gen(1)
x
```

(continues on next page)
y
sage: S.gen(0); S.gen(1)
a
b
sage: T.gen(0); T.gen(1)
0
d

ideal(*gens, **kwds)

Return the ideal of self with the given generators.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ)
sage: S = R.quotient_ring(x^2+y^2)
sage: S.ideal()
Ideal (0) of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2)
sage: S.ideal(x+y+1)
Ideal (xbar + ybar + 1) of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2)

is_commutative()

Tell whether this quotient ring is commutative.

Note: This is certainly the case if the cover ring is commutative. Otherwise, if this ring has a finite number of generators, it is tested whether they commute. If the number of generators is infinite, a NotImplementedError is raised.

AUTHOR:

• Simon King (2011-03-23): See trac ticket #7797.

EXAMPLES:

Any quotient of a commutative ring is commutative:

sage: P.<a,b,c> = QQ[]
sage: P.quo(P.random_element()).is_commutative()
True

The non-commutative case is more interesting:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = F.quo(I)
sage: Q.is_commutative()
False
sage: Q.1*Q.2==Q.2*Q.1
False

In the next example, the generators apparently commute:

sage: J = F*[x*y-y*x,x*z-z*x,y*z-z*y,x^3-y^3]*F
sage: R = F.quo(J)
sage: R.is_commutative()
True
is_field\ (proof=True)
Returns True if the quotient ring is a field. Checks to see if the defining ideal is maximal.

is_integral_domain\ (proof=True)
With proof equal to True (the default), this function may raise a NotImplementedError.
When proof is False, if True is returned, then self is definitely an integral domain. If the function returns False, then either self is not an integral domain or it was unable to determine whether or not self is an integral domain.

EXAMPLES:

\begin{verbatim}
sage: R.<x,y> = QQ[]
sage: R.quo(x^2 - y).is_integral_domain()
True
dsage: R.quo(x^2 - y^2).is_integral_domain()
False
dsage: R.quo(x^2 - y^2).is_integral_domain(proof=False)
False
dsage: R.<a,b,c> = ZZ[]
dsage: Q = R.quotient_ring([a, b])
dsage: Q.is_integral_domain()
Traceback (most recent call last):
... Not Implemented Error
sage: Q.is_integral_domain(proof=False)
False
\end{verbatim}

is_noetherian()
Return True if this ring is Noetherian.

EXAMPLES:

\begin{verbatim}
sage: R = QuotientRing(ZZ, 102*ZZ)
sage: R.is_noetherian()
True
dsage: P.<x> = QQ[]
dsage: R = QuotientRing(P, x^2+1)
dsage: R.is_noetherian()
True
\end{verbatim}

If the cover ring of self is not Noetherian, we currently have no way of testing whether self is Noethe-
rian, so we raise an error:

\begin{verbatim}
sage: R.<x> = InfinitePolynomialRing(QQ)
sage: R.is_noetherian()
False
sage: I = R.ideal([x[1]^2, x[2]])
sage: S = R.quotient(I)
sage: S.is_noetherian()
Traceback (most recent call last):
... Not Implemented Error
\end{verbatim}

lift\ (x=None)
Return the lifting map to the cover, or the image of an element under the lifting map.

Note: The category framework imposes that Q.lift(x) returns the image of an element x under the
lifting map. For backwards compatibility, we let \texttt{Q.lifting()} return the lifting map.

EXAMPLES:

```
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quotient(x^2 + y^2)
sage: S.lifting()
Set-theoretic ring morphism:
  From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field
     by the ideal (x^2 + y^2)
  To: Multivariate Polynomial Ring in x, y over Rational Field
     Defn: Choice of lifting map
sage: S.lifting(S.0) == x
True
```

lifting_map()

Return the lifting map to the cover.

EXAMPLES:

```
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quotient(x^2 + y^2)
sage: pi = S.cover(); pi
Ring morphism:
  From: Multivariate Polynomial Ring in x, y over Rational Field
     To: Quotient of Multivariate Polynomial Ring in x, y over Rational Field
     Defn: Natural quotient map
sage: L = S.lifting_map(); L
Set-theoretic ring morphism:
  From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field
     by the ideal (x^2 + y^2)
  To: Multivariate Polynomial Ring in x, y over Rational Field
     Defn: Choice of lifting map
sage: L(S.0)
x
sage: L(S.1)
y
```

Note that some reduction may be applied so that the lift of a reduction need not equal the original element:

```
sage: z = pi(x^3 + 2*y^2); z
-xbar*ybar^2 + 2*ybar^2
sage: L(z)
-x*y^2 + 2*y^2
sage: L(z) == x^3 + 2*y^2
False
```

Test that there also is a lift for rings that are no instances of \texttt{Ring} (see trac ticket \#11068):

```
sage: MS = MatrixSpace(GF(5),2,2)
sage: I = MS*[MS.0*MS.1,MS.2+MS.3]*MS
sage: Q = MS.quo(I)
sage: Q.lift()
Set-theoretic ring morphism:
  From: Quotient of Full MatrixSpace of 2 by 2 dense matrices over Finite
     Field of size 5 by the ideal
     (continues on next page)
\section*{ngens()}

Returns the number of generators for this quotient ring.

\textbf{Todo:} Note that \texttt{ngens} counts 0 as a generator. Does this make sense? That is, since 0 only generates itself and the fact that this is true for all rings, is there a way to “knock it off” of the generators list if a generator of some original ring is modded out?

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = QuotientRing(ZZ, 7*ZZ)
sage: R.gens(); R.ngens()
(1,)
1
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = QuotientRing(R, R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S, S.ideal(a))
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x, y^2 + 1)
sage: R.gens(); S.gens(); T.gens()
(x, y)
(a, b)
(0, d)
sage: R.ngens(); S.ngens(); T.ngens()
2
2
2
\end{verbatim}

\section*{retract(x)}

The image of an element of the cover ring under the quotient map.

\textbf{INPUT:}

\begin{itemize}
  \item x – An element of the cover ring
\end{itemize}

\textbf{OUTPUT:}

The image of the given element in self.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quotient(x^2 + y^2)
sage: S.retract((x+y)^2)
2*xbar*ybar
\end{verbatim}
term_order()
Return the term order of this ring.

EXAMPLES:

```
sage: P.<a,b,c> = PolynomialRing(QQ)
sage: I = Ideal([a^2 - a, b^2 - b, c^2 - c])
sage: Q = P.quotient(I)
sage: Q.term_order()
Degree reverse lexicographic term order
```

sage.rings.quotient_ring.is_QuotientRing(x)
Tests whether or not x inherits from QuotientRing_nc.

EXAMPLES:

```
sage: from sage.rings.quotient_ring import is_QuotientRing
sage: R.<x> = PolynomialRing(ZZ,'x')
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I)
sage: is_QuotientRing(S)
True
sage: is_QuotientRing(R)
False
```

4.2 Quotient Ring Elements

AUTHORS:

• William Stein

class sage.rings.quotient_ring_element.QuotientRingElement (parent, rep, reduce=True)

Bases: sage.structure.element.RingElement

An element of a quotient ring \( R/I \).

INPUT:

• parent - the ring \( R/I \)
• rep - a representative of the element in \( R \); this is used as the internal representation of the element
• reduce - bool (optional, default: True) - if True, then the internal representation of the element is \( \text{rep} \) reduced modulo the ideal \( I \)

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: S.<xbar> = R.quo((4 + 3*x + x^2, 1 + x^2)); S
```

(continues on next page)
Quotient of Univariate Polynomial Ring in x over Integer Ring by the ideal (x^2 + \rightarrow 3*x + 4, x^2 + 1)
sage: v = S gens(); v
(xbar,)

sage: loads(v[0].dumps()) == v[0]
True

We name each of the generators.  We name each of the generators.

sage: S.<a,b> = R.quotient(x^2 + y^2)
sage: a
a
sage: b
b
sage: a^2 + b^2 == 0
True
sage: b.lift()
y
sage: (a^3 + b^2).lift()
-x*y^2 + y^2

\textit{is\_unit}()
Return True if self is a unit in the quotient ring.

\texttt{TODO: This is not fully implemented, as illustrated in the example below. So far, self is determined to be unit only if its representation in the cover ring \( R \) is also a unit.}

\textbf{EXAMPLES:}

sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(1 - x*y); type(a)
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_
\rightarrow class'>
sage: a*b
1
sage: a.is_unit()
Traceback (most recent call last):
... 
NotImplementedError
sage: S(1).is_unit()
True

\textit{lc}()
Return the leading coefficient of this quotient ring element.

\textbf{EXAMPLES:}

sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: I = sage.rings.ideal.FieldIdeal(R)
(continues on next page)
lift()

If \texttt{self} is an element of \( R/I \), then return \texttt{self} as an element of \( R \).

**EXAMPLES:**

```python
sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(x^2 + y^2); type(a)
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_class'>
sage: a.lift()
x
sage: (3/5*(a + a^2 + b^2)).lift()
3/5*x
```

lm()

Return the leading monomial of this quotient ring element.

**EXAMPLES:**

```python
sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: I = sage.rings.ideal.FieldIdeal(R)
sage: Q = R.quo(I)
sage: f = Q(z*y + 2*x)
sage: f.lm()
xbar
```

lt()

Return the leading term of this quotient ring element.

**EXAMPLES:**

```python
sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: I = sage.rings.ideal.FieldIdeal(R)
sage: Q = R.quo(I)
sage: f = Q(z*y + 2*x)
sage: f.lt()
2*xbar
```

monomials()

Return the monomials in \texttt{self}.

**OUTPUT:**

A list of monomials.

**EXAMPLES:**

```python
sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(x^2 + y^2); type(a)
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_class'>
sage: a.monomials()
[a]
sage: (a+a*b).monomials()
[a*b, a]
```
reduce \((G)\)
Reduce this quotient ring element by a set of quotient ring elements \(G\).

**INPUT:**

- \(G\) - a list of quotient ring elements

**EXAMPLES:**

```python
sage: P.<a,b,c,d,e> = PolynomialRing(GF(2), 5, order='lex')
sage: I1 = ideal([a*b + c*d + 1, a*c*e + d*e, a*b*e + c*e, b*c + c*d*e + 1])
sage: Q = P.quotient(sage.rings.ideal.FieldIdeal(P))
sage: I2 = ideal([Q(f) for f in I1.gens()])
sage: f = Q((a*b + c*d + 1)^2 + e)
sage: f.reduce(I2.gens())
```

variables ()
Return all variables occurring in self.

**OUTPUT:**

A tuple of linear monomials, one for each variable occurring in self.

**EXAMPLES:**

```python
sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(x^2 + y^2); type(a) <class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_' ˓→class'>
sage: a.variables() (a,) sage: b.variables() (b,) sage: s = a^2 + b^2 + 1; s 1 sage: s.variables() () sage: (a+b).variables() (a, b)
```
5.1 Fraction Field of Integral Domains

AUTHORS:

- William Stein (with input from David Joyner, David Kohel, and Joe Wetherell)
- Burcin Erocal
- Julian Rüth (2017-06-27): embedding into the field of fractions and its section

EXAMPLES:

Quotienting is a constructor for an element of the fraction field:

```
sage: R.<x> = QQ[]
sage: (x^2-1)/(x+1)
 x - 1
sage: parent((x^2-1)/(x+1))
Fraction Field of Univariate Polynomial Ring in x over Rational Field
```

The GCD is not taken (since it doesn’t converge sometimes) in the inexact case:

```
sage: Z.<z> = CC[]
sage: I = CC.gen()
sage: (1+I*z)/(z+0.1*I)
 (z + 1.00000000000000 + I)/(z + 0.100000000000000*I)
sage: (I+z)/(z+1.1)
 (I*z + 1.00000000000000)/(z + 1.10000000000000)

sage.rings.fraction_field.FractionField(R, names=None)
Create the fraction field of the integral domain R.

INPUT:

- R – an integral domain
- names – ignored

EXAMPLES:

We create some example fraction fields:

```
sage: FractionField(IntegerRing())
Rational Field
sage: FractionField(PolynomialRing(RationalField(), 'x'))
Fraction Field of Univariate Polynomial Ring in x over Rational Field
```

(continues on next page)
Dividing elements often implicitly creates elements of the fraction field:

```python
sage: x = PolynomialRing(RationalField(), 'x').gen()
sage: f = x/(x+1)
sage: g = x**3/(x+1)
sage: f/g
1/x^2
sage: g/f
x^2
```

The input must be an integral domain:

```python
sage: Frac(Integers(4))
Traceback (most recent call last):
...
TypeError: R must be an integral domain.
```

class sage.rings.fraction_field.FractionFieldEmbedding

Bases: sage.structure.coerce_maps.DefaultConvertMap_unique

The embedding of an integral domain into its field of fractions.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: R.fraction_field().coerce_map_from(R).is_injective()
True
```

is_surjective

Return whether this map is surjective.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: R.fraction_field().coerce_map_from(R).is_surjective()
False
```

section

Return a section of this map.

EXAMPLES:

```python
```

```python
sage: R.<x> = QQ[
sage: R.fraction_field().coerce_map_from(R).section()
```

Section map:

From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
To: Univariate Polynomial Ring in x over Rational Field

```python
class sage.rings.fraction_field.FractionFieldEmbeddingSection
    Bases: sage.categories.map.Section

The section of the embedding of an integral domain into its field of fractions.

**EXAMPLES:**

```python
sage: R.<x> = QQ[
 sage: f = R.fraction_field().coerce_map_from(R).section(); f
```

**Section map:**

From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
To: Univariate Polynomial Ring in x over Rational Field

```python
class sage.rings.fraction_field.FractionField_lpoly_field(R, element_class=<class 'sage.rings.fraction_field_element.FractionFieldElement_lpoly_field'>)
 Bases: sage.rings.fraction_field.FractionField_generic

The fraction field of a univariate polynomial ring over a field.

Many of the functions here are included for coherence with number fields.

class_number()

Here for compatibility with number fields and function fields.

EXAMPLES:

```python
sage: R.<t> = GF(5)[]; K = R.fraction_field()
    sage: K.class_number()
```

1

function_field()

Return the isomorphic function field.

EXAMPLES:

```python
sage: R.<t> = GF(5)[]
    sage: K = R.fraction_field()
    sage: K.function_field()
```

Rational function field in t over Finite Field of size 5

See also:

sage.rings.function_field.RationalFunctionField.field()

maximal_order()

Return the maximal order in this fraction field.

EXAMPLES:

```python
sage: K = FractionField(GF(5)['t'])
    sage: K.maximal_order()
```

Univariate Polynomial Ring in t over Finite Field of size 5

5.1. Fraction Field of Integral Domains 77
ring_of_integers()
Return the ring of integers in this fraction field.

EXAMPLES:

```python
sage: K = FractionField(GF(5)['t'])
sage: K.ring_of_integers()
Univariate Polynomial Ring in t over Finite Field of size 5
```

class sage.rings.fraction_field.FractionField_generic(R,
element_class=<class 'sage.rings.fraction_field_element.FractionFieldElement'>,
category=Category of quotient fields)

Bases: sage.rings.ring.Field

The fraction field of an integral domain.

base_ring()
Return the base ring of self.

This is the base ring of the ring which this fraction field is the fraction field of.

EXAMPLES:

```python
sage: R = Frac(ZZ['t'])
sage: R.base_ring()
Integer Ring
```

characteristic()
Return the characteristic of this fraction field.

EXAMPLES:

```python
sage: R = Frac(ZZ['t'])
sage: R.base_ring()
Integer Ring
sage: R = Frac(ZZ['t']); R.characteristic()
0
sage: R = Frac(GF(5)['w']); R.characteristic()
5
```

construction()
EXAMPLES:

```python
sage: Frac(ZZ['x']).construction()
(FractionField, Univariate Polynomial Ring in x over Integer Ring)
sage: K = Frac(GF(3)['t'])
sage: f, R = K.construction()
sage: f(R)
Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 3
sage: f(R) == K
True
```

gen(i=0)
Return the i-th generator of self.

EXAMPLES:

```python
sage: R = Frac(PolynomialRing(QQ,'z',10)); R  
Fraction Field of Multivariate Polynomial Ring in z0, z1, z2, z3, z4, z5, z6, z7, z8, z9 over Rational Field
(continues on next page)```
is_exact()

Return if self is exact which is if the underlying ring is exact.

EXAMPLES:

```python
sage: Frac(ZZ['x']).is_exact()
True
sage: Frac(CDF['x']).is_exact()
False
```

is_field(proof=True)

Return True, since the fraction field is a field.

EXAMPLES:

```python
sage: Frac(ZZ).is_field()
True
```

is_finite()

Tells whether this fraction field is finite.

Note: A fraction field is finite if and only if the associated integral domain is finite.

EXAMPLES:

```python
sage: Frac(QQ['a','b','c']).is_finite()
False
```

ngens()

This is the same as for the parent object.

EXAMPLES:

```python
sage: R = Frac(PolynomialRing(QQ,'z',10)); R
Fraction Field of Multivariate Polynomial Ring in z0, z1, z2, z3, z4, z5, z6, ...
˓→z7, z8, z9 over Rational Field
sage: R.ngens()
10
```

random_element(*args, **kwds)

Return a random element in this fraction field.

The arguments are passed to the random generator of the underlying ring.

EXAMPLES:

```python
sage: F = ZZ['x'].fraction_field()
sage: F.random_element() # random
(2*x - 8)/(-x^2 + x)
```
sage: f = F.random_element(degree=5)
sage: f.numerator().degree()
5
sage: f.denominator().degree()
5

ring()
Return the ring that this is the fraction field of.

EXAMPLES:

sage: R = Frac(QQ['x,y'])
sage: R
Fraction Field of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ring()
Multivariate Polynomial Ring in x, y over Rational Field

some_elements()
Return some elements in this field.

EXAMPLES:

sage: R.<x> = QQ[]
sage: R.fraction_field().some_elements()
[0, 1, x, 2*x, x/(x^2 + 2*x + 1), 1/x^2, ... (2*x^2 + 2)/(x^2 + 2*x + 1), (2*x^2 + 2)/x^3, (2*x^2 + 2)/(x^2 - 1), 2]

sage.rings.fraction_field.is_FractionField(x)
Test whether or not x inherits from FractionField_generic.

EXAMPLES:

sage: from sage.rings.fraction_field import is_FractionField
sage: is_FractionField(Frac(ZZ['x']))
True
sage: is_FractionField(QQ)
False

5.2 Fraction Field Elements

AUTHORS:

- William Stein (input from David Joyner, David Kohel, and Joe Wetherell)
- Sebastian Pancratz (2010-01-06): Rewrite of addition, multiplication and derivative to use Henrici’s algorithms [Hor1972]
class sage.rings.fraction_field_element.FractionFieldElement

Bases: sage.structure.element.FieldElement

EXAMPLES:

```python
sage: K = FractionField(PolynomialRing(QQ, 'x'))
sage: K
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: loads(K.dumps()) == K
True
sage: x = K.gen()
sage: f = (x^3 + x)/(17 - x^19); f
(-x^3 - x)/(x^19 - 17)
sage: loads(f.dumps()) == f
True
```

denominator()

Return the denominator of self.

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: f = x/y+1; f
(x + y)/y
sage: f.denominator()
y
```

is_one()

Return True if this element is equal to one.

EXAMPLES:

```python
sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: (x/x).is_one() # this is one
True
sage: (x/y).is_one() # this is not one
False
```

is_square(root=False)

Return whether or not self is a perfect square.

If the optional argument root is True, then also returns a square root (or None, if the fraction field element is not square).

INPUT:

- root -- whether or not to also return a square root (default: False)

OUTPUT:

- bool -- whether or not a square
- object -- (optional) an actual square root if found, and None otherwise.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: (1/t).is_square() # this is not square (it's negative)
False
sage: (1/t^6).is_square() # this is square
True
```
sage: ((1+t)^4/t^6).is_square()
True
sage: (4*(1+t)^4/t^6).is_square()
True
sage: (2*(1+t)^4/t^6).is_square()
False
sage: ((1+t)/t^6).is_square()
False

sage: (4*(1+t)^4/t^6).is_square(root=True)
(True, (2*t^2 + 4*t + 2)/t^3)

sage: (2*(1+t)^4/t^6).is_square(root=True)
(False, None)

sage: R.<x> = QQ[]
sage: a = 2*(x+1)^2 / (2*(x-1)^2); a
(x^2 + 2*x + 1)/(x^2 - 2*x + 1)
sage: a.is_square()
True
sage: (0/x).is_square()
True

**is_zero()**

Return True if this element is equal to zero.

**EXAMPLES:**

```python
sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: t = F(0)/x
sage: t.is_zero()
True
sage: u = 1/x - 1/x
sage: u.is_zero()
True
sage: u.parent() is F
True
```

**nth_root(n)**

Return a \(n\)-th root of this element.

**EXAMPLES:**

```python
sage: R = QQ['t'].fraction_field()
sage: t = R.gen()
sage: p = (t+1)^3 / (t^2+t-1)^3
sage: p.nth_root(3)
(t + 1)/(t^2 + t - 1)
sage: p = (t+1) / (t-1)
traceback (most recent call last):
...
ValueError: not a 2nd power
```

**numerator()**

Return the numerator of self.
EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: f = x/y+1; f
(x + y)/y
sage: f.numerator()
x + y
```

**reduce()**
Reduce this fraction.

Divides out the gcd of the numerator and denominator. If the denominator becomes a unit, it becomes 1. Additionally, depending on the base ring, the leading coefficients of the numerator and the denominator may be normalized to 1.

Automatically called for exact rings, but because it may be numerically unstable for inexact rings it must be called manually in that case.

EXAMPLES:

```
sage: R.<x> = RealField(10)[]
sage: f = (x^2+2*x+1)/(x+1); f
(x^2 + 2.0*x + 1.0)/(x + 1.0)
sage: f.reduce(); f
x + 1.0
```

**specialization**(D=None, phi=None)
Returns the specialization of a fraction element of a polynomial ring.

**valuation**(v=None)
Return the valuation of self, assuming that the numerator and denominator have valuation functions defined on them.

EXAMPLES:

```
sage: x = PolynomialRing(RationalField(),'x').gen()
sage: f = (x^3 + x)/(x^2 - 2*x^3)
sage: f
(-1/2*x^2 - 1/2)/(x^2 - 1/2*x)
sage: f.valuation()
-1
sage: f.valuation(x^2+1)
1
```

### class sage.rings.fraction_field_element.FractionFieldElement_1poly_field

A fraction field element where the parent is the fraction field of a univariate polynomial ring over a field.

Many of the functions here are included for coherence with number fields.

**is_integral()**
Returns whether this element is actually a polynomial.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: elt = (t^2 + t - 2) / (t + 2); elt # == (t + 2)*(t - 1)/(t + 2)
t - 1
sage: elt.is_integral()
```

(continues on next page)
reduce()  
Pick a normalized representation of self.

In particular, for any \( a \equiv b \), after normalization they will have the same numerator and denominator.

EXAMPLES:

For univariate rational functions over a field, we have:

```
sage: R.<x> = QQ[]
sage: (2 + 2*x) / (4*x) # indirect doctest
(1/2*x + 1/2)/x
```

Compare with:

```
sage: R.<x> = ZZ[]
sage: (2 + 2*x) / (4*x)
(x + 1)/(2*x)
```

support()  
Returns a sorted list of primes dividing either the numerator or denominator of this element.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: h = (t^14 + 2*t^12 - 4*t^11 - 8*t^9 + 6*t^8 + 12*t^6 - 4*t^5 - 8*t^3 + t^2 + 2)/(t^6 + 6*t^5 + 9*t^4 - 2*t^2 - 12*t - 18)
sage: h.support()
[t - 1, t + 3, t^2 + 2, t^2 + t + 1, t^4 - 2]
```

sage.rings.fraction_field_element.is_FractionFieldElement(x)  
Return whether or not \( x \) is a \emph{FractionFieldElement}.

EXAMPLES:

```
sage: from sage.rings.fraction_field_element import is_FractionFieldElement
sage: R.<x> = ZZ[]
sage: is_FractionFieldElement(x/2)
False
sage: is_FractionFieldElement(2/x)
True
sage: is_FractionFieldElement(1/3)
False
```

sage.rings.fraction_field_element.make_element(parent, numerator, denominator)  
Used for unpickling \emph{FractionFieldElement} objects (and subclasses).

EXAMPLES:

```
sage: from sage.rings.fraction_field_element import make_element
sage: R = ZZ['x,y']
sage: x,y = R.gens()
```

(continues on next page)
sage: make_element(F, 1+x, 1+y)
(x + 1)/(y + 1)

EXAMPLES:

```python
sage: from sage.rings.fraction_field_element import make_element_old
sage: R.<x,y> = ZZ[]
sage: F = R.fraction_field()
sage: make_element_old(F, {'_FractionFieldElement__numerator':x+y,'_FractionFieldElement__denominator':x-y})
(x + y)/(x - y)
```
6.1 Localization

Localization is an important ring construction tool. Whenever you have to extend a given integral domain such that it contains the inverses of a finite set of elements but should allow non injective homomorphic images this construction will be needed. See the example on Ariki-Koike algebras below for such an application.

EXAMPLES:

```python
sage: LZ = Localization(ZZ, (5, 11))
sage: m = matrix(LZ, [[5, 7], [0, 11]])
sage: m.parent()
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring localized at (5, 11)
sage: ~m # parent of inverse is different: see documentation of m.__invert__
[1/5 -7/55]
[0 1/11]
sage: _.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: mi = matrix(LZ, ~m)
sage: mi.parent()
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring localized at (5, 11)
sage: mi == ~m
True
```

The next example defines the most general ring containing the coefficients of the irreducible representations of the Ariki-Koike algebra corresponding to the three colored permutations on three elements:

```python
sage: R.<u0, u1, u2, q> = ZZ[]
sage: u = [u0, u1, u2]
sage: S = Set(u)
sage: I = S.cartesian_product(S)
sage: add_units = u + [q, q+1] + [ui -uj for ui, uj in I if ui != uj]
 + [q*ui -uj for ui, uj in I if ui != uj]
sage: L = R.localization(tuple(add_units)); L
Multivariate Polynomial Ring in u0, u1, u2, q over Integer Ring localized at
(q, q + 1, u2, u1, u1 - u2, u0, u0 - u2, u0 - u1, u2*q - u1, u2*q - u0,
 u1*q - u2, u1*q - u0, u0*q - u2, u0*q - u1)

Define the representation matrices (of one of the three dimensional irreducible representations):

```python
sage: m1 = matrix(L, [[u1, 0, 0],[0, u0, 0],[0, 0, u0]])
sage: m2 = matrix(L, [[[u0*q - u0]/(u0 - u1), (u0*q - u1)/(u0 - u1), 0],
   [(-u1*q + u0)/(u0 - u1), (-u1*q + u1)/(u0 - u1), 0],
   [0, 0, -1]])
```

(continues on next page)
Check relations of the Ariki-Koike algebra:

```
sage: m1*m2*m1*m2 == m2*m1*m2*m1
True
sage: m2*m3*m2 == m3*m2*m3
True
sage: m1*m3 == m3*m1
True
sage: m1**3 -(u0+u1+u2)*m1**2 +(u0*u1+u0*u2+u1*u2)*m1 - u0*u1*u2 == 0
True
sage: m2**2 -(q-1)*m2 - q == 0
True
sage: m3**2 -(q-1)*m3 - q == 0
True
```

Obtain specializations in positive characteristic:

```
sage: Fp = GF(17)
sage: f = L.hom((3,5,7,11), codomain=Fp); f
Ring morphism:
    From: Multivariate Polynomial Ring in u0, u1, u2, q over Integer Ring localized at
           (q, q + 1, u2, u1, u1 - u2, u0, u0 - u2, u0 - u1, u2*q - u1, u2*q - u0,
           u1*q - u2, u1*q - u0, u0*q - u2, u0*q - u1)
    To:    Finite Field of size 17
    Defn: u0 |--> 3
           u1 |--> 5
           u2 |--> 7
           q |--> 11
sage: mFp1 = matrix({k:f(v) for k, v in m1.dict().items()}); mFp1
[5 0 0]
[0 3 0]
[0 0 3]
sage: mFp1.base_ring()
Finite Field of size 17
sage: mFp2 = matrix({k:f(v) for k, v in m2.dict().items()}); mFp2
[2 3 0]
[9 8 0]
[0 0 16]
sage: mFp3 = matrix({k:f(v) for k, v in m3.dict().items()}); mFp3
[16 0 0]
[0 4 5]
[0 7 6]
```

Obtain specializations in characteristic 0:
The localization generalizes the construction of the field of fractions of an integral domain to an arbitrary ring. Given a (not necessarily commutative) ring R and a subset S of R, there exists a ring $R[S^{-1}]$ together with the ring homomorphism $R \rightarrow R[S^{-1}]$ that “inverts” S; that is, the homomorphism maps elements in S to unit
elements in $R[S^{-1}]$ and, moreover, any ring homomorphism from R that “inverts” S uniquely factors through $R[S^{-1}]$.

The ring $R[S^{-1}]$ is called the localization of R with respect to S. For example, if R is a commutative ring and f an element in R, then the localization consists of elements of the form $r/f, r \in R, n \geq 0$ (to be precise, $R[f^{-1}] = R[t]/(ft - 1)$).

The above text is taken from Wikipedia. The construction here used for this class relies on the construction of the field of fraction and is therefore restricted to integral domains.

Accordingly, this class is inherited from IntegralDomain and can only be used in that context. Furthermore, the base ring should support `sage.structure.element.CommutativeRingElement.divides()` and the exact division operator `//` (`sage.structure.element.Element.__floordiv__()`) in order to guarantee an successful application.

INPUT:

- `base_ring` – an instance of `Ring` allowing the construction of `fraction_field()` (that is an integral domain)
- `additional_units` – tuple of elements of `base_ring` which should be turned into units
- `names` – passed to `IntegralDomain`
- `normalize` – (optional, default: True) passed to `IntegralDomain`
- `category` – (optional, default: None) passed to `IntegralDomain`
- `warning` – (optional, default: True) to supress a warning which is thrown if self cannot be represented uniquely

REFERENCES:

- Wikipedia article Ring_(mathematics)#Localization

EXAMPLES:

```sage
sage: L = Localization(ZZ, (3,5))
sage: 1/45 in L
False
sage: 1/43 in L
True
sage: Localization(L, (7,11))
Integer Ring localized at (3, 5, 7, 11)
sage: _.is_subring(QQ)
True
sage: L(~7)
Traceback (most recent call last):
...
ValueError: factor 7 of denominator is not a unit
sage: Localization(Zp(7), (3, 5))
Traceback (most recent call last):
...
ValueError: all given elements are invertible in 7-adic Ring with capped relative
˓→precision 20
sage: R.<x> = ZZ[]
sage: L = R.localization(x**2+1)
sage: s = (x+5)/(x**2+1)
```

(continues on next page)
```sage
sage: s in L
True
sage: t = (x+5)/(x**2+2)
sage: t in L
False
sage: L(t)
Traceback (most recent call last):
...  
TypeError: fraction must have unit denominator
sage: L(s) in R
False
sage: y = L(x)
sage: g = L(s)
sage: g.parent()
Univariate Polynomial Ring in x over Integer Ring localized at (x^2 + 1,)
sage: f = (y+5)/(y**2+1); f
(x + 5)/(x^2 + 1)
sage: f == g
True
sage: (y+5)/(y**2+2)
Traceback (most recent call last):
...  
ValueError: factor x^2 + 2 of denominator is not a unit

More examples will be shown typing `sage.rings.localization?`.
```

Element

alias of `LocalizationElement`

characteristic()

Return the characteristic of `self`.

EXAMPLES:

```sage
sage: R.<a> = GF(5)[]
sage: L = R.localization((a**2-3, a))
sage: L.characteristic()
5
```

fraction_field()

Return the fraction field of `self`.

EXAMPLES:

```sage
sage: R.<a> = GF(5)[]
sage: L = Localization(R, (a**2-3, a))
sage: L.fraction_field()
Fraction Field of Univariate Polynomial Ring in a over Finite Field of size 5
sage: L.is_subring(_)
True
```

gen(i)

Return the `i`-th generator of `self` which is the `i`-th generator of the base ring.

EXAMPLES:

```sage
sage: R.<x, y> = ZZ[]
sage: R.localization((x**2+1, y-1)).gen(0)
```

(continues on next page)
sage: ZZ.localization(2).gen(0)
1

gens()

Return a tuple whose entries are the generators for this object, in order.

EXAMPLES:

sage: R.<x, y> = ZZ[
 sage: Localization(R, (x**2+1, y-1)).gens()
 (x, y)
 sage: Localization(ZZ, 2).gens()
 (1,)

ngens()

Return the number of generators of self according to the same method for the base ring.

EXAMPLES:

sage: R.<x, y> = ZZ[
 sage: Localization(R, (x**2+1, y-1)).ngens()
 2
 sage: Localization(ZZ, 2).ngens()
 1

class sage.rings.localization.LocalizationElement(parent, x)

Element class for localizations of integral domains

INPUT:

• parent – instance of Localization
• x – instance of FractionFieldElement whose parent is the fraction field of the parent’s base ring

EXAMPLES:

sage: from sage.rings.localization import LocalizationElement
sage: P.<x,y,z> = GF(5)[
 sage: L = P.localization((x, y*z-x))
 sage: LocalizationElement(L, 4/(y*z-x)**2)
 (-1)/(y^2*z^2 - 2*x*y*z + x^2)
 sage: _.parent()
 Multivariate Polynomial Ring in x, y, z over Finite Field of size 5 localized at
 \((x, y*z - x) \)

denominator()

Return the denominator of self.

EXAMPLES:
sage: L = Localization(ZZ, (3,5))
sage: L(7/15).denominator()
15

\textbf{inverse_of_unit()}
Return the inverse of self.

\textbf{EXAMPLES:}

sage: P.<x,y,z> = ZZ[]
sage: L = Localization(P, x*y*z)
sage: L(x*y*z).inverse_of_unit()
1/(x*y*z)
sage: L(z).inverse_of_unit()
1/z

\textbf{is_unit()}
Return \texttt{True} if self is a unit.

\textbf{EXAMPLES:}

sage: P.<x,y,z> = QQ[]
sage: L = P.localization((x, y*z))
sage: L(y*z).is_unit()
True
sage: L(z).is_unit()
True
sage: L(x*y*z).is_unit()
True

\textbf{numerator()}
Return the numerator of self.

\textbf{EXAMPLES:}

sage: L = ZZ.localization((3,5))
sage: L(7/15).numerator()
7

\textbf{sage.rings.localization.normalize_additional_units}(base_ring, add_units, warning=True)

Function to normalize input data.

The given list will be replaced by a list of the involved prime factors (if possible).

\textbf{INPUT:}

- \texttt{base_ring} – an instance of \texttt{IntegralDomain}
- \texttt{add_units} – list of elements from base ring
- \texttt{warning} – (optional, default: True) to suppress a warning which is thrown if no normalization was possible

\textbf{OUTPUT:}

List of all prime factors of the elements of the given list.

\textbf{EXAMPLES:}
```python
sage: from sage.rings.localization import normalize_additional_units
sage: normalize_additional_units(ZZ, [3, -15, 45, 9, 2, 50])
[2, 3, 5]
sage: P.<x,y,z> = ZZ[]
sage: normalize_additional_units(P, [3*x, z*y**2, 2*z, 18*(x*y*z)**2, x*z, 6*x*z, 5])
[2, 3, 5, z, y, x]
sage: P.<x,y,z> = QQ[]
sage: normalize_additional_units(P, [3*x, z*y**2, 2*z, 18*(x*y*z)**2, x*z, 6*x*z, 5])
[z, y, x]
sage: R.<x, y> = ZZ[]
sage: Q.<a, b> = R.quo(x**2-5)
sage: p = b**2-5
sage: p == (b-a)*(b+a)
True
sage: normalize_additional_units(Q, [p])
doctest:...: UserWarning: Localization may not be represented uniquely
[b**2 - 5]
sage: normalize_additional_units(Q, [p], warning=False)
[b**2 - 5]
```
CHAPTER SEVEN

RING EXTENSIONS

7.1 Extension of rings

Sage offers the possibility to work with ring extensions L/K as actual parents and perform meaningful operations on them and their elements.

The simplest way to build an extension is to use the method `sage.categories.commutative_rings.CommutativeRings.ParentMethods.over()` on the top ring, that is L. For example, the following line constructs the extension of finite fields $\mathbb{F}_{5^2}/\mathbb{F}_{5^2}$:

```
 sage: GF(5^4).over(GF(5^2))
 Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base
```

By default, Sage reuses the canonical generator of the top ring (here $z_4 \in \mathbb{F}_{5^4}$), together with its name. However, the user can customize them by passing in appropriate arguments:

```
 sage: F = GF(5^2)
 sage: k = GF(5^4)
 sage: z4 = k.gen()
 sage: K.<a> = k.over(F, gen = 1-z4)
 sage: K
 Field in a with defining polynomial x^2 + z2*x + 4 over its base
```

The base of the extension is available via the method `base()` (or equivalently `base_ring()`):

```
 sage: K.base()
 Finite Field in z2 of size 5^2
```

It is also possible to build an extension on top of another extension, obtaining this way a tower of extensions:

```
 sage: L.<b> = GF(5^8).over(K)
 sage: L
 Field in b with defining polynomial x^2 + (4*z2 + 3*a)*x + 1 - a over its base
 sage: L.base()
 Field in a with defining polynomial x^2 + z2*x + 4 over its base
 sage: L.base().base()
 Finite Field in z2 of size 5^2
```

The method `bases()` gives access to the complete list of rings in a tower:

```
 sage: L.bases()
 [Field in b with defining polynomial x^2 + (4*z2 + 3*a)*x + 1 - a over its base,
  Field in a with defining polynomial x^2 + z2*x + 4 over its base,
  Finite Field in z2 of size 5^2]
```
Once we have constructed an extension (or a tower of extensions), we have interesting methods attached to it. As a basic example, one can compute a basis of the top ring over any base in the tower:

```sage
sage: L.basis_over(K)
[1, b]
sage: L.basis_over(F)
[1, a, b, a*b]
```

When the base is omitted, the default is the natural base of the extension:

```sage
sage: L.basis_over()
[1, b]
```

The method `sage.rings.ring_extension_element.RingExtensionWithBasis.vector()` computes the coordinates of an element according to the above basis:

```sage
sage: u = a + 2*b + 3*a*b
sage: u.vector()  # over K
(a, 2 + 3*a)
sage: u.vector(F)
(0, 1, 2, 3)
```

One can also compute traces and norms with respect to any base of the tower:

```sage
sage: u.trace()  # over K
(2*z2 + 1) + (2*z2 + 1)*a
sage: u.trace(F)
z2 + 1
sage: u.trace().trace()  # over K, then over F
z2 + 1
sage: u.norm()  # over K
(z2 + 1) + (4*z2 + 2)*a
sage: u.norm(F)
2*z2 + 2
```

And minimal polynomials:

```sage
sage: u.minpoly()
-x^2 + ((3*z2 + 4) + (3*z2 + 4)*a)*x + (z2 + 1) + (4*z2 + 2)*a
sage: u.minpoly(F)
x^4 + (2*z2 + 2)*x^3 + x^2 + (z2 + 1)*x + 2*z2 + 2
```

AUTHOR:
- Xavier Caruso (2019)

```python
class sage.rings.ring_extension.RingExtensionFactory
    Bases: sage.structure.factory.UniqueFactory

Factory for ring extensions.

create_key_and_extra_args(ring, defining_morphism=None, gens=None, names=None, constructors=None)
    Create a key and return it together with a list of constructors of the object.

    INPUT:
    - ring -- a commutative ring
```
defining_morphism

- a ring homomorphism or a commutative ring or None (default: None);
 the defining morphism of this extension or its base (if it coerces to ring)

gens

- a list of generators of this extension (over its base) or None (default: None);

names

- a list or a tuple of variable names or None (default: None)

constructors

- a list of constructors; each constructor is a pair (class, arguments) where class
 is the class implementing the extension and arguments is the dictionary of arguments to pass in to
 init function

create_object (version, key, **extra_args)

Return the object associated to a given key.

class sage.rings.ring_extension.RingExtensionFractionField

Bases: sage.rings.ring_extension.RingExtension_generic

A class for ring extensions of the form 'Frac(A)/A'.

Element

alias of sage.rings.ring_extension_element.RingExtensionFractionFieldElement

ring()

Return the ring whose fraction field is this extension.

EXAMPLES:

sage: A.<a> = ZZ.extension(x^2 - 2)
sage: OK = A.over()
sage: K = OK.fraction_field()
sage: K
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 2
→ over its base
sage: K.ring()
Order in Number Field in a with defining polynomial x^2 - 2 over its base
sage: K.ring() is OK
True

class sage.rings.ring_extension.RingExtensionWithBasis

Bases: sage.rings.ring_extension.RingExtension_generic

A class for finite free ring extensions equipped with a basis.

Element

alias of sage.rings.ring_extension_element.RingExtensionWithBasisElement

basis_over (base=None)

Return a basis of this extension over base.

INPUT:

- base – a commutative ring (which might be itself an extension)

EXAMPLES:

sage: F.<a> = GF(5^2).over() # over GF(5)
sage: K. = GF(5^4).over(F)
sage: L.<c> = GF(5^12).over(K)
sage: L.basis_over(K)
[1, c, c^2]
If `base` is omitted, it is set to its default which is the base of the extension:

```
sage: L.basis_over()
[1, c, c^2]
sage: K.basis_over()
[1, b]
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```
sage: L.degree_over(GF(5^6))
Traceback (most recent call last):
...  
ValueError: not (explicitly) defined over Finite Field in z6 of size 5^6
```

fraction_field(extend_base=False)

Return the fraction field of this extension.

INPUT:

- `extend_base` — a boolean (default: False);

If `extend_base` is False, the fraction field of the extension L/K is defined as $\text{Frac}(L)/L/K$, except is L is already a field in which case the fraction field of L/K is L/K itself.

If `extend_base` is True, the fraction field of the extension L/K is defined as $\text{Frac}(L)/\text{Frac}(K)$ (provided that the defining morphism extends to the fraction fields, i.e. is injective).

EXAMPLES:

```
sage: A.<a> = ZZ.extension(x^2 - 5)
sage: OK = A.over()  # over ZZ
sage: OK
Order in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K1 = OK.fraction_field()
sage: K1
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K1.bases()
[Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5 over its base,
 Order in Number Field in a with defining polynomial x^2 - 5 over its base,
 Integer Ring]
sage: K2 = OK.fraction_field(extend_base=True)
sage: K2
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K2.bases()
```

(continues on next page)
Note that there is no coercion map between K_1 and K_2:

```
sage: K1.has_coerce_map_from(K2)
False
sage: K2.has_coerce_map_from(K1)
False
```

We check that when the extension is a field, its fraction field does not change:

```
sage: K1.fraction_field() is K1
True
sage: K2.fraction_field() is K2
True
```

free_module *(base=None, map=True)*

Return a free module V over $base$ which is isomorphic to this ring

INPUT:

- `base` – a commutative ring (which might be itself an extension) or None (default: None)
- `map` – boolean (default True); whether to return isomorphisms between this ring and V

OUTPUT:

- A finite-rank free module V over $base$
- The isomorphism from V to this ring corresponding to the basis output by the method `basis_over()` (only included if `map` is True)
- The reverse isomorphism of the isomorphism above (only included if `map` is True)

EXAMPLES:

```
sage: F = GF(11)
sage: K.<a> = GF(11^2).over()
sage: L.<b> = GF(11^6).over(K)
```

Forgetting a part of the multiplicative structure, the field L can be viewed as a vector space of dimension 3 over K, equipped with a distinguished basis, namely $(1, b, b^2)$:

```
sage: V, i, j = L.free_module(K)
sage: V
Vector space of dimension 3 over Field in a with defining polynomial x^2 + 7*x + 2 over its base
sage: i
Generic map:
  From: Vector space of dimension 3 over Field in a with defining polynomial x^2 + 7*x + 2 over its base
  To: Field in b with defining polynomial x^3 + (7 + 2*a)*x^2 + (2 - a)*x - a over its base
sage: j
Generic map:
  From: Field in b with defining polynomial x^3 + (7 + 2*a)*x^2 + (2 - a)*x - a over its base
```

(continues on next page)
To: Vector space of dimension 3 over Field in a with defining polynomial $x^2 + 7*x + 2$ over its base

```python
sage: j(b)
(0, 1, 0)
sage: i((1, a, a+1))
1 + a*b + (1 + a)*b^2
```

Similarly, one can view L as a F-vector space of dimension 6:

```python
sage: V, i, j, = L.free_module(F)
sage: V
Vector space of dimension 6 over Finite Field of size 11
```

In this case, the isomorphisms between V and L are given by the basis $(1, a, b, ab, b^2, ab^2)$:

```python
sage: j(a*b) (0, 0, 0, 1, 0, 0)
sage: i((1,2,3,4,5,6)) (1 + 2*a) + (3 + 4*a)*b + (5 + 6*a)*b^2
```

When `base` is omitted, the default is the base of this extension:

```python
sage: L.free_module(map=False)
Vector space of dimension 3 over Field in a with defining polynomial $x^2 + 7*x + 2$ over its base
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```python
sage: L.degree(GF(11^3))
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z3 of size 11^3
```

```python
class sage.rings.ring_extension.RingExtensionWithGen
Bases: sage.rings.ring_extension.RingExtensionWithBasis

A class for finite free ring extensions generated by a single element

fraction_field(extend_base=False)

Return the fraction field of this extension.

INPUT:

- extend_base -- a boolean (default: False);

If `extend_base` is False, the fraction field of the extension $L/K$ is defined as $\text{Frac}(L)/L/K$, except is $L$ is already a field in which base the fraction field of $L/K$ is $L/K$ itself.

If `extend_base` is True, the fraction field of the extension $L/K$ is defined as $\text{Frac}(L)/\text{Frac}(K)$ (provided that the defining morphism extends to the fraction fields, i.e. is injective).

EXAMPLES:

```python
sage: A.<a> = ZZ.extension(x^2 - 5)
sage: OK = A.over() # over ZZ
sage: OK
Order in Number Field in a with defining polynomial $x^2 - 5$ over its base
sage: K1 = OK.fraction_field()
sage: K1
```
```
(continues on next page)
Fraction Field of Order in Number Field in a with defining polynomial $x^2 - 5$ over its base
sage: K1.bases()
[Fraction Field of Order in Number Field in a with defining polynomial $x^2 - 5$ over its base,
Order in Number Field in a with defining polynomial $x^2 - 5$ over its base,
Integer Ring]
sage: K2 = OK.fraction_field(extend_base=True)
sage: K2
Fraction Field of Order in Number Field in a with defining polynomial $x^2 - 5$ over its base
sage: K2.bases()
[Fraction Field of Order in Number Field in a with defining polynomial $x^2 - 5$ over its base,
Rational Field]

Note that there is no coercion map between K_1 and K_2:

sage: K1.has_coerce_map_from(K2)
False
sage: K2.has_coerce_map_from(K1)
False

We check that when the extension is a field, its fraction field does not change:

sage: K1.fraction_field() is K1
True
sage: K2.fraction_field() is K2
True

gens(base=None)

Return the generators of this extension over base.

INPUT:

- base – a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

sage: K.<a> = GF(5^2).over()
over GF(5)
sage: K.gens()
(a,)
sage: L. = GF(5^4).over(K)
sage: L.gens()
(b,)
sage: L.gens(GF(5))
(b, a)

modulus(var='x')

Return the defining polynomial of this extension, that is the minimal polynomial of the given generator of this extension.

INPUT:

- var – a variable name (default: x)

EXAMPLES:
sage: K.<u> = GF(7^10).over(GF(7^2))
sage: K
Field in u with defining polynomial x^5 + (6*z2 + 4)*x^4 + (3*z2 + 5)*x^3 +
 (2*z2 + 2)*x^2 + 4*x + 6*z2 over its base
sage: P = K.modulus(); P
x^5 + (6*z2 + 4)*x^4 + (3*z2 + 5)*x^3 + (2*z2 + 2)*x^2 + 4*x + 6*z2
sage: P(u)
0

We can use a different variable name:
sage: K.modulus('y')
y^5 + (6*z2 + 4)*y^4 + (3*z2 + 5)*y^3 + (2*z2 + 2)*y^2 + 4*y + 6*z2

class sage.rings.ring_extension.RingExtension_generic
 Bases: sage.rings.ring.CommutativeAlgebra
 A generic class for all ring extensions.

 Element
 alias of sage.rings.ring_extension_element.RingExtensionElement

 absolute_base()
 Return the absolute base of this extension.

 By definition, the absolute base of an iterated extension \(K_n/ \cdots / K_2/ K_1 \) is the ring \(K_1 \).

 EXAMPLES:

 sage: F = GF(5^2).over()
 # over GF(5)
sage: K = GF(5^4).over(F)
sage: L = GF(5^12).over(K)
sage: F.absolute_base()
 Finite Field of size 5
sage: K.absolute_base()
 Finite Field of size 5
sage: L.absolute_base()
 Finite Field of size 5

 See also:
 base(), bases(), is_defined_over()

 absolute_degree()
 Return the degree of this extension over its absolute base

 EXAMPLES:

 sage: A = GF(5^4).over(GF(5^2))
sage: B = GF(5^12).over(A)
sage: A.absolute_degree()
 2
sage: B.absolute_degree()
 6

 See also:
 degree(), relative_degree()
base ()

Return the base of this extension.

EXAMPLES:

```python
sage: F = GF(5^2)
sage: K = GF(5^4).over(F)
sage: K.base()
Finite Field in z2 of size 5^2
```

In case of iterated extensions, the base is itself an extension:

```python
sage: L = GF(5^8).over(K)
sage: L.base()
Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base
```

See also:

`bases()`, `absolute_base()`, `is_defined_over()`

bases ()

Return the list of successive bases of this extension (including itself).

EXAMPLES:

```python
sage: F = GF(5^2).over()  # over GF(5)
sage: K = GF(5^4).over(F)
sage: L = GF(5^12).over(K)

sage: F.bases()
[Field in z2 with defining polynomial x^2 + 4*x + 2 over its base,
  Finite Field of size 5]

sage: K.bases()
[Field in z4 with defining polynomial x^2 + (3 - z2)*x + z2 over its base,
  Field in z2 with defining polynomial x^2 + 4*x + 2 over its base,
  Finite Field of size 5]

sage: L.bases()
[Field in z12 with defining polynomial x^3 + (1 + (2 - z2)*z4)*x^2 + (2 - 2*z4)*x - z4 over its base,
  Field in z4 with defining polynomial x^2 + (3 - z2)*x + z2 over its base,
  Field in z2 with defining polynomial x^2 + 4*x + 2 over its base,
  Finite Field of size 5]
```

See also:

`base()`, `absolute_base()`, `is_defined_over()`

construction ()

Return the functorial construction of this extension, if defined.

EXAMPLES:

```python
sage: E = GF(5^3).over()
sage: E.construction() (LazyGBTst({5^2: 5}), ((x^2 + 2*x + 4).x, x))
```

defining_morphism (base=None)

Return the defining morphism of this extension over `base`.
INPUT:

- base – a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

```
sage: F = GF(5^2)
sage: K = GF(5^4).over(F)
sage: L = GF(5^12).over(K)

sage: K.defining_morphism()
Ring morphism:
    From: Finite Field in z2 of size 5^2
    To: Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base
    Defn: z2 |--> z2

sage: L.defining_morphism()
Ring morphism:
    From: Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base
    To: Field in z12 with defining polynomial x^3 + (1 + (4*z2 + 2)*z4)*x^2 +
        (2 + 2*z4)*x - z4 over its base
    Defn: z4 |--> z4
```

One can also pass in a base over which the extension is explicitly defined (see also `is_defined_over()`):

```
sage: L.defining_morphism(F)
Ring morphism:
    From: Finite Field in z2 of size 5^2
    To: Field in z12 with defining polynomial x^3 + (1 + (4*z2 + 2)*z4)*x^2 +
        (2 + 2*z4)*x - z4 over its base
    Defn: z2 |--> z2

sage: L.defining_morphism(GF(5))
Traceback (most recent call last):
... ValueError: not (explicitly) defined over Finite Field of size 5
```

degree (base)

Return the degree of this extension over base.

INPUT:

- base – a commutative ring (which might be itself an extension)

EXAMPLES:

```
sage: A = GF(5^4).over(GF(5^2))
sage: B = GF(5^12).over(A)

sage: A.degree(GF(5^2))
2
sage: B.degree(A)
3
sage: B.degree(GF(5^2))
6
```
Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```python
sage: A.degree(GF(5))
Traceback (most recent call last):
  ...
ValueError: not (explicitly) defined over Finite Field of size 5
```

See also:

`relative_degree()`, `absolute_degree()`

degree_over *(base=None)*

Return the degree of this extension over `base`.

INPUT:

- `base` – a commutative ring (which might be itself an extension) or `None` (default: `None`)

EXAMPLES:

```python
sage: F = GF(5^2)
sage: K = GF(5^4).over(F)
sage: L = GF(5^12).over(K)
sage: K.degree_over(F)
2
sage: L.degree_over(K)
3
sage: L.degree_over(F)
6
```

If `base` is omitted, the degree is computed over the base of the extension:

```python
sage: K.degree_over()  # base is omitted
2
sage: L.degree_over()  # base is omitted
3
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```python
sage: K.degree_over(GF(5))
Traceback (most recent call last):
  ...
ValueError: not (explicitly) defined over Finite Field of size 5
```

fraction_field(extend_base=False)

Return the fraction field of this extension.

INPUT:

- `extend_base` – a boolean (default: `False`);

If `extend_base` is `False`, the fraction field of the extension \(L/K \) is defined as \(\text{Frac}(L)/L/K \), except if \(L \) is already a field in which base the fraction field of \(L/K \) is \(L/K \) itself.

If `extend_base` is `True`, the fraction field of the extension \(L/K \) is defined as \(\text{Frac}(L)/\text{Frac}(K) \) (provided that the defining morphism extends to the fraction fields, i.e. is injective).

EXAMPLES:
sage: A.<a> = ZZ.extension(x^2 - 5)
sage: OK = A.over() # over ZZ
sage: OK
Order in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K1 = OK.fraction_field()
sage: K1
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K1.bases()
[Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5 over its base,
 Order in Number Field in a with defining polynomial x^2 - 5 over its base,
 Integer Ring]
sage: K2 = OK.fraction_field(extend_base=True)
sage: K2
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K2.bases()
[Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5 over its base,
 Rational Field]

Note that there is no coercion between K_1 and K_2:

sage: K1.has_coerce_map_from(K2)
False
sage: K2.has_coerce_map_from(K1)
False

We check that when the extension is a field, its fraction field does not change:

sage: K1.fraction_field() is K1
True
sage: K2.fraction_field() is K2
True

from_base_ring(r)

Return the canonical embedding of r into this extension.

INPUT:

- r – an element of the base of the ring of this extension

EXAMPLES:

sage: k = GF(5)
sage: K.<u> = GF(5^2).over(k)
sage: L.<v> = GF(5^4).over(K)
sage: x = L.from_base_ring(k(2)); x
2
sage: x.parent()
Field in v with defining polynomial x^2 + (3 - u)*x + u over its base
sage: x = L.from_base_ring(u); x
u

(continues on next page)
gen()

Return the first generator of this extension.

EXAMPLES:

```python
sage: K = GF(5^2).over()  # over GF(5)
sage: x = K.gen(); x
z2
```

Observe that the generator lives in the extension:

```python
sage: x.parent()
Field in z2 with defining polynomial x^2 + 4*x + 2 over its base
sage: x.parent() is K
True
```

gens(base=None)

Return the generators of this extension over base.

INPUT:

- base – a commutative ring (which might be itself an extension) or None (default: None); if omitted, use the base of this extension

EXAMPLES:

```python
sage: K.<a> = GF(5^2).over()  # over GF(5)
sage: K.gens()
(a,)
sage: L.<b> = GF(5^4).over(K)
sage: L.gens()
(b,)
sage: L.gens(GF(5))
(b, a)
sage: S.<x> = QQ[]
sage: T.<y> = S[]
sage: T.over(S).gens()
(y,)
sage: T.over(QQ).gens()
y, x
```

hom(im_gens, codomain=None, base_map=None, category=None, check=True)

Return the unique homomorphism from this extension to codomain that sends self.gens() to the entries of im_gens and induces the map base_map on the base ring.

INPUT:

- im_gens – the images of the generators of this extension
- codomain – the codomain of the homomorphism; if omitted, it is set to the smallest parent containing all the entries of im_gens
- base_map – a map from one of the bases of this extension into something that coerce into the codomain; if omitted, coercion maps are used
- category – the category of the resulting morphism
• **check** – a boolean (default: True); whether to verify that the images of generators extend to define a map (using only canonical coercions)

EXAMPLES:

```
sage: K.<a> = GF(5^2).over()  # over GF(5)
sage: L.<b> = GF(5^6).over(K)
```

We define (by hand) the relative Frobenius endomorphism of the extension \(L/K\):

```
sage: L.hom([b^25])
Ring endomorphism of Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
  Defn: b |--> 2 + 2*a*b + (2 - a)*b^2
```

Defining the absolute Frobenius of \(L\) is a bit more complicated because it is not a homomorphism of \(K\)-algebras. For this reason, the construction `L.hom([b^5])` fails:

```
sage: L.hom([b^5])
Traceback (most recent call last):
...
ValueError: images do not define a valid homomorphism
```

What we need is to specify a base map:

```
sage: FrobK = K.hom([a^5])
sage: FrobL = L.hom([b^5], base_map=FrobK)
sage: FrobL
Ring endomorphism of Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
  Defn: b |--> (-1 + a) + (1 + 2*a)*b + a*b^2
  with map on base ring:
  a |--> 1 - a
```

As a shortcut, we may use the following construction:

```
sage: phi = L.hom([b^5, a^5])
sage: phi
Ring endomorphism of Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
  Defn: b |--> (-1 + a) + (1 + 2*a)*b + a*b^2
  with map on base ring:
  a |--> 1 - a
```

```
sage: phi == FrobL
True
```

is_defined_over *(base)*

Return whether or not `base` is one of the bases of this extension.

INPUT:

• **base** – a commutative ring, which might be itself an extension

EXAMPLES:

```
sage: A = GF(5^4).over(GF(5^2))
sage: B = GF(5^12).over(A)
sage: A.is_defined_over(GF(5^2))
(continues on next page)
```
True

```sage```
A.is_defined_over(GF(5))
False

```sage```
B.is_defined_over(A)
True

```sage```
B.is_defined_over(GF(5^4))
True

```sage```
B.is_defined_over(GF(5^2))
True

```sage```
B.is_defined_over(GF(5))
False

Note that an extension is defined over itself:

```sage```
A.is_defined_over(A)
True

```sage```
A.is_defined_over(GF(5^4))
True

See also:

`!meth:base, bases(), absolute_base()`

```sage```

```is_field```
(proof=True)

Return whether or not this extension is a field.

INPUT:

- proof – a boolean (default: False)

EXAMPLES:

```sage```
K = GF(5^5).over() # over GF(5)

```sage```
K.is_field()
True

```sage```
S.<x> = QQ[]

```sage```
A = S.over(QQ)

```sage```
A.is_field()
False

```sage```
B = A.fraction_field()

```sage```
B.is_field()
True

```is_finite_over```
(base=None)

Return whether or not this extension is finite over base (as a module).

INPUT:

- base – a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

```sage```
K = GF(5^5).over() # over GF(5)

```sage```
L = GF(5^4).over(K)

```sage```
L.is_finite_over(K)
sage: L.is_finite_over(GF(5))
True

If base is omitted, it is set to its default which is the base of the extension:

sage: L.is_finite_over()
True

is_free_over(base=None)
Return True if this extension is free (as a module) over base.

INPUT:

• base – a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

sage: K = GF(5^2).over() # over GF(5)
sage: L = GF(5^4).over(K)
sage: L.is_free_over(K)
True
sage: L.is_free_over(GF(5))
True

If base is omitted, it is set to its default which is the base of the extension:

sage: L.is_free_over()
True

ngens(base=None)
Return the number of generators of this extension over base.

INPUT:

• base – a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

sage: K = GF(5^2).over() # over GF(5)
sage: K.gens()
(z2,)
sage: K.ngens()
1
sage: L = GF(5^4).over(K)
sage: L.gens(GF(5))
(z4, z2)
sage: L.ngens(GF(5))
2

print_options(**options)
Update the printing options of this extension.

INPUT:

• over – an integer or Infinity (default: 0); the maximum number of bases included in the printing of this extension
• base -- a base over which this extension is finite free; elements in this extension will be printed as a linear combinaison of a basis of this extension over the given base

EXAMPLES:

```
sage: A.<a> = GF(5^2).over()  # over GF(5)
sage: B.<b> = GF(5^4).over(A)
sage: C.<c> = GF(5^12).over(B)
sage: D.<d> = GF(5^24).over(C)
```

Observe what happens when we modify the option over:

```
sage: D
Field in d with defining polynomial x^2 + ((1 - a) + ((1 + 2*a) - b)*c + ((2+\rightarrow a) + (1 - a)*b)*c^2)*x + c over its base
sage: D.print_options(over=2)
```

```
sage: D
Field in d with defining polynomial x^2 + ((1 - a) + ((1 + 2*a) - b)*c + ((2+\rightarrow a) + (1 - a)*b)*c^2)*x + c over
Field in c with defining polynomial x^3 + (1 + (2 - a)*b)*x^2 + (2 + 2*b)*x \rightarrow b over
Field in b with defining polynomial x^2 + (3-a)*x + a over its base
sage: D.print_options(over=Infinity)
```

```
sage: D
Field in d with defining polynomial x^2 + ((1 - a) + ((1 + 2*a) - b)*c + ((2+\rightarrow a) + (1 - a)*b)*c^2)*x + c over
Field in c with defining polynomial x^3 + (1 + (2 - a)*b)*x^2 + (2 + 2*b)*x \rightarrow b over
Field in b with defining polynomial x^2 + (3-a)*x + a over
Field in a with defining polynomial x^2 + 4*x + 2 over
Finite Field of size 5
```

Now the option base:

```
sage: d^2
-c + ((-1 + a) + ((-1 + 3*a) + b)*c + ((3 - a) + (-1 + a)*b)*c^2)*d
sage: D.basis_over(B)
[1, c, c^2, d, c*d, c^2*d]
sage: D.print_options(base=B)
sage: d^2
-c + ((-1 + a)*d + ((-1 + 3*a) + b)*c*d + ((3 - a) + (-1 + a)*b)*c^2*d
sage: D.basis_over(A)
[1, b, c, b*c, c^2, b*c^2, d, b*d, c*d, b*c*d, c^2*d, b*c^2*d]
sage: D.print_options(base=A)
sage: d^2
-c + ((-1 + a)*d + ((-1 + 3*a)*c*d + b*c*d + (3-a)*c^2*d + (-1 + a)*b*c^2*d
```

random_element ()

Return a random element in this extension.

EXAMPLES:

```
sage: K = GF(5^2).over()  # over GF(5)
sage: x = K.random_element(); x  # random
```

(continues on next page)
relative_degree()

Return the degree of this extension over its base

EXAMPLES:

```
sage: A = GF(5^4).over(GF(5^2))
sage: A.relative_degree()
2
```

See also:

degree(), absolute_degree()

sage.rings.ring_extension.common_base(K, L, degree)

Return a common base on which K and L are defined.

INPUT:

- K – a commutative ring
- L – a commutative ring
- degree – a boolean; if true, return the degree of K and L over their common base

EXAMPLES:

```
sage: from sage.rings.ring_extension import common_base

sage: common_base(GF(5^3), GF(5^7), False)
Finite Field of size 5
sage: common_base(GF(5^3), GF(5^7), True)
(Finite Field of size 5, 3, 7)
sage: common_base(GF(5^3), GF(7^5), False)
Traceback (most recent call last):
... NotImplementedError: unable to find a common base
```

When degree is set to True, we only look up for bases on which both K and L are finite:

```
sage: S.<x> = QQ[]
sage: common_base(S, QQ, False)
Rational Field

sage: S.<x> = QQ[]
Traceback (most recent call last):
... NotImplementedError: unable to find a common base
```

sage.rings.ring_extension.generators(ring, base)

Return the generators of ring over base.

INPUT:

- ring – a commutative ring
• base – a commutative ring

EXAMPLES:

```
sage: from sage.rings.ring_extension import generators
sage: S.<x> = QQ[]
sage: T.<y> = S[]
sage: generators(T, S)
(y,)
sage: generators(T, QQ)
(y, x)
```

`sage.rings.ring_extension.tower_bases(ring, degree)`

Return the list of bases of `ring` (including itself); if degree is True, restrict to finite extensions and return in addition the degree of `ring` over each base.

INPUT:

• ring – a commutative ring
• degree – a boolean

EXAMPLES:

```
sage: from sage.rings.ring_extension import tower_bases
sage: S.<x> = QQ[]
sage: T.<y> = S[]
sage: tower_bases(T, False)
([Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over \( \mathbb{Q} \),
  Univariate Polynomial Ring in x over \( \mathbb{Q} \),
  \( \mathbb{Q} \)],
 [])
sage: tower_bases(T, True)
([Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over \( \mathbb{Q} \)],
 [1])
sage: K.<a> = Qq(5^2)
sage: L.<w> = K.extension(x^3 - 5)
sage: tower_bases(L, True)
([5-adic Eisenstein Extension Field in w defined by x^3 - 5 over its base field,
  5-adic Unramified Extension Field in a defined by x^2 + 4*x + 2,
  5-adic Field with capped relative precision 20],
 [1, 3, 6])
```

`sage.rings.ring_extension.variable_names(ring, base)`

Return the variable names of the generators of `ring` over `base`.

INPUT:

• ring – a commutative ring
• base – a commutative ring

EXAMPLES:

```
sage: from sage.rings.ring_extension import variable_names
sage: S.<x> = QQ[]
sage: T.<y> = S[]
```

(continues on next page)
7.2 Elements lying in extension of rings

AUTHOR:

• Xavier Caruso (2019)

class sage.rings.ring_extension_element.RingExtensionElement
 Bases: sage.structure.element.CommutativeAlgebraElement

 Generic class for elements lying in ring extensions.

 additive_order()
 Return the additive order of this element.

 EXAMPLES:

 sage: K.<a> = GF(5^4).over(GF(5^2))
sage: a.additive_order()
 5

 is_nilpotent()
 Return whether if this element is nilpotent in this ring.

 EXAMPLES:

 sage: A.<x> = PolynomialRing(QQ)
sage: E = A.over(QQ)
sage: E(0).is_nilpotent()
 True
 sage: E(x).is_nilpotent()
 False

 is_prime()
 Return whether this element is a prime element in this ring.

 EXAMPLES:

 sage: A.<x> = PolynomialRing(QQ)
sage: E = A.over(QQ)
sage: E(x^2+1).is_prime()
 True
 sage: E(x^2-1).is_prime()
 False

 is_square(root=False)
 Return whether this element is a square in this ring.

 INPUT:

 • root -- a boolean (default: False); if True, return also a square root

 EXAMPLES:
```python
sage: K.<a> = GF(5^3).over()
sage: a.is_square()
False
sage: a.is_square(root=True)
(False, None)
sage: b = a + 1
sage: b.is_square()
True
sage: b.is_square(root=True)
(True, 2 + 3*a + a^2)
```

is_unit()
Return whether if this element is a unit in this ring.

EXAMPLES:

```python
sage: A.<x> = PolynomialRing(QQ)
sage: E = A.over(QQ)
sage: E(4).is_unit()
True
sage: E(x).is_unit()
False
```

multiplicative_order()
Return the multiplicative order of this element.

EXAMPLES:

```python
sage: K.<a> = GF(5^4).over(GF(5^2))
sage: a.multiplicative_order()
624
```

sqrt (extend=True, all=False, name=None)
Return a square root or all square roots of this element.

INPUT:

- `extend` – a boolean (default: True); if True, return a square root in an extension ring, if necessary. Otherwise, raise a ValueError if the root is not in the ring.
- `all` – a boolean (default: False); if True, return all square roots of this element, instead of just one.
- `name` – Required when extend=True and self is not a square. This will be the name of the generator extension.

Note: The option `extend = True` is often not implemented.

EXAMPLES:

```python
sage: K.<a> = GF(5^3).over()
sage: b = a + 1
sage: b.sqrt()
2 + 3*a + a^2
sage: b.sqrt(all=True)
[2 + 3*a + a^2, 3 + 2*a - a^2]
```

7.2. Elements lying in extension of rings
class sage.rings.ring_extension_element.RingExtensionFractionFieldElement
Bases: sage.rings.ring_extension_element.RingExtensionElement

A class for elements lying in fraction fields of ring extensions.

denominator()
Return the denominator of this element.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: A.<a> = ZZ.extension(x^2 - 2)
sage: OK = A.over()  # over ZZ
sage: K = OK.fraction_field()
sage: K
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 2
→over its base
sage: x = K(1/a); x
a/2
sage: denom = x.denominator(); denom
2
```

The denominator is an element of the ring which was used to construct the fraction field:

```python
sage: denom.parent()
Order in Number Field in a with defining polynomial x^2 - 2 over its base
sage: denom.parent() is OK
True
```

numerator()
Return the numerator of this element.

EXAMPLES:

```python
sage: A.<a> = ZZ.extension(x^2 - 2)
sage: OK = A.over()  # over ZZ
sage: K = OK.fraction_field()
sage: K
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 2
→over its base
sage: x = K(1/a); x
a/2
sage: num = x.numerator(); num
a
```

The numerator is an element of the ring which was used to construct the fraction field:

```python
sage: num.parent()
Order in Number Field in a with defining polynomial x^2 - 2 over its base
sage: num.parent() is OK
True
```

class sage.rings.ring_extension_element.RingExtensionWithBasisElement
Bases: sage.rings.ring_extension_element.RingExtensionElement

A class for elements lying in finite free extensions.

ccharpoly(base=None, var='x')
Return the characteristic polynomial of this element over base.
INPUT:

• base – a commutative ring (which might be itself an extension) or None

EXAMPLES:

\begin{verbatim}
sage: F = GF(5)
sage: K.<a> = GF(5^3).over(F)
sage: L. = GF(5^6).over(K)
sage: u = a/(1+b)

sage: chi = u.charpoly(K); chi
x^2 + (1 + 2*a + 3*a^2)*x + 3 + 2*a^2

We check that the charpoly has coefficients in the base ring:

sage: chi.base_ring()
Field in a with defining polynomial x^3 + 3*x + 3 over its base
sage: chi.base_ring() is K
True

and that it annihilates u:

sage: chi(u)
0

Similarly, one can compute the characteristic polynomial over F:

sage: u.charpoly(F)
x^6 + x^4 + 2*x^3 + 3*x + 4

A different variable name can be specified:

sage: u.charpoly(F, var='t')
t^6 + t^4 + 2*t^3 + 3*t + 4

If base is omitted, it is set to its default which is the base of the extension:

sage: u.charpoly()
x^2 + (1 + 2*a + 3*a^2)*x + 3 + 2*a^2

Note that base must be an explicit base over which the extension has been defined (as listed by the method bases()):

sage: u.charpoly(GF(5^2))
Traceback (most recent call last):
 ...
ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2
\end{verbatim}
sage: K.<a> = GF(5^3).over() # over GF(5)
sage: L. = GF(5^6).over(K)
sage: u = a/(1+b)

sage: u
(2 + a + 3*a^2) + (3 + 3*a + a^2)*b

sage: b*u
(3 + 2*a^2) + (2 + 2*a - a^2)*b

sage: u.matrix(K)
[2 + a + 3*a^2 3 + 3*a + a^2]
[3 + 2*a^2 2 + 2*a - a^2]

sage: u.matrix(GF(5))
[2 1 3 3 3 1]
[1 3 1 2 0 3]
[2 3 3 1 3 0]
[3 0 2 2 2 4]
[4 2 0 3 0 2]
[0 4 2 4 2 0]

If `base` is omitted, it is set to its default which is the base of the extension:

sage: u.matrix()
[2 + a + 3*a^2 3 + 3*a + a^2]
[3 + 2*a^2 2 + 2*a - a^2]

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

sage: u.matrix(GF(5^2))
Traceback (most recent call last):
 ... ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2

`minpoly(base=None, var='x')`

Return the minimal polynomial of this element over `base`.

INPUT:

- `base` – a commutative ring (which might be itself an extension) or None

EXAMPLES:

sage: F = GF(5)
sage: K.<a> = GF(5^3).over(F)
sage: L. = GF(5^6).over(K)
sage: u = 1 / (a+b)

sage: chi = u.minpoly(K); chi
x^2 + (2*a + a^2)*x - 1 + a

We check that the minimal polynomial has coefficients in the base ring:

sage: chi.base_ring()
Field in a with defining polynomial x^3 + 3*x + 3 over its base
sage: chi.base_ring() is K
True

and that it annihilates u:

sage: chi.base_ring()
Similarly, one can compute the minimal polynomial over F:

```
sage: u.minpoly(F)
x^6 + 4*x^5 + x^4 + 2*x^2 + 3
```

A different variable name can be specified:

```
sage: u.minpoly(F, var='t')
t^6 + 4*t^5 + t^4 + 2*t^2 + 3
```

If `base` is omitted, it is set to its default which is the base of the extension:

```
sage: u.minpoly()
x^2 + (2*a + a^2)*x - 1 + a
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```
sage: u.minpoly(GF(5^2))
Traceback (most recent call last):
  ... ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2
```

`norm(base=None)`

Return the norm of this element over `base`.

INPUT:

- `base` – a commutative ring (which might be itself an extension) or `None`

EXAMPLES:

```
sage: F = GF(5)
sage: K.<a> = GF(5^3).over(F)
sage: L.<b> = GF(5^6).over(K)
sage: u = a/(1+b)
sage: nr = u.norm(K); nr
3 + 2*a^2
```

We check that the norm lives in the base ring:

```
sage: nr.parent()
Field in a with defining polynomial x^3 + 3*x + 3 over its base
```

```
sage: nr.parent() is K
True
```

Similarly, one can compute the norm over F:

```
sage: u.norm(F)
4
```

We check the transitivity of the norm:

7.2. Elements lying in extension of rings
If `base` is omitted, it is set to its default which is the base of the extension:

```
sage: u.norm()
3 + 2*a^2
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```
sage: u.norm(GF(5^2))
Traceback (most recent call last):
  ... ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2
```

polynomial *(base=None, var='x')*

Return a polynomial (in one or more variables) over `base` whose evaluation at the generators of the parent equals this element.

INPUT:

- `base` – a commutative ring (which might be itself an extension) or `None`

EXAMPLES:

```
sage: F.<a> = GF(5^2).over()  # over GF(5)
sage: K.<b> = GF(5^4).over(F)
sage: L.<c> = GF(5^12).over(K)
sage: u = 1/(a + b + c); u
(2 + (-1 - a)*b) + ((2 + 3*a) + (1 - a)*b)*c + ((-1 - a) - a*b)*c^2
sage: P = u.polynomial(K); P
((-1 - a) - a*b)*x^2 + ((2 + 3*a) + (1 - a)*b)*x + 2 + (-1 - a)*b
sage: P.base_ring() is K
True
sage: P(c) == u
True
```

When the base is `F`, we obtain a bivariate polynomial:

```
sage: P = u.polynomial(F); P
(-a)*x0^2*x1 + (-1 - a)*x0^2 + (1 - a)*x0*x1 + (2 + 3*a)*x0 + (-1 - a)*x1 + 2
```

We check that its value at the generators is the element we started with:

```
sage: L.gens(F)
(c, b)
sage: P(c, b) == u
True
```

Similarly, when the base is `GF(5)`, we get a trivariate polynomial:

```
sage: P = u.polynomial(GF(5)); P
-a*x0^2*x1 + (-1 - a)*x0^2 + (1 - a)*x0*x1 + (2 + 3*a)*x0 + (-1 - a)*x1 + 2
```

Different variable names can be specified:
If `base` is omitted, it is set to its default which is the base of the extension:

```python
sage: u.polynomial(GF(5^3))
Traceback (most recent call last):
  ...:
ValueError: not (explicitly) defined over Finite Field in z3 of size 5^3
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```python
sage: u.polynomial(GF(5^3))
Traceback (most recent call last):
  ...
ValueError: not (explicitly) defined over Finite Field in z3 of size 5^3
```

`trace(base=None)`
Return the trace of this element over `base`.

INPUT:

- `base` – a commutative ring (which might be itself an extension) or `None`

EXAMPLES:

```python
sage: F = GF(5)
sage: K.<a> = GF(5^3).over(F)
sage: L.<b> = GF(5^6).over(K)
sage: u = a/(1+b)
sage: tr = u.trace(K); tr
-1 + 3*a + 2*a^2
```

We check that the trace lives in the base ring:

```python
sage: tr.parent()
Field in a with defining polynomial x^3 + 3*x + 3 over its base
sage: tr.parent() is K
True
```

Similarly, one can compute the trace over `F`:

```python
sage: u.trace(F)
0
```

We check the transitivity of the trace:

```python
sage: u.trace(F) == tr.trace(F)
True
```

If `base` is omitted, it is set to its default which is the base of the extension:

```python
sage: u.trace()
-1 + 3*a + 2*a^2
```
Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```sage
sage: u.trace(GF(5^2))
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2
```

`vector (base=None)`

Return the vector of coordinates of this element over `base` (in the basis output by the method `basis_over()`).

INPUT:

- `base` – a commutative ring (which might be itself an extension) or `None`

EXAMPLES:

```sage
sage: F = GF(5)
sage: K.<a> = GF(5^2).over()  # over F
sage: L.<b> = GF(5^6).over(K)
sage: x = (a+b)^4; x
(-1 + a) + (3 + a)*b + (1 - a)*b^2
sage: x.vector(K)  # basis is (1, b, b^2)
(-1 + a, 3 + a, 1 - a)
sage: x.vector(F)  # basis is (1, a, b, a*b, b^2, a*b^2)
(4, 1, 3, 1, 1, 4)
```

If `base` is omitted, it is set to its default which is the base of the extension:

```sage
sage: x.vector()
(-1 + a, 3 + a, 1 - a)
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```sage
sage: x.vector(GF(5^3))
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z3 of size 5^3
```

7.3 Morphisms between extension of rings

AUTHOR:

- Xavier Caruso (2019)

class `sage.rings.ring_extension_morphism.MapFreeModuleToRelativeRing`

Base class of the module isomorphism between a ring extension and a free module over one of its bases.

`is_injective()`

Return whether this morphism is injective.

EXAMPLES:
\begin{verbatim}
sage: K = GF(11^6).over(GF(11^3))
sage: V, i, j = K.free_module()
sage: i.is_injective()
True

is_surjective()
Return whether this morphism is surjective.

EXAMPLES:

sage: K = GF(11^6).over(GF(11^3))
sage: V, i, j = K.free_module()
sage: i.is_surjective()
True

is_injective()
Return whether this morphism is injective.

EXAMPLES:

sage: K = GF(11^6).over(GF(11^3))
sage: V, i, j = K.free_module()
sage: j.is_injective()
True

is_surjective()
Return whether this morphism is injective.

EXAMPLES:

sage: K = GF(11^6).over(GF(11^3))
sage: V, i, j = K.free_module()
sage: j.is_surjective()
True

class sage.rings.ring_extension_morphism.MapRelativeRingToFreeModule
Bases: sage.categories.map.Map

Base class of the module isomorphism between a ring extension and a free module over one of its bases.

is_injective()
Return whether this morphism is injective.

EXAMPLES:

sage: K = GF(11^6).over(GF(11^3))
sage: V, i, j = K.free_module()
sage: j.is_injective()
True

is_surjective()
Return whether this morphism is surjective.

EXAMPLES:

sage: K = GF(11^6).over(GF(11^3))
sage: V, i, j = K.free_module()
sage: j.is_surjective()
True

class sage.rings.ring_extension_morphism.RingExtensionBackendIsomorphism
Bases: sage.rings.ring_extension_morphism.RingExtensionHomomorphism

A class for implementating isomorphisms taking an element of the backend to its ring extension.

class sage.rings.ring_extension_morphism.RingExtensionBackendReverseIsomorphism
Bases: sage.rings.ring_extension_morphism.RingExtensionHomomorphism

A class for implementating isomorphisms from a ring extension to its backend.

class sage.rings.ring_extension_morphism.RingExtensionHomomorphism
Bases: sage.rings.morphism.RingMap

A class for ring homomorphisms between extensions.

base_map()
Return the base map of this morphism or just None if the base map is a coercion map.

EXAMPLES:
\end{verbatim}

7.3. Morphisms between extension of rings
We define the absolute Frobenius of L:

```python
sage: FrobL = L.hom([b^5, a^5])
sage: FrobL
Ring endomorphism of Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
  Defn: b |--> (-1 + a) + (1 + 2*a)*b + a*b^2
  with map on base ring:
  a |--> 1 - a
```

The square of Frob_L acts trivially on K; in other words, it has a trivial base map:

```python
sage: phi = FrobL^2
sage: phi
Ring endomorphism of Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
  Defn: b |--> 2 + 2*a*b + (2 - a)*b^2
sage: phi.base_map()
is_identity()
```

Return whether this morphism is the identity.

EXAMPLES:

```python
sage: K.<a> = GF(5^2).over()
# over GF(5)
sage: FrobK = K.hom([a^5])
sage: FrobK.is_identity()
False
sage: (FrobK^2).is_identity()
True
```

Coercion maps are not considered as identity morphisms:

```python
sage: L.<b> = GF(5^6).over(K)
sage: iota = L.defining_morphism()
sage: iota
Ring morphism:
  From: Field in a with defining polynomial x^2 + 4*x + 2 over its base
  To:   Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
  Defn: a |--> a
sage: iota.is_identity()
False
```

Return whether this morphism is injective.

EXAMPLES:

```python
```
sage: K = GF(5^10).over(GF(5^5))
sage: iota = K.defining_morphism()
sage: iota
Ring morphism:
 From: Finite Field in z5 of size 5^5
 To: Field in z10 with defining polynomial x^2 + (2*z5^3 + 2*z5^2 + 4*z5 + 4)*x + z5 over its base
 Defn: z5 |--> z5
sage: iota.is_injective()
True

sage: K = GF(7).over(ZZ)
sage: iota = K.defining_morphism()
sage: iota
Ring morphism:
 From: Integer Ring
 To: Finite Field of size 7 over its base
 Defn: 1 |--> 1
sage: iota.is_injective()
False

is_surjective()
Return whether this morphism is surjective.

EXAMPLES:

sage: K = GF(5^10).over(GF(5^5))
sage: iota = K.defining_morphism()
sage: iota
Ring morphism:
 From: Finite Field in z5 of size 5^5
 To: Field in z10 with defining polynomial x^2 + (2*z5^3 + 2*z5^2 + 4*z5 + 4)*x + z5 over its base
 Defn: z5 |--> z5
sage: iota.is_surjective()
False

sage: K = GF(7).over(ZZ)
sage: iota = K.defining_morphism()
sage: iota
Ring morphism:
 From: Integer Ring
 To: Finite Field of size 7 over its base
 Defn: 1 |--> 1
sage: iota.is_surjective()
True
8.1 Big O for various types (power series, p-adics, etc.)

See also:
- asymptotic expansions
- p-adic numbers
- power series
- polynomials

\texttt{sage.rings.big_oh.O(*x, **kwds)}

Big O constructor for various types.

EXAMPLES:

This is useful for writing power series elements:

\begin{Verbatim}
\texttt{sage: R.<t> = ZZ[['t']]}
\texttt{sage: (1+t)^10 + O(t^5)}
1 + 10*t + 45*t^2 + 120*t^3 + 210*t^4 + O(t^5)
\end{Verbatim}

A power series ring is created implicitly if a polynomial element is passed:

\begin{Verbatim}
\texttt{sage: R.<x> = QQ['x']}
\texttt{sage: O(x^100)}
\texttt{O(x^100)}
\texttt{sage: 1/(1+x+O(x^5))}
1 - x + x^2 - x^3 + x^4 + O(x^5)
\texttt{sage: R.<u,v> = QQ[[u,v]]}
\texttt{sage: 1 + u + v^2 + O(u, v)^5}
1 + u + v^2 + O(u, v)^5
\end{Verbatim}

This is also useful to create p-adic numbers:

\begin{Verbatim}
\texttt{sage: O(7^6)}
\texttt{O(7^6)}
\texttt{sage: 1/3 + O(7^6)}
5 + 4*7 + 4*7^2 + 4*7^3 + 4*7^4 + 4*7^5 + O(7^6)
\end{Verbatim}

It behaves well with respect to adding negative powers of p:

There are problems if you add a rational with very negative valuation to an O-Term:

```
sage: 11^-12 + O(11^15)
11^-12 + O(11^8)
```

The reason that this fails is that the constructor doesn’t know the right precision cap to use. If you cast explicitly or use other means of element creation, you can get around this issue:

```
sage: K = QQp(11, 30)
sage: K(11^-12) + O(11^15)
11^-12 + O(11^15)
sage: K(11^-12, absprec = 15)
11^-12 + O(11^15)
sage: K(11^-12, 15)
11^-12 + O(11^15)
```

We can also work with asymptotic expansions:

```
sage: A.<n> = AsymptoticRing(growth_group='QQ^n * n^QQ * log(n)^QQ', coefficient_ring=QQ); A
Asymptotic Ring <QQ^n * n^QQ * log(n)^QQ * Signs^n> over Rational Field
sage: O(n)
O(n)
```

Application with Puiseux series:

```
sage: P.<y> = PuiseuxSeriesRing(ZZ)
sage: y^(1/5) + O(y^(1/3))
y^(1/5) + O(y^(1/3))
sage: y^(1/3) + O(y^(1/5))
O(y^(1/5))
```

8.2 Signed and Unsigned Infinities

The unsigned infinity “ring” is the set of two elements

1. infinity
2. A number less than infinity

The rules for arithmetic are that the unsigned infinity ring does not canonically coerce to any other ring, and all other rings canonically coerce to the unsigned infinity ring, sending all elements to the single element “a number less than infinity” of the unsigned infinity ring. Arithmetic and comparisons then take place in the unsigned infinity ring, where all arithmetic operations that are well-defined are defined.

The infinity “ring” is the set of five elements

1. plus infinity
2. a positive finite element
The infinity ring coerces to the unsigned infinity ring, sending the infinite elements to infinity and the non-infinite elements to “a number less than infinity.” Any ordered ring coerces to the infinity ring in the obvious way.

Note: The shorthand \texttt{oo} is predefined in Sage to be the same as \texttt{+Infinity} in the infinity ring. It is considered equal to, but not the same as \texttt{Infinity} in the \texttt{UnsignedInfinityRing}.

EXAMPLES:

We fetch the unsigned infinity ring and create some elements:

```python
sage: P = UnsignedInfinityRing; P
The Unsigned Infinity Ring
sage: P(5)
A number less than infinity
sage: P.ngens()
1
sage: unsigned_oo = P.0; unsigned_oo
Infinity
```

We compare finite numbers with infinity:

```python
sage: 5 < unsigned_oo
True
sage: 5 > unsigned_oo
False
sage: unsigned_oo < 5
False
sage: unsigned_oo > 5
True
```

Demonstrating the shorthand \texttt{oo} versus \texttt{Infinity}:

```python
sage: oo +Infinity
sage: oo is InfinityRing.0
True
sage: oo is UnsignedInfinityRing.0
False
sage: oo == UnsignedInfinityRing.0
True
```

We do arithmetic:

```python
sage: unsigned_oo + 5
Infinity
```

We make \texttt{1/unsigned_oo} return the integer 0 so that arithmetic of the following type works:

```python
sage: (1/unsigned_oo) + 2
2
sage: 32/5 - (2.439/unsigned_oo)
32/5
```
Note that many operations are not defined, since the result is not well-defined:

```
sage: unsigned_oo/0
Traceback (most recent call last):
...
ValueError: quotient of number < oo by number < oo not defined
```

What happened above is that 0 is canonically coerced to “A number less than infinity” in the unsigned infinity ring. Next, Sage tries to divide by multiplying with its inverse. Finally, this inverse is not well-defined.

```
sage: 0/unsigned_oo
0
sage: unsigned_oo * 0
Traceback (most recent call last):
...
ValueError: unsigned oo times smaller number not defined
sage: unsigned_oo/unsigned_oo
Traceback (most recent call last):
...
ValueError: unsigned oo times smaller number not defined
```

In the infinity ring, we can negate infinity, multiply positive numbers by infinity, etc.

```
sage: P = InfinityRing; P
The Infinity Ring
sage: P(5)
A positive finite number
```

The symbol oo is predefined as a shorthand for +Infinity:

```
sage: oo
+Infinity
```

We compare finite and infinite elements:

```
sage: 5 < oo
True
sage: P(-5) < P(5)
True
sage: P(2) < P(3)
False
sage: -oo < oo
True
```

We can do more arithmetic than in the unsigned infinity ring:

```
sage: 2 * oo
+Infinity
sage: -2 * oo
-Infinity
sage: 1 - oo
-Infinity
sage: 1 / oo
0
sage: -1 / oo
0
```

We make 1 / oo and 1 / -oo return the integer 0 instead of the infinity ring Zero so that arithmetic of the following type works:
If we try to subtract infinities or multiply infinity by zero we still get an error:

```python
sage: oo - oo
Traceback (most recent call last):
  ... 
SignError: cannot add infinity to minus infinity
sage: 0 * oo
Traceback (most recent call last):
  ... 
SignError: cannot multiply infinity by zero
sage: P(2) + P(-3)
Traceback (most recent call last):
  ... 
SignError: cannot add positive finite value to negative finite value
```

Signed infinity can also be represented by RR / RDF elements. But unsigned infinity cannot:

```python
sage: oo in RR, oo in RDF
(True, True)
sage: unsigned_infinity in RR, unsigned_infinity in RDF
(False, False)
```

```python
class sage.rings.infinity.AnInfinity
    Bases: object

    \text{lcm}(x)

    Return the least common multiple of \( \infty \) and \( x \), which is by definition \( \infty \) unless \( x \) is 0.

    EXAMPLES:

    ```python
 sage: oo.lcm(0)
 0
 sage: oo.lcm(oo)
 +Infinity
 sage: oo.lcm(-oo)
 +Infinity
 sage: oo.lcm(10)
 +Infinity
 sage: (-oo).lcm(10)
 +Infinity
    ```
```
sage: InfinityRing(-.001).sqrt()
Traceback (most recent call last):
...
SignError: cannot take square root of a negative number

sage.rings.infinity.InfinityRing = The Infinity Ring

class sage.rings.infinity.InfinityRing_class
 Bases: sage.misc.fast_methods.Singleton, sage.rings.ring.Ring

 Initialize self.

 fraction_field()
 This isn’t really a ring, let alone an integral domain.

 gen(n=0)
 The two generators are plus and minus infinity.

 EXAMPLES:

 sage: InfinityRing.gen(0)
 +Infinity
 sage: InfinityRing.gen(1)
 -Infinity
 sage: InfinityRing.gen(2)
 Traceback (most recent call last):
 ...
 IndexError: n must be 0 or 1

 gens()
 The two generators are plus and minus infinity.

 EXAMPLES:

 sage: InfinityRing.gens()
 [+Infinity, -Infinity]

 is_commutative()
 The Infinity Ring is commutative

 EXAMPLES:

 sage: InfinityRing.is_commutative()
 True

 is_zero()
 The Infinity Ring is not zero

 EXAMPLES:

 sage: InfinityRing.is_zero()
 False

 ngens()
 The two generators are plus and minus infinity.

 EXAMPLES:
class sage.rings.infinity.LessThanInfinity
 parent=The Unsigned Infinity Ring
 Initialize self.

 EXAMPLES:

 sage: sage.rings.infinity.LessThanInfinity() is UnsignedInfinityRing(5)
 True

class sage.rings.infinity.MinusInfinity
 parent=The Signed Infinity Ring
 Initialize self.

 sqrt()
 EXAMPLES:

 sage: (-oo).sqrt()
 Traceback (most recent call last):
 ...
 SignError: cannot take square root of negative infinity

class sage.rings.infinity.PlusInfinity
 parent=The Signed Infinity Ring
 Initialize self.

 sqrt()
 The square root of self.
 The square root of infinity is infinity.

 EXAMPLES:

 sage: oo.sqrt()
 +Infinity

exception sage.rings.infinity.SignError
 parent=ArithmeticError
 Sign error exception.

class sage.rings.infinity.UnsignedInfinity
 parent=The Unsigned Infinity Ring
 Initialize self.

sage.rings.infinity.UnsignedInfinityRing = The Unsigned Infinity Ring

class sage.rings.infinity.UnsignedInfinityRing_class
 parent=sage.misc.fast_methods.Singleton, sage.rings.ring.Ring
 Initialize self.
fraction_field()
The unsigned infinity ring isn’t an integral domain.

EXAMPLES:
```
sage: UnsignedInfinityRing.fraction_field()
Traceback (most recent call last):
  ...TypeError: infinity 'ring' has no fraction field
```

gen\((n=0)\)
The “generator” of self is the infinity object.

EXAMPLES:
```
sage: UnsignedInfinityRing.gen()
Infinity
sage: UnsignedInfinityRing.gen(1)
Traceback (most recent call last):
  ...IndexError: UnsignedInfinityRing only has one generator
```
gens()
The “generator” of self is the infinity object.

EXAMPLES:
```
sage: UnsignedInfinityRing.gens()
[Infinity]
```

less_than_infinity()
This is the element that represents a finite value.

EXAMPLES:
```
sage: UnsignedInfinityRing.less_than_infinity()
A number less than infinity
sage: UnsignedInfinityRing(5).is(UnsignedInfinityRing.less_than_infinity())
True
```

ngens()
The unsigned infinity ring has one “generator.”

EXAMPLES:
```
sage: UnsignedInfinityRing.ngens()
1
sage: len(UnsignedInfinityRing.gens())
1
```
sage.rings.infinity.is_Infinite\((x)\)
This is a type check for infinity elements.

EXAMPLES:
```
sage: sage.rings.infinity.is_Infinite(oo)
True
sage: sage.rings.infinity.is_Infinite(-oo)
True
```

(continues on next page)
sage: sage.rings.infinity.is_Infinite(unsigned_infinity)
True
sage: sage.rings.infinity.is_Infinite(3)
False
sage: sage.rings.infinity.is_Infinite(RR(infinity))
False
sage: sage.rings.infinity.is_Infinite(ZZ)
False

sage.rings.infinity.test_comparison(ring)
Check comparison with infinity

INPUT:
• ring – a sub-ring of the real numbers

OUTPUT:
Various attempts are made to generate elements of ring. An assertion is triggered if one of these elements does not compare correctly with plus/minus infinity.

EXAMPLES:

sage: from sage.rings.infinity import test_comparison
sage: rings = [ZZ, QQ, RR, RealField(200), RDF, RLF, AA, RIF]
sage: for R in rings:
 : print('testing {}'.format(R))
 : test_comparison(R)
testing Integer Ring
testing Rational Field
testing Real Field with 53 bits of precision
testing Real Field with 200 bits of precision
testing Real Double Field
testing Real Lazy Field
testing Algebraic Real Field
testing Real Interval Field with 53 bits of precision

Comparison with number fields does not work:

sage: K.<sqrt3> = NumberField(x^2-3)
sage: (-oo < 1+sqrt3) and (1+sqrt3 < oo) # known bug
False

The symbolic ring handles its own infinities, but answers False (meaning: cannot decide) already for some very elementary comparisons:

sage: test_comparison(SR) # known bug
Traceback (most recent call last):
 ...: test_comparison(SR)
AssertionError: testing -1000.0 in Symbolic Ring: id = ...

sage.rings.infinity.test_signed_infinity(pos_inf)
Test consistency of infinity representations.

There are different possible representations of infinity in Sage. These are all consistent with the infinity ring, that is, compare with infinity in the expected way. See also trac ticket #14045

INPUT:
• pos_inf – a representation of positive infinity.
An assertion error is raised if the representation is not consistent with the infinity ring.

Check that trac ticket #14045 is fixed:

```python
sage: InfinityRing(float('+inf'))
+Infinity
sage: InfinityRing(float('-inf'))
-Infinity
sage: oo > float('+inf')
False
sage: oo == float('+inf')
True
```

EXAMPLES:

```python
sage: from sage.rings.infinity import test_signed_infinity
sage: for pos_inf in [oo, float('+inf'), RLF(oo), RIF(oo), SR(oo)]:
    ....:     test_signed_infinity(pos_inf)
```

8.3 Support Python’s numbers abstract base class

See also:

[PEP 3141](https://www.python.org/dev/peps/pep-03141/) for more information about numbers.

```python
sage: numbers.register_sage_classes()
```

Register all relevant Sage classes in the numbers hierarchy.

EXAMPLES:

```python
sage: import numbers
sage: isinstance(5, numbers.Integral)
True
sage: isinstance(5, numbers.Number)
True
sage: isinstance(5/1, numbers.Integral)
False
sage: isinstance(22/7, numbers.Rational)
True
sage: isinstance(1.3, numbers.Real)
True
sage: isinstance(CC(1.3), numbers.Real)
False
sage: isinstance(CC(1.3 + I), numbers.Complex)
True
sage: isinstance(RDF(1.3), numbers.Real)
True
sage: isinstance(CDF(1.3, 4), numbers.Complex)
True
sage: isinstance(AA(sqrt(2)), numbers.Real)
True
sage: isinstance(QQbar(I), numbers.Complex)
True
```

This doesn’t work with symbolic expressions at all:
Because we do this, NumPy’s `isscalar()` recognizes Sage types:

```python
sage: from numpy import isscalar
sage: isscalar(3.141)
True
sage: isscalar(4/17)
True
```


9.1 Derivations

Let A be a ring and B be a bimodule over A. A derivation $d : A \to B$ is an additive map that satisfies the Leibniz rule

$$d(xy) = xd(y) + d(x)y.$$

If B is an algebra over A and if we are given in addition a ring homomorphism $\theta : A \to B$, a twisted derivation with respect to θ (or a θ-derivation) is an additive map $d : A \to B$ such that

$$d(xy) = \theta(x)d(y) + d(x)y.$$

When θ is the morphism defining the structure of A-algebra on B, a θ-derivation is nothing but a derivation. In general, if $\iota : A \to B$ denotes the defining morphism above, one easily checks that $\theta - \iota$ is a θ-derivation.

This file provides support for derivations and twisted derivations over commutative rings with values in algebras (i.e. we require that B is a commutative A-algebra). In this case, the set of derivations (resp. θ-derivations) is a module over B.

Given a ring A, the module of derivations over A can be created as follows:

```
sage: A.<x,y,z> = QQ[]
sage: M = A.derivation_module()
sage: M
Module of derivations over Multivariate Polynomial Ring in x, y, z over Rational Field
```

The method `gens()` returns the generators of this module:

```
sage: A.<x,y,z> = QQ[]
sage: M = A.derivation_module()
sage: M.gens()
(d/dx, d/dy, d/dz)
```

We can combine them in order to create all derivations:

```
sage: d = 2*M.gen(0) + z*M.gen(1) + (x^2 + y^2)*M.gen(2)
sage: d
2*d/dx + z*d/dy + (x^2 + y^2)*d/dz
```

and now play with them:
Alternatively we can use the method `derivation()` of the ring A to create derivations:

```
sage: Dx = A.derivation(x); Dx
d/dx
sage: Dy = A.derivation(y); Dy
d/dy
sage: Dz = A.derivation(z); Dz
d/dz
sage: A.derivation([2, z, x^2+y^2])
2*d/dx + z*d/dy + (x^2 + y^2)*d/dz
```

Sage knows moreover that M is a Lie algebra:

```
sage: M.category()
Join of Category of lie algebras with basis over Rational Field
and Category of modules with basis over Multivariate Polynomial Ring in x, y, z over
˓→Rational Field
```

Computations of Lie brackets are implemented as well:

```
sage: Dx.bracket(Dy)
0
sage: d.bracket(Dx)
-2*x*d/dz
```

At the creation of a module of derivations, a codomain can be specified:

```
sage: B = A.fraction_field()
sage: A.derivation_module(B)
Module of derivations from Multivariate Polynomial Ring in x, y, z over Rational Field
to Fraction Field of Multivariate Polynomial Ring in x, y, z over Rational Field
```

Alternatively, one can specify a morphism f with domain A. In this case, the codomain of the derivations is the codomain of f but the latter is viewed as an algebra over A through the homomorphism f. This construction is useful, for example, if we want to work with derivations on A at a certain point, e.g. $(0, 1, 2)$. Indeed, in order to achieve this, we first define the evaluation map at this point:

```
sage: ev = A.hom([QQ(0), QQ(1), QQ(2)])
sage: ev
Ring morphism:
   From: Multivariate Polynomial Ring in x, y, z over Rational Field
   To:   Rational Field
   Defn: x |--> 0
         y |--> 1
         z |--> 2
```

Now we use this ring homomorphism to define a structure of A-algebra on Q and then build the following module of derivations:
Elements in M then acts as derivations at $(0,1,2)$:

```sage
sage: Dx = M.gen(0)
sage: Dy = M.gen(1)
sage: Dz = M.gen(2)
sage: f = x^2 + y^2 + z^2
sage: Dx(f)  # = 2*x evaluated at (0,1,2)
0
sage: Dy(f)  # = 2*y evaluated at (0,1,2)
2
sage: Dz(f)  # = 2*z evaluated at (0,1,2)
4
```

Twisted derivations are handled similarly:

```sage
sage: theta = B.hom([B(y),B(z),B(x)])
sage: theta
Ring endomorphism of Fraction Field of Multivariate Polynomial Ring in x, y, z over
\[\text{Rational Field}\]
Defn: x |--> y
        y |--> z
        z |--> x
sage: M = B.derivation_module(twist=theta)
sage: M
Module of twisted derivations over Fraction Field of Multivariate Polynomial Ring
in x, y, z over Rational Field (twisting morphism: x |--> y, y |--> z, z |--> x)
```

Over a field, one proves that every θ-derivation is a multiple of $\theta - id$, so that:

```sage
sage: d = M.gen(); d
[x |--> y, y |--> z, z |--> x] - id
```

and then:

```sage
sage: d(x)
-x + y
sage: d(y)
-y + z
sage: d(z)
x - z
sage: d(x + y + z)
0
```

AUTHOR:

- Xavier Caruso (2018-09)

class sage.rings.derivation.RingDerivation
 Bases: sage.structure.element.ModuleElement

An abstract class for twisted and untwisted derivations over commutative rings.
codomain()

Return the codomain of this derivation.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: f = R.derivation(); f
d/dx
sage: f.codomain()
Univariate Polynomial Ring in x over Rational Field
sage: f.codomain() is R
True
```

domain()

Return the domain of this derivation.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: f = R.derivation(y); f
d/dy
sage: f.domain()
Multivariate Polynomial Ring in x, y over Rational Field
sage: f.domain() is R
True
```

class sage.rings.derivation.RingDerivationModule(domain, codomain, twist=None)

Bases: sage.modules.module.Module, sage.structure.unique_representation.UniqueRepresentation

A class for modules of derivations over a commutative ring.

basis()

Return a basis of this module of derivations.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
```

codomain()

Return the codomain of the derivations in this module.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer Ring
sage: M.codomain()
```

```python
sage: M.codomain()
Multivariate Polynomial Ring in x, y over Integer Ring
```

defining_morphism()

Return the morphism defining the structure of algebra of the codomain over the domain.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: M = R.derivation_module()
sage: M.defining_morphism()
Identity endomorphism of Univariate Polynomial Ring in x over Rational Field
sage: S.<y> = R[]
sage: M = R.derivation_module(S)
sage: M.defining_morphism()
Polynomial base injection morphism:
  From: Univariate Polynomial Ring in x over Rational Field
  To: Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over Rational Field
sage: ev = R.hom([QQ(0)])
sage: M = R.derivation_module(ev)
sage: M.defining_morphism()
Ring morphism:
  From: Univariate Polynomial Ring in x over Rational Field
  To: Rational Field
  Defn: x |--> 0
```

domain()

Return the domain of the derivations in this module.

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer Ring
sage: M.domain()
Multivariate Polynomial Ring in x, y over Integer Ring
```

dual_basis()

Return the dual basis of the canonical basis of this module of derivations (which is that returned by the method `basis()`).

Note: The dual basis of \((d_1, \ldots, d_n)\) is a family \((x_1, \ldots, x_n)\) of elements in the domain such that \(d_i(x_i) = 1\) and \(d_i(x_j) = 0\) if \(i \neq j\).

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
sage: M.dual_basis()
Family (x, y)
```
\textbf{gen} \((n=0)\)

Return the \(n\)-th generator of this module of derivations.

\textbf{INPUT:}

- \(n\) – an integer (default: 0)

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer
˓→Ring
sage: M.gen()
d/dx
sage: M.gen(1)
d/dy
\end{verbatim}

\textbf{gens} ()

Return the generators of this module of derivations.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer
˓→Ring
sage: M.gens()
(d/dx, d/dy)
\end{verbatim}

We check that, for a nontrivial twist over a field, the module of twisted derivation is a vector space of dimension 1 generated by \(\text{twist} - \text{id}\):

\begin{verbatim}
sage: K = R.fraction_field()
sage: theta = K.hom([K(y),K(x)])
sage: M = K.derivation_module(twist=theta); M
Module of twisted derivations over Fraction Field of Multivariate Polynomial
Ring in x, y over Integer Ring (twisting morphism: x |--> y, y |--> x)
sage: M.gens()
([x |--> y, y |--> x] - id,)
\end{verbatim}

\textbf{ngens} ()

Return the number of generators of this module of derivations.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer
˓→Ring
sage: M.ngens()
2
\end{verbatim}

Indeed, generators are:

\begin{verbatim}
sage: M.gens()
(d/dx, d/dy)
\end{verbatim}

We check that, for a nontrivial twist over a field, the module of twisted derivation is a vector space of dimension 1 generated by \(\text{twist} - \text{id}\):
random_element(*args, **kwds)
Return a random derivation in this module.

EXAMPLES:

```sage
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.random_element() # random
(x^2 + x*y - 3*y^2 + x + 1)*d/dx + (-2*x^2 + 3*x*y + 10*y^2 + 2*x + 8)*d/dy
```

ring_of_constants()
Return the subring of the domain consisting of elements \(x \) such that \(d(x) = 0 \) for all derivation \(d \) in this module.

EXAMPLES:

```sage
sage: R.<x,y> = QQ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
sage: M.ring_of_constants()
Rational Field
```

some_elements()
Return a list of elements of this module.

EXAMPLES:

```sage
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.some_elements()
[d/dx, d/dy, x*d/dx, x*d/dy, y*d/dx, y*d/dy]
```

twisting_morphism()
Return the twisting homomorphism of the derivations in this module.

EXAMPLES:

```sage
sage: R.<x,y> = ZZ[]
sage: theta = R.hom([(y, x)])
sage: M = R.derivation_module(twist=theta); M
Module of twisted derivations over Multivariate Polynomial Ring in x, y
over Integer Ring (twisting morphism: x |--> y, y |--> x)
sage: M.twisting_morphism()
Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring
Defn: x |--> y
     y |--> x
```

When the derivations are untwisted, this method returns nothing:
The class handles \(\theta\)-derivations of the form \(\lambda(\theta - \iota)\) (where \(\iota\) is the defining morphism of the codomain over the domain) for a scalar \(\lambda\) varying in the codomain.

list()
Return the list of coefficient of this twisted derivation on the canonical basis.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: K = R.fraction_field()
sage: theta = K.hom([y,x])
sage: M = K.derivation_module(twist=theta)
sage: M.basis()
Family (twisting_morphism - id,)
sage: f = (x+y) * M.gen()
sage: f
(x + y)*(twisting_morphism - id)
sage: f.list()
[x + y]
```

postcompose(morphism)
Return the twisted derivation obtained by applying first this twisted derivation and then morphism.

INPUT:
- morphism – a homomorphism of rings whose domain is the codomain of this derivation or a ring into which the codomain of this derivation

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: theta = R.hom([y,x])
sage: D = R.derivation(x, twist=theta); D
x*(x |--> y, y |--> x)
sage: f = R.hom([x^2, y^3])
sage: g = D.precompose(f); g
x*(x |--> y^2, y |--> x^3) - [x |--> x^2, y |--> y^3])
```

Observe that the \(g\) is no longer a \(\theta\)-derivation but a \((\theta \circ f)\)-derivation:

```python
sage: g.parent().twisting_morphism()
Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring
Defn: x |--> y^2
        y |--> x^3
```

precompose(morphism)
Return the twisted derivation obtained by applying first morphism and then this twisted derivation.

INPUT:
- morphism – a homomorphism of rings whose codomain is the domain of this derivation or a ring that coerces to the domain of this derivation

EXAMPLES:
```python
sage: R.<x,y> = ZZ[]
sage: theta = R.hom([y,x])
sage: D = R.derivation(x, twist=theta); D
x*(x |--> y, y |--> x) - id
sage: f = R.hom([x^2, y^3])
sage: g = D.postcompose(f); g
x^2*(x |--> y^3, y |--> x^2) - (x |--> x^2, y |--> y^3)
```

Observe that the g is no longer a θ-derivation but a $(f \circ \theta)$-derivation:

```python
sage: g.parent().twisting_morphism()
Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring
  Defn: x |--> y^3
  y |--> x^2
```

class sage.rings.derivation.RingDerivationWithoutTwist

Bases: `sage.rings.derivation.RingDerivation`

An abstract class for untwisted derivations.

is_zero()

Return `True` if this derivation is zero.

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: f = R.derivation(); f
d/dx
sage: f.is_zero()
False
sage: (f-f).is_zero()
True
```

list()

Return the list of coefficient of this derivation on the canonical basis.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
sage: R.derivation(x).list()
[1, 0]
sage: R.derivation(y).list()
[0, 1]
sage: f = x*R.derivation(x) + y*R.derivation(y); f
x*d/dx + y*d/dy
sage: f.list()
[x, y]
```

monomial_coefficients()

Return dictionary of nonzero coordinates (on the canonical basis) of this derivation.

9.1. Derivations
More precisely, this returns a dictionary whose keys are indices of basis elements and whose values are the corresponding coefficients.

EXAMPLES:

```sage
sage: R.<x,y> = QQ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
sage: R.derivation(x).monomial_coefficients()
{0: 1}
sage: R.derivation(y).monomial_coefficients()
{1: 1}
sage: f = x*R.derivation(x) + y*R.derivation(y); f
x*d/dx + y*d/dy
sage: f.monomial_coefficients()
{0: x, 1: y}
```

postcompose *(morphism)*

Return the derivation obtained by applying first this derivation and then `morphism`.

INPUT:

- `morphism` – a homomorphism of rings whose domain is the codomain of this derivation or a ring into which the codomain of this derivation coerces

EXAMPLES:

```sage
sage: A.<x,y>= QQ[]
sage: ev = A.hom([QQ(0), QQ(1)])
sage: Dx = A.derivation(x)
sage: Dy = A.derivation(y)

We can define the derivation at (0, 1) just by postcomposing with `ev`:

```sage
sage: dx = Dx.postcompose(ev)
sage: dy = Dy.postcompose(ev)
sage: f = x^2 + y^2
sage: dx(f)
0
sage: dy(f)
2
```

Note that we cannot avoid the creation of the evaluation morphism: if we pass in `QQ` instead, an error is raised since there is no coercion morphism from `A` to `QQ`:

```sage
sage: Dx.postcompose(QQ)
Traceback (most recent call last):
...
TypeError: the codomain of the derivation does not coerce to the given ring
```

Note that this method cannot be used to compose derivations:

```sage
sage: Dx.precompose(Dy)
Traceback (most recent call last):
...
TypeError: you must give an homomorphism of rings
```
**precompose** *(morphism)*

Return the derivation obtained by applying first *morphism* and then this derivation.

**INPUT:**

- *morphism* – a homomorphism of rings whose codomain is the domain of this derivation or a ring that coerces to the domain of this derivation

**EXAMPLES:**

```python
sage: A.<x> = QQ[]
sage: B.<x,y> = QQ[]
sage: D = B.derivation(x) - 2*x*B.derivation(y); D
d/dx - 2*x*d/dy
```

When restricting to *A*, the term d/dy disappears (since it vanishes on *A*):

```python
sage: D.precompose(A)
d/dx
```

If we restrict to another well chosen subring, the derivation vanishes:

```python
sage: C.<t> = QQ[]
sage: f = C.hom([x^2 + y]); f
Ring morphism:
 From: Univariate Polynomial Ring in t over Rational Field
 To: Multivariate Polynomial Ring in x, y over Rational Field
 Defn: t |--> x^2 + y
sage: D.precompose(f)
0
```

Note that this method cannot be used to compose derivations:

```python
sage: D.precompose(D)
Traceback (most recent call last):
 ...
TypeError: you must give an homomorphism of rings
```

**pth_power** *

Return the *p*-th power of this derivation where *p* is the characteristic of the domain.

**Note:** Leibniz rule implies that this is again a derivation.

**EXAMPLES:**

```python
sage: R.<x,y> = GF(5)[]
sage: Dx = R.derivation(x)
sage: Dx.pth_power()
0
sage: (x*Dx).pth_power()
x*d/dx
sage: (x^6*Dx).pth_power()
x^26*d/dx
sage: Dy = R.derivation(y)
sage: (x*Dx + y*Dy).pth_power()
x*d/dx + y*d/dy
```
An error is raised if the domain has characteristic zero:

```python
sage: R.<x,y> = QQ[]
sage: Dx = R.derivation(x)
sage: Dx.pth_power()
Traceback (most recent call last):
 ...
TypeError: the domain of the derivation must have positive and prime
 characteristic
```

or if the characteristic is not a prime number:

```python
sage: R.<x,y> = Integers(10)[[]
sage: Dx = R.derivation(x)
sage: Dx.pth_power()
Traceback (most recent call last):
 ...
TypeError: the domain of the derivation must have positive and prime
 characteristic
```

class sage.rings.derivation.RingDerivationWithoutTwist_fraction_field (parent, arg=None)

Bases: sage.rings.derivation.RingDerivationWithoutTwist_wrapper

This class handles derivations over fraction fields.

class sage.rings.derivation.RingDerivationWithoutTwist_function (parent, arg=None)

Bases: sage.rings.derivation.RingDerivationWithoutTwist

A class for untwisted derivations over rings whose elements are either polynomials, rational fractions, power series or Laurent series.

**is_zero()**

Return True if this derivation is zero.

**EXAMPLES:**

```python
sage: R.<x,y> = ZZ[]
sage: f = R.derivation(); f
d/dx
sage: f.is_zero()
False
sage: (f-f).is_zero()
True
```

**list()**

Return the list of coefficient of this derivation on the canonical basis.

**EXAMPLES:**

```python
sage: R.<x,y> = GF(5)[[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
sage: R.derivation(x).list()
[1, 0]
sage: R.derivation(y).list()
```

(continues on next page)
\texttt{sage: f = x*R.derivation(x) + y*R.derivation(y); f}
\texttt{x*d/dx + y*d/dy}
\texttt{sage: f.list()}
\texttt{[x, y]}
EXAMPLES:

```
sage: M = QQ.derivation_module()
sage: M().list()
[]
```
CHAPTER
TEN

INDICES AND TABLES

• Index
• Module Index
• Search Page
sage.rings.big_oh, 127
sage.rings.derivation, 139
sage.rings.fraction_field, 75
sage.rings.fraction_field_element, 80
sage.rings.homset, 55
sage.rings.ideal, 25
sage.rings.ideal_monoid, 39
sage.rings.infinity, 128
sage.rings.localization, 87
sage.rings.morphism, 43
sage.rings.noncommutative_ideals, 39
sage.rings.numbers_abc, 136
sage.rings.quotient_ring, 59
sage.rings.quotient_ring_element, 70
sage.rings.ring, 1
sage.rings.ring_extension, 95
sage.rings.ring_extension_element, 114
sage.rings.ring_extension_morphism, 122
<table>
<thead>
<tr>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolute_base() (sage.rings.ring_extension.RingExtension_generic method), 102</td>
</tr>
<tr>
<td>absolute_degree() (sage.rings.ring_extension.RingExtension_generic method), 102</td>
</tr>
<tr>
<td>absolute_norm() (sage.rings.ideal.Ideal_generic method), 28</td>
</tr>
<tr>
<td>additive_order() (sage.rings.ring_extension_element.RingExtensionElement method), 114</td>
</tr>
<tr>
<td>Algebra (class in sage.rings.ring), 2</td>
</tr>
<tr>
<td>algebraic_closure() (sage.rings.ring_field.Field method), 9</td>
</tr>
<tr>
<td>ambient() (sage.rings.quotient_ring.QuotientRing_nc method), 63</td>
</tr>
<tr>
<td>AnInfinity (class in sage.rings.infinity), 131</td>
</tr>
<tr>
<td>apply_morphism() (sage.rings.ideal.Ideal_generic method), 28</td>
</tr>
<tr>
<td>associated_primes() (sage.rings.ideal.Ideal_generic method), 28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>base() (sage.rings.ring_extension.RingExtension_generic method), 102</td>
</tr>
<tr>
<td>base_extend() (sage.rings.ring.Field method), 14</td>
</tr>
<tr>
<td>base_map() (sage.rings.morphismRINGhomomorphism_im_gens method), 53</td>
</tr>
<tr>
<td>base_map() (sage.rings.ring_extension_element.RingExtensionHomomorphism method), 123</td>
</tr>
<tr>
<td>base_ring() (sage.rings.fraction_field.FractionField_generic method), 78</td>
</tr>
<tr>
<td>base_ring() (sage.rings.ideal.Ideal_generic method), 29</td>
</tr>
<tr>
<td>bases() (sage.rings.ring_extension.RingExtension_generic method), 103</td>
</tr>
<tr>
<td>basis() (sage.rings.derivation.RingDerivationModule method), 142</td>
</tr>
<tr>
<td>basis_over() (sage.rings.ring_extension.RingExtensionWithBasis method), 97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>category() (sage.rings.ideal.Ideal_generic method), 29</td>
</tr>
<tr>
<td>category() (sage.rings.ring.Field method), 14</td>
</tr>
<tr>
<td>characteristic() (sage.rings.fraction_field.FractionField_generic method), 78</td>
</tr>
<tr>
<td>characteristic() (sage.rings.localization.Localization method), 91</td>
</tr>
<tr>
<td>characteristic() (sage.rings.quotient_ring.QuotientRing_nc method), 63</td>
</tr>
<tr>
<td>characteristic() (sage.rings.ring.Algebra method), 2</td>
</tr>
<tr>
<td>charpoly() (sage.rings.ring_extension_element.RingExtensionWithBasisElement method), 116</td>
</tr>
<tr>
<td>class_group() (sage.rings.ring.PrincipalIdealDomain method), 12</td>
</tr>
<tr>
<td>class_number() (sage.rings.fraction_field.FractionField_Ipoly_field method), 77</td>
</tr>
<tr>
<td>codomain() (sage.rings.derivation.RingDerivation method), 141</td>
</tr>
<tr>
<td>codomain() (sage.rings.derivation.RingDerivationModule method), 142</td>
</tr>
<tr>
<td>common_base() (in module sage.rings.ring_extension), 112</td>
</tr>
<tr>
<td>CommutativeAlgebra (class in sage.rings.ring), 2</td>
</tr>
</tbody>
</table>
CommutativeRing (class in sage.rings.ring), 3
collection() (sage.rings.fraction_field.FractionField_generic method), 78
collection() (sage.rings.quotient_ring.quotientRing_nc method), 64
collection() (sage.rings.ring_extension.RingExtension_generic method), 103
collection() (sage.rings.quotient_ring.quotientRing_nc method), 64
collection() (sage.rings.quotient_ring.quotientRing_nc method), 65
create_key_and_extra_args() (sage.rings.ring_extension.Ring ExtensionFactory method), 96
create_object() (sage.rings.ring_extension.RingExtensionFactory method), 97
Cyclic() (in module sage.rings.ideal), 25

D

DedekindDomain (class in sage.rings.ring), 7
defining_ideal() (sage.rings.quotient_ring.quotientRing_nc method), 65
defining_morphism() (sage.rings.derivation.RingDerivationModule method), 143
defining_morphism() (sage.rings.ring_extension.RingExtension_generic method), 103
degree() (sage.rings.ring_extension.RingExtension_generic method), 104
degree_over() (sage.rings.ring_extension.RingExtension_generic method), 105
denominator() (sage.rings.fraction_field_element.FractionFieldElement method), 81
denominator() (sage.rings.localization.LocalizationElement method), 92
denominator() (sage.rings.ring_extension_element.RingExtensionFractionFieldElement method), 116
derivation() (sage.rings.ring.CommutativeRing method), 3
derivation_module() (sage.rings.ring.CommutativeRing method), 4
divides() (sage.rings.ideal.Ideal_principal method), 37
divides() (sage.rings.ring.Field method), 9
domain() (sage.rings.derivation.RingDerivation method), 142
domain() (sage.rings.derivation.RingDerivationModule method), 143
dual_basis() (sage.rings.derivation.RingDerivationModule method), 143

E

Element (sage.rings.homset.RingHomset_generic attribute), 55
Element (sage.rings.homset.RingHomset_quo_ring attribute), 56
Element (sage.rings.ideal_monoid.IdealMonoid_c attribute), 39
Element (sage.rings.localization.Localization attribute), 91
Element (sage.rings.quotient_ring.quotientRing_nc attribute), 63
Element (sage.rings.ring_extension.RingExtension_generic attribute), 102
Element (sage.rings.ring_extension.RingExtensionFractionField attribute), 97
Element (sage.rings.ring_extension.RingExtensionWithBasis attribute), 97
embedded_primes() (sage.rings.ideal.Ideal_generic method), 29
epsilon() (sage.rings.ring.Ring method), 15
EuclideanDomain (class in sage.rings.ring), 9
extension() (sage.rings.ring.CommutativeRing method), 5

F

Field (class in sage.rings.ring), 9
FieldIdeal() (in module sage.rings.ideal), 25
FiniteNumber (class in sage.rings.infinity), 131
fraction_field() (sage.rings.infinity.InfinityRing_class method), 132
fraction_field() (sage.rings.infinity UnsignedInfinityRing_class method), 133
fraction_field() (sage.rings.localization.Localization method), 91
fraction_field() (sage.rings.CommutativeRing method), 6
fraction_field() (sage.rings.Field method), 9
fraction_field() (sage.rings_extension.RingExtension_generic method), 105
fraction_field() (sage.rings_ring_extension.RingExtensionWithBasis method), 98
fraction_field() (sage.rings_ring_extension.RingExtensionWithGen method), 100
FractionField() (in module sage.rings.fraction_field), 75
FractionField_1poly_field (class in sage.rings.fraction_field), 77
FractionField_element (class in sage.rings.fraction_field), 80
FractionFieldElement_1poly_field (class in sage.rings.fraction_field_element), 83
FractionFieldEmbedding (class in sage.rings.fraction_field), 76
FractionFieldEmbeddingSection (class in sage.rings.fraction_field), 77
free_module() (sage.rings_ring_extension.RingExtensionWithBasis method), 99
frobenius_endomorphism() (sage.rings.CommutativeRing method), 6
FrobeniusEndomorphism_generic (class in sage.rings.morphism), 48
from_base_ring() (sage.rings_ring_extension.RingExtension_generic method), 106
function_field() (sage.rings_fraction_field.FractionField_1poly_field method), 77

g
gcd() (sage.rings.Ideal_pid method), 35
gcd() (sage.rings.PrincipalIdealDomain method), 13
gen() (sage.rings.derivation.RingDerivationModule method), 143
gen() (sage.rings_fraction_field.FractionField_generic method), 78
gen() (sage.rings.Ideal_generic method), 30
gen() (sage.rings.Ideal_principal method), 37
gen() (sage.rings.infinite_tate_ring.RegionRing_class method), 132
gen() (sage.rings.infinite_tate_ring.RegionRing_class method), 134
gen() (sage.rings.localization.Localization method), 91
gen() (sage.rings.quotient_ring.QuotientRing_nc method), 65
gen() (sage.rings_ring_extension.RingExtension_generic method), 107
generators() (in module sage.rings_ring_extension), 112
gens() (sage.rings.derivation.RingDerivationModule method), 144
gens() (sage.rings.Ideal_generic method), 30
gens() (sage.rings.infinite_tate_ring.RegionRing_class method), 132
gens() (sage.rings.infinite_tate_ring.RegionRing_class method), 134
gens() (sage.rings.localization.Localization method), 92
gens() (sage.rings_ring_extension.RingExtension_generic method), 107
gens() (sage.rings_ring_extension.RingExtensionWithGen method), 101
gens_reduced() (sage.rings.Ideal_generic method), 30

H

has_coerce_map_from() (sage.rings.homset.RingHomset_generic method), 55
has_standard_involution() (sage.rings.Algebra method), 2
hom() (sage.rings_ring_extension.RingExtension_generic method), 107

I

Ideal() (in module sage.rings.Ideal), 26
ideal() (sage.rings.quotient_ring.QuotientRing_nc method), 66
ideal() (sage.rings.Field method), 10
ideal() (sage.rings.Ring method), 15
Ideal_fractional (class in sage.rings.ideal), 27
Ideal_generic (class in sage.rings.ideal), 28
ideal_monoid() (sage.rings.ring.CommutativeRing method), 6
ideal_monoid() (sage.rings.ring.Ring method), 16
Ideal_nc (class in sage.rings.noncommutative_ideals), 40
Ideal_pid (class in sage.rings.ideal), 34
Ideal_principal (class in sage.rings.ideal), 37
IdealMonoid() (in module sage.rings.ideal_monoid), 39
IdealMonoid_c (class in sage.rings.ideal_monoid), 39
IdealMonoid_nc (class in sage.rings.noncommutative_ideals), 40
im_gens() (sage.rings.morphism.RingHomomorphism_im_gens method), 54
InfinityRing (in module sage.rings.infinity), 132
InfinityRing_class (class in sage.rings.infinity), 132
integral_closure() (sage.rings.ring.DedekindDomain method), 7
integral_closure() (sage.rings.ring.Field method), 10
IntegralDomain (class in sage.rings.ring), 11
inverse_image() (sage.rings.morphism.RingHomomorphism method), 49
is_commutative() (sage.rings.infinity.InfinityRing_class method), 132
is_commutative() (sage.rings.quotient_ring.QuotientRing_nc method), 66
is_commutative() (sage.rings.ring.CommutativeAlgebra method), 2
is_commutative() (sage.rings.ring.CommutativeRing method), 6
is_commutative() (sage.rings.ring.Ring method), 16
is_defined_over() (sage.rings.ring_extension.RingExtension_generic method), 108
is_exact() (sage.rings.fraction_field.FractionField_general method), 79
is_exact() (sage.rings.ring.Ring method), 16
is_field() (sage.rings.fraction_field.FractionField_general method), 79
is_field() (sage.rings.quotient_ring.QuotientRing_nc method), 66
is_field() (sage.rings.ring.Field method), 10
is_field() (sage.rings.ring.IntegralDomain method), 11
is_field() (sage.rings.ring.Ring method), 17
is_field() (sage.rings.ring_extension.RingExtension_generic method), 109
is_finite() (sage.rings.fraction_field.FractionField_general method), 79
is_finite_over() (sage.rings.ring_extension.RingExtension_generic method), 109
isFractionField() (in module sage.rings.fraction_field), 80
isFractionFieldElement () (in module sage.rings.fraction_field_element), 84
is_free_over() (sage.rings.ring_extension.RingExtension_general method), 110
is_Ideal () (in module sage.rings.ideal), 38
is_identity () (sage.rings.ring_extension_morphism.RingExtensionHomomorphism method), 124
is_Infinite () (in module sage.rings.infinity), 134
is_injective() (sage.rings.fraction_field.FractionFieldEmbedding method), 76
is_injective() (sage.rings.ring_extension_morphism.MapFreeModuleToRelativeRing method), 122
is_injective() (sage.rings.ring_extension_morphism.MapRelativeRingToFreeModule method), 123
is_integral () (sage.rings.fraction_field_element.FractionFieldElement_1poly_field method), 83
is_integral_domain() (sage.rings.quotient_ring.QuotientRing_nc method), 67
is_integral_domain() (sage.rings.ring.IntegralDomain method), 11
is_integral_domain() (sage.rings.ring.Ring method), 17
is_integrally_closed() (sage.rings.ring.DedekindDomain method), 7
is_integrally_closed() (sage.rings.ring.Field method), 10
is_integrally_closed() (sage.rings.ring.IntegralDomain method), 12
is_maximal() (sage.rings.ideal.Ideal_generic method), 30
is_maximal() (sage.rings.ideal.Ideal_pid method), 35
is_nilpotent() (sage.rings.ring_extension_element.RingExtensionElement method), 114
is_noetherian() (sage.rings.quotient_ring.QuotientRing_nc method), 67
is_noetherian() (sage.rings.ring.DedekindDomain method), 8
is_noetherian() (sage.rings.ring.Field method), 10
is_noetherian() (sage.rings.ring.NoetherianRing method), 12
is_noetherian() (sage.rings.ring.PrincipalIdealDomain method), 14
is_prime() (sage.rings.ideal.Ideal_generic method), 31
is_prime() (sage.rings.ideal.Ideal_pid method), 35
is_prime() (sage.rings.ring_extension_element.RingExtensionElement method), 114
is_principal() (sage.rings.ideal.Ideal_generic method), 32
is_principal() (sage.rings.ideal.Ideal_principal method), 37
is_PrincipalRing() (in module sage.rings.quotient_ring), 70
is_Ring() (in module sage.rings.ring), 23
is_RingHomomorphism() (in module sage.rings.morphism), 55
is_RingHomset() (in module sage.rings.homset), 56
is_square() (sage.rings.fraction_field_element.FractionFieldElement method), 81
is_square() (sage.rings.ring_extension_element.RingExtensionElement method), 114
is_subring() (sage.rings.ring.Ring method), 19
is_surjective() (sage.rings.fraction_field.FractionFieldEmbedding method), 76
is_surjective() (sage.rings.ring_extension_morphism.MapFreeModuleToRelativeRing method), 123
is_surjective() (sage.rings.ring_extension_morphism.MapRelativeRingToFreeModule method), 123
is_trivial() (sage.rings.ideal.Ideal_generic method), 32
is_unit() (sage.rings.localization.LocalizationElement method), 93
is_unit() (sage.rings.quotient_ring_element.QuotientRingElement method), 71
is_unit() (sage.rings.ring_extension_element.RingExtensionElement method), 115
is_zero() (sage.rings.derivation.RingDerivationWithoutTwist method), 147
is_zero() (sage.rings.derivation.RingDerivationWithoutTwist_function method), 150
is_zero() (sage.rings.derivation.RingDerivationWithoutTwist_zero method), 151
is_zero() (sage.rings.fraction_field_element.FractionFieldElement method), 82
is_zero() (sage.rings.infinity.InfinityRing_class method), 132

K
Katsura() (in module sage.rings.ideal), 38
kernel() (sage.rings.morphism.RingHomomorphism_cover method), 50
krull_dimension() (sage.rings.ring.CommutativeRing method), 7
krull_dimension() (sage.rings.ring.DedekindDomain method), 8
krull_dimension() (sage.rings.ring.Field method), 11

L
lc() (sage.rings.quotient_ring_element.QuotientRingElement method), 71
lcm() (sage.rings.infinity.AnInfinity method), 131
less_than_infinity() (sage.rings.infinity.UnsignedInfinityRing_class method), 134
LessThanInfinity (class in sage.rings.infinity), 133
lift() (sage.rings.morphism.RingHomomorphism method), 49
lift() (sage.rings.quotient_ring.QuotientRing_nc method), 67
lift() (sage.rings.quotient_ring_element.QuotientRingElement method), 72
lifting_map() (sage.rings.quotient_ring_element.QuotientRingElement method), 68
list() (sage.rings.derivation.RingDerivationWithoutTwist method), 147
list() (sage.rings.derivation.RingDerivationWithoutTwist_function method), 150
list() (sage.rings.derivation.RingDerivationWithoutTwist_wrapper method), 151
list() (sage.rings.derivation.RingDerivationWithoutTwist_zero method), 151
lm() (sage.rings.quotient_ring_element.QuotientRingElement method), 72
Localization (class in sage.rings.localization), 89
localization() (sage.rings.commutative_ring.CommutativeRing method), 7
LocalizationElement (class in sage.rings.localization), 92
lt() (sage.rings.quotient_ring_element.QuotientRingElement method), 72

M
make_element() (in module sage.rings.fraction_field_element), 84
make_element_old() (in module sage.rings.fraction_field_element), 85
MapFreeModuleToRelativeRing (class in sage.rings.ring_extension_morphism), 122
MapRelativeRingToFreeModule (class in sage.rings.ring_extension_morphism), 123
matrix() (sage.rings.ring_extension_element.RingExtensionWithBasisElement method), 117
maximal_order() (sage.rings.fraction_field.FractionField_element method), 77
minimal_associated_primes() (sage.rings.ideal.Ideal_generic method), 32
minpoly() (sage.rings.ring_extension_element.RingExtensionWithBasisElement method), 118
MinusInfinity (class in sage.rings.infinity), 133
modulus() (sage.rings.ring_extension.RingExtensionWithGen method), 101
monomial_coefficients() (sage.rings.derivation.RingDerivationWithoutTwist method), 147
monomials() (sage.rings.quotient_ring_element.QuotientRingElement method), 72
morphism_from_cover() (sage.rings.morphism.RingHomomorphism_from_quotient method), 53
multiplicative_order() (sage.rings.ring_extension_element.RingExtensionElement method), 115

N
natural_map() (sage.rings.homset.RingHomset_generic method), 56
ngens() (sage.rings.derivation.RingDerivationModule method), 144
ngens() (sage.rings.fraction_field.FractionField_generic method), 79
ngens() (sage.rings.ideal.Ideal_generic method), 33
ngens() (sage.rings.infinity.InfinityRing_class method), 132
ngens() (sage.rings.infinity.UnsignedInfinityRing_class method), 134
ngens() (sage.rings.localization.Localization method), 92
ngens() (sage.rings.quotient_ring.QuotientRing_nc method), 69
ngens() (sage.rings.ring_extension.RingExtension_generic method), 110
NoetherianRing (class in sage.rings.ring), 12
norm() (sage.rings.ideal.Ideal_generic method), 33
norm() (sage.rings.ring_extension_element.RingExtensionWithBasisElement method), 119
normalize_additional_units() (in module sage.rings.localization), 93
nth_root() (sage.rings.fraction_field_element.FractionFieldElement method), 82
numerator() (sage.rings.fraction_field_element.FractionFieldElement method), 82
numerator() (sage.rings.localization.LocalizationElement method), 93
numerator() (sage.rings.ring_extension_element.RingExtensionFractionFieldElement method), 116
O

O() (in module sage.rings.big_oh), 127
one() (sage.rings.Ring method), 19
order() (sage.rings.Ring method), 19

P

parameter() (sage.rings.EuclideanDomain method), 9
PlusInfinity (class in sage.rings.infinity), 133
polynomial() (sage.rings_extension_element.RingExtensionWithBasisElement method), 120
postcompose() (sage.rings.derivation.RingDerivationWithoutTwist method), 148
postcompose() (sage.rings.derivation.RingDerivationWithTwist_generic method), 146
power() (sage.rings.morphism.FrobeniusEndomorphism_generic method), 49
precompose() (sage.rings.derivation.RingDerivationWithoutTwist method), 148
precompose() (sage.rings.derivation.RingDerivationWithTwist_generic method), 146
primary_decomposition() (sage.rings.ideal.Ideal_generic method), 33
prime_subfield() (sage.rings.Field method), 11
principal_ideal() (sage.rings.Ring method), 19
PrincipalIdealDomain (class in sage.rings), 12
print_options() (sage.rings_extension.RingExtension_generic method), 110
pth_power() (sage.rings.derivation.RingDerivationWithoutTwist method), 149
pushforward() (sage.rings.morphism.RingHomomorphism method), 49

Python Enhancement Proposals
  PEP 3141, 136

Q

quo() (sage.rings.Ring method), 19
quotient() (sage.rings.Ring method), 20
quotient_ring() (sage.rings.Ring method), 20
QuotientRing() (in module sage.rings.quotient_ring), 60
QuotientRing_generic (class in sage.rings.quotient_ring), 62
QuotientRing_nc (class in sage.rings.quotient_ring), 62
QuotientRingElement (class in sage.rings.quotient_ring_element), 70

R

random_element() (sage.rings.derivation.RingDerivationModule method), 145
random_element() (sage.rings.fraction_field.FractionField_generic method), 79
random_element() (sage.rings.ideal.Ideal_generic method), 33
random_element() (sage.rings.Ring method), 21
random_element() (sage.rings_extension.RingExtension_generic method), 111
reduce() (sage.rings.fraction_field.FractionFieldElement method), 83
reduce() (sage.rings.fraction_field_element.FractionFieldElement_Ipoly_field method), 84
reduce() (sage.rings.ideal.Ideal_generic method), 34
reduce() (sage.rings.ideal.Ideal_pid method), 36
reduce() (sage.rings.quotient_ring_element.QuotientRingElement method), 73
register_sage_classes() (in module sage.rings.numbers_abc), 136
relative_degree() (sage.rings_extension.RingExtension_generic method), 112
residue_field() (sage.rings.ideal.Ideal_pid method), 36
retract() (sage.rings.quotient_ring.QuotientRing_nc method), 69
Ring (class in sage.rings), 14
ring() (sage.rings.fraction_field.FractionField_generic method), 80
ring() (sage.rings.ideal.Ideal_generic method), 34
ring() (sage.rings.ideal_monoid.IdealMonoid_c method), 39
ring() (sage.rings.ring_extension.RingExtensionFractionField method), 97
ring_of_constants() (sage.rings.derivation.RingDerivationModule method), 145
ring_of_integers() (sage.rings.fraction_field.FractionField_Ipoly_field method), 77
RingDerivation (class in sage.rings.derivation), 141
RingDerivationModule (class in sage.rings.derivation), 142
RingDerivationWithoutTwist (class in sage.rings.derivation), 147
RingDerivationWithdrawTwist_fraction_field (class in sage.rings.derivation), 150
RingDerivationWithdrawTwist_function (class in sage.rings.derivation), 150
RingDerivationWithdrawTwist_quotient (class in sage.rings.derivation), 151
RingDerivationWithdrawTwist_wrapper (class in sage.rings.derivation), 151
RingDerivationWithdrawTwist_zero (class in sage.rings.derivation), 151
RingDerivationWithdrawTwist_generic (class in sage.rings.derivation), 146
RingExtension_generic (class in sage.rings.ring_extension), 102
RingExtensionBackendIsomorphism (class in sage.rings.ring_extension_morphism), 123
RingExtensionBackendReverseIsomorphism (class in sage.rings.ring_extension_morphism), 123
RingExtensionElement (class in sage.rings.ring_extension_element), 114
RingExtensionFactory (class in sage.rings.ring_extension), 96
RingExtensionFractionField (class in sage.rings.ring_extension), 97
RingExtensionFractionFieldElement (class in sage.rings.ring_extension_element), 115
RingExtensionHomomorphism (class in sage.rings.ring_extension_morphism), 123
RingExtensionWithBasis (class in sage.rings.ring_extension), 97
RingExtensionWithBasisElement (class in sage.rings.ring_extension_element), 116
RingExtensionWithGen (class in sage.rings.ring_extension), 100
RingHomomorphism (class in sage.rings.morphism), 49
RingHomomorphism_coercion (class in sage.rings.morphism), 50
RingHomomorphism_cover (class in sage.rings.morphism), 50
RingHomomorphism_from_base (class in sage.rings.morphism), 50
RingHomomorphism_from_fraction_field (class in sage.rings.morphism), 52
RingHomomorphism_from_quotient (class in sage.rings.morphism), 52
RingHomomorphism_im_gens (class in sage.rings.morphism), 53
RingHomset () (in module sage.rings.homset), 55
RingHomset_generic (class in sage.rings.homset), 55
RingHomset_quo_ring (class in sage.rings.homset), 56
RingMap (class in sage.rings.morphism), 54
RingMap_lift (class in sage.rings.morphism), 54

S
sage.rings.big_oh (module), 127
sage.rings.derivation (module), 139
sage.rings.fraction_field (module), 75
sage.rings.fraction_field_element (module), 80
sage.rings.homset (module), 55
sage.rings.ideal (module), 25
sage.rings.ideal_monoid (module), 39
sage.rings.infinity (module), 128
sage.rings.localization (module), 87
sage.rings.morphism (module), 43
sage.rings.noncommutative_ideals (module), 39
sage.rings.numbers_abc (module), 136
sage.rings.quotient_ring (module), 59
sage.rings.quotient_ring_element (module), 70
sage.rings.ring (module), 1
sage.rings.ring_extension (module), 95
sage.rings.ring_extension_element (module), 114
sage.rings.ring_extension_morphism (module), 122
section () (sage.rings.fraction_field.FractionFieldEmbedding method), 76
side () (sage.rings.noncommutative_ideals.Ideal_nc method), 41
SignError, 133
some_elements () (sage.rings.derivation.RingDerivationModule method), 145
some_elements () (sage.rings.fraction_field.FractionField_generic method), 80
specialization () (sage.rings.fraction_field_element.FractionFieldElement method), 83
sqrt () (sage.rings.infinity.FiniteNumber method), 131
sqrt () (sage.rings.infinity.MinusInfinity method), 133
sqrt () (sage.rings.infinity.PlusInfinity method), 133
sqrt () (sage.rings.ring_extension_element.RingExtensionElement method), 115
support () (sage.rings.fraction_field_element.FractionFieldElement_1poly_field method), 84

T
term_order () (sage.rings.quotient_ring.QuotientRing_nc method), 69
test_comparison () (in module sage.rings.infinity), 135
test_signed_infinity () (in module sage.rings.infinity), 135	
tower_bases () (in module sage.rings.ring_extension), 113
trace () (sage.rings.ring_extension_element.RingExtensionWithBasisElement method), 121
twisting_morphism () (sage.rings.derivation.RingDerivationModule method), 145

U
underlying_map () (sage.rings.morphism.RingHomomorphism_from_base method), 52
unit_ideal () (sage.rings.ring.Ring method), 21
UnsignedInfinity (class in sage.rings.infinity), 133
UnsignedInfinityRing (in module sage.rings.infinity), 133
UnsignedInfinityRing_class (class in sage.rings.infinity), 133

V
valuation () (sage.rings.fraction_field_element.FractionFieldElement method), 83
variable_names () (in module sage.rings.ring_extension), 113
variables () (sage.rings.quotient_ring_element.QuotientRingElement method), 73
vector () (sage.rings.ring_extension_element.RingExtensionWithBasisElement method), 122

Z
zero () (sage.rings.homset.RingHomset_generic method), 56
zero () (sage.rings.ring.Ring method), 21
zero_ideal () (sage.rings.ring.Ring method), 21
zeta () (sage.rings.ring.Ring method), 22
zeta_order () (sage.rings.ring.Ring method), 22