General Rings, Ideals, and Morphisms

Release 9.7

The Sage Development Team

Sep 20, 2022
CONTENTS

1 Base Classes for Rings, Algebras and Fields .. 1
 1.1 Rings ... 1

2 Ideals .. 25
 2.1 Ideals of commutative rings ... 25
 2.2 Monoid of ideals in a commutative ring 39
 2.3 Ideals of non-commutative rings ... 40

3 Ring Morphisms ... 43
 3.1 Homomorphisms of rings ... 43
 3.2 Space of homomorphisms between two rings 61

4 Quotient Rings ... 65
 4.1 Quotient Rings ... 65
 4.2 Quotient Ring Elements ... 77

5 Fraction Fields ... 81
 5.1 Fraction Field of Integral Domains 81
 5.2 Fraction Field Elements .. 87

6 Localization .. 93
 6.1 Localization ... 93

7 Ring Extensions .. 103
 7.1 Extension of rings ... 103
 7.2 Elements lying in extension of rings 123
 7.3 Morphisms between extension of rings 132

8 Utilities ... 137
 8.1 Big O for various types (power series, p-adics, etc.) 137
 8.2 Signed and Unsigned Infinities .. 138
 8.3 Support Python’s numbers abstract base class 147

9 Derivation .. 149
 9.1 Derivations ... 149

10 Indices and Tables .. 165

Python Module Index ... 167

Index .. 169
CHAPTER ONE

BASE CLASSES FOR RINGS, ALGEBRAS AND FIELDS

1.1 Rings

This module provides the abstract base class \textit{Ring} from which all rings in Sage (used to) derive, as well as a selection of more specific base classes.

\begin{center}
\textbf{Warning:} Those classes, except maybe for the lowest ones like \textit{Ring}, \textit{CommutativeRing}, \textit{Algebra} and \textit{CommutativeAlgebra}, are being progressively deprecated in favor of the corresponding categories, which are more flexible, in particular with respect to multiple inheritance.
\end{center}

The class inheritance hierarchy is:

- \textit{Ring}
 - \textit{Algebra}
 - \textit{CommutativeRing}
 * \textit{NoetherianRing}
 * \textit{CommutativeAlgebra}
 * \textit{IntegralDomain}
 - \textit{DedekindDomain}
 - \textit{PrincipalIdealDomain}

Subclasses of \textit{PrincipalIdealDomain} are

- \textit{EuclideanDomain}
- \textit{Field}
 - \textit{FiniteField}

Some aspects of this structure may seem strange, but this is an unfortunate consequence of the fact that Cython classes do not support multiple inheritance. Hence, for instance, \textit{Field} cannot be a subclass of both \textit{NoetherianRing} and \textit{PrincipalIdealDomain}, although all fields are Noetherian PIDs.

(A distinct but equally awkward issue is that sometimes we may not know \textit{in advance} whether or not a ring belongs in one of these classes; e.g. some orders in number fields are Dedekind domains, but others are not, and we still want to offer a unified interface, so orders are never instances of the \textit{DedekindDomain} class.)

AUTHORS:

- David Harvey (2006-10-16): changed \textit{CommutativeAlgebra} to derive from \textit{CommutativeRing} instead of from \textit{Algebra}. 1
class sage.rings.ring.Algebra
 Bases: sage.rings.ring.Ring

Generic algebra

characteristic()
 Return the characteristic of this algebra, which is the same as the characteristic of its base ring.

 See objects with the base_ring attribute for additional examples. Here are some examples that explicitly
 use the Algebra class.

 EXAMPLES:

 sage: A = Algebra(ZZ); A
 <sage.rings.ring.Algebra object at ...>
 sage: A.characteristic() 0
 sage: A = Algebra(GF(7^3, 'a'))
 sage: A.characteristic() 7

has_standard_involution()
 Return True if the algebra has a standard involution and False otherwise. This algorithm follows Algo-
 rithm 2.10 from John Voight's Identifying the Matrix Ring. Currently the only type of algebra this will work
 for is a quaternion algebra. Though this function seems redundant, once algebras have more functionality,
 in particular have a method to construct a basis, this algorithm will have more general purpose.

 EXAMPLES:

 sage: B = QuaternionAlgebra(2)
 sage: B.has_standard_involution() True
 sage: R.<x> = PolynomialRing(QQ)
 sage: K.<u> = NumberField(x**2 - 2)
 sage: A = QuaternionAlgebra(K,-2,5)
 sage: A.has_standard_involution() True
 sage: L.<a,b> = FreeAlgebra(QQ,2)
 sage: L.has_standard_involution() True
 Traceback (most recent call last):
 ...
 NotImplementedError: has_standard_involution is not implemented for this algebra

class sage.rings.ring.CommutativeAlgebra
 Bases: sage.rings.ring.CommutativeRing

Generic commutative algebra

is_commutative()
 Return True since this algebra is commutative.

 EXAMPLES:
 Any commutative ring is a commutative algebra over itself:
Trying to create a commutative algebra over a non-commutative ring will result in a TypeError.

```
class sage.rings.ring.CommutativeRing
    Bases: sage.rings.ring.Ring

    Generic commutative ring.

derivation(arg=None, twist=None)
    Return the twisted or untwisted derivation over this ring specified by arg.

    Note: A twisted derivation with respect to $\theta$ (or a $\theta$-derivation for short) is an additive map $d$ satisfying the following axiom for all $x, y$ in the domain:

    \[ d(xy) = \theta(x)d(y) + d(x)y. \]

    INPUT:
    * arg – (optional) a generator or a list of coefficients that defines the derivation
    * twist – (optional) the twisting homomorphism

    EXAMPLES:

    sage: R.<x,y,z> = QQ[]
    sage: R.derivation()
    d/dx

    In that case, arg could be a generator:

    sage: R.derivation(y)
    d/dy

    or a list of coefficients:

    sage: R.derivation([1,2,3])
    d/dx + 2*d/dy + 3*d/dz

    It is not possible to define derivations with respect to a polynomial which is not a variable:

    sage: R.derivation(x^2)
    Traceback (most recent call last):
    ...
    ValueError: unable to create the derivation

    Here is an example with twisted derivations:

    sage: R.<x,y,z> = QQ[]
    sage: theta = R.hom([x^2, y^2, z^2])
    sage: f = R.derivation(twist=theta); f
```

(continues on next page)
Module of twisted derivations over Multivariate Polynomial Ring in \(x, y, z\) over Rational Field (twisting morphism: \(x \mapsto x^2, y \mapsto y^2, z \mapsto z^2\))

Specifying a scalar, the returned twisted derivation is the corresponding multiple of \(\theta - \mathrm{id}\):

\[
\begin{align*}
\text{sage: } & R.\text{derivation}(1, \text{twist=theta}) \\
& [x \mapsto x^2, y \mapsto y^2, z \mapsto z^2] - \mathrm{id} \\
\text{sage: } & R.\text{derivation}(x, \text{twist=theta}) \\
& x^2([x \mapsto x^2, y \mapsto y^2, z \mapsto z^2] - \mathrm{id})
\end{align*}
\]

derivation_module *(codomain=None, twist=None)*

Returns the module of derivations over this ring.

INPUT:

- `codomain` – an algebra over this ring or a ring homomorphism whose domain is this ring or `None` (default: `None`); if it is a morphism, the codomain of derivations will be the codomain of the morphism viewed as an algebra over `self` through the given morphism; if `None`, the codomain will be this ring

- `twist` – a morphism from this ring to `codomain` or `None` (default: `None`); if `None`, the coercion map from this ring to `codomain` will be used

Note: A twisted derivation with respect to \(\theta\) (or a \(\theta\)-derivation for short) is an additive map \(d\) satisfying the following axiom for all \(x, y\) in the domain:

\[
d(xy) = \theta(x)d(y) + d(x)y.
\]

EXAMPLES:

\[
\begin{align*}
\text{sage: } & R.<x,y,z> = QQ[] \\
\text{sage: } & M = R.\text{derivation_module()}; M \\
& \text{Module of derivations over Multivariate Polynomial Ring in } x, y, z \text{ over } \text{Rational Field} \\
\text{sage: } & M.\text{gens()} \\
& (d/dx, d/dy, d/dz)
\end{align*}
\]

We can specify a different codomain:

\[
\begin{align*}
\text{sage: } & K = R.\text{fraction_field()} \\
\text{sage: } & M = R.\text{derivation_module(K) }; M \\
& \text{Module of derivations from Multivariate Polynomial Ring in } x, y, z \text{ over } \text{Rational Field to Fraction Field of Multivariate Polynomial Ring in } x, y, z \text{ over } \text{Rational Field} \\
\text{sage: } & M.\text{gen()} / x \\
& 1/x^2d/dx
\end{align*}
\]

Here is an example with a non-canonical defining morphism:

\[
\begin{align*}
\text{sage: } & ev = R.\text{hom([QQ(0), QQ(1), QQ(2)])} \\
\text{sage: } & ev
\end{align*}
\]
Ring morphism:
 From: Multivariate Polynomial Ring in x, y, z over Rational Field
 To: Rational Field
 Defn: x |--> 0
 y |--> 1
 z |--> 2

\texttt{sage: M = R.derivation_module(ev)}
\texttt{sage: M}
Module of derivations from Multivariate Polynomial Ring in x, y, z over Rational Field to Rational Field

Elements in M acts as derivations at $(0,1,2)$:

\texttt{sage: Dx = M.gen(0); Dx}
d/dx
\texttt{sage: Dy = M.gen(1); Dy}
d/dy
\texttt{sage: Dz = M.gen(2); Dz}
d/dz
\texttt{sage: f = x^2 + y^2 + z^2}
\texttt{sage: Dx(f) # = 2*x evaluated at (0,1,2)}
0
\texttt{sage: Dy(f) # = 2*y evaluated at (0,1,2)}
2
\texttt{sage: Dz(f) # = 2*z evaluated at (0,1,2)}
4

An example with a twisting homomorphism:

\texttt{sage: theta = R.hom([x^2, y^2, z^2])}
\texttt{sage: M = R.derivation_module(twist=theta); M}
Module of twisted derivations over Multivariate Polynomial Ring in x, y, z over Rational Field (twisting morphism: x |--> x^2, y |--> y^2, z |--> z^2)

See also:
\texttt{derivation()}\texttt{extension(poly, name=None, names=None, **kwds)}
Algebraically extends self by taking the quotient self[x] / (f(x)).

INPUT:
 \begin{itemize}
 \item poly -- A polynomial whose coefficients are coercible into self
 \item name -- (optional) name for the root of f
 \end{itemize}

Note: Using this method on an algebraically complete field does \textit{not} return this field; the construction self[x] / (f(x)) is done anyway.

EXAMPLES:

\texttt{sage: R = QQ['x']}
\texttt{sage: y = polygen(R)
sage: R.extension(y^2 - 5, 'a')
Univariate Quotient Polynomial Ring in a over Univariate Polynomial Ring in x
→ over Rational Field with modulus a^2 - 5

sage: P.<x> = PolynomialRing(GF(5))
sage: F.<a> = GF(5).extension(x^2 - 2)
sage: P.<t> = F[]
sage: R. = F.extension(t^2 - a); R
Univariate Quotient Polynomial Ring in b over Finite Field in a of size 5^2
→ with modulus b^2 + 4*a

fraction_field()
Return the fraction field of self.

EXAMPLES:

sage: R = Integers(389)\[x,y]\]
sage: Frac(R)
Fraction Field of Multivariate Polynomial Ring in x, y over Ring of integers
→ modulo 389
sage: R.fraction_field()
Fraction Field of Multivariate Polynomial Ring in x, y over Ring of integers
→ modulo 389

frobenius_endomorphism(n=1)
INPUT:

• n – a nonnegative integer (default: 1)

OUTPUT:

The n-th power of the absolute arithmetic Frobenius endomorphism on this finite field.

EXAMPLES:

sage: K.<u> = PowerSeriesRing(GF(5))
sage: Frob = K.frobenius_endomorphism(); Frob
Frobenius endomorphism x |--> x^5 of Power Series Ring in u over Finite Field
→ of size 5
sage: Frob(u)
u^5

We can specify a power:

sage: f = K.frobenius_endomorphism(2); f
Frobenius endomorphism x |--> x^(5^2) of Power Series Ring in u over Finite Field
→ Field of size 5
sage: f(1+u)
1 + u^25

ideal_monoid()
Return the monoid of ideals of this ring.

EXAMPLES:
is_commutative()
Return True, since this ring is commutative.

EXAMPLES:

```python
sage: QQ.is_commutative()
True
sage: ZpCA(7).is_commutative()
True
sage: A = QuaternionAlgebra(QQ, -1, -3, names=('i', 'j', 'k')); A
Quaternion Algebra (-1, -3) with base ring Rational Field
sage: A.is_commutative()
False
```

krull_dimension()
Return the Krull dimension of this commutative ring.

The Krull dimension is the length of the longest ascending chain of prime ideals.

localization(additional_units, names=None, normalize=True, category=None)
Return the localization of self at the given additional units.

EXAMPLES:

```python
sage: R.<x, y> = GF(3)[]
sage: R.localization((x*y, x**2+y**2))
Multivariate Polynomial Ring in x, y over Finite Field of size 3 localized at
→ (y, x, x^2 + y^2)
sage: ~y in _
True
```

class sage.rings.ring.DedekindDomain
Bases: `sage.rings.ring.IntegralDomain`

Generic Dedekind domain class.

A Dedekind domain is a Noetherian integral domain of Krull dimension one that is integrally closed in its field of fractions.

This class is deprecated, and not actually used anywhere in the Sage code base. If you think you need it, please create a category `DedekindDomains`, move the code of this class there, and use it instead.

integral_closure()
Return self since Dedekind domains are integrally closed.

EXAMPLES:

```python
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.integral_closure()
Gaussian Integers in Number Field in s with defining polynomial x^2 + 1
sage: OK.integral_closure() == OK
True
```
sage: QQ.integral_closure() == QQ
True

is_integrally_closed()
Return True since Dedekind domains are integrally closed.

EXAMPLES:
The following are examples of Dedekind domains (Noetherian integral domains of Krull dimension one that are integrally closed over its field of fractions).

sage: ZZ.is_integrally_closed()
True
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.is_integrally_closed()
True

These, however, are not Dedekind domains:

sage: QQ.is_integrally_closed()
True
sage: S = ZZ[sqrt(5)]; S.is_integrally_closed()
False
sage: T.<x,y> = PolynomialRing(QQ,2); T
 Multivariate Polynomial Ring in x, y over Rational Field
sage: T.is_integral_domain()
True

is_noetherian()
Return True since Dedekind domains are Noetherian.

EXAMPLES:
The integers, \(\mathbb{Z} \), and rings of integers of number fields are Dedekind domains:

sage: ZZ.is_noetherian()
True
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.is_noetherian()
True
sage: QQ.is_noetherian()
True

krull_dimension()
Return 1 since Dedekind domains have Krull dimension 1.

EXAMPLES:
The following are examples of Dedekind domains (Noetherian integral domains of Krull dimension one that are integrally closed over its field of fractions):

sage: ZZ.krull_dimension()
1
The following are not Dedekind domains but have a krull_dimension function:

```
sage: QQ.krull_dimension()
0
sage: T.<x,y> = PolynomialRing(QQ,2); T
Multivariate Polynomial Ring in x, y over Rational Field
sage: T.krull_dimension()
2
sage: U.<x,y,z> = PolynomialRing(ZZ,3); U
Multivariate Polynomial Ring in x, y, z over Integer Ring
sage: U.krull_dimension()
4
sage: K.<i> = QuadraticField(-1)
```

```
sage: R = K.order(2*i); R
Order in Number Field in i with defining polynomial x^2 + 1 with i = 1*I
sage: R.is_maximal()
False
sage: R.krull_dimension()
1
```

class `sage.rings.ring.EuclideanDomain`
Bases: `sage.rings.ring.PrincipalIdealDomain`

Generic Euclidean domain class.

This class is deprecated. Please use the `EuclideanDomains` category instead.

parameter()

Return an element of degree 1.

EXAMPLES:

```
sage: R.<x>=QQ[]
sage: R.parameter()
x
```

class `sage.rings.ring.Field`
Bases: `sage.rings.ring.PrincipalIdealDomain`

Generic field

algebraic_closure()

Return the algebraic closure of self.

Note: This is only implemented for certain classes of field.

EXAMPLES:
```python
sage: K = PolynomialRing(QQ, 'x').fraction_field(); K
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: K.algebraic_closure()
Traceback (most recent call last):
... NotImplementedError: Algebraic closures of general fields not implemented.
```

divides($x, y, \text{coerce=True}$)

Return `True` if x divides y in this field (usually `True` in a field!). If `coerce` is `True` (the default), first coerce x and y into `self`.

EXAMPLES:

```python
sage: QQ.divides(2, 3/4)
True
sage: QQ.divides(0, 5)
False
```

fraction_field()

Return the fraction field of `self`.

EXAMPLES:

Since fields are their own field of fractions, we simply get the original field in return:

```python
sage: QQ.fraction_field()
Rational Field
sage: RR.fraction_field()
Real Field with 53 bits of precision
sage: CC.fraction_field()
Complex Field with 53 bits of precision
sage: F = NumberField(x^2 + 1, 'i')
sage: F.fraction_field()
Number Field in i with defining polynomial x^2 + 1
```

ideal(*gens, **kwds)

Return the ideal generated by `gens`.

EXAMPLES:

```python
sage: QQ.ideal(2)
Principal ideal (1) of Rational Field
sage: QQ.ideal(0)
Principal ideal (0) of Rational Field
```

integral_closure()

Return this field, since fields are integrally closed in their fraction field.

EXAMPLES:

```python
sage: QQ.integral_closure()
Rational Field
sage: Frac(ZZ['x,y']).integral_closure()
Fraction Field of Multivariate Polynomial Ring in x, y over Integer Ring
```
is_field\(\text{\(proof=True\)}\)

Return True since this is a field.

EXAMPLES:

```python
sage: Frac(ZZ['x,y']).is_field()
True
```

is_integrally_closed()

Return True since fields are trivially integrally closed in their fraction field (since they are their own fraction field).

EXAMPLES:

```python
sage: Frac(ZZ['x,y']).is_integrally_closed()
True
```

is_noetherian()

Return True since fields are Noetherian rings.

EXAMPLES:

```python
sage: QQ.is_noetherian()
True
```

krull_dimension()

Return the Krull dimension of this field, which is 0.

EXAMPLES:

```python
sage: QQ.krull_dimension()
0
sage: Frac(QQ['x,y']).krull_dimension()
0
```

prime_subfield()

Return the prime subfield of self.

EXAMPLES:

```python
sage: k = GF(9, 'a')
sage: k.prime_subfield()
Finite Field of size 3
```

class sage.rings.ring.IntegralDomain

Bases: sage.rings.ring.CommutativeRing

Generic integral domain class.

This class is deprecated. Please use the sage.categories.integral_domains.IntegralDomains category instead.

is_field\(\text{\(proof=True\)}\)

Return True if this ring is a field.

EXAMPLES:

```python
sage: GF(7).is_field()
True
```
The following examples have their own is_field implementations:

```
sage: ZZ.is_field(); QQ.is_field()
False
True
sage: R.<x> = PolynomialRing(QQ); R.is_field()
False
```

is_integral_domain(proof=True)

Return True, since this ring is an integral domain.

(This is a naive implementation for objects with type IntegralDomain)

EXAMPLES:

```
sage: ZZ.is_integral_domain()
True
sage: QQ.is_integral_domain()
True
sage: ZZ['x'].is_integral_domain()
True
sage: R = ZZ.quotient(ZZ.ideal(10)); R.is_integral_domain()
False
```

is_integrally_closed

Return True if this ring is integrally closed in its field of fractions; otherwise return False.

When no algorithm is implemented for this, then this function raises a `NotImplementedError`.

Note that is_integrally_closed has a naive implementation in fields. For every field F, F is its own field of fractions, hence every element of F is integral over F.

EXAMPLES:

```
sage: ZZ.is_integrally_closed()
True
sage: QQ.is_integrally_closed()
True
sage: QQbar.is_integrally_closed()
True
sage: GF(5).is_integrally_closed()
True
sage: Z5 = Integers(5); Z5
Ring of integers modulo 5
sage: Z5.is_integrally_closed()
Traceback (most recent call last):
...
AttributeError: 'IntegerModRing_generic_with_category' object has no attribute 'is_integrally_closed'
```

class sage.rings.ring.NoetherianRing

Bases: sage.rings.ring.CommutativeRing

Generic Noetherian ring class.

A Noetherian ring is a commutative ring in which every ideal is finitely generated.

This class is deprecated, and not actually used anywhere in the Sage code base. If you think you need it, please create a category NoetherianRings, move the code of this class there, and use it instead.
is_noetherian()
Return True since this ring is Noetherian.

EXAMPLES:

```
sage: ZZ.is_noetherian()
True
sage: QQ.is_noetherian()
True
sage: R.<x> = PolynomialRing(QQ)
sage: R.is_noetherian()
True
```

class sage.rings.ring.PrincipalIdealDomain
Bases: sage.rings.ring.IntegralDomain

Generic principal ideal domain.

This class is deprecated. Please use the PrincipalIdealDomains category instead.

class_group()
Return the trivial group, since the class group of a PID is trivial.

EXAMPLES:

```
sage: QQ.class_group()
Trivial Abelian group
```

content(x, y, coerce=True)
Return the content of x and y, i.e. the unique element c of self such that x/c and y/c are coprime and integral.

EXAMPLES:

```
sage: QQ.content(ZZ(42), ZZ(48)); type(QQ.content(ZZ(42), ZZ(48)))
6
<class 'sage.rings.rational.Rational'>
sage: QQ.content(1/2, 1/3)
1/6
sage: factor(1/2); factor(1/3); factor(1/6)
2^-1
3^-1
2^-1 * 3^-1
sage: a = (2*3)/(7*11); b = (13*17)/(19*23)
sage: factor(a); factor(b); factor(QQ.content(a,b))
2 * 3 * 7^-1 * 11^-1
13 * 17 * 19^-1 * 23^-1
7^-1 * 11^-1 * 19^-1 * 23^-1

Note the changes to the second entry:

```
sage: c = (2*3)/(7*11); d = (13*17)/(7*19*23)
sage: factor(c); factor(d); factor(QQ.content(c,d))
2 * 3 * 7^-1 * 11^-1
7^-1 * 13 * 17 * 19^-1 * 23^-1
7^-1 * 11^-1 * 19^-1 * 23^-1
sage: e = (2*3)/(7*11); f = (13*17)/(7*3*19*23)
```

(continues on next page)
sage: factor(e); factor(f); factor(QQ.content(e,f))
2 * 3 * 7^-1 * 11^-1
7^-3 * 13 * 17 * 19^-1 * 23^-1
7^-3 * 11^-1 * 19^-1 * 23^-1

gcd(x, y, coerce=True)
Return the greatest common divisor of x and y, as elements of self.

EXAMPLES:
The integers are a principal ideal domain and hence a GCD domain:

sage: ZZ.gcd(42, 48) 6
sage: 42.factor(); 48.factor()
2 * 3 * 7
2^4 * 3
sage: ZZ.gcd(2^4*7^2*11, 2^3*11*13) 88
sage: 88.factor()
2^3 * 11

In a field, any nonzero element is a GCD of any nonempty set of nonzero elements. In previous versions, Sage used to return 1 in the case of the rational field. However, since trac ticket #10771, the rational field is considered as the fraction field of the integer ring. For the fraction field of an integral domain that provides both GCD and LCM, it is possible to pick a GCD that is compatible with the GCD of the base ring:

sage: QQ.gcd(ZZ(42), ZZ(48)); type(QQ.gcd(ZZ(42), ZZ(48)))
6
<class 'sage.rings.rational.Rational'>
sage: QQ.gcd(1/2, 1/3) 1/6

Polynomial rings over fields are GCD domains as well. Here is a simple example over the ring of polynomials over the rationals as well as over an extension ring. Note that gcd requires x and y to be coercible:

sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = NumberField(x^2 - 2, 'a')
sage: f = (x - a)*(x + a); g = (x - a)*(x^2 - 2)
sage: print(f); print(g)
x^2 - 2
x^3 - a*x^2 - 2*x + 2*a
sage: f in R
True
sage: g in R
False
sage: R.gcd(f,g)
Traceback (most recent call last):
  ... TypeError: Unable to coerce 2*a to a rational
sage: R.base_extend(S).gcd(f,g)
x^2 - 2
sage: R.base_extend(S).gcd(f, (x - a)*(x^2 - 3))
x - a
is_noetherian()
Every principal ideal domain is noetherian, so we return True.

EXAMPLES:

```
sage: Zp(5).is_noetherian()
True
```

class sage.rings.ring.Ring
Bases: sage.structure.parent_gens.ParentWithGens

Generic ring class.

base_extend(R)

EXAMPLES:

```
sage: QQ.base_extend(GF(7))
Traceback (most recent call last):
...
TypeError: no base extension defined
sage: ZZ.base_extend(GF(7))
Finite Field of size 7
```

category()

Return the category to which this ring belongs.

Note: This method exists because sometimes a ring is its own base ring. During initialisation of a ring \(R\), it may be checked whether the base ring (hence, the ring itself) is a ring. Hence, it is necessary that \(R\).category() tells that \(R\) is a ring, even before its category is properly initialised.

EXAMPLES:

```
sage: FreeAlgebra(QQ, 3, 'x').category() # todo: use a ring which is not an algebra!
Category of algebras with basis over Rational Field
```

Since a quotient of the integers is its own base ring, and during initialisation of a ring it is tested whether the base ring belongs to the category of rings, the following is an indirect test that the category() method of rings returns the category of rings even before the initialisation was successful:

```
sage: I = Integers(15)
sage: I.base_ring() is I
True
sage: I.category()
Join of Category of finite commutative rings
 and Category of subquotients of monoids
 and Category of quotients of semigroups
 and Category of finite enumerated sets
```

epsilonion()

Return the precision error of elements in this ring.

EXAMPLES:
For exact rings, zero is returned:

```
sage: ZZ.epsilon()
0
```

This also works over derived rings:

```
sage: RR['x'].epsilon()
2.22044604925031e-16
sage: QQ['x'].epsilon()
0
```

For the symbolic ring, there is no reasonable answer:

```
sage: SR.epsilon()
Traceback (most recent call last):
 ...
NotImplementedError
```

**ideal(*args, **kwds)**

Return the ideal defined by x, i.e., generated by x.

**INPUT:**

- *x* – list or tuple of generators (or several input arguments)

- **coerce** – bool (default: True); this must be a keyword argument. Only set it to False if you are certain that each generator is already in the ring.

- **ideal_class** – callable (default: self._ideal_class_()); this must be a keyword argument. A constructor for ideals, taking the ring as the first argument and then the generators. Usually a subclass of Ideal_generic or Ideal_nc.

- Further named arguments (such as side in the case of non-commutative rings) are forwarded to the ideal class.

**EXAMPLES:**

```
sage: R.<x,y> = QQ[]
sage: R.ideal(x,y)
Ideal (x, y) of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ideal(x+y^2)
Ideal (y^2 + x) of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ideal([x^3,y^3+x^3])
Ideal (x^3, x^3 + y^3) of Multivariate Polynomial Ring in x, y over Rational Field
```

Here is an example over a non-commutative ring:
sage: A = SteenrodAlgebra(2)
sage: A.ideal(A.1,A.2^2)
Twosided Ideal (Sq(2), Sq(2,2)) of mod 2 Steenrod algebra, milnor basis
sage: A.ideal(A.1,A.2^2,side='left')
Left Ideal (Sq(2), Sq(2,2)) of mod 2 Steenrod algebra, milnor basis

ideal_monoid()

Return the monoid of ideals of this ring.

EXAMPLES:

sage: F.<x,y,z> = FreeAlgebra(ZZ, 3)
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = sage.rings.ring.Ring.quotient(F,I)
sage: Q.ideal_monoid()
Monoid of ideals of Quotient of Free Algebra on 3 generators (x, y, z) over Integer Ring by the ideal (x*y + y*z, x^2 + x*y - y*x - y^2)

sage: F.<x,y,z> = FreeAlgebra(ZZ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = F.quo(I)
sage: Q.ideal_monoid()
Monoid of ideals of Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over Integer Ring by the ideal (x*y + y*z, x*x + x*y - y*x - y*y)

is_commutative()

Return True if this ring is commutative.

EXAMPLES:

sage: QQ.is_commutative()
True
sage: QQ['x,y,z'].is_commutative()
True
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -1,-1)
sage: Q.is_commutative()
False

is_exact()

Return True if elements of this ring are represented exactly, i.e., there is no precision loss when doing arithmetic.

Note: This defaults to True, so even if it does return True you have no guarantee (unless the ring has properly overloaded this).

EXAMPLES:

sage: QQ.is_exact()  # indirect doctest
True
sage: ZZ.is_exact()
True
sage: Qp(7).is_exact()
False
sage: Zp(7, type='capped-abs').is_exact()
False
**is_field**(proof=True)

Return True if this ring is a field.

INPUT:

- proof – (default: True) Determines what to do in unknown cases

ALGORITHM:

If the parameter **proof** is set to **True**, the returned value is correct but the method might throw an error. Otherwise, if it is set to **False**, the method returns **True** if it can establish that self is a field and **False** otherwise.

EXAMPLES:

```
sage: QQ.is_field()
True
sage: GF(9, 'a').is_field()
True
sage: ZZ.is_field()
False
sage: QQ['x'].is_field()
False
sage: Frac(QQ['x']).is_field()
True
```

This illustrates the use of the **proof** parameter:

```
sage: R.<a,b> = QQ[]
sage: S.<x,y> = R.quo((b^3))
sage: S.is_field(proof = True)
Traceback (most recent call last):
...
NotImplementedError
sage: S.is_field(proof = False)
False
```

**is_integral_domain**(proof=True)

Return **True** if this ring is an integral domain.

INPUT:

- proof – (default: **True**) Determines what to do in unknown cases

ALGORITHM:

If the parameter **proof** is set to **True**, the returned value is correct but the method might throw an error. Otherwise, if it is set to **False**, the method returns **True** if it can establish that self is an integral domain and **False** otherwise.

EXAMPLES:

```
sage: QQ.is_integral_domain()
True
sage: ZZ.is_integral_domain()
True
sage: ZZ['x,y,z'].is_integral_domain()
True
sage: Integers(8).is_integral_domain()
```

(continues on next page)
sage: Zp(7).is_integral_domain()
True
sage: Qp(7).is_integral_domain()
True
sage: R.<a,b> = QQ[]

sage: S.<x,y> = R.quo((b^3))

sage: S.is_integral_domain()
False

This illustrates the use of the proof parameter:

sage: R.<a,b> = ZZ[]
sage: S.<x,y> = R.quo((b^3))

sage: S.is_integral_domain(proof = True)
Traceback (most recent call last):
...
NotImplementedError

sage: S.is_integral_domain(proof = False)
False

is_noetherian()
Return True if this ring is Noetherian.

EXAMPLES:

sage: QQ.is_noetherian()
True
sage: ZZ.is_noetherian()
True

is_prime_field()
Return True if this ring is one of the prime fields \( \mathbb{Q} \) or \( \mathbb{F}_p \).

EXAMPLES:

sage: QQ.is_prime_field()
True
sage: GF(3).is_prime_field()
True
sage: GF(9,'a').is_prime_field()
False
sage: ZZ.is_prime_field()
False
sage: QQ['x'].is_prime_field()
False
sage: Qp(19).is_prime_field()
False

is_subring(other)
Return True if the canonical map from self to other is injective.

Raises a NotImplmentedError if not known.

EXAMPLES:
sage: ZZ.is_subring(QQ)
True
sage: ZZ.is_subring(GF(19))
False

one()
Return the one element of this ring (cached), if it exists.

EXAMPLES:

sage: ZZ.one()
1
sage: QQ.one()
1
sage: QQ['x'].one()
1

The result is cached:

sage: ZZ.one() is ZZ.one()
True

order()
The number of elements of self.

EXAMPLES:

sage: GF(19).order()
19
sage: QQ.order()
+Infinity

principal_ideal(gen, coerce=True)
Return the principal ideal generated by gen.

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: R.principal_ideal(x+2*y)
Ideal (x + 2*y) of Multivariate Polynomial Ring in x, y over Integer Ring

quo(I, names=None, **kwds)
Create the quotient of \( R \) by the ideal \( I \). This is a synonym for \function{quotient()}.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = R.quo((x^2, y))
sage: S.gens()
(a, 0)
sage: a == b
False
**quotient**(*I*, *names=None, **kwds*)
Create the quotient of this ring by a twosided ideal *I*.

**INPUT:**

- *I* – a twosided ideal of this ring, *R*.
- *names* – (optional) names of the generators of the quotient (if there are multiple generators, you can specify a single character string and the generators are named in sequence starting with 0).
- further named arguments that may be passed to the quotient ring constructor.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient(I, 'a')
sage: S.gens()
(a,)
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = R.quotient((x^2, y))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the
→ideal (x^2, y)
sage: S.gens()
(a, 0)
sage: a == b
False
```

**quotient_ring**(*I*, *names=None, **kwds*)
Return the quotient of self by the ideal *I* of self. (Synonym for self.quotient(*I*).)

**INPUT:**

- *I* – an ideal of *R*
- *names* – (optional) names of the generators of the quotient. (If there are multiple generators, you can specify a single character string and the generators are named in sequence starting with 0.)
- further named arguments that may be passed to the quotient ring constructor.

**OUTPUT:**

- *R/I* – the quotient ring of *R* by the ideal *I*

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(ZZ)
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I, 'a')
sage: S.gens()
(a,)
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = R.quotient_ring((x^2, y))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the
→ideal (x^2, y)
sage: S.gens()
```

(continues on next page)
random_element(bound=2)
Return a random integer coerced into this ring, where the integer is chosen uniformly from the interval [-bound, bound].

INPUT:

• bound – integer (default: 2)

ALGORITHM:
Uses Python’s randint.

unit_ideal()
Return the unit ideal of this ring.

EXAMPLES:

sage: Zp(7).unit_ideal()
Principal ideal (1 + O(7^20)) of 7-adic Ring with capped relative precision 20

zero()
Return the zero element of this ring (cached).

EXAMPLES:

sage: ZZ.zero()
0
sage: QQ.zero()
0
sage: QQ['x'].zero()
0

The result is cached:

sage: ZZ.zero() is ZZ.zero()
True

zero_ideal()
Return the zero ideal of this ring (cached).

EXAMPLES:

sage: ZZ.zero_ideal()
Principal ideal (0) of Integer Ring
sage: QQ.zero_ideal()
Principal ideal (0) of Rational Field
sage: QQ['x'].zero_ideal()
Principal ideal (0) of Univariate Polynomial Ring in x over Rational Field

The result is cached:

sage: ZZ.zero_ideal() is ZZ.zero_ideal()
True
\textbf{zeta}(n=2, \text{all}=\text{False})

Return a primitive $n$-th root of unity in self if there is one, or raise a \textbf{ValueError} otherwise.

**INPUT:**

- $n$ – positive integer
- all – bool (default: False) - whether to return a list of all primitive $n$-th roots of unity. If True, raise a \textbf{ValueError} if self is not an integral domain.

**OUTPUT:**

Element of self of finite order

**EXAMPLES:**

\begin{verbatim}
sage: QQ.zeta()
-1
sage: QQ.zeta(1)
1
sage: CyclotomicField(6).zeta(6)
zeta6
sage: CyclotomicField(3).zeta(3)
zeta3
sage: CyclotomicField(3).zeta(3).multiplicative_order()
3
sage: a = GF(7).zeta(); a
3
sage: a.multiplicative_order()
6
sage: a = GF(49,'z').zeta(); a
z
sage: a.multiplicative_order()
48
sage: a = GF(49,'z').zeta(2); a
6
sage: a.multiplicative_order()
2
sage: QQ.zeta(3)
Traceback (most recent call last):
  ... 
ValueError: no n-th root of unity in rational field
sage: Zp(7, prec=8).zeta()
3 + 4*7 + 6*7^2 + 3*7^3 + 2*7^5 + 6*7^6 + 2*7^7 + O(7^8)
\end{verbatim}

\textbf{zeta_order}()

Return the order of the distinguished root of unity in self.

**EXAMPLES:**

\begin{verbatim}
sage: CyclotomicField(19).zeta_order()
38
sage: GF(19).zeta_order()
18
sage: GF(5^3,'a').zeta_order()
124
\end{verbatim}
```python
sage: Zp(7, prec=8).zeta_order()
6
```

`sage.rings.ring.is_Ring(x)`

Return True if x is a ring.

EXAMPLES:

```python
sage: from sage.rings.ring import is_Ring
sage: is_Ring(ZZ)
True
sage: MS = MatrixSpace(QQ,2)
sage: is_Ring(MS)
True
```
2.1 Ideals of commutative rings

Sage provides functionality for computing with ideals. One can create an ideal in any commutative or non-commutative ring \( R \) by giving a list of generators, using the notation \( \text{R.ideal([a,b,...])} \). The case of non-commutative rings is implemented in \texttt{noncommutative_ideals}.

A more convenient notation may be \( R*[a,b,...] \) or \( [a,b,...]*R \). If \( R \) is non-commutative, the former creates a left and the latter a right ideal, and \( R*[a,b,...]*R \) creates a two-sided ideal.

\texttt{sage.rings.ideal.Cyclic(R, n=None, homog=False, singular=None)}

Ideal of cyclic \( n \)-roots from 1-st \( n \) variables of \( R \) if \( R \) is coercible to \texttt{Singular}.

\textbf{INPUT:}

- \( R \) – base ring to construct ideal for
- \( n \) – number of cyclic roots (default: None). If None, then \( n \) is set to \( R\text{.ngens()} \).
- \( \text{homog} \) – (default: False) if True a homogeneous ideal is returned using the last variable in the ideal
- \( \text{singular} \) – singular instance to use

\textbf{Note:} \( R \) will be set as the active ring in \texttt{Singular}

\textbf{EXAMPLES:}

An example from a multivariate polynomial ring over the rationals:

\begin{verbatim}
sage: P.<x,y,z> = PolynomialRing(QQ,3,order='lex') sage: I = sage.rings.ideal.Cyclic(P) sage: I Ideal (x + y + z, x*y + x*z + y*z, x*y*z - 1) of Multivariate Polynomial Ring in x, y, z over Rational Field sage: I.groebner_basis() [x + y + z, y^2 + y*z + z^2, z^3 - 1]
\end{verbatim}

We compute a Groebner basis for cyclic 6, which is a standard benchmark and test ideal:

\begin{verbatim}
sage: R.<x,y,z,t,u,v> = QQ['x,y,z,t,u,v'] sage: I = sage.rings.ideal.Cyclic(R,6) sage: B = I.groebner_basis() sage: len(B) 45
\end{verbatim}
sage.rings.ideal.FieldIdeal(R)

Let \( q = R.\text{base}_\text{ring}().\text{order}() \) and \((x_0, ..., x_n) = R.\text{gens}() \) then if \( q \) is finite this constructor returns

\[
\langle x_0^q - x_0, ..., x_n^q - x_n \rangle.
\]

We call this ideal the field ideal and the generators the field equations.

**EXAMPLES:**

The field ideal generated from the polynomial ring over two variables in the finite field of size 2:

```
sage: P.<x,y> = PolynomialRing(GF(2),2)
sage: I = sage.rings.ideal.FieldIdeal(P); I
Ideal (x^2 + x, y^2 + y) of Multivariate Polynomial Ring in x, y over Finite Field of size 2
```

Another, similar example:

```
sage: Q.<x1,x2,x3,x4> = PolynomialRing(GF(2^4,name='alpha'), 4)

sage: J = sage.rings.ideal.FieldIdeal(Q); J
Ideal (x1^16 + x1, x2^16 + x2, x3^16 + x3, x4^16 + x4) of Multivariate Polynomial Ring in x1, x2, x3, x4 over Finite Field in alpha of size 2^4
```

sage.rings.ideal.Ideal(*args, **kwds)

Create the ideal in ring with given generators.

There are some shorthand notations for creating an ideal, in addition to using the `Ideal()` function:

- \( R.\text{ideal}(\text{gens}, \text{coerce=True}) \)
- \( \text{gens}^*R \)
- \( R^*\text{gens} \)

**INPUT:**
- \( R \) - A ring (optional; if not given, will try to infer it from \( \text{gens} \))
- \( \text{gens} \) - list of elements generating the ideal
- \( \text{coerce} \) - bool (optional, default: True); whether \( \text{gens} \) need to be coerced into the ring.

**OUTPUT:** The ideal of ring generated by \( \text{gens} \).

**EXAMPLES:**

```
sage: R.<x> = ZZ[]
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: I
Ideal (x^2 + 3*x + 4, 1 + x^2 + 1) of Univariate Polynomial Ring in x over Integer Ring
sage: Ideal(R, [4 + 3*x + x^2, 1 + x^2])
Ideal (x^2 + 3*x + 4, x^2 + 1) of Univariate Polynomial Ring in x over Integer Ring
sage: Ideal((4 + 3*x + x^2, 1 + x^2))
Ideal (x^2 + 3*x + 4, x^2 + 1) of Univariate Polynomial Ring in x over Integer Ring
```

```
sage: ideal(x^2-2*x+1, x^2-1)
Ideal (x^2 - 2*x + 1, x^2 - 1) of Univariate Polynomial Ring in x over Integer Ring
sage: ideal([x^2-2*x+1, x^2-1])
Ideal (x^2 - 2*x + 1, x^2 - 1) of Univariate Polynomial Ring in x over Integer Ring
```

(continues on next page)
This example illustrates how Sage finds a common ambient ring for the ideal, even though 1 is in the integers (in this case).

```
sage: R.<t> = ZZ['t']
sage: i = ideal(1,t,t^2)
sage: i
Ideal (1, t, t^2) of Univariate Polynomial Ring in t over Integer Ring
```

This shows that the issues at trac ticket #1104 are resolved:

```
sage: Ideal(3, 5)
Principal ideal (1) of Integer Ring
sage: Ideal(ZZ, 3, 5)
Principal ideal (1) of Integer Ring
sage: Ideal(2, 4, 6)
Principal ideal (2) of Integer Ring
```

You have to provide enough information that Sage can figure out which ring to put the ideal in.

```
sage: I = Ideal([])
Traceback (most recent call last):
 ... ValueError: unable to determine which ring to embed the ideal in
```

```
sage: I = Ideal()
Traceback (most recent call last):
 ... ValueError: need at least one argument
```

Note that some rings use different ideal implementations than the standard, even if they are PIDs:

```
sage: R.<x> = GF(5)[]
sage: I = R*(x^2+3)
sage: type(I)
<class 'sage.rings.polynomial.ideal.Ideal_1poly_field'>
```

You can also pass in a specific ideal type:

```
sage: from sage.rings.ideal import Ideal_pid
sage: I = Ideal(x^2+3,ideal_class=Ideal_pid)
sage: type(I)
<class 'sage.rings.ideal.Ideal_pid'>
```

```
class sage.rings.ideal.Ideal_fractional(ring, gens, coerce=True)
 Bases: sage.rings.ideal.Ideal_generic
 Fractional ideal of a ring.
```

2.1. Ideals of commutative rings
See `Ideal()`.

**class** `sage.rings.ideal.Ideal_generic`(ring, gens, coerce=True)

* Bases: `sage.structure.element.MonoidElement`

An ideal.

See `Ideal()`.

**absolute_norm**()

Returns the absolute norm of this ideal.

In the general case, this is just the ideal itself, since the ring it lies in can’t be implicitly assumed to be an extension of anything.

We include this function for compatibility with cases such as ideals in number fields.

**Todo:** Implement this method.

**EXAMPLES:**

```python
sage: R.<t> = GF(9, names='a')[]
sage: I = R.ideal(t^4 + t + 1)
sage: I.absolute_norm()
Traceback (most recent call last):
...
NotImplementedError
```

**apply_morphism**(phi)

Apply the morphism phi to every element of this ideal. Returns an ideal in the domain of phi.

**EXAMPLES:**

```python
sage: psi = CC['x'].hom([-CC['x'].0])
sage: J = ideal([CC['x'].0 + 1]); J
Principal ideal (x + 1.00000000000000) of Univariate Polynomial Ring in x over Complex Field with 53 bits of precision
sage: psi(J)
Principal ideal (x - 1.00000000000000) of Univariate Polynomial Ring in x over Complex Field with 53 bits of precision
sage: J.apply_morphism(psi)
Principal ideal (x - 1.00000000000000) of Univariate Polynomial Ring in x over Complex Field with 53 bits of precision
```

```python
sage: psi = ZZ['x'].hom([-ZZ['x'].0])
sage: J = ideal([-ZZ['x'].0, 2]); J
Ideal (x, 2) of Univariate Polynomial Ring in x over Integer Ring
sage: psi(J)
Ideal (-x, 2) of Univariate Polynomial Ring in x over Integer Ring
sage: J.apply_morphism(psi)
Ideal (-x, 2) of Univariate Polynomial Ring in x over Integer Ring
```

**associated_primes**()

Return the list of associated prime ideals of this ideal.

**EXAMPLES:**
base_ring()

Returns the base ring of this ideal.

EXAMPLES:

sage: R = ZZ
sage: I = 3*R; I
Principal ideal (3) of Integer Ring
sage: J = 2*I; J
Principal ideal (6) of Integer Ring
sage: I.base_ring(); J.base_ring()
Integer Ring
Integer Ring

We construct an example of an ideal of a quotient ring:

sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 - 2)
sage: I.base_ring()
Rational Field

And $p$-adic numbers:

sage: R = Zp(7, prec=10); R
7-adic Ring with capped relative precision 10
sage: I = 7*R; I
Principal ideal (7 + O(7^11)) of 7-adic Ring with capped relative precision 10
sage: I.base_ring()
7-adic Ring with capped relative precision 10

category()

Return the category of this ideal.

Note: category is dependent on the ring of the ideal.

EXAMPLES:

sage: P.<x> = ZZ[]
sage: I = ZZ.ideal(7)
sage: J = P.ideal(7,x)
sage: K = P.ideal(7)
sage: I.category()
Category of ring ideals in Integer Ring
sage: J.category()
Category of ring ideals in Univariate Polynomial Ring in x over Integer Ring

(continues on next page)
sage: K.category()
Category of ring ideals in Univariate Polynomial Ring in x
over Integer Ring

embedded_primes()

Return the list of embedded primes of this ideal.

EXAMPLES:

sage: R.<x, y> = QQ[]
sage: I = R.ideal(x^2, x*y)
sage: I.embedded_primes()
[Ideal (y, x) of Multivariate Polynomial Ring in x, y over Rational Field]

gen(i)

Return the i-th generator in the current basis of this ideal.

EXAMPLES:

sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.gen(1)
y + 1
sage: ZZ.ideal(5,10).gen()
5

gens()

Return a set of generators / a basis of self.

This is the set of generators provided during creation of this ideal.

EXAMPLES:

sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.gens()
[x, y + 1]

sage: ZZ.ideal(5,10).gens()
(5,)

gens_reduced()

Same as gens() for this ideal, since there is currently no special gens_reduced algorithm implemented for this ring.

This method is provided so that ideals in \( \mathbb{Z} \) have the method gens_reduced(), just like ideals of number fields.

EXAMPLES:

sage: ZZ.ideal(5).gens_reduced()
(5,)
is_maximal()
Return True if the ideal is maximal in the ring containing the ideal.

Todo: This is not implemented for many rings. Implement it!

EXAMPLES:

```sage
sage: R = ZZ
sage: I = R.ideal(7)
sage: I.is_maximal()
True
sage: R.ideal(16).is_maximal()
False
sage: S = Integers(8)
```

```
sage: S.ideal(0).is_maximal()
False
sage: S.ideal(2).is_maximal()
True
sage: S.ideal(4).is_maximal()
False
```

is_primary(P=None)
Returns True if this ideal is primary (or \( P \)-primary, if a prime ideal \( P \) is specified).

Recall that an ideal \( I \) is primary if and only if \( I \) has a unique associated prime (see page 52 in [AM1969]). If this prime is \( P \), then \( I \) is said to be \( P \)-primary.

INPUT:

- \( P \) - (default: \( \text{None} \)) a prime ideal in the same ring

EXAMPLES:

```sage
sage: R.<x, y> = QQ[]
sage: I = R.ideal([x^2, x*y])
sage: I.is_primary()
False
sage: J = I.primary_decomposition()[1]; J
Ideal (y, x^2) of Multivariate Polynomial Ring in x, y over Rational Field
sage: J.is_primary()
True
sage: J.is_prime()
False
```

Some examples from the Macaulay2 documentation:

```sage
sage: R.<x, y, z> = GF(101)[]
sage: I = R.ideal([y^6])
sage: I.is_primary()
True
sage: I.is_primary(R.ideal([y]))
True
sage: I = R.ideal([x^4, y^7])
sage: I.is_primary()
True
```

(continues on next page)
sage: I = R.ideal([x*y, y^2])
sage: I.is_primary()
False

Note:  This uses the list of associated primes.

is_prime()

Return True if this ideal is prime.

EXAMPLES:

sage: R.<x, y> = QQ[]
sage: I = R.ideal([x, y])
sage: I.is_prime()  # a maximal ideal
True
sage: I = R.ideal([x^2-y])
sage: I.is_prime()  # a non-maximal prime ideal
True
sage: I = R.ideal([x^2, y])
sage: I.is_prime()  # a non-prime primary ideal
False
sage: I = R.ideal([x^2, x*y])
sage: I.is_prime()  # a non-prime non-primary ideal
False

sage: S = Integers(8)
sage: S.ideal(0).is_prime()  # when implemented, should be True
False
sage: S.ideal(2).is_prime()
True
sage: S.ideal(4).is_prime()
False

Note that this method is not implemented for all rings where it could be:

sage: R.<x> = ZZ[]
sage: I = R.ideal(7)
sage: I.is_prime()  # when implemented, should be True
Traceback (most recent call last):
  ...
NotImplementedError

Note:  For general rings, uses the list of associated primes.

is_principal()

Returns True if the ideal is principal in the ring containing the ideal.

Todo:  Code is naive.  Only keeps track of ideal generators as set during initialization of the ideal.  (Can the base ring change?  See example below.)
EXAMPLES:

```sage
sage: R = ZZ['x']
sage: I = R.ideal(2,x)
sage: I.is_principal()
Traceback (most recent call last):
 ...
NotImplementedError
sage: J = R.base_extend(QQ).ideal(2,x)
sage: J.is_principal()
True
```

### is_trivial() 
Return True if this ideal is (0) or (1).

### minimal_associated_primes() 
Return the list of minimal associated prime ideals of this ideal.

EXAMPLES:

```sage
sage: R = ZZ['x']
sage: I = R.ideal(7)
sage: I.minimal_associated_primes()
Traceback (most recent call last):
 ...
NotImplementedError
```

### ngens() 
Return the number of generators in the basis.

EXAMPLES:

```sage
sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.ngens()
2
sage: ZZ.ideal(5,10).ngens()
1
```

### norm() 
Returns the norm of this ideal.

In the general case, this is just the ideal itself, since the ring it lies in can’t be implicitly assumed to be an extension of anything.

We include this function for compatibility with cases such as ideals in number fields.

EXAMPLES:

```sage
sage: R.<t> = GF(8, names='a')[]
sage: I = R.ideal(t^4 + t + 1)
sage: I.norm()
Principal ideal (t^4 + t + 1) of Univariate Polynomial Ring in t over Finite
 ... →Field in a of size 2^3
```
**primary_decomposition()**

Return a decomposition of this ideal into primary ideals.

**EXAMPLES:**

```
sage: R = ZZ['x']
sage: I = R.ideal(7)
sage: I.primary_decomposition()
Traceback (most recent call last):
 ...
NotImplementedError
```

**random_element(**args, **kwds)**

Return a random element in this ideal.

**EXAMPLES:**

```
sage: P.<a,b,c> = GF(5)[[]]
sage: I = P.ideal([a^2, a*b + c, c^3])
sage: I.random_element() # random
2*a^5*c + a^2*b*c^4 + ... + O(a, b, c)^13
```

**reduce(f)**

Return the reduction of the element of \( f \) modulo self.

This is an element of \( R \) that is equivalent modulo \( I \) to \( f \) where \( I \) is self.

**EXAMPLES:**

```
sage: ZZ.ideal(5).reduce(17)
2
sage: parent(ZZ.ideal(5).reduce(17))
Integer Ring
```

**ring()**

Return the ring containing this ideal.

**EXAMPLES:**

```
sage: R = ZZ
sage: I = 3*R; I
Principal ideal (3) of Integer Ring
sage: J = 2*I; J
Principal ideal (6) of Integer Ring
sage: I.ring(); J.ring()
Integer Ring
Integer Ring
```

Note that self.ring() is different from self.base_ring()
```python
sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 - 3)
sage: I.ring()
Univariate Polynomial Ring in x over Rational Field
sage: Rbar = R.quotient(I, names='a')
sage: S = PolynomialRing(Rbar, 'y'); y = Rbar.gen(); S
Univariate Polynomial Ring in y over Univariate Quotient Polynomial Ring in a
˓→over Rational Field with modulus x^2 - 3
sage: J = S.ideal(y^2 + 1)
sage: J.ring()
Univariate Polynomial Ring in y over Univariate Quotient Polynomial Ring in a
˓→over Rational Field with modulus x^2 - 3
```

class sage.rings.ideal.Ideal_pid(ring, gen)

Bases: sage.rings.ideal.Ideal_principal

An ideal of a principal ideal domain.

See Ideal().

gcd(other)

Returns the greatest common divisor of the principal ideal with the ideal other; that is, the largest principal ideal contained in both the ideal and other.

Todo: This is not implemented in the case when other is neither principal nor when the generator of self is contained in other. Also, it seems that this class is used only in PIDs—is this redundant?

Note: The second example is broken.

EXAMPLES:

An example in the principal ideal domain \(\mathbb{Z}\):

```python
sage: R = ZZ
sage: I = R.ideal(42)
sage: J = R.ideal(70)
sage: I.gcd(J)
Principal ideal (14) of Integer Ring
sage: J.gcd(I)
Principal ideal (14) of Integer Ring
```

is_maximal()

Returns whether this ideal is maximal.

Principal ideal domains have Krull dimension 1 (or 0), so an ideal is maximal if and only if it's prime (and nonzero if the ring is not a field).

EXAMPLES:

```python
sage: R.<t> = GF(5)[]
sage: p = R.ideal(t^2 + 2)
sage: p.is_maximal()
True
```
General Rings, Ideals, and Morphisms, Release 9.7

(continued from previous page)

```python
sage: p = R.ideal(t^2 + 1)
sage: p.is_maximal()
False
sage: p = R.ideal(0)
sage: p.is_maximal()
False
sage: p = R.ideal(1)
sage: p.is_maximal()
False
```

**is_prime()**

Return True if the ideal is prime.

This relies on the ring elements having a method `is_irreducible()` implemented, since an ideal $(a)$ is prime iff $a$ is irreducible (or 0).

**EXAMPLES:**

```python
sage: ZZ.ideal(2).is_prime()
True
sage: ZZ.ideal(-2).is_prime()
True
sage: ZZ.ideal(4).is_prime()
False
sage: ZZ.ideal(0).is_prime()
True
sage: R.<x> = QQ[]
sage: P = R.ideal(x^2+1); P
Principal ideal (x^2 + 1) of Univariate Polynomial Ring in x over Rational Field
sage: P.is_prime()
True
```

In fields, only the zero ideal is prime:

```python
sage: RR.ideal(0).is_prime()
True
sage: RR.ideal(7).is_prime()
False
```

**reduce(f)**

Return the reduction of $f$ modulo `self`.

**EXAMPLES:**

```python
sage: I = 8*ZZ
sage: I.reduce(10)
2
sage: n = 10; n.mod(I)
2
```

**residue_field()**

Return the residue class field of this ideal, which must be prime.
Todo: Implement this for more general rings. Currently only defined for \( \mathbb{Z} \) and for number field orders.

**EXAMPLES:**

```sage
todo:Sage
P = ZZ.ideal(61); P
Principal ideal (61) of Integer Ring
F = P.residue_field(); F
Residue field of Integers modulo 61
pi = F.reduction_map(); pi
Partially defined reduction map:
 From: Rational Field
 To: Residue field of Integers modulo 61
pi(123/234)
6
pi(1/61)
Traceback (most recent call last):
 ... ZeroDivisionError: Cannot reduce rational 1/61 modulo 61: it has negative valuation
```

```sage
todo:Sage
lift = F.lift_map(); lift
Lifting map:
 From: Residue field of Integers modulo 61
 To: Integer Ring
lift(F(12345/67890))
33
(12345/67890) % 61
33
```

```sage
class sage.rings.ideal.Ideal_principal(ring, gens, coerce=True)
Bases: sage.rings.ideal.Ideal_generic
A principal ideal.
See Ideal().

divides(other)
 Return True if self divides other.

eXAMPLES:

```sage
todo:Sage
P.<x> = PolynomialRing(QQ)
I = P.ideal(x)
J = P.ideal(x^2)
I.divides(J)
True
J.divides(I)
False
```

gen()
 Returns the generator of the principal ideal. The generators are elements of the ring containing the ideal.

```sage
eXAMPLES:
A simple example in the integers:
```

2.1. Ideals of commutative rings
General Rings, Ideals, and Morphisms, Release 9.7

sage: R = ZZ
sage: I = R.ideal(7)
sage: J = R.ideal(7, 14)
sage: I.gen(); J.gen()
7
7

Note that the generator belongs to the ring from which the ideal was initialized:

sage: R.<x> = ZZ[]
sage: I = R.ideal(x)
sage: J = R.base_extend(QQ).ideal(2,x)
sage: a = I.gen(); a
x
sage: b = J.gen(); b
1
sage: a.base_ring()
Integer Ring
sage: b.base_ring()
Rational Field

is_principal()
Returns True if the ideal is principal in the ring containing the ideal. When the ideal construction is explicitly principal (i.e. when we define an ideal with one element) this is always the case.

EXAMPLES:
Note that Sage automatically coerces ideals into principal ideals during initialization:

sage: R.<x> = ZZ[]
sage: I = R.ideal(x)
sage: J = R.ideal(2,x)
sage: K = R.base_extend(QQ).ideal(2,x)
sage: I
Principal ideal (x) of Univariate Polynomial Ring in x over Integer Ring
sage: J
Ideal (2, x) of Univariate Polynomial Ring in x over Integer Ring
sage: K
Principal ideal (1) of Univariate Polynomial Ring in x over Rational Field
sage: I.is_principal()
True
sage: K.is_principal()
True

sage.rings.ideal.Katsura(R, n=None, homog=False, singular=None)
n-th katsura ideal of R if R is coercible to Singular.

INPUT:
- R – base ring to construct ideal for
- n – (default: None) which katsura ideal of R. If None, then n is set to R.ngens().
- homog – if True a homogeneous ideal is returned using the last variable in the ideal (default: False)
• singular – singular instance to use

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: I = sage.rings.ideal.Katsura(P,3); I
Ideal (x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y + 2*y*z - y)
of Multivariate Polynomial Ring in x, y, z over Rational Field

sage: Q.<x> = PolynomialRing(QQ, implementation="singular")
sage: J = sage.rings.ideal.Katsura(Q,1); J
Ideal (x - 1) of Multivariate Polynomial Ring in x over Rational Field
```

`sage.rings.ideal.is_Ideal(x)`
Return True if object is an ideal of a ring.

EXAMPLES:

A simple example involving the ring of integers. Note that Sage does not interpret rings objects themselves as ideals. However, one can still explicitly construct these ideals:

```python
sage: from sage.rings.ideal import is_Ideal
sage: R = ZZ
sage: is_Ideal(R)
False
sage: 1*R; is_Ideal(1*R)
Principal ideal (1) of Integer Ring
True
sage: 0*R; is_Ideal(0*R)
Principal ideal (0) of Integer Ring
True
```

Sage recognizes ideals of polynomial rings as well:

```python
sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 + 1); I
Principal ideal (x^2 + 1) of Univariate Polynomial Ring in x over Rational Field
sage: is_Ideal(I)
True
sage: is_Ideal((x^2 + 1)*R)
True
```

2.2 Monoid of ideals in a commutative ring

WARNING: This is used by some rings that are not commutative!

```python
sage: MS = MatrixSpace(QQ,3,3)
sage: type(MS.ideal(MS.one()).parent())
<class 'sage.rings.ideal_monoid.IdealMonoid_c_with_category'>
```

`sage.rings.ideal_monoid.IdealMonoid(R)`
Return the monoid of ideals in the ring R.

EXAMPLES:
class sage.rings.ideal_monoid.IdealMonoid_c(R)
 Bases: sage.structure.parent.Parent
 The monoid of ideals in a commutative ring.

Element
 alias of sage.rings.ideal.Ideal_generic

ring()
 Return the ring of which this is the ideal monoid.

EXAMPLES:

 sage: R = QuadraticField(-23, 'a')
 sage: M = sage.rings.ideal_monoid.IdealMonoid(R); M.ring()
 is R
 True

2.3 Ideals of non-commutative rings

Generic implementation of one- and two-sided ideals of non-commutative rings.

AUTHOR:

 • Simon King (2011-03-21), <simon.king@uni-jena.de>, trac ticket #7797.

EXAMPLES:

 sage: MS = MatrixSpace(ZZ,2,2)
 sage: MS*MS([0,1,-2,3])
 Left Ideal
 ([0 1]
 [-2 3]
)
 of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
 sage: MS([0,1,-2,3])*MS
 Right Ideal
 ([0 1]
 [-2 3]
)
 of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
 sage: MS*MS([0,1,-2,3])*MS
 Twosided Ideal
 ([0 1]
 [-2 3]
)
 of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring

See letterplace_ideal for a more elaborate implementation in the special case of ideals in free algebras.
class sage.rings.noncommutative_ideals.IdealMonoid_nc(R)
 Bases: sage.rings.ideal_monoid.IdealMonoid_c
 Base class for the monoid of ideals over a non-commutative ring.

Note: This class is essentially the same as IdealMonoid_c, but does not complain about non-commutative rings.

EXAMPLES:

 sage: MS = MatrixSpace(ZZ,2,2)
 sage: MS.ideal_monoid()
 Monoid of ideals of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring

class sage.rings.noncommutative_ideals.Ideal_nc(ring, gens, coerce=True, side='twosided')
 Bases: sage.rings.ideal.Ideal_generic
 Generic non-commutative ideal.

 All fancy stuff such as the computation of Groebner bases must be implemented in sub-classes. See LetterplaceIdeal for an example.

EXAMPLES:

 sage: MS = MatrixSpace(QQ,2,2)
 sage: I = MS*[MS.1,MS.2]; I
 Left Ideal
 ([0 1]
 [0 0],
 [0 0]
 [1 0])
 of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
 sage: MS*[MS.1,MS.2]*MS
 Right Ideal
 ([0 1]
 [0 0],
 [0 0]
 [1 0])
 of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
 sage: MS*[MS.1,MS.2]**MS
 Twosided Ideal
 ([0 1]
 [0 0],
 [0 0]
 [1 0])
 of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
side()
Return a string that describes the sidedness of this ideal.

EXAMPLES:

```
sage: A = SteenrodAlgebra(2)
sage: IL = A*[A.1+A.2,A.1^2]
sage: IR = [A.1+A.2,A.1^2]*A
sage: IT = A*[A.1+A.2,A.1^2]*A
sage: IL.side()
'left'
sage: IR.side()
'right'
sage: IT.side()
'twosided'
```
3.1 Homomorphisms of rings

We give a large number of examples of ring homomorphisms.

EXAMPLES:

Natural inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$:

```
sage: H = Hom(ZZ, QQ)
sage: phi = H([1])
sage: phi(10)
10
sage: phi(3/1)
3
sage: phi(2/3)
Traceback (most recent call last):
  ...  
TypeError: 2/3 fails to convert into the map's domain Integer Ring, but a `pushforward` method is not properly implemented
```

There is no homomorphism in the other direction:

```
sage: H = Hom(QQ, ZZ)
sage: H([1])
Traceback (most recent call last):
  ...  
ValueError: relations do not all (canonically) map to 0 under map determined by images of generators
```

EXAMPLES:

Reduction to finite field:

```
sage: H = Hom(ZZ, GF(9, 'a'))
sage: phi = H([1])
sage: phi(5)
2
sage: psi = H([4])
sage: psi(5)
2
```

Map from single variable polynomial ring:
sage: R.<x> = ZZ[]
sage: phi = R.hom([2], GF(5))
sage: phi
Ring morphism:
 From: Univariate Polynomial Ring in x over Integer Ring
 To: Finite Field of size 5
 Defn: x |--> 2
sage: phi(x + 12)
4

Identity map on the real numbers:

sage: f = RR.hom([1]); f
Ring endomorphism of Real Field with 53 bits of precision
 Defn: 1.00000000000000 |--> 1.00000000000000
sage: f(2.5)
2.50000000000000

Homomorphism from one precision of field to another.

From smaller to bigger doesn’t make sense:

sage: R200 = RealField(200)
sage: f = RR.hom(R200)
Traceback (most recent call last):
 ...TypeError: natural coercion morphism from Real Field with 53 bits of precision to Real
 Field with 200 bits of precision not defined

From bigger to small does:

sage: f = RR.hom(RealField(15))
sage: f(2.5)
2.500
sage: f(RR.pi())
3.142

Inclusion map from the reals to the complexes:

sage: i = RR.hom([CC(1)]); i
Ring morphism:
 From: Real Field with 53 bits of precision
 To: Complex Field with 53 bits of precision
 Defn: 1.00000000000000 |--> 1.00000000000000
sage: i(RR('3.1'))
3.10000000000000

A map from a multivariate polynomial ring to itself:
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: phi = R.hom([y,z,x^2]); phi
Ring endomorphism of Multivariate Polynomial Ring in x, y, z over Rational Field
 Defn: x |--> y
 y |--> z
 z |--> x^2
sage: phi(x+y+z)
x^2 + y + z

An endomorphism of a quotient of a multi-variate polynomial ring:

sage: R.<x,y> = PolynomialRing(QQ)
sage: S.<a,b> = quo(R, ideal(1 + y^2))
sage: phi = S.hom([a^2, -b])
sage: phi
Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (y^2 + 1)
 Defn: a |--> a^2
 b |--> -b
sage: phi(b)
-b
sage: phi(a^2 + b^2)
a^4 - 1

The reduction map from the integers to the integers modulo 8, viewed as a quotient ring:

sage: R = ZZ.quo(8*ZZ)
sage: pi = R.cover()
sage: pi
Ring morphism:
 From: Integer Ring
 To: Ring of integers modulo 8
 Defn: Natural quotient map
sage: pi.domain()
Integer Ring
sage: pi.codomain()
Ring of integers modulo 8
sage: pi(10)
2
sage: pi.lift()
Set-theoretic ring morphism:
 From: Ring of integers modulo 8
 To: Integer Ring
 Defn: Choice of lifting map
sage: pi.lift(13)
5

Inclusion of GF(2) into GF(4, 'a'):

sage: k = GF(2)
sage: i = k.hom(GF(4, 'a'))
sage: i
Ring morphism:

(continues on next page)
From: Finite Field of size 2
To: Finite Field in a of size 2^2
Defn: 1 |--> 1

We next compose the inclusion with reduction from the integers to GF(2):

Inclusion from Q to the 3-adic field:

An automorphism of a quotient of a univariate polynomial ring:
sage: c = S.hom([-sqrt2])
sage: c(1+sqrt2)
-sqrt2 + 1

Note that Sage verifies that the morphism is valid:

sage: (1 - sqrt2)^2
-2*sqrt2 + 3
sage: c = S.hom([1-sqrt2]) # this is not valid
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by images of generators

Endomorphism of power series ring:

sage: R.<t> = PowerSeriesRing(QQ, default_prec=10); R
Power Series Ring in t over Rational Field
sage: f = R.hom([t^2]); f
Ring endomorphism of Power Series Ring in t over Rational Field
 Defn: t |--> t^2
sage: s = 1/(1 + t); s
1 - t + t^2 - t^3 + t^4 - t^5 + t^6 - t^7 + t^8 - t^9 + O(t^10)
sage: f(s)
1 - t^2 + t^4 - t^6 + t^8 - t^10 + t^12 - t^14 + t^16 - t^18 + O(t^20)

Frobenius on a power series ring over a finite field:

sage: R.<t> = PowerSeriesRing(GF(5))
sage: f = R.hom([t^5]); f
Ring endomorphism of Power Series Ring in t over Finite Field of size 5
 Defn: t |--> t^5
sage: a = 2 + t + 3*t^2 + 4*t^3 + O(t^4)
sage: b = 1 + t + 2*t^2 + t^3 + O(t^5)
sage: f(a)
2 + t^5 + 3*t^10 + 4*t^15 + O(t^20)
sage: f(b)
1 + t^5 + 2*t^10 + t^15 + O(t^25)
sage: f(a*b)
2 + 3*t^5 + 3*t^10 + t^15 + O(t^20)
sage: f(a)*f(b)
2 + 3*t^5 + 3*t^10 + t^15 + O(t^20)

Homomorphism of Laurent series ring:

sage: R.<t> = LaurentSeriesRing(QQ, 10)
sage: f = R.hom([t^3 + t]); f
Ring endomorphism of Laurent Series Ring in t over Rational Field
 Defn: t |--> t + t^3
sage: s = 2/(t^2 + 1/(1 + t)); s
2*t^-2 + 1 - t + t^2 - t^3 + t^4 - t^5 + t^6 - t^7 + t^8 - t^9 + O(t^10)
sage: f(s)
2*t^-2 - 3 - t + 7*t^2 - 2*t^3 - 5*t^4 - 4*t^5 + 16*t^6 - 9*t^7 + O(t^8)
sage: f = R.hom([t^3]); f
Ring endomorphism of Laurent Series Ring in t over Rational Field
 Defn: t |--> t^3
sage: f(s)
2*t^-6 + 1 - t^3 + t^6 - t^9 + t^12 - t^15 + t^18 - t^21 + t^24 - t^27 + O(t^30)

Note that the homomorphism must result in a converging Laurent series, so the valuation of the image of the generator must be positive:

sage: R.hom([1/t])
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by images...

sage: R.hom([1])
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by images...

Complex conjugation on cyclotomic fields:

sage: K.<zeta7> = CyclotomicField(7)
sage: c = K.hom([1/zeta7]); c
Ring endomorphism of Cyclotomic Field of order 7 and degree 6
 Defn: zeta7 |--> -zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - zeta7 - 1
sage: a = (1+zeta7)^5; a
zeta7^5 + 5*zeta7^4 + 10*zeta7^3 + 10*zeta7^2 + 5*zeta7 + 1
sage: c(a)
5*zeta7^5 + 5*zeta7^4 - 4*zeta7^2 - 5*zeta7 - 4
sage: c(zeta7 + 1/zeta7) # this element is obviously fixed by inversion
-zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - 1
sage: zeta7 + 1/zeta7
-zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - 1

Embedding a number field into the reals:

sage: R.<x> = PolynomialRing(QQ)
sage: K.<beta> = NumberField(x^3 - 2)
sage: alpha = RR(2)^(1/3); alpha
1.25992104989487
sage: i = K.hom([alpha],check=False); i
Ring morphism:
 From: Number Field in beta with defining polynomial x^3 - 2
 To: Real Field with 53 bits of precision
 Defn: beta |--> 1.25992104989487
sage: i(beta)
1.25992104989487
sage: i(beta^3)
2.00000000000000
sage: i(beta^2 + 1)
2.58740105196820

48 Chapter 3. Ring Morphisms
An example from Jim Carlson:

```
sage: K = QQ # by the way :-)  
sage: R.<a,b,c,d> = K[]; R
Multivariate Polynomial Ring in a, b, c, d over Rational Field  
sage: S.<u> = K[]; S
Univariate Polynomial Ring in u over Rational Field  
sage: f = R.hom([0,0,0,u], S); f
Ring morphism:
   From: Multivariate Polynomial Ring in a, b, c, d over Rational Field
   To:   Univariate Polynomial Ring in u over Rational Field
      Defn: a |--> 0
            b |--> 0
            c |--> 0
            d |--> u
sage: f(a+b+c+d)
u
sage: f((a+b+c+d)^2)
u^2
```

```
class sage.rings.morphism.FrobeniusEndomorphism_generic
    Bases: sage.rings.morphism.RingHomomorphism

    A class implementing Frobenius endomorphisms on rings of prime characteristic.

    power()
        Return an integer $n$ such that this endomorphism is the $n$-th power of the absolute (arithmetic) Frobenius.

        EXAMPLES:
        sage: K.<u> = PowerSeriesRing(GF(5))
        sage: Frob = K.frobenius_endomorphism()
        sage: Frob.power()
        1
        sage: (Frob^9).power()
        9
```

```
class sage.rings.morphism.RingHomomorphism
    Bases: sage.rings.morphism.RingMap

    Homomorphism of rings.

    inverse()
        Return the inverse of this ring homomorphism if it exists.
        Raises a ZeroDivisionError if the inverse does not exist.

        ALGORITHM:
        By default, this computes a Gröbner basis of the ideal corresponding to the graph of the ring homomorphism.

        EXAMPLES:
        sage: R.<t> = QQ[]
        sage: f = R.hom([2*t - 1], R)
        sage: f.inverse()
        Ring endomorphism of Univariate Polynomial Ring in t over Rational Field
           Defn: t |--> 1/2*t + 1/2
```

3.1. Homomorphisms of rings
The following non-linear homomorphism is not invertible, but it induces an isomorphism on a quotient ring:

```
sage: R.<x,y,z> = QQ[]
sage: f = R.hom([y*z, x*z, x*y], R)
sage: f.inverse()
Traceback (most recent call last):
  ...  ZeroDivisionError: ring homomorphism not surjective
sage: f.is_injective()
True
sage: Q.<x,y,z> = R.quotient(x*y*z - 1)
sage: g = Q.hom([y*z, x*z, x*y], Q)
sage: g.inverse()
Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y, z over Rational Field by the ideal (x*y*z - 1)
  Defn: x |--> y*z
       y |--> x*z
       z |--> x*y
```

Homomorphisms over the integers are supported:

```
sage: S.<x,y> = ZZ[]
sage: f = S.hom([x + 2*y, x + 3*y], S)
sage: f.inverse()
Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring
  Defn: x |--> 3*x - 2*y
       y |--> -x + y
sage: (f.inverse() * f).is_identity()
True
```

The following homomorphism is invertible over the rationals, but not over the integers:

```
sage: g = S.hom([x + y, x - y - 2], S)
sage: g.inverse()
Traceback (most recent call last):
  ...  ZeroDivisionError: ring homomorphism not surjective
sage: R.<x,y> = QQ[x,y]
sage: h = R.hom([x + y, x - y - 2], R)
sage: (h.inverse() * h).is_identity()
True
```

This example by M. Nagata is a wild automorphism:

```
sage: R.<x,y,z> = QQ[]
sage: sigma = R.hom([[x - 2*y*(z*x+y^2) - z*(z*x+y^2)^2, y + z*(z*x+y^2), z], R)
sage: tau = sigma.inverse(); tau
Ring endomorphism of Multivariate Polynomial Ring in x, y, z over Rational Field
  Defn: x |--> -y^4*z - 2*x*y^2*z^2 - x^2*z^3 + 2*y^3 + 2*x*y*z + x
       y |--> -y^2*z - x*z^2 + y
       z |--> z
```
We compute the triangular automorphism that converts moments to cumulants, as well as its inverse, using the moment generating function. The choice of a term ordering can have a great impact on the computation time of a Gröbner basis, so here we choose a weighted ordering such that the images of the generators are homogeneous polynomials.

```
sage: d = 12
sage: T = TermOrder('wdegrevlex', [1..d])
sage: R = PolynomialRing(QQ, ['x%s' % j for j in (1..d)], order=T)
sage: S.<t> = PowerSeriesRing(R)
sage: egf = S([0] + list(R.gens())).ogf_to_egf().exp(prec=d+1)
sage: phi = R.hom(egf.egf_to_ogf().list()[1:], R)
sage: phi.im_gens()[:5]
[x1, x1^2 + x2, x1^3 + 3*x1*x2 + x3, x1^4 + 6*x1^2*x2 + 3*x2^2 + 4*x1*x3 + x4, x1^5 + 10*x1^3*x2 + 15*x1^2*x3 + 10*x2^2*x3 + 5*x1*x4 + x5]
sage: all(p.is_homogeneous() for p in phi.im_gens())
True
sage: phi.inverse().im_gens()[:5]
[x1, -x1^2 + x2, 2*x1^3 - 3*x1*x2 + x3, -6*x1^4 + 12*x1^2*x2 - 3*x2^2 - 4*x1*x3 + x4, 24*x1^5 - 60*x1^3*x2 + 30*x1*x2^2 + 20*x1^2*x3 - 10*x2^2*x3 - 5*x1*x4 + x5]
sage: (phi.inverse() * phi).is_identity()
True
```

Automorphisms of number fields as well as Galois fields are supported:

```
sage: K.<zeta7> = CyclotomicField(7)
sage: c = K.hom([1/zeta7])
sage: (c.inverse() * c).is_identity()
True
sage: F.<t> = GF(7^3)
sage: f = F.hom(t^7, F)
sage: (f.inverse() * f).is_identity()
True
```

An isomorphism between the algebraic torus and the circle over a number field:

```
sage: K.<i> = QuadraticField(-1)
sage: A.<z,w> = K['z,w'].quotient('z*w - 1')
sage: B.<x,y> = K['x,y'].quotient('x^2 + y^2 - 1')
sage: f = A.hom([x + i*y, x - i*y], B)
sage: g = f.inverse()
sage: g.morphism_from_cover().im_gens()
[1/2*i*z + 1/2*i*w, (-1/2*i)*z + (1/2*i)*w]
sage: all(g(f(z)) == z for z in A.gens())
True
```
inverse_image(I)

Return the inverse image of an ideal or an element in the codomain of this ring homomorphism.

INPUT:

- I – an ideal or element in the codomain

OUTPUT:

For an ideal \(I \) in the codomain, this returns the largest ideal in the domain whose image is contained in \(I \).

Given an element \(b \) in the codomain, this returns an arbitrary element \(a \) in the domain such that \(\text{self}(a) = b \) if one such exists. The element \(a \) is unique if this ring homomorphism is injective.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: S.<u,v> = QQ[]
sage: f = R.hom([u^2, u*v, v^2], S)
sage: I = S.ideal([u^6, u^5*v, u^4*v^2, u^3*v^3])
sage: J = f.inverse_image(I); J
Ideal (y^2 - x*z, x*y*z, x^2*z, x^2*y, x^3)
of Multivariate Polynomial Ring in x, y, z over Rational Field
sage: f(J) == I
True
```

Under the above homomorphism, there exists an inverse image for every element that only involves monomials of even degree:

```python
sage: [f.inverse_image(p) for p in [u^2, u^4, u^2*v + u^3*v^3]]
[x, x^2, x*y*z + y]
sage: f.inverse_image(u*v^2)
Traceback (most recent call last):
  ... ValueError: element u*v^2 does not have preimage
```

The image of the inverse image ideal can be strictly smaller than the original ideal:

```python
sage: S.<u,v> = QQ['u,v'].quotient('v^2 - 2')
sage: f = QuadraticField(2).hom([v], S)
sage: I = S.ideal(u + v)
sage: J = f.inverse_image(I)
sage: J.is_zero()
True
sage: f(J) < I
True
```

Fractional ideals are not yet fully supported:

```python
sage: K.<a> = NumberField(QQ['x'](x^2+2))
sage: f = K.hom([-a], K)
sage: I = K.ideal([a + 1])
sage: f.inverse_image(I)
Traceback (most recent call last):
  ... NotImplementedError: inverse image not implemented...
sage: f.inverse_image(K.ideal(0)).is_zero()
```

(continues on next page)
ALGORITHM:
By default, this computes a Gröbner basis of an ideal related to the graph of the ring homomorphism.

REFERENCES:
• Proposition 2.5.12 [DS2009]

is_invertible()
Return whether this ring homomorphism is bijective.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: R.hom([y*z, x*z, x*y], R).is_invertible()
False
sage: Q.<x,y,z> = R.quotient(x*y*z - 1)
sage: Q.hom([y*z, x*z, x*y], Q).is_invertible()
True

ALGORITHM:
By default, this requires the computation of a Gröbner basis.

is_surjective()
Return whether this ring homomorphism is surjective.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: R.hom([y*z, x*z, x*y], R).is_surjective()
False
sage: Q.<x,y,z> = R.quotient(x*y*z - 1)
sage: Q.hom([y*z, x*z, x*y], Q).is_surjective()
True

ALGORITHM:
By default, this requires the computation of a Gröbner basis.

kernel()
Return the kernel ideal of this ring homomorphism.

EXAMPLES:

sage: A.<x,y> = QQ[]
sage: B.<t> = QQ[]
sage: f = A.hom([t^4, t^3 - t^2], B)
sage: f.kernel()
Ideal (y^4 - x^3 + 4*x^2*y - 2*x*y^2 + x^2)
of Multivariate Polynomial Ring in x, y over Rational Field

We express a Veronese subring of a polynomial ring as a quotient ring:
```python
sage: A.<a,b,c,d> = QQ[]
sage: B.<u,v> = QQ[]
sage: f = A.hom([u^3, u^2*v, u*v^2, v^3], B)
sage: f.kernel() == A.ideal(matrix.hankel([a, b, c], [d]).minors(2))
True
sage: Q = A.quotient(f.kernel())
sage: Q.hom(f.im_gens(), B).is_injective()
True
```

The Steiner-Roman surface:

```python
sage: R.<x,y,z> = QQ[]
sage: S = R.quotient(x^2 + y^2 + z^2 - 1)
sage: f = R.hom([x*y, x*z, y*z], S)
sage: f.kernel()
Ideal (x^2*y^2 + x^2*z^2 + y^2*z^2 - x*y*z)
of Multivariate Polynomial Ring in x, y, z over Rational Field
```

```python
lift(x=None)

Return a lifting map associated to this homomorphism, if it has been defined.

If x is not None, return the value of the lift morphism on x.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: f = R.hom([x,x])
sage: f(x+y)
2*x
sage: f.lift()
Traceback (most recent call last):
 ... ValueError: no lift map defined
sage: g = R.hom(R)
sage: f._set_lift(g)
sage: f.lift() == g
True
sage: f.lift(x)
x
```

```python
pushforward(I)

Returns the pushforward of the ideal I under this ring homomorphism.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]; S.<xx,yy> = R.quo([x^2,y^2]); f = S.cover()
sage: f.pushforward(R.ideal([x,3*x+x*y+y^2])); f = S.cover()
Ideal (xx, xx*yy + 3*xx) of Quotient of Multivariate Polynomial Ring in x, y
over Rational Field by the ideal (x^2, y^2)
```
```
```
Warning: This class is obsolete. Set the category of your morphism to a subcategory of Rings instead.

class sage.rings.morphism.RingHomomorphism_cover

Bases: sage.rings.morphism.RingHomomorphism

A homomorphism induced by quotienting a ring out by an ideal.

EXAMPLES:

```
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = R.quo(x^2 + y^2)
sage: phi = S.cover(); phi
Ring morphism:
  From: Multivariate Polynomial Ring in x, y over Rational Field
  To:   Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the
        ideal (x^2 + y^2)
  Defn: Natural quotient map
sage: phi(x+y)
a + b
```

kernel()

Return the kernel of this covering morphism, which is the ideal that was quotiented out by.

EXAMPLES:

```
sage: f = Zmod(6).cover()
sage: f.kernel()
Principal ideal (6) of Integer Ring
```

class sage.rings.morphism.RingHomomorphism_from_base

Bases: sage.rings.morphism.RingHomomorphism

A ring homomorphism determined by a ring homomorphism of the base ring.

AUTHOR:

• Simon King (initial version, 2010-04-30)

EXAMPLES:

We define two polynomial rings and a ring homomorphism:

```
sage: R.<x,y> = QQ[]
sage: S.<z> = QQ[]
sage: f = R.hom([2*z,3*z],S)
```

Now we construct polynomial rings based on R and S, and let f act on the coefficients:

```
sage: PR.<t> = R[]
sage: PS = S['t']
sage: Pf = PR.hom(f,PS)
sage: Pf
Ring morphism:
  From: Univariate Polynomial Ring in t over Multivariate Polynomial Ring in x, y over Rational Field
  To:   Univariate Polynomial Ring in t over Multivariate Polynomial Ring in z over Rational Field
```

3.1. Homomorphisms of rings
Defn: Induced from base ring by
Ring morphism:
 From: Multivariate Polynomial Ring in x, y over Rational Field
 To: Univariate Polynomial Ring in z over Rational Field
 Defn: x |--> 2*z
 y |--> 3*z

sage: p = (x - 4*y + 1/13)*t^2 + (1/2*x^2 - 1/3*y^2)*t + 2*y^2 + x
sage: Pf(p)
(-10*z + 1/13)*t^2 - z^2*t + 18*z^2 + 2*z

Similarly, we can construct the induced homomorphism on a matrix ring over our polynomial rings:

sage: MR = MatrixSpace(R,2,2)
sage: MS = MatrixSpace(S,2,2)
sage: M = MR([x^2 + 1/7*x*y - y^2, - 1/2*y^2 + 2*y + 1/6, 4*x^2 - 14*x, 1/2*y^2 + 13/4*x - 2/11*y])
sage: Mf = MR.hom(f,MS)
sage: Mf
Ring morphism:
 From: Full MatrixSpace of 2 by 2 dense matrices over Multivariate Polynomial Ring...
 in x, y over Rational Field
 To: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring...
 in z over Rational Field
 Defn: Induced from base ring by
 Ring morphism:
 From: Multivariate Polynomial Ring in x, y over Rational Field
 To: Univariate Polynomial Ring in z over Rational Field
 Defn: x |--> 2*z
 y |--> 3*z
 sage: Mf(M)
[[-29/7*z^2 - 9/2*z^2 + 6*z + 1/6]
 [16*z^2 - 28*z 9/2*z^2 + 131/22*z]

The construction of induced homomorphisms is recursive, and so we have:

sage: MPR = MatrixSpace(PR, 2)
sage: MPS = MatrixSpace(PS, 2)
sage: M = MPR([(- x + y)*t^2 + 58*t - 3*x^2 + x*y, (- 1/7*x*y - 1/40*x)*t^2 + (5*x^2 + y^2)*t + 2*y, (- 1/3*y + 1)*t^2 + 1/3*x*y + y^2 + 5/2*y + 1/4, (x + 6*y + 1)*t^2])
sage: MPf = MPR.hom(f,MPS); MPf
Ring morphism:
 From: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring...
 in t over Multivariate Polynomial Ring in x, y over Rational Field
 To: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring...
 in t over Univariate Polynomial Ring in z over Rational Field
 Defn: Induced from base ring by
 Ring morphism:
 From: Univariate Polynomial Ring in t over Multivariate Polynomial Ring...
 in t over Univariate Polynomial Ring in z over Rational Field
 Defn: x |--> 2*z
 y |--> 3*z

(continues on next page)
Defn: Induced from base ring by

Ring morphism:
From: Multivariate Polynomial Ring in x, y over Rational Field
To: Univariate Polynomial Ring in z over Rational Field
Defn: x |--> 2*z
 y |--> 3*z

sage: MPf(M)
[z*t^2 + 58*t - 6*z^2
 (-6/7*z^2 - 1/20*z)*t^2 + 29*z^2*t + 6*z]
[(-z + 1)*t^2 + 11*z^2 + 15/2*z + 1/4
 (20*z + 1)*t^2]

inverse()

Return the inverse of this ring homomorphism if the underlying homomorphism of the base ring is invertible.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: S.<a,b> = QQ[]
sage: f = R.hom([a+b, a-b], S)
sage: PR.<t> = R[]
sage: PS = S['t']
sage: Pf = PR.hom(f, PS)
sage: Pf.inverse()
Ring morphism:
From: Univariate Polynomial Ring in t over Multivariate Polynomial Ring in a, b over Rational Field
To: Univariate Polynomial Ring in t over Multivariate Polynomial Ring in x, y over Rational Field
Defn: Induced from base ring by
 Ring morphism:
 From: Multivariate Polynomial Ring in a, b over Rational Field
 To: Multivariate Polynomial Ring in x, y over Rational Field
 Defn: a |--> 1/2*x + 1/2*y
 b |--> 1/2*x - 1/2*y
sage: Pf.inverse()(Pf(x*t^2 + y*t))
x*t^2 + y*t

underlying_map()

Return the underlying homomorphism of the base ring.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: S.<z> = QQ[]
sage: f = R.hom([2*z,3*z],S)
sage: MR = MatrixSpace(R,2)
sage: MS = MatrixSpace(S,2)
sage: g = MR.hom(f,MS)
sage: g.underlying_map() == f
True

class sage.rings.morphism.RingHomomorphism_from_fraction_field

Bases: sage.rings.morphism.RingHomomorphism

Morphisms between fraction fields.

3.1. Homomorphisms of rings
inverse()

Return the inverse of this ring homomorphism if it exists.

EXAMPLES:

```
sage: S.<x> = QQ[]
sage: f = S.hom([2*x - 1])
sage: g = f.extend_to_fraction_field()
sage: g.inverse()
Ring endomorphism of Fraction Field of Univariate Polynomial Ring
in x over Rational Field
  Defn: x |--> 1/2*x + 1/2
```

class sage.rings.morphism.RingHomomorphism_from_quotient

Bases: sage.rings.morphism.RingHomomorphism

A ring homomorphism with domain a generic quotient ring.

INPUT:

- `parent` – a ring homset Hom(R, S)
- `phi` – a ring homomorphism C --> S, where C is the domain of R.cover()

OUTPUT: a ring homomorphism

The domain R is a quotient object C \to R, and R.cover() is the ring homomorphism \varphi : C \to R. The condition on the elements im_gens of S is that they define a homomorphism C \to S such that each generator of the kernel of \varphi maps to 0.

EXAMPLES:

```
sage: R.<x, y, z> = PolynomialRing(QQ, 3)
sage: S.<a, b, c> = R.quo(x^3 + y^3 + z^3)
sage: phi = S.hom([b, c, a]); phi
Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y, z over Rational Field by the ideal (x^3 + y^3 + z^3)
  Defn: a |--> b
  b |--> c
  c |--> a
sage: phi(a+b+c)
a + b + c
sage: loads(dumps(phi)) == phi
True
```

Validity of the homomorphism is determined, when possible, and a TypeError is raised if there is no homomorphism sending the generators to the given images:

```
sage: S.hom([[b^2, c^2, a^2]])
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by images of generators
```

morphism_from_cover()

Underlying morphism used to define this quotient map, i.e., the morphism from the cover of the domain.

EXAMPLES:
```python
sage: R.<x,y> = QQ[]; S.<xx,yy> = R.quo([x^2,y^2])
sage: S.hom([yy,xx]).morphism_from_cover()
Ring morphism:
  From: Multivariate Polynomial Ring in x, y over Rational Field
  To:  Quotient of Multivariate Polynomial Ring in x, y over Rational Field by
        → the ideal (x^2, y^2)
  Defn: x |--> yy
        y |--> xx
```

```python
class sage.rings.morphism.RingHomomorphism_im_gens
    Bases: sage.rings.morphism.RingHomomorphism

    A ring homomorphism determined by the images of generators.

    base_map()
    Return the map on the base ring that is part of the defining data for this morphism. May return None if a coercion is used.

    EXAMPLES:
```
```python
    sage: R.<x> = ZZ[]
sage: K.<i> = NumberField(x^2 + 1)
sage: cc = K.hom([-i])
sage: S.<y> = K[]
sage: phi = S.hom([y^2], base_map=cc)
sage: phi
    Ring endomorphism of Univariate Polynomial Ring in y over Number Field in i with defining polynomial x^2 + 1
    Defn: y |--> y^2
         with map of base ring
    sage: phi(y)
y^2
    sage: phi(i*y)
    -i*y^2
    sage: phi.base_map()
    Composite map:
        From: Number Field in i with defining polynomial x^2 + 1
        To:  Univariate Polynomial Ring in y over Number Field in i with defining polynomial x^2 + 1
        Defn: Ring endomorphism of Number Field in i with defining polynomial x^2 + 1
               → 1
        then
        Polynomial base injection morphism:
            From: Number Field in i with defining polynomial x^2 + 1
            To:  Univariate Polynomial Ring in y over Number Field in i with defining polynomial x^2 + 1
```

```python
im_gens()
    Return the images of the generators of the domain.

    OUTPUT:
    • list – a copy of the list of gens (it is safe to change this)

    EXAMPLES:
```
```python
sage: R.<x,y> = QQ[]
sage: f = R.hom([x,x+y])
sage: f.im_gens()
[x, x + y]
```

We verify that the returned list of images of gens is a copy, so changing it doesn’t change \(f\):

```python
sage: f.im_gens()[0] = 5
sage: f.im_gens()
[x, x + y]
```

```python
class sage.rings.morphism.RingMap
    Bases: sage.categories.morphism.Morphism

    Set-theoretic map between rings.

class sage.rings.morphism.RingMap_lift
    Bases: sage.rings.morphism.RingMap

    Given rings \(R\) and \(S\) such that for any \(x \in R\) the function \(x.lift()\) is an element that naturally coerces to \(S\), this returns the set-theoretic ring map \(R \rightarrow S\) sending \(x\) to \(x.lift()\).

    EXAMPLES:
    ```
sage: R.<x,y> = QQ[]
sage: S.<xbar,ybar> = R.quo((x^2 + y^2, y))
sage: S.lift()
 Set-theoretic ring morphism:
 From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the
 \(-\)ideal (x^2 + y^2, y)
 To: Multivariate Polynomial Ring in x, y over Rational Field
 Defn: Choice of lifting map
sage: S.lift() == 0
 False
```

Since trac ticket #11068, it is possible to create quotient rings of non-commutative rings by two-sided ideals. It was needed to modify \(RingMap\_lift\) so that rings can be accepted that are no instances of \(sage.rings.ring.Ring\), as in the following example:

```python
sage: MS = MatrixSpace(GF(5),2,2)
sage: I = MS*[MS.0*MS.1,MS.2+MS.3]*MS
sage: Q = MS.quo(I)
sage: Q.0*Q.1 # indirect doctest
[0 1]
[0 0]
```

```python
sage.rings.morphism.is_RingHomomorphism(phi)
 Return True if phi is of type RingHomomorphism.

 EXAMPLES:
    ```
sage: f = Zmod(8).cover()
sage: sage.rings.morphism.is_RingHomomorphism(f)
doctest:warning...
    DeprecationWarning: is_RingHomomorphism() should not be used anymore. Check whether
    the category_for() your morphism is a subcategory of Rings() instead
```
```
3.2 Space of homomorphisms between two rings

`sage.rings.homset.RingHomset(R, S, category=None)`
Construct a space of homomorphisms between the rings R and S.

For more on homsets, see `Hom()`.

**EXAMPLES:**

```python
sage: Hom(ZZ, QQ) # indirect doctest
Set of Homomorphisms from Integer Ring to Rational Field
```

```python
class sage.rings.homset.RingHomset_generic(R, S, category=None)
Bases: sage.categories.homset.HomsetWithBase
A generic space of homomorphisms between two rings.

EXAMPLES:

```python
sage: Hom(ZZ, QQ)
Set of Homomorphisms from Integer Ring to Rational Field
sage: QQ.Hom(ZZ)
Set of Homomorphisms from Rational Field to Integer Ring
```

Element
alias of `sage.rings.morphism.RingHomomorphism`

has_coerce_map_from(x)
The default for coercion maps between ring homomorphism spaces is very restrictive (until more implementation work is done).

Currently this checks if the domains and the codomains are equal.

EXAMPLES:

```python
sage: H = Hom(ZZ, QQ)
sage: H2 = Hom(QQ, ZZ)
sage: H.has_coerce_map_from(H2)
False
```

natural_map()
Returns the natural map from the domain to the codomain.

The natural map is the coercion map from the domain ring to the codomain ring.

EXAMPLES:

```python
sage: H = Hom(ZZ, QQ)
sage: H.natural_map()
Natural morphism:
```

(continues on next page)
From: Integer Ring
To: Rational Field

zero()
Return the zero element of this homset.

EXAMPLES:

Since a ring homomorphism maps 1 to 1, there can only be a zero morphism when mapping to the trivial ring:

```
sage: Hom(ZZ, Zmod(1)).zero()
Ring morphism:
   From: Integer Ring  
   To: Ring of integers modulo 1
   Defn: 1 |--> 0
sage: Hom(ZZ, Zmod(2)).zero()
Traceback (most recent call last):
  ...  
ValueError: homset has no zero element
```

class sage.rings.homset.RingHomset_quo_ring(R, S, category=None)

Bases: sage.rings.homset.RingHomset_generic

Space of ring homomorphisms where the domain is a (formal) quotient ring.

EXAMPLES:

```
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = R.quotient(x^2 + y^2)
sage: phi = S.hom([b,a]); phi
Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2)
   Defn: a |--> b
   b |--> a
sage: phi(a)
b
sage: phi(b)
a
```

Element

alias of sage.rings.morphism.RingHomomorphism_from_quotient

sage.rings.homset.is_RingHomset(H)
Return True if H is a space of homomorphisms between two rings.

EXAMPLES:

```
sage: from sage.rings.homset import is_RingHomset as is_RH
sage: is_RH(Hom(ZZ, QQ))
True
sage: is_RH(ZZ)
False
sage: is_RH(Hom(RR, CC))
True
```

(continues on next page)
\begin{verbatim}
sage: is_RH(Hom(FreeModule(ZZ,1), FreeModule(QQ,1)))
False
\end{verbatim}
CHAPTER FOUR

QUOTIENT RINGS

4.1 Quotient Rings

AUTHORS:
• William Stein
• Simon King (2011-04): Put it into the category framework, use the new coercion model.
• Simon King (2011-04): Quotients of non-commutative rings by twosided ideals.

Todo: The following skipped tests should be removed once trac ticket #13999 is fixed:

```
sage: TestSuite(S).run(skip=['_test_nonzero_equal', '_test_elements', '_test_zero'])
```

In trac ticket #11068, non-commutative quotient rings R/I were implemented. The only requirement is that the twosided ideal I provides a reduce method so that $I\cdot reduce(x)$ is the normal form of an element x with respect to I (i.e., we have $I\cdot reduce(x) = I\cdot reduce(y)$ if $x - y \in I$, and $x - I\cdot reduce(x)$ in I). Here is a toy example:

```
sage: from sage.rings.noncommutative_ideals import Ideal_nc
sage: from itertools import product
sage: class PowerIdeal(Ideal_nc):
    ....:     def __init__(self, R, n):
    ....:         self._power = n
    ....:         Ideal_nc.__init__(self, R, [R.prod(m) for m in product(R.gens(), repeat=n)])
    ....:     def reduce(self,x):
    ....:         R = self.ring()
    ....:         return add([c*R(m) for m,c in x if len(m)<self._power],R(0))

sage: F.<x,y,z> = FreeAlgebra(QQ, 3)
sage: I3 = PowerIdeal(F,3); I3
```

Twosided Ideal (x^3, x^2*y, x^2*z, x*y^2, x*y*z, x*z^2, y^3, y^2*x, y^2*z, y*z^2, z^3) of
Free Algebra on 3 generators (x, y, z) over Rational Field

Free algebras have a custom quotient method that serves at creating finite dimensional quotients defined by multiplication matrices. We are bypassing it, so that we obtain the default quotient:
Even though Q_3 is not commutative, there is commutativity for products of degree three:

```
sage: a*(b*c)-(b*c)*a==F.zero()
True
```

If we quotient out all terms of degree two then of course the resulting quotient ring is commutative:

```
sage: I2 = PowerIdeal(F,2); I2
Twosided Ideal (x^2, x*y, x*z, y*x, y^2, y*z, z*x, z*y, z^2) of Free Algebra
on 3 generators (x, y, z) over Rational Field
sage: Q2.<a,b,c> = F.quotient(I2)
sage: Q2.is_commutative()
True
sage: (a+b+2)^4
16 + 32*a + 32*b
```

Since trac ticket #7797, there is an implementation of free algebras based on Singular’s implementation of the Letterplace Algebra. Our letterplace wrapper allows to provide the above toy example more easily:

```
sage: from itertools import product
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: Q3 = F.quo(F*[F.prod(m) for m in product(F.gens(), repeat=3)]*F)
sage: Q3
Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
by the ideal (x*x*x, x*x*y, x*x*z, x*y*x, x*y*y, x*y*z, x*z*x, x*z*y, x*z*z, y*x*x, y*x*y, y*x*z, y*y*x, y*y*y, y*y*z, y*z*x, y*z*y, y*z*z, z*x*x, z*x*y, z*x*z, z*y*x, z*y*y, z*y*z, z*z*x, z*z*y, z*z*z)
sage: Q3.0*Q3.1-Q3.1*Q3.0
xbar*ybar - ybar*xbar
sage: Q3.0*(Q3.1*Q3.2)-(Q3.1*Q3.2)*Q3.0
0
sage: Q2 = F.quo(F*[F.prod(m) for m in product(F.gens(), repeat=2)]*F)
sage: Q2.is_commutative()
True
```

This function:

\[\text{sage.rings.quotient_ring.QuotientRing}(R, I, names=None, **kwds) \]

Creates a quotient ring of the ring R by the twosided ideal I.

INPUT:
- R – a ring.

Variables are labeled by names (if the quotient ring is a quotient of a polynomial ring). If names isn’t given, ‘bar’ will be appended to the variable names in R.

Chapter 4. Quotient Rings
• \(I \) – a twosided ideal of \(R \).
• names – (optional) a list of strings to be used as names for the variables in the quotient ring \(R/I \).
• further named arguments that will be passed to the constructor of the quotient ring instance.

OUTPUT: \(R/I \) - the quotient ring \(R \) mod the ideal \(I \)

ASSUMPTION:

I has a method \(I \text{.reduce}(x) \) returning the normal form of elements \(x \in R \). In other words, it is required that \(I \text{.reduce}(x) == I \text{.reduce}(y) \iff x - y \in I \), and \(x - I \text{.reduce}(x) \in I \), for all \(x, y \in R \).

EXAMPLES:

Some simple quotient rings with the integers:

\[
\begin{align*}
\text{sage: } R &= \text{QuotientRing} (\mathbb{Z} \mathbb{Z}, 7 \mathbb{Z} \mathbb{Z}) \; \text{; } R \\
\text{sage: } R.gens() &= (1,) \\
\text{sage: } 1*R(3) &= 6*R(3) = 7*R(3) \\
3 &= 4 \\
&= 0
\end{align*}
\]

\[
\begin{align*}
\text{sage: } S &= \text{QuotientRing} (\mathbb{Z} \mathbb{Z}, 8) \; \text{; } S \\
\text{sage: } 2*S(4) &= 0
\end{align*}
\]

With polynomial rings (note that the variable name of the quotient ring can be specified as shown below):

\[
\begin{align*}
\text{sage: } P.\langle x \rangle &= \mathbb{Q}[] \\
\text{sage: } R.\langle xx \rangle &= \text{QuotientRing} (P, P.\text{ideal}(x^2 + 1)) \\
\text{sage: } R &= \text{Univariate Quotient Polynomial Ring in xx over Rational Field with modulus } x^2 + 1 \\
\text{sage: } R.gens(); R.gen() &= (xx,) \text{ ; } xx \\
\text{sage: for } n \text{ in range}(4): xx^n \\
1 &= xx \\
-1 &= -xx
\end{align*}
\]

\[
\begin{align*}
\text{sage: } P.\langle x \rangle &= \mathbb{Q}[] \\
\text{sage: } S &= \text{QuotientRing} (P, P.\text{ideal}(x^2 - 2)) \\
\text{sage: } S &= \text{Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus } x^2 - 2 \\
\text{sage: } xbar &= S.gens(); S.gens() \\
xbar &= xbar \\
\text{sage: for } n \text{ in range}(3): xbar^n \\
1 &= xbar \\
2 &= -xx
\end{align*}
\]
Sage coerces objects into ideals when possible:

\begin{verbatim}
sage: P.<x> = QQ[]
sage: R = QuotientRing(P, x^2 + 1); R
Univariate Quotient Polynomial Ring in xbar over Rational Field with
modulus x^2 + 1
\end{verbatim}

By Noether's homomorphism theorems, the quotient of a quotient ring of \(R \) is just the quotient of \(R \) by the sum of the ideals. In this example, we end up modding out the ideal \((x)\) from the ring \(\mathbb{Q}[x, y] \):

\begin{verbatim}
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = QuotientRing(R,R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S,S.ideal(a))
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal
\(\langle x, y^2 + 1 \rangle \)
sage: R.gens(); S.gens(); T.gens()
(x, y)
(a, b)
(0, d)
sage: for n in range(4): d^n
1
d
-1
-d
\end{verbatim}

```python
class sage.rings.quotient_ring.QuotientRingIdeal_generic(ring, gens, coerce=True)
Bases: sage.rings.ideal.Ideal_generic
Specialized class for quotient-ring ideals.
EXAMPLES:

sage: Zmod(9).ideal([-6,9])
Ideal (3, 0) of Ring of integers modulo 9
```
sage: S = R.quotient_ring(I); S
Quotient of Univariate Polynomial Ring in x over Integer Ring by the ideal (x^2 + _
˓→3*x + 4, x^2 + 1)

class sage.rings.quotient_ring.QuotientRing_nc(R, I, names=None, category=None)
Bases: sage.rings.ring.Ring, sage.structure.parent_gens.ParentWithGens

The quotient ring of R by a twosided ideal I.

This class is for rings that do not inherit from CommutativeRing.

EXAMPLES:

Here is a quotient of a free algebra by a twosided homogeneous ideal:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q.<a,b,c> = F.quo(I); Q
Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field by the ideal (x*y + y*z, x*x + x*y - y*x - y*y)
sage: a*b
-b*c
sage: a^3
-b*c*a - b*c*b - b*c*c

A quotient of a quotient is just the quotient of the original top ring by the sum of two ideals:

sage: J = Q*[a^3-b^3]*Q
sage: R.<i,j,k> = Q.quo(J); R
Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field by the ideal (-y*z^2 - y*z*x - 2*y*z*z, x*y + y*z, x*x + x*y - y*x - y*y)
sage: i^3
-j*k*i - j*k*j - j*k*k
sage: j^3
-j*k*i - j*k*j - j*k*k

For rings that do inherit from CommutativeRing, we provide a subclass QuotientRing_generic, for backwards compatibility.

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ, 'x')
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I); S
Quotient of Univariate Polynomial Ring in x over Integer Ring by the ideal (x^2 + _
˓→3*x + 4, x^2 + 1)

sage: R.<x,y> = PolynomialRing(QQ)
sage: S.<a,b> = R.quo(x^2 + y^2)
sage: a^2 + b^2 == 0
True
sage: S(0) == a^2 + b^2
True

Again, a quotient of a quotient is just the quotient of the original top ring by the sum of two ideals.

4.1. Quotient Rings

69
```python
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = R.quo(1 + y^2)
sage: T.<c,d> = S.quo(a)
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal
(x, y^2 + 1)
sage: T.gens()
(0, d)
```

Element

Alias of `sage.rings.quotient_ring_element.QuotientRingElement`

ambient()

Returns the cover ring of the quotient ring: that is, the original ring R from which we modded out an ideal, I.

Examples:

```python
sage: Q = QuotientRing(ZZ,7*ZZ)
sage: Q.cover_ring()
Integer Ring
sage: P.<x> = QQ[]
sage: Q = QuotientRing(P, x^2 + 1)
sage: Q.cover_ring()
Univariate Polynomial Ring in x over Rational Field
```

characteristic()

Return the characteristic of the quotient ring.

Todo: Not yet implemented!

Examples:

```python
sage: Q = QuotientRing(ZZ,7*ZZ)
sage: Q.characteristic()
Traceback (most recent call last):
  ...
NotImplementedError
```

construction()

Returns the functorial construction of `self`.

Examples:

```python
sage: R.<x> = PolynomialRing(ZZ, 'x')
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: R.quotient_ring(I).construction()
(QuotientFunctor, Univariate Polynomial Ring in x over Integer Ring)
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = F.quo(I)
sage: Q.construction()
(QuotientFunctor, Free Associative Unital Algebra on 3 generators (x, y, z)
 over Rational Field)
```

(continues on next page)
The covering ring homomorphism $R \rightarrow R/I$, equipped with a section.

EXAMPLES:

```sage
R = ZZ.quo(3*ZZ)
sage: pi = R.cover()
sage: pi
Ring morphism:
  From: Integer Ring
  To:   Ring of integers modulo 3
  Defn: Natural quotient map
sage: pi(5)
2
sage: l = pi.lift()
```

```sage
R.<x,y> = PolynomialRing(QQ)
Q = R.quo( (x^2,y^2) )
sage: pi = Q.cover()
sage: pi(x^3+y)
ysage: l = pi.lift(x+y^3)
sage: l
x
```

cover_ring()

Returns the cover ring of the quotient ring: that is, the original ring R from which we modded out an ideal, I.

EXAMPLES:

```sage
Q = QuotientRing(ZZ,7*ZZ)
sage: Q.cover_ring()
Integer Ring
```

```sage
P.<x> = QQ[]
Q = QuotientRing(P, x^2 + 1)
sage: Q.cover_ring()
Univariate Polynomial Ring in x over Rational Field
```

defining_ideal()

Returns the ideal generating this quotient ring.

EXAMPLES:
In the integers:

```
sage: Q = QuotientRing(ZZ, 7*ZZ)
sage: Q.defining_ideal()
Principal ideal (7) of Integer Ring
```

An example involving a quotient of a quotient. By Noether’s homomorphism theorems, this is actually a quotient by a sum of two ideals:

```
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = QuotientRing(R,R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S,S.ideal(a))
sage: S.defining_ideal()
Ideal (y^2 + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: T.defining_ideal()
Ideal (x, y^2 + 1) of Multivariate Polynomial Ring in x, y over Rational Field
```

`gen(i=0)`
Returns the i-th generator for this quotient ring.

EXAMPLES:

```
sage: R = QuotientRing(ZZ, 7*ZZ)
sage: R.gen(0)
1
sage: S.<a,b> = QuotientRing(R,R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S,S.ideal(a))
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x, y^2 + 1)
sage: R.gen(0); R.gen(1)
x
y
sage: S.gen(0); S.gen(1)
a
b
sage: T.gen(0); T.gen(1)
0
d
```

`ideal(*gens, **kwds)`
Return the ideal of self with the given generators.

EXAMPLES:

```
sage: R.<x,y> = PolynomialRing(QQ)
sage: S = R.quotient_ring(x^2+y^2)
sage: S.ideal()
Ideal (0) of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2)
sage: S.ideal(x+y+1)
Ideal (xbar + ybar + 1) of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2)
```
is_commutative()
Tell whether this quotient ring is commutative.

Note: This is certainly the case if the cover ring is commutative. Otherwise, if this ring has a finite number of generators, it is tested whether they commute. If the number of generators is infinite, a `NotImplementedError` is raised.

AUTHOR:
• Simon King (2011-03-23): See trac ticket #7797.

EXAMPLES:
Any quotient of a commutative ring is commutative:

```sage
P.<a,b,c> = QQ[]
P.quo(P.random_element()).is_commutative()
```
```
True
```

The non-commutative case is more interesting:

```sage
F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
I = F*[x^2+y*z,x^2+y*z-x^2-y^2]*F
Q = F.quo(I)
Q.is_commutative()
```
```
False
```

```sage
Q.1*Q.2==Q.2*Q.1
```
```
False
```

In the next example, the generators apparently commute:

```sage
J = F*[x^3-y^3, x*z*z, y*z*z, x^2-y^2]*F
R = F.quo(J)
R.is_commutative()
```
```
True
```

is_field(proof=True)
Returns `True` if the quotient ring is a field. Checks to see if the defining ideal is maximal.

is_integral_domain(proof=True)
With `proof` equal to `True` (the default), this function may raise a `NotImplementedError`.

When `proof` is `False`, if `True` is returned, then `self` is definitely an integral domain. If the function returns `False`, then either `self` is not an integral domain or it was unable to determine whether or not `self` is an integral domain.

EXAMPLES:

```sage
R.<x,y> = QQ[]
R.quo(x^2 - y).is_integral_domain()
```
```
True
```

```sage
R.quo(x^2 - y^2).is_integral_domain()
```
```
False
```

```sage
R.quo(x^2 - y^2).is_integral_domain(proof=False)
```
```
False
```

```sage
R.<a,b,c> = ZZ[]
```

(continues on next page)
sage: R = QuotientRing(ZZ, 102*ZZ)
sage: R.is_noetherian()
True
sage: P.<x> = QQ[]
sage: R = QuotientRing(P, x^2+1)
sage: R.is_noetherian()
True

If the cover ring of self is not Noetherian, we currently have no way of testing whether self is Noetherian, so we raise an error:
sage: R.<x> = InfinitePolynomialRing(QQ)
sage: R.is_noetherian()
False
sage: I = R.ideal([x[1]^2, x[2]])
sage: S = R.quotient(I)
sage: S.is_noetherian()
Traceback (most recent call last):
... Not ImplementedError

lift(x=None)

Return the lifting map to the cover, or the image of an element under the lifting map.

Note: The category framework imposes that Q.lift(x) returns the image of an element x under the lifting map. For backwards compatibility, we let Q.lift() return the lifting map.

EXAMPLES:
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quotient(x^2 + y^2)
sage: S.lift()
Set-theoretic ring morphism:
 From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by x^2 + y^2
 To: Multivariate Polynomial Ring in x, y over Rational Field
 Defn: Choice of lifting map
lifting_map()

Return the lifting map to the cover.

EXAMPLES:

```python
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quotient(x^2 + y^2)
sage: pi = S.cover(); pi
Ring morphism:
  From: Multivariate Polynomial Ring in x, y over Rational Field
  To:   Quotient of Multivariate Polynomial Ring in x, y over Rational Field by...
        the ideal (x^2 + y^2)
  Defn: Natural quotient map
sage: L = S.lifting_map(); L
Set-theoretic ring morphism:
  From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by...
        the ideal (x^2 + y^2)
  To:   Multivariate Polynomial Ring in x, y over Rational Field
  Defn: Choice of lifting map
sage: L(S.0)
x
sage: L(S.1)
y
Note that some reduction may be applied so that the lift of a reduction need not equal the original element:

```python
sage: z = pi(x^3 + 2*y^2); z
-xbar*ybar^2 + 2*ybar^2
sage: L(z)
-x*y^2 + 2*y^2
sage: L(z) == x^3 + 2*y^2
False
```
ngens()
Returns the number of generators for this quotient ring.

Todo: Note that ngens counts 0 as a generator. Does this make sense? That is, since 0 only generates itself and the fact that this is true for all rings, is there a way to “knock it off” of the generators list if a generator of some original ring is modded out?

EXAMPLES:

```python
sage: R = QuotientRing(ZZ, 7*ZZ)
sage: R.gens(); R.ngens()
(1,)
1
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = QuotientRing(R, R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S, S.ideal(a))
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x, y^2 + 1)
sage: R.gens(); S.gens(); T.gens()
(x, y)
(a, b)
(0, d)
sage: R.ngens(); S.ngens(); T.ngens()
2
2
2
```

retract(x)
The image of an element of the cover ring under the quotient map.

INPUT:
• x – An element of the cover ring

OUTPUT:
The image of the given element in self.

EXAMPLES:

```python
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quotient(x^2 + y^2)
sage: T = S.retract((x+y)^2)
2*xbar*ybar
```

term_order()
Return the term order of this ring.

EXAMPLES:
sage: P.<a,b,c> = PolynomialRing(QQ)
sage: I = Ideal([a^2 - a, b^2 - b, c^2 - c])
sage: Q = P.quotient(I)
sage: Q.term_order()
Degree reverse lexicographic term order

sage.rings.quotient_ring.is_QuotientRing(x)
Tests whether or not x inherits from QuotientRing_nc.

EXAMPLES:

sage: from sage.rings.quotient_ring import is_QuotientRing
sage: R.<x> = PolynomialRing(ZZ, 'x')
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I)
sage: is_QuotientRing(S)
True
sage: is_QuotientRing(R)
False
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = F.quo(I)
sage: is_QuotientRing(Q)
True
sage: is_QuotientRing(F)
False

4.2 Quotient Ring Elements

AUTHORS:
• William Stein

class sage.rings.quotient_ring_element.QuotientRingElement(parent, rep, reduce=True)
Bases: sage.structure.element.RingElement

An element of a quotient ring \( R/I \).

INPUT:
• parent - the ring \( R/I \)
• rep - a representative of the element in \( R \); this is used as the internal representation of the element
• reduce - bool (optional, default: True) - if True, then the internal representation of the element is rep
   reduced modulo the ideal \( I \)

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ)
sage: S.<xbar> = R.quo((4 + 3*x + x^2, 1 + x^2)); S
Quotient of Univariate Polynomial Ring in x over Integer Ring by the ideal (x^2 + 3*x + 4, x^2 + 1) (continues on next page)
sage: v = S.gens(); v
(xbar,)

sage: loads(v[0].dumps()) == v[0]
True

sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quo(x^2 + y^2); S
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal
      (x^2 + y^2)
sage: S.gens()
(xbar, ybar)

We name each of the generators.

sage: S.<a,b> = R.quotient(x^2 + y^2)
sage: a
a
sage: b
b
sage: a^2 + b^2 == 0
True
sage: b.lift()
y
sage: (a^3 + b^2).lift()
-x*y^2 + y^2

is_unit()
Return True if self is a unit in the quotient ring.

EXAMPLES:

sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(1 - x*y); type(a)
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_class'>
sage: a*b
1
sage: S(2).is_unit()
True

Check that trac ticket #29469 is fixed:

sage: a.is_unit()
True
sage: (a+b).is_unit()
False

lc()
Return the leading coefficient of this quotient ring element.

EXAMPLES:
lift()

If self is an element of $R/I$, then return self as an element of $R$.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(x^2 + y^2); type(a)
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_class'>
sage: a.lift()
x
sage: (3/5*(a + a^2 + b^2)).lift()
3/5*x
```

lm()

Return the leading monomial of this quotient ring element.

EXAMPLES:

```python
sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: I = sage.rings.ideal.FieldIdeal(R)
sage: Q = R.quo(I)
sage: f = Q(z*y + 2*x)
sage: f.lm()
xbar
```

lt()

Return the leading term of this quotient ring element.

EXAMPLES:

```python
sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: I = sage.rings.ideal.FieldIdeal(R)
sage: Q = R.quo(I)
sage: f = Q(z*y + 2*x)
sage: f.lt()
2*xbar
```

monomials()

Return the monomials in self.

OUTPUT:

A list of monomials.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(x^2 + y^2); type(a)
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_class'>
```
reduce\((G)\)
Reduce this quotient ring element by a set of quotient ring elements \(G\).

**INPUT:**

- \(G\) - a list of quotient ring elements

**Warning:** This method is not guaranteed to return unique minimal results. For quotients of polynomial rings, use `reduce()` on the ideal generated by \(G\), instead.

**EXAMPLES:**

```python
sage: P.<a,b,c,d,e> = PolynomialRing(GF(2), 5, order='lex')
sage: I1 = ideal([a*b + c*d + 1, a*c*e + d*e, a*b*e + c*e, b*c + c*d*e + 1])
sage: Q = P.quotient(sage.rings.ideal.FieldIdeal(P))
sage: I2 = ideal([Q(f) for f in I1.gens()])
sage: f = Q((a*b + c*d + 1)^2 + e)
sage: f.reduce(I2.gens())
```

Notice that the result above is not minimal:

```python
sage: I2.reduce(f)
```

**variables()**
Return all variables occurring in `self`.

**OUTPUT:**
A tuple of linear monomials, one for each variable occurring in `self`.

**EXAMPLES:**

```python
sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(x^2 + y^2); type(a)
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_class'>
sage: a.variables()
(a,)
sage: b.variables()
(b,)
sage: s = a^2 + b^2 + 1; s
1
sage: s.variables()
()
sage: (a+b).variables()
(a, b)
```
5.1 Fraction Field of Integral Domains

AUTHORS:

• William Stein (with input from David Joyner, David Kohel, and Joe Wetherell)
• Burcin Erocal
• Julian Rüth (2017-06-27): embedding into the field of fractions and its section

EXAMPLES:

Quotienting is a constructor for an element of the fraction field:

\[
\begin{align*}
sage: & \ R.\langle x \rangle = \QQ[] \\
sage: & (x^2-1)/(x+1) \\
x - 1 \\
sage: & parent((x^2-1)/(x+1)) \\
& \text{Fraction Field of Univariate Polynomial Ring in x over Rational Field}
\end{align*}
\]

The GCD is not taken (since it doesn’t converge sometimes) in the inexact case:

\[
\begin{align*}
sage: & \ Z.\langle z \rangle = \CC[] \\
sage: & I = \CC.\mathrm{gen}() \\
sage: & (1+I+z)/(z+0.1*I) \\
& (z + 1.00000000000000 + I)/(z + 0.100000000000000*I) \\
sage: & (1+I*z)/(z+1.1) \\
& (I*z + 1.00000000000000)/(z + 1.10000000000000)
\end{align*}
\]

sage.rings.fraction_field.FractionField(R, names=None)

Create the fraction field of the integral domain R.

INPUT:

• R – an integral domain
• names – ignored

EXAMPLES:

We create some example fraction fields:

\[
\begin{align*}
sage: & \ \text{FractionField(IntegerRing())} \\
& \text{Rational Field} \\
sage: & \ \text{FractionField(PolynomialRing(RationalField(),'x'))}
\end{align*}
\]
Fraction Field of Univariate Polynomial Ring in x over Rational Field
\( \text{sage: FractionField(PolynomialRing(IntegerRing(), 'x'))} \)
Fraction Field of Univariate Polynomial Ring in x over Integer Ring
\( \text{sage: FractionField(PolynomialRing(RationalField(),2,'x'))} \)
Fraction Field of Multivariate Polynomial Ring in x0, x1 over Rational Field

Dividing elements often implicitly creates elements of the fraction field:
\( \text{sage: x = PolynomialRing(RationalField(), 'x').gen()} \)
\( \text{sage: f = x/(x+1)} \)
\( \text{sage: g = x**3/(x+1)} \)
\( \text{sage: f/g} \)
\( 1/x^2 \)
\( \text{sage: g/f} \)
\( x^2 \)

The input must be an integral domain:
\( \text{sage: Frac(Integers(4))} \)
Traceback (most recent call last):
...
TypeError: R must be an integral domain.

class \text{FractionFieldEmbedding} \text{FractionFieldEmbedding}
Bases: \text{DefaultConvertMap_unique}
The embedding of an integral domain into its field of fractions.

\( \text{is_injective}() \)
Return whether this map is injective.

\( \text{is_surjective}() \)
Return whether this map is surjective.
section()
Return a section of this map.

EXAMPLES:

```
sage: R.<x> = QQ[

sage: R.fraction_field().coerce_map_from(R).section()
Section map:
 From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
 To: Univariate Polynomial Ring in x over Rational Field
```

class sage.rings.fraction_field.FractionFieldEmbeddingSection
Bases: sage.categories.map.Section

The section of the embedding of an integral domain into its field of fractions.

EXAMPLES:

```
sage: R.<x> = QQ[

sage: f = R.fraction_field().coerce_map_from(R).section(); f
Section map:
 From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
 To: Univariate Polynomial Ring in x over Rational Field
```

class sage.rings.fraction_field.FractionField_1poly_field(R, element_class=<class
'sage.rings.fraction_field_element.FractionFieldElement_1poly_field'>)
Bases: sage.rings.fraction_field.FractionField_generic

The fraction field of a univariate polynomial ring over a field.

Many of the functions here are included for coherence with number fields.

class_number()
Here for compatibility with number fields and function fields.

EXAMPLES:

```
sage: R.<t> = GF(5)[]; K = R.fraction_field()
sage: K.class_number()
1
```

function_field()
Return the isomorphic function field.

EXAMPLES:

```
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: K.function_field()
Rational function field in t over Finite Field of size 5
```

See also:

sage.rings.function_field.RationalFunctionField.field()

maximal_order()
Return the maximal order in this fraction field.

EXAMPLES:
```python
sage: K = FractionField(GF(5)['t'])
sage: K.maximal_order()
Univariate Polynomial Ring in t over Finite Field of size 5
```

**ring_of_integers()**

Return the ring of integers in this fraction field.

**EXAMPLES:**

```python
sage: K = FractionField(GF(5)['t'])
sage: K.ring_of_integers()
Univariate Polynomial Ring in t over Finite Field of size 5
```

**class** `sage.rings.fraction_field.FractionField_generic(R, element_class=<class 'sage.rings.fraction_field_element.FractionFieldElement'>, category=Category of quotient fields)

Bases: `sage.rings.ring.Field`

The fraction field of an integral domain.

**base_ring()**

Return the base ring of `self`.

This is the base ring of the ring which this fraction field is the fraction field of.

**EXAMPLES:**

```python
sage: R = Frac(ZZ['t'])
sage: R.base_ring()
Integer Ring
```

**characteristic()**

Return the characteristic of this fraction field.

**EXAMPLES:**

```python
sage: R = Frac(ZZ['t'])
sage: R.base_ring()
Integer Ring
sage: R = Frac(ZZ['t']); R.characteristic()
0
sage: R = Frac(GF(5)['w']); R.characteristic()
5
```

**construction()**

**EXAMPLES:**

```python
sage: Frac(ZZ['x']).construction()
(FractionField, Univariate Polynomial Ring in x over Integer Ring)
sage: K = Frac(GF(3)['t'])
sage: f, R = K.construction()
sage: f(R)
Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 3
sage: f(R) == K
True
```
\textbf{gen}(i=0)

Return the \textit{i}-th generator of \textit{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = Frac(PolynomialRing(QQ,'z',10)); R
Fraction Field of Multivariate Polynomial Ring in z0, z1, z2, z3, z4, z5, z6, \ldots
    -> z7, z8, z9 over Rational Field
sage: R.0
z0
sage: R.gen(3)
z3
sage: R.3
z3
\end{verbatim}

\textbf{is_exact()}

Return if \textit{self} is exact which is if the underlying ring is exact.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Frac(ZZ['x']).is_exact()
True
sage: Frac(CDF['x']).is_exact()
False
\end{verbatim}

\textbf{is_field(proof=True)}

Return \texttt{True}, since the fraction field is a field.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Frac(ZZ).is_field()
True
\end{verbatim}

\textbf{is_finite()}

Tells whether this fraction field is finite.

\textbf{Note:} A fraction field is finite if and only if the associated integral domain is finite.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Frac(QQ['a','b','c']).is_finite()
False
\end{verbatim}

\textbf{ngens()}

This is the same as for the parent object.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = Frac(PolynomialRing(QQ,'z',10)); R
Fraction Field of Multivariate Polynomial Ring in z0, z1, z2, z3, z4, z5, z6, \ldots
    -> z7, z8, z9 over Rational Field
sage: R.ngens()
10
\end{verbatim}

\textbf{random_element(*args, **kwds)}

Return a random element in this fraction field.
The arguments are passed to the random generator of the underlying ring.

EXAMPLES:

```python
sage: F = ZZ['x'].fraction_field()
sage: F.random_element() # random
(2*x - 8)/(-x^2 + x)
```

```python
sage: f = F.random_element(degree=5)
sage: f.numerator().degree() == f.denominator().degree()
True
sage: f.denominator().degree() <= 5
True
sage: while f.numerator().degree() != 5:
 : f = F.random_element(degree=5)
```

ring()
Return the ring that this is the fraction field of.

EXAMPLES:

```python
sage: R = Frac(QQ['x,y'])
sage: R
Fraction Field of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ring()
Multivariate Polynomial Ring in x, y over Rational Field
```

some_elements()
Return some elements in this field.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: R.fraction_field().some_elements()
[0,
 1,
 x,
 2*x,
 x/(x^2 + 2*x + 1),
 1/x^2,
 ...
 (2*x^2 + 2)/(x^2 - 1),
 2]
```

`sage.rings.fraction_field.is_FractionField(x)`
Test whether or not `x` inherits from `FractionField_generic`.

EXAMPLES:

```python
sage: from sage.rings.fraction_field import is_FractionField
sage: is_FractionField(Frac(ZZ['x']))
True
sage: is_FractionField(QQ)
False
```
5.2 Fraction Field Elements

AUTHORS:

- William Stein (input from David Joyner, David Kohel, and Joe Wetherell)
- Sebastian Pancratz (2010-01-06): Rewrite of addition, multiplication and derivative to use Henrici’s algorithms [Hor1972]

class sage.rings.fraction_field_element.FractionFieldElement
Bases: sage.structure.element.FieldElement

EXAMPLES:

```python
sage: K = FractionField(PolynomialRing(QQ, 'x'))
sage: K
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: loads(K.dumps()) == K
True
sage: x = K.gen()
sage: f = (x^3 + x)/(17 - x^19); f
(-x^3 - x)/(x^19 - 17)
sage: loads(f.dumps()) == f
True
```

denominator()
Return the denominator of self.

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: f = x/y+1; f
(x + y)/y
sage: f.denominator()
y
```

is_one()
Return True if this element is equal to one.

EXAMPLES:

```python
sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: (x/y).is_one()
True
sage: (x/y).is_one()
False
```

is_square(root=False)
Return whether or not self is a perfect square.

If the optional argument root is True, then also returns a square root (or None, if the fraction field element is not square).

INPUT:

- root – whether or not to also return a square root (default: False)

OUTPUT:
• bool - whether or not a square
• object - (optional) an actual square root if found, and None otherwise.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: (1/t).is_square()
False
sage: (1/t^6).is_square()
True
sage: ((1+t)^4/t^6).is_square()
True
sage: (4*(1+t)^4/t^6).is_square()
True
sage: (2*(1+t)^4/t^6).is_square()
False
sage: ((1+t)/t^6).is_square()
False
sage: (4*(1+t)^4/t^6).is_square(root=True)
(True, (2*t^2 + 4*t + 2)/t^3)
sage: (2*(1+t)^4/t^6).is_square(root=True)
(False, None)
```

```python
sage: R.<x> = QQ[]
sage: a = 2*(x+1)^2 / (2*(x-1)^2); a
(x^2 + 2*x + 1)/(x^2 - 2*x + 1)
sage: a.is_square()
True
sage: (0/x).is_square()
True
```

`is_zero()`
Return True if this element is equal to zero.

EXAMPLES:

```python
sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: t = F(0)/x
sage: t.is_zero()
True
sage: u = 1/x - 1/x
sage: u.is_zero()
True
sage: u.parent() is F
True
```

`nth_root(n)`
Return a n-th root of this element.

EXAMPLES:

```python
sage: R = QQ['t'].fraction_field()
sage: t = R.gen()
```

(continues on next page)
\begin{Verbatim}
\texttt{sage: } p = (t+1)^3 / (t^2+t-1)^3
\texttt{sage: } p.nth_root(3)
(t + 1)/(t^2 + t - 1)
\texttt{sage: } p = (t+1) / (t-1)
\texttt{sage: } p.nth_root(2)
Traceback (most recent call last):
  ...  
ValueError: not a 2nd power
\end{Verbatim}

\subsection*{numerator()}

Return the numerator of \texttt{self}.

\textbf{EXAMPLES:}

\begin{Verbatim}
\texttt{sage: } R.<x,y> = ZZ[]
\texttt{sage: } f = x/y+1; f
(x + y)/y
\texttt{sage: } f.numerator()
x + y
\end{Verbatim}

\subsection*{reduce()}

Reduce this fraction.

Divides out the gcd of the numerator and denominator. If the denominator becomes a unit, it becomes 1. Additionally, depending on the base ring, the leading coefficients of the numerator and the denominator may be normalized to 1.

Automatically called for exact rings, but because it may be numerically unstable for inexact rings it must be called manually in that case.

\textbf{EXAMPLES:}

\begin{Verbatim}
\texttt{sage: } R.<x> = RealField(10)[]
\texttt{sage: } f = (x^2+2*x+1)/(x+1); f
(x^2 + 2.0*x + 1.0)/(x + 1.0)
\texttt{sage: } f.reduce(); f
x + 1.0
\end{Verbatim}

\subsection*{specialization\texttt{(D=None, phi=None)}}

Returns the specialization of a fraction element of a polynomial ring

\subsection*{valuation\texttt{(v=None)}}

Return the valuation of \texttt{self}, assuming that the numerator and denominator have valuation functions defined on them.

\textbf{EXAMPLES:}

\begin{Verbatim}
\texttt{sage: } x = PolynomialRing(RationalField(),'x').gen()
\texttt{sage: } f = (x^3 + x)/(x^2 - 2*x^3)
\texttt{sage: } f
(-1/2*x^2 - 1/2)/(x^2 - 1/2*x)
\texttt{sage: } f.valuation()
-1
\texttt{sage: } f.valuation(x^2+1)
1
\end{Verbatim}
class sage.rings.fraction_field_element.FractionFieldElement_i_poly_field

Bases: sage.rings.fraction_field_element.FractionFieldElement

A fraction field element where the parent is the fraction field of a univariate polynomial ring over a field.

Many of the functions here are included for coherence with number fields.

is_integral()
Returns whether this element is actually a polynomial.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: elt = (t^2 + t - 2) / (t + 2); elt
== (t + 2)*(t - 1)/(t + 2)
t - 1
sage: elt.is_integral()
True
sage: elt = (t^2 - t) / (t+2); elt
== t*(t - 1)/(t + 2)
(t^2 - t)/(t + 2)
sage: elt.is_integral()
False
```

reduce()
Pick a normalized representation of self.

In particular, for any a == b, after normalization they will have the same numerator and denominator.

EXAMPLES:

For univariate rational functions over a field, we have:

```python
sage: R.<x> = QQ[]
sage: (2 + 2*x) / (4*x)
indirect doctest
(1/2*x + 1/2)/x
```

Compare with:

```python
sage: R.<x> = ZZ[]
sage: (2 + 2*x) / (4*x)
(x + 1)/(2*x)
```

support()
Returns a sorted list of primes dividing either the numerator or denominator of this element.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: h = (t^14 + 2*t^12 - 4*t^11 - 8*t^9 + 6*t^8 + 12*t^6 - 4*t^5 - 8*t^3 + t^2 + 2)/(t^6 + 6*t^5 + 9*t^4 - 2*t^2 - 12*t - 18)
sage: h.support()
[t - 1, t + 3, t^2 + 2, t^2 + t + 1, t^4 - 2]
```

sage.rings.fraction_field_element.is_FractionFieldElement(x)
Return whether or not x is a FractionFieldElement.

EXAMPLES:
sage: from sage.rings.fraction_field_element import is_FractionFieldElement
sage: R.<x> = ZZ[
    ]
sage: is_FractionFieldElement(x/2)
False
sage: is_FractionFieldElement(2/x)
True
sage: is_FractionFieldElement(1/3)
False

sage.rings.fraction_field_element.make_element(parent, numerator, denominator)
Used for unpickling FractionFieldElement objects (and subclasses).

EXAMPLES:

sage: from sage.rings.fraction_field_element import make_element
sage: R = ZZ['x,y']
sage: x,y = R.gens()
сage: F = R.fraction_field()
сage: make_element(F, 1+x, 1+y)
(x + 1)/(y + 1)

sage.rings.fraction_field_element.make_element_old(parent, cdict)
Used for unpickling old FractionFieldElement pickles.

EXAMPLES:

sage: from sage.rings.fraction_field_element import make_element_old
sage: R.<x,y> = ZZ[
    ]
сage: F = R.fraction_field()
сage: make_element_old(F, {'_FractionFieldElement__numerator':x+y,'_
    _FractionFieldElement__denominator':x-y})
(x + y)/(x - y)
6.1 Localization

Localization is an important ring construction tool. Whenever you have to extend a given integral domain such that it contains the inverses of a finite set of elements but should allow non injective homomorphic images this construction will be needed. See the example on Ariki-Koike algebras below for such an application.

**EXAMPLES:**

```python
sage: LZ = Localization(ZZ, (5, 11))
sage: m = matrix(LZ, [[5, 7], [0, 11]])
sage: m.parent()
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring localized at (5, 11)
sage: ~m # parent of inverse is different: see documentation of m.__invert__
[1/5 -7/55]
[0 1/11]
sage: _.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: mi = matrix(LZ, ~m)
sage: mi.parent()
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring localized at (5, 11)
sage: mi == ~m
True
```

The next example defines the most general ring containing the coefficients of the irreducible representations of the Ariki-Koike algebra corresponding to the three colored permutations on three elements:

```python
sage: R.<u0, u1, u2, q> = ZZ[]
sage: u = [u0, u1, u2]
sage: S = Set(u)
sage: I = S.cartesian_product(S)
sage: add_units = u + [q, q + 1] + [ui - uj for ui, uj in I if ui != uj]
sage: add_units += [q*ui - uj for ui, uj in I if ui != uj]
sage: L = R.localization(tuple(add_units)); L
Multivariate Polynomial Ring in u0, u1, u2, q over Integer Ring localized at
(q, q + 1, u2, u1 - u2, u0, u0 - u2, u0 - u1, u2*q - u1, u2*q - u0,
u1*q - u2, u1*q - u0, u0*q - u2, u0*q - u1)
```

Define the representation matrices (of one of the three dimensional irreducible representations):
sage: m1 = matrix(L, [[u1, 0, 0],[0, u0, 0],[0, 0, u0]])
sage: m2 = matrix(L, [[[u0*q - u0)/(u0 - u1), (u0*q - u1)/(u0 - u1), 0],
....: [(-u1*q + u0)/(u0 - u1), (-u1*q + u1)/(u0 - u1), 0],
....: [0, 0, -1]])
sage: m3 = matrix(L, [[-1, 0, 0],
....: [0, u0*(1 - q)/(u1*q - u0), q*(u1 - u0)/(u1*q - u0)],
....: [0, (u1*q^2 - u0)/(u1*q - u0), (u1*q^2 - u1*q)/(u1*q - u0)]])
sage: m1.base_ring() == L
True
Check relations of the Ariki-Koike algebra:
sage: m1*m2*m1*m2 == m2*m1*m2*m1
True
sage: m2*m3*m2 == m3*m2*m3
True
sage: m1*m3 == m3*m1
True
sage: m1**3 -(u0+u1+u2)*m1**2 +(u0*u1+u0*u2+u1*u2)*m1 - u0*u1*u2 == 0
True
sage: m2**2 -(q-1)*m2 - q == 0
True
sage: m3**2 -(q-1)*m3 - q == 0
True
sage: ~m1 in m1.parent()
True
sage: ~m2 in m2.parent()
True
sage: ~m3 in m3.parent()
True
Obtain specializations in positive characteristic:
sage: Fp = GF(17)
sage: f = L.hom((3,5,7,11), codomain=Fp); f
Ring morphism:
    From: Multivariate Polynomial Ring in u0, u1, u2, q over Integer Ring localized at
    (q, q + 1, u2, u1 - u2, u0 - u2, u0 - u1, u2*q - u1, u2*q - u0,
    u1*q - u2, u1*q - u0, u0*q - u2, u0*q - u1)
    To:   Finite Field of size 17
    Defn: u0 |--> 3
            u1 |--> 5
            u2 |--> 7
            q |--> 11
sage: mFp1 = matrix({k:f(v) for k, v in m1.dict().items()}); mFp1
[5 0 0]
[0 3 0]
[0 0 3]
sage: mFp1.base_ring()
Finite Field of size 17
sage: mFp2 = matrix({k:f(v) for k, v in m2.dict().items()}); mFp2
[2 3 0]
[9 8 0]
(continues on next page)
Obtain specializations in characteristic 0:

```python
sage: fQ = L.hom((3,5,7,11), codomain=QQ); fQ
Ring morphism:
 From: Multivariate Polynomial Ring in u0, u1, u2, q over Integer Ring localized at
 (q, q + 1, u2, u1 - u2, u0, u0 - u2, u0 - u1, u2*q - u1, u2*q - u0,
 u1*q - u2, u1*q - u0, u0*q - u2, u0*q - u1)
 To: Rational Field
 Defn: u0 |--> 3
 u1 |--> 5
 u2 |--> 7
 q |--> 11
sage: mQ1 = matrix({k:fQ(v) for k, v in m1.dict().items()}); mQ1
[[5 0 0]
 [0 3 0]
 [0 0 3]]
sage: mQ1.base_ring()
Rational Field
sage: mQ2 = matrix({k:fQ(v) for k, v in m2.dict().items()}); mQ2
[[-15 -14 0]
 [26 25 0]
 [0 0 -1]]
sage: mQ3 = matrix({k:fQ(v) for k, v in m3.dict().items()}); mQ3
[[-1 0 0]
 [0 -15/26 11/26]
 [0 301/26 275/26]]
sage: S.<x, y, z, t> = QQ[]
sage: T = S.quo(x+y+z)
sage: F = T.fraction_field()
sage: fF = L.hom((x, y, z, t), codomain=F); fF
Ring morphism:
 From: Multivariate Polynomial Ring in u0, u1, u2, q over Integer Ring localized at
 (q, q + 1, u2, u1 - u2, u0, u0 - u2, u0 - u1, u2*q - u1, u2*q - u0,
 u1*q - u2, u1*q - u0, u0*q - u2, u0*q - u1)
 To: Fraction Field of Quotient of Multivariate Polynomial Ring in x, y, z, t over
 Rational Field by the ideal (x + y + z)
 Defn: u0 |--> -ybar - zbar
 u1 |--> ybar
 u2 |--> zbar
 q |--> tbar
sage: mF1 = matrix({k:fF(v) for k, v in m1.dict().items()}); mF1
[[ybar 0 0]
 [0 -ybar - zbar 0]
 [0 0 -ybar - zbar]]
sage: mF1.base_ring() == F
```
AUTHORS:

- Sebastian Oehms 2019-12-09: initial version.
- Sebastian Oehms 2022-03-05: fix some corner cases and add \texttt{factor()} (trac ticket \#33463)

class \texttt{sage.rings.localization.Localization}(\texttt{base\_ring}, \texttt{extra\_units}, \texttt{names=}\texttt{None}, \texttt{normalize=}\texttt{True},
\texttt{category=}\texttt{None}, \texttt{warning=}\texttt{True})

Bases: \texttt{sage.rings.ring.IntegralDomain}, \texttt{sage.structure.unique_representation.UniqueRepresentation}

The localization generalizes the construction of the field of fractions of an integral domain to an arbitrary ring. Given a (not necessarily commutative) ring \( R \) and a subset \( S \) of \( R \), there exists a ring \( R[S^{-1}] \) together with the ring homomorphism \( R \rightarrow R[S^{-1}] \) that “inverts” \( S \); that is, the homomorphism maps elements in \( S \) to unit elements in \( R[S^{-1}] \) and, moreover, any ring homomorphism from \( R \) that “inverts” \( S \) uniquely factors through \( R[S^{-1}] \).

The ring \( R[S^{-1}] \) is called the \textit{localization} of \( R \) with respect to \( S \). For example, if \( R \) is a commutative ring and \( f \) an element in \( R \), then the localization consists of elements of the form \( r/f, r \in R, n \geq 0 \) (to be precise, \( R[f^{-1}] = R[t]/(ft - 1) \)).

The above text is taken from \textit{Wikipedia}. The construction here used for this class relies on the construction of the field of fraction and is therefore restricted to integral domains.

Accordingly, this class is inherited from \texttt{IntegralDomain} and can only be used in that context. Furthermore, the base ring should support \texttt{sage.structure.element.CommutativeRingElement.divides()} and the exact division operator //\texttt{(sage.structure.element.Element\._\_floordiv\_\_()) in order to guarantee a successful application.

INPUT:

- \texttt{base\_ring} – an instance of \texttt{Ring} allowing the construction of \texttt{fraction\_field()} (that is an integral domain)
- \texttt{extra\_units} – tuple of elements of \texttt{base\_ring} which should be turned into units
- \texttt{names} – passed to \texttt{IntegralDomain}
- \texttt{normalize} – (optional, default: True) passed to \texttt{IntegralDomain}
- \texttt{category} – (optional, default: None) passed to \texttt{IntegralDomain}
- \texttt{warning} – (optional, default: True) to suppress a warning which is thrown if self cannot be represented uniquely

REFERENCES:

- Wikipedia article \textit{Ring (mathematics)}\#Localization

EXAMPLES:

```
sage: L = Localization(ZZ, (3, 5))
sage: 1/45 in L
True
sage: 1/43 in L
False
sage: Localization(L, (7, 11))
Integer Ring localized at (3, 5, 7, 11)
```
sage: _.is_subring(QQ)
True

sage: L(~7)
Traceback (most recent call last):
...  
ValueError: factor 7 of denominator is not a unit

sage: Localization(Zp(7), (3, 5))
Traceback (most recent call last):
...  
ValueError: all given elements are invertible in 7-adic Ring with capped relative
˓→precision 20

sage: R.<x> = ZZ[]
sage: L = R.localization(x**2+1)
sage: s = (x+5)/(x**2+1)
sage: s in L
True
sage: t = (x+5)/(x**2+2)
sage: t in L
False

sage: L(t)
Traceback (most recent call last):
...  
TypeError: fraction must have unit denominator

sage: L(s) in R
False
sage: y = L(x)
sage: g = L(s)
sage: g.parent()  
Univariate Polynomial Ring in x over Integer Ring localized at (x^2 + 1,)
sage: f = (y+5)/(y**2+1); f  
(x + 5)/(x^2 + 1)
sage: f == g
True

sage: (y+5)/(y**2+2)
Traceback (most recent call last):
...  
ValueError: factor x^2 + 2 of denominator is not a unit

sage: Lau.<u, v> = LaurentPolynomialRing(ZZ)
sage: LauL = Lau.localization(u+1)
sage: LauL(~u).parent()  
Multivariate Polynomial Ring in u, v over Integer Ring localized at (v, u, u + 1)

More examples will be shown typing sage.rings.localization?

Element
    alias of LocalizationElement

characteristic()
    Return the characteristic of self.
EXAMPLES:

```python
sage: R.<a> = GF(5)[]
sage: L = R.localization((a**2-3, a))
sage: L.characteristic()
5
```

**fraction_field()**

Return the fraction field of `self`.

EXAMPLES:

```python
sage: R.<a> = GF(5)[]
sage: L = Localization(R, (a**2-3, a))
sage: L.fraction_field()
Fraction Field of Univariate Polynomial Ring in a over Finite Field of size 5
sage: L.is_subring(_)
True
```

**gen(i)**

Return the `i`-th generator of `self` which is the `i`-th generator of the base ring.

EXAMPLES:

```python
sage: R.<x, y> = ZZ[]
sage: R.localization((x**2+1, y-1)).gen(0)
x
sage: ZZ.localization(2).gen(0)
1
```

**gens()**

Return a tuple whose entries are the generators for this object, in order.

EXAMPLES:

```python
sage: R.<x, y> = ZZ[]
sage: Localization(R, (x**2+1, y-1)).gens()
(x, y)
sage: Localization(ZZ, 2).gens()
(1,)
```

**is_field(proof=True)**

Return True if this ring is a field.

INPUT:

- `proof` – (default: True) Determines what to do in unknown cases

ALGORITHM:

If the parameter `proof` is set to `True`, the returned value is correct but the method might throw an error. Otherwise, if it is set to `False`, the method returns `True` if it can establish that `self` is a field and `False` otherwise.

EXAMPLES:
sage: R = ZZ.localization((2,3))
sage: R.is_field()
False

krull_dimension()

Return the Krull dimension of this localization.

Since the current implementation just allows integral domains as base ring and localization at a finite set of elements the spectrum of self is open in the irreducible spectrum of its base ring. Therefore, by density we may take the dimension from there.

EXAMPLES:

sage: R = ZZ.localization((2,3))
sage: R.krull_dimension()
1

ngens()

Return the number of generators of self according to the same method for the base ring.

EXAMPLES:

sage: R.<x, y> = ZZ[]
sage: Localization(R, (x**2+1, y-1)).ngens()
2
sage: Localization(ZZ, 2).ngens()
1

class sage.rings.localization.LocalizationElement(parent, x)

Bases: sage.structure.element.IntegralDomainElement

Element class for localizations of integral domains

INPUT:

• parent – instance of Localization

• x – instance of FractionFieldElement whose parent is the fraction field of the parent’s base ring

EXAMPLES:

sage: from sage.rings.localization import LocalizationElement
sage: P.<x,y,z> = GF(5)[]
sage: L = P.localization((x, y*z-x))
sage: LocalizationElement(L, 4/(y*z-x)**2)
(-1)/(y^2*z^2 - 2*x*y*z + x^2)
sage: _.parent()
Multivariate Polynomial Ring in x, y, z over Finite Field of size 5 localized at (x, ˓→ y*z - x)

denominator()

Return the denominator of self.

EXAMPLES:
sage: L = Localization(ZZ, (3,5))
sage: L(7/15).denominator()
15

factor(proof=None)
Return the factorization of this polynomial.

INPUT:
• proof – (optional) if given it is passed to the corresponding method of the numerator of self

EXAMPLES:

sage: P.<X, Y> = QQ['x, y']
sage: L = P.localization(X-Y)
sage: x, y = L.gens()
sage: p = (x^2 - y^2)/(x-y)^2
sage: p.factor()
(1/(x - y)) * (x + y)

inverse_of_unit()
Return the inverse of self.

EXAMPLES:

sage: P.<x,y,z> = ZZ[]
sage: L = Localization(P, x*y*z)
sage: L(x*y*z).inverse_of_unit()
1/(x*y*z)
sage: L(z).inverse_of_unit()
1/z

is_unit()
Return True if self is a unit.

EXAMPLES:

sage: P.<x,y,z> = QQ[]
sage: L = P.localization((x, y*z))
sage: L(y*z).is_unit()
True
sage: L(z).is_unit()
True
sage: L(x*y*z).is_unit()
True

numerator()
Return the numerator of self.

EXAMPLES:

sage: L = ZZ.localization((3,5))
sage: L(7/15).numerator()
7

sage.rings.localization.normalize_extra_units(base_ring, add_units, warning=True)
Function to normalize input data.
The given list will be replaced by a list of the involved prime factors (if possible).

**INPUT:**
- `base_ring` – an instance of `IntegralDomain`
- `add_units` – list of elements from base ring
- `warning` – (optional, default: True) to suppress a warning which is thrown if no normalization was possible

**OUTPUT:**
List of all prime factors of the elements of the given list.

**EXAMPLES:**

```python
sage: from sage.rings.localization import normalize_extra_units
sage: normalize_extra_units(ZZ, [3, -15, 45, 9, 2, 50])
[2, 3, 5]
sage: P.<x,y,z> = ZZ[]
sage: normalize_extra_units(P, [3*x, z*y**2, 2*z, 18*(x*y*z)**2, x*z, 6*x**2, 5])
[2, 3, 5, z, y, x]
sage: P.<x,y,z> = QQ[]
sage: normalize_extra_units(P, [3*x, z*y**2, 2*z, 18*(x*y*z)**2, x*z, 6*x**2, 5])
[z, y, x]
sage: R.<x, y> = ZZ[]
sage: Q.<a, b> = R.quo(x**2-5)
sage: p = b**2-5
sage: p == (b-a)*(b+a)
True
sage: normalize_extra_units(Q, [p])
doctest:...: UserWarning: Localization may not be represented uniquely
[b**2 - 5]
sage: normalize_extra_units(Q, [p], warning=False)
[b**2 - 5]
```
7.1 Extension of rings

Sage offers the possibility to work with ring extensions $L/K$ as actual parents and perform meaningful operations on them and their elements.

The simplest way to build an extension is to use the method `sage.categories.commutative_rings.CommutativeRings.ParentMethods.over()` on the top ring, that is $L$. For example, the following line constructs the extension of finite fields $F_5^4/F_5^2$:

```
sage: GF(5^4).over(GF(5^2))
Field in z4 with defining polynomial $x^2 + (4*z2 + 3)*x + z2$ over its base
```

By default, Sage reuses the canonical generator of the top ring (here $z_4 \in F_5^4$), together with its name. However, the user can customize them by passing in appropriate arguments:

```
sage: F = GF(5^2)
sage: k = GF(5^4)
sage: z4 = k.gen()
sage: K.<a> = k.over(F, gen = 1-z4)
sage: K
Field in a with defining polynomial $x^2 + z2*x + 4$ over its base
```

The base of the extension is available via the method `base()` (or equivalently `base_ring()`):

```
sage: K.base()
Finite Field in z2 of size 5^2
```

It is also possible to build an extension on top of another extension, obtaining this way a tower of extensions:

```
sage: L. = GF(5^8).over(K)
sage: L
Field in b with defining polynomial $x^2 + (4*z2 + 3*a)*x + 1 - a$ over its base
sage: L.base()
Field in a with defining polynomial $x^2 + z2*x + 4$ over its base
sage: L.base().base()
Finite Field in z2 of size 5^2
```

The method `bases()` gives access to the complete list of rings in a tower:

```
sage: L.bases()
[Field in b with defining polynomial $x^2 + (4*z2 + 3*a)*x + 1 - a$ over its base,
(continues on next page)
```
Once we have constructed an extension (or a tower of extensions), we have interesting methods attached to it. As a basic example, one can compute a basis of the top ring over any base in the tower:

```sage
L.basis_over(K)
[1, b]
L.basis_over(F)
[1, a, b, a*b]
```

When the base is omitted, the default is the natural base of the extension:

```sage
L.basis_over()
[1, b]
```

The method `sage.rings.ring_extension_element.RingExtensionWithBasis.vector()` computes the coordinates of an element according to the above basis:

```sage
u = a + 2*b + 3*a*b
u.vector() # over K
(a, 2 + 3*a)
```

One can also compute traces and norms with respect to any base of the tower:

```sage
u.trace() # over K
(2*z2 + 1) + (2*z2 + 1)*a
```

```sage
u.trace(F)
z2 + 1
```

```sage
u.trace().trace() # over K, then over F
z2 + 1
```

```sage
u.norm() # over K
(z2 + 1) + (4*z2 + 2)*a
```

```sage
u.norm(F)
2*z2 + 2
```

And minimal polynomials:

```sage
u.minpoly()
x^2 + ((3*z2 + 4) + (3*z2 + 4)*a)*x + (z2 + 1) + (4*z2 + 2)*a
```

```sage
u.minpoly(F)
x^4 + (4*z2 + 4)*x^3 + x^2 + (z2 + 1)*x + 2*z2 + 2
```

**AUTHOR:**

- Xavier Caruso (2019)

**class** `sage.rings.ring_extension.RingExtensionFactory`

    Bases: `sage.structure.factory.UniqueFactory`

    Factory for ring extensions.
create_key_and_extra_args(ring, defining_morphism=None, gens=None, names=None, constructors=None)

Create a key and return it together with a list of constructors of the object.

INPUT:

• ring – a commutative ring
• defining_morphism – a ring homomorphism or a commutative ring or None (default: None); the defining morphism of this extension or its base (if it coerces to ring)
• gens – a list of generators of this extension (over its base) or None (default: None);
• names – a list or a tuple of variable names or None (default: None)
• constructors – a list of constructors; each constructor is a pair (class, arguments) where class is the class implementing the extension and arguments is the dictionary of arguments to pass in to init function

create_object(version, key, **extra_args)

Return the object associated to a given key.

class sage.rings.ring_extension.RingExtensionFractionField

Bases: sage.rings.ring_extension.RingExtension_generic

A class for ring extensions of the form \( \text{Frac}(A) \).

Element

alias of sage.rings.ring_extension_element.RingExtensionFractionFieldElement

ring()

Return the ring whose fraction field is this extension.

EXAMPLES:

```python
sage: A.<x> = ZZ.extension(x^2 - 2)
sage: OK = A.Over()
sage: K = OK.fraction_field()
sage: K
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 2
sage: K.ring()
Order in Number Field in a with defining polynomial x^2 - 2 over its base
```

class sage.rings.ring_extension.RingExtensionWithBasis

Bases: sage.rings.ring_extension.RingExtension_generic

A class for finite free ring extensions equipped with a basis.

Element

alias of sage.rings.ring_extension_element.RingExtensionWithBasisElement

basis_over(base=None)

Return a basis of this extension over base.

INPUT:

• base – a commutative ring (which might be itself an extension)

EXAMPLES:
```python
sage: F.<a> = GF(5^2).over() # over GF(5)
sage: K. = GF(5^4).over(F)
sage: L.<c> = GF(5^12).over(K)

sage: L.basis_over(K)
[1, c, c^2]

sage: L.basis_over(F)
[1, b, c, b*c, c^2, b*c^2]

sage: L.basis_over(GF(5))
[1, a, b, a*b, c, a*c, b*c, a*b*c, c^2, a*c^2, b*c^2, a*b*c^2]
```

If `base` is omitted, it is set to its default which is the base of the extension:

```python
sage: L.basis_over()
[1, c, c^2]

sage: K.basis_over()
[1, b]
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```python
sage: L.degree_over(GF(5^6))
Traceback (most recent call last):
 ...
ValueError: not (explicitly) defined over Finite Field in z6 of size 5^6
```

**fraction_field** *(extend_base=False)*

Return the fraction field of this extension.

**INPUT:**

- *extend_base* – a boolean (default: False);

If `extend_base` is False, the fraction field of the extension \(L/K\) is defined as \(\text{Frac}(L)/\text{Frac}(K)\), except if \(L\) is already a field in which base the fraction field of \(L/K\) is \(L/K\) itself.

If `extend_base` is True, the fraction field of the extension \(L/K\) is defined as \(\text{Frac}(L)/\text{Frac}(K)\) (provided that the defining morphism extends to the fraction fields, i.e. is injective).

**EXAMPLES:**

```python
sage: A.<a> = ZZ.extension(x^2 - 5)
sage: OK = A.over() # over ZZ
sage: OK
Order in Number Field in a with defining polynomial x^2 - 5 over its base

sage: K1 = OK.fraction_field()
sage: K1
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5 over its base

sage: K1.bases()
[Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5 over its base,
...
```
Order in Number Field in a with defining polynomial $x^2 - 5$ over its base, Integer Ring]

```
sage: K2 = OK.fraction_field(extend_base=True)
sage: K2
Fraction Field of Order in Number Field in a with defining polynomial $x^2 - 5$ → over its base
```

```
sage: K2.bases()
[Fraction Field of Order in Number Field in a with defining polynomial $x^2 - 5$ → over its base, Rational Field]
```

Note that there is no coercion map between $K_1$ and $K_2$:

```
sage: K1.has_coerce_map_from(K2)
False
sage: K2.has_coerce_map_from(K1)
False
```

We check that when the extension is a field, its fraction field does not change:

```
sage: K1.fraction_field() is K1
True
sage: K2.fraction_field() is K2
True
```

**free_module**(base=None, map=True)

Return a free module V over base which is isomorphic to this ring

**INPUT:**

- base – a commutative ring (which might be itself an extension) or None (default: None)
- map – boolean (default True); whether to return isomorphisms between this ring and V

**OUTPUT:**

- A finite-rank free module V over base
- The isomorphism from V to this ring corresponding to the basis output by the method basis_over() (only included if map is True)
- The reverse isomorphism of the isomorphism above (only included if map is True)

**EXAMPLES:**

```
sage: F = GF(11)
sage: K.<a> = GF(11^2).over()
sage: L. = GF(11^6).over(K)
```

Forgetting a part of the multiplicative structure, the field L can be viewed as a vector space of dimension 3 over K, equipped with a distinguished basis, namely $(1, b, b^2)$:

```
sage: V, i, j = L.free_module(K)
sage: V
Vector space of dimension 3 over Field in a with defining polynomial $x^2 + 7x + 2$ → over its base
```
sage: i
Generic map:
   From: Vector space of dimension 3 over Field in a with defining polynomial \(x^2 + 7*x + 2\) over its base
   To: Field in b with defining polynomial \(x^3 + (7 + 2*a)*x^2 + (2 - a)*x - a\) over its base
sage: j
Generic map:
   From: Field in b with defining polynomial \(x^3 + (7 + 2*a)*x^2 + (2 - a)*x - a\) over its base
   To: Vector space of dimension 3 over Field in a with defining polynomial \(x^2 + 7*x + 2\) over its base

sage: j(b)
(0, 1, 0)
sage: i((1, a, a+1))
1 + a*b + (1 + a)*b^2

Similarly, one can view \(L\) as a \(F\)-vector space of dimension 6:

```
sage: V, i, j, = L.free_module(F)
sage: V
Vector space of dimension 6 over Finite Field of size 11
```

In this case, the isomorphisms between \(V\) and \(L\) are given by the basis \((1, a, b, a*b, b^2, a*b^2)\):

```
sage: j(a*b) (0, 0, 0, 1, 0, 0) sage: i((1,2,3,4,5,6)) (1 + 2*a) + (3 + 4*a)*b + (5 + 6*a)*b^2
```

When base is omitted, the default is the base of this extension:

```
sage: L.free_module(map=False)
Vector space of dimension 3 over Field in a with defining polynomial \(x^2 + 7*x + 2\) over its base
```

Note that base must be an explicit base over which the extension has been defined (as listed by the method bases()):

```
sage: L.degree(GF(11^3))
Traceback (most recent call last):
 ...
ValueError: not (explicitly) defined over Finite Field in z3 of size 11^3
```

class sage.rings.ring_extension.RingExtensionWithGen
    Bases: sage.rings.ring_extension.RingExtensionWithBasis

A class for finite free ring extensions generated by a single element

fraction_field(extend_base=False)
    Return the fraction field of this extension.

INPUT:

  * extend_base – a boolean (default: False);

If extend_base is False, the fraction field of the extension \(L/K\) is defined as \(\text{Frac}(L)/L/K\), except is \(L\) is already a field in which case the fraction field of \(L/K\) is \(L/K\) itself.
If `extend_base` is `True`, the fraction field of the extension $L/K$ is defined as $\text{Frac}(L)/\text{Frac}(K)$ (provided that the defining morphism extends to the fraction fields, i.e. is injective).

**EXAMPLES:**

```python
sage: A.<a> = ZZ.extension(x^2 - 5)
sage: OK = A.over() # over ZZ
sage: OK
Order in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K1 = OK.fraction_field()
sage: K1
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K1.bases()
[Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5 over its base,
 Order in Number Field in a with defining polynomial x^2 - 5 over its base, Integer Ring]
sage: K2 = OK.fraction_field(extend_base=True)
sage: K2
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K2.bases()
[Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5 over its base,
 Rational Field]
```

Note that there is no coercion map between $K_1$ and $K_2$:

```python
sage: K1.has_coerce_map_from(K2)
False
sage: K2.has_coerce_map_from(K1)
False
```

We check that when the extension is a field, its fraction field does not change:

```python
sage: K1.fraction_field() is K1
True
sage: K2.fraction_field() is K2
True
```

**gens**(base=None)

Return the generators of this extension over `base`.

**INPUT:**

- `base` – a commutative ring (which might be itself an extension) or `None` (default: `None`)

**EXAMPLES:**

```python
sage: K.<a> = GF(5^2).over() # over GF(5)
sage: K.gens()
(a,)
```

(continues on next page)
sage: L.<b> = GF(5^4).over(K)
sage: L.gens()
(b,)
sage: L.gens(GF(5))
(b, a)

modulus(var='x')
Return the defining polynomial of this extension, that is the minimal polynomial of the given generator of this extension.

INPUT:

• var – a variable name (default: x)

EXAMPLES:

sage: K.<u> = GF(7^10).over(GF(7^2))
sage: K
Field in u with defining polynomial x^5 + (6*z2 + 4)*x^4 + (3*z2 + 5)*x^3 +
˓→(2*z2 + 2)*x^2 + 4*x + 6*z2 over its base
sage: P = K.modulus(); P
x^5 + (6*z2 + 4)*x^4 + (3*z2 + 5)*x^3 + (2*z2 + 2)*x^2 + 4*x + 6*z2
sage: P(u)
0

We can use a different variable name:

sage: K.modulus('y')
y^5 + (6*z2 + 4)*y^4 + (3*z2 + 5)*y^3 + (2*z2 + 2)*y^2 + 4*y + 6*z2

class sage.rings.ring_extension.RingExtension_generic

Bases: sage.rings.ring.CommutativeAlgebra

A generic class for all ring extensions.

Element

alias of sage.rings.ring_extension_element.RingExtensionElement

absolute_base()
Return the absolute base of this extension.

By definition, the absolute base of an iterated extension $K_n/\cdots/K_2/K_1$ is the ring $K_1$.

EXAMPLES:

sage: F = GF(5^2).over()          # over GF(5)
sage: K = GF(5^4).over(F)
sage: L = GF(5^12).over(K)

sage: F.absolute_base()
Finite Field of size 5
sage: K.absolute_base()
Finite Field of size 5
sage: L.absolute_base()
Finite Field of size 5
See also:

\texttt{base()}, \texttt{bases()}, \texttt{is\_defined\_over()}

\textbf{absolute\_degree()}

Return the degree of this extension over its absolute base

EXAMPLES:

\begin{verbatim}
sage: A = GF(5^4).over(GF(5^2))
sage: B = GF(5^12).over(A)
sage: A.absolute_degree()
2
sage: B.absolute_degree()
6
\end{verbatim}

See also:

\texttt{degree()}, \texttt{relative\_degree()}

\textbf{base()}

Return the base of this extension.

EXAMPLES:

\begin{verbatim}
sage: F = GF(5^2)
sage: K = GF(5^4).over(F)
sage: K.base()
Finite Field in z2 of size 5^2
\end{verbatim}

In case of iterated extensions, the base is itself an extension:

\begin{verbatim}
sage: L = GF(5^8).over(K)
sage: L.base()
Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base
sage: L.base() is K
True
\end{verbatim}

See also:

\texttt{bases()}, \texttt{absolute\_base()}, \texttt{is\_defined\_over()}

\textbf{bases()}

Return the list of successive bases of this extension (including itself).

EXAMPLES:

\begin{verbatim}
sage: F = GF(5^2).over()  # over GF(5)
sage: K = GF(5^4).over(F)
sage: L = GF(5^12).over(K)
sage: F.bases()
[Field in z2 with defining polynomial x^2 + 4*x + 2 over its base, Finite Field of size 5]
sage: K.bases()
[Field in z4 with defining polynomial x^2 + (3 - z2)*x + z2 over its base,
 (continues on next page)
7.1. Extension of rings 111
Field in z2 with defining polynomial \( x^2 + 4x + 2 \) over its base, Finite Field of size 5]

```
sage: L.bases()
[Field in z12 with defining polynomial \(x^3 + (1 + (2 - z2)*z4)*x^2 + (2 + 2*z4)*x - z4 \) over its base,
 Field in z4 with defining polynomial \(x^2 + (3 - z2)*x + z2 \) over its base,
 Field in z2 with defining polynomial \(x^2 + 4x + 2 \) over its base,
 Finite Field of size 5]
```

See also:

```
base(), absolute_base(), is_defined_over()
```

### construction()

Return the functorial construction of this extension, if defined.

**EXAMPLES:**

```
sage: E = GF(5^3).over()
sage: E.construction()
```

### defining_morphism(base=None)

Return the defining morphism of this extension over `base`.

**INPUT:**

- `base` – a commutative ring (which might be itself an extension) or `None` (default: `None`)

**EXAMPLES:**

```
sage: F = GF(5^2)
sage: K = GF(5^4).over(F)
sage: L = GF(5^12).over(K)
sage: K.defining_morphism()
Ring morphism:
 From: Finite Field in z2 of size 5^2
 To: Field in z4 with defining polynomial \(x^2 + (4*z2 + 3)*x + z2 \) over its base
 Defn: z2 |--> z2

sage: L.defining_morphism()
Ring morphism:
 From: Field in z4 with defining polynomial \(x^2 + (4*z2 + 3)*x + z2 \) over its base
 To: Field in z12 with defining polynomial \(x^3 + (1 + (4*z2 + 2)*z4)*x^2 + (2 + 2*z4)*x - z4 \) over its base
 Defn: z4 |--> z4
```

One can also pass in a base over which the extension is explicitly defined (see also `is_defined_over()`):

```
sage: L.defining_morphism(F)
Ring morphism:
 From: Finite Field in z2 of size 5^2
```

(continues on next page)
To: Field in $\mathbb{Z}_{12}$ with defining polynomial $x^3 + (1 + (4z_2 + 2)z_4)x^2 + (2 + 2z_4)x - z_4$ over its base
Defn: $z_2 \rightarrow z_2$

```
sage: L.defining_morphism(GF(5))
Traceback (most recent call last):
 ... ValueError: not (explicitly) defined over Finite Field of size 5
```

**degree**(*base*)

Return the degree of this extension over *base*.

**INPUT:**
- *base* – a commutative ring (which might be itself an extension)

**EXAMPLES:**

```
sage: A = GF(5^4).over(GF(5^2))
sage: B = GF(5^12).over(A)
sage: A.degree(GF(5^2))
2
sage: B.degree(A)
3
sage: B.degree(GF(5^2))
6
```

Note that *base* must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```
sage: A.degree(GF(5))
Traceback (most recent call last):
 ... ValueError: not (explicitly) defined over Finite Field of size 5
```

**See also:**
- `relative_degree()`, `absolute_degree()`

**degree_over**(*base=None*)

Return the degree of this extension over *base*.

**INPUT:**
- *base* – a commutative ring (which might be itself an extension) or None (default: None)

**EXAMPLES:**

```
sage: F = GF(5^2)
sage: K = GF(5^4).over(F)
sage: L = GF(5^12).over(K)
sage: K.degree_over(F)
2
sage: L.degree_over(K)
```

(continues on next page)
3

```
sage: L.degree_over(F)
6
```

If `base` is omitted, the degree is computed over the base of the extension:

```
sage: K.degree_over()
2
sage: L.degree_over()
3
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```
sage: K.degree_over(GF(5))
Traceback (most recent call last):
... ValueError: not (explicitly) defined over Finite Field of size 5
```

`fraction_field(extend_base=False)`
Return the fraction field of this extension.

**INPUT:**

- `extend_base` – a boolean (default: False);

If `extend_base` is False, the fraction field of the extension $L/K$ is defined as Frac($L$)/$L/K$, except if $L$ is already a field in which base the fraction field of $L/K$ is $L/K$ itself.

If `extend_base` is True, the fraction field of the extension $L/K$ is defined as Frac($L$)/Frac($K$) (provided that the defining morphism extends to the fraction fields, i.e. is injective).

**EXAMPLES:**

```
sage: A.<a> = ZZ.extension(x^2 - 5)
sage: OK = A.over() # over ZZ
sage: OK
Order in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K1 = OK.fraction_field()
sage: K1
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K1.bases()
[Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5 over its base, Order in Number Field in a with defining polynomial x^2 - 5 over its base, Integer Ring]
sage: K2 = OK.fraction_field(extend_base=True)
sage: K2
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K2.bases()
```

(continues on next page)
Note that there is no coercion between $K_1$ and $K_2$:

```sage```
K1.has_coerce_map_from(K2)
False
K2.has_coerce_map_from(K1)
False```

We check that when the extension is a field, its fraction field does not change:

```sage```
K1.fraction_field() is K1
True
K2.fraction_field() is K2
True```

`from_base_ring()`

Return the canonical embedding of $r$ into this extension.

**INPUT:**

- $r$ – an element of the base of the ring of this extension

**EXAMPLES:**

```sage```
k = GF(5)
K.<u> = GF(5^2).over(k)
L.<v> = GF(5^4).over(K)
x = L.from_base_ring(k(2)); x
2
x.parent()
Field in v with defining polynomial $x^2 + (3 - u)x + u$ over its base

x = L.from_base_ring(u); x
u
x.parent()
Field in v with defining polynomial $x^2 + (3 - u)x + u$ over its base```

`gen()`

Return the first generator of this extension.

EXAMPLES:

```sage```
K = GF(5^2).over() # over GF(5)
x = K.gen(); x
z2
x.parent()
Field in z2 with defining polynomial $x^2 + 4x + 2$ over its base```

Observe that the generator lives in the extension:

```sage```
x.parent()
Field in z2 with defining polynomial $x^2 + 4x + 2$ over its base
```

(continues on next page)
\begin{verbatim}
  sage: x.parent() is K
  True
\end{verbatim}

\textbf{\texttt{gens}(base=None)}

Return the generators of this extension over base.

**INPUT:**

- base – a commutative ring (which might be itself an extension) or None (default: None); if omitted, use the base of this extension

**EXAMPLES:**

\begin{verbatim}
  sage: K.<a> = GF(5^2).over()  # over GF(5)
  sage: K.gens()
  (a,)
  sage: L.<b> = GF(5^4).over(K)
  sage: L.gens()
  (b,)
  sage: L.gens(GF(5))
  (b, a)
  sage: S.<x> = QQ[]
  sage: T.<y> = S[]
  sage: T.over(S).gens()
  (y,)
  sage: T.over(QQ).gens()
  (y, x)
\end{verbatim}

\textbf{\texttt{hom}(im_gens, codomain=None, base_map=None, category=None, check=True)}

Return the unique homomorphism from this extension to codomain that sends self.gens() to the entries of im_gens and induces the map base_map on the base ring.

**INPUT:**

- im_gens – the images of the generators of this extension
- codomain – the codomain of the homomorphism; if omitted, it is set to the smallest parent containing all the entries of im_gens
- base_map – a map from one of the bases of this extension into something that coerces into the codomain; if omitted, coercion maps are used
- category – the category of the resulting morphism
- check – a boolean (default: True); whether to verify that the images of generators extend to define a map (using only canonical coercions)

**EXAMPLES:**

\begin{verbatim}
  sage: K.<a> = GF(5^2).over()  # over GF(5)
  sage: L.<b> = GF(5^6).over(K)
  We define (by hand) the relative Frobenius endomorphism of the extension $L/K$:
\end{verbatim}
Defining the absolute Frobenius of $L$ is a bit more complicated because it is not a homomorphism of $K$-algebras. For this reason, the construction $L$.hom([b^5]) fails:

```
sage: L.hom([b^5])
Traceback (most recent call last):
...
ValueError: images do not define a valid homomorphism
```

What we need is to specify a base map:

```
sage: FrobK = K.hom([a^5])
sage: FrobL = L.hom([b^5], base_map=FrobK)
sage: FrobL
Ring endomorphism of Field in b with defining polynomial x^3 + (2 + 2*a)*x - a
 over its base
 Defn: b |--> (-1 + a) + (1 + 2*a)*b + a*b^2
 with map on base ring:
 a |--> 1 - a
```

As a shortcut, we may use the following construction:

```
sage: phi = L.hom([b^5, a^5])
sage: phi
Ring endomorphism of Field in b with defining polynomial x^3 + (2 + 2*a)*x - a
 over its base
 Defn: b |--> (-1 + a) + (1 + 2*a)*b + a*b^2
 with map on base ring:
 a |--> 1 - a
sage: phi == FrobL
True
```

`is_defined_over(base)`

Return whether or not `base` is one of the bases of this extension.

**INPUT:**

- `base` – a commutative ring, which might be itself an extension

**EXAMPLES:**

```
sage: A = GF(5^4).over(GF(5^2))
sage: B = GF(5^12).over(A)
sage: A.is_defined_over(GF(5^2))
True
sage: A.is_defined_over(GF(5))
False
sage: B.is_defined_over(A)
True
```

General Rings, Ideals, and Morphisms, Release 9.7

\begin{Verbatim}
\texttt{sage}: B.is_defined_over(GF(5^4))
True
\texttt{sage}: B.is_defined_over(GF(5^2))
True
\texttt{sage}: B.is_defined_over(GF(5))
False
\end{Verbatim}

Note that an extension is defined over itself:

\begin{Verbatim}
\texttt{sage}: A.is_defined_over(A)
True
\texttt{sage}: A.is_defined_over(GF(5^4))
True
\end{Verbatim}

See also:
\begin{itemize}
\item \texttt{base()}, \texttt{bases()}, \texttt{absolute_base()}
\end{itemize}

\textbf{is_field}(\texttt{proof=True})
Return whether or not this extension is a field.

\textbf{INPUT}:
\begin{itemize}
\item \texttt{proof} – a boolean (default: False)
\end{itemize}

\textbf{EXAMPLES}:

\begin{Verbatim}
\texttt{sage}: K = GF(5^5).over()  \# over GF(5)
\texttt{sage}: K.is_field()
True
\texttt{sage}: S.<x> = QQ[]
\texttt{sage}: A = S.over(QQ)
\texttt{sage}: A.is_field()
False
\texttt{sage}: B = A.fraction_field()
\texttt{sage}: B.is_field()
True
\end{Verbatim}

\textbf{is_finite_over}(\texttt{base=None})
Return whether or not this extension is finite over \texttt{base} (as a module).

\textbf{INPUT}:
\begin{itemize}
\item \texttt{base} – a commutative ring (which might be itself an extension) or \texttt{None} (default: None)
\end{itemize}

\textbf{EXAMPLES}:

\begin{Verbatim}
\texttt{sage}: K = GF(5^2).over()  \# over GF(5)
\texttt{sage}: L = GF(5^4).over(K)
\texttt{sage}: L.is_finite_over(K)
True
\texttt{sage}: L.is_finite_over(GF(5))
True
\end{Verbatim}
If \texttt{base} is omitted, it is set to its default which is the base of the extension:

```
{sage}: L.is_finite_over()
True
```

\textbf{is\_free\_over}(\texttt{base=None})

Return \texttt{True} if this extension is free (as a module) over \texttt{base}

\textbf{INPUT}:
- \texttt{base} – a commutative ring (which might be itself an extension) or \texttt{None} (default: \texttt{None})

\textbf{EXAMPLES}:

```
{sage}: K = GF(5^2).over() # over GF(5)
sage: L = GF(5^4).over(K)
sage: L.is_free_over(K)
True
sage: L.is_free_over(GF(5))
True
```

If \texttt{base} is omitted, it is set to its default which is the base of the extension:

```
{sage}: L.is_free_over()
True
```

\textbf{ngens}(\texttt{base=None})

Return the number of generators of this extension over \texttt{base}.

\textbf{INPUT}:
- \texttt{base} – a commutative ring (which might be itself an extension) or \texttt{None} (default: \texttt{None})

\textbf{EXAMPLES}:

```
{sage}: K = GF(5^2).over() # over GF(5)
sage: K.gens()
(z2,)
sage: K.ngens()
1
sage: L = GF(5^4).over(K)
sage: L.gens(GF(5))
(z4, z2)
sage: L.ngens(GF(5))
2
```

\textbf{print\_options}(**\texttt{options})

Update the printing options of this extension.

\textbf{INPUT}:
- \texttt{over} – an integer or \texttt{Infinity} (default: \texttt{0}); the maximum number of bases included in the printing of this extension
- \texttt{base} – a base over which this extension is finite free; elements in this extension will be printed as a linear combination of a basis of this extension over the given base

\textbf{EXAMPLES}:
General Rings, Ideals, and Morphisms, Release 9.7

```sage
A.<a> = GF(5^2).over() # over GF(5)
sage: B. = GF(5^4).over(A)
sage: C.<c> = GF(5^12).over(B)
sage: D.<d> = GF(5^24).over(C)

Observe what happens when we modify the option over:

```sage
d
Field in d with defining polynomial x^2 + ((1 - a) + ((1 + 2*a) - b)*c + ((2 + a) - a) + (1 - a)*b)*c^2)*x + c over its base

```sage
D.print_options(over=2)

```sage
D
Field in d with defining polynomial x^2 + ((1 - a) + ((1 + 2*a) - b)*c + ((2 + a) - a) + (1 - a)*b)*c^2)*x + c over Field in c with defining polynomial x^3 + (1 + (2 - a)*b)*x^2 + (2 + 2*b)*x - b over Field in b with defining polynomial x^2 + (3 - a)*x + a over its base

```sage
D.print_options(over=Infinity)

```sage
D
Field in d with defining polynomial x^2 + ((1 - a) + ((1 + 2*a) - b)*c + ((2 + a) - a) + (1 - a)*b)*c^2)*x + c over Field in c with defining polynomial x^3 + (1 + (2 - a)*b)*x^2 + (2 + 2*b)*x - b over Field in b with defining polynomial x^2 + (3 - a)*x + a over Field in a with defining polynomial x^2 + 4*x + 2 over Finite Field of size 5

Now the option base:

```sage
d^2
-c + ((-1 + a) + ((-1 + 3*a) + b)*c + ((3 - a) + (-1 + a)*b)*c^2)*d

```sage
D.basis_over(B)
[1, c, c^2, d, c*d, c^2*d]

```sage
D.print_options(base=B)

```sage
d^2
-c + (-1 + a)*d + ((-1 + 3*a) + b)*c*d + ((3 - a) + (-1 + a)*b)*c^2*d

```sage
D.basis_over(A)
[1, b, c, b*c, c^2, b*c^2, d, b*d, c*d, b*c*d, c^2*d, b*c^2*d]

```sage
D.print_options(base=A)

```sage
d^2
-c + (-1 + a)*d + (-1 + 3*a)*c*d + b*c*d + (3 - a)*c^2*d + (-1 + a)*b*c^2*d

random_element()

Return a random element in this extension.

EXAMPLES:

```sage
K = GF(5^2).over()  # over GF(5)
sage: x = K.random_element(); x  # random
3 + z2
```
relative_degree()
Return the degree of this extension over its base

EXAMPLES:

```
sage: A = GF(5^4).over(GF(5^2))
sage: A.relative_degree()
2
```

See also:

degree(), absolute_degree()

sage.rings.ring_extension.common_base(K, L, degree)
Return a common base on which K and L are defined.

INPUT:

- K – a commutative ring
- L – a commutative ring
- degree – a boolean; if true, return the degree of K and L over their common base

EXAMPLES:

```
sage: from sage.rings.ring_extension import common_base

sage: common_base(GF(5^3), GF(5^7), False)
Finite Field of size 5
sage: common_base(GF(5^3), GF(5^7), True)
(Finite Field of size 5, 3, 7)

sage: common_base(GF(5^3), GF(7^5), False)
Traceback (most recent call last):
  ... NotImplementedError: unable to find a common base
```

When degree is set to True, we only look up for bases on which both K and L are finite:

```
sage: S.<x> = QQ[]
sage: common_base(S, QQ, False)
Rational Field
sage: common_base(S, QQ, True)
Traceback (most recent call last):
  ... NotImplementedError: unable to find a common base
```

sage.rings.ring_extension.generators(ring, base)
Return the generators of ring over base.

INPUT:
General Rings, Ideals, and Morphisms, Release 9.7

- ring – a commutative ring
- base – a commutative ring

EXAMPLES:

```python
sage: from sage.rings.ring_extension import generators
sage: S.<x> = QQ[]
sage: T.<y> = S[]

sage: generators(T, S)
(y,)
sage: generators(T, QQ)
(y, x)
```

`sage.rings.ring_extension.tower_bases(ring, degree)`
Return the list of bases of ring (including itself); if degree is True, restrict to finite extensions and return in addition the degree of ring over each base.

INPUT:
- ring – a commutative ring
- degree – a boolean

EXAMPLES:

```python
sage: from sage.rings.ring_extension import tower_bases
sage: S.<x> = QQ[]
sage: T.<y> = S[]

sage: tower_bases(T, False)
([Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over Rational Field, 
  Univariate Polynomial Ring in x over Rational Field, 
  Rational Field], [])
sage: tower_bases(T, True)
([Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over Rational Field], [1])
```

`sage.rings.ring_extension.variable_names(ring, base)`
Return the variable names of the generators of ring over base.

INPUT:
- ring – a commutative ring
- base – a commutative ring

EXAMPLES:
sage: from sage.rings.ring_extension import variable_names
sage: S.<x> = QQ[]
S.<x>

sage: T.<y> = S[
S.<y>

sage: variable_names(T, S)
('y',)

sage: variable_names(T, QQ)
('y', 'x')

7.2 Elements lying in extension of rings

AUTHOR:

- Xavier Caruso (2019)

class sage.rings.ring_extension_element.RingExtensionElement

Generic class for elements lying in ring extensions.

additive_order()

Return the additive order of this element.

EXAMPLES:

sage: K.<a> = GF(5^4).over(GF(5^2))
K.<a>

sage: a.additive_order()
5

is_nilpotent()

Return whether if this element is nilpotent in this ring.

EXAMPLES:

sage: A.<x> = PolynomialRing(QQ)
A.<x>

sage: E = A.over(QQ)
E

sage: E(0).is_nilpotent()
True

sage: E(x).is_nilpotent()
False

is_prime()

Return whether this element is a prime element in this ring.

EXAMPLES:

sage: A.<x> = PolynomialRing(QQ)
A.<x>

sage: E = A.over(QQ)
E

sage: E(x^2+1).is_prime()
True

sage: E(x^2-1).is_prime()
False

is_square(root=False)

Return whether this element is a square in this ring.
INPUT:

- root – a boolean (default: False); if True, return also a square root

EXAMPLES:

```python
sage: K.<a> = GF(5^3).over()
sage: a.is_square()
False
sage: a.is_square(root=True)
(False, None)

sage: b = a + 1
sage: b.is_square()
True
sage: b.is_square(root=True)
(True, 2 + 3*a + a^2)
```

is_unit

Return whether if this element is a unit in this ring.

EXAMPLES:

```python
sage: A.<x> = PolynomialRing(QQ)
sage: E = A.over(QQ)
sage: E(4).is_unit()
True
sage: E(x).is_unit()
False
```

multiplicative_order

Return the multiplicative order of this element.

EXAMPLES:

```python
sage: K.<a> = GF(5^4).over(GF(5^2))
sage: a.multiplicative_order()
624
```

sqrt(extend=True, all=False, name=None)

Return a square root or all square roots of this element.

INPUT:

- extend – a boolean (default: True); if “True”, return a square root in an extension ring, if necessary. Otherwise, raise a ValueError if the root is not in the ring
- all – a boolean (default: False); if True, return all square roots of this element, instead of just one.
- name – Required when extend=True and self is not a square. This will be the name of the generator extension.

Note: The option extend = True is often not implemented.

EXAMPLES:
```python
sage: K.<a> = GF(5^3).over()
sage: b = a + 1
sage: b.sqrt()
2 + 3*a + a^2
sage: b.sqrt(all=True)
[2 + 3*a + a^2, 3 + 2*a - a^2]
```

class `sage.rings.ring_extension_element.RingExtensionFractionFieldElement`

Bases: `sage.rings.ring_extension_element.RingExtensionElement`

A class for elements lying in fraction fields of ring extensions.

def `denominator()`

Return the denominator of this element.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: A.<a> = ZZ.extension(x^2 - 2)
sage: OK = A.over()  # over ZZ
sage: K = OK.fraction_field()
sage: K
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 2
˓→over its base
sage: x = K(1/a); x
a/2
sage: denom = x.denominator(); denom
2
```

The denominator is an element of the ring which was used to construct the fraction field:

```python
sage: denom.parent()
Order in Number Field in a with defining polynomial x^2 - 2 over its base
sage: denom.parent() is OK
True
```

def `numerator()`

Return the numerator of this element.

EXAMPLES:

```python
sage: A.<a> = ZZ.extension(x^2 - 2)
sage: OK = A.over()  # over ZZ
sage: K = OK.fraction_field()
sage: K
Fraction Field of Order in Number Field in a with defining polynomial x^2 - 2
˓→over its base
sage: x = K(1/a); x
a/2
sage: num = x.numerator(); num
a
```

The numerator is an element of the ring which was used to construct the fraction field:
sage: num.parent()
Order in Number Field in a with defining polynomial x^2 - 2 over its base
sage: num.parent() is OK True

class sage.rings.ring_extension_element.RingExtensionWithBasisElement
Bases: sage.rings.ring_extension_element.RingExtensionElement

A class for elements lying in finite free extensions.

charpoly(base=None, var='x')
Return the characteristic polynomial of this element over base.

INPUT:
• base – a commutative ring (which might be itself an extension) or None

EXAMPLES:
sage: F = GF(5)
sage: K.<a> = GF(5^3).over(F)
sage: L. = GF(5^6).over(K)
sage: u = a/(1+b)
sage: chi = u.charpoly(K); chi
x^2 + (1 + 2*a + 3*a^2)*x + 3 + 2*a^2

We check that the charpoly has coefficients in the base ring:
sage: chi.base_ring()
Field in a with defining polynomial x^3 + 3*x + 3 over its base
sage: chi.base_ring() is K True

and that it annihilates u:
sage: chi(u)
0

Similarly, one can compute the characteristic polynomial over F:
sage: u.charpoly(F)
x^6 + x^4 + 2*x^3 + 3*x + 4

A different variable name can be specified:
sage: u.charpoly(F, var='t')
t^6 + t^4 + 2*t^3 + 3*t + 4

If base is omitted, it is set to its default which is the base of the extension:
sage: u.charpoly()
x^2 + (1 + 2*a + 3*a^2)*x + 3 + 2*a^2

Note that base must be an explicit base over which the extension has been defined (as listed by the method bases()):
\texttt{sage: u.charpoly(GF(5^2))}
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2

\texttt{matrix(base=None)}

Return the matrix of the multiplication by this element (in the basis output by \texttt{basis_over()}).

\textbf{INPUT:}

- \texttt{base} – a commutative ring (which might be itself an extension) or \texttt{None}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K.<a> = GF(5^3).over() # over GF(5)
sage: L. = GF(5^6).over(K)
sage: u = a/(1+b)
sage: u
(2 + a + 3*a^2) + (3 + 3*a + a^2)*b
sage: b*u
(3 + 2*a^2) + (2 + 2*a - a^2)*b
sage: u.matrix(K)
\begin{bmatrix}
2 + a + 3*a^2 & 3 + 3*a + a^2 \\
3 + 2*a^2 & 2 + 2*a - a^2
\end{bmatrix}
sage: u.matrix(GF(5))
\begin{bmatrix}
2 & 1 & 3 & 3 & 1 \\
1 & 3 & 1 & 2 & 0 & 3 \\
2 & 3 & 3 & 1 & 3 & 0 \\
3 & 0 & 2 & 2 & 2 & 4 \\
4 & 2 & 0 & 3 & 0 & 2 \\
0 & 4 & 2 & 4 & 2 & 0
\end{bmatrix}
\end{verbatim}

If \texttt{base} is omitted, it is set to its default which is the base of the extension:

\begin{verbatim}
sage: u.matrix()
\begin{bmatrix}
2 + a + 3*a^2 & 3 + 3*a + a^2 \\
3 + 2*a^2 & 2 + 2*a - a^2
\end{bmatrix}
\end{verbatim}

Note that \texttt{base} must be an explicit base over which the extension has been defined (as listed by the method \texttt{bases()}):

\begin{verbatim}
sage: u.matrix(GF(5^2))
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2
\end{verbatim}

\texttt{minpoly(base=None, var='x')}

Return the minimal polynomial of this element over \texttt{base}.

\textbf{INPUT:}

- \texttt{base} – a commutative ring (which might be itself an extension) or \texttt{None}

\textbf{EXAMPLES:}
\begin{verbatim}
sage: F = GF(5)
sage: K.<a> = GF(5^3).over(F)
sage: L. = GF(5^6).over(K)
sage: u = 1 / (a+b)
sage: chi = u.minpoly(K); chi
x^2 + (2*a + a^2)*x - 1 + a

We check that the minimal polynomial has coefficients in the base ring:

\begin{verbatim}
sage: chi.base_ring()
Field in a with defining polynomial x^3 + 3*x + 3 over its base
sage: chi.base_ring() is K
True
\end{verbatim}

and that it annihilates u:

\begin{verbatim}
sage: chi(u)
0
\end{verbatim}

Similarly, one can compute the minimal polynomial over F:

\begin{verbatim}
sage: u.minpoly(F)
x^6 + 4*x^5 + x^4 + 2*x^2 + 3
\end{verbatim}

A different variable name can be specified:

\begin{verbatim}
sage: u.minpoly(F, var='t')
t^6 + 4*t^5 + t^4 + 2*t^2 + 3
\end{verbatim}

If base is omitted, it is set to its default which is the base of the extension:

\begin{verbatim}
sage: u.minpoly()
x^2 + (2*a + a^2)*x - 1 + a
\end{verbatim}

Note that base must be an explicit base over which the extension has been defined (as listed by the method bases()):

\begin{verbatim}
sage: u.minpoly(GF(5^2))
Traceback (most recent call last):
 ...
ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2
\end{verbatim}

\texttt{norm}(\texttt{base=None})

Return the norm of this element over \texttt{base}.

\textbf{INPUT:}

- \texttt{base} – a commutative ring (which might be itself an extension) or \texttt{None}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: F = GF(5)
sage: K.<a> = GF(5^3).over(F)
sage: L. = GF(5^6).over(K)
\end{verbatim}
\end{verbatim}
We check that the norm lives in the base ring:

```
sage: nr.parent()
Field in a with defining polynomial x^3 + 3*x + 3 over its base
sage: nr.parent() is K
True
```

Similarly, one can compute the norm over F:

```
sage: u.norm(F)
4
```

We check the transitivity of the norm:

```
sage: u.norm(F) == nr.norm(F)
True
```

If base is omitted, it is set to its default which is the base of the extension:

```
sage: u.norm()
3 + 2*a^2
```

Note that base must be an explicit base over which the extension has been defined (as listed by the method bases()):

```
sage: u.norm(GF(5^2))
Traceback (most recent call last):
  ... ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2
```

```
polynomial(base=None, var='x')
```

Return a polynomial (in one or more variables) over base whose evaluation at the generators of the parent equals this element.

INPUT:

- base – a commutative ring (which might be itself an extension) or None

EXAMPLES:

```
sage: F.<a> = GF(5^2).over()  # over GF(5)
sage: K.<b> = GF(5^4).over(F)
sage: L.<c> = GF(5^12).over(K)
sage: u = 1/(a + b + c); u
(2 + (-1 - a)*b) + ((2 + 3*a) + (1 - a)*b)*c + ((-1 - a) - a*b)*c^2
sage: P = u.polynomial(K); P
((-1 - a) - a*b)*x^2 + ((2 + 3*a) + (1 - a)*b)*x + 2 + (-1 - a)*b
sage: P.base_ring() is K
True
```

(continues on next page)
When the base is F, we obtain a bivariate polynomial:

```
sage: P = u.polynomial(F); P
(-a)*x0^2*x1 + (-1 - a)*x0^2 + (1 - a)*x0*x1 + (2 + 3*a)*x0 + (-1 - a)*x1 + 2
```

We check that its value at the generators is the element we started with:

```
sage: L.gens(F)
(c, b)
sage: P(c, b) == u
True
```

Similarly, when the base is $\text{GF}(5)$, we get a trivariate polynomial:

```
sage: P = u.polynomial(GF(5)); P
-x0^2*x1*x2 - x0^2*x2 - x0^2*x1 - 2*x0^2 + x1*x2 + 2*x0 - x1 + 2
```

We check that its value at the generators is the element we started with:

```
sage: L.gens(F)
(c, b, a)
sage: P(c, b, a) == u
True
```

Different variable names can be specified:

```
sage: u.polynomial(GF(5), var='y')
-y0^2*y1*y2 - y0^2*y2 - y0*y1*y2 - y0^2 + y0*y2 - y1*y2 + 2*y0 - y1 +...
```

```
sage: u.polynomial(GF(5), var=['x', 'y', 'z'])
-x^2*y*z - x^2*z - x*y*z - x^2 + x*y - 2*x - y + 2
```

If `base` is omitted, it is set to its default which is the base of the extension:

```
sage: u.polynomial()
((-1 - a) - a*b)*x^2 + ((2 + 3*a) + (1 - a)*b)*x + 2 + (-1 - a)*b
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```
sage: u.polynomial(GF(5^3))
Traceback (most recent call last):
  ...
ValueError: not (explicitly) defined over Finite Field in z3 of size 5^3
```

trace *(base=None)*

Return the trace of this element over `base`.

INPUT:

- base – a commutative ring (which might be itself an extension) or `None`

EXAMPLES:

```
sage: F = GF(5)
sage: K.<a> = GF(5^3).over(F)
sage: L.<b> = GF(5^6).over(K)
sage: u = a/(1+b)
```

(continues on next page)
We check that the trace lives in the base ring:

```
sage: tr.parent()
Field in a with defining polynomial x^3 + 3*x + 3 over its base
sage: tr.parent() is K
True
```

Similarly, one can compute the trace over F:

```
sage: u.trace(F)
0
```

We check the transitivity of the trace:

```
sage: u.trace(F) == tr.trace(F)
True
```

If base is omitted, it is set to its default which is the base of the extension:

```
sage: u.trace()
-1 + 3*a + 2*a^2
```

Note that base must be an explicit base over which the extension has been defined (as listed by the method bases()):

```
sage: u.trace(GF(5^2))
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2
```

```
vector(base=None)
```

Return the vector of coordinates of this element over base (in the basis output by the method basis_over()).

INPUT:

- base – a commutative ring (which might be itself an extension) or None

EXAMPLES:

```
sage: F = GF(5)
sage: K.<a> = GF(5^2).over()  # over F
sage: L.<b> = GF(5^6).over(K)
sage: x = (a+b)^4; x
(-1 + a) + (3 + a)*b + (1 - a)*b^2
sage: x.vector(K)  # basis is (1, b, b^2)
(-1 + a, 3 + a, 1 - a)
sage: x.vector(F)  # basis is (1, a, b, a*b, b^2, a*b^2)
(4, 1, 3, 1, 1, 4)
```

If base is omitted, it is set to its default which is the base of the extension:
General Rings, Ideals, and Morphisms, Release 9.7

```
sage: x.vector()
(-1 + a, 3 + a, 1 - a)
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```
sage: x.vector(GF(5^3))
Traceback (most recent call last):
  ...  
ValueError: not (explicitly) defined over Finite Field in z3 of size 5^3
```

7.3 Morphisms between extension of rings

AUTHOR:

- Xavier Caruso (2019)

class `sage.rings.ring_extension_morphism.MapFreeModuleToRelativeRing`

Bases: `sage.categories.map.Map`

Base class of the module isomorphism between a ring extension and a free module over one of its bases.

is_injective()

Return whether this morphism is injective.

EXAMPLES:

```
sage: K = GF(11^6).over(GF(11^3))
sage: V, i, j = K.free_module()
sage: i.is_injective()
True
```

is_surjective()

Return whether this morphism is surjective.

EXAMPLES:

```
sage: K = GF(11^6).over(GF(11^3))
sage: V, i, j = K.free_module()
sage: i.is_surjective()
True
```

class `sage.rings.ring_extension_morphism.MapRelativeRingToFreeModule`

Bases: `sage.categories.map.Map`

Base class of the module isomorphism between a ring extension and a free module over one of its bases.

is_injective()

Return whether this morphism is injective.

EXAMPLES:

```
sage: K = GF(11^6).over(GF(11^3))
sage: V, i, j = K.free_module()
sage: j.is_injective()
True
```

Chapter 7. Ring Extensions
is_surjective()
Return whether this morphism is injective.

EXAMPLES:

```python
sage: K = GF(11^6).over(GF(11^3))
sage: V, i, j = K.free_module()
sage: j.is_surjective()
True
```

class sage.rings.ring_extension_morphism.RingExtensionBackendIsomorphism
Bases: sage.rings.ring_extension_morphism.RingExtensionHomomorphism

A class for implementing isomorphisms taking an element of the backend to its ring extension.

class sage.rings.ring_extension_morphism.RingExtensionBackendReverseIsomorphism
Bases: sage.rings.ring_extension_morphism.RingExtensionHomomorphism

A class for implementing isomorphisms from a ring extension to its backend.

class sage.rings.ring_extension_morphism.RingExtensionHomomorphism
Bases: sage.rings.morphism.RingMap

A class for ring homomorphisms between extensions.

base_map()
Return the base map of this morphism or just None if the base map is a coercion map.

EXAMPLES:

```python
sage: F = GF(5)
sage: K.<a> = GF(5^2).over(F)
sage: L.<b> = GF(5^6).over(K)
We define the absolute Frobenius of L:

```python
sage: FrobL = L.hom([b^5, a^5])
sage: FrobL
Ring endomorphism of Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
 Defn: b |--> (-1 + a) + (1 + 2*a)*b + a*b^2
 with map on base ring:
 a |--> 1 - a
sage: FrobL.base_map()
Ring morphism:
 From: Field in a with defining polynomial x^2 + 4*x + 2 over its base
 To: Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
 Defn: a |--> 1 - a
```

The square of FrobL acts trivially on K; in other words, it has a trivial base map:

```python
sage: phi = FrobL^2
sage: phi
Ring endomorphism of Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
 Defn: b |--> 2 + 2*a*b + (2 - a)*b^2
sage: phi.base_map()
```

7.3. Morphisms between extension of rings
**is_identity()**

Return whether this morphism is the identity.

**EXAMPLES:**

```sage
sage: K.<a> = GF(5^2).over() # over GF(5)
sage: FrobK = K.hom([a^5])
sage: FrobK.is_identity()
False
sage: (FrobK^2).is_identity()
True
```

Coercion maps are not considered as identity morphisms:

```sage
sage: L. = GF(5^6).over(K)
sage: iota = L.defining_morphism()
sage: iota
Ring morphism:
 From: Field in a with defining polynomial x^2 + 4*x + 2 over its base
 To: Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
 Defn: a |--> a
sage: iota.is_identity()
False
```

**is_injective()**

Return whether this morphism is injective.

**EXAMPLES:**

```sage
sage: K = GF(5^10).over(GF(5^5))
sage: iota = K.defining_morphism()
sage: iota
Ring morphism:
 From: Finite Field in z5 of size 5^5
 To: Field in z10 with defining polynomial x^2 + (2*z5^3 + 2*z5^2 + 4*z5 + 4)*x + z5 over its base
 Defn: z5 |--> z5
sage: iota.is_injective()
True
sage: K = GF(7).over(ZZ)
sage: iota = K.defining_morphism()
sage: iota
Ring morphism:
 From: Integer Ring
 To: Finite Field of size 7 over its base
 Defn: 1 |---> 1
sage: iota.is_injective()
False
```

**is_surjective()**

Return whether this morphism is surjective.

**EXAMPLES:**
The code snippet demonstrates the creation of ring morphisms between different fields in SageMath. Here's a breakdown of the code and its output:

```python
sage: K = GF(5^10).over(GF(5^5))
sage: iota = K.defining_morphism()
sage: iota
Ring morphism:
 From: Finite Field in z5 of size 5^5
 To: Field in z10 with defining polynomial x^2 + (2*z5^3 + 2*z5^2 + 4*z5 + 4)*x + z5 over its base
 Defn: z5 |--> z5
sage: iota.is_surjective()
False
```

The first example shows a morphism from a field of size $5^5$ to a field of size $5^{10}$, with the morphism mapping $z5$ to itself. However, the morphism is not surjective.

```python
sage: K = GF(7).over(ZZ)
sage: iota = K.defining_morphism()
sage: iota
Ring morphism:
 From: Integer Ring
 To: Finite Field of size 7 over its base
 Defn: 1 |--> 1
sage: iota.is_surjective()
True
```

The second example demonstrates a morphism from the integer ring to a field of size 7, which is surjective.

These examples illustrate the use of ring morphisms and their properties in SageMath.
8.1 Big O for various types (power series, p-adics, etc.)

See also:

- asymptotic expansions
- p-adic numbers
- power series
- polynomials

`sage.rings.big_oh.O(*x, **kwds)`

Big O constructor for various types.

EXAMPLES:

This is useful for writing power series elements:

```python
sage: R.<t> = ZZ[[t]]
sage: (1+t)^10 + O(t^5)
1 + 10*t + 45*t^2 + 120*t^3 + 210*t^4 + O(t^5)
```

A power series ring is created implicitly if a polynomial element is passed:

```python
sage: R.<x> = QQ[[x]]
sage: O(x^100)
O(x^100)
sage: 1/(1+x+O(x^5))
1 - x + x^2 - x^3 + x^4 + O(x^5)
sage: R.<u,v> = QQ[[[]]]
```

```python
sage: 1 + u + v^2 + O(u, v)^5
1 + u + v^2 + O(u, v)^5
```

This is also useful to create p-adic numbers:

```python
sage: O(7^6)
O(7^6)
sage: 1/3 + O(7^6)
5 + 4*7 + 4*7^2 + 4*7^3 + 4*7^4 + 4*7^5 + O(7^6)
```

It behaves well with respect to adding negative powers of p:
There are problems if you add a rational with very negative valuation to an $O$-Term:

```
sage: 11^-12 + O(11^15)
11^-12 + O(11^8)
```

The reason that this fails is that the constructor doesn’t know the right precision cap to use. If you cast explicitly or use other means of element creation, you can get around this issue:

```
sage: K = Qp(11, 30)
sage: K(11^-12) + O(11^15)
11^-12 + O(11^15)
sage: 11^-12 + K(O(11^15))
11^-12 + O(11^15)
sage: K(11^-12, absprec = 15)
11^-12 + O(11^15)
sage: K(11^-12, 15)
11^-12 + O(11^15)
```

We can also work with asymptotic expansions:

```
sage: A.<n> = AsymptoticRing(growth_group='QQ^n * n^QQ * log(n)^QQ', coefficient_ring=QQ); A
Asymptotic Ring <QQ^n * n^QQ * log(n)^QQ * Signs^n> over Rational Field
sage: 0(n)
0(n)
```

Application with Puiseux series:

```
sage: P.<y> = PuiseuxSeriesRing(ZZ)
sage: y^(1/5) + O(y^(1/3))
y^(1/5) + O(y^(1/3))
sage: y^(1/3) + O(y^(1/5))
O(y^(1/5))
```

### 8.2 Signed and Unsigned Infinities

The unsigned infinity “ring” is the set of two elements

1. infinity
2. A number less than infinity

The rules for arithmetic are that the unsigned infinity ring does not canonically coerce to any other ring, and all other rings canonically coerce to the unsigned infinity ring, sending all elements to the single element “a number less than infinity” of the unsigned infinity ring. Arithmetic and comparisons then take place in the unsigned infinity ring, where all arithmetic operations that are well-defined are defined.

The infinity “ring” is the set of five elements

1. plus infinity
2. a positive finite element
3. zero
4. a negative finite element
5. negative infinity

The infinity ring coerces to the unsigned infinity ring, sending the infinite elements to infinity and the non-infinite elements to “a number less than infinity.” Any ordered ring coerces to the infinity ring in the obvious way.

Note: The shorthand oo is predefined in Sage to be the same as +Infinity in the infinity ring. It is considered equal to, but not the same as Infinity in the UnsignedInfinityRing.

EXAMPLES:

We fetch the unsigned infinity ring and create some elements:

```
sage: P = UnsignedInfinityRing; P
The Unsigned Infinity Ring
sage: P(5)
A number less than infinity
sage: P.ngens()
1
sage: unsigned_oo = P.0; unsigned_oo
Infinity
```

We compare finite numbers with infinity:

```
sage: 5 < unsigned_oo
True
sage: 5 > unsigned_oo
False
sage: unsigned_oo < 5
False
sage: unsigned_oo > 5
True
```

Demonstrating the shorthand oo versus Infinity:

```
sage: oo
+Infinity
sage: oo is InfinityRing.0
True
sage: oo is UnsignedInfinityRing.0
False
sage: oo == UnsignedInfinityRing.0
True
```

We do arithmetic:

```
sage: unsigned_oo + 5
Infinity
```

We make 1 / unsigned_oo return the integer 0 so that arithmetic of the following type works:
Note that many operations are not defined, since the result is not well-defined:

```
sage: unsigned_oo/0
Traceback (most recent call last):
 ...
ValueError: quotient of number < oo by number < oo not defined
```

What happened above is that 0 is canonically coerced to “A number less than infinity” in the unsigned infinity ring. Next, Sage tries to divide by multiplying with its inverse. Finally, this inverse is not well-defined.

```
sage: 0/unsigned_oo
0
sage: unsigned_oo * 0
Traceback (most recent call last):
 ...
ValueError: unsigned oo times smaller number not defined
sage: unsigned_oo/unsigned_oo
Traceback (most recent call last):
 ...
ValueError: unsigned oo times smaller number not defined
```

In the infinity ring, we can negate infinity, multiply positive numbers by infinity, etc.

```
sage: P = InfinityRing; P
The Infinity Ring
sage: P(5)
A positive finite number
```

The symbol oo is predefined as a shorthand for +Infinity:

```
sage: oo
+Infinity
```

We compare finite and infinite elements:

```
sage: 5 < oo
True
sage: P(-5) < P(5)
True
sage: P(2) < P(3)
False
sage: -oo < oo
True
```

We can do more arithmetic than in the unsigned infinity ring:

```
sage: 2 * oo
+Infinity
sage: -2 * oo
```

(continues on next page)
We make $1 / \infty$ and $1 / -\infty$ return the integer 0 instead of the infinity ring Zero so that arithmetic of the following type works:

\begin{verbatim}
sage: (1/oo) + 2
2
sage: 32/5 - (2.439/-oo)
32/5
\end{verbatim}

If we try to subtract infinities or multiply infinity by zero we still get an error:

\begin{verbatim}
sage: oo - oo
Traceback (most recent call last):
  ... 
SignError: cannot add infinity to minus infinity
sage: 0 * oo
Traceback (most recent call last):
  ... 
SignError: cannot multiply infinity by zero
sage: P(2) + P(-3)
Traceback (most recent call last):
  ... 
SignError: cannot add positive finite value to negative finite value
\end{verbatim}

Signed infinity can also be represented by RR / RDF elements. But unsigned infinity cannot:

\begin{verbatim}
sage: oo in RR, oo in RDF
(True, True)
sage: unsigned_infinity in RR, unsigned_infinity in RDF
(False, False)
\end{verbatim}

**class** `sage.rings.infinity.AnInfinity`  
Bases: `object`

\begin{verbatim}
lcm(x)
  Return the least common multiple of oo and x, which is by definition oo unless x is 0.
  EXAMPLES:
\end{verbatim}

\begin{verbatim}
sage: oo.lcm(0)
0
sage: oo.lcm(oo)
+Infinity
sage: oo.lcm(-oo)
+Infinity
sage: oo.lcm(10)
+Infinity
\end{verbatim}
sage: (-oo).lcm(10) +Infinity

class sage.rings.infinity.FiniteNumber(parent, x)
Bases: sage.structure.element.RingElement

Initialize self.

def sign()
    Return the sign of self.

    EXAMPLES:
    
    sage: sign(InfinityRing(2))
    1
    sage: sign(InfinityRing(0))
    0
    sage: sign(InfinityRing(-2))
    -1

def sqrt()
    EXAMPLES:
    
    sage: InfinityRing(7).sqrt()
    A positive finite number
    sage: InfinityRing(0).sqrt()
    Zero
    sage: InfinityRing(-.001).sqrt()
    Traceback (most recent call last):
    ...
    SignError: cannot take square root of a negative number

sage.rings.infinity.InfinityRing = The Infinity Ring
class sage.rings.infinity.InfinityRing_class
Bases: sage.misc.fast_methods.Singleton, sage.rings.ring.Ring

Initialize self.

def fraction_field()
    This isn’t really a ring, let alone an integral domain.

def gen(n=0)
    The two generators are plus and minus infinity.

    EXAMPLES:
    
    sage: InfinityRing.gen(0)
    +Infinity
    sage: InfinityRing.gen(1)
    -Infinity
    sage: InfinityRing.gen(2)
    Traceback (most recent call last):
    ...
    IndexError: n must be 0 or 1
**gens()**
The two generators are plus and minus infinity.

EXAMPLES:
```
sage: InfinityRing.gens()
[+Infinity, -Infinity]
```

**is_commutative()**
The Infinity Ring is commutative

EXAMPLES:
```
sage: InfinityRing.is_commutative()
True
```

**is_zero()**
The Infinity Ring is not zero

EXAMPLES:
```
sage: InfinityRing.is_zero()
False
```

**ngens()**
The two generators are plus and minus infinity.

EXAMPLES:
```
sage: InfinityRing.ngens()
2
sage: len(InfinityRing.gens())
2
```

```python
class sage.rings.infinity.LessThanInfinity(
parent=The Unsigned Infinity Ring)
Bases: sage.rings.infinity._uniq, sage.structure.element.RingElement

Initialize self.

EXAMPLES:
```
sage: sage.rings.infinity.LessThanInfinity() is UnsignedInfinityRing(5)
True
```

sign()
Raise an error because the sign of self is not well defined.

EXAMPLES:
```
sage: sign(UnsignedInfinityRing(2))
Traceback (most recent call last):
...    NotImplementedError: sign of number < oo is not well defined
sage: sign(UnsignedInfinityRing(0))
Traceback (most recent call last):
...    NotImplementedError: sign of number < oo is not well defined
sage: sign(UnsignedInfinityRing(-2))
```
```
General Rings, Ideals, and Morphisms, Release 9.7

(continued from previous page)

class sage.rings.infinity.MinusInfinity
Bases: sage.rings.infinity._uniq, sage.rings.infinity.AnInfinity, sage.structure.element.InfinityElement

Initialize self.

sqrt()

EXAMPLES:

sage: (-oo).sqrt()
Traceback (most recent call last):
...
SignError: cannot take square root of negative infinity

class sage.rings.infinity.PlusInfinity
Bases: sage.rings.infinity._uniq, sage.rings.infinity.AnInfinity, sage.structure.element.InfinityElement

Initialize self.

sqrt()

The square root of self.

The square root of infinity is infinity.

EXAMPLES:

sage: oo.sqrt()
+Infinity

exception sage.rings.infinity.SignError
Bases: ArithmeticError

Sign error exception.

class sage.rings.infinity.UnsignedInfinity
Bases: sage.rings.infinity._uniq, sage.rings.infinity.AnInfinity, sage.structure.element.InfinityElement

Initialize self.

sage.rings.infinity.UnsignedInfinityRing = The Unsigned Infinity Ring

class sage.rings.infinity.UnsignedInfinityRing_class
Bases: sage.misc.fast_methods.Singleton, sage.rings.ring.Ring

Initialize self.

fraction_field()

The unsigned infinity ring isn’t an integral domain.

EXAMPLES:

sage: UnsignedInfinityRing.fraction_field()
Traceback (most recent call last):
(continues on next page)
... TypeError: infinity 'ring' has no fraction field

gen(n=0)
The “generator” of self is the infinity object.

EXAMPLES:

```
sage: UnsignedInfinityRing.gen()
Infinity
sage: UnsignedInfinityRing.gen(1)
Traceback (most recent call last):
...
IndexError: UnsignedInfinityRing only has one generator
```

gens()
The “generator” of self is the infinity object.

EXAMPLES:

```
sage: UnsignedInfinityRing.gens()
[Infinity]
```

less_than_infinity()
This is the element that represents a finite value.

EXAMPLES:

```
sage: UnsignedInfinityRing.less_than_infinity()
A number less than infinity
sage: UnsignedInfinityRing(5) is UnsignedInfinityRing.less_than_infinity()
True
```

ngens()
The unsigned infinity ring has one “generator.”

EXAMPLES:

```
sage: UnsignedInfinityRing.ngens()
1
sage: len(UnsignedInfinityRing.gens())
1
```

sage.rings.infinity.is_Infinite(x)
This is a type check for infinity elements.

EXAMPLES:

```
sage: sage.rings.infinity.is_Infinite(oo)
True
sage: sage.rings.infinity.is_Infinite(-oo)
True
sage: sage.rings.infinity.is_Infinite(unsigned_infinity)
True
sage: sage.rings.infinity.is_Infinite(3)
```

(continues on next page)
False

```
sage: sage.rings.infinity.is_Infinite(RR(infinity))
False
sage: sage.rings.infinity.is_Infinite(ZZ)
False
```

`sage.rings.infinity.test_comparison(ring)`

Check comparison with infinity

INPUT:

- `ring` – a sub-ring of the real numbers

OUTPUT:

Various attempts are made to generate elements of `ring`. An assertion is triggered if one of these elements does not compare correctly with plus/minus infinity.

EXAMPLES:

```
sage: from sage.rings.infinity import test_comparison
sage: rings = [ZZ, QQ, RR, RealField(200), RDF, RLF, AA, RIF]
sage: for R in rings:
 : print('testing {}'.format(R))
 : test_comparison(R)
```

```
testing Integer Ring
testing Rational Field
testing Real Field with 53 bits of precision
testing Real Field with 200 bits of precision
testing Real Double Field
testing Real Lazy Field
testing Algebraic Real Field
testing Real Interval Field with 53 bits of precision
```

Comparison with number fields does not work:

```
sage: K.<sqrt3> = NumberField(x^2-3)
sage: (-oo < 1+sqrt3) and (1+sqrt3 < oo) # known bug
False
```

The symbolic ring handles its own infinities, but answers `False` (meaning: cannot decide) already for some very elementary comparisons:

```
sage: test_comparison(SR) # known bug
Traceback (most recent call last):
...
AssertionError: testing -1000.0 in Symbolic Ring: id = ...
```

`sage.rings.infinity.test_signed_infinity(pos_inf)`

Test consistency of infinity representations.

There are different possible representations of infinity in Sage. These are all consistent with the infinity ring, that is, compare with infinity in the expected way. See also trac ticket #14045

INPUT:

- `pos_inf` – a representation of positive infinity.
An assertion error is raised if the representation is not consistent with the infinity ring.

Check that trac ticket #14045 is fixed:

```python
sage: InfinityRing(float('+inf'))
+Infinity
sage: InfinityRing(float('-inf'))
-Infinity
sage: oo > float('+inf')
False
sage: oo == float('+inf')
True
```

**EXAMPLES:**

```python
sage: from sage.rings.infinity import test_signed_infinity
sage: for pos_inf in [oo, float('+inf'), RLF(oo), RIF(oo), SR(oo)]:
....: test_signed_infinity(pos_inf)
```

### 8.3 Support Python's numbers abstract base class

**See also:**

[PEP 3141](https://www.python.org/dev/peps/pep-03141/) for more information about numbers.

```python
sage.rings.numbers_abc.register_sage_classes()
```

Register all relevant Sage classes in the numbers hierarchy.

**EXAMPLES:**

```python
sage: import numbers
sage: isinstance(5, numbers.Integral)
True
sage: isinstance(5, numbers.Number)
True
sage: isinstance(5/1, numbers.Integral)
False
sage: isinstance(22/7, numbers.Rational)
True
sage: isinstance(CC(1.3), numbers.Real)
True
sage: isinstance(RDF(1.3), numbers.Real)
True
sage: isinstance(CDF(1.3, 4), numbers.Complex)
True
sage: isinstance(AA(sqrt(2)), numbers.Real)
True
```

(continues on next page)
This doesn’t work with symbolic expressions at all:

```
sage: isinstance(pi, numbers.Real)
False
sage: isinstance(I, numbers.Complex)
False
sage: isinstance(sqrt(2), numbers.Real)
False
```

Because we do this, NumPy’s `isscalar()` recognizes Sage types:

```
sage: from numpy import isscalar
sage: isscalar(3.141)
True
sage: isscalar(4/17)
True
```
9.1 Derivations

Let $A$ be a ring and $B$ be a bimodule over $A$. A derivation $d : A \to B$ is an additive map that satisfies the Leibniz rule

$$d(xy) = xd(y) + d(x)y.$$ 

If $B$ is an algebra over $A$ and if we are given in addition a ring homomorphism $\theta : A \to B$, a twisted derivation with respect to $\theta$ (or a $\theta$-derivation) is an additive map $d : A \to B$ such that

$$d(xy) = \theta(x)d(y) + d(x)y.$$ 

When $\theta$ is the morphism defining the structure of $A$-algebra on $B$, a $\theta$-derivation is nothing but a derivation. In general, if $\iota : A \to B$ denotes the defining morphism above, one easily checks that $\theta - \iota$ is a $\theta$-derivation.

This file provides support for derivations and twisted derivations over commutative rings with values in algebras (i.e. we require that $B$ is a commutative $A$-algebra). In this case, the set of derivations (resp. $\theta$-derivations) is a module over $B$.

Given a ring $A$, the module of derivations over $A$ can be created as follows:

```sage
A.<x,y,z> = QQ[]
sage: M = A.derivation_module()
sage: M
Module of derivations over Multivariate Polynomial Ring in x, y, z over Rational Field
```

The method `gens()` returns the generators of this module:

```sage
sage: A.<x,y,z> = QQ[]
sage: M = A.derivation_module()
sage: M.gens()
(d/dx, d/dy, d/dz)
```

We can combine them in order to create all derivations:

```sage
d = 2*M.gen(0) + z*M.gen(1) + (x^2 + y^2)*M.gen(2)
sage: d
2*d/dx + z*d/dy + (x^2 + y^2)*d/dz
```

and now play with them:
Alternatively we can use the method `derivation()` of the ring $A$ to create derivations:

\begin{verbatim}
sage: Dx = A.derivation(x); Dx
d/dx
sage: Dy = A.derivation(y); Dy
d/dy
sage: Dz = A.derivation(z); Dz
d/dz
sage: A.derivation([2, z, x^2+y^2])
2*d/dx + z*d/dy + (x^2 + y^2)*d/dz
\end{verbatim}

Sage knows moreover that $M$ is a Lie algebra:

\begin{verbatim}
sage: M.category()
Join of Category of lie algebras with basis over Rational Field
  and Category of modules with basis over Multivariate Polynomial Ring in x, y, z over Rational Field
\end{verbatim}

Computations of Lie brackets are implemented as well:

\begin{verbatim}
sage: Dx.bracket(Dy)
0
sage: d.bracket(Dx)
-2*x*d/dz
\end{verbatim}

At the creation of a module of derivations, a codomain can be specified:

\begin{verbatim}
sage: B = A.fraction_field()
sage: A.derivation_module(B)
Module of derivations from Multivariate Polynomial Ring in x, y, z over Rational Field
to Fraction Field of Multivariate Polynomial Ring in x, y, z over Rational Field
\end{verbatim}

Alternatively, one can specify a morphism $f$ with domain $A$. In this case, the codomain of the derivations is the codomain of $f$ but the latter is viewed as an algebra over $A$ through the homomorphism $f$. This construction is useful, for example, if we want to work with derivations on $A$ at a certain point, e.g. $(0, 1, 2)$. Indeed, in order to achieve this, we first define the evaluation map at this point:

\begin{verbatim}
sage: ev = A.hom([QQ(0), QQ(1), QQ(2)])
sage: ev
Ring morphism:
  From: Multivariate Polynomial Ring in x, y, z over Rational Field
  To:   Rational Field
  Defn: x |--> 0
         y |--> 1
         z |--> 2
\end{verbatim}

Now we use this ring homomorphism to define a structure of $A$-algebra on $Q$ and then build the following module of derivations:
sage: M = A.derivation_module(ev)
sage: M
Module of derivations from Multivariate Polynomial Ring in x, y, z over Rational Field
→ to Rational Field
sage: M.gens()
(d/dx, d/dy, d/dz)

Elements in $M$ then acts as derivations at $(0,1,2)$:

sage: Dx = M.gen(0)
sage: Dy = M.gen(1)
sage: Dz = M.gen(2)
sage: f = x^2 + y^2 + z^2
sage: Dx(f) # = 2*x evaluated at (0,1,2)
0
sage: Dy(f) # = 2*y evaluated at (0,1,2)
2
sage: Dz(f) # = 2*z evaluated at (0,1,2)
4

Twisted derivations are handled similarly:

sage: theta = B.hom([B(y),B(z),B(x)])
sage: theta
Ring endomorphism of Fraction Field of Multivariate Polynomial Ring in x, y, z over...
→ Rational Field
  Defn: x |--> y
  y |--> z
  z |--> x
sage: M = B.derivation_module(twist=theta)
sage: M
Module of twisted derivations over Fraction Field of Multivariate Polynomial Ring
in x, y, z over Rational Field (twisting morphism: x |--> y, y |--> z, z |--> x)

Over a field, one proves that every $\theta$-derivation is a multiple of $\theta - id$, so that:

sage: d = M.gen(); d
[x |--> y, y |--> z, z |--> x] - id

and then:

sage: d(x)
-x + y
sage: d(y)
-y + z
sage: d(z)
x - z
sage: d(x + y + z)
0

AUTHOR:
- Xavier Caruso (2018-09)
class sage.rings.derivation.RingDerivation
    Bases: sage.structure.element.ModuleElement

    An abstract class for twisted and untwisted derivations over commutative rings.

codomain()
    Return the codomain of this derivation.

    EXAMPLES:

    sage: R.<x> = QQ[]
    sage: f = R.derivation(); f
d/dx
    sage: f.codomain()
    Univariate Polynomial Ring in x over Rational Field
    sage: f.codomain() is R
    True

    sage: S.<y> = R[]
    sage: M = R.derivation_module(S)
    sage: M.random_element().codomain() is S
    True
domain()
    Return the domain of this derivation.

    EXAMPLES:

    sage: R.<x,y> = ZZ[]
    sage: M = R.derivation_module()
    sage: M.basis()
    Family (d/dx, d/dy)

    sage: M.random_element().codomain() is S
    True

class sage.rings.derivation.RingDerivationModule(domain, codomain, twist=None)
    Bases: sage.modules.module.Module, sage.structure.unique_representation.UniqueRepresentation

    A class for modules of derivations over a commutative ring.

    basis()
    Return a basis of this module of derivations.

    EXAMPLES:

    sage: R.<x,y> = ZZ[]
    sage: M = R.derivation_module()
    sage: M.basis()
    Family (d/dx, d/dy)

    codomain()
    Return the codomain of the derivations in this module.
EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer Ring
sage: M.codomain()
Multivariate Polynomial Ring in x, y over Integer Ring
```

**defining_morphism()**

Return the morphism defining the structure of algebra of the codomain over the domain.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: M = R.derivation_module()
sage: M.defining_morphism()
Identity endomorphism of Univariate Polynomial Ring in x over Rational Field
sage: S.<y> = R[]
sage: M = R.derivation_module(S)
sage: M.defining_morphism()
Polynomial base injection morphism:
 From: Univariate Polynomial Ring in x over Rational Field
 To: Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over Rational Field
sage: ev = R.hom([QQ(0)])
sage: M = R.derivation_module(ev)
sage: M.defining_morphism()
Ring morphism:
 From: Univariate Polynomial Ring in x over Rational Field
 To: Rational Field
 Defn: x |--> 0
```

**domain()**

Return the domain of the derivations in this module.

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer Ring
sage: M.domain()
Multivariate Polynomial Ring in x, y over Integer Ring
```

**dual_basis()**

Return the dual basis of the canonical basis of this module of derivations (which is that returned by the method `basis()`).

**Note:** The dual basis of \((d_1, \ldots, d_n)\) is a family \((x_1, \ldots, x_n)\) of elements in the domain such that \(d_i(x_i) = 1\) and \(d_i(x_j) = 0\) if \(i \neq j\).

EXAMPLES:
```python
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
sage: M.dual_basis()
Family (x, y)
```

**gen**

Return the n-th generator of this module of derivations.

**INPUT:**

- n – an integer (default: 0)

**EXAMPLES:**

```python
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer
˓→Ring
sage: M.gen()
d/dx
sage: M.gen(1)
d/dy
```

**gens**

Return the generators of this module of derivations.

**EXAMPLES:**

```python
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer
˓→Ring
sage: M.gens()
(d/dx, d/dy)
```

We check that, for a nontrivial twist over a field, the module of twisted derivation is a vector space of

dimension 1 generated by \(\text{twist} - \text{id}\):

```python
sage: K = R.fraction_field()
sage: theta = K.hom([K(y),K(x)])
sage: M = K.derivation_module(twist=theta); M
Module of twisted derivations over Fraction Field of Multivariate Polynomial
˓→Ring in x, y over Integer Ring (twisting morphism: x |--> y, y |--> x)
sage: M.gens()
([x |--> y, y |--> x] - id,)
```

**ngens**

Return the number of generators of this module of derivations.

**EXAMPLES:**

```python
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer
˓→Ring
(continues on next page)
```
Indeed, generators are:

```
sage: M.gens()
(d/dx, d/dy)
```

We check that, for a nontrivial twist over a field, the module of twisted derivation is a vector space of dimension 1 generated by $\text{twist} - \text{id}$:

```
sage: K = R.fraction_field()
sage: theta = K.hom([K(y),K(x)])
sage: M = K.derivation_module(twist=theta); M
Module of twisted derivations over Fraction Field of Multivariate Polynomial Ring in x, y over Integer Ring (twisting morphism: x |--> y, y |--> x)
sage: M.ngens()
1
sage: M.gen()
[x |--> y, y |--> x] - id
```

**random_element(***args, **kwds)**

Return a random derivation in this module.

**ring_of_constants()**

Return the subring of the domain consisting of elements $x$ such that $d(x) = 0$ for all derivation $d$ in this module.

**some_elements()**

Return a list of elements of this module.
twisting_morphism()
Return the twisting homomorphism of the derivations in this module.

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: theta = R.hom([y,x])
sage: M = R.derivation_module(twist=theta); M
Module of twisted derivations over Multivariate Polynomial Ring in x, y
over Integer Ring (twisting morphism: x |--> y, y |--> x)
sage: M.twisting_morphism()
Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring
 Defn: x |--> y
 y |--> x
```

When the derivations are untwisted, this method returns nothing:

```python
sage: M = R.derivation_module()
sage: M.twisting_morphism()
```

class sage.rings.derivation.RingDerivationWithTwist_generic(parent, scalar=0)
Bases: sage.rings.derivation.RingDerivation

The class handles $\theta$-derivations of the form $\lambda(\theta - \iota)$ (where $\iota$ is the defining morphism of the codomain over the domain) for a scalar $\lambda$ varying in the codomain.

extend_to_fraction_field()
Return the extension of this derivation to fraction fields of the domain and the codomain.

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: theta = R.hom([y,x])
sage: d = R.derivation(x, twist=theta)
sage: d
x*(x |--> y, y |--> x) - id
sage: D = d.extend_to_fraction_field()
sage: D
x*(x |--> y, y |--> x) - id
sage: D.domain()
Fraction Field of Multivariate Polynomial Ring in x, y over Integer Ring
sage: D(1/x)
(x - y)/y
```

list()
Return the list of coefficient of this twisted derivation on the canonical basis.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: K = R.fraction_field()
sage: theta = K.hom([y,x])
sage: M = K.derivation_module(twist=theta)
sage: M.basis()
```

(continues on next page)
Family \((\text{twisting\_morphism} - \text{id},)\)

\[\text{sage: } f = (x+y) \ast \text{M.gen()} \]
\[\text{sage: } f \]
\[(x + y) \ast (\text{twisting\_morphism} - \text{id}) \]
\[\text{sage: } f.\text{list()} \]
\[[x + y] \]

\text{postcompose}(\text{morphism})

Return the twisted derivation obtained by applying first this twisted derivation and then \text{morphism}.

\text{INPUT:}

\begin{itemize}
\item \text{morphism} – a homomorphism of rings whose domain is the codomain of this derivation or a ring into which the codomain of this derivation
\end{itemize}

\text{EXAMPLES:}

\[\text{sage: } R.<x,y> = \text{ZZ}[] \]
\[\text{sage: } \theta = R.\text{hom}([y,x]) \]
\[\text{sage: } D = R.\text{derivation}(x, \text{twist=theta}); D \]
\[x^*([x \mapsto y, y \mapsto x] - \text{id}) \]
\[\text{sage: } f = R.\text{hom}([x^2, y^3]) \]
\[\text{sage: } g = D.\text{precompose}(f); g \]
\[x^*([x \mapsto y^2, y \mapsto x^3] - [x \mapsto x^2, y \mapsto y^3]) \]

Observe that the \(g\) is no longer a \(\theta\)-derivation but a \((\theta \circ f)\)-derivation:

\[\text{sage: } g.\text{parent()}.\text{twisting\_morphism()} \]
Ring endomorphism of Multivariate Polynomial Ring in \(x, y\) over Integer Ring
Defn: \(x \mapsto y^2\)
\(y \mapsto x^3\)

\text{precompose}(\text{morphism})

Return the twisted derivation obtained by applying first \text{morphism} and then this twisted derivation.

\text{INPUT:}

\begin{itemize}
\item \text{morphism} – a homomorphism of rings whose codomain is the domain of this derivation or a ring that coerces to the domain of this derivation
\end{itemize}

\text{EXAMPLES:}

\[\text{sage: } R.<x,y> = \text{ZZ}[] \]
\[\text{sage: } \theta = R.\text{hom}([y,x]) \]
\[\text{sage: } D = R.\text{derivation}(x, \text{twist=theta}); D \]
\[x^*([x \mapsto y, y \mapsto x] - \text{id}) \]
\[\text{sage: } f = R.\text{hom}([x^2, y^3]) \]
\[\text{sage: } g = D.\text{postcompose}(f); g \]
\[x^{2*}([x \mapsto y^3, y \mapsto x^2] - [x \mapsto x^2, y \mapsto y^3]) \]

Observe that the \(g\) is no longer a \(\theta\)-derivation but a \((f \circ \theta)\)-derivation:

\[\text{sage: } g.\text{parent()}.\text{twisting\_morphism()} \]
Ring endomorphism of Multivariate Polynomial Ring in \(x, y\) over Integer Ring
Defn: \( x \mapsto y^3 \)  
\( y \mapsto x^2 \)

class sage.rings.derivation.RingDerivationWithoutTwist  
Bases: sage.rings.derivation.RingDerivation

An abstract class for untwisted derivations.

**extend_to_fraction_field()**

Return the extension of this derivation to fraction fields of the domain and the codomain.

**EXAMPLES:**

```python
sage: S.<x> = QQ[]
sage: d = S.derivation()
sage: d
d/dx
sage: D = d.extend_to_fraction_field()
sage: D
d/dx
sage: D.domain()
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: D(1/x)
-1/x^2
```

**is_zero()**

Return True if this derivation is zero.

**EXAMPLES:**

```python
sage: R.<x,y> = ZZ[]
sage: f = R.derivation(); f
d/dx
type(f)
<...>
sage: f.is_zero()
False
sage: (f-f).is_zero()
True
```

**list()**

Return the list of coefficient of this derivation on the canonical basis.

**EXAMPLES:**

```python
sage: R.<x,y> = QQ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
sage: R.derivation(x).list()
[1, 0]
sage: R.derivation(y).list()
[0, 1]
```
sage: f = x*R.derivation(x) + y*R.derivation(y); f
x*d/dx + y*d/dy
sage: f.list()
[x, y]

monomial_coefficients()

Return dictionary of nonzero coordinates (on the canonical basis) of this derivation.

More precisely, this returns a dictionary whose keys are indices of basis elements and whose values are the corresponding coefficients.

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
sage: R.derivation(x).monomial_coefficients()
{0: 1}
sage: R.derivation(y).monomial_coefficients()
{1: 1}
sage: f = x*R.derivation(x) + y*R.derivation(y); f
x*d/dx + y*d/dy
sage: f.monomial_coefficients()
{0: x, 1: y}
```

postcompose(morphism)

Return the derivation obtained by applying first this derivation and then morphism.

INPUT:

- morphism – a homomorphism of rings whose domain is the codomain of this derivation or a ring into which the codomain of this derivation coerces

EXAMPLES:

```
sage: A.<x,y>= QQ[]
sage: ev = A.hom([QQ(0), QQ(1)])
sage: Dx = A.derivation(x)
sage: Dy = A.derivation(y)

We can define the derivation at (0, 1) just by postcomposing with ev:
```
sage: dx = Dx.postcompose(ev)
sage: dy = Dy.postcompose(ev)
sage: f = x^2 + y^2
sage: dx(f)
0
sage: dy(f)
2
```

Note that we cannot avoid the creation of the evaluation morphism: if we pass in QQ instead, an error is raised since there is no coercion morphism from A to QQ:
Note that this method cannot be used to compose derivations:

```
sage: Dx.precompose(Dy)
Traceback (most recent call last):
...  
TypeError: you must give an homomorphism of rings
```

precompose(morphism)

Return the derivation obtained by applying first `morphism` and then this derivation.

INPUT:
- `morphism` – a homomorphism of rings whose codomain is the domain of this derivation or a ring that coerces to the domain of this derivation

EXAMPLES:

```
sage: A.<x> = QQ[]
sage: B.<x,y> = QQ[]
sage: D = B.derivation(x) - 2*x*B.derivation(y); D
d/dx - 2*x*d/dy
```

When restricting to `A`, the term `d/dy` disappears (since it vanishes on `A`):

```
sage: D.precompose(A)
d/dx
```

If we restrict to another well chosen subring, the derivation vanishes:

```
sage: C.<t> = QQ[]
sage: f = C.hom([x^2 + y]); f
Ring morphism:
  From: Univariate Polynomial Ring in t over Rational Field
  To:   Multivariate Polynomial Ring in x, y over Rational Field
  Defn: t |--> x^2 + y
sage: D.precompose(f)
0
```

Note that this method cannot be used to compose derivations:

```
sage: D.precompose(D)
Traceback (most recent call last):
...  
TypeError: you must give an homomorphism of rings
```

pth_power()

Return the p-th power of this derivation where p is the characteristic of the domain.

Note: Leibniz rule implies that this is again a derivation.
EXAMPLES:

```python
sage: R.<x,y> = GF(5)[]
sage: Dx = R.derivation(x)
sage: Dx.pth_power()
0
sage: (x*Dx).pth_power()
x*d/dx
sage: (x^6*Dx).pth_power()
x^26*d/dx
sage: Dy = R.derivation(y)
sage: (x*Dx + y*Dy).pth_power()
x*d/dx + y*d/dy
```

An error is raised if the domain has characteristic zero:

```python
sage: R.<x,y> = QQ[]
sage: Dx = R.derivation(x)
sage: Dx.pth_power()
Traceback (most recent call last):
  ...TypeError: the domain of the derivation must have positive and prime
˓→characteristic
```

or if the characteristic is not a prime number:

```python
sage: R.<x,y> = Integers(10)[]
sage: Dx = R.derivation(x)
sage: Dx.pth_power()
Traceback (most recent call last):
  ...TypeError: the domain of the derivation must have positive and prime
˓→characteristic
```

class `sage.rings.derivation.RingDerivationWithoutTwist_fraction_field`

Bases: `sage.rings.derivation.RingDerivationWithoutTwist_wrapper`

This class handles derivations over fraction fields.

class `sage.rings.derivation.RingDerivationWithoutTwist_function`

Bases: `sage.rings.derivation.RingDerivationWithoutTwist`

A class for untwisted derivations over rings whose elements are either polynomials, rational fractions, power series or Laurent series.

`is_zero()`

Return True if this derivation is zero.

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: f = R.derivation(); f
d/dx
sage: f.is_zero()
False
```
list()

Return the list of coefficient of this derivation on the canonical basis.

EXAMPLES:

```
sage: R.<x,y> = GF(5)[[]]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
sage: R.derivation(x).list()
[1, 0]
sage: R.derivation(y).list()
[0, 1]
sage: f = x*R.derivation(x) + y*R.derivation(y); f
x*d/dx + y*d/dy
sage: f.list()
[x, y]
```

class sage.rings.derivation.RingDerivationWithoutTwist_quotient(parent, arg=None)

Bases: sage.rings.derivation.RingDerivationWithoutTwist_wrapper

This class handles derivations over quotient rings.

class sage.rings.derivation.RingDerivationWithoutTwist_wrapper(parent, arg=None)

Bases: sage.rings.derivation.RingDerivationWithoutTwist

This class is a wrapper for derivation.

It is useful for changing the parent without changing the computation rules for derivations. It is used for derivations over fraction fields and quotient rings.

list()

Return the list of coefficient of this derivation on the canonical basis.

EXAMPLES:

```
sage: R.<X,Y> = GF(5)[]
sage: S.<x,y> = R.quo([X^5, Y^5])
sage: M = S.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
sage: S.derivation(x).list()
[1, 0]
sage: S.derivation(y).list()
[0, 1]
sage: f = x*S.derivation(x) + y*S.derivation(y); f
x*d/dx + y*d/dy
```
class sage.rings.derivation.RingDerivationWithoutTwist_zero(parent, arg=None)
Bases: sage.rings.derivation.RingDerivationWithoutTwist

This class can only represent the zero derivation.
It is used when the parent is the zero derivation module (e.g., when its domain is ZZ, QQ, a finite field, etc.)

is_zero()

 Return True if this derivation vanishes.

 EXAMPLES:

 sage: M = QQ.derivation_module()
sage: M().is_zero()
 True

list()

 Return the list of coefficient of this derivation on the canonical basis.

 EXAMPLES:

 sage: M = QQ.derivation_module()
sage: M().list()
 []
• Index
• Module Index
• Search Page
sage.rings.big_oh, 137
sage.rings.derivation, 149
sage.rings.fraction_field, 81
sage.rings.fraction_field_element, 87
sage.rings.homset, 61
sage.rings.ideal, 25
sage.rings.ideal_monoid, 39
sage.rings.infinity, 138
sage.rings.localization, 93
sage.rings.morphism, 43
sage.rings.noncommutative_ideals, 40
sage.rings.numbers_abc, 147
sage.rings.quotient_ring, 65
sage.rings.quotient_ring_element, 77
sage.rings.ring, 1
sage.rings.ring_extension, 103
sage.rings.ring_extension_element, 123
sage.rings.ring_extension_morphism, 132
INDEX

A
absolute_base() (sage.rings.ring_extension.RingExtension_generic method), 110
absolute_degree() (sage.rings.ring_extension.RingExtension_generic method), 111
absolute_norm() (sage.rings.ideal.Ideal_generic method), 28
additive_order() (sage.rings.ring_extension_element.RingExtensionElement method), 123
Algebra (class in sage.rings.ring), 2
algebraic_closure() (sage.rings.ring.Field method), 9
ambient() (sage.rings.quotient_ring.QuotientRing_nc method), 70
AnInfinity (class in sage.rings.infinity), 141
apply_morphism() (sage.rings.ideal.Ideal_generic method), 28
associated_primes() (sage.rings.ideal.Ideal_generic method), 28

B
base() (sage.rings.ring_extension.RingExtension_generic method), 111
base_extend() (sage.rings.ring.Ring method), 15
base_map() (sage.rings.morphism.RingHomomorphism_im_gens method), 59
base_map() (sage.rings.ring_extension_morphism.RingExtensionHomomorphism method), 133
base_ring() (sage.rings.fraction_field.FractionField_generic method), 84
base_ring() (sage.rings.ideal.Ideal_generic method), 29
bases() (sage.rings.ring_extension.RingExtension_generic method), 111
basis() (sage.rings.derivation.RingDerivationModule method), 152
basis_over() (sage.rings.ring_extension.RingExtensionWithBasis method), 105
characteristic() (sage.rings.fraction_field.FractionField_generic method), 84
characteristic() (sage.rings.localization.Localization method), 97
characteristic() (sage.rings.quotient_ring.QuotientRing_nc method), 70
characteristic() (sage.rings.ring.Algebra method), 2
codomain() (sage.rings.derivation.RingDerivation method), 152
codomain() (sage.rings.derivation.RingDerivationModule method), 152
common_base() (in module sage.rings.ring_extension), 121
CommutativeAlgebra (class in sage.rings.ring), 2
CommutativeRing (class in sage.rings.ring), 3
construction() (sage.rings.fraction_field.FractionField_generic method), 84
construction() (sage.rings.quotient_ring.QuotientRing_nc method), 70
construction() (sage.rings.ring_extension.RingExtension_generic method), 112
content() (sage.rings.ring.PrincipalIdealDomain method), 13
cover() (sage.rings.quotient_ring.QuotientRing_nc method), 71
cover_ring() (sage.rings.quotient_ring.QuotientRing_nc method), 71
create_key_and_extra_args() (sage.rings.ring_extension.RingExtensionFactory method), 104
create_object() (sage.rings.ring_extension.RingExtensionFactory method), 105
Cyclic() (in module sage.rings.ideal), 25

D
DedekindDomain (class in sage.rings.ring), 7

169
General Rings, Ideals, and Morphisms, Release 9.7

defining_ideal() (sage.rings.quotient_ring.QuotientRing_nc method), 158

extend_to_fraction_field() (sage.rings.derivation.RingDerivationWithTwist_generic method), 156

degree() method, 5

degree_over() (sage.rings.derivation.RingDerivationModule method), 153

defining_morphism() (sage.rings.ring.CommutativeRing method), 9

extension() (sage.rings.ring.CommutativeRing method), 5

denominator() method, 5

divides() (sage.rings.ideal.Ideal_principal method), 37

domain() (sage.rings.derivation.RingDerivationModule method), 153

dual_basis() (sage.rings.derivation.RingDerivationModule method), 153

derivation() (sage.rings.ring.CommutativeRing method), 3

derivation_module() (sage.rings.ring.CommutativeRing method), 4

divides() (sage.rings.ideal.Ideal_principal method), 37

domain() (sage.rings.derivation.RingDerivationModule method), 152

domain() (sage.rings.derivation.RingDerivationModule method), 153

dual_basis() (sage.rings.derivation.RingDerivationModule method), 153

E

Element (sage.rings.homset.RingHomset_generic attribute), 61

Element (sage.rings.homset.RingHomset_quo_ring attribute), 62

Element (sage.rings.ideal_monoid.IdealMonoid_c attribute), 40

Element (sage.rings.localization.Localization attribute), 97

Element (sage.rings.quotient_ring.QuotientRing_nc attribute), 70

Element (sage.rings.ring_extension.RingExtension_generic free_module) (sage.rings.ring_extension.RingExtensionWithBasis method), 107

Element (sage.rings.ring_extension.RingExtensionFraction attribute), 105

Element (sage.rings.ring_extension.RingExtensionWithBasis attribute), 105

embedded_primes() (sage.rings.ideal.Ideal_generic method), 30

epsilon() (sage.rings.quotient_ring.QuotientRing_nc method), 15

EuclideanDomain (class in sage.rings.ring), 9

extend_to_fraction_field() (sage.rings.derivation.RingDerivationWithoutTwist
Index
is_field() (sage.rings.ring.Ring method), 17
is_field() (sage.rings.ring_extension.RingExtension_generic method), 12
is_field() (sage.rings.fraction_field.FractionField_generic method), 118
is_finite() (sage.rings.ring_extension.RingExtension_generic method), 118
is_finite() (sage.rings.fraction_field.FractionField_generic method), 85
is_finite_over() (sage.rings.ring_extension.RingExtension_generic method), 118
is_FractionField() (in module sage.rings.fraction_field), 86
is_FractionFieldElement() (in module sage.rings.fraction_field_element), 90
is_free_over() (sage.rings.ring_extension.RingExtension_generic method), 118
is_FractionFieldElement() (sage.rings.fraction_field_element.FractionFieldElement method), 87
is_ideal() (sage.rings.ideal.Ideal method), 35
is_injective() (sage.rings.ring_extension_morphism.MapFreeModuleToRelativeRing method), 33
is_injective() (sage.rings.ring_extension_morphism.MapRelativeRingToFreeModule method), 33
is_Infinite() (in module sage.rings.infinity), 145
is_integral() (sage.rings.fraction_field_element.FractionFieldElement method), 38
is_integral_domain() (sage.rings.quotient_ring.QuotientRing_element method), 73
is_integral_domain() (sage.rings.quotient_ring.QuotientRing圭cé method), 73
is_integral_domain() (sage.rings.quotient_ring_quotientring method), 60
is_integrally_closed() (sage.rings.ring.DedekindDomain method), 8
is_integrally_closed() (sage.rings.ring.Field method), 11
is_integrally_closed() (sage.rings.ring.IntegralDomain method), 12
is_integrally_closed() (sage.rings.ring_extension.RingExtension_generic method), 12
is_invertible() (sage.rings.morphism.RingHomomorphism method), 53
is_maximal() (sage.rings.ideal.Ideal.Generic method), 30
is_maximal() (sage.rings.ideal.Ideal_Pid method), 35
is_maximal() (sage.rings.ring_extension_element.RingExtensionElement method), 123
is_nilpotent() (sage.rings.ring_extension_element.RingExtensionElement method), 123
is_noetherian() (sage.rings.quotient_ring_quotientring method), 74
is_noetherian() (sage.rings.uniformization.uniformization method), 12
is_noetherian() (sage.rings.ideal.Ideal_generic method), 31
is_prime() (sage.rings.ideal.Ideal method), 32
is_prime() (sage.rings.ideal.Ideal_Pid method), 36
is_prime_field() (sage.rings.ideal.Ideal_general method), 19
is_principal() (sage.rings.ideal.Ideal_general method), 32
is_prime_field() (sage.rings.ring.Units method), 60
is_Ring() (in module sage.rings.ring), 24
is_RingElement() (in module sage.rings.ring_element), 62
is_RingHomset() (in module sage.rings.ring_homset), 62
is_RingHomomorphism() (in module sage.rings.ring_homomorphism), 53
is_RingElement() (sage.rings.ring_element.RingElement method), 123
is_RingHomomorphism() (sage.rings.ring_homomorphism.RingHomomorphism method), 53
is_RingHomomorphism() (sage.rings.ring_homomorphism.MapFreeModule method), 132
is_RingHomomorphism() (sage.rings.ring_homomorphism.MapRelativeRing method), 132
is_RingHomomorphism() (sage.rings.ring_homomorphism.RingExtensionHomomorphism method), 134
is_sage() (sage.rings.ring.Element method), 74
is_square() (sage.rings.ideal.ideal method), 31
is_subring() (sage.rings.ring.Ring method), 19
is_surjective() (sage.rings.ring_extension_element.RingExtensionElement method), 123
is_surjective() (sage.rings.morphism.RingHomomorphism method), 53
is_trivial() (sage.rings.ideal.Ideal_Generic method), 33
is_unit() (sage.rings.localization.LocalizationElement method), 100
is_unit() (sage.rings.quotient_ring_element.quotientring_element method), 78
is_unit() (sage.rings.ring_extension_element.RingExtensionElement method), 124
is_zerodivisor() (sage.rings.derivation.RingDerivationWithoutTwist method), 158
is_zero() (sage.rings.ringextension_element.RingElement_zero method), 161
is_zero() (sage.rings.derivation.RingDerivationWithoutTwist_zero method), 163
is_zero() (sage.rings.fraction_field_element.FractionFieldElement method), 11
Index
ngens() (sage.rings.derivation.RingDerivationModule method), 61
ngens() (sage.rings.fraction_field.FractionField_generic method), 85
ngens() (sage.rings.ideal.Ideal_generic method), 33
ngens() (sage.rings.infinity.InfinityRing_class method), 143
ngens() (sage.rings.localization.Localization method), 99
ngens() (sage.rings.quotient_ring.QuotientRing_nc method), 76
ngens() (sage.rings.ring_extension.RingExtension_generic method), 119
NoetherianRing (class in sage.rings.ring), 12
norm() (sage.rings.ideal.Ideal_generic method), 33
norm() (sage.rings.ring_extension_element.RingExtensionElement method), 128
normalize_extra_units() (in module sage.rings.localization), 100
nth_root() (sage.rings.fraction_field_element.FractionFieldElement method), 88
numerator() (sage.rings.fraction_field_element.FractionFieldElement method), 89
numerator() (sage.rings.localization.LocalizationElement method), 100
numerator() (sage.rings.ring_extension_element.RingExtensionElement method), 125
O() (in module sage.rings.big_oh), 137
one() (sage.rings.ring.Ring method), 20
order() (sage.rings.ring.Ring method), 20
P
parameter() (sage.rings.ring.EuclideanDomain method), 9
PlusInfinity (class in sage.rings.infinity), 144
polynomial() (sage.rings.ring_extension_element.RingExtensionElement method), 129
postcompose() (sage.rings.derivation.RingDerivationWithoutTwist method), 159
postcompose() (sage.rings.derivation.RingDerivationWithTwist method), 157
power() (sage.rings.morphism.FrobeniusEndomorphism method), 49
precompose() (sage.rings.derivation.RingDerivationWithoutTwist method), 160
precompose() (sage.rings.derivation.RingDerivationWithTwist method), 157
primary_decomposition() (sage.rings.ideal.Ideal_generic method), 33
prime_subfield() (sage.rings.ring.Field method), 11
principal_ideal() (sage.rings.ring.Ring method), 20
PrincipalIdealDomain (class in sage.rings.ring), 13
print_options() (sage.rings.ring_extension.RingExtension_generic method), 119
pth_power() (sage.rings.derivation.RingDerivationWithoutTwist method), 160
pushforward() (sage.rings.morphism.RingHomomorphism method), 54
Python Enhancement Proposals
PEP 3141, 147
Q
quo() (sage.rings.ring.Ring method), 20
quotient() (sage.rings.ring.Ring method), 20
quotient_ring() (sage.rings.ring.Ring method), 21
QuotientRing() (in module sage.rings.quotient_ring),
QuotientRing_generic (class in sage.rings.quotient_ring), 68
QuotientRing nc (class in sage.rings.quotient_ring),
QuotientRingElement (class in sage.rings.quotient_ring_element), 77
QuotientRingIdeal_generic (class in sage.rings.quotient_ring), 68
QuotientRingIdeal_principal (class in sage.rings.quotient_ring), 68
R
random_element() (sage.rings.derivation.RingDerivationModule method), 155
random_element() (sage.rings.fraction_field.FractionField_generic method), 85
random_element() (sage.rings.ideal.Ideal_generic method), 34
random_element() (sage.rings.ring.Ring method), 22
random_element() (sage.rings.ring_extension.RingExtension_generic method), 120
random_element() (sage.rings.ring_extension_element.RingExtensionElement method), 89
random_element() (sage.rings.ring_extension_element.RingExtensionElement _poly_ method), 90
random_element() (sage.rings.ideal.Ideal_generic method), 34
reduce() (sage.rings.ideal.Ideal_pid method), 36
reduce() (sage.rings.quotient_ring_element.QuotientRingElement method), 80
reduce() (sage.rings.quotient_ring_element.QuotientRingElement method), 80
reduce() (sage.rings.quotient_ring_element.QuotientRingElement method), 80
register_sage_classes() (in module sage.rings.numbers_abc), 147
relative_degree() (sage.rings.ring_extension.RingExtension_generic method), 121
residue_field() (sage.rings.ideal.Ideal_pid method), 36
<table>
<thead>
<tr>
<th>Function/Class</th>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>retract()</td>
<td>sage.rings.quotient_ring.QuotientRing_nc method</td>
<td>76</td>
</tr>
<tr>
<td>Ring</td>
<td>class in sage.rings</td>
<td>15</td>
</tr>
<tr>
<td>ring()</td>
<td>(sage.rings.fraction_field.FractionField_generic method)</td>
<td>86</td>
</tr>
<tr>
<td>ring()</td>
<td>(sage.rings.ideal.Ideal_generic method)</td>
<td>34</td>
</tr>
<tr>
<td>ring()</td>
<td>(sage.rings.ideal_monoid.IdealMonoid_c method)</td>
<td>40</td>
</tr>
<tr>
<td>ring()</td>
<td>(sage.rings.ring_extension.RingExtensionFractionField method)</td>
<td>105</td>
</tr>
<tr>
<td>ring_of_constants()</td>
<td>(sage.rings.derivation.RingDerivationModule method)</td>
<td>155</td>
</tr>
<tr>
<td>ring_of_integers()</td>
<td>(sage.rings.fraction_field.FractionField_generic method)</td>
<td>84</td>
</tr>
<tr>
<td>RingDerivation</td>
<td>class in sage.rings.derivation</td>
<td>151</td>
</tr>
<tr>
<td>RingDerivationModule</td>
<td>(class in sage.rings.derivation)</td>
<td>152</td>
</tr>
<tr>
<td>RingDerivationWithoutTwist</td>
<td>(class in sage.rings.derivation)</td>
<td>158</td>
</tr>
<tr>
<td>RingDerivationWithoutTwist_fraction_field</td>
<td>(class in sage.rings.derivation)</td>
<td>161</td>
</tr>
<tr>
<td>RingDerivationWithoutTwist_function</td>
<td>(class in sage.rings.derivation)</td>
<td>161</td>
</tr>
<tr>
<td>RingDerivationWithoutTwist_quotient</td>
<td>(class in sage.rings.derivation)</td>
<td>163</td>
</tr>
<tr>
<td>RingDerivationWithoutTwist_wrapper</td>
<td>(class in sage.rings.derivation)</td>
<td>162</td>
</tr>
<tr>
<td>RingDerivationWithoutTwist_zero</td>
<td>(class in sage.rings.derivation)</td>
<td>163</td>
</tr>
<tr>
<td>RingDerivationWithoutTwist_generic</td>
<td>(class in sage.rings.derivation)</td>
<td>156</td>
</tr>
<tr>
<td>RingExtension_generic</td>
<td>(class in sage.rings.ring_extension)</td>
<td>110</td>
</tr>
<tr>
<td>RingExtensionBackendIsomorphism</td>
<td>(class in sage.rings.ring_extension_morphism)</td>
<td>133</td>
</tr>
<tr>
<td>RingExtensionBackendReverseIsomorphism</td>
<td>(class in sage.rings.ring_extension_morphism)</td>
<td>133</td>
</tr>
<tr>
<td>RingExtensionElement</td>
<td>(class in sage.rings.ring_extension_element)</td>
<td>123</td>
</tr>
<tr>
<td>RingExtensionFactory</td>
<td>(class in sage.rings.ring_extension)</td>
<td>104</td>
</tr>
<tr>
<td>RingExtensionFractionField</td>
<td>(class in sage.rings.ring_extension)</td>
<td>105</td>
</tr>
<tr>
<td>RingExtensionFractionFieldElement</td>
<td>(class in sage.rings.ring_extension_element)</td>
<td>125</td>
</tr>
<tr>
<td>RingExtensionHomomorphism</td>
<td>(class in sage.rings.ring_extension_morphism)</td>
<td>133</td>
</tr>
<tr>
<td>RingExtensionWithBasis</td>
<td>(class in sage.rings.ring_extension)</td>
<td>105</td>
</tr>
<tr>
<td>RingExtensionWithBasisElement</td>
<td>(class in sage.rings.ring_extension_element)</td>
<td>126</td>
</tr>
<tr>
<td>RingExtensionWithGen</td>
<td>(class in sage.rings.ring_extension)</td>
<td>108</td>
</tr>
<tr>
<td>RingHomomorphism</td>
<td>(class in sage.rings.morphism)</td>
<td>49</td>
</tr>
<tr>
<td>RingHomomorphism_coercion</td>
<td>(class in sage.rings.morphism)</td>
<td>54</td>
</tr>
<tr>
<td>RingHomomorphism_cover</td>
<td>(class in sage.rings.morphism)</td>
<td>55</td>
</tr>
<tr>
<td>RingHomomorphism_from_base</td>
<td>(class in sage.rings.morphism)</td>
<td>55</td>
</tr>
<tr>
<td>RingHomomorphism_from_fraction_field</td>
<td>(class in sage.rings.morphism)</td>
<td>57</td>
</tr>
<tr>
<td>RingHomomorphism_from_quotient</td>
<td>(class in sage.rings.morphism)</td>
<td>58</td>
</tr>
<tr>
<td>RingHomomorphism_im_gens</td>
<td>(class in sage.rings.morphism)</td>
<td>59</td>
</tr>
<tr>
<td>RingHomset()</td>
<td>(in module sage.rings.homset)</td>
<td>61</td>
</tr>
<tr>
<td>RingHomset_generic</td>
<td>(class in sage.rings.homset)</td>
<td>61</td>
</tr>
<tr>
<td>RingHomset_quo_ring</td>
<td>(class in sage.rings.homset)</td>
<td>62</td>
</tr>
<tr>
<td>RingMap</td>
<td>(class in sage.rings.morphism)</td>
<td>60</td>
</tr>
<tr>
<td>RingMap_lift</td>
<td>(class in sage.rings.morphism)</td>
<td>60</td>
</tr>
</tbody>
</table>

S

- sage.rings.big_oh module, 137
- sage.rings.derivation module, 149
- sage.rings.fraction_field module, 81
- sage.rings.fraction_field_element module, 87
- sage.rings.homset module, 61
- sage.rings.ideal module, 25
- sage.rings.ideal_monoid module, 39
- sage.rings.infinity module, 138
- sage.rings.localization module, 93
- sage.rings.morphism module, 43
- sage.rings.noncommutative_ideals module, 40
- sage.rings.numbers_ab module, 147
- sage.rings.quotient_ring module, 65
- sage.rings.quotient_ring_element module, 77
- sage.rings.ring module, 1
- sage.rings.ring_extension module, 103
- sage.rings.ring_extension_element module, 123

Index 175
sage.rings.ring_extension_morphism module, 132
section() (sage.rings.fraction_field.FractionFieldEmbedding method), 82
side() (sage.rings.noncommutative_ideals.Ideal_nc method), 41
sign() (sage.rings.infinity.FiniteNumber method), 142
sign() (sage.rings.infinity.LessThanInfinity method), 143
SignError, 144
some_elements() (sage.rings.derivation.RingDerivationModule method), 155
some_elements() (sage.rings.fraction_field.FractionField_generic method), 86
specialization() (sage.rings.fraction_field_element.FractionFieldElement method), 89
sqrt() (sage.rings.infinity.FiniteNumber method), 142
sqrt() (sage.rings.infinity.MinusInfinity method), 144
sqrt() (sage.rings.infinity.PlusInfinity method), 144
sqrt() (sage.rings.ring_extension_element.RingExtensionElement method), 124
support() (sage.rings.fraction_field_element.FractionFieldElement_1poly_field method), 90

T
term_order() (sage.rings.quotient_ring.QuotientRing_nc method), 76
test_comparison() (in module sage.rings.infinity), 146
test_signed_infinity() (in module sage.rings.infinity), 146
tower_bases() (in module sage.rings.ring_extension), 122
trace() (sage.rings.ring_extension_element.RingExtensionWithBasisElement method), 130
twisting_morphism()
 (sage.rings.derivation.RingDerivationModule method), 155

U
underlying_map() (sage.rings.morphism.RingHomomorphism_from_base method), 57
unit_ideal() (sage.rings.ring.Ring method), 22
UnsignedInfinity (class in sage.rings.infinity), 144
UnsignedInfinityRing (in module sage.rings.infinity), 144
UnsignedInfinityRing_class (class in sage.rings.infinity), 144

V
valuation() (sage.rings.fraction_field_element.FractionFieldElement method), 89
variable_names() (in module sage.rings.ring_extension), 122