General Rings, Ideals, and Morphisms

Release 10.3

The Sage Development Team

Mar 20, 2024
CONTENTS

1. Base Classes for Rings, Algebras and Fields 1
2. Ideals 29
3. Ring Morphisms 49
4. Quotient Rings 71
5. Fraction Fields 89
6. Localization 101
7. Ring Extensions 111
8. Generic Data Structures and Algorithms for Rings 147
9. Utilities 151
10. Derivation 163
11. Indices and Tables 179

Python Module Index 181
Index 183
BASE CLASSES FOR RINGS, ALGEBRAS AND FIELDS

1.1 Rings

This module provides the abstract base class \texttt{Ring} from which all rings in Sage (used to) derive, as well as a selection of more specific base classes.

\begin{quote}
\textbf{Warning:} Those classes, except maybe for the lowest ones like \texttt{CommutativeRing} and \texttt{CommutativeAlgebra}, are being progressively deprecated in favor of the corresponding categories, which are more flexible, in particular with respect to multiple inheritance.
\end{quote}

The class inheritance hierarchy is:

- \texttt{Ring} (to be deprecated)
 - \texttt{Algebra} (to be deprecated)
 - \texttt{CommutativeRing}
 - \texttt{NoetherianRing} (deprecated)
 - \texttt{CommutativeAlgebra} (to be deprecated)
 - \texttt{IntegralDomain} (deprecated)
 - \texttt{DedekindDomain} (deprecated and essentially removed)
 - \texttt{PrincipalIdealDomain} (deprecated)

Subclasses of \texttt{PrincipalIdealDomain} are

- \texttt{Field}
 - \texttt{FiniteField}

Some aspects of this structure may seem strange, but this is an unfortunate consequence of the fact that Cython classes do not support multiple inheritance. Hence, for instance, \texttt{Field} cannot be a subclass of both \texttt{NoetherianRing} and \texttt{PrincipalIdealDomain}, although all fields are Noetherian PIDs.

(A distinct but equally awkward issue is that sometimes we may not know in advance whether or not a ring belongs in one of these classes; e.g. some orders in number fields are Dedekind domains, but others are not, and we still want to offer a unified interface, so orders are never instances of the deprecated \texttt{DedekindDomain} class.)

AUTHORS:

- David Harvey (2006-10-16): changed \texttt{CommutativeAlgebra} to derive from \texttt{CommutativeRing} instead of from \texttt{Algebra}.
• Simon King (2011-03-29): Proper use of the category framework for rings.
• Simon King (2011-05-20): Modify multiplication and _ideal_class_ to support ideals of non-commutative rings.

```python
class sage.rings.ring.Algebra
    Bases: Ring
    Generic algebra

class sage.rings.ring.CommutativeAlgebra
    Bases: CommutativeRing
    Generic commutative algebra

    is_commutative()
    Return True since this algebra is commutative.

    EXAMPLES:
    Any commutative ring is a commutative algebra over itself:

    sage: A = sage.rings.ring.CommutativeAlgebra
    sage: A(ZZ).is_commutative()
    True
    sage: A(QQ).is_commutative()
    True

    Trying to create a commutative algebra over a non-commutative ring will result in a TypeError.

    class sage.rings.ring.CommutativeRing
    Bases: Ring
    Generic commutative ring.

    derivation (arg=None, twist=None)
    Return the twisted or untwisted derivation over this ring specified by arg.

    Note: A twisted derivation with respect to \( \theta \) (or a \( \theta \)-derivation for short) is an additive map \( d \) satisfying the following axiom for all \( x, y \) in the domain:

    \[
    d(xy) = \theta(x)d(y) + d(x)y.
    \]

    INPUT:
    • arg – (optional) a generator or a list of coefficients that defines the derivation
    • twist – (optional) the twisting homomorphism

    EXAMPLES:

    sage: R.<x,y,z> = QQ[]
sage: R.derivation()#...
    "needs sage.modules"
    d/dx

    In that case, arg could be a generator:

    sage: R.derivation(y)  
    "needs sage.modules"
    d/dy
```

Chapter 1. Base Classes for Rings, Algebras and Fields
or a list of coefficients:

```
sage: R.derivation([1,2,3])                   #--
→ needs sage.modules
d/dx + 2*d/dy + 3*d/dz
```

It is not possible to define derivations with respect to a polynomial which is not a variable:

```
sage: R.derivation(x^2)                      #--
→ needs sage.modules
Traceback (most recent call last):
...
ValueError: unable to create the derivation
```

Here is an example with twisted derivations:

```
sage: R.<x,y,z> = QQ[]
sage: theta = R.hom([x^2, y^2, z^2])
sage: f = R.derivation(twist=theta); f       #--
→ needs sage.modules
0
sage: f.parent()                            #--
→ needs sage.modules
Module of twisted derivations over Multivariate Polynomial Ring in x, y, z
over Rational Field (twisting morphism: x |--> x^2, y |--> y^2, z |--> z^2)
```

Specifying a scalar, the returned twisted derivation is the corresponding multiple of \(\theta - \text{id}\):

```
sage: R.derivation(1, twist=theta)           #--
→ needs sage.modules
[x |---> x^2, y |---> y^2, z |---> z^2] - id
sage: R.derivation(x, twist=theta)          #--
→ needs sage.modules
x*(x |---> x^2, y |---> y^2, z |---> z^2) - id)
```

```
derivation_module (codomain=None, twist=None)

Returns the module of derivations over this ring.
```

INPUT:

- `codomain` – an algebra over this ring or a ring homomorphism whose domain is this ring or None (default: None); if it is a morphism, the codomain of derivations will be the codomain of the morphism viewed as an algebra over self through the given morphism; if None, the codomain will be this ring
- `twist` – a morphism from this ring to codomain or None (default: None); if None, the coercion map from this ring to codomain will be used

Note: A twisted derivation with respect to \(\theta\) (or a \(\theta\)-derivation for short) is an additive map \(d\) satisfying the following axiom for all \(x, y\) in the domain:

\[
d(xy) = \theta(x)d(y) + d(x)y.
\]

EXAMPLES:
We can specify a different codomain:

```
sage: K = R.fraction_field()
sage: M = R.derivation_module(K); M
```

```
Module of derivations from Multivariate Polynomial Ring in x, y, z over Rational Field
to Fraction Field of Multivariate Polynomial Ring in x, y, z over Rational Field
```

```
sage: M.gen() / x
```

```
1/x*d/dx
```

Here is an example with a non-canonical defining morphism:

```
sage: ev = R.hom([QQ(0), QQ(1), QQ(2)])
sage: ev
```

```
Ring morphism:
  From: Multivariate Polynomial Ring in x, y, z over Rational Field
  To: Rational Field
  Defn: x |--> 0
       y |--> 1
       z |--> 2
```

```
sage: M = R.derivation_module(ev)
```

```
Module of derivations from Multivariate Polynomial Ring in x, y, z over Rational Field
to Rational Field
```

Elements in M acts as derivations at $(0,1,2)$:

```
sage: dx = M.gen(0); dx
d/dx
```

```
sage: dy = M.gen(1); dy
d/dy
```

```
sage: dz = M.gen(2); dz
d/dz
```

```
sage: f = x^2 + y^2 + z^2
sage: Dx(f)  # = 2*x evaluated at (0,1,2)
0
sage: Dy(f)  # = 2*y evaluated at (0,1,2)
2
sage: Dz(f)  # = 2*z evaluated at (0,1,2)
4
```

An example with a twisting homomorphism:
sage: theta = R.hom([x^2, y^2, z^2])
sage: M = R.derivation_module(twist=theta); M #←
Module of twisted derivations over Multivariate Polynomial Ring in x, y, z
over Rational Field (twisting morphism: x |--> x^2, y |--> y^2, z |--> z^2)

See also:
derivation()

extension (poly, name=None, names=None, **kwds)
Algebraically extends self by taking the quotient self[x] / {f(x)}.

INPUT:
• poly – A polynomial whose coefficients are coercible into self
• name – (optional) name for the root of f

Note: Using this method on an algebraically complete field does not return this field; the construction
self[x] / {f(x)} is done anyway.

EXAMPLES:
sage: R = QQ['x']
sage: y = polygen(R)
sage: R.extension(y^2 - 5, 'a') #←
Univariate Quotient Polynomial Ring in a over
Univariate Polynomial Ring in x over Rational Field with modulus a^2 - 5

sage: # needs sage.rings.finite_rings
sage: P.<x> = PolynomialRing(GF(5))
sage: F.<a> = GF(5).extension(x^2 - 2)
sage: P.<t> = F[]
sage: R. = F.extension(t^2 - a); R
Univariate Quotient Polynomial Ring in b over
Finite Field in a of size 5^2 with modulus b^2 + 4*a

fraction_field()
Return the fraction field of self.

EXAMPLES:
sage: R = Integers(389)['x,y']
sage: Frac(R)
Fraction Field of Multivariate Polynomial Ring in x, y over Ring of integers...
←modulo 389
sage: R.fraction_field()
Fraction Field of Multivariate Polynomial Ring in x, y over Ring of integers...
←modulo 389

frobenius_endomorphism(n=1)
INPUT:
• n – a nonnegative integer (default: 1)
OUTPUT:

The n-th power of the absolute arithmetic Frobenius endomorphism on this finite field.

EXAMPLES:

```
sage: K.<u> = PowerSeriesRing(GF(5))
sage: Frob = K.frobenius_endomorphism(); Frob
Frobenius endomorphism x |--> x^5 of Power Series Ring in u
    over Finite Field of size 5
sage: Frob(u)
u^5
```

We can specify a power:

```
sage: f = K.frobenius_endomorphism(2); f
Frobenius endomorphism x |--> x^(5^2) of Power Series Ring in u
    over Finite Field of size 5
sage: f(1+u)
1 + u^25
```

ideal_monoid()

Return the monoid of ideals of this ring.

EXAMPLES:

```
sage: ZZ.ideal_monoid()
Monoid of ideals of Integer Ring
sage: R.<x>=QQ[]; R.ideal_monoid()
Monoid of ideals of Univariate Polynomial Ring in x over Rational Field
```

is_commutative()

Return True, since this ring is commutative.

EXAMPLES:

```
sage: QQ.is_commutative()
True
sage: ZpCA(7).is_commutative()  # needs sage.rings.padics
True
sage: A = QuaternionAlgebra(QQ, -1, -3, names=('i','j','k')); A  # needs sage.combinat sage.modules
Quaternion Algebra (-1, -3) with base ring Rational Field
sage: A.is_commutative()  # needs sage.combinat sage.modules
False
```

krull_dimension()

Return the Krull dimension of this commutative ring.

The Krull dimension is the length of the longest ascending chain of prime ideals.

localization(additional_units, names=None, normalize=True, category=None)

Return the localization of self at the given additional units.

EXAMPLES:
sage: R.<x, y> = GF(3)[]
R.ideal((x*y, x**2 + y**2))
Multivariate Polynomial Ring in x, y over Finite Field of size 3
localized at (y, x, x^2 + y^2)

sage: ~y in _
True

class sage.rings.ring.DedekindDomain
Bases: IntegralDomain

class sage.rings.ring.Field
Bases: PrincipalIdealDomain

algebraic_closure()
Return the algebraic closure of self.

Note: This is only implemented for certain classes of field.

EXAMPLES:

sage: K = PolynomialRing(QQ,'x').fraction_field(); K
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: K.algebraic_closure()
Traceback (most recent call last):
...
NotImplementedError: Algebraic closures of general fields not implemented.

divides (x, y, coerce=True)
Return True if x divides y in this field (usually True in a field!). If coerce is True (the default), first
coerce x and y into self.

EXAMPLES:

sage: QQ.divides(2, 3/4)
True
sage: QQ.divides(0, 5)
False

fraction_field()
Return the fraction field of self.

EXAMPLES:

Since fields are their own field of fractions, we simply get the original field in return:

sage: QQ.fraction_field()
Rational Field
sage: RR.fraction_field()
Real Field with 53 bits of precision
sage: CC.fraction_field()
(continues on next page)
Complex Field with 53 bits of precision

```sage
x = polygen(ZZ, 'x')
sage: F = NumberField(x^2 + 1, 'i')
# needs sage.rings.number_field
sage: F.fraction_field()
# needs sage.rings.number_field
Number Field in i with defining polynomial x^2 + 1
```

ideal(*gens*, **kwd**)
Return the ideal generated by *gens*.

EXAMPLES:

```sage
sage: QQ.ideal(2)
Principal ideal (1) of Rational Field
sage: QQ.ideal(0)
Principal ideal (0) of Rational Field
```

integral_closure()
Return this field, since fields are integrally closed in their fraction field.

EXAMPLES:

```sage
sage: QQ.integral_closure()
Rational Field
sage: Frac(ZZ['x,y']).integral_closure()
Fraction Field of Multivariate Polynomial Ring in x, y over Integer Ring
```

is_field *(proof=True)*
Return True since this is a field.

EXAMPLES:

```sage
sage: Frac(ZZ['x,y']).is_field()
True
```

is_integrally_closed()
Return True since fields are trivially integrally closed in their fraction field (since they are their own fraction field).

EXAMPLES:

```sage
sage: Frac(ZZ['x,y']).is_integrally_closed()
True
```

is_noetherian()
Return True since fields are Noetherian rings.

EXAMPLES:

```sage
sage: QQ.is_noetherian()
True
```

krull_dimension()
Return the Krull dimension of this field, which is 0.

EXAMPLES:
```
sage: QQ.krull_dimension()
0
sage: Frac(QQ['x,y']).krull_dimension()
0
```

prime_subfield()

Return the prime subfield of `self`.

EXAMPLES:

```
sage: k = GF(9, 'a')
# needs sage.rings.finite_rings
sage: k.prime_subfield()
# needs sage.rings.finite_rings
Finite Field of size 3
```

class sage.rings.ring.IntegralDomain

Bases: `CommutativeRing`

Generic integral domain class.

This class is deprecated. Please use the `sage.categories.integral_domains.IntegralDomains` category instead.

is_field *(proof=True)*

Return `True` if this ring is a field.

EXAMPLES:

```
sage: GF(7).is_field()
True
```

The following examples have their own `is_field` implementations:

```
sage: ZZ.is_field(); QQ.is_field()
False
True
sage: R.<x> = PolynomialRing(QQ); R.is_field()
False
```

is_integral_domain *(proof=True)*

Return `True`, since this ring is an integral domain.

(This is a naive implementation for objects with type `IntegralDomain`)

EXAMPLES:

```
sage: ZZ.is_integral_domain()
True
sage: QQ.is_integral_domain()
True
sage: ZZ['x'].is_integral_domain()
True
sage: R = ZZ.quotient(ZZ.ideal(10)); R.is_integral_domain()
False
```

is_integrally_closed()

Return `True` if this ring is integrally closed in its field of fractions; otherwise return `False`.

1.1. Rings
When no algorithm is implemented for this, then this function raises a `NotImplementedError`.

Note that `is_integrally_closed` has a naive implementation in fields. For every field F, F is its own field of fractions, hence every element of F is integral over F.

EXAMPLES:

```python
sage: ZZ.is_integrally_closed()
True
sage: QQ.is_integrally_closed()
True
sage: QQbar.is_integrally_closed()  # needs sage.rings.number_field
True
sage: GF(5).is_integrally_closed()
True
sage: Z5 = Integers(5); Z5
Ring of integers modulo 5
sage: Z5.is_integrally_closed()
Traceback (most recent call last):
  ...
AttributeError: 'IntegerModRing_generic_with_category' object has no...
˓→attribute 'is_integrally_closed'...
```

class `sage.rings.ring.NoetherianRing`

Generic Noetherian ring class.

A Noetherian ring is a commutative ring in which every ideal is finitely generated.

This class is deprecated, and not actually used anywhere in the Sage code base. If you think you need it, please create a category `NoetherianRings`, move the code of this class there, and use it instead.

```python
class sage.rings.ring.NoetherianRing
    Bases: CommutativeRing

    Generic Noetherian ring class.

    A Noetherian ring is a commutative ring in which every ideal is finitely generated.

    This class is deprecated, and not actually used anywhere in the Sage code base. If you think you need it, please create a category `NoetherianRings`, move the code of this class there, and use it instead.

def is_noetherian()
    Return True since this ring is Noetherian.

    EXAMPLES:

    ```python
 sage: ZZ.is_noetherian()
 True
 sage: QQ.is_noetherian()
 True
 sage: R.<x> = PolynomialRing(QQ)
 sage: R.is_noetherian()
 True
    ```
```

class `sage.rings.ring.PrincipalIdealDomain`

Generic principal ideal domain.

This class is deprecated. Please use the `PrincipalIdealDomains` category instead.

```python
class sage.rings.ring.PrincipalIdealDomain
    Bases: IntegralDomain

    Generic principal ideal domain.

    This class is deprecated. Please use the `PrincipalIdealDomains` category instead.

    ```python
 sage: R = PrincipalIdealDomain()
 sage: R
 Principal ideal domain
 sage: R.is_noetherian()
 False
    ```
```
content \((x, y, \text{coerce=True})\)

Return the content of \(x\) and \(y\), i.e. the unique element \(c\) of self such that \(x/c\) and \(y/c\) are coprime and integral.

EXAMPLES:

```python
sage: QQ.content(ZZ(42), ZZ(48)); type(QQ.content(ZZ(42), ZZ(48)))
6
<class 'sage.rings.rational.Rational'>
sage: QQ.content(1/2, 1/3)
1/6
sage: factor(1/2); factor(1/3); factor(1/6)
2^-1
3^-1
2^-1 * 3^-1
sage: a = (2*3)/(7*11); b = (13*17)/(19*23)
sage: factor(a); factor(b); factor(QQ.content(a,b))
2 * 3 * 7^-1 * 11^-1
13 * 17 * 19^-1 * 23^-1
7^-1 * 11^-1 * 19^-1 * 23^-1
```

Note the changes to the second entry:

```python
sage: c = (2*3)/(7*11); d = (13*17)/(7^3*19*23)
sage: factor(c); factor(d); factor(QQ.content(c,d))
2 * 3 * 7^-1 * 11^-1
7^-3 * 13 * 17 * 19^-1 * 23^-1
7^-3 * 11^-1 * 19^-1 * 23^-1
```

gcd \((x, y, \text{coerce=True})\)

Return the greatest common divisor of \(x\) and \(y\), as elements of self.

EXAMPLES:

The integers are a principal ideal domain and hence a GCD domain:

```python
sage: ZZ.gcd(42, 48)
6
sage: 42.factor(); 48.factor()
2 * 3 * 7
2^4 * 3
sage: ZZ.gcd(2^4*7^2*11, 2^3*11*13)
88
sage: 88.factor()
2^3 * 11
```

In a field, any nonzero element is a GCD of any nonempty set of nonzero elements. In previous versions, Sage used to return 1 in the case of the rational field. However, since github issue #10771, the rational field is
General Rings, Ideals, and Morphisms, Release 10.3

considered as the fraction field of the integer ring. For the fraction field of an integral domain that provides both GCD and LCM, it is possible to pick a GCD that is compatible with the GCD of the base ring:

```sage
sage: QQ.gcd(ZZ(42), ZZ(48)); type(QQ.gcd(ZZ(42), ZZ(48)))
6 <class 'sage.rings.rational.Rational'>
sage: QQ.gcd(1/2, 1/3)
1/6
```

Polynomial rings over fields are GCD domains as well. Here is a simple example over the ring of polynomials over the rationals as well as over an extension ring. Note that gcd requires x and y to be coercible:

```sage
sage: # needs sage.rings.number_field
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = NumberField(x^2 - 2, 'a')
sage: f = (x - a)*(x + a); g = (x - a)*(x^2 - 2)
sage: print(f); print(g)
x^2 - 2
x^3 - a*x^2 - 2*x + 2*a
sage: f in R
True
sage: g in R
False
sage: R.gcd(f, g)
Traceback (most recent call last):
  ... TypeError: Unable to coerce 2*a to a rational
sage: R.base_extend(S).gcd(f,g)
x^2 - 2
sage: R.base_extend(S).gcd(f, (x - a)*(x^2 - 3))
x - a
```

is_noetherian()

Every principal ideal domain is noetherian, so we return True.

EXAMPLES:

```sage
sage: Zp(5).is_noetherian()  # needs sage.rings.padics
True
```

class sage.rings.ring.Ring

Bases: ParentWithGens

Generic ring class.

base_extend(R)

EXAMPLES:

```sage
sage: QQ.base_extend(GF(7))
Traceback (most recent call last):
... TypeError: no base extension defined
sage: ZZ.base_extend(GF(7))
Finite Field of size 7
```

category()

Return the category to which this ring belongs.
Note: This method exists because sometimes a ring is its own base ring. During initialisation of a ring \(R \), it may be checked whether the base ring (hence, the ring itself) is a ring. Hence, it is necessary that \(R.category() \) tells that \(R \) is a ring, even before its category is properly initialised.

EXAMPLES:

```python
sage: FreeAlgebra(QQ, 3, 'x').category()  # todo: use a ring which is not an...
Category of algebras with basis over Rational Field
```

Since a quotient of the integers is its own base ring, and during initialisation of a ring it is tested whether the base ring belongs to the category of rings, the following is an indirect test that the \(category() \) method of rings returns the category of rings even before the initialisation was successful:

```python
sage: I = Integers(15)
sage: I.base_ring()  # needs sage.combinat
I
True
sage: I.category()
Join of Category of finite commutative rings
   and Category of subquotients of monoids
   and Category of quotients of semigroups
   and Category of finite enumerated sets
```

categorical

Return the precision error of elements in this ring.

EXAMPLES:

```python
sage: RDF.epsilon()  # needs sage.rings.real_mpfr
2.220446049250313e-16
sage: ComplexField(53).epsilon()  # needs sage.rings.real_mpfr
2.22044604925031e-16
sage: RealField(10).epsilon()  # needs sage.rings.real_mpfr
0.0020
```

For exact rings, zero is returned:

```python
sage: ZZ.epsilon()
0
```

This also works over derived rings:

```python
sage: RR['x'].epsilon()  # needs sage.rings.real_mpfr
2.22044604925031e-16
sage: QQ['x'].epsilon()
0
```

For the symbolic ring, there is no reasonable answer:

```python
sage: SR.epsilon()  # needs sage.symbolic
Traceback (most recent call last):
... (continues on next page)
```
ideal(*args, **kwd)

Return the ideal defined by \(x \), i.e., generated by \(x \).

INPUT:

- *\(x \) – list or tuple of generators (or several input arguments)
- coerce – bool (default: True); this must be a keyword argument. Only set it to False if you are certain that each generator is already in the ring.
- ideal_class – callable (default: self._ideal_class_()); this must be a keyword argument. A constructor for ideals, taking the ring as the first argument and then the generators. Usually a subclass of Ideal_generic or Ideal_nc.
- Further named arguments (such as side in the case of non-commutative rings) are forwarded to the ideal class.

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: R.ideal(x,y)
Ideal (x, y) of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ideal(x+y^2)
Ideal (y^2 + x) of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ideal([x^3,y^3+x^3])
Ideal (x^3, x^3 + y^3) of Multivariate Polynomial Ring in x, y over Rational...
→ Field
```

Here is an example over a non-commutative ring:

```
sage: A = SteenrodAlgebra(2)  # needs sage.combinat sage.modules
sage: A.ideal(A.1, A.2^2)  # needs sage.combinat sage.modules
Twosided Ideal (Sq(2), Sq(2,2)) of mod 2 Steenrod algebra, milnor basis
sage: A.ideal(A.1, A.2^2, side='left')  # needs sage.combinat sage.modules
Left Ideal (Sq(2), Sq(2,2)) of mod 2 Steenrod algebra, milnor basis
```

ideal_monoid()

Return the monoid of ideals of this ring.

EXAMPLES:

```
sage: # needs sage.combinat sage.modules
sage: F.<x,y,z> = FreeAlgebra(ZZ, 3)
sage: I = F * [x*y + y*z, x^2 + x*y - y*x - y^2] * F
sage: Q = F.quotient(I)
sage: Q.ideal_monoid()
Monoid of ideals of Quotient of Free Algebra on 3 generators (x, y, z) over Integer Ring by the ideal (x*y + y*z, x^2 + x*y - y*x - y^2)
sage: F.<x,y,z> = FreeAlgebra(ZZ, implementation='letterplace')
sage: I = F * [x*y + y*z, x^2 + x*y - y*x - y^2] * F
sage: Q = F.quo(I)
sage: Q.ideal_monoid()
```
Monoid of ideals of Quotient of Free Associative Unital Algebra
on 3 generators (x, y, z) over Integer Ring
by the ideal (x*y + y*z, x*x + x*y - y*x - y*y)

is_exact()
Return True if elements of this ring are represented exactly, i.e., there is no precision loss when doing arithmetic.

Note: This defaults to True, so even if it does return True you have no guarantee (unless the ring has properly overloaded this).

EXAMPLES:

```sage
sage: QQ.is_exact()  # indirect doctest
True
sage: ZZ.is_exact()
True
sage: Qp(7).is_exact()
False
sage: Zp(7, type='capped-abs').is_exact()
False
```

is_field(proof=True)
Return True if this ring is a field.

INPUT:
- proof – (default: True) Determines what to do in unknown cases

ALGORITHM:
If the parameter proof is set to True, the returned value is correct but the method might throw an error. Otherwise, if it is set to False, the method returns True if it can establish that self is a field and False otherwise.

EXAMPLES:

```sage
sage: QQ.is_field()
True
sage: GF(9, 'a').is_field()  # needs sage.rings.finite_rings
True
sage: ZZ.is_field()
False
sage: QQ['x'].is_field()
False
sage: Frac(QQ['x']).is_field()
True
```

This illustrates the use of the proof parameter:

```sage
sage: R.<a,b> = QQ[]
sage: S.<x,y> = R.quo((b^3))  # needs sage.libs.singular
```
is_integral_domain (proof=True)

Return True if this ring is an integral domain.

INPUT:

- proof – (default: True) Determines what to do in unknown cases

ALGORITHM:

If the parameter proof is set to True, the returned value is correct but the method might throw an error. Otherwise, if it is set to False, the method returns True if it can establish that self is an integral domain and False otherwise.

EXAMPLES:

```python
sage: QQ.is_integral_domain()
True
sage: ZZ.is_integral_domain()
True
sage: ZZ['x,y,z'].is_integral_domain()
True
sage: Integers(8).is_integral_domain()
False
sage: Zp(7).is_integral_domain()  # needs sage.rings.padics
True
sage: Qp(7).is_integral_domain()  # needs sage.rings.padics
True
sage: R.<a,b> = QQ[]
```

This illustrates the use of the proof parameter:

```python
sage: R.<a,b> = ZZ[]
sage: S.<x,y> = R.quo((b^3))  # needs sage.libs.singular
```

```
Traceback (most recent call last):
  ... 
NotImplementedError
sage: S.is_integral_domain(proof=True)  # needs sage.libs.singular
Traceback (most recent call last):
  ...
NotImplementedError
sage: S.is_integral_domain(proof=False)  # needs sage.libs.singular
False
```
is_noetherian()

Return True if this ring is Noetherian.

EXAMPLES:

```python
sage: QQ.is_noetherian()
True
sage: ZZ.is_noetherian()
True
```

is_prime_field()

Return True if this ring is one of the prime fields \(\mathbb{Q} \) or \(\mathbb{F}_p \).

EXAMPLES:

```python
sage: QQ.is_prime_field()
True
sage: GF(3).is_prime_field()
True
sage: GF(9, 'a').is_prime_field() # needs sage.rings.finite_rings
False
sage: ZZ.is_prime_field()
False
sage: QQ['x'].is_prime_field()
False
sage: Qp(19).is_prime_field() # needs sage.rings.padics
False
```

is_subring(other)

Return True if the canonical map from self to other is injective.

Raises a NotImplementedError if not known.

EXAMPLES:

```python
sage: ZZ.is_subring(QQ)
True
sage: ZZ.is_subring(GF(19))
False
```

one()

Return the one element of this ring (cached), if it exists.

EXAMPLES:

```python
sage: ZZ.one()
1
sage: QQ.one()
1
sage: QQ['x'].one()
1
```

The result is cached:

```python
sage: ZZ.one() is ZZ.one()
True
```
order()
The number of elements of self.

EXAMPLES:

```
sage: GF(19).order()
sage: QQ.order()
```

principal_ideal(gen, coerce=True)

Return the principal ideal generated by gen.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: R.principal_ideal(x+2*y)
Ideal (x + 2*y) of Multivariate Polynomial Ring in x, y over Integer Ring
```

random_element(bound=2)

Return a random integer coerced into this ring, where the integer is chosen uniformly from the interval [-bound, bound].

INPUT:

- bound – integer (default: 2)

ALGORITHM:

Uses Python’s randint.

unit_ideal()

Return the unit ideal of this ring.

EXAMPLES:

```
sage: Zp(7).unit_ideal()  # needs sage.rings.padics
Principal ideal (1 + O(7^20)) of 7-adic Ring with capped relative precision 20
```

zero()

Return the zero element of this ring (cached).

EXAMPLES:

```
sage: ZZ.zero()
sage: QQ.zero()
sage: QQ['x'].zero()
```

The result is cached:

```
sage: ZZ.zero() is ZZ.zero()
True
```
zero_ideal()

Return the zero ideal of this ring (cached).

EXAMPLES:

```python
sage: ZZ.zero_ideal()
Principal ideal (0) of Integer Ring
sage: QQ.zero_ideal()
Principal ideal (0) of Rational Field
sage: QQ['x'].zero_ideal()
Principal ideal (0) of Univariate Polynomial Ring in x over Rational Field
```

The result is cached:

```python
sage: ZZ.zero_ideal() is ZZ.zero_ideal()
True
```

zeta(n=2, all=False)

Return a primitive \(n\)-th root of unity in \(self\) if there is one, or raise a `ValueError` otherwise.

INPUT:

- \(n\) – positive integer
- \(all\) – bool (default: `False`) - whether to return a list of all primitive \(n\)-th roots of unity. If True, raise a `ValueError` if \(self\) is not an integral domain.

OUTPUT:

Element of \(self\) of finite order

EXAMPLES:

```python
sage: QQ.zeta()
-1
sage: QQ.zeta(1)
1
sage: CyclotomicField(6).zeta(6)  # needs sage.rings.number_field
zeta6
sage: CyclotomicField(3).zeta(3)  # needs sage.rings.number_field
zeta3
sage: CyclotomicField(3).zeta(3).multiplicative_order()  # needs sage.rings.number_field
3
sage: # needs sage.rings.finite_rings
sage: a = GF(7).zeta(); a
3
sage: a.multiplicative_order()
6
sage: a = GF(49,'z').zeta(); a
z
sage: a.multiplicative_order()
48
sage: a = GF(49,'z').zeta(2); a
6
sage: a.multiplicative_order()
2
```

(continues on next page)
sage: QQ.zeta(3)
Traceback (most recent call last):
...
ValueError: no n-th root of unity in rational field
sage: Zp(7, prec=8).zeta() # needs sage.rings.padics
3 + 4*7 + 6*7^2 + 3*7^3 + 2*7^5 + 6*7^6 + 2*7^7 + O(7^8)

zeta_order()

Return the order of the distinguished root of unity in self.

EXAMPLES:

sage: CyclotomicField(19).zeta_order() # needs sage.rings.number_field
38
sage: GF(19).zeta_order() # needs sage.rings.finite_rings
18
sage: GF(5^3, 'a').zeta_order() # needs sage.rings.finite_rings
124
sage: Zp(7, prec=8).zeta_order() # needs sage.rings.padics
6

sage.rings.ring.is_Ring(x)

Return True if x is a ring.

EXAMPLES:

sage: from sage.rings.ring import is_Ring
sage: is_Ring(ZZ)
True
sage: MS = MatrixSpace(QQ, 2) # needs sage.modules
sage: is_Ring(MS)
True

1.2 Abstract base classes for rings

class sage.rings.abc.AlgebraicField

Bases: AlgebraicField_common

Abstract base class for AlgebraicField.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

sage: import sage.rings.abc
sage: isinstance(QQbar, sage.rings.abc.AlgebraicField) # needs sage.rings.number_field
(continues on next page)
By design, there is a unique direct subclass:

```
sage: sage.rings.abc.AlgebraicField.__subclasses__()
#...
˓→needs sage.rings.number_field
[<class 'sage.rings.qqbar.AlgebraicField'>]
sage: len(sage.rings.abc.AlgebraicField.__subclasses__()) <= 1
True
```

```python
class sage.rings.abc.AlgebraicField_common
Bases: Field

Abstract base class for AlgebraicField_common.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:
```
sage: import sage.rings.abc
sage: isinstance(QQbar, sage.rings.abc.AlgebraicField_common)
#...
˓→needs sage.rings.number_field
True
```

By design, other than the abstract subclasses AlgebraicField and AlgebraicRealField, there is only one direct implementation subclass:

```
sage: sage.rings.abc.AlgebraicField_common.__subclasses__()
#...
˓→needs sage.rings.number_field
[<class 'sage.rings.abc.AlgebraicField'>,
 <class 'sage.rings.abc.AlgebraicRealField'>,
 <class 'sage.rings.qqbar.AlgebraicField_common'>]
sage: len(sage.rings.abc.AlgebraicField_common.__subclasses__()) <= 3
True
```

```python
class sage.rings.abc.AlgebraicRealField
Bases: AlgebraicField_common

Abstract base class for AlgebraicRealField.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:
```
sage: import sage.rings.abc
sage: isinstance(QQbar, sage.rings.abc.AlgebraicRealField)
#...
˓→needs sage.rings.number_field
False
sage: isinstance(AA, sage.rings.abc.AlgebraicRealField)
#...
```

(continues on next page)
By design, there is a unique direct subclass:

```
sage: sage.rings.abc.AlgebraicRealField.__subclasses__()  #...
needs sage.rings.number_field
[<class 'sage.rings.qqbar.AlgebraicRealField'>]
sage: len(sage.rings.abc.AlgebraicRealField.__subclasses__()) <= 1
True
```

```
class sage.rings.abc.CallableSymbolicExpressionRing
    Bases: SymbolicRing
    Abstract base class for CallableSymbolicExpressionRing_class.
    This class is defined for the purpose of isinstance tests. It should not be instantiated.
    EXAMPLES:

    sage: import sage.rings.abc
    sage: f = x.function(x).parent()  #...
    needs sage.symbolic
    sage: isinstance(f, sage.rings.abc.CallableSymbolicExpressionRing)  #...
    needs sage.symbolic
    True

    By design, there is a unique direct subclass:

    sage: sage.rings.abc.CallableSymbolicExpressionRing.__subclasses__()  #...
    needs sage.symbolic
    [<class 'sage.symbolic.callable.CallableSymbolicExpressionRing_class'>]
sage: len(sage.rings.abc.CallableSymbolicExpressionRing.__subclasses__()) <= 1
    True
```

```
class sage.rings.abc.ComplexBallField
    Bases: Field
    Abstract base class for ComplexBallField.
    This class is defined for the purpose of isinstance tests. It should not be instantiated.
    EXAMPLES:

    sage: import sage.rings.abc
    sage: issubclass(CBF, sage.rings.abc.ComplexBallField)  #...
    needs sage.libs.flint
    True

    By design, there is a unique direct subclass:

    sage: sage.rings.abc.ComplexBallField.__subclasses__()  #...
    needs sage.libs.flint
    [<class 'sage.rings.complex_arb.ComplexBallField'>]
sage: len(sage.rings.abc.ComplexBallField.__subclasses__()) <= 1
    True
```
class sage.rings.abc.ComplexDoubleField
Bases: Field

Abstract base class for ComplexDoubleField_class.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

```
sage: import sage.rings.abc
sage: isinstance(CDF, sage.rings.abc.ComplexDoubleField)  # needs sage.rings.complex_double
True
```

By design, there is a unique direct subclass:

```
sage: sage.rings.abc.ComplexDoubleField.__subclasses__()  # needs sage.rings.complex_double
[<class 'sage.rings.complex_double.ComplexDoubleField_class'>]
sage: len(sage.rings.abc.ComplexDoubleField.__subclasses__()) <= 1
True
```

class sage.rings.abc.ComplexField
Bases: Field

Abstract base class for ComplexField_class.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

```
sage: import sage.rings.abc
sage: isinstance(CC, sage.rings.abc.ComplexField)  # needs sage.rings.real_mpfr
True
```

By design, there is a unique direct subclass:

```
sage: sage.rings.abc.ComplexField.__subclasses__()  # needs sage.rings.real_mpfr
[<class 'sage.rings.complex_mpfr.ComplexField_class'>]
sage: len(sage.rings.abc.ComplexField.__subclasses__()) <= 1
True
```

class sage.rings.abc.ComplexIntervalField
Bases: Field

Abstract base class for ComplexIntervalField_class.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

```
sage: import sage.rings.abc
sage: isinstance(CIF, sage.rings.abc.ComplexIntervalField)  # needs sage.rings.complex_interval_field
True
```

By design, there is a unique direct subclass:

```
```
class sage.rings.abc.IntegerModRing
Bases: object

Abstract base class for IntegerModRing_generic.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

```python
sage: import sage.rings.abc
sage: isinstance(Integers(7), sage.rings.abc.IntegerModRing)
True
```

By design, there is a unique direct subclass:

```python
sage: sage.rings.abc.IntegerModRing.__subclasses__()
[<class 'sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic'>]
sage: len(sage.rings.abc.IntegerModRing.__subclasses__()) <= 1
True
```

class sage.rings.abc.NumberField_cyclotomic
Bases: Field

Abstract base class for NumberField_cyclotomic.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

```python
sage: import sage.rings.abc
sage: K.<zeta> = CyclotomicField(15)  # needs sage.rings.number_field
sage: isinstance(K, sage.rings.abc.NumberField_cyclotomic)  # needs sage.rings.number_field
True
```

By design, there is a unique direct subclass:

```python
sage: sage.rings.abc.NumberField_cyclotomic.__subclasses__()
[<class 'sage.rings.number_field.number_field.NumberField_cyclotomic'>]
sage: len(sage.rings.abc.NumberField_cyclotomic.__subclasses__()) <= 1
True
```

class sage.rings.abc.NumberField_quadratic
Bases: Field

Abstract base class for NumberField_quadratic.

This class is defined for the purpose of isinstance tests. It should not be instantiated.
EXAMPLES:

```python
sage: import sage.rings.abc
sage: K.<sqrt2> = QuadraticField(2)  # needs sage.rings.number_field
sage: isinstance(K, sage.rings.abc.NumberField_quadratic)  # needs sage.rings.number_field
True
```

By design, there is a unique direct subclass:

```python
sage: sage.rings.abc.NumberField_quadratic.__subclasses__()  # needs sage.rings.number_field
[<class 'sage.rings.number_field.number_field.NumberField_quadratic'>]
```

```python
sage: len(sage.rings.abc.NumberField_quadratic.__subclasses__()) <= 1
True
```

```python
class sage.rings.abc.Order
    Bases: object

    Abstract base class for Order.

    This class is defined for the purpose of isinstance tests. It should not be instantiated.

    EXAMPLES:

    ```python
 sage: import sage.rings.abc
 sage: x = polygen(ZZ, 'x')
 sage: K.<a> = NumberField(x^2 + 1); O = K.order(2*a) # needs sage.rings.number_field
 sage: isinstance(O, sage.rings.abc.Order) # needs sage.rings.number_field
 True
    ```

    By design, there is a unique direct subclass:

    ```python
 sage: sage.rings.abc.Order.__subclasses__() # needs sage.rings.number_field
 [<class 'sage.rings.number_field.order.Order'>]
    ```

    ```python
 sage: len(sage.rings.abc.Order.__subclasses__()) <= 1
 True
    ```

```python
class sage.rings.abc.RealBallField
 Bases: Field

 Abstract base class for RealBallField.

 This class is defined for the purpose of isinstance tests. It should not be instantiated.

 EXAMPLES:

    ```python
    sage: import sage.rings.abc
    sage: RBF = RealBallField(3)
    sage: isinstance(RBF, sage.rings.abc.RealBallField)  # needs sage.libs.flint
    True
    ```

 By design, there is a unique direct subclass:

    ```python
    sage: sage.rings.abc.RealBallField.__subclasses__()  # needs sage.libs.flint
    [<class 'sage.rings.real_mpfr.RealField_class'>]
    ```

    ```python
    sage: len(sage.rings.abc.RealBallField.__subclasses__()) <= 1
    True
    ```
```

1.2. Abstract base classes for rings 25
class sage.rings.abc.RealDoubleField
    Bases: Field

    Abstract base class for RealDoubleField_class.
    This class is defined for the purpose of isinstance tests. It should not be instantiated.
    EXAMPLES:

    sage: import sage.rings.abc
    sage: isinstance(RDF, sage.rings.abc.RealDoubleField)
    True

    By design, there is a unique direct subclass:

    sage: sage.rings.abc.RealDoubleField.__subclasses__()
    [<class 'sage.rings.real_double.RealDoubleField_class'>]
    sage: len(sage.rings.abc.RealDoubleField.__subclasses__()) <= 1
    True

class sage.rings.abc.RealField
    Bases: Field

    Abstract base class for RealField_class.
    This class is defined for the purpose of isinstance tests. It should not be instantiated.
    EXAMPLES:

    sage: import sage.rings.abc
    sage: isinstance(RR, sage.rings.abc.RealField)
    #...
    → needs sage.rings.real_mpfr
    True

    By design, there is a unique direct subclass:

    sage: sage.rings.abc.RealField.__subclasses__()
    [<class 'sage.rings.real_mpfr.RealField_class'>]
    sage: len(sage.rings.abc.RealField.__subclasses__()) <= 1
    True

class sage.rings.abc.RealIntervalField
    Bases: Field

    Abstract base class for RealIntervalField_class.
    This class is defined for the purpose of isinstance tests. It should not be instantiated.
    EXAMPLES:
By design, there is a unique direct subclass:

```python
sage: import sage.rings.abc
sage: isinstance(RIF, sage.rings.abc.RealIntervalField) # needs sage.rings.real_interval_field
True
```

```python
sage: len(sage.rings.abc.RealIntervalField.__subclasses__()) <= 1
True
```

**class** `sage.rings.abc.SymbolicRing`

Bases: `CommutativeRing`

Abstract base class for `SymbolicRing`.

This class is defined for the purpose of `isinstance` tests. It should not be instantiated.

**EXAMPLES:**

```python
sage: import sage.rings.abc
sage: isinstance(SR, sage.rings.abc.SymbolicRing) # needs sage.symbolic
True
```

By design, other than the abstract subclass `CallableSymbolicExpressionRing`, there is only one direct implementation subclass:

```python
sage: import sage.rings.abc
sage: isinstance(SR, sage.rings.abc.SymbolicRing) # needs sage.symbolic
True
```

```python
sage: len(sage.rings.abc.SymbolicRing.__subclasses__()) <= 2
True
```

**class** `sage.rings.abc.UniversalCyclotomicField`

Bases: `Field`

Abstract base class for `UniversalCyclotomicField`.

This class is defined for the purpose of `isinstance()` tests. It should not be instantiated.

**EXAMPLES:**

```python
sage: import sage.rings.abc
sage: K = UniversalCyclotomicField() # needs sage.libs.gap sage.rings.number_field
sage: isinstance(K, sage.rings.abc.UniversalCyclotomicField) # needs sage.libs.gap sage.rings.number_field
True
```

By design, there is a unique direct subclass:
class sage.rings.abc.pAdicField
Bases: Field

Abstract base class for pAdicFieldGeneric.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

```python
sage: import sage.rings.abc
sage: isinstance(Zp(5), sage.rings.abc.pAdicField) # needs sage.rings.padics
False
sage: isinstance(Qp(5), sage.rings.abc.pAdicField) # needs sage.rings.padics
True
```

By design, there is a unique direct subclass:

```python
sage: sage.rings.abc.pAdicField.__subclasses__() # needs sage.rings.padics
[<class 'sage.rings.padics.generic_nodes.pAdicFieldGeneric'>]
sage: len(sage.rings.abc.pAdicField.__subclasses__()) <= 1
True
```

class sage.rings.abc.pAdicRing
Bases: IntegralDomain

Abstract base class for pAdicRingGeneric.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

```python
sage: import sage.rings.abc
sage: isinstance(Zp(5), sage.rings.abc.pAdicRing) # needs sage.rings.padics
True
sage: isinstance(Qp(5), sage.rings.abc.pAdicRing) # needs sage.rings.padics
False
```

By design, there is a unique direct subclass:

```python
sage: sage.rings.abc.pAdicRing.__subclasses__() # needs sage.rings.padics
[<class 'sage.rings.padics.generic_nodes.pAdicRingGeneric'>]
sage: len(sage.rings.abc.pAdicRing.__subclasses__()) <= 1
True
```
CHAPTER TWO

IDEALS

2.1 Ideals of commutative rings

Sage provides functionality for computing with ideals. One can create an ideal in any commutative or non-commutative ring \( R \) by giving a list of generators, using the notation \( R.\text{ideal}([a,b,\ldots]) \). The case of non-commutative rings is implemented in \texttt{noncommutative_ideals}.

A more convenient notation may be \( R^*[a,b,\ldots] \) or \([a,b,\ldots]*R\). If \( R \) is non-commutative, the former creates a left and the latter a right ideal, and \( R^*[a,b,\ldots]*R \) creates a two-sided ideal.

\[
\text{Ideal of cyclic } n\text{-roots from 1-st } n \text{ variables of } R \text{ if } R \text{ is coercible to Singular.}
\]

**INPUT:**
- \( R \) – base ring to construct ideal for
- \( n \) – number of cyclic roots (default: None). If None, then \( n \) is set to \( R.\text{ngens}() \).
- \( \text{homog} \) – (default: False) if True a homogeneous ideal is returned using the last variable in the ideal
- \( \text{singular} \) – singular instance to use

**Note:** \( R \) will be set as the active ring in \texttt{Singular}

**EXAMPLES:**

An example from a multivariate polynomial ring over the rationals:

\[
\begin{verbatim}
sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: I = sage.rings.ideal.Cyclic(P); I
Ideal (x + y + z, x*y + x*z + y*z, x*y*z - 1) of Multivariate Polynomial Ring in x, y, z over Rational Field
\end{verbatim}
\]

We compute a Groebner basis for cyclic 6, which is a standard benchmark and test ideal:

\[
\begin{verbatim}
sage: R.<x,y,z,t,u,v> = QQ['x,y,z,t,u,v']
sage: I = sage.rings.ideal.Cyclic(R, 6)
sage: B = I.groebner_basis()
\end{verbatim}
\]
sage.rings.ideal.FieldIdeal\( (R) \)

Let \( q = R.\text{base}\_\text{ring}().\text{order}() \) and \((x_0, \ldots, x_n) = R.\text{gens}() \) then if \( q \) is finite this constructor returns

\[
\langle x_0^q - x_0, \ldots, x_n^q - x_n \rangle.
\]

We call this ideal the field ideal and the generators the field equations.

EXAMPLES:

The field ideal generated from the polynomial ring over two variables in the finite field of size 2:

```python
sage: P.<x,y> = PolynomialRing(GF(2), 2)
sage: I = sage.rings.ideal.FieldIdeal(P); I
Ideal (x^2 + x, y^2 + y) of Multivariate Polynomial Ring in x, y over Finite Field of size 2
```

Another, similar example:

```python
sage: Q.<x1,x2,x3,x4> = PolynomialRing(GF(2^4, name=alpha), 4)
sage: J = sage.rings.ideal.FieldIdeal(Q); J
Ideal (x1^16 + x1, x2^16 + x2, x3^16 + x3, x4^16 + x4) of Multivariate Polynomial Ring in x1, x2, x3, x4 over Finite Field in alpha of size 2^4
```

sage.rings.ideal.Ideal\( (*\text{args}, **\text{kwds}) \)

Create the ideal in ring with given generators.

There are some shorthand notations for creating an ideal, in addition to using the `Ideal()` function:

- `R.ideal(gens, coerce=True)`
- `gens*R`
- `R*gens`

INPUT:

- `R` - A ring (optional; if not given, will try to infer it from `gens`)
- `gens` - list of elements generating the ideal
- `coerce` - bool (optional, default: True); whether `gens` need to be coerced into the ring.

OUTPUT: The ideal of ring generated by `gens`.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: I
Ideal (x^2 + 3*x + 4, x^2 + 1) of Univariate Polynomial Ring in x over Integer...
```

(continues on next page)
Ideal \((x^2 + 3x + 4, x^2 + 1)\) of Univariate Polynomial Ring in \(x\) over Integer Ring

\[
\text{sage: } \text{Ideal}((4 + 3x + x^2, 1 + x^2))
\]

Ideal \((x^2 + 3x + 4, x^2 + 1)\) of Univariate Polynomial Ring in \(x\) over Integer Ring

\[
\text{sage: } \text{ideal}(x^2-2*x+1, x^2-1)
\]

Ideal \((x^2 - 2*x + 1, x^2 - 1)\) of Univariate Polynomial Ring in \(x\) over Integer Ring

\[
\text{sage: } \text{ideal}([x^2-2*x+1, x^2-1])
\]

Ideal \((x^2 - 2*x + 1, x^2 - 1)\) of Univariate Polynomial Ring in \(x\) over Integer Ring

\[
\text{sage: } \text{ideal}(\text{f^2 for f in l})
\]

Ideal \((x^4 - 4*x^3 + 6*x^2 - 4*x + 1, x^4 - 2*x^2 + 1)\) of Univariate Polynomial Ring in \(x\) over Integer Ring

This example illustrates how Sage finds a common ambient ring for the ideal, even though 1 is in the integers (in this case).

\[
\text{sage: } \text{R.<t> = ZZ}[\text{t}]}
\]

\[
\text{sage: } \text{i = ideal(1,t,t^2)}
\]

\[
\text{sage: } \text{i}
\]

Ideal \((1, t, t^2)\) of Univariate Polynomial Ring in \(t\) over Integer Ring

\[
\text{sage: } \text{ideal(1/2,t,t^2)}
\]

Principal ideal \((1)\) of Univariate Polynomial Ring in \(t\) over Rational Field

This shows that the issues at github issue #1104 are resolved:

\[
\text{sage: } \text{Ideal}(3, 5)
\]

Principal ideal \((1)\) of Integer Ring

\[
\text{sage: } \text{Ideal}(\text{ZZ}, 3, 5)
\]

Principal ideal \((1)\) of Integer Ring

\[
\text{sage: } \text{Ideal}(2, 4, 6)
\]

Principal ideal \((2)\) of Integer Ring

You have to provide enough information that Sage can figure out which ring to put the ideal in.

\[
\text{sage: } \text{I = Ideal([])}
\]

Traceback (most recent call last):
...
ValueError: unable to determine which ring to embed the ideal in

\[
\text{sage: } \text{I = Ideal()}
\]

Traceback (most recent call last):
...
ValueError: need at least one argument

Note that some rings use different ideal implementations than the standard, even if they are PIDs:

\[
\text{sage: } \text{R.<x> = GF(5)[]}
\]

\[
\text{sage: } \text{I = R * (x^2 + 3)}
\]

\[
\text{sage: } \text{type(I)}
\]

\text{<class 'sage.rings.polynomial.ideal.Ideal_1poly_field'>}

You can also pass in a specific ideal type:

2.1. Ideals of commutative rings 31
sage: from sage.rings.ideal import Ideal_pid
sage: I = Ideal(x^2+3,ideal_class=Ideal_pid)
sage: type(I)
<class 'sage.rings.ideal.Ideal_pid'>

class sage.rings.ideal.Ideal_fractional(ring, gens, coerce=True, **kwds)
    Bases: Ideal_generic
Fractional ideal of a ring.
    See Ideal().

class sage.rings.ideal.Ideal_generic(ring, gens, coerce=True, **kwds)
    Bases: MonoidElement
An ideal.
    See Ideal().
    absolute_norm()
       Returns the absolute norm of this ideal.

       In the general case, this is just the ideal itself, since the ring it lies in can’t be implicitly assumed to be an
       extension of anything.

       We include this function for compatibility with cases such as ideals in number fields.

       Todo: Implement this method.

EXAMPLES:

sage: R.<t> = GF(9, names='a')[]
       # needs sage.rings.finite_rings
sage: I = R.ideal(t^4 + t + 1)
       # needs sage.rings.finite_rings
sage: I.absolute_norm()
       # needs sage.rings.finite_rings
Traceback (most recent call last):
... Not Implemented Error

apply_morphism(\phi)
       Apply the morphism \phi to every element of this ideal. Returns an ideal in the domain of \phi.

EXAMPLES:

sage: # needs sage.rings.real_mpfr
sage: psi = CC['x'].hom([-CC['x'].0])

sage: J = ideal([CC['x'].0 + 1]); J
Principal ideal (x + 1.00000000000000) of Univariate Polynomial Ring in x
 over Complex Field with 53 bits of precision
sage: psi(J)
Principal ideal (x - 1.00000000000000) of Univariate Polynomial Ring in x
 over Complex Field with 53 bits of precision
sage: J.apply_morphism(psi)
Principal ideal (x - 1.00000000000000) of Univariate Polynomial Ring in x
 over Complex Field with 53 bits of precision
sage: psi = ZZ['x'].hom([-ZZ['x'].0])
sage: J = ideal([-ZZ['x'].0, 2]); J
Ideal (x, 2) of Univariate Polynomial Ring in x over Integer Ring
sage: psi(J)
Ideal (-x, 2) of Univariate Polynomial Ring in x over Integer Ring
sage: J.apply_morphism(psi)
Ideal (-x, 2) of Univariate Polynomial Ring in x over Integer Ring

associated_primes()

Return the list of associated prime ideals of this ideal.

EXAMPLES:

sage: R = ZZ['x']
sage: I = R.ideal(7)
sage: I.associated_primes()
Traceback (most recent call last):
  ...
NotImplementedError

base_ring()

Returns the base ring of this ideal.

EXAMPLES:

sage: R = ZZ
sage: I = 3*R; I
Principal ideal (3) of Integer Ring
sage: J = 2*I; J
Principal ideal (6) of Integer Ring
sage: I.base_ring(); J.base_ring()
Integer Ring
Integer Ring

We construct an example of an ideal of a quotient ring:

sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 - 2)
sage: I.base_ring()
Rational Field

And $p$-adic numbers:

sage: R = Zp(7, prec=10); R
# needs sage.rings.padics
7-adic Ring with capped relative precision 10
sage: I = 7*R; I
# needs sage.rings.padics
Principal ideal (7 + O(7^11)) of 7-adic Ring with capped relative precision 10
sage: I.base_ring()
# needs sage.rings.padics
7-adic Ring with capped relative precision 10

category()

Return the category of this ideal.

2.1. Ideals of commutative rings
Note: category is dependent on the ring of the ideal.

EXAMPLES:

```python
sage: P.<x> = ZZ[]
sage: I = ZZ.ideal(7)
sage: J = P.ideal(7,x)
sage: K = P.ideal(7)
sage: I.category()
Category of ring ideals in Integer Ring
sage: J.category()
Category of ring ideals in Univariate Polynomial Ring in x
 over Integer Ring
sage: K.category()
Category of ring ideals in Univariate Polynomial Ring in x
 over Integer Ring
```

`embedded_primes()`

Return the list of embedded primes of this ideal.

EXAMPLES:

```python
sage: R.<x, y> = QQ[]
sage: I = R.ideal(x^2, x*y)
sage: I.embedded_primes()
 [Ideal (y, x) of Multivariate Polynomial Ring in x, y over Rational Field]
```

`free_resolution(*args, **kwds)`

Return a free resolution of self.

For input options, see `FreeResolution`.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: I = R.ideal([x^4 + 3*x^2 + 2])
sage: I.free_resolution()
 S^1 <-- S^1 <-- 0
```

`gen(i)`

Return the i-th generator in the current basis of this ideal.

EXAMPLES:

```python
sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.gen(1)
y + 1
sage: ZZ.ideal(5,10).gen()
5
```

gens()  

Return a set of generators / a basis of self.
This is the set of generators provided during creation of this ideal.

**EXAMPLES:**

```sage
sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.gens()
[x, y + 1]
```

```sage
sage: ZZ.ideal(5,10).gens()
(5,)
```

`gens_reduced()`

Same as `gens()` for this ideal, since there is currently no special `gens_reduced` algorithm implemented for this ring.

This method is provided so that ideals in \( \mathbb{Z} \) have the method `gens_reduced()`, just like ideals of number fields.

**EXAMPLES:**

```sage
sage: ZZ.ideal(5).gens_reduced()
(5,)
```

`graded_free_resolution(*args, **kwds)`

Return a graded free resolution of `self`.

For input options, see `GradedFiniteFreeResolution`.

**EXAMPLES:**

```sage
sage: R.<x> = PolynomialRing(QQ)
sage: I = R.ideal([x^3])
sage: I.graded_free_resolution() #...
←needs sage.modules
S(0) ←← S(-3) ←← 0
```

`is_maximal()`

Return `True` if the ideal is maximal in the ring containing the ideal.

**Todo:** This is not implemented for many rings. Implement it!

**EXAMPLES:**

```sage
sage: R = ZZ
sage: I = R.ideal(7)
sage: I.is_maximal()
True
sage: R.ideal(16).is_maximal()
False
sage: S = Integers(8)
sage: S.ideal(0).is_maximal()
False
sage: S.ideal(2).is_maximal()
True
```
is_prime$(P=None)$

Returns True if this ideal is prime (or $P$-primary, if a prime ideal $P$ is specified).

Recall that an ideal $I$ is primary if and only if $I$ has a unique associated prime (see page 52 in [AM1969]). If this prime is $P$, then $I$ is said to be $P$-primary.

INPUT:

• $P$ - (default: None) a prime ideal in the same ring

EXAMPLES:

```plaintext
sage: R.<x, y> = QQ[]
sage: I = R.ideal([x^2, x*y])
sage: I.is_prime() # needs sage.libs.singular
False
sage: J = I.primary_decomposition()[1]; J # needs sage.libs.singular
Ideal (y, x^2) of Multivariate Polynomial Ring in x, y over Rational Field
sage: J.is_prime() # needs sage.libs.singular
False
```

Some examples from the Macaulay2 documentation:

```plaintext
sage: # needs sage.rings.finite_rings
sage: R.<x, y, z> = GF(101)[]
sage: I = R.ideal([y^6])
sage: I.is_prime() # needs sage.libs.singular
True
sage: I.is_prime(R.ideal([y])) # needs sage.libs.singular
True
sage: I = R.ideal([x^4, y^7])
sage: I.is_prime() # needs sage.libs.singular
True
sage: I = R.ideal([x*y, y^2])
sage: I.is_prime() # needs sage.libs.singular
False
```

Note: This uses the list of associated primes.
General Rings, Ideals, and Morphisms, Release 10.3

```python
sage: R.<x, y> = QQ[]
sage: I = R.ideal([x, y])
sage: I.is_prime() # a maximal ideal
True # needs sage.libs.singular
sage: I = R.ideal([x^2 - y])
sage: I.is_prime() # a non-maximal prime ideal
True # needs sage.libs.singular
sage: I = R.ideal([x^2, y])
False # needs sage.libs.singular
sage: I = R.ideal([x^2, x*y])
False # needs sage.libs.singular
sage: S = Integers(8)
sage: S.ideal(0).is_prime()
False
sage: S.ideal(2).is_prime()
True
sage: S.ideal(4).is_prime()
False
```

Note that this method is not implemented for all rings where it could be:

```python
sage: R.<x> = ZZ[]
sage: I = R.ideal(7)
sage: I.is_prime() # when implemented, should be True
Traceback (most recent call last):
 ... Not Implemented Error
```

Note: For general rings, uses the list of associated primes.

**is_principal()**

Returns *True* if the ideal is principal in the ring containing the ideal.

**Todo:** Code is naive. Only keeps track of ideal generators as set during initialization of the ideal. (Can the base ring change? See example below.)

**EXAMPLES:**

```python
sage: R.<x> = ZZ[]
sage: I = R.ideal(2, x)
sage: I.is_principal()
Traceback (most recent call last):
 ... Not Implemented Error
sage: J = R.base_extend(QQ).ideal(2, x)
sage: J.is_principal()
True
```
is_trivial()
Return True if this ideal is (0) or (1).

minimal_associated_primes()
Return the list of minimal associated prime ideals of this ideal.

EXAMPLES:

sage: R = ZZ['x']
sage: I = R.ideal(7)
sage: I.minimal_associated_primes()
Traceback (most recent call last):
...  
NotImplementedError

ngens()
Return the number of generators in the basis.

EXAMPLES:

sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.ngens()
2
sage: ZZ.ideal(5,10).ngens()
1

norm()
Returns the norm of this ideal.

In the general case, this is just the ideal itself, since the ring it lies in can’t be implicitly assumed to be an
extension of anything.

We include this function for compatibility with cases such as ideals in number fields.

EXAMPLES:

sage: R.<t> = GF(8, names='a')[]
# needs sage.rings.finite_rings
sage: I = R.ideal(t^4 + t + 1)
# needs sage.rings.finite_rings
sage: I.norm()
# needs sage.rings.finite_rings
Principal ideal (t^4 + t + 1) of Univariate Polynomial Ring in t
over Finite Field in a of size 2^3

primary_decomposition()
Return a decomposition of this ideal into primary ideals.

EXAMPLES:

sage: R = ZZ['x']
sage: I = R.ideal(7)
sage: I.primary_decomposition()
Traceback (most recent call last):
...  
NotImplementedError
**random_element** (*args, **kwds*)

Return a random element in this ideal.

**EXAMPLES:**

```
sage: P.<a,b,c> = GF(5)[[]]
sage: I = P.ideal([a^2, a*b + c, c^3])
sage: I.random_element() # random
2*a^5*c + a^2*b*c^4 + ... + O(a, b, c)^13
```

**reduce** (*f*)

Return the reduction of the element of *f* modulo *self*.

This is an element of *R* that is equivalent modulo *I* to *f* where *I* is *self*.

**EXAMPLES:**

```
sage: ZZ.ideal(5).reduce(17)
2
sage: parent(ZZ.ideal(5).reduce(17))
Integer Ring
```

**ring** ()

Return the ring containing this ideal.

**EXAMPLES:**

```
sage: R = ZZ
sage: I = 3*R; I
Principal ideal (3) of Integer Ring
sage: J = 2*I; J
Principal ideal (6) of Integer Ring
sage: I.ring(); J.ring()
Integer Ring
Integer Ring
```

Note that *self.ring()* is different from *self.base_ring()*

```
sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 - 2)
sage: I.base_ring()
Rational Field
sage: I.ring()
Univariate Polynomial Ring in x over Rational Field
```

Another example using polynomial rings:

```
sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 - 3)
sage: I.ring()
Univariate Polynomial Ring in x over Rational Field
```

```
sage: Rbar = R.quotient(I, names='a') # needs sage.libs.pari
sage: S = PolynomialRing(Rbar, 'y'); y = Rbar.gen(); S # needs sage.libs.pari
Univariate Polynomial Ring in y over
Univariate Quotient Polynomial Ring in a over Rational Field with modulus x^2 - 3
```

(continues on next page)
class sage.rings.ideal.Ideal_pid(ring, gens, coerce=True, **kwds)

Bases: Ideal_principal

An ideal of a principal ideal domain.

See Ideal().

EXAMPLES:

```sage
sage: I = 8*ZZ
sage: I
Principal ideal (8) of Integer Ring
```

`gcd(other)`

Returns the greatest common divisor of the principal ideal with the ideal other; that is, the largest principal ideal contained in both the ideal and other

Todo: This is not implemented in the case when other is neither principal nor when the generator of self is contained in other. Also, it seems that this class is used only in PIDs–is this redundant?

Note: The second example is broken.

EXAMPLES:

An example in the principal ideal domain Z:

```sage
sage: R = ZZ
sage: I = R.ideal(42)
sage: J = R.ideal(70)
sage: I.gcd(J)
Principal ideal (14) of Integer Ring
sage: J.gcd(I)
Principal ideal (14) of Integer Ring
```

`is_maximal()`

Returns whether this ideal is maximal.

Principal ideal domains have Krull dimension 1 (or 0), so an ideal is maximal if and only if it's prime (and nonzero if the ring is not a field).

EXAMPLES:

```sage
sage: # needs sage.rings.finite_rings
sage: R.<t> = GF(5)[]
sage: p = R.ideal(t^2 + 2)
sage: p.is_maximal()
```
is_prime()  
Return True if the ideal is prime.

This relies on the ring elements having a method is_irreducible() implemented, since an ideal \((a)\) is prime iff \(a\) is irreducible (or 0).

EXAMPLES:

```python
sage: ZZ.ideal(2).is_prime()
True
sage: ZZ.ideal(-2).is_prime()
True
sage: ZZ.ideal(4).is_prime()
False
sage: ZZ.ideal(0).is_prime()
True
```

In fields, only the zero ideal is prime:

```python
sage: RR.ideal(0).is_prime()
True
sage: RR.ideal(7).is_prime()
False
```

reduce\((f)\)  
Return the reduction of \(f\) modulo self.

EXAMPLES:

```python
sage: I = 8*ZZ
sage: I.reduce(10)
2
```

residue_field()  
Return the residue class field of this ideal, which must be prime.
Todo: Implement this for more general rings. Currently only defined for $\mathbb{Z}$ and for number field orders.

EXAMPLES:

```python
sage: # needs sage.libs.pari
sage: P = ZZ.ideal(61); P
Principal ideal (61) of Integer Ring
sage: F = P.residue_field(); F
Residue field of Integers modulo 61
sage: pi = F.reduction_map(); pi
Partially defined reduction map:
 From: Rational Field
 To: Residue field of Integers modulo 61
sage: pi(123/234)
6
sage: pi(1/61)
Traceback (most recent call last):
 ... ZeroDivisionError: Cannot reduce rational 1/61 modulo 61: it has negative
 -> valuation
sage: lift = F.lift_map(); lift
Lifting map:
 From: Residue field of Integers modulo 61
 To: Integer Ring
sage: lift(F(12345/67890))
33
sage: (12345/67890) % 61
33
```

class sage.rings.ideal.Ideal_principal(ring, gens, coerce=True, **kwds)

    A principal ideal.

    See `Ideal()`.

    `divides(other)`

    Return `True` if `self` divides `other`.

    EXAMPLES:

```python
sage: P.<x> = PolynomialRing(QQ)
sage: I = P.ideal(x)
sage: J = P.ideal(x^2)
sage: I.divides(J)
True
sage: J.divides(I)
False
```

gen(i=0)

    Return the generator of the principal ideal.

    The generator is an element of the ring containing the ideal.

    EXAMPLES:

    A simple example in the integers:
sage: R = ZZ
sage: I = R.ideal(7)
sage: J = R.ideal(7, 14)
sage: I.gen(); J.gen()
7
7

Note that the generator belongs to the ring from which the ideal was initialized:

sage: R.<x> = ZZ[]
sage: I = R.ideal(x)
sage: J = R.base_extend(QQ).ideal(2,x)
sage: a = I.gen(); a
x
sage: b = J.gen(); b
1
sage: a.base_ring()
Integer Ring
sage: b.base_ring()
Rational Field

is_principal()

Returns True if the ideal is principal in the ring containing the ideal. When the ideal construction is explicitly principal (i.e. when we define an ideal with one element) this is always the case.

EXAMPLES:

Note that Sage automatically coerces ideals into principal ideals during initialization:

sage: R.<x> = ZZ[]
sage: I = R.ideal(x)
sage: J = R.ideal(2,x)
sage: K = R.base_extend(QQ).ideal(2,x)
sage: I
Principal ideal (x) of Univariate Polynomial Ring in x over Integer Ring
sage: J
Ideal (2, x) of Univariate Polynomial Ring in x over Integer Ring
sage: K
Principal ideal (1) of Univariate Polynomial Ring in x over Rational Field
sage: I.is_principal()
True
sage: K.is_principal()
True

sage.rings.ideal.Katsura(R, n=None, homog=False, singular=None)
n-th katsura ideal of R if R is coercible to Singular.

INPUT:

• R – base ring to construct ideal for
• n – (default: None) which katsura ideal of R. If None, then n is set to R.ngens().
• homog – if True a homogeneous ideal is returned using the last variable in the ideal (default: False)
• singular – singular instance to use

EXAMPLES:
General Rings, Ideals, and Morphisms, Release 10.3

```sage
P.<x,y,z> = PolynomialRing(QQ, 3)
sage: I = sage.rings.ideal.Katsura(P, 3); I #...
Ideal (x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y + 2*y*z - y)
of Multivariate Polynomial Ring in x, y, z over Rational Field

Q.<x> = PolynomialRing(QQ, implementation="singular") #...
sage: J = sage.rings.ideal.Katsura(Q,1); J #...
Ideal (x - 1) of Multivariate Polynomial Ring in x over Rational Field
```

```sage
sage.rings.ideal.is_Ideal(x)
Return True if object is an ideal of a ring.

EXAMPLES:
A simple example involving the ring of integers. Note that Sage does not interpret rings objects themselves as ideals. However, one can still explicitly construct these ideals:

```sage
from sage.rings.ideal import is_Ideal
R = ZZ
sage: is_Ideal(R)
False
sage: 1*R; is_Ideal(1*R)
Principal ideal (1) of Integer Ring
True
sage: 0*R; is_Ideal(0*R)
Principal ideal (0) of Integer Ring
True
```
Sage recognizes ideals of polynomial rings as well:

```sage
R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 + 1); I
Principal ideal (x^2 + 1) of Univariate Polynomial Ring in x over Rational Field
sage: is_Ideal(I)
True
sage: is_Ideal((x^2 + 1)*R)
True
```

2.2 Monoid of ideals in a commutative ring

WARNING: This is used by some rings that are not commutative!

```sage
MS = MatrixSpace(QQ, 3, 3)
sage: type(MS.ideal(MS.one()).parent())  #...
<class 'sage.rings.ideal_monoid.IdealMonoid_c_with_category'>
```

```sage
sage.rings.ideal_monoid.IdealMonoid(R)
Return the monoid of ideals in the ring R.

EXAMPLES:
```
General Rings, Ideals, and Morphisms, Release 10.3

```python
sage: R = QQ['x']
sage: from sage.rings.ideal_monoid import IdealMonoid
sage: IdealMonoid(R)
Monoid of ideals of Univariate Polynomial Ring in x over Rational Field
```

```python
class sage.rings.ideal_monoid.IdealMonoid_c(R)
    Bases: Parent
    The monoid of ideals in a commutative ring.
    Element
        alias of Ideal_generic
    ring()
        Return the ring of which this is the ideal monoid.
        EXAMPLES:
```

```
sage: R = QuadraticField(-23, 'a')
    # needs sage.rings.number_field
sage: from sage.rings.ideal_monoid import IdealMonoid
sage: M = IdealMonoid(R); M.ring()
    # needs sage.rings.number_field
    True
```

2.3 Ideals of non-commutative rings

Generic implementation of one- and two-sided ideals of non-commutative rings.

AUTHOR:
- Simon King (2011-03-21), <simon.king@uni-jena.de>, github issue #7797.

EXAMPLES:

```
sage: MS = MatrixSpace(ZZ,2,2)
sage: MS*MS([0,1,-2,3])
Left Ideal
    ([ 0 1]
    [-2 3])
of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
sage: MS([0,1,-2,3])*MS
Right Ideal
    ([ 0 1]
    [-2 3])
of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
sage: MS*MS([0,1,-2,3])*MS
Twosided Ideal
    ([ 0 1]
    [-2 3])
of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
```

2.3. Ideals of non-commutative rings
See `letterplace_ideal` for a more elaborate implementation in the special case of ideals in free algebras.

```python
class sage.rings.noncommutative_ideals.IdealMonoid_nc(R):
    Bases: IdealMonoid_c

    Base class for the monoid of ideals over a non-commutative ring.

    Note: This class is essentially the same as `IdealMonoid_c`, but does not complain about non-commutative rings.
```

EXAMPLES:

```python
sage: MS = MatrixSpace(ZZ,2,2)
sage: MS.ideal_monoid()
Monoid of ideals of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
```

```python
class sage.rings.noncommutative_ideals.Ideal_nc(ring, gens, coerce=True, side='twosided')
    Bases: Ideal_generic

    Generic non-commutative ideal.

    All fancy stuff such as the computation of Groebner bases must be implemented in sub-classes. See `LetterplaceIdeal` for an example.

    **EXAMPLES:**

    ```python
 sage: MS = MatrixSpace(QQ,2,2)
sage: I = MS*[MS.1,MS.2]; I
 Left Ideal
 (
 [0 1]
 [0 0],
 [0 0]
 [1 0]
)
 of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
 sage: [MS.1,MS.2]*MS
 Right Ideal
 (
 [0 1]
 [0 0],
 [0 0]
 [1 0]
)
 of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
 sage: MS*[MS.1,MS.2]*MS
 Twosided Ideal
 (
 [0 1]
 [0 0],
 [0 0]
 [1 0]
)
 of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
    ```
The `side()` function returns a string that describes the sidedness of an ideal.

**Examples:**

```python
sage: # needs sage.combinat
sage: A = SteenrodAlgebra(2)
sage: IL = A*[A.1+A.2,A.1^2]
sage: IR = [A.1+A.2,A.1^2]*A
sage: IT = A*[A.1+A.2,A.1^2]*A
sage: IL.side()
'left'
sage: IR.side()
'right'
sage: IT.side()
'twosided'
```
3.1 Homomorphisms of rings

We give a large number of examples of ring homomorphisms.

EXAMPLES:

Natural inclusion \( \mathbb{Z} \hookrightarrow \mathbb{Q} \):

\[
\begin{align*}
\text{sage: } & H = \text{Hom}(\mathbb{Z}, \mathbb{Q}) \\
\text{sage: } & \phi = H([1]) \\
\text{sage: } & \phi(10) \\
\text{sage: } & \phi(3/1) \\
\text{sage: } & \phi(2/3)
\end{align*}
\]

Traceback (most recent call last):

... 
TypeError: 2/3 fails to convert into the map's domain Integer Ring, 
but a `pushforward` method is not properly implemented

There is no homomorphism in the other direction:

\[
\begin{align*}
\text{sage: } & H = \text{Hom}(\mathbb{Q}, \mathbb{Z}) \\
\text{sage: } & H([1]) \\
\text{Traceback (most recent call last):} \\
... 
\text{ValueError: relations do not all (canonically) map to 0} 
\text{under map determined by images of generators}
\end{align*}
\]

EXAMPLES:

Reduction to finite field:

\[
\begin{align*}
\text{sage: } & \text{# needs sage.rings.finite_rings} \\
\text{sage: } & H = \text{Hom}(\mathbb{Z}, \text{GF}(9, 'a')) \\
\text{sage: } & \phi = H([1]) \\
\text{sage: } & \phi(5) \\
\text{sage: } & \psi = H([4]) \\
\text{sage: } & \psi(5)
\end{align*}
\]

Map from single variable polynomial ring:
sage: R.<x> = ZZ[]  
sage: phi = R.hom([2], GF(5)); phi
Ring morphism:
    From: Univariate Polynomial Ring in x over Integer Ring
    To:  Finite Field of size 5
    Defn: x |--> 2
sage: phi(x + 12)
4

Identity map on the real numbers:

sage: # needs sage.rings.real_mpfr
sage: f = RR.hom([RR(1)]); f
Ring endomorphism of Real Field with 53 bits of precision
    Defn: 1.00000000000000 |--> 1.00000000000000
sage: f(2.5)
2.50000000000000
sage: f = RR.hom([2.0])
Traceback (most recent call last):
  ... Value Error: relations do not all (canonically) map to 0
under map determined by images of generators

Homomorphism from one precision of field to another.

From smaller to bigger doesn’t make sense:

sage: R200 = RealField(200)  
# needs sage.rings.real_mpfr
sage: f = RR.hom(R200)  
# needs sage.rings.real_mpfr
Traceback (most recent call last):
  ... TypeError: natural coercion morphism from Real Field with 53 bits of precision
to Real Field with 200 bits of precision not defined

From bigger to small does:

sage: f = RR.hom(RealField(15))  
# needs sage.rings.real_mpfr
sage: f(2.5)  
2.500
sage: f(RR.pi())  
3.142

Inclusion map from the reals to the complexes:

sage: # needs sage.rings.real_mpfr
sage: i = RR.hom([CC(1)]); i
Ring morphism:
    From: Real Field with 53 bits of precision
    To:  Complex Field with 53 bits of precision
    Defn: 1.00000000000000 |--> 1.00000000000000
sage: i(RR('3.1'))
3.10000000000000
A map from a multivariate polynomial ring to itself:

```
sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: phi = R.hom([y, z, x^2]); phi
Ring endomorphism of Multivariate Polynomial Ring in x, y, z over Rational Field
 Defn: x |--> y
 y |--> z
 z |--> x^2
sage: phi(x + y + z)
x^2 + y + z
```

An endomorphism of a quotient of a multi-variate polynomial ring:

```
sage: # needs sage.libs.singular
sage: R.<x,y> = PolynomialRing(QQ)
sage: S.<a,b> = quo(R, ideal(1 + y^2))
sage: phi = S.hom([a^2, -b]); phi
Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y
 over Rational Field by the ideal (y^2 + 1)
 Defn: a |--> a^2
 b |--> -b
sage: phi(b)
-b
sage: phi(a^2 + b^2)
a^4 - 1
```

The reduction map from the integers to the integers modulo 8, viewed as a quotient ring:

```
sage: R = ZZ.quo(8*ZZ)
sage: pi = R.cover(); pi
Ring morphism:
 From: Integer Ring
 To: Ring of integers modulo 8
 Defn: Natural quotient map
sage: pi.domain()
Integer Ring
sage: pi.codomain()
Ring of integers modulo 8
sage: pi(10)
2
sage: pi.lift()
Set-theoretic ring morphism:
 From: Ring of integers modulo 8
 To: Integer Ring
 Defn: Choice of lifting map
sage: pi.lift(13)
5
```

Inclusion of GF(2) into GF(4, 'a'):

```
sage: # needs sage.rings.finite_rings
sage: k = GF(2)
sage: i = k.hom(GF(4, 'a'))
sage: i
Ring morphism:
 From: Finite Field of size 2
 To: Finite Field in a of size 2^2
 Defn: 1 |--> 1
```

(continues on next page)
We next compose the inclusion with reduction from the integers to \( \mathbb{F}_2 \):

\[
\begin{align*}
sage: & \quad \# \text{ needs sage.rings.finite_rings} \\
sage: & \quad \pi = \ZZ\text{.hom}(k); \pi \\
\text{Natural morphism:} \\
\text{From: Integer Ring} \\
\text{To: Finite Field of size 2} \\
sage: & \quad f = i \ast \pi; f \\
\text{Composite map:} \\
\text{From: Integer Ring} \\
\text{To: Finite Field in a of size 2}^2 \\
\text{Defn:} \\
\text{Natural morphism:} \\
\text{From: Integer Ring} \\
\text{To: Finite Field of size 2} \\
\text{then} \\
\text{Ring morphism:} \\
\text{From: Finite Field of size 2} \\
\text{To: Finite Field in a of size 2}^2 \\
\text{Defn:} 1 \mapsto 1 \\
sage: & \quad a = f(5); a \\
1 \\
sage: & \quad a\.parent() \\
Finite Field in a of size 2^2
\end{align*}
\]

Inclusion from \( \mathbb{Q} \) to the 3-adic field:

\[
\begin{align*}
sage: & \quad \# \text{ needs sage.rings.padics} \\
sage: & \quad \phi = \QQ\text{.hom(Qp(3, print_mode='series'))} \\
sage: & \quad \phi \\
\text{Ring morphism:} \\
\text{From: Rational Field} \\
\text{To: 3-adic Field with capped relative precision 20} \\
sage: & \quad \phi\.codomain() \\
3\text{-adic Field with capped relative precision 20} \\
sage: & \quad \phi(394) \\
1 + 2*3 + 3^2 + 2*3^3 + 3^4 + 3^5 + O(3^20)
\end{align*}
\]

An automorphism of a quotient of a univariate polynomial ring:

\[
\begin{align*}
sage: & \quad \# \text{ needs sage.libs.pari} \\
sage: & \quad R\.<x> = \text{PolynomialRing}(\QQ) \\
sage: & \quad S\.<\sqrt{2}> = R\text{.quo(x}^2 - 2) \\
sage: & \quad \sqrt{2}^2 \\
2 \\
sage: & \quad (3+\sqrt{2})^{10} \\
933054*\sqrt{2} + 1404491 \\
sage: & \quad c = S\text{.hom([-}\sqrt{2}])} \\
sage: & \quad c(1+\sqrt{2}) \\
-\sqrt{2} + 1
\end{align*}
\]

Note that Sage verifies that the morphism is valid:
sage: (1 - sqrt2)^2  # needs sage.libs.pari
-2*sqrt2 + 3
sage: c = S.hom([1 - sqrt2])  # this is not valid  # needs sage.libs.pari
Traceback (most recent call last):
... ValueError: relations do not all (canonically) map to 0 under map determined by images of generators

Endomorphism of power series ring:

```
sage: R.<t> = PowerSeriesRing(QQ, default_prec=10); R
Power Series Ring in t over Rational Field
sage: f = R.hom([t^2]); f
Ring endomorphism of Power Series Ring in t over Rational Field
 Defn: t |--> t^2
sage: s = 1/(1 + t); s
1 - t + t^2 - t^3 + t^4 - t^5 + t^6 - t^7 + t^8 - t^9 + O(t^10)
sage: f(s)
1 - t^2 + t^4 - t^6 + t^8 - t^10 + t^12 - t^14 + t^16 - t^18 + O(t^20)
```

Frobenius on a power series ring over a finite field:

```
sage: R.<t> = PowerSeriesRing(GF(5))
sage: f = R.hom([t^5]); f
Ring endomorphism of Power Series Ring in t over Finite Field of size 5
 Defn: t |--> t^5
sage: a = 2 + t + 3*t^2 + 4*t^3 + O(t^4)
sage: b = 1 + t + 2*t^2 + t^3 + O(t^5)
sage: f(a)
2 + t^5 + 3*t^10 + 4*t^15 + O(t^20)
sage: f(b)
1 + t^5 + 2*t^10 + t^15 + O(t^25)
sage: f(a*b)
2 + 3*t^5 + 3*t^10 + t^15 + O(t^20)
sage: f(a)*f(b)
2 + 3*t^5 + 3*t^10 + t^15 + O(t^20)
```

Homomorphism of Laurent series ring:

```
sage: R.<t> = LaurentSeriesRing(QQ, 10)
sage: f = R.hom([t^3 + t]); f
Ring endomorphism of Laurent Series Ring in t over Rational Field
 Defn: t |--> t + t^3
sage: s = 2/t^2 + 1/(1 + t); s
2*t^-2 + 1 - t + t^-2 - t^-3 + t^-4 - t^-5 + t^-6 - t^-7 + t^-8 - t^-9 + O(t^-10)
sage: f(s)
2*t^-2 - 3 - t + 7*t^-2 - 2*t^-3 - 5*t^-4 - 4*t^-5 + 16*t^-6 - 9*t^-7 + O(t^-8)
sage: f = R.hom([t^3]); f
Ring endomorphism of Laurent Series Ring in t over Rational Field
 Defn: t |--> t^3
sage: f(s)
2*t^-6 + 1 - t^3 + t^6 - t^9 + t^12 - t^15 + t^18 - t^21 + t^24 - t^27 + O(t^-30)
```

Note that the homomorphism must result in a converging Laurent series, so the valuation of the image of the generator must be positive:

3.1. Homomorphisms of rings
Complex conjugation on cyclotomic fields:

```
sage: # needs sage.rings.number_field
sage: K.<zeta7> = CyclotomicField(7)
sage: c = K.hom([1/zeta7]); c
Ring endomorphism of Cyclotomic Field of order 7 and degree 6
 Defn: zeta7 |--> -zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - zeta7 - 1
sage: a = (1+zeta7)^5; a
zeta7^5 + 5*zeta7^4 + 10*zeta7^3 + 10*zeta7^2 + 5*zeta7 + 1
sage: c(a)
5*zeta7^5 + 5*zeta7^4 - 4*zeta7^2 - 5*zeta7 - 4
sage: c(zeta7 + 1/zeta7)
this element is obviously fixed by inversion
-zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - 1
```

Embedding a number field into the reals:

```
sage: # needs sage.rings.number_field
sage: R.<x> = PolynomialRing(QQ)
sage: K.<beta> = NumberField(x^3 - 2)
sage: alpha = RR(2)^(1/3); alpha
1.25992104989487
sage: i = K.hom([alpha],check=False); i
Ring morphism:
 From: Number Field in beta with defining polynomial x^3 - 2
 To: Real Field with 53 bits of precision
 Defn: beta |--> 1.25992104989487
sage: i(beta)
1.25992104989487
sage: i(beta^3)
2.00000000000000
sage: i(beta^2 + 1)
2.58740105196820
```

An example from Jim Carlson:

```
sage: K = QQ # by the way :-)
sage: R.<a,b,c,d> = K[]; R
Multivariate Polynomial Ring in a, b, c, d over Rational Field
sage: S.<u> = K[]; S
Univariate Polynomial Ring in u over Rational Field
sage: f = R.hom([[0,0,0,u], S]); f
Ring morphism:
 From: Multivariate Polynomial Ring in a, b, c, d over Rational Field
 To: Univariate Polynomial Ring in u over Rational Field
(continues on next page)
class sage.rings.morphism.FrobeniusEndomorphism_generic

Bases: RingHomomorphism

A class implementing Frobenius endomorphisms on rings of prime characteristic.

power()

Return an integer \(n \) such that this endomorphism is the \(n \)-th power of the absolute (arithmetic) Frobenius.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<u> = PowerSeriesRing(GF(5))
sage: Frob = K.frobenius_endomorphism()
sage: Frob.power()
1
sage: (Frob^9).power()
9
```

class sage.rings.morphism.RingHomomorphism

Bases: RingMap

Homomorphism of rings.

inverse()

Return the inverse of this ring homomorphism if it exists.

Raises a ZeroDivisionError if the inverse does not exist.

ALGORITHM:

By default, this computes a Gröbner basis of the ideal corresponding to the graph of the ring homomorphism.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: f = R.hom([2*t - 1], R)
sage: f.inverse()  # needs sage.libs.singular
Ring endomorphism of Univariate Polynomial Ring in t over Rational Field
Defn: t |---> 1/2*t + 1/2
```

The following non-linear homomorphism is not invertible, but it induces an isomorphism on a quotient ring:

```python
sage: # needs sage.libs.singular
sage: R.<x,y,z> = QQ[]
sage: f = R.hom([y*z, x*z, x*y], R)
sage: f.inverse()
Traceback (most recent call last):
...
```
ZeroDivisionError: ring homomorphism not surjective

```python
sage: f.is_injective()
True
sage: Q.<x,y,z> = R.quotient(x*y*z - 1)
sage: g = Q.hom([y*z, x*z, x*y], Q)
sage: g.inverse()
Ring endomorphism of Quotient of Multivariate Polynomial Ring

in x, y, z over Rational Field by the ideal (x*y*z - 1)
Defn: x |--> y*z
      y |--> x*z
      z |--> x*y
```

Homomorphisms over the integers are supported:

```python
sage: S.<x,y> = ZZ[]
sage: f = S.hom([x + 2*y, x + 3*y], S)
sage: f.inverse()  # needs sage.libs.singular
Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring
Defn: x |--> 3*x - 2*y
      y |--> -x + y
```

The following homomorphism is invertible over the rationals, but not over the integers:

```python
sage: g = S.hom([x + y, x - y - 2], S)
sage: g.inverse()  # needs sage.libs.singular
Traceback (most recent call last):
  ...:
ZeroDivisionError: ring homomorphism not surjective
sage: R.<x,y> = QQ[]
sage: h = R.hom([x + y, x - y - 2], R)
sage: (h.inverse() * h).is_identity()  # needs sage.libs.singular
True
```

This example by M. Nagata is a wild automorphism:

```python
sage: R.<x,y,z> = QQ[]
sage: sigma = R.hom([x - 2*y*(z*x+y^2) - z*(z*x+y^2)^2, y + z*(z*x+y^2), z], R)
sage: tau = sigma.inverse(); tau  # needs sage.libs.singular
Ring endomorphism of Multivariate Polynomial Ring in x, y, z over
Rational Field
Defn: x |--> -y^4*z - 2*y^2*z^2 - y*z^3 + 2*y*z + x
      y |--> -y^2*z - x*z^2 + y
      z |--> z
```

We compute the triangular automorphism that converts moments to cumulants, as well as its inverse, using
the moment generating function. The choice of a term ordering can have a great impact on the computation
time of a Gröbner basis, so here we choose a weighted ordering such that the images of the generators are homogeneous polynomials.

```python
sage: d = 12
sage: T = TermOrder('wdegrevlex', [1..d])
sage: R = PolynomialRing(QQ, ['x%s' % j for j in (1..d)], order=T)
sage: S.<t> = PowerSeriesRing(R)
sage: egf = S([0] + list(R.gens())).ogf_to_egf().exp(prec=d+1)
sage: phi = R.hom(egf.egf_to_ogf().list()[1:], R)
sage: phi.im_gens()[5]
[x1, x1^2 + x2, x1^3 + 3*x1*x2 + x3, x1^4 + 6*x1^2*x2 + 3*x2^2 + 4*x1*x3 + x4, x1^5 + 10*x1^3*x2 + 15*x1^2*x3 + 10*x2*x3 + 5*x1*x4 + x5]
sage: all(p.is_homogeneous() for p in phi.im_gens())
True
```

Automorphisms of number fields as well as Galois fields are supported:

```python
sage: K.<zeta7> = CyclotomicField(7)
sage: c = K.hom([1/zeta7])
sage: (c.inverse() * c).is_identity()
True
```

An isomorphism between the algebraic torus and the circle over a number field:

```python
sage: K.<i> = QuadraticField(-1)
```

(continues on next page)
inverse_image(I)

Return the inverse image of an ideal or an element in the codomain of this ring homomorphism.

INPUT:

• I – an ideal or element in the codomain

OUTPUT:

For an ideal I in the codomain, this returns the largest ideal in the domain whose image is contained in I.

Given an element b in the codomain, this returns an arbitrary element a in the domain such that self(a) = b if one such exists. The element a is unique if this ring homomorphism is injective.

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: S.<u,v> = QQ[]
sage: f = R.hom([u^2, u*v, v^2], S)
sage: I = S.ideal([u^6, u^5*v, u^4*v^2, u^3*v^3])
sage: J = f.inverse_image(I); J
Ideal (y^2 - x*z, x*y*z, x^2*z, x^2*y, x^3)
of Multivariate Polynomial Ring in x, y, z over Rational Field
```

Under the above homomorphism, there exists an inverse image for every element that only involves monomials of even degree:

```
sage: [f.inverse_image(p) for p in [u^2, u^4, u*v + u^3*v^3]]
[x, x^2, x*y*z + y]
sage: f.inverse_image(u*v^2)
Traceback (most recent call last):
... ValueError: element u*v^2 does not have preimage
```

The image of the inverse image ideal can be strictly smaller than the original ideal:

```
sage: # needs sage.libs.singular sage.rings.number_field
sage: S.<u,v> = QQ['u,v'].quotient('v^2 - 2')
sage: f = QuadraticField(2).hom([v], S)
sage: I = S.ideal(u + v)
sage: J = f.inverse_image(I)
sage: J.is_zero()
True
sage: f(J) < I
True
```

Fractional ideals are not yet fully supported:

```
sage: # needs sage.rings.number_field
sage: K.<a> = NumberField(QQ['x'](x^2+2))
```
\textbf{sage}:
\begin{verbatim}
f = K.hom([-a], K)
f.inverse_image(I) # needs sage.libs.singular
I = K.ideal([a + 1])
f.inverse_image(I) # needs sage.libs.singular
\end{verbatim}

Traceback (most recent call last):
...
NotImplementedError: inverse image not implemented...
\textbf{sage}:
\begin{verbatim}
f.inverse_image(K.ideal(0)).is_zero() # needs sage.libs.singular
f.inverse()(I) # needs sage.rings.padics
\end{verbatim}
Fractional ideal (-a + 1)

\textbf{ALGORITHM:}
By default, this computes a Gröbner basis of an ideal related to the graph of the ring homomorphism.

\textbf{REFERENCES:}

- Proposition 2.5.12 [DS2009]

\textbf{is_invertible()}

Return whether this ring homomorphism is bijective.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x,y,z> = QQ[]
sage: R.hom([y*z, x*z, x*y], R).is_invertible() # needs sage.libs.singular
False
sage: Q.<x,y,z> = R.quotient(x*y*z - 1)
\end{verbatim}

\textbf{is_surjective()}

Return whether this ring homomorphism is surjective.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x,y,z> = QQ[]
sage: R.hom([y*z, x*z, x*y], R).is_surjective() # needs sage.libs.singular
False
sage: Q.<x,y,z> = R.quotient(x*y*z - 1)
\end{verbatim}

\textbf{ALGORITHM:}
By default, this requires the computation of a Gröbner basis.
kernel()

Return the kernel ideal of this ring homomorphism.

EXAMPLES:

```
sage: A.<x,y> = QQ[]
sage: B.<t> = QQ[]
sage: f = A.hom([t^4, t^3 - t^2], B)
sage: f.kernel()  # needs sage.libs.singular
Ideal (y^4 - x^3 + 4*x^2*y - 2*x*y^2 + x^2)
of Multivariate Polynomial Ring in x, y over Rational Field
```

We express a Veronese subring of a polynomial ring as a quotient ring:

```
sage: A.<a,b,c,d> = QQ[]
sage: B.<u,v> = QQ[]
sage: f = A.hom([u^3, u^2*v, u*v^2, v^3], B)
sage: f.kernel() == A.ideal(matrix.hankel([a, b, c, [d]).minors(2))  # needs sage.libs.singular
True
```

```
sage: Q = A.quotient(f.kernel())  # needs sage.libs.singular
sage: Q.hom(f.im_gens(), B).is_injective()  # needs sage.libs.singular
True
```

The Steiner-Roman surface:

```
sage: R.<x,y,z> = QQ[]
sage: S = R.quotient(x^2 + y^2 + z^2 - 1)
sage: f = R.hom([x*y, x*z, y*z], S)  # needs sage.libs.singular
sage: f.kernel()  # needs sage.libs.singular
Ideal (x^2*y^2 + x^2*z^2 + y^2*z^2 - x*y*z)
of Multivariate Polynomial Ring in x, y, z over Rational Field
```

lift (x=None)

Return a lifting map associated to this homomorphism, if it has been defined.

If **x** is not **None**, return the value of the lift morphism on **x**.

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: f = R.hom([x,x])
sage: f(x+y)
2*x
sage: f.lift()
Traceback (most recent call last):
...
ValueError: no lift map defined
```

```
sage: g = R.hom(R)
sage: f._set_lift(g)
sage: f.lift() == g
True
```

```
sage: f.lift(x)
x
```
\textbf{pushforward}(I)

Returns the pushforward of the ideal \(I \) under this ring homomorphism.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x,y> = QQ[]; S.<xx,yy> = R.quo([x^2, y^2]); f = S.cover() #←needs sage.libs.singular
sage: f.pushforward(R.ideal([x, 3*x + x*y + y^2])) #←needs sage.libs.singular
Ideal (xx, xx*yy + 3*xx) of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2, y^2)
\end{verbatim}

\textbf{class \texttt{sage.rings.morphism.RingHomomorphism_cover}}

\texttt{Bases: RingHomomorphism}

A homomorphism induced by quotienting a ring out by an ideal.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = R.quo(x^2 + y^2) #←needs sage.libs.singular
sage: phi = S.cover(); phi #←needs sage.libs.singular
Ring morphism:
 From: Multivariate Polynomial Ring in x, y over Rational Field
 To: Quotient of Multivariate Polynomial Ring in x, y over Rational Field
 by the ideal (x^2 + y^2)
 Defn: Natural quotient map
sage: phi(x + y) #←needs sage.libs.singular
a + b
\end{verbatim}

\textbf{kernel()}

Return the kernel of this covering morphism, which is the ideal that was quotiented out by.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: f = Zmod(6).cover()
sage: f.kernel() #←needs sage.libs.singular
Principal ideal (6) of Integer Ring
\end{verbatim}

\textbf{class \texttt{sage.rings.morphism.RingHomomorphism_from_base}}

\texttt{Bases: RingHomomorphism}

A ring homomorphism determined by a ring homomorphism of the base ring.

\textbf{AUTHOR:}

- Simon King (initial version, 2010-04-30)

\textbf{EXAMPLES:}

We define two polynomial rings and a ring homomorphism:

\begin{verbatim}
sage: R.<x,y> = QQ[]
sage: S.<z> = QQ[]
sage: f = R.hom([2*z,3*z],S)
\end{verbatim}

Now we construct polynomial rings based on \(R \) and \(S \), and let \(f \) act on the coefficients:

\begin{verbatim}
3.1. Homomorphisms of rings

61
\end{verbatim}
General Rings, Ideals, and Morphisms, Release 10.3

```
sage: PR.<t> = R[
  sage: PS = S['t']
  sage: Pf = PR.hom(f,PS)
  sage: Pf
  Ring morphism:
  From: Univariate Polynomial Ring in t
  over Multivariate Polynomial Ring in x, y over Rational Field
  To: Univariate Polynomial Ring in t
  over Univariate Polynomial Ring in z over Rational Field
  Defn: Induced from base ring by
  Ring morphism:
  From: Multivariate Polynomial Ring in x, y over Rational Field
  To: Univariate Polynomial Ring in z over Rational Field
  Defn: x |--> 2*z
  y |--> 3*z
  sage: p = (x - 4*y + 1/13)*t^2 + (1/2*x^2 - 1/3*y^2)*t + 2*y^2 + x
  sage: Pf(p)
  (-10*z + 1/13)*t^2 - z^2*t + 18*z^2 + 2*z
```

Similarly, we can construct the induced homomorphism on a matrix ring over our polynomial rings:

```
sage: # needs sage.modules
sage: MR = MatrixSpace(R, 2, 2)
sage: MS = MatrixSpace(S, 2, 2)
sage: M = MR([x^2 + 1/7*x*y - y^2, -1/2*y^2 + 2*y + 1/6,
            ....: 4*x^2 - 14*x, 1/2*y^2 + 13/4*x - 2/11*y])
sage: Mf = MR.hom(f, MS)
sage: Mf(M)
[  -29/7*z^2  -9/2*z^2 + 6*z + 1/6]
[ 16*z^2 - 28*z  9/2*z^2 + 131/22*z]
```

The construction of induced homomorphisms is recursive, and so we have:

```
sage: # needs sage.modules
sage: MPR = MatrixSpace(PR, 2)
sage: MPS = MatrixSpace(PS, 2)
sage: M = MPR([(-x + y)*t^2 + 58*t - 3*x^2 + x*y,
            ....: (-1/7*x*y - 1/40*x)*t^2 + (5*x^2 + y^2)*t + 2*y,
            ....: (-1/3*y + 1)*t^2 + 1/3*x*y + y^2 + 5/2*y + 1/4,
            ....: (x + 6*y + 1)*t^2])
sage: MPf = MPR.hom(f, MPS); MPf
Ring morphism:
From: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial
Ring in t over Multivariate Polynomial Ring in x, y over Rational Field
To: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial
```

(continues on next page)
Ring in \(t \) over Univariate Polynomial Ring in \(z \) over Rational Field
Defn: Induced from base ring by
Ring morphism:
 From: Univariate Polynomial Ring in \(t \)
 over Multivariate Polynomial Ring in \(x, y \) over Rational Field
 To: Univariate Polynomial Ring in \(t \)
 over Univariate Polynomial Ring in \(z \) over Rational Field
 Defn: Induced from base ring by
 Ring morphism:
 From: Multivariate Polynomial Ring in \(x, y \) over Rational Field
 To: Univariate Polynomial Ring in \(z \) over Rational Field
 Defn: \(x \mid \mapsto 2z \)
 \(y \mid \mapsto 3z \)

\[
\begin{bmatrix}
z \cdot t^2 + 58t - 6z^2 & (-6/7z^2 - 1/20z) \cdot t^2 + 29z^2t + \ldots \\
-6z & \end{bmatrix}
\]

\[
\begin{bmatrix}
- (z + 1) \cdot t^2 + 11z^2 + 15/2z + 1/4 & (20z + 1) \cdot t^2 + \ldots \\
2 & \end{bmatrix}
\]

\texttt{sage: MPf(M)}
\[
\begin{bmatrix}
z \cdot t^2 + 58t - 6z^2 & (-6/7z^2 - 1/20z) \cdot t^2 + 29z^2t + \ldots \\
-6z & \end{bmatrix}
\]

\texttt{sage: \texttt{inverse()}}

Return the inverse of this ring homomorphism if the underlying homomorphism of the base ring is invertible.

EXAMPLES:

\[
\begin{bmatrix}
z \cdot t^2 + 58t - 6z^2 & (-6/7z^2 - 1/20z) \cdot t^2 + 29z^2t + \ldots \\
-6z & \end{bmatrix}
\]

\[
\begin{bmatrix}
- (z + 1) \cdot t^2 + 11z^2 + 15/2z + 1/4 & (20z + 1) \cdot t^2 + \ldots \\
2 & \end{bmatrix}
\]

\texttt{sage: \texttt{underlying_map()}}

Return the underlying homomorphism of the base ring.

EXAMPLES:
sage: MS = MatrixSpace(S, 2)
sage: g = MR.hom(f, MS)
sage: g.underlying_map() == f
True

class sage.rings.morphism.RingHomomorphism_from_fraction_field

Bases: RingHomomorphism

Morphisms between fraction fields.

inverse()

Return the inverse of this ring homomorphism if it exists.

EXAMPLES:

sage: S.<x> = QQ[]
sage: f = S.hom([2*x - 1])
sage: g = f.extend_to_fraction_field() # needs sage.libs.singular
sage: g.inverse() # needs sage.libs.singular
Ring endomorphism of Fraction Field of Univariate Polynomial Ring in x over Rational Field
Defn: x |--> 1/2*x + 1/2

class sage.rings.morphism.RingHomomorphism_from_quotient

Bases: RingHomomorphism

A ring homomorphism with domain a generic quotient ring.

INPUT:

• parent -- a ring homset \text{Hom}(R,S)

• phi -- a ring homomorphism C \rightarrow S, where C is the domain of R.cover()

OUTPUT: a ring homomorphism

The domain \(R \) is a quotient object \(C \rightarrow R \), and \(R\text{.cover()} \) is the ring homomorphism \(\varphi : C \rightarrow R \). The condition on the elements \(\text{im}_{gens} \) of \(S \) is that they define a homomorphism \(C \rightarrow S \) such that each generator of the kernel of \(\varphi \) maps to 0.

EXAMPLES:

sage: # needs sage.libs.singular
sage: R.<x, y, z> = PolynomialRing(QQ, 3)
sage: S.<a, b, c> = R.quo(x^3 + y^3 + z^3)
sage: phi = S.hom([b, c, a]); phi
Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y, z
over Rational Field by the ideal (x^3 + y^3 + z^3)
Defn: a |--> b
b |--> c
c |--> a
sage: phi(a + b + c)
a + b + c
sage: loads(dumps(phi)) == phi
True

Validity of the homomorphism is determined, when possible, and a TypeError is raised if there is no homomorphism sending the generators to the given images:
sage: S.hom([b^2, c^2, a^2]) # needs sage.libs.singular
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0
under map determined by images of generators

morphism_from_cover()
Underlying morphism used to define this quotient map, i.e., the morphism from the cover of the domain.

EXAMPLES:

sage: R.<x,y> = QQ[]; S.<xx,yy> = R.quo([x^2, y^2]) # needs sage.libs.singular
sage: S.hom([yy,xx]).morphism_from_cover() # needs sage.libs.singular
Ring morphism:
 From: Multivariate Polynomial Ring in x, y over Rational Field
 To: Quotient of Multivariate Polynomial Ring in x, y
 over Rational Field by the ideal (x^2, y^2)
 Defn: x |--> yy
 y |--> xx

class sage.rings.morphism.RingHomomorphism_im_gens

Bases: RingHomomorphism

A ring homomorphism determined by the images of generators.

base_map()
Return the map on the base ring that is part of the defining data for this morphism. May return None if a
coaersion is used.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: R.<x> = ZZ[]
sage: K.<i> = NumberField(x^2 + 1)
sage: cc = K.hom([-i])
sage: S.<y> = K[]
sage: phi = S.hom([y^2], base_map=cc)
sage: phi
Ring endomorphism of Univariate Polynomial Ring in y
 over Number Field in i with defining polynomial x^2 + 1
 Defn: y |--> y^2
 with map of base ring
sage: phi(y)
y^2
sage: phi(i*y)
-i*y^2
sage: phi.base_map()
Composite map:
 From: Number Field in i with defining polynomial x^2 + 1
 To: Univariate Polynomial Ring in y over Number Field in i
 with defining polynomial x^2 + 1
 Defn: Ring endomorphism of Number Field in i with defining polynomial x^2+ 1
 then
Polynomial base injection morphism:
From: Number Field in i with defining polynomial \(x^2 + 1\)
To: Univariate Polynomial Ring in y over Number Field in i
with defining polynomial \(x^2 + 1\)

\textbf{im_gens()}

Return the images of the generators of the domain.

\textbf{OUTPUT:}

- list – a copy of the list of gens (it is safe to change this)

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x,y> = QQ[]
sage: f = R.hom([x, x + y])
sage: f.im_gens() [x, x + y]
\end{verbatim}

We verify that the returned list of images of gens is a copy, so changing it doesn’t change \(f\):

\begin{verbatim}
sage: f.im_gens()[0] = 5
sage: f.im_gens() [x, x + y]
\end{verbatim}

\textbf{class} \texttt{sage.rings.morphism.RingMap}

\textbf{Bases:} \texttt{Morphism}

Set-theoretic map between rings.

\textbf{class} \texttt{sage.rings.morphism.RingMap_lift}

\textbf{Bases:} \texttt{RingMap}

Given rings \(R\) and \(S\) such that for any \(x \in R\) the function \(x\text{.lift()}\) is an element that naturally coerces to \(S\), this returns the set-theoretic ring morphism \(R \to S\) sending \(x\) to \(x\text{.lift()}\).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x,y> = QQ[]
sage: S.<xbar,ybar> = R.quo((x^2 + y^2, y))
 # needs sage.libs.singular
sage: S.lift() == 0
False
\end{verbatim}

Since \texttt{github issue #11068}, it is possible to create quotient rings of non-commutative rings by two-sided ideals. It was needed to modify \texttt{RingMap_lift} so that rings can be accepted that are no instances of \texttt{sage.rings.ring.Ring}, as in the following example:
3.2 Space of homomorphisms between two rings

sage.rings.homset.RingHomset (R, S, category=None)
Construct a space of homomorphisms between the rings R and S.
For more on homsets, see Hom().

EXAMPLES:

sage: Hom(ZZ, QQ) # indirect doctest
Set of Homomorphisms from Integer Ring to Rational Field

class sage.rings.homset.RingHomset_generic (R, S, category=None)
Bases: HomsetWithBase
A generic space of homomorphisms between two rings.

EXAMPLES:

sage: Hom(ZZ, QQ)
Set of Homomorphisms from Integer Ring to Rational Field
sage: QQ.Hom(ZZ)
Set of Homomorphisms from Rational Field to Integer Ring

Element
alias of RingHomomorphism

has_coerce_map_from(x)
The default for coercion maps between ring homomorphism spaces is very restrictive (until more implementation work is done).
Currently this checks if the domains and the codomains are equal.

EXAMPLES:

sage: H = Hom(ZZ, QQ)
sage: H2 = Hom(QQ, ZZ)
sage: H.has_coerce_map_from(H2)
False

natural_map()
Returns the natural map from the domain to the codomain.
The natural map is the coercion map from the domain ring to the codomain ring.

EXAMPLES:
General Rings, Ideals, and Morphisms, Release 10.3

```
sage: H = Hom(ZZ, QQ)
sage: H.natural_map()
Natural morphism:
    From: Integer Ring
    To:   Rational Field

zero()
Return the zero element of this homset.

EXAMPLES:
Since a ring homomorphism maps 1 to 1, there can only be a zero morphism when mapping to the trivial ring:
```
3.2. Space of homomorphisms between two rings

False

```
sage: is_RH(Hom(RR, CC))
˓→ needs sage.rings.real_mpfr
True

sage: is_RH(Hom(FreeModule(ZZ,1), FreeModule(QQ,1)))
˓→ needs sage.modules
False
```
CHAPTER
FOUR

QUOTIENT RINGS

4.1 Quotient Rings

AUTHORS:
• William Stein
• Simon King (2011-04): Put it into the category framework, use the new coercion model.
• Simon King (2011-04): Quotients of non-commutative rings by two-sided ideals.

Todo: The following skipped tests should be removed once github issue #13999 is fixed:

```python
sage: TestSuite(S).run(skip=['_test_nonzero_equal', '_test_elements', '_test_zero'])
```

In github issue #11068, non-commutative quotient rings R/I were implemented. The only requirement is that the two-sided ideal I provides a reduce method so that $I\text{.reduce}(x)$ is the normal form of an element x with respect to I (i.e., we have $I\text{.reduce}(x) == I\text{.reduce}(y)$ if $x - y \in I$, and $x - I\text{.reduce}(x) \in I$). Here is a toy example:

```python
sage: from sage.rings.noncommutative_ideals import Ideal_nc
sage: from itertools import product
sage: class PowerIdeal(Ideal_nc):
....:     def __init__(self, R, n):
....:         self._power = n
....:     def reduce(self, x):
....:         R = self.ring()
....:         return add([c*R(m) for m, c in x if len(m)<self._power], R(0))

sage: F.<x,y,z> = FreeAlgebra(QQ, 3)

sage: I3 = PowerIdeal(F,3); I3
Twosided Ideal (x^3, x^2*y, x^2*z, x*y*x, x*y^2, x*z*x, x*z*y, x*z^2, y*x^2, y*x*y, y*x*z, y^2*x, y^2*z, y*z*x, y*z*y, y*z^2, z*x^2, z*x*y, z*x*z, z*y*x, z*y^2, z*y*z, z^2*x, z^2*y, z^2*z) of
Free Algebra on 3 generators (x, y, z) over Rational Field
```

Free algebras have a custom quotient method that serves at creating finite dimensional quotients defined by multiplication matrices. We are bypassing it, so that we obtain the default quotient:
General Rings, Ideals, and Morphisms, Release 10.3

sage: # needs sage.combinat sage.modules
sage: Q3.<a,b,c> = F.quotient(I3)
sage: Q3
Quotient of Free Algebra on 3 generators (x, y, z) over Rational Field by the ideal (x^3, x^2*y, x^2*z, x*y^2, x*y*z, x*z^2, y*x^2, y*x*y, y*x*z, y^2*x, y^2*z, y*z^2, x*y^2, x*z^2, z*x^2, z*y^2, z*y*z, z*y^2, z^2*x, z^2*y, z^2)
sage: (a+b+2)^4
16 + 32*a + 32*b + 24*a^2 + 24*a*b + 24*b^2
sage: Q3.is_commutative()
False

Even though Q_3 is not commutative, there is commutativity for products of degree three:

sage: a*(b+c)-(b+c)*a==F.zero() # needs sage.combinat sage.modules
True

If we quotient out all terms of degree two then of course the resulting quotient ring is commutative:

sage: # needs sage.combinat sage.modules
sage: I2 = PowerIdeal(F,2); I2
Twosided Ideal (x^2, x*y, x*z, y*x, y^2, y*z, z*x, z*y, z^2) of Free Algebra on 3 generators (x, y, z) over Rational Field
sage: Q2.<a,b,c> = F.quotient(I2)
sage: Q2.is_commutative()
True
sage: (a+b+2)^4
16 + 32*a + 32*b

Since github issue #7797, there is an implementation of free algebras based on Singular’s implementation of the Letterplace Algebra. Our letterplace wrapper allows to provide the above toy example more easily:

sage: # needs sage.combinat sage.libs.singular sage.modules
sage: from itertools import product
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: Q3 = F.quo(F*[F.prod(m) for m in product(F.gens(), repeat=3)]*F)
sage: Q3
Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field by the ideal (x*x*x, x*x*y, x*x*z, x*y*x, x*y*y, x*y*z, x*z*x, x*z*y, x*z*z, y*x*x, y*x*y, y*x*z, y*y*x, y*y*y, y*y*z, y*z*x, y*z*y, y*z*z, z*x*x, z*x*y, z*x*z, z*y*x, z*y*y, z*y*z, z*z*x, z*z*y, z*z*z)
sage: Q3.0*Q3.1 - Q3.1*Q3.0
xbar*ybar - ybar*xbar
sage: Q2 = F.quo(F*[F.prod(m) for m in product(F.gens(), repeat=2)]*F)
sage: Q2.is_commutative()
True

sage.rings.quotient_ring.**QuotientRing**(R, I, $names$=None, **kwd$)

Creates a quotient ring of the ring R by the twosided ideal I.

Variables are labeled by $names$ (if the quotient ring is a quotient of a polynomial ring). If $names$ isn't given, 'bar' will be appended to the variable names in R.

INPUT:

- R – a ring.
• I – a twosided ideal of R.
• names – (optional) a list of strings to be used as names for the variables in the quotient ring R/I.
• further named arguments that will be passed to the constructor of the quotient ring instance.

OUTPUT: R/I - the quotient ring R mod the ideal I

ASSUMPTION:

I has a method $I.reduce(x)$ returning the normal form of elements $x \in R$. In other words, it is required that $I.reduce(x) == I.reduce(y) \iff x - y \in I$, and $x - I.reduce(x)$ in I, for all $x, y \in R$.

EXAMPLES:

Some simple quotient rings with the integers:

```
sage: R = QuotientRing(ZZ, 7*ZZ); R
Quotient of Integer Ring by the ideal (7)
sage: R.gens()
(1,)
sage: 1*R(3); 6*R(3); 7*R(3)
3
4
0
```

```
sage: S = QuotientRing(ZZ,ZZ.ideal(8)); S
Quotient of Integer Ring by the ideal (8)
sage: 2*S(4)
0
```

With polynomial rings (note that the variable name of the quotient ring can be specified as shown below):

```
sage: # needs sage.libs.pari
sage: P.<x> = QQ[]
sage: R.<xx> = QuotientRing(P, P.ideal(x^2 + 1))
sage: R
Univariate Quotient Polynomial Ring in xx over Rational Field
   with modulus x^2 + 1
sage: R.gens(); R.gen()
(xx,)
xx
sage: for n in range(4): xx^n
  1
  xx
  -1
  -xx
```

```
sage: # needs sage.libs.pari
sage: P.<x> = QQ[]
sage: S = QuotientRing(P, P.ideal(x^2 - 2))
sage: S
Univariate Quotient Polynomial Ring in xbar over Rational Field
   with modulus x^2 - 2
sage: xbar = S.gen(); S.gen()
xbar
sage: for n in range(3): xbar^n
  1
  xbar
  2
```
Sage coerces objects into ideals when possible:

```python
sage: P.<x> = QQ[]
sage: R = QuotientRing(P, x^2 + 1); R   #...
Univariate Quotient Polynomial Ring in xbar over Rational Field
with modulus x^2 + 1
```

By Noether’s homomorphism theorems, the quotient of a quotient ring of \(R \) is just the quotient of \(R \) by the sum of the ideals. In this example, we end up modding out the ideal \((x) \) from the ring \(\mathbb{Q}[x, y] \):

```python
sage: # needs sage.libs.pari sage.libs.singular
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = QuotientRing(R, R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S, S.ideal(a))
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field
by the ideal (x, y^2 + 1)
sage: R.gens(); S.gens(); T.gens()
(x, y)
(a, b)
(0, d)
sage: for n in range(4): d^n
1
d
-d
```

```python
class sage.rings.quotient_ring.QuotientRingIdeal_generic(ring, gens, coerce=True, **kwds)
Bases: Ideal_generic
Specialized class for quotient-ring ideals.
EXAMPLES:
```
```python
sage: Zmod(9).ideal([-6,9])
Ideal (3, 0) of Ring of integers modulo 9
```

```python
class sage.rings.quotient_ring.QuotientRingIdeal_principal(ring, gens, coerce=True, **kwds)
Bases: Ideal_principal, QuotientRingIdeal_generic
Specialized class for principal quotient-ring ideals.
EXAMPLES:
```
```python
sage: Zmod(9).ideal(-33)
Principal ideal (3) of Ring of integers modulo 9
```

```python
class sage.rings.quotient_ring.QuotientRing_generic(R, I, names=None, category=None)
Bases: QuotientRing_nc, CommutativeRing
Creates a quotient ring of a commutative ring \( R \) by the ideal \( I \).
EXAMPLES:
```
```
```python
sage: R.<x> = PolynomialRing(ZZ)
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I); S
Quotient of Univariate Polynomial Ring in x over Integer Ring
by the ideal (x^2 + 3*x + 4, x^2 + 1)
```

class sage.rings.quotient_ring.QuotientRing_nc(R, I, names, category=None)

Bases: Ring, ParentWithGens

The quotient ring of $R$ by a twosided ideal $I$.

This class is for rings that do not inherit from CommutativeRing.

EXAMPLES:

Here is a quotient of a free algebra by a twosided homogeneous ideal:

```python
sage: # needs sage.combinat sage.libs.singular sage.modules
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F * [x*y + y*z, x^2 + x*y - y*x - y*y]*F
sage: Q.<a,b,c> = F.quo(I); Q
Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
by the ideal (x*y + y*z, x*x + x*y - y*x - y*y)
sage: a*b
-b*c
sage: a^3 -b*c
-b*c*a - b*c*b - b*c*c
```

A quotient of a quotient is just the quotient of the original top ring by the sum of two ideals:

```python
sage: # needs sage.combinat sage.libs.singular sage.modules
sage: J = Q * [a^3 - b^3] * Q
sage: R.<i,j,k> = Q.quo(J); R
Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
by the ideal (-y*y*z - y*z*x - 2*y*z*z, x*y + y*z, x*x + x*y - y*x - y*y)
sage: i^3
-j*k*i - j*k*j - j*k*k
sage: j^3
-i^3
-j*k*i - j*k*j - j*k*k
```

For rings that do inherit from CommutativeRing, we provide a subclass QuotientRing_generic, for backwards compatibility.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(ZZ,'x')
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I); S
Quotient of Univariate Polynomial Ring in x over Integer Ring
by the ideal (x^2 + 3*x + 4, x^2 + 1)
```

```python
sage: R.<x,y> = PolynomialRing(QQ)
sage: S.<a,b> = R.quo(x^2 + y^2) # needs sage.libs.singular
sage: a^2 + b^2 == 0
```

(continues on next page)
Again, a quotient of a quotient is just the quotient of the original top ring by the sum of two ideals.

```sage
needs sage.libs.singular
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = R.quo(1 + y^2)
sage: T.<c,d> = S.quo(a)
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x, y^2 + 1)
sage: T.gens()
(0, d)
```

**Element**

alias of `QuotientRingElement`

**ambient()**

Returns the cover ring of the quotient ring: that is, the original ring \( R \) from which we modded out an ideal, \( I \).

EXAMPLES:

```sage
sage: Q = QuotientRing(ZZ, 7 * ZZ)
sage: Q.cover_ring()
Integer Ring
sage: P.<x> = QQ[]
sage: Q = QuotientRing(P, x^2 + 1) # needs sage.libs.pari
sage: Q.cover_ring() # needs sage.libs.pari
Univariate Polynomial Ring in x over Rational Field
```

**characteristic()**

Return the characteristic of the quotient ring.

**Todo:** Not yet implemented!

EXAMPLES:

```sage
sage: Q = QuotientRing(ZZ, 7 * ZZ)
sage: Q.characteristic()
Traceback (most recent call last):
 ... Not Implemented
```

**construction()**

Returns the functorial construction of `self`.

EXAMPLES:
cover()  

The covering ring homomorphism $R \to R/I$, equipped with a section.

EXAMPLES:

```sage
sage: R = ZZ.quo(3 * ZZ)
sage: pi = R.cover()
sage: pi
Ring morphism:
 From: Integer Ring
 To: Ring of integers modulo 3
 Defn: Natural quotient map
sage: pi(5)
2
sage: 1 = pi.lift()
```

```sage
sage: # needs sage.libs.singular
sage: R.<x,y> = PolynomialRing(QQ)
sage: Q = R.quo((x^2, y^2))
sage: pi = Q.cover()
sage: pi(x^3 + y)
ybar
sage: 1 = pi.lift(x + y^3)
sage: 1
x
sage: 1 = pi.lift(); 1
Set-theoretic ring morphism:
 From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field
 by the ideal (x^2, y^2)
 To: Multivariate Polynomial Ring in x, y over Rational Field
 Defn: Choice of lifting map
sage: 1(x + y^3)
x
```

cover_ring()  

Returns the cover ring of the quotient ring: that is, the original ring $R$ from which we modded out an ideal, $I$.

EXAMPLES:

```sage
sage: Q = QuotientRing(ZZ, 7 * ZZ)
sage: Q.cover_ring()
Integer Ring
```
defining_ideal()  
Returns the ideal generating this quotient ring.

EXAMPLES:
In the integers:

```sage
sage: Q = QuotientRing(ZZ, 7*ZZ)
sage: Q.defining_ideal()
Principal ideal (7) of Integer Ring
```

An example involving a quotient of a quotient. By Noether's homomorphism theorems, this is actually a quotient by a sum of two ideals:

```sage
needs sage.libs.singular
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = QuotientRing(R, R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S, S.ideal(a))
sage: S.defining_ideal()
Ideal (y^2 + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: T.defining_ideal()
Ideal (x, y^2 + 1) of Multivariate Polynomial Ring in x, y over Rational Field
```

gen(i=0)  
Returns the i-th generator for this quotient ring.

EXAMPLES:

```sage
sage: R = QuotientRing(ZZ, 7*ZZ)
sage: R.gen(0)
1

sage: # needs sage.libs.singular
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = QuotientRing(R, R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S, S.ideal(a))
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field
by the ideal (x, y^2 + 1)
sage: R.gen(0); R.gen(1)
x
y
sage: S.gen(0); S.gen(1)
a
b
sage: T.gen(0); T.gen(1)
0
d
```

ideal(*gens, **kwds)  
Returns the ideal of self with the given generators.
EXAMPLES:

```python
sage: R.<x,y> = PolynomialRing(QQ)
sage: S = R.quotient_ring(x^2 + y^2)
sage: S.ideal() # Needs sage.libs.singular
Ideal (0) of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2)
sage: S.ideal(x + y + 1) # Needs sage.libs.singular
Ideal (xbar + ybar + 1) of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2)
```

`is_commutative()`

Tell whether this quotient ring is commutative.

**Note:** This is certainly the case if the cover ring is commutative. Otherwise, if this ring has a finite number of generators, it is tested whether they commute. If the number of generators is infinite, a `NotImplementedError` is raised.

**AUTHOR:**
- Simon King (2011-03-23): See github issue #7797.

**EXAMPLES:**

Any quotient of a commutative ring is commutative:

```python
sage: P.<a,b,c> = QQ[]
sage: P.quotient(P.random_element()).is_commutative()
True
```

The non-commutative case is more interesting:

```python
sage: # Needs sage.combinat sage.libs.singular sage.modules
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F * [x*y + y*z, x^2 + x*y - y*x - y^2] * F
sage: Q = F.quotient(I)
sage: Q.is_commutative()
False
sage: Q.1*Q.2 == Q.2*Q.1
False
```

In the next example, the generators apparently commute:

```python
sage: # Needs sage.combinat sage.libs.singular sage.modules
sage: J = F * [x*y - y*x, x*z - z*x, y*z - z*y, x^3 - y^3] * F
sage: R = F.quotient(J)
sage: R.is_commutative()
True
```

**is_field** *( proof=True )*  
Returns True if the quotient ring is a field. Checks to see if the defining ideal is maximal.

**is_integral_domain** *( proof=True )*  
With `proof` equal to True (the default), this function may raise a `NotImplementedError`.

---

**4.1. Quotient Rings** 79
When `proof` is `False`, if `True` is returned, then `self` is definitely an integral domain. If the function returns `False`, then either `self` is not an integral domain or it was unable to determine whether or not `self` is an integral domain.

**EXAMPLES:**

```sage
sage: R.<x,y> = QQ[]
sage: R.quo(x^2 - y).is_integral_domain() # needs sage.libs.singular
True
sage: R.quo(x^2 - y^2).is_integral_domain() # needs sage.libs.singular
False
sage: R.quo(x^2 - y^2).is_integral_domain(proof=False) # needs sage.libs.singular
False
sage: R.<a,b,c> = ZZ[]
sage: Q = R.quotient_ring([a, b])
sage: Q.is_integral_domain() # needs sage.libs.singular
Traceback (most recent call last):
 ...
NotImplementedError
sage: Q.is_integral_domain(proof=False)
False
```

`is_noetherian()`

Return `True` if this ring is Noetherian.

**EXAMPLES:**

```sage
sage: R = QuotientRing(ZZ, 102 * ZZ)
sage: R.is_noetherian()
True
sage: P.<x> = QQ[]
sage: R = QuotientRing(P, x^2 + 1) # needs sage.libs.pari
sage: R.is_noetherian()
True
```

If the cover ring of `self` is not Noetherian, we currently have no way of testing whether `self` is Noetherian, so we raise an error:

```sage
sage: R.<x> = InfinitePolynomialRing(QQ)
sage: R.is_noetherian()
False
sage: I = R.ideal([x[1]^2, x[2]])
sage: S = R.quotient(I)
sage: S.is_noetherian()
Traceback (most recent call last):
 ...
NotImplementedError
```

`lift(x=None)`

Return the lifting map to the cover, or the image of an element under the lifting map.

**Note:** The category framework imposes that `Q.lift(x)` returns the image of an element `x` under the
lifting map. For backwards compatibility, we let \texttt{Q.lift()} return the lifting map.

**EXAMPLES:**

```python
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quotient(x^2 + y^2)
sage: S.lift()
needs sage.libs.singular

Set-theoretic ring morphism:
From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field
by the ideal (x^2 + y^2)
To: Multivariate Polynomial Ring in x, y over Rational Field
Defn: Choice of lifting map
```

```python
sage: S.lift(S.0) == x # needs sage.libs.singular
True
```

**lifting_map()**

Return the lifting map to the cover.

**EXAMPLES:**

```python
sage: # needs sage.libs.singular
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quotient(x^2 + y^2)
sage: pi = S.cover(); pi
Ring morphism:
From: Multivariate Polynomial Ring in x, y over Rational Field
To: Quotient of Multivariate Polynomial Ring in x, y over Rational Field
by the ideal (x^2 + y^2)
Defn: Natural quotient map
```

```python
sage: L = S.lifting_map(); L
Set-theoretic ring morphism:
From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field
by the ideal (x^2 + y^2)
To: Multivariate Polynomial Ring in x, y over Rational Field
Defn: Choice of lifting map
```

```python
sage: L(S.0)
x
sage: L(S.1)
y
```

Note that some reduction may be applied so that the lift of a reduction need not equal the original element:

```python
sage: z = pi(x^3 + 2*y^2); z # needs sage.libs.singular
-xbar*ybar^2 + 2*ybar^2
```

```python
sage: L(z)
needs sage.libs.singular
-x*y^2 + 2*y^2
```

```python
sage: L(z) == x^3 + 2*y^2 # needs sage.libs.singular
False
```

Test that there also is a lift for rings that are no instances of \texttt{Ring} (see github issue \texttt{#11068}):
```python
sage: # needs sage.modules
sage: MS = MatrixSpace(GF(5), 2, 2)

sage: I = MS * [MS.0*MS.1, MS.2 + MS.3] * MS

sage: Q = MS.quo(I)

sage: Q.lift()
Set-theoretic ring morphism:
 From: Quotient of Full MatrixSpace of 2 by 2 dense matrices
 over Finite Field of size 5 by the ideal

 \[
 \begin{pmatrix}
 0 & 1 \\
 0 & 0
 \end{pmatrix},
 \begin{pmatrix}
 0 & 0 \\
 1 & 1
 \end{pmatrix}
 \]

 To: Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 5
 Defn: Choice of lifting map
```

**ngens()**

Returns the number of generators for this quotient ring.

**Todo:** Note that `ngens` counts 0 as a generator. Does this make sense? That is, since 0 only generates itself and the fact that this is true for all rings, is there a way to “knock it off” of the generators list if a generator of some original ring is modded out?

**EXAMPLES:**

```python
sage: R = QuotientRing(ZZ, 7*ZZ)

sage: R.gens(); R.ngens()
(1,)
1
```

```python
sage: R.<x,y> = PolynomialRing(QQ,2)

sage: S.<a,b> = QuotientRing(R, R.ideal(1 + y^2))

sage: T.<c,d> = QuotientRing(S, S.ideal(a))

sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field
 by the ideal (x, y^2 + 1)

sage: R.gens(); S.gens(); T.gens()
(x, y)
(a, b)
(0, d)

sage: R.ngens(); S.ngens(); T.ngens()
2
2
2
```

**random_element()**

Return a random element of this quotient ring obtained by sampling a random element of the cover ring and reducing it modulo the defining ideal.

**EXAMPLES:**
```python
sage: R.<x,y> = QQ[]
sage: S = R.quotient([x^3, y^2])
sage: S.random_element() # random
-8/5*xbar^2 + 3/2*xbar*ybar + 2*xbar - 4/23
```

**retract**(x)

The image of an element of the cover ring under the quotient map.

**INPUT:**

- x – An element of the cover ring

**OUTPUT:**

The image of the given element in self.

**EXAMPLES:**

```python
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quotient(x^2 + y^2)
sage: S.retract((x+y)^2) # needs sage.libs.singular
2*xbar*ybar
```

**term_order()**

Return the term order of this ring.

**EXAMPLES:**

```python
sage: P.<a,b,c> = PolynomialRing(QQ)
sage: I = Ideal([a^2 - a, b^2 - b, c^2 - c])
sage: Q = P.quotient(I)
sage: Q.term_order()
Degree reverse lexicographic term order
```

`sage.rings.quotient_ring.is_QuotientRing(x)`

Tests whether or not x inherits from QuotientRing_nc.

**EXAMPLES:**

```python
sage: from sage.rings.quotient_ring import is_QuotientRing
sage: R.<x> = PolynomialRing(ZZ, 'x')
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I)
sage: is_QuotientRing(S) # needs sage.combinat sage.libs.singular sage.modules
True
sage: is_QuotientRing(R) # needs sage.combinat sage.libs.singular sage.modules
False
```

### 4.1. Quotient Rings

83
4.2 Quotient Ring Elements

AUTHORS:

- William Stein

```python
class sage.rings.quotient_ring_element.QuotientRingElement (parent, rep, reduce=True)

Bases: RingElement

An element of a quotient ring \(R/I \).

INPUT:

- **parent** - the ring \(R/I \)
- **rep** - a representative of the element in \(R \); this is used as the internal representation of the element
- **reduce** - bool (optional, default: True) - if True, then the internal representation of the element is \(rep \) reduced modulo the ideal \(I \)

EXAMPLES:

```sage```
R.<x> = PolynomialRing(ZZ)
S.<xbar> = R.quo((4 + 3*x + x^2, 1 + x^2)); S
Quotient of Univariate Polynomial Ring in x over Integer Ring
by the ideal (x^2 + 3*x + 4, x^2 + 1)
sage: v = S.gens(); v
(xbar,)
```
sage: loads(v[0].dumps()) == v[0]
True
```
```
sage: R.<x,y> = PolynomialRing(QQ, 2)
S = R.quo(x^2 + y^2); S
Quotient of Multivariate Polynomial Ring in x, y over Rational Field
by the ideal (x^2 + y^2)
sage: S.gens()
(...)
```
```
We name each of the generators.
```
```
sage: # needs sage.libs.singular
sage: S.<a,b> = R.quotient(x^2 + y^2)
```
```
sage: a
```
```
sage: a^2 + b^2 == 0
```
```
sage: b
```
```
sage: a^2 + b^2 == 0
```
```
sage: True
```
```
sage: b.lift()
```
```
sage: y
```
```
sage: (a^3 + b^2).lift()
```
```
- \(x*y^2 + y^2 \)
```
```
is_unit()
Return True if self is a unit in the quotient ring.

EXAMPLES:
sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(1 - x*y); type(a) # needs sage.libs.singular
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_class'>
sage: a*b # needs sage.libs.singular
1
sage: S(2).is_unit() # needs sage.libs.singular
True

Check that github issue #29469 is fixed:

sage: a.is_unit() # needs sage.libs.singular
True
sage: (a+b).is_unit() # needs sage.libs.singular
False

\textbf{lc()}

Return the leading coefficient of this quotient ring element.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: # needs sage.libs.singular
sage: R.<x,y,z> = PolynomialRing(GF(7), 3, order='lex')
sage: I = sage.rings.ideal.FieldIdeal(R)
sage: Q = R.quo(I)
sage: f = Q(z*y + 2*x)
sage: f.lc()
2
\end{verbatim}

\textbf{lift()}

If self is an element of R/I, then return self as an element of R.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: # needs sage.libs.singular
sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(x^2 + y^2); type(a) # needs sage.libs.singular
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_class'>
sage: a.lift() # needs sage.libs.singular
x
sage: (3/5*(a + a^2 + b^2)).lift() # needs sage.libs.singular
3/5*x
\end{verbatim}

\textbf{lm()}

Return the leading monomial of this quotient ring element.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: # needs sage.libs.singular
sage: R.<x,y,z> = PolynomialRing(GF(7), 3, order='lex')
sage: I = sage.rings.ideal.FieldIdeal(R)
(continues on next page)
\textsf{sage}: $\text{Q} = \text{R}.\text{quo}(\text{I})$

sage: $\text{f} = \text{Q}(\text{z}\ast\text{y} + 2\ast\text{x})$

sage: $\text{f}.\text{lm}()$

lt()

Return the leading term of this quotient ring element.

EXAMPLES:

```python
sage: # needs sage.libs.singular
sage: R.<x,y,z> = PolynomialRing(GF(7), 3, order='lex')
sage: I = sage.rings.ideal.FieldIdeal(R)
sage: Q = R.quo(I)
sage: f = Q(z*y + 2*x)
sage: f.lt()
2*xbar
```

monomials()()

Return the monomials in self.

OUTPUT:

A list of monomials.

EXAMPLES:

```python
sage: # needs sage.libs.singular
sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(x^2 + y^2); type(a)
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_class'>
sage: a.monomials()
[a]
sage: (a + a*b).monomials()
[a*b, a]
sage: R.zero().monomials()
[]
```

reduce(G)

Reduce this quotient ring element by a set of quotient ring elements G.

INPUT:

- G - a list of quotient ring elements

Warning: This method is not guaranteed to return unique minimal results. For quotients of polynomial rings, use reduce() on the ideal generated by G, instead.

EXAMPLES:

```python
sage: # needs sage.libs.singular
sage: P.<a,b,c,d,e> = PolynomialRing(GF(2), 5, order='lex')
sage: I1 = ideal([a*b + c*d + 1, a*c*e + d*e, ....: a*b*e + c*e, b*c + c*d*e + 1])
sage: Q = P.quotient(sage.rings.ideal.FieldIdeal(P))
sage: I2 = ideal([Q(f) for f in I1.gens()])
```
Notice that the result above is not minimal:

```
sage: I2.reduce(f)  # needs sage.libs.singular
0
```

variables()

Return all variables occurring in self.

OUTPUT:

A tuple of linear monomials, one for each variable occurring in self.

EXAMPLES:

```
sage: # needs sage.libs.singular
sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(x^2 + y^2); type(a)
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_˓→class'>
sage: a.variables()
(a,)
sage: b.variables()
(b,)
sage: s = a^2 + b^2 + 1; s
1
sage: s.variables()
()
sage: (a + b).variables()
(a, b)
```
5.1 Fraction Field of Integral Domains

AUTHORS:
- William Stein (with input from David Joyner, David Kohel, and Joe Wetherell)
- Burcin Erocal
- Julian Rüth (2017-06-27): embedding into the field of fractions and its section

EXAMPLES:
Quotienting is a constructor for an element of the fraction field:

```
sage: R.<x> = QQ[]
sage: (x^2-1)/(x+1)
x - 1
sage: parent((x^2-1)/(x+1))
Fraction Field of Univariate Polynomial Ring in x over Rational Field
```

The GCD is not taken (since it doesn’t converge sometimes) in the inexact case:

```
sage: # needs sage.rings.real_mpfr
sage: Z.<z> = CC[]
sage: I = CC.gen()
sage: (1+I+z)/(z+0.1*I)
(I*z + 1.00000000000000)/z
sage: (1+I*z)/(z+1.1)
(I*z + 1.00000000000000)/z
```

sage.rings.fraction_field.FractionField(R, names=None)
Create the fraction field of the integral domain R.

INPUT:
- R – an integral domain
- names – ignored

EXAMPLES:
We create some example fraction fields:

```
sage: FractionField(IntegerRing())
Rational Field
sage: FractionField(PolynomialRing(RationalField(),'x'))
```
(continues on next page)
Fraction Field of Univariate Polynomial Ring in x over Rational Field
\[\text{sage: } \text{FractionField}(\text{PolynomialRing}(\text{IntegerRing()}, 'x'))\]
Fraction Field of Univariate Polynomial Ring in x over Integer Ring
\[\text{sage: } \text{FractionField}(\text{PolynomialRing}(\text{RationalField}(), 2, 'x'))\]
Fraction Field of Multivariate Polynomial Ring in x0, x1 over Rational Field

Dividing elements often implicitly creates elements of the fraction field:

\[\text{sage: } x = \text{PolynomialRing}(\text{RationalField}(), 'x').\text{gen}()\]
\[\text{sage: } f = x/(x+1)\]
\[\text{sage: } g = x^3/(x+1)\]
\[\text{sage: } f/g\]
\[1/x^2\]
\[\text{sage: } g/f\]
\[x^2\]

The input must be an integral domain:

\[\text{sage: } \text{Frac}(\text{Integers}(4))\]

Traceback (most recent call last):
...
TypeError: R must be an integral domain.

class \text{sage.rings.fraction_field.FractionFieldEmbedding}\]

Bases: \text{DefaultConvertMap_unique}\]

The embedding of an integral domain into its field of fractions.

EXAMPLES:

\[\text{sage: } R.<x> = \text{QQ}[]\]
\[\text{sage: } f = R.\text{fraction_field}().\text{coerce_map_from}(R); f\]

Coercion map:
From: Univariate Polynomial Ring in x over Rational Field
To: Fraction Field of Univariate Polynomial Ring in x over Rational Field

\text{is_injective()}\]

Return whether this map is injective.

EXAMPLES:

The map from an integral domain to its fraction field is always injective:

\[\text{sage: } R.<x> = \text{QQ}[]\]
\[\text{sage: } R.\text{fraction_field}().\text{coerce_map_from}(R).\text{is_injective}()\]

True

\text{is_surjective()}\]

Return whether this map is surjective.

EXAMPLES:

\[\text{sage: } R.<x> = \text{QQ}[]\]
\[\text{sage: } R.\text{fraction_field}().\text{coerce_map_from}(R).\text{is_surjective}()\]

False
section()

Return a section of this map.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: R.fraction_field().coerce_map_from(R).section()
Section map:
    From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
    To:   Univariate Polynomial Ring in x over Rational Field
```

class sage.rings.fraction_field.FractionFieldEmbeddingSection

Bases: Section

The section of the embedding of an integral domain into its field of fractions.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: f = R.fraction_field().coerce_map_from(R).section(); f
Section map:
    From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
    To:   Univariate Polynomial Ring in x over Rational Field
```

class sage.rings.fraction_field.FractionField_1poly_field(R, element_class=<class 'sage.rings.fraction_field_element.FractionFieldElement_1poly_field'>)

Bases: FractionField_generic

The fraction field of a univariate polynomial ring over a field.

Many of the functions here are included for coherence with number fields.

class_number()

Here for compatibility with number fields and function fields.

EXAMPLES:

```
sage: R.<t> = GF(5)[] ; K = R.fraction_field()
sage: K.class_number()
1
```

function_field()

Return the isomorphic function field.

EXAMPLES:

```
sage: R.<t> = GF(5)[] 
sage: K = R.fraction_field()
sage: K.function_field()
Rational function field in t over Finite Field of size 5
```

See also:

sage.rings.function_field.RationalFunctionField.field()

maximal_order()

Return the maximal order in this fraction field.

EXAMPLES:

5.1. Fraction Field of Integral Domains
 sage: K = FractionField(GF(5)['t'])
 sage: K.maximal_order()
 Univariate Polynomial Ring in t over Finite Field of size 5

ring_of_integers()

Return the ring of integers in this fraction field.

EXAMPLES:

 sage: K = FractionField(GF(5)['t'])
 sage: K.ring_of_integers()
 Univariate Polynomial Ring in t over Finite Field of size 5

class sage.rings.fraction_field.FractionField_generic(R, element_class=<class 'sage.rings.fraction_field_element.FractionFieldElement'>, category=Category of quotient fields)

Bases: Field

The fraction field of an integral domain.

base_ring()

Return the base ring of self.

This is the base ring of the ring which this fraction field is the fraction field of.

EXAMPLES:

 sage: R = Frac(ZZ['t'])
 sage: R.base_ring()
 Integer Ring

characteristic()

Return the characteristic of this fraction field.

EXAMPLES:

 sage: R = Frac(ZZ['t'])
 sage: R.base_ring()
 Integer Ring
 sage: R = Frac(ZZ['t']); R.characteristic()
 0
 sage: R = Frac(GF(5)['w']); R.characteristic()
 5

collection()
gen *(i=0)*

Return the *i*-th generator of *self*.

EXAMPLES:

```
sage: R = Frac(PolynomialRing(QQ, 'z', 10)); R
Fraction Field of Multivariate Polynomial Ring
  in z0, z1, z2, z3, z4, z5, z6, z7, z8, z9 over Rational Field
sage: R.0
z0
sage: R.gen(3)
z3
sage: R.3
z3
```

is_exact *(proof=True)*

Return if *self* is exact which is if the underlying ring is exact.

EXAMPLES:

```
sage: Frac(ZZ['x']).is_exact()
True
sage: Frac(CDF['x']).is_exact() # needs sage.rings.complex_double
False
```

is_field *(proof=True)*

Return True, since the fraction field is a field.

EXAMPLES:

```
sage: Frac(ZZ).is_field()
True
```

is_finite *

Tells whether this fraction field is finite.

Note: A fraction field is finite if and only if the associated integral domain is finite.

EXAMPLES:

```
sage: Frac(QQ['a','b','c']).is_finite()
False
```

ngens *

This is the same as for the parent object.

EXAMPLES:

```
sage: R = Frac(PolynomialRing(QQ, 'z', 10)); R
Fraction Field of Multivariate Polynomial Ring
  in z0, z1, z2, z3, z4, z5, z6, z7, z8, z9 over Rational Field
sage: R.ngens()
10
```
random_element (*args, **kwds*)

Return a random element in this fraction field.

The arguments are passed to the random generator of the underlying ring.

EXAMPLES:

```python
sage: F = QQ['x'].fraction_field()
sage: F.random_element()  # random
(2*x - 8)/(-x^2 + x)
```

```python
sage: f = F.random_element(degree=5)
sage: f.numerator().degree() == f.denominator().degree()  # True
sage: f.denominator().degree() <= 5  # True
sage: while f.numerator().degree() != 5:
    f = F.random_element(degree=5)
```

ring()

Return the ring that this is the fraction field of.

EXAMPLES:

```python
sage: R = Frac(QQ['x,y'])
sage: R
Fraction Field of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ring()
Multivariate Polynomial Ring in x, y over Rational Field
```

some_elements()

Return some elements in this field.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: R.fraction_field().some_elements()
[0, 1, x, 2*x, x/(x^2 + 2*x + 1), 1/x^2, ...
(2*x^2 + 2)/(x^2 + 2*x + 1),
(2*x^2 + 2)/x^3,
(2*x^2 + 2)/(x^2 - 1),
2]
```

```python
sage: from sage.rings.fraction_field import is_FractionField
sage: is_FractionField(QQ)
False
```

sage.rings.fraction_field.is_FractionField(x)

Test whether or not x inherits from `FractionField_generic`.

EXAMPLES:

```python
sage: from sage.rings.fraction_field import is_FractionField
sage: is_FractionField(Frac(ZZ['x']))
True
sage: is_FractionField(QQ)
False
```
5.2 Fraction Field Elements

AUTHORS:

- William Stein (input from David Joyner, David Kohel, and Joe Wetherell)
- Sebastian Pancratz (2010-01-06): Rewrite of addition, multiplication and derivative to use Henrici’s algorithms [Hor1972]

class sage.rings.fraction_field_element.FractionFieldElement
Bases: FieldElement

EXAMPLES:

```python
sage: K = FractionField(PolynomialRing(QQ, 'x'))
sage: K
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: loads(K.dumps()) == K
True
sage: x = K.gen()
sage: f = (x^3 + x)/(17 - x^19); f
(-x^3 - x)/(x^19 - 17)
sage: loads(f.dumps()) == f
True
```

denominator()

Return the denominator of self.

EXAMPLES:

```python
sage: R.<x,y> = ZZ[]
sage: f = x/y + 1; f
(x + y)/y
sage: f.denominator()
y
```

is_one()

Return True if this element is equal to one.

EXAMPLES:

```python
sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: (x/x).is_one()  # This should be True
True
sage: (x/y).is_one()  # This should be False
False
```

is_square(root=False)

Return whether or not self is a perfect square.

If the optional argument root is True, then also returns a square root (or None, if the fraction field element is not square).

INPUT:

- root – whether or not to also return a square root (default: False)

OUTPUT:
• \texttt{bool} - whether or not a square
• \texttt{object} - (optional) an actual square root if found, and None otherwise.

EXAMPLES:

```python
sage: R.<t> = QQ[]
```

```python
sage: (1/t).is_square()
False
```

```python
sage: (1/t^6).is_square()
True
```

```python
sage: ((1+t)^4/t^6).is_square()
True
```

```python
sage: (4*(1+t)^4/t^6).is_square()
True
```

```python
sage: (2*(1+t)^4/t^6).is_square()
False
```

```python
sage: ((1+t)/t^6).is_square()
False
```

```python
sage: (4*(1+t)^4/t^6).is_square(root=True)
(True, (2*t^2 + 4*t + 2)/t^3)
```

```python
sage: (2*(1+t)^4/t^6).is_square(root=True)
(False, None)
```

```python
sage: R.<x> = QQ[]
```

```python
sage: a = 2*(x+1)^2 / (2*(x-1)^2); a
(x^2 + 2*x + 1)/(x^2 - 2*x + 1)
```

```python
sage: a.is_square()
True
```

```python
sage: (0/x).is_square()
True
```

\texttt{is_zero()}

Return \texttt{True} if this element is equal to zero.

EXAMPLES:

```python
sage: F = ZZ['x,y'].fraction_field()
```

```python
sage: x,y = F.gens()
```

```python
sage: t = F(0)/x
```

```python
sage: t.is_zero()
True
```

```python
sage: u = 1/x - 1/x
```

```python
sage: u.is_zero()
True
```

```python
sage: u.parent() \texttt{is} F
```

```python
True
```

\texttt{nth_root}(n)

Return a n-th root of this element.

EXAMPLES:

```python
sage: R = QQ['t'].fraction_field()
```

```python
sage: t = R.gen()
```

```python
sage: p = (t+1)^3 / (t^2+t-1)^3
```

```python
sage: p.nth_root(3)
(t + 1)/(t^2 + t - 1)
```

(continues on next page)
\begin{verbatim}
sage: p = (t+1) / (t-1)
sage: p.nth_root(2)
Traceback (most recent call last):
...
ValueError: not a 2nd power
\end{verbatim}

\textbf{numerator()}

Return the numerator of self.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x,y> = ZZ[]
sage: f = x/y + 1; f
(x + y)/y
sage: f.numerator()
x + y
\end{verbatim}

\textbf{reduce()}

Reduce this fraction.

Divides out the gcd of the numerator and denominator. If the denominator becomes a unit, it becomes 1. Additionally, depending on the base ring, the leading coefficients of the numerator and the denominator may be normalized to 1.

Automatically called for exact rings, but because it may be numerically unstable for inexact rings it must be called manually in that case.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x> = RealField(10)[]
needs sage.rings.real_mpfr
sage: f = (x^2+2*x+1)/(x+1); f
(x^2 + 2.0*x + 1.0)/(x + 1.0)
sage: f.reduce(); f
needs sage.rings.real_mpfr
x + 1.0
\end{verbatim}

\textbf{specialization \((D=\text{None}, \phi=\text{None})\)}

Returns the specialization of a fraction element of a polynomial ring.

\textbf{subs \((\text{in_dict=\text{None}}, *\text{args}, **\text{kwds})\)}

Substitute variables in the numerator and denominator of self.

If a dictionary is passed, the keys are mapped to generators of the parent ring. Otherwise, the arguments are transmitted unchanged to the method \text{subs} of the numerator and the denominator.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: x, y = PolynomialRing(ZZ, 2, 'xy').gens()
sage: f = x^2 + y + x^2*y^2 + 5
sage: (1/f).subs(x=5)
1/(25*y^2 + y + 30)
\end{verbatim}

\textbf{valuation \((v=\text{None})\)}

Return the valuation of self, assuming that the numerator and denominator have valuation functions defined on them.
EXAMPLES:

```
sage: x = PolynomialRing(RationalField(),'x').gen()
sage: f = (x^3 + x)/(x^2 - 2*x^3)
sage: f
(-1/2*x^2 - 1/2)/(x^2 - 1/2*x)
sage: f.valuation()
-1
sage: f.valuation(x^2 + 1)
1
```

```python
class sage.rings.fraction_field_element.FractionFieldElement_1poly_field
Bases: FractionFieldElement

A fraction field element where the parent is the fraction field of a univariate polynomial ring over a field.

Many of the functions here are included for coherence with number fields.

**is_integral()**

Returns whether this element is actually a polynomial.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: elt = (t^2 + t - 2) / (t + 2); elt
== (t + 2)*(t - 1)/(t + 2)
t - 1
sage: elt.is_integral()
True
sage: elt = (t^2 - t) / (t+2); elt
== t*(t - 1)/(t + 2)
(t^2 - t)/(t + 2)
sage: elt.is_integral()
False
```

**reduce()**

Pick a normalized representation of self.

In particular, for any \(a \equiv b\), after normalization they will have the same numerator and denominator.

EXAMPLES:

For univariate rational functions over a field, we have:

```
sage: R.<x> = QQ[]
sage: (2 + 2*x) / (4*x) # indirect doctest
(1/2*x + 1/2)/x
```

Compare with:

```
sage: R.<x> = ZZ[]
sage: (2 + 2*x) / (4*x)
(x + 1)/(2*x)
```

**support()**

Returns a sorted list of primes dividing either the numerator or denominator of this element.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: h = (t^14 + 2*t^12 - 4*t^11 - 8*t^9 + 6*t^8 + 12*t^6 - 4*t^5
(continues on next page)```
sage.rings.fraction_field_element.is_FractionFieldElement(x)

Return whether or not \(x \) is a \emph{FractionFieldElement}.

EXAMPLES:

```python
sage: from sage.rings.fraction_field_element import is_FractionFieldElement
sage: R.<x> = ZZ[]
Sage: is_FractionFieldElement(x/2)
False
Sage: is_FractionFieldElement(2/x)
True
Sage: is_FractionFieldElement(1/3)
False
```

sage.rings.fraction_field_element.make_element(parent, numerator, denominator)

Used for unpickling \emph{FractionFieldElement} objects (and subclasses).

EXAMPLES:

```python
sage: from sage.rings.fraction_field_element import make_element
sage: R = ZZ['x,y']
Sage: x,y = R.gens()
Sage: F = R.fraction_field()
Sage: make_element(F, 1 + x, 1 + y)
(x + 1)/(y + 1)
```

sage.rings.fraction_field_element.make_element_old(parent, cdict)

Used for unpickling old \emph{FractionFieldElement} pickles.

EXAMPLES:

```python
sage: from sage.rings.fraction_field_element import make_element_old
sage: R.<x,y> = ZZ[]
Sage: F = R.fraction_field()
Sage: make_element_old(F, {_FractionFieldElement__numerator: x + y,
....: _FractionFieldElement__denominator: x - y})
(x + y)/(x - y)
```
6.1 Localization

Localization is an important ring construction tool. Whenever you have to extend a given integral domain such that it contains the inverses of a finite set of elements but should allow non injective homomorphic images this construction will be needed. See the example on Ariki-Koike algebras below for such an application.

EXAMPIES:

```sage
# needs sage.modules
sage: LZ = Localization(ZZ, (5,11))

sage: m = matrix(LZ, [[5, 7], [0,11]])

sage: m.parent()
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring localized at (5, 11)

sage: ~m  # parent of inverse is different: see documentation of m.__invert__
[ 1/5  -7/55]
[   0    1/11]

sage: _.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field

sage: mi = matrix(LZ, ~m)

sage: mi.parent()
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring localized at (5, 11)

sage: mi == ~m
True
```

The next example defines the most general ring containing the coefficients of the irreducible representations of the Ariki-Koike algebra corresponding to the three colored permutations on three elements:

```sage
R.<u0, u1, u2, q> = ZZ[

sage: u = [u0, u1, u2]

sage: S = Set(u)

sage: I = S.cartesian_product(S)

sage: add_units = u + [q, q + 1] + [ui - uj for ui, uj in I if ui != uj]

sage: add_units += [q*ui - uj for ui, uj in I if ui != uj]

sage: L = R.localization(tuple(add_units)); L
Multivariate Polynomial Ring in u0, u1, u2, q over Integer Ring localized at
(q, q + 1, u2, u1, u1 - u2, u0, u0 - u2, u0 - u1, u2*q - u1, u2*q - u0,
  u1*q - u2, u1*q - u0, u0*q - u2, u0*q - u1)

sage: L

# needs sage.libs.pari

sage: m1 = matrix(L, [[u1, 0, 0], [0, u0, 0], [0, 0, u0]])

```

Define the representation matrices (of one of the three dimensional irreducible representations):

```sage
sage: m1 = matrix(L, [[u1, 0, 0], [0, u0, 0], [0, 0, u0]])
```

(continues on next page)
sage: m2 = matrix(L, [[(u0*q - u0)/(u0 - u1), (u0*q - u1)/(u0 - u1), 0],
....: [(-u1*q + u0)/(u0 - u1), (-u1*q + u1)/(u0 - u1), 0],
....: [0, 0, -1]])

sage: m3 = matrix(L, [[-1, 0, 0],
....: [0, u0*(1 - q)/(u1*q - u0), q*(u1 - u0)/(u1*q - u0)],
....: [0, (u1*q^2 - u0)/(u1*q - u0), (u1*q^2 - u1*q)/(u1*q - u0)]])

sage: m1.base_ring() == L
True

Check relations of the Ariki-Koike algebra:

sage: # needs sage.libs.pari sage.modules
sage: m1*m2*m1*m2 == m2*m1*m2*m1
True
sage: m2*m3*m2 == m3*m2*m3
True
sage: m1*m3 == m3*m1
True
sage: m1**3 - (u0+u1+u2)*m1**2 + (u0*u1+u0*u2+u1*u2)*m1 - u0*u1*u2 == 0
True
sage: m2**2 - (q-1)*m2 - q == 0
True
sage: m3**2 - (q-1)*m3 - q == 0
True

sage: ~m1 in m1.parent()
True
sage: ~m2 in m2.parent()
True
sage: ~m3 in m3.parent()
True

Obtain specializations in positive characteristic:

sage: # needs sage.libs.pari sage.modules
sage: Fp = GF(17)
sage: f = L.hom((3,5,7,11), codomain=Fp); f
Ring morphism:
From: Multivariate Polynomial Ring in u0, u1, u2, q over Integer Ring localized at
 (q, q + 1, u2, u1, u1 - u2, u0, u0 - u2, u0 - u1, u2*q - u1, u2*q - u0,
 u1*q - u2, u1*q - u0, u0*q - u2, u0*q - u1)
To: Finite Field of size 17
Defn: u0 |--> 3
 u1 |--> 5
 u2 |--> 7
 q |--> 11

sage: mFp1 = matrix({k: f(v) for k, v in m1.dict().items()}); mFp1
[5 0 0]
[0 3 0]
[0 0 3]

sage: mFp2 = matrix({k: f(v) for k, v in m2.dict().items()}); mFp2
[2 3 0]
[9 8 0]
[0 0 16]

sage: mFp3 = matrix({k: f(v) for k, v in m3.dict().items()}); mFp3
[16 0 0]
(continues on next page)
Obtain specializations in characteristic 0:

```
sage: # needs sage.libs.pari
sage: fQ = L.hom((3,5,7,11), codomain=QQ); fQ
Ring morphism:
  From: Multivariate Polynomial Ring in u0, u1, u2, q over Integer Ring
    localized at (q, q + 1, u2, u1 - u2, u0 - u2, u0 - u1, u2*q - u1, u2*q - u0, u1*q - u2, u1*q - u0, u0*q - u2, u0*q - u1)
  To:   Rational Field
  Defn: u0 |--> 3
         u1 |--> 5
         u2 |--> 7
         q |--> 11
```

```
sage: # needs sage.libs.pari sage.modules sage.rings.finite_rings
sage: mQ1 = matrix({k: fQ(v) for k, v in m1.dict().items()}); mQ1
[5 0 0]
[0 3 0]
[0 0 3]
sage: mQ1.base_ring()
Rational Field
```

```
sage: mQ2 = matrix({k: fQ(v) for k, v in m2.dict().items()}); mQ2
[-15 -14 0]
[26 25 0]
[0 0 -1]
sage: mQ3 = matrix({k: fQ(v) for k, v in m3.dict().items()}); mQ3
[-1 0 0]
[0 -15/26 11/26]
[0 301/26 275/26]
```

```
sage: # needs sage.libs.pari sage.libs.singular
sage: S.<x, y, z, t> = QQ[]
sage: T = S.quo(x + y + z)
sage: F = T.fraction_field()
sage: fF = L.hom((x, y, z, t), codomain=F); fF
Ring morphism:
  From: Multivariate Polynomial Ring in u0, u1, u2, q over Integer Ring
    localized at (q, q + 1, u2, u1 - u2, u0 - u2, u0 - u1, u2*q - u1, u2*q - u0, u1*q - u2, u1*q - u0, u0*q - u2, u0*q - u1)
  To:   Fraction Field of Quotient of Multivariate Polynomial Ring in x, y, z, t
        over Rational Field by the ideal (x + y + z)
  Defn: u0 |--> -ybar - zbar
         u1 |--> ybar
         u2 |--> zbar
         q |--> tbar
```

```
sage: mF1 = matrix({k: fF(v) for k, v in m1.dict().items()}); mF1
[ ybar 0 0]
[0 -ybar - zbar 0]
[0 0 -ybar - zbar]
sage: mF1.base_ring() == F
True
```

6.1. Localization
AUTHORS:

- Sebastian Oehms 2019-12-09: initial version.
- Sebastian Oehms 2022-03-05: fix some corner cases and add factor() (github issue #33463)

class sage.rings.localization.Localization (base_ring, extra_units, names=None, normalize=True, category=None, warning=True)

Bases: IntegralDomain, UniqueRepresentation

The localization generalizes the construction of the field of fractions of an integral domain to an arbitrary ring. Given a (not necessarily commutative) ring R and a subset S of R, there exists a ring $R[S^{-1}]$ together with the ring homomorphism $R \rightarrow R[S^{-1}]$ that “inverts” S; that is, the homomorphism maps elements in S to unit elements in $R[S^{-1}]$ and, moreover, any ring homomorphism from R that “inverts” S uniquely factors through $R[S^{-1}]$.

The ring $R[S^{-1}]$ is called the localization of R with respect to S. For example, if R is a commutative ring and f an element in R, then the localization consists of elements of the form $r/f, r \in R, n \geq 0$ (to be precise, $R[f^{-1}] = R[t]/(ft - 1)$).

The above text is taken from Wikipedia. The construction here used for this class relies on the construction of the field of fraction and is therefore restricted to integral domains.

Accordingly, this class is inherited from IntegralDomain and can only be used in that context. Furthermore, the base ring should support sage.structure.element.CommutativeRingElement.divides() and the exact division operator // (sage.structure.element.Element.__floordiv__()) in order to guarantee a successful application.

INPUT:

- base_ring – an instance of Ring allowing the construction of fraction_field() (that is an integral domain)
- extra_units – tuple of elements of base_ring which should be turned into units
- names – passed to IntegralDomain
- normalize – (optional, default: True) passed to IntegralDomain
- category – (optional, default: None) passed to IntegralDomain
- warning – (optional, default: True) to suppress a warning which is thrown if self cannot be represented uniquely

REFERENCES:

- Wikipedia article Ring_(mathematics)#Localization

EXAMPLES:

```python
sage: L = Localization(ZZ, (3,5))
sage: 1/45 in L
   True
sage: 1/43 in L
   False

sage: Localization(L, (7,11))
   Integer Ring localized at (3, 5, 7, 11)
sage: _.is_subring(QQ)
   True

sage: L(~7)
   Traceback (most recent call last):
```

(continues on next page)
... ValueError: factor 7 of denominator is not a unit

```
sage: Localization(Zp(7), (3, 5))  # needs sage.rings.padics
Traceback (most recent call last):
...
ValueError: all given elements are invertible in 7-adic Ring with capped relative precision 20
```

```
sage: # needs sage.libs.pari
sage: R.<x> = ZZ[]
sage: L = R.localization(x**2 + 1)
sage: s = (x+5)/(x**2+1)
sage: s in L  
True
sage: t = (x+5)/(x**2+2)
sage: t in L  
False
sage: L(t)
Traceback (most recent call last):
...
TypeError: fraction must have unit denominator
```

```
sage: R in L  
False
sage: y = L(x)
sage: g = L(s)
Univariate Polynomial Ring in x over Integer Ring localized at (x^2 + 1,)
sage: f = (y+5)/(y**2+1); f
(x + 5)/(x^2 + 1)
sage: f == g
True
sage: (y+5)/(y**2+2)
Traceback (most recent call last):
...
ValueError: factor x^2 + 2 of denominator is not a unit
```

```
sage: Lau.<u, v> = LaurentPolynomialRing(ZZ)  # needs sage.modules
sage: LauL = Lau.localization(u + 1)  # needs sage.modules
sage: LauL(-u).parent()  # needs sage.modules
Multivariate Polynomial Ring in u, v over Integer Ring localized at (v, u, u + 1)
```

More examples will be shown typing `sage.rings.localization?`

Element

- alias of `LocalizationElement`

characteristic()

Return the characteristic of `self`.

EXAMPLES:
fraction_field()
Return the fraction field of self.

EXAMPLES:

```sage
sage: # needs sage.libs.pari
sage: R.<a> = GF(5)[]
sage: L = R.localization((a**2 - 3, a))
sage: L.characteristic()
5
```

gen(i)

Return the i-th generator of self which is the i-th generator of the base ring.

EXAMPLES:

```sage
sage: R.<x, y> = ZZ[]
sage: R.localization((x**2 + 1, y - 1)).gen(0)  # needs sage.libs.pari
x
sage: ZZ.localization(2).gen(0)
1
```
gens()

Return a tuple whose entries are the generators for this object, in order.

EXAMPLES:

```sage
sage: R.<x, y> = ZZ[]
sage: Localization(R, (x**2 + 1, y - 1)).gens()  # needs sage.libs.pari
(x, y)
sage: Localization(ZZ, 2).gens()
(1,)
```
is_field(proof=True)

Return True if this ring is a field.

INPUT:

- **proof** — (default: True) Determines what to do in unknown cases

ALGORITHM:

If the parameter `proof` is set to True, the returned value is correct but the method might throw an error. Otherwise, if it is set to False, the method returns True if it can establish that self is a field and False otherwise.

EXAMPLES:
sage: R = ZZ.localization((2, 3))
sage: R.is_field()
False

krull_dimension()
Return the Krull dimension of this localization.
Since the current implementation just allows integral domains as base ring and localization at a finite set of
elements the spectrum of self is open in the irreducible spectrum of its base ring. Therefore, by density we
may take the dimension from there.
EXAMPLES:

sage: R = ZZ.localization((2, 3))
sage: R.krull_dimension()
1

ngens()
Return the number of generators of self according to the same method for the base ring.
EXAMPLES:

sage: R.<x, y> = ZZ[]
sage: Localization(R, (x**2 + 1, y - 1)).ngens() # needs sage.libs.pari
2
sage: Localization(ZZ, 2).ngens()
1

class sage.rings.localization.LocalizationElement (parent, x)
Bases: IntegralDomainElement
Element class for localizations of integral domains
INPUT:
• parent – instance of Localization
• x – instance of FractionFieldElement whose parent is the fraction
 field of the parent's base ring
EXAMPLES:

sage: # needs sage.libs.pari
sage: from sage.rings.localization import LocalizationElement
sage: P.<x,y,z> = GF(5)[]
sage: L = P.localization((x, y*z - x))
sage: LocalizationElement(L, 4/(y*z-x)**2)
(-1)/(y^2*z^2 - 2*x*y*z + x^2)
sage: _.parent()
Multivariate Polynomial Ring in x, y, z over Finite Field of size 5
localized at (x, y*z - x)

denominator()
Return the denominator of self.
EXAMPLES:
factor *(proof=*)

Return the factorization of this polynomial.

INPUT:

- **proof** — (optional) if given it is passed to the corresponding method of the numerator of self

EXAMPLES:

```sage
sage: P.<X, Y> = QQ['x', 'y']
sage: L = P.localization(X - Y)
sage: x, y = L.gens()
sage: p = (x^2 - y^2)/(x-y)^2  # needs sage.libs.singular
sage: p.factor()  # needs sage.libs.singular
(1/(x - y)) * (x + y)
```

inverse_of_unit

Return the inverse of self.

EXAMPLES:

```sage
sage: P.<x,y,z> = ZZ[]
sage: L = Localization(P, x*y*z)
sage: L(x*y*z).inverse_of_unit()  # needs sage.libs.singular
1/(x*y*z)
sage: L(z).inverse_of_unit()  # needs sage.libs.singular
1/z
```

is_unit

Return True if self is a unit.

EXAMPLES:

```sage
sage: # needs sage.libs.pari sage.singular
sage: P.<x,y,z> = QQ[]
sage: L = P.localization((x, y*z))
sage: L(y*z).is_unit()  # needs sage.libs.singular
True
sage: L(z).is_unit()  # needs sage.libs.singular
True
sage: L(x*y*z).is_unit()  # needs sage.libs.singular
True
```

numerator

Return the numerator of self.

EXAMPLES:

```sage
sage: L = ZZ.localization((3,5))
sage: L(7/15).numerator()  # needs sage.libs.polymake
7
```
Function to normalize input data.

The given list will be replaced by a list of the involved prime factors (if possible).

INPUT:
- `base_ring` – an instance of `IntegralDomain`
- `add_units` – list of elements from base ring
- `warning` – (optional, default: True) to suppress a warning which is thrown if no normalization was possible

OUTPUT:
List of all prime factors of the elements of the given list.

EXAMPLES:

```python
sage: from sage.rings.localization import normalize_extra_units
sage: normalize_extra_units(ZZ, [3, -15, 45, 9, 2, 50])
[2, 3, 5]
sage: P.<x,y,z> = ZZ[]
sage: normalize_extra_units(P, 
    # needs sage.libs.pari
    ....:  [3*x, z*y**2, 2*z, 18*(x*y*z)**2, x*z, 6*x*z, 5])
[2, 3, 5, z, y, x]
sage: P.<x,y,z> = QQ[]
sage: normalize_extra_units(P, 
    # needs sage.libs.pari
    ....:  [3*x, z*y**2, 2*z, 18*(x*y*z)**2, x*z, 6*x*z, 5])
[z, y, x]
sage: # needs sage.libs.singular
sage: R.<x, y> = ZZ[]
sage: Q.<a, b> = R.quo(x**2 - 5)
sage: p = b**2 - 5
sage: p == (b-a)*(b+a)
True
sage: normalize_extra_units(Q, [p])
# needs sage.libs.pari
doctest:...: UserWarning: Localization may not be represented uniquely
[6]
sage: normalize_extra_units(Q, [p], warning=False)
# needs sage.libs.pari
[6]
```
7.1 Extension of rings

Sage offers the possibility to work with ring extensions L/K as actual parents and perform meaningful operations on them and their elements.

The simplest way to build an extension is to use the method `sage.categories.commutative_rings.CommutativeRings.ParentMethods.over()` on the top ring, that is L. For example, the following line constructs the extension of finite fields F_5^4/F_5^2:

```
sage: GF(5^4).over(GF(5^2))
Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base
```

By default, Sage reuses the canonical generator of the top ring (here $z_4 \in F_5^4$), together with its name. However, the user can customize them by passing in appropriate arguments:

```
sage: k = GF(5^4)
sage: z4 = k.gen()
sage: K.<a> = k.over(F, gen=1-z4); K
Field in a with defining polynomial x^2 + z2*x + 4 over its base
```

The base of the extension is available via the method `base()` (or equivalently `base_ring()`):

```
sage: K.base()
Field in z2 with defining polynomial x^2 + (4*z2 + 3)*x + 1 - a over its base
```

It is also possible to build an extension on top of another extension, obtaining this way a tower of extensions:

```
sage: L.<b> = GF(5^8).over(K); L
Field in b with defining polynomial x^2 + (4*z2 + 3*a)*x + 1 - a over its base
```

```
sage: L.<b> = GF(5^8).over(K); L
Field in b with defining polynomial x^2 + (4*z2 + 3*a)*x + 1 - a over its base
```

```
sage: L.<b> = GF(5^8).over(K); L
Field in b with defining polynomial x^2 + (4*z2 + 3*a)*x + 1 - a over its base
```

```
sage: L.<b> = GF(5^8).over(K); L
Field in b with defining polynomial x^2 + (4*z2 + 3*a)*x + 1 - a over its base
```

The method `bases()` gives access to the complete list of rings in a tower:
Once we have constructed an extension (or a tower of extensions), we have interesting methods attached to it. As a basic example, one can compute a basis of the top ring over any base in the tower:

```
sage: L.basis_over(K)  # needs sage.rings.finite_rings
[1, b]
sage: L.basis_over(F)  # needs sage.rings.finite_rings
[1, a, b, a*b]
```

When the base is omitted, the default is the natural base of the extension:

```
sage: L.basis_over()  # needs sage.rings.finite_rings
[1, b]
```

The method `sage.rings.ring_extension_element.RingExtensionWithBasis.vector()` computes the coordinates of an element according to the above basis:

```
sage: u = a + 2*b + 3*a*b  # needs sage.rings.finite_rings
sage: u.vector()  # over K
(a, 2 + 3*a)
sage: u.vector(F)  # needs sage.rings.finite_rings
(0, 1, 2, 3)
```

One can also compute traces and norms with respect to any base of the tower:

```
sage: u.trace()  # over K
(2*z2 + 1) + (2*z2 + 1)*a
sage: u.trace(F)  # over K, then over F
z2 + 1
sage: u.trace().trace()  # needs sage.rings.finite_rings
z2 + 1
sage: u.norm()  # over K
(z2 + 1) + (4*z2 + 2)*a
sage: u.norm(F)  # needs sage.rings.finite_rings
2*z2 + 2
```

And minimal polynomials:

```
sage: u.minpoly()  # needs sage.rings.finite_rings
x^2 + ((3*z2 + 4) + (3*z2 + 4)*a)*x + (z2 + 1) + (4*z2 + 2)*a
sage: u.minpoly(F)  # needs sage.rings.finite_rings
x^4 + (4*z2 + 4)*x^3 + x^2 + (z2 + 1)*x + 2*z2 + 2
```

AUTHOR:
General Rings, Ideals, and Morphisms, Release 10.3

- Xavier Caruso (2019)

```python
class sage.rings.ring_extension.RingExtensionFactory
    Bases: UniqueFactory
    Factory for ring extensions.

    create_key_and_extra_args(ring, defining_morphism=None, gens=None, names=None, constructors=None)
    Create a key and return it together with a list of constructors of the object.

    INPUT:
    - ring -- a commutative ring
    - defining_morphism -- a ring homomorphism or a commutative ring or None (default: None); the defining morphism of this extension or its base (if it coerces to ring)
    - gens -- a list of generators of this extension (over its base) or None (default: None);
    - names -- a list or a tuple of variable names or None (default: None)
    - constructors -- a list of constructors; each constructor is a pair (class, arguments) where class is the class implementing the extension and arguments is the dictionary of arguments to pass in to init function

    create_object(version, key, **extra_args)
    Return the object associated to a given key.

class sage.rings.ring_extension.RingExtensionFractionField
    Bases: RingExtension_generic
    A class for ring extensions of the form `Frac(A)/A`.

    Element
    alias of RingExtensionFractionFieldElement

    ring()
    Return the ring whose fraction field is this extension.

    EXAMPLES:

    sage: # needs sage.rings.number_field
    sage: x = polygen(ZZ, 'x')
    sage: A.<a> = ZZ.extension(x^2 - 2)
    sage: OK = A.over()
    sage: K = OK.fraction_field(); K
    Fraction Field of Maximal Order generated by a in Number Field in a with defining polynomial x^2 - 2 over its base
    sage: K.ring()
    Maximal Order generated by a in Number Field in a with defining polynomial x^2 - 2 over its base
    sage: K.ring() is OK
    True

class sage.rings.ring_extension.RingExtensionWithBasis
    Bases: RingExtension_generic
    A class for finite free ring extensions equipped with a basis.
```

7.1. Extension of rings
Element

alias of \texttt{RingExtensionWithBasisElement}

\texttt{basis_over}(\texttt{base=None})

Return a basis of this extension over \texttt{base}.

INPUT:

\begin{itemize}
\item \texttt{base} – a commutative ring (which might be itself an extension)
\end{itemize}

EXAMPLES:

\begin{verbatim}
sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(5^2).over() # over GF(5)
sage: K. = GF(5^4).over(F)
sage: L.<c> = GF(5^12).over(K)
sage: L.basis_over(K)
[1, c, c^2]
sage: L.basis_over(F)
[1, b, c, b*c, c^2, b*c^2]
sage: L.basis_over(GF(5))
[1, a, b, a*b, c, a*c, b*c, a*b*c, c^2, a*c^2, b*c^2, a*b*c^2]
\end{verbatim}

If \texttt{base} is omitted, it is set to its default which is the base of the extension:

\begin{verbatim}
sage: L.basis_over(F)
needs sage.rings.finite_rings
[1, c, c^2]
sage: K.basis_over()
needs sage.rings.finite_rings
[1, b]
\end{verbatim}

Note that \texttt{base} must be an explicit base over which the extension has been defined (as listed by the method \texttt{bases()}):

\begin{verbatim}
sage: L.degree_over(GF(5^6))
needs sage.rings.finite_rings
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z6 of size 5^6
\end{verbatim}

\texttt{fraction_field}(\texttt{extend_base=False})

Return the fraction field of this extension.

INPUT:

\begin{itemize}
\item \texttt{extend_base} – a boolean (default: False);
\end{itemize}

If \texttt{extend_base} is \texttt{False}, the fraction field of the extension \(L/K\) is defined as \(\text{Frac}(L)/\text{Frac}(K)\), except is \(L\) is already a field in which base the fraction field of \(L/K\) is \(L/K\) itself.

If \texttt{extend_base} is \texttt{True}, the fraction field of the extension \(L/K\) is defined as \(\text{Frac}(L)/\text{Frac}(K)\) (provided that the defining morphism extends to the fraction fields, i.e. is injective).

EXAMPLES:

\begin{verbatim}
sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, 'x')
sage: A.<a> = ZZ.extension(x^2 - 5)
\end{verbatim}
sage: OK = A.over() # over ZZ
sage: OK
Order of conductor 2 generated by a in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K1 = OK.fraction_field(); K1
Fraction Field of Order of conductor 2 generated by a in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K1.bases()
[Fraction Field of Order of conductor 2 generated by a in Number Field in a with defining polynomial x^2 - 5 over its base, Order of conductor 2 generated by a in Number Field in a with defining polynomial x^2 - 5 over its base, Integer Ring]
sage: K2 = OK.fraction_field(extend_base=True); K2
Fraction Field of Order of conductor 2 generated by a in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K2.bases()
[Fraction Field of Order of conductor 2 generated by a in Number Field in a with defining polynomial x^2 - 5 over its base, Rational Field]

Note that there is no coercion map between K_1 and K_2:

sage: K1.has_coerce_map_from(K2) # needs sage.rings.number_field
False
sage: K2.has_coerce_map_from(K1) # needs sage.rings.number_field
False

We check that when the extension is a field, its fraction field does not change:

sage: K1.fraction_field() is K1 # needs sage.rings.number_field
True
sage: K2.fraction_field() is K2 # needs sage.rings.number_field
True

free_module (base=None, map=True)

Return a free module V over $base$ which is isomorphic to this ring

INPUT:

• $base$ – a commutative ring (which might be itself an extension) or None (default: None)
• map – boolean (default True); whether to return isomorphisms between this ring and V

OUTPUT:

• A finite-rank free module V over $base$
• The isomorphism from V to this ring corresponding to the basis output by the method $basis_over()$ (only included if map is True)
• The reverse isomorphism of the isomorphism above (only included if map is True)

EXAMPLES:
Forgetting a part of the multiplicative structure, the field L can be viewed as a vector space of dimension 3 over K, equipped with a distinguished basis, namely $(1, b, b^2)$:

```
sage: # needs sage.rings.finite_rings
sage: V, i, j = L.free_module(K)
sage: V
Vector space of dimension 3 over Field in a with defining polynomial $x^2 + 7*x + 2$ over its base
sage: i
Generic map:
  From: Vector space of dimension 3 over Field in a with defining polynomial $x^2 + 7*x + 2$ over its base
  To:  Field in b with defining polynomial $x^3 + (7 + 2*a)*x^2 + (2 - a)*x - a$ over its base
sage: j
Generic map:
  From: Field in b with defining polynomial $x^3 + (7 + 2*a)*x^2 + (2 - a)*x - a$ over its base
  To:  Vector space of dimension 3 over Field in a with defining polynomial $x^2 + 7*x + 2$ over its base
sage: j(b)
(0, 1, 0)
sage: i((1, a, a+1))
1 + a*b + (1 + a)*b^2
```

Similarly, one can view L as a F-vector space of dimension 6:

```
sage: V, i, j, = L.free_module(F)  # needs sage.rings.finite_rings
sage: V
Vector space of dimension 6 over Finite Field of size 11
sage: i((1, a, a+1)) # needs sage.rings.finite_rings
1 + 2*a + a*b + (3 + 4*a)*b + (5 + 6*a)*b^2
```

In this case, the isomorphisms between V and L are given by the basis $(1, a, b, ab, b^2, ab^2)$:

```
sage: j(a*b) # needs sage.rings.finite_rings
(0, 0, 0, 1, 0, 0)
sage: i((1, 2, 3, 4, 5, 6))  # needs sage.rings.finite_rings
(1 + 2*a) + (3 + 4*a)*b + (5 + 6*a)*b^2
```

When `base` is omitted, the default is the base of this extension:

```
sage: L.free_module(map=False)  # needs sage.rings.finite_rings
Vector space of dimension 3 over Field in a with defining polynomial $x^2 + 7*x + 2$ over its base
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```
sage: L.degree(GF(11^3))  # needs sage.rings.finite_rings
Traceback (most recent call last):
```

(continues on next page)
class sage.rings.ring_extension.RingExtensionWithGen

A class for finite free ring extensions generated by a single element

fraction_field(extend_base=False)

Return the fraction field of this extension.

INPUT:

* extend_base -- a boolean (default: False);

If \texttt{extend_base} is \texttt{False}, the fraction field of the extension \(L/K\) is defined as \(\text{Frac}(L)/L/K\), except if \(L\) is already a field in which base the fraction field of \(L/K\) is \(L/K\) itself.

If \texttt{extend_base} is \texttt{True}, the fraction field of the extension \(L/K\) is defined as \(\text{Frac}(L)/\text{Frac}(K)\) (provided that the defining morphism extends to the fraction fields, i.e. is injective).

EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, 'x')
sage: A.<a> = ZZ.extension(x^2 - 5)
sage: OK = A.over()   # over ZZ
sage: K1 = OK.fraction_field(); K1
Fraction Field of Order of conductor 2 generated by a in Number Field in a
with defining polynomial x^2 - 5 over its base
sage: K1.bases()
[Fraction Field of Order of conductor 2 generated by a in Number Field in a
with defining polynomial x^2 - 5 over its base,
Order of conductor 2 generated by a in Number Field in a
with defining polynomial x^2 - 5 over its base,
Integer Ring]
sage: K2 = OK.fraction_field(extend_base=True); K2
Fraction Field of Order of conductor 2 generated by a
in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K2.bases()
[Fraction Field of Order of conductor 2 generated by a
in Number Field in a with defining polynomial x^2 - 5 over its base,
Rational Field]
```

Note that there is no coercion map between \(K_1\) and \(K_2\):

```
sage: K1.has_coerce_map_from(K2)  # needs sage.rings.number_field
False
sage: K2.has_coerce_map_from(K1)  # needs sage.rings.number_field
False
```

We check that when the extension is a field, its fraction field does not change:

```
7.1. Extension of rings
```
sage: K1.fraction_field() is K1 # needs sage.rings.number_field
True
sage: K2.fraction_field() is K2 # needs sage.rings.number_field
True

gens *(base=None)*

Return the generators of this extension over \(\text{base} \).

INPUT:

- \(\text{base} \) – a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: K.<a> = GF(5^2).over()  # over GF(5)
sage: K.gens()
(a,)
sage: L.<b> = GF(5^4).over(K)
sage: L.gens()
(b,)
sage: L.gens(GF(5))
(b, a)
```

modulus *(var='x'*)

Return the defining polynomial of this extension, that is the minimal polynomial of the given generator of this extension.

INPUT:

- \(\text{var} \) – a variable name (default: x)

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: K.<u> = GF(7^10).over(GF(7^2)); K
Field in u with defining polynomial x^5 + (6*z2 + 4)*x^4 + (3*z2 + 5)*x^3 + (2*z2 + 2)*x^2 + 4*x + 6*z2 over its base
sage: P = K.modulus(); P
x^5 + (6*z2 + 4)*x^4 + (3*z2 + 5)*x^3 + (2*z2 + 2)*x^2 + 4*x + 6*z2
sage: P(u)
0
```

We can use a different variable name:

```
sage: K.modulus('y')  # needs sage.rings.finite_rings
y^5 + (6*z2 + 4)*y^4 + (3*z2 + 5)*y^3 + (2*z2 + 2)*y^2 + 4*y + 6*z2
```

class sage.rings.ring_extension.RingExtension_generic

Bases: CommutativeRing

A generic class for all ring extensions.

Element

alias of RingExtensionElement
absolute_base()
Return the absolute base of this extension.

By definition, the absolute base of an iterated extension $K_n/\cdots/K_2/K_1$ is the ring K_1.

EXAMPLES:

```sage
sage: # needs sage.rings.finite_rings
sage: F = GF(5^2).over()  # over GF(5)
sage: K = GF(5^4).over(F)
sage: L = GF(5^12).over(K)
sage: F.absolute_base()
Finite Field of size 5
sage: K.absolute_base()
Finite Field of size 5
sage: L.absolute_base()
Finite Field of size 5
```

See also:
```
base(), bases(), is_defined_over()
```

absolute_degree()
Return the degree of this extension over its absolute base

EXAMPLES:

```sage
sage: # needs sage.rings.finite_rings
sage: A = GF(5^4).over(GF(5^2))
sage: B = GF(5^12).over(A)
sage: A.absolute_degree()
2
sage: B.absolute_degree()
6
```

See also:
```
degree(), relative_degree()
```

backend(force=False)
Return the backend of this extension.

INPUT:

- force – a boolean (default: False); if False, raise an error if the backend is not exposed

EXAMPLES:

```sage
sage: # needs sage.rings.finite_rings
sage: K = GF(5^3)
```

base()
Return the base of this extension.

EXAMPLES:
In case of iterated extensions, the base is itself an extension:

```sage
 sage: F = GF(5^2)
→ needs sage.rings.finite_rings
 sage: K = GF(5^4).over(F)
→ needs sage.rings.finite_rings
 sage: K.base()
→ needs sage.rings.finite_rings
 Finite Field in z2 of size 5^2
```

```sage
 sage: L = GF(5^8).over(K)
→ needs sage.rings.finite_rings
 sage: L.base()
→ needs sage.rings.finite_rings
 Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base
 sage: L.base() is K
→ needs sage.rings.finite_rings
 True
```

See also:

`bases()`, `absolute_base()`, `is_defined_over()`

`bases()`

Return the list of successive bases of this extension (including itself).

EXAMPLES:

```sage
 sage: # needs sage.rings.finite_rings
 sage: F = GF(5^2).over() # over GF(5)
 sage: K = GF(5^4).over(F)
 sage: L = GF(5^12).over(K)
 sage: F.bases()
 [Field in z2 with defining polynomial x^2 + 4*x + 2 over its base,
  Finite Field of size 5]
 sage: K.bases()
 [Field in z4 with defining polynomial x^2 + (3 - z2)*x + z2 over its base,
  Field in z2 with defining polynomial x^2 + 4*x + 2 over its base,
  Finite Field of size 5]
 sage: L.bases()
 [Field in z12 with defining polynomial
  x^3 + (1 + (2 - z2)*z4)*x^2 + (2 + 2*z4)*x - z4 over its base,
  Field in z4 with defining polynomial x^2 + (3 - z2)*x + z2 over its base,
  Field in z2 with defining polynomial x^2 + 4*x + 2 over its base,
  Finite Field of size 5]
```

See also:

`base()`, `absolute_base()`, `is_defined_over()`

`characteristic()`

Return the characteristic of the extension as a ring.

OUTPUT:

A prime number or zero.

EXAMPLES:
sage: # needs sage.rings.finite_rings
sage: F = GF(5^2).over() # over GF(5)
sage: K = GF(5^4).over(F)
sage: L = GF(5^12).over(K)

sage: F.characteristic()
5
sage: K.characteristic()
5
sage: L.characteristic()
5

sage: F = RR.over(ZZ)

sage: F.characteristic()
0

sage: F = GF(11)
sage: A.<x> = F[]

sage: K = Frac(F).over(F)

sage: K.characteristic()
11

sage: E = GF(7).over(ZZ)

sage: E.characteristic()
7

construction()

Return the functorial construction of this extension, if defined.

EXAMPLES:

sage: E = GF(5^3).over() # needs sage.rings.finite_rings
sage: E.construction() # needs sage.rings.finite_rings

defining_morphism(base=None)

Return the defining morphism of this extension over base.

INPUT:

- base – a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F = GF(5^2)
sage: K = GF(5^4).over(F)

sage: L = GF(5^12).over(K)
sage: K.defining_morphism()

Ring morphism:

From: Finite Field in z2 of size 5^2
To: Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its...

sage: L.defining_morphism()

Ring morphism:

From: Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its...

(continues on next page)
One can also pass in a base over which the extension is explicitly defined (see also \textit{is_defined_over}):

\begin{verbatim}
 sage: L.defining_morphism(F) # needs sage.rings.finite_rings
 Ring morphism:
 From: Finite Field in z2 of size 5^2
 To: Field in z12 with defining polynomial
 x^3 + (1 + (4*z2 + 2)*z4)*x^2 + (2 + 2*z4)*x - z4 over its base
 Defn: z2 |--> z2
 sage: L.defining_morphism(GF(5)) # needs sage.rings.finite_rings
 Traceback (most recent call last):
 ... ValueError: not (explicitly) defined over Finite Field of size 5
\end{verbatim}

\texttt{degree} \hspace{1em} \texttt{(base)}

Return the degree of this extension over \texttt{base}.

\begin{itemize}
 \item \texttt{base} – a commutative ring (which might be itself an extension)
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
 sage: # needs sage.rings.finite_rings
 sage: A = GF(5^4).over(GF(5^2))
 sage: B = GF(5^12).over(A)
 sage: A.degree(GF(5^2))
 2
 sage: B.degree(A)
 3
 sage: B.degree(GF(5^2))
 6
\end{verbatim}

Note that \texttt{base} must be an explicit base over which the extension has been defined (as listed by the method \texttt{bases()}):

\begin{verbatim}
 sage: A.degree(GF(5)) # needs sage.rings.finite_rings
 Traceback (most recent call last):
 ... ValueError: not (explicitly) defined over Finite Field of size 5
\end{verbatim}

\texttt{See also:}

\texttt{relative_degree()}, \texttt{absolute_degree()}

\texttt{degree_over} \hspace{1em} \texttt{(base=None)}

Return the degree of this extension over \texttt{base}.

\begin{itemize}
 \item \texttt{base} – a commutative ring (which might be itself an extension) or \texttt{None} (default: \texttt{None})
\end{itemize}
EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: F = GF(5^2)
sage: K = GF(5^4).over(F)
sage: L = GF(5^12).over(K)
sage: K.degree_over(F)
2
sage: L.degree_over(K)
3
sage: L.degree_over(F)
6
```

If `base` is omitted, the degree is computed over the base of the extension:

```python
sage: K.degree_over()  # needs sage.rings.finite_rings
2
sage: L.degree_over()  # needs sage.rings.finite_rings
3
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```python
sage: K.degree_over(GF(5))  # needs sage.rings.finite_rings
Traceback (most recent call last):
  ...
ValueError: not (explicitly) defined over Finite Field of size 5
```

fraction_field(extend_base=False)

Return the fraction field of this extension.

INPUT:

- `extend_base` – a boolean (default: False);

If `extend_base` is `False`, the fraction field of the extension \(L/K \) is defined as \(\text{Frac}(L)/L/K \), except if \(L \) is already a field in which base the fraction field of \(L/K \) is \(L/K \) itself.

If `extend_base` is `True`, the fraction field of the extension \(L/K \) is defined as \(\text{Frac}(L)/\text{Frac}(K) \) (provided that the defining morphism extends to the fraction fields, i.e. is injective).

EXAMPLES:

```python
sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, 'x')
sage: A.<a> = ZZ.extension(x^2 - 5)
sage: OK = A.over()  # over ZZ
sage: OK
Order of conductor 2 generated by a in Number Field in a
with defining polynomial x^2 - 5 over its base
sage: K1 = OK.fraction_field(); K1
Fraction Field of Order of conductor 2 generated by a
in Number Field in a with defining polynomial x^2 - 5 over its base
sage: K1.bases()
[Fraction Field of Order of conductor 2 generated by a
in Number Field in a with defining polynomial x^2 - 5 over its base,
...]
```
Order of conductor 2 generated by \(a \) in Number Field in \(a \)
with defining polynomial \(x^2 - 5 \) over its base,
Integer Ring]

\[
\text{sage: } K2 = OK.fraction_field(extend_base=True); K2
\]
Fraction Field of Order of conductor 2 generated by \(a \)
in Number Field in \(a \) with defining polynomial \(x^2 - 5 \) over its base

\[
\text{sage: } K2.bases()
\]
[Fraction Field of Order of conductor 2 generated by \(a \)
in Number Field in \(a \) with defining polynomial \(x^2 - 5 \) over its base,
Rational Field]

Note that there is no coercion between \(K_1 \) and \(K_2 \):

\[
\text{sage: } K1.has_coerce_map_from(K2) \quad \text{# needs sage.rings.number_field}
\]
False

\[
\text{sage: } K2.has_coerce_map_from(K1) \quad \text{# needs sage.rings.number_field}
\]
False

We check that when the extension is a field, its fraction field does not change:

\[
\text{sage: } K1.fraction_field() \text{ is } K1 \quad \text{# needs sage.rings.number_field}
\]
True

\[
\text{sage: } K2.fraction_field() \text{ is } K2 \quad \text{# needs sage.rings.number_field}
\]
True

\text{from_base_ring}(r)

Return the canonical embedding of \(r \) into this extension.

INPUT:

- \(r \) – an element of the base of the ring of this extension

EXAMPLES:

\[
\text{sage: } # \text{ needs sage.rings.finite_rings}
\text{sage: } k = GF(5)
\text{sage: } K.<u> = GF(5^2).over(k)
\text{sage: } L.<v> = GF(5^4).over(K)
\text{sage: } x = L.from_base_ring(k(2)); x
\]
\(2 \)
\(\text{x.parent()} \)
Field in \(v \) with defining polynomial \(x^2 + (3 - u)x + u \) over its base

\[
\text{sage: } x = L.from_base_ring(u); x
\]
\(u \)
\(\text{x.parent()} \)
Field in \(v \) with defining polynomial \(x^2 + (3 - u)x + u \) over its base

\text{gen()}

Return the first generator of this extension.

EXAMPLES:
Observe that the generator lives in the extension:

```sage
sage: x.parent()
# needs sage.rings.finite_rings
Field in \mathbb{F}_2 with defining polynomial \(x^2 + 4x + 2\) over its base
sage: x.parent() is K
# needs sage.rings.finite_rings
True
```

gens (base=None)

Return the generators of this extension over base.

INPUT:

- base – a commutative ring (which might be itself an extension) or None (default: None); if omitted, use the base of this extension

EXAMPLES:

```sage
sage: K.<a> = GF(5^2).over() # over GF(5)
sage: K.gens()
(a,)
sage: L.<b> = GF(5^4).over(K)
sage: L.gens()
(b,)
sage: L.gens(GF(5))
(b, a)
sage: S.<x> = QQ[]
sage: T.<y> = S[]
sage: T.over(S).gens()
(y,)
sage: T.over(QQ).gens()
(y, x)
```

hom (im_gens=None, codomain=None, base_map=None, category=None, check=True)

Return the unique homomorphism from this extension to codomain that sends self.gens() to the entries of im_gens and induces the map base_map on the base ring.

INPUT:

- im_gens – the images of the generators of this extension
- codomain – the codomain of the homomorphism; if omitted, it is set to the smallest parent containing all the entries of im_gens
- base_map – a map from one of the bases of this extension into something that coerces into the codomain; if omitted, coercion maps are used
- category – the category of the resulting morphism
- check – a boolean (default: True); whether to verify that the images of generators extend to define a map (using only canonical coercions)
EXAMPLES:

```
sage: K.<a> = GF(5^2).over()  # over GF(5)
  needs sage.rings.finite_rings
sage: L.<b> = GF(5^6).over(K)
  needs sage.rings.finite_rings
```

We define (by hand) the relative Frobenius endomorphism of the extension L/K:

```
sage: L.hom([b^25])
  needs sage.rings.finite_rings
Ring endomorphism of
  Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
  Defn: b |--> 2 + 2*a*b + (2 - a)*b^2
```

Defining the absolute Frobenius of L is a bit more complicated because it is not a homomorphism of K-algebras. For this reason, the construction $L.hom([b^5])$ fails:

```
sage: L.hom([b^5])
  needs sage.rings.finite_rings
Traceback (most recent call last):
  ...
ValueError: images do not define a valid homomorphism
```

What we need is to specify a base map:

```
sage: FrobK = K.hom([a^5])
  needs sage.rings.finite_rings
sage: FrobL = L.hom([b^5], base_map=FrobK); FrobL
  needs sage.rings.finite_rings
Ring endomorphism of
  Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
  Defn: b |--> (-1 + a) + (1 + 2*a)*b + a*b^2
      with map on base ring:
          a |--> 1 - a
```

As a shortcut, we may use the following construction:

```
sage: phi = L.hom([b^5, a^5]); phi
  needs sage.rings.finite_rings
Ring endomorphism of
  Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
  Defn: b |--> (-1 + a) + (1 + 2*a)*b + a*b^2
      with map on base ring:
          a |--> 1 - a
```

```
is_defined_over(base)
Return whether or not base is one of the bases of this extension.
```

INPUT:
- base – a commutative ring, which might be itself an extension

EXAMPLES:
sage: # needs sage.rings.finite_rings
sage: A = GF(5^4).over(GF(5^2))
sage: B = GF(5^12).over(A)
sage: A.is_defined_over(GF(5^2))
True
sage: A.is_defined_over(GF(5))
False
sage: # needs sage.rings.finite_rings
sage: B.is_defined_over(A)
True
sage: B.is_defined_over(GF(5^4))
True
sage: B.is_defined_over(GF(5^2))
True
sage: B.is_defined_over(GF(5))
False

Note that an extension is defined over itself:

sage: A.is_defined_over(A) # needs sage.rings.finite_rings
True
sage: A.is_defined_over(GF(5^4)) # needs sage.rings.finite_rings
True

See also:

base(), bases(), absolute_base()

is_field *(proof=True)*

Return whether or not this extension is a field.

INPUT:

- proof – a boolean (default: False)

EXAMPLES:

sage: K = GF(5^5).over() # over GF(5)
needs sage.rings.finite_rings
sage: K.is_field() # needs sage.rings.finite_rings
True
sage: S.<x> = QQ[]
sage: A = S.over(QQ)
sage: A.is_field()
False
sage: B = A.fraction_field()
sage: B.is_field()
True

is_finite_over(base=None)

Return whether or not this extension is finite over base (as a module).

INPUT:
• base – a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K = GF(5^2).over() # over GF(5)
sage: L = GF(5^4).over(K)
sage: L.is_finite_over(K)
True
sage: L.is_finite_over(GF(5))
True

If base is omitted, it is set to its default which is the base of the extension:

sage: L.is_finite_over() # needs sage.rings.finite_rings
True

is_free_over (base=None)
Return True if this extension is free (as a module) over base

INPUT:
• base – a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K = GF(5^2).over() # over GF(5)
sage: L = GF(5^4).over(K)
sage: L.is_free_over(K)
True
sage: L.is_free_over(GF(5))
True

If base is omitted, it is set to its default which is the base of the extension:

sage: L.is_free_over() # needs sage.rings.finite_rings
True

ngens (base=None)
Return the number of generators of this extension over base.

INPUT:
• base – a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K = GF(5^2).over() # over GF(5)
sage: K.gens()
(z2,)
sage: K.ngens()
1
sage: L = GF(5^4).over(K)
sage: L.ngens(GF(5))
(1,)
(continues on next page)
print_options(**options)

Update the printing options of this extension.

INPUT:

- **over** – an integer or Infinity (default: 0); the maximum number of bases included in the printing of this extension
- **base** – a base over which this extension is finite free; elements in this extension will be printed as a linear combinaison of a basis of this extension over the given base

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: A.<a> = GF(5^2).over()  # over GF(5)
sage: B.<b> = GF(5^4).over(A)
sage: C.<c> = GF(5^12).over(B)
sage: D.<d> = GF(5^24).over(C)
```

Observe what happens when we modify the option over:

```
sage: # needs sage.rings.finite_rings
sage: D  # over GF(5)
Field in d with defining polynomial
x^2 + ((1 - a) + ((1 + 2*a) - b)*c + ((2 + a) + (1 - a)*b)*c^2)*x + c over
 its base
sage: D.print_options(over=2)
Field in d with defining polynomial
x^2 + ((1 - a) + ((1 + 2*a) - b)*c + ((2 + a) + (1 - a)*b)*c^2)*x + c over
 its base
sage: D.print_options(over=Infinity)
Field in d with defining polynomial
x^2 + ((1 - a) + ((1 + 2*a) - b)*c + ((2 + a) + (1 - a)*b)*c^2)*x + c over
 its base
Field in b with defining polynomial
x^3 + (1 + (2 - a)*b)*x^2 + (2 + 2*b)*x - b over
Field in b with defining polynomial
x^3 + (1 + (2 - a)*b)*x^2 + (2 + 2*b)*x - b over
Field in b with defining polynomial
x^3 + (1 + (2 - a)*b)*x^2 + (2 + 2*b)*x - b over
Field in a with defining polynomial
x^2 + 4*x + 2 over
Finite Field of size 5
```

Now the option base:

```
sage: # needs sage.rings.finite_rings
sage: d^2
-c + ((-1 + a) + ((-1 + 3*a) + b)*c + ((3 - a) + (-1 + a)*b)*c^2)*d
sage: D.basis_over(B)
[1, c, c^2, d, c*d, c^2*d]
sage: D.print_options(base=B)
sage: D.basis_over(A)
```

(continues on next page)
random_element()

Return a random element in this extension.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K = GF(5^2).over() # over GF(5)
sage: x = K.random_element(); x  # random
3 + z2
sage: x.parent() is K
True
```

relative_degree()

Return the degree of this extension over its base

EXAMPLES:

```python
sage: A = GF(5^4).over(GF(5^2)) # needs sage.rings.finite_rings
sage: A.relative_degree()  # needs sage.rings.finite_rings
2
```

See also:

degree(), absolute_degree()

sage.rings.ring_extension.common_base(K, L, degree)

Return a common base on which K and L are defined.

INPUT:

- K – a commutative ring
- L – a commutative ring
- degree – a boolean; if true, return the degree of K and L over their common base

EXAMPLES:

```python
sage: from sage.rings.ring_extension import common_base
sage: common_base(GF(5^3), GF(5^7), False)  # needs sage.rings.finite_rings
Finite Field of size 5
sage: common_base(GF(5^3), GF(5^7), True)  # needs sage.rings.finite_rings
(Finite Field of size 5, 3, 7)
sage: common_base(GF(5^3), GF(7^5), False)  # needs sage.rings.finite_rings
Traceback (most recent call last):
```

(continues on next page)
When degree is set to True, we only look up for bases on which both K and L are finite:

```python
sage: S.<x> = QQ[
sage: common_base(S, QQ, False)
Rational Field
sage: common_base(S, QQ, True)
Traceback (most recent call last):
  ... 
NotImplementedError: unable to find a common base
```

`sage.rings.ring_extension.generators(ring, base)`

Return the generators of `ring` over `base`.

INPUT:
- `ring` – a commutative ring
- `base` – a commutative ring

EXAMPLES:

```python
sage: from sage.rings.ring_extension import generators
sage: S.<x> = QQ[
# (Continues on next page)
```

`sage.rings.ring_extension.tower_bases(ring, degree)`

Return the list of bases of `ring` (including itself); if degree is True, restrict to finite extensions and return in addition the degree of `ring` over each base.

INPUT:
- `ring` – a commutative ring
- `degree` – a boolean

EXAMPLES:

```python
sage: from sage.rings.ring_extension import tower_bases
sage: S.<x> = QQ[
```
sage: K.<a> = Qq(5^2) # needs sage.rings.padics
sage: L.<w> = K.extension(x^3 - 5) # needs sage.rings.padics
sage: tower_bases(L, True) # needs sage.rings.padics
([5-adic Eisenstein Extension Field in w defined by x^3 - 5 over its base field,
 5-adic Unramified Extension Field in a defined by x^2 + 4*x + 2,
 5-adic Field with capped relative precision 20],
 [1, 3, 6])

sage.rings.ring_extension.variable_names(ring, base)

Return the variable names of the generators of ring over base.

INPUT:

- ring – a commutative ring
- base – a commutative ring

EXAMPLES:

```python
sage: from sage.rings.ring_extension import variable_names
sage: S.<x> = QQ[]
sage: T.<y> = S[]
sage: variable_names(T, S)
('y',)
sage: variable_names(T, QQ)
('y', 'x')
```

7.2 Elements lying in extension of rings

AUTHOR:

- Xavier Caruso (2019)

class sage.rings.ring_extension_element.RingExtensionElement

Bases: CommutativeAlgebraElement

Generic class for elements lying in ring extensions.

additive_order()

Return the additive order of this element.

EXAMPLES:

```python
sage: K.<a> = GF(5^4).over(GF(5^2)) # needs sage.rings.finite_rings
sage: a.additive_order() # needs sage.rings.finite_rings
5
```

backend (force=False)

Return the backend of this element.

INPUT:
• force – a boolean (default: False): if False, raise an error if the backend is not exposed

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: F = GF(5^2)
sage: K.<z> = GF(5^4).over(F)
sage: x = z^10
sage: (z2 + 2) + (3*z2 + 1)*z
sage: y = x.backend()
```

`in_base()`

Return this element as an element of the base.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: F = GF(5^2)
sage: K.<z> = GF(5^4).over(F)
sage: x = z^3 + z^2 + z + 4
sage: y = x.in_base()
```

When the element is not in the base, an error is raised:

```python
sage: z.in_base()                            # needs sage.rings.finite_rings
Traceback (most recent call last):
  ...)
ValueError: z is not in the base
```

`is_nilpotent()`

Return whether if this element is nilpotent in this ring.

EXAMPLES:

```python
sage: A.<x> = PolynomialRing(QQ)
sage: E = A.over(QQ)
sage: E(0).is_nilpotent ()
True
```

7.2. Elements lying in extension of rings

133
is_prime()

Return whether this element is a prime element in this ring.

EXAMPLES:

```sage
sage: A.<x> = PolynomialRing(QQ)
sage: E = A.over(QQ)
sage: E(x^2 + 1).is_prime()  # needs sage.libs.pari
True
sage: E(x^2 - 1).is_prime()  # needs sage.libs.pari
False
```

is_square(root=False)

Return whether this element is a square in this ring.

INPUT:

- root – a boolean (default: False); if True, return also a square root

EXAMPLES:

```sage
sage: # needs sage.rings.finite_rings
sage: K.<a> = GF(5^3).over()
sage: a.is_square()  # needs sage.rings.finite_rings
False
sage: a.is_square(root=True)  # needs sage.rings.finite_rings
(False, None)
sage: b = a + 1
sage: b.is_square()  # needs sage.rings.finite_rings
True
sage: b.is_square(root=True)  # needs sage.rings.finite_rings
(True, 2 + 3*a + a^2)
```

is_unit()

Return whether if this element is a unit in this ring.

EXAMPLES:

```sage
sage: A.<x> = PolynomialRing(QQ)
sage: E = A.over(QQ)
sage: E(4).is_unit()  # needs sage.rings.finite_rings
True
sage: E(x).is_unit()  # needs sage.rings.finite_rings
False
```

multiplicative_order()

Return the multiplicative order of this element.

EXAMPLES:

```sage
sage: K.<a> = GF(5^4).over(GF(5^2))  # needs sage.rings.finite_rings
sage: a.multiplicative_order()  # needs sage.rings.finite_rings
624
```
```
sqrt (extend=True, all=False, name=None)

Return a square root or all square roots of this element.

INPUT:
- `extend` – a boolean (default: True); if “True”, return a square root in an extension ring, if necessary. Otherwise, raise a `ValueError` if the root is not in the ring.
- `all` – a boolean (default: False); if True, return all square roots of this element, instead of just one.
- `name` – Required when `extend=True` and `self` is not a square. This will be the name of the generator extension.

Note: The option `extend=True` is often not implemented.

EXAMPLES:
```
sage: # needs sage.rings.finite_rings
sage: K.<a> = GF(5^3).over()
sage: b = a + 1
sage: b.sqrt()
2 + 3*a + a^2
sage: b.sqrt(all=True)
[2 + 3*a + a^2, 3 + 2*a - a^2]
```
```
class sage.rings.ring_extension_element.RingExtensionFractionFieldElement

A class for elements lying in fraction fields of ring extensions.

denominator()

Return the denominator of this element.

EXAMPLES:
```
sage: # needs sage.rings.number_field
sage: R.<x> = ZZ[]
sage: A.<a> = ZZ.extension(x^2 - 2)
sage: OK = A.over()  # over ZZ
sage: K = OK.fraction_field(); K
Fraction Field of Maximal Order generated by a in Number Field in a
with defining polynomial x^2 - 2 over its base
sage: x = K(1/a); x
a/2
sage: denom = x.denominator(); denom
2
```

The denominator is an element of the ring which was used to construct the fraction field:
```
sage: denom.parent()
# needs sage.rings.number_field
Maximal Order generated by a in Number Field in a with defining polynomial x^2 - 2 over its base
sage: denom.parent() is OK
# needs sage.rings.number_field
True
```
\textbf{numerator()}

Return the numerator of this element.

\begin{verbatim}
EXAMPLES:
sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, 'x')
sage: A.<a> = ZZ.extension(x^2 - 2)
sage: OK = A.over() # over ZZ
sage: K = OK.fraction_field(); K
Fraction Field of Maximal Order generated by a in Number Field in a
with defining polynomial x^2 - 2 over its base
sage: x = K(1/a); x
a/2
sage: num = x.numerator(); num
a

The numerator is an element of the ring which was used to construct the fraction field:

\begin{verbatim}
sage: num.parent()
˓→needs sage.rings.number_field
Maximal Order generated by a in Number Field in a
with defining polynomial x^2 - 2 over its base
sage: num.parent() is OK
˓→needs sage.rings.number_field
True
\end{verbatim}
\end{verbatim}

class \texttt{sage.rings.ring_extension_element.RingExtensionWithBasisElement}

A class for elements lying in finite free extensions.

\textbf{charpoly} (\texttt{base=\texttt{None}}, \texttt{var='x'})

Return the characteristic polynomial of this element over \texttt{base}.

\textbf{INPUT:}

\begin{itemize}
\item \texttt{base} – a commutative ring (which might be itself an extension) or \texttt{None}
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: # needs sage.rings.finite_rings
sage: F = GF(5)
sage: K.<a> = GF(5^3).over(F)
sage: L. = GF(5^6).over(K)
sage: u = a/(1+b)
sage: chi = u.charpoly(K); chi
x^2 + (1 + 2*a + 3*a^2)*x + 3 + 2*a^2

We check that the charpoly has coefficients in the base ring:

\begin{verbatim}
sage: chi.base_ring()
˓→needs sage.rings.finite_rings
Field in a with defining polynomial x^3 + 3*x + 3 over its base
sage: chi.base_ring() is K
˓→needs sage.rings.finite_rings
True
\end{verbatim}
\end{verbatim}

and that it annihilates \texttt{u}:
Similarly, one can compute the characteristic polynomial over F:

```sage
sage: u.charpoly(F)
```

A different variable name can be specified:

```sage
sage: u.charpoly(F, var='t')
```

If `base` is omitted, it is set to its default which is the base of the extension:

```sage
sage: u.charpoly()
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```sage
sage: u.charpoly(GF(5^2))
```

```
matrix(base=None)
```

Return the matrix of the multiplication by this element (in the basis output by `basis_over()`).

INPUT:

- `base` – a commutative ring (which might be itself an extension) or `None`

EXAMPLES:

```sage
sage: K.<a> = GF(5^3).over()  # over GF(5)
sage: L.<b> = GF(5^6).over(K)

sage: u = a/(1+b)
sage: u
(2 + a + 3*a^2) + (3 + 3*a + a^2)*b

sage: b*u
(3 + 2*a^2) + (2 + 2*a - a^2)*b

sage: u.matrix(K)
[2 + a + 3*a^2 3 + 3*a + a^2]
[3 + 2*a^2 2 + 2*a - a^2]

sage: u.matrix(GF(5))
[2 1 3 3 3 1]
[1 3 1 2 0 3]
[2 3 3 1 3 0]
[3 0 2 2 2 4]
[4 2 0 3 0 2]
[0 4 2 4 2 0]
```
If `base` is omitted, it is set to its default which is the base of the extension:

```python
sage: u.matrix()  # needs sage.rings.finite_rings
[2 + a + 3*a^2 3 + 3*a + a^2]
[3 + 2*a^2 2 + 2*a - a^2]
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```python
sage: u.matrix(GF(5^2))  # needs sage.rings.finite_rings
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2
```

minpoly(base=None, var='x')

Return the minimal polynomial of this element over `base`.

INPUT:

- `base` – a commutative ring (which might be itself an extension) or `None`

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: F = GF(5)
sage: K.<a> = GF(5^3).over(F)
sage: L.<b> = GF(5^6).over(K)
sage: u = 1 / (a+b)
sage: chi = u.minpoly(K); chi
x^2 + (2*a + a^2)*x - 1 + a
```

We check that the minimal polynomial has coefficients in the base ring:

```python
sage: chi.base_ring()  # needs sage.rings.finite_rings
Field in a with defining polynomial x^3 + 3*x + 3 over its base
sage: chi.base_ring() is K  # needs sage.rings.finite_rings
True
```

and that it annihilates `u`:

```python
sage: chi(u)  # needs sage.rings.finite_rings
0
```

Similarly, one can compute the minimal polynomial over `F`:

```python
sage: u.minpoly(F)  # needs sage.rings.finite_rings
x^6 + 4*x^5 + x^4 + 2*x^2 + 3
```

A different variable name can be specified:

```python
sage: u.minpoly(F, var='t')  # needs sage.rings.finite_rings
t^6 + 4*t^5 + t^4 + 2*t^2 + 3
```
If \texttt{base} is omitted, it is set to its default which is the base of the extension:

```python
sage: u.minpoly()
˓→needs sage.rings.finite_rings
x^2 + (2*a + a^2)*x - 1 + a
```

Note that \texttt{base} must be an explicit base over which the extension has been defined (as listed by the method \texttt{bases()}):

```python
sage: u.minpoly(GF(5^2))  # needs sage.rings.finite_rings
˓→needs sage.rings.finite_rings
Traceback (most recent call last):
...
ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2
```

\texttt{norm}(\texttt{base=\texttt{None}})

Return the norm of this element over \texttt{base}.

INPUT:

- \texttt{base} – a commutative ring (which might be itself an extension) or \texttt{None}

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: F = GF(5)
sage: K.<a> = GF(5^3).over(F)
sage: L.<b> = GF(5^6).over(K)
sage: u = a/(1+b)
sage: nr = u.norm(K); nr
3 + 2*a^2

We check that the norm lives in the base ring:

```python
sage: nr.parent()
˓→needs sage.rings.finite_rings
Field in a with defining polynomial x^3 + 3*x + 3 over its base
sage: nr.parent() is K # needs sage.rings.finite_rings
True

Similarly, one can compute the norm over \texttt{F}:

```python
sage: u.norm(F)  # needs sage.rings.finite_rings
4

We check the transitivity of the norm:

```python
sage: u.norm(F) == nr.norm(F) # needs sage.rings.finite_rings
True

If \texttt{base} is omitted, it is set to its default which is the base of the extension:

```python
sage: u.norm()  # needs sage.rings.finite_rings
3 + 2*a^2
```
Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```python
sage: u.norm(GF(5^2))  # needs sage.rings.finite_rings
Traceback (most recent call last):
... ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2
```

polynomial (base=None, var='x')

Return a polynomial (in one or more variables) over `base` whose evaluation at the generators of the parent equals this element.

INPUT:

- `base` – a commutative ring (which might be itself an extension) or None

EXAMPLES:

```python
sage: F.<a> = GF(5^2).over()  # over GF(5)
sage: K.<b> = GF(5^4).over(F)
sage: L.<c> = GF(5^12).over(K)
sage: u = 1/(a + b + c); u
(2 + (-1 - a)*b) + ((2 + 3*a) + (1 - a)*b)*c + ((-1 - a) - a*b)*c^2
sage: P = u.polynomial(K); P
((-1 - a) - a*b)*x^2 + ((2 + 3*a) + (1 - a)*b)*x + 2 + (-1 - a)*b
sage: P.base_ring() is K
True
sage: P(c) == u
True
```

When the base is `F`, we obtain a bivariate polynomial:

```python
sage: P = u.polynomial(F); P  # needs sage.rings.finite_rings
(-a)*x0^2*x1 + (-1 - a)*x0^2 + (1 - a)*x0*x1 + (2 + 3*a)*x0 + (-1 - a)*x1 + 2
```

We check that its value at the generators is the element we started with:

```python
sage: L.gens(F)  # needs sage.rings.finite_rings
(c, b)
sage: P(c, b) == u  # needs sage.rings.finite_rings
True
```

Similarly, when the base is `GF(5)`, we get a trivariate polynomial:

```python
sage: P = u.polynomial(GF(5)); P  # needs sage.rings.finite_rings
-x0^2*x1*x2 - x0^2*x2 - x0*x1*x2 - x0^2 + x0*x1 - 2*x0*x2 - x1*x2 + 2*x0 - x1 + 2
```

Different variable names can be specified:

```python
sage: u.polynomial(GF(5), var='y')  # needs sage.rings.finite_rings
-y0^2*y1*y2 - y0^2*y2 - y0*y1*y2 - y0^2 + y0*y1 - 2*y0*y2 - y1*y2 + 2*y0 - y1...
```

(continues on next page)
If `base` is omitted, it is set to its default which is the base of the extension:

```
sage: u.polynomial()  # needs sage.rings.finite_rings
((-1 - a) - a*b)*x^2 + ((2 + 3*a) + (1 - a)*b)*x + 2 + (-1 - a)*b
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```
sage: u.polynomial(GF(5^3))  # needs sage.rings.finite_rings
Traceback (most recent call last):
... ValueError: not (explicitly) defined over Finite Field in z3 of size 5^3
```

```
trace(base=None)
```

Return the trace of this element over `base`.

INPUT:
- `base` – a commutative ring (which might be itself an extension) or `None`

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: F = GF(5)
sage: K.<a> = GF(5^3).over(F)
sage: L.<b> = GF(5^6).over(K)
sage: u = a/(1+b)
sage: tr = u.trace(K); tr
-1 + 3*a + 2*a^2
```

We check that the trace lives in the base ring:

```
sage: tr.parent()  # needs sage.rings.finite_rings
Field in a with defining polynomial x^3 + 3*x + 3 over its base
sage: tr.parent() is K  # needs sage.rings.finite_rings
True
```

Similarly, one can compute the trace over `F`:

```
sage: u.trace(F)  # needs sage.rings.finite_rings
0
```

We check the transitivity of the trace:

```
sage: u.trace(F) == tr.trace(F)  # needs sage.rings.finite_rings
True
```

If `base` is omitted, it is set to its default which is the base of the extension:
Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```sage
sage: u.trace(GF(5^2)) # needs sage.rings.finite_rings
Traceback (most recent call last):
... ValueError: not (explicitly) defined over Finite Field in z2 of size 5^2
```

vector (base=None)

Return the vector of coordinates of this element over `base` (in the basis output by the method `basis_over()`).

INPUT:

- `base` – a commutative ring (which might be itself an extension) or `None`

EXAMPLES:

```sage
sage: # needs sage.rings.finite_rings
sage: F = GF(5)
sage: K.<a> = GF(5^2).over()  # over F
sage: L.<b> = GF(5^6).over(K)
sage: x = (a+b)^4; x
(-1 + a) + (3 + a)*b + (1 - a)*b^2
sage: x.vector(K)  # basis is (1, b, b^2)
(-1 + a, 3 + a, 1 - a)
sage: x.vector(F)  # basis is (1, a, b, a*b, b^2, a*b^2)
(4, 1, 3, 1, 1, 4)
```

If `base` is omitted, it is set to its default which is the base of the extension:

```sage
sage: x.vector() # needs sage.rings.finite_rings
(-1 + a, 3 + a, 1 - a)
```

Note that `base` must be an explicit base over which the extension has been defined (as listed by the method `bases()`):

```sage
sage: x.vector(GF(5^3)) # needs sage.rings.finite_rings
Traceback (most recent call last):
... ValueError: not (explicitly) defined over Finite Field in z3 of size 5^3
```
7.3 Morphisms between extension of rings

AUTHOR:

- Xavier Caruso (2019)

```python
class sage.rings.ring_extension_morphism.MapFreeModuleToRelativeRing
    Bases: Map

    Base class of the module isomorphism between a ring extension and a free module over one of its bases.

    is_injective()
    Return whether this morphism is injective.

    EXAMPLES:
    sage: K = GF(11^6).over(GF(11^3))
    # needs sage.rings.finite_rings
    sage: V, i, j = K.free_module()
    # needs sage.rings.finite_rings
    sage: i.is_injective()
    # needs sage.rings.finite_rings
    True

    is_surjective()
    Return whether this morphism is surjective.

    EXAMPLES:
    sage: K = GF(11^6).over(GF(11^3))
    # needs sage.rings.finite_rings
    sage: V, i, j = K.free_module()
    # needs sage.rings.finite_rings
    sage: j.is_injective()
    # needs sage.rings.finite_rings
    True
```

```python
class sage.rings.ring_extension_morphism.MapRelativeRingToFreeModule
    Bases: Map

    Base class of the module isomorphism between a ring extension and a free module over one of its bases.

    is_injective()
    Return whether this morphism is injective.

    EXAMPLES:
    sage: K = GF(11^6).over(GF(11^3))
    # needs sage.rings.finite_rings
    sage: V, i, j = K.free_module()
    # needs sage.rings.finite_rings
    sage: i.is_injective()
    # needs sage.rings.finite_rings
    True

    is_surjective()
    Return whether this morphism is injective.

    EXAMPLES:
    sage: K = GF(11^6).over(GF(11^3))
    # needs sage.rings.finite_rings
    sage: V, i, j = K.free_module()
    # needs sage.rings.finite_rings
    sage: j.is_injective()
    # needs sage.rings.finite_rings
    True
```
sage: K = GF(11^6).over(GF(11^3)) # needs sage.rings.finite_rings
sage: V, i, j = K.free_module() # needs sage.rings.finite_rings
sage: j.is_surjective() # needs sage.rings.finite_rings
True

class sage.rings.ring_extension_morphism.RingExtensionBackendIsomorphism
Bases: RingExtensionHomomorphism
A class for implementing isomorphisms taking an element of the backend to its ring extension.

class sage.rings.ring_extension_morphism.RingExtensionBackendReverseIsomorphism
Bases: RingExtensionHomomorphism
A class for implementing isomorphisms from a ring extension to its backend.

class sage.rings.ring_extension_morphism.RingExtensionHomomorphism
Bases: RingMap
A class for ring homomorphisms between extensions.

base_map()
Return the base map of this morphism or just None if the base map is a coercion map.

EXAMPLES:

sage: F = GF(5)
sage: K.<a> = GF(5^2).over(F) # needs sage.rings.finite_rings
sage: L. = GF(5^6).over(K) # needs sage.rings.finite_rings
We define the absolute Frobenius of L:

sage: FrobL = L.hom([b^5, a^5]); FrobL # needs sage.rings.finite_rings
Ring endomorphism of Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
 Defn: b |--> (-1 + a) + (1 + 2*a)*b + a*b^2
 with map on base ring:
 a |--> 1 - a
sage: FrobL.base_map() # needs sage.rings.finite_rings
Ring morphism:
 From: Field in a with defining polynomial x^2 + 4*x + 2 over its base
 To: Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
 Defn: a |--> 1 - a
The square of FrobL acts trivially on K; in other words, it has a trivial base map:

sage: phi = FrobL^2; phi # needs sage.rings.finite_rings
Ring endomorphism of Field in b with defining polynomial x^3 + (2 + 2*a)*x - a over its base
(continues on next page)
Defn: $b \mapsto 2 + 2a*b + (2 - a)*b^2$

```
sage: phi.base_map()  # needs sage.rings.finite_rings
```

is_identity()
Return whether this morphism is the identity.

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: K.<a> = GF(5^2).over()  # over GF(5)
sage: FrobK = K.hom([a^5])
sage: FrobK.is_identity()  # False
```

Coercion maps are not considered as identity morphisms:

```
sage: # needs sage.rings.finite_rings
sage: L.<b> = GF(5^6).over(K)
sage: iota = L.defining_morphism(); iota  # Ring morphism:
   From: Field in a with defining polynomial $x^2 + 4*x + 2$ over its base
   To:   Field in b with defining polynomial $x^3 + (2 + 2*a)*x - a$ over its...
   Defn: a |--> a
sage: iota.is_identity()  # False
```

is_injective()
Return whether this morphism is injective.

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: K = GF(5^10).over(GF(5^5))
sage: iota = K.defining_morphism(); iota  # Ring morphism:
   From: Finite Field in z5 of size 5^5
   To:   Field in z10 with defining polynomial
   x^2 + (2*z5^3 + 2*z5^2 + 4*z5 + 4)*x + z5 over its base
   Defn: z5 |--> z5
sage: iota.is_injective()  # True
```

```
sage: K = GF(7).over(ZZ)
sage: iota = K.defining_morphism(); iota  # Ring morphism:
   From: Integer Ring
   To:   Finite Field of size 7 over its base
   Defn: 1 |--> 1
sage: iota.is_injective()  # False
```

is_surjective()
Return whether this morphism is surjective.

7.3. Morphisms between extension of rings 145
EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K = GF(5^10).over(GF(5^5))
sage: iota = K.defining_morphism(); iota
Ring morphism:
  From: Finite Field in z5 of size 5^5
  To:   Field in z10 with defining polynomial
         x^2 + (2*z5^3 + 2*z5^2 + 4*z5 + 4)*x + z5 over its base
  Defn: z5 |--> z5
sage: iota.is_surjective()
False

sage: K = GF(7).over(ZZ)
sage: iota = K.defining_morphism(); iota
Ring morphism:
  From: Integer Ring
  To:   Finite Field of size 7 over its base
  Defn: 1 |--> 1
sage: iota.is_surjective()
True
```
8.1 Generic data structures and algorithms for rings

AUTHORS:

• Lorenz Panny (2022): ProductTree, prod_with_derivative()

class sage.rings.generic.ProductTree(leaves)

Bases: object

A simple binary product tree, i.e., a tree of ring elements in which every node equals the product of its children. (In particular, the *root* equals the product of all *leaves*.)

Product trees are a very useful building block for fast computer algebra. For example, a quasilinear-time Discrete Fourier Transform (the famous *Fast* Fourier Transform) can be implemented as follows using the *remainders()* method of this class:

```python
sage: # needs sage.rings.finite_rings
sage: from sage.rings.generic import ProductTree
sage: F = GF(65537)
sage: a = F(1111)
sage: assert a.multiplicative_order() == 1024
sage: R.<x> = F[]
sage: ms = [x - a^i for i in range(1024)]  # roots of unity
sage: ys = [F.random_element() for _ in range(1024)]  # input vector
sage: tree = ProductTree(ms)
sage: zs = tree.remainders(R(ys))  # compute FFT!
sage: zs == [R(ys) % m for m in ms]
True
```

Similarly, the *interpolation()* method can be used to implement the inverse Fast Fourier Transform:

```python
sage: tree.interpolation(zs).padded_list(len(ys)) == ys  #...
...needs sage.rings.finite_rings
True
```

This class encodes the tree as *layers*: Layer 0 is just a tuple of the leaves. Layer $i + 1$ is obtained from layer i by replacing each pair of two adjacent elements by their product, starting from the left. (If the length is odd, the unpaired element at the end is simply copied as is.) This iteration stops as soon as it yields a layer containing only a single element (the root).

Note: Use this class if you need the *remainders()* method. To compute just the product, *prod()* is likely faster.
INPUT:

- **leaves** – an iterable of elements in a common ring

EXAMPLES:

```python
sage: from sage.rings.generic import ProductTree
sage: R.<x> = GF(101)[]
sage: vs = [x - i for i in range(1,10)]
sage: tree = ProductTree(vs)
```

sage: tree.root()
```
x^9 + 56*x^8 + 62*x^7 + 44*x^6 + 47*x^5 + 42*x^4 + 15*x^3 + 11*x^2 + 12*x + 13
```

sage: tree.remainders(x^7 + x + 1)
```
[3, 30, 70, 27, 58, 72, 98, 98, 23]
```

sage: tree.remainders(x^100)
```
[1, 1, 1, 1, 1, 1, 1, 1, 1]
```

We can access the individual layers of the tree:

```python
sage: tree.layers
```

```python
[(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,...
  → 79, 83, 89, 97),
  (6, 35, 143, 323, 667, 1147, 1763, 2491, 3599, 4757, 5767, 7387, 97),
  (210, 46189, 765049, 4391633, 17120443, 42600829, 97),
  (9699690, 3359814435017, 72935064647247, 97),
  (3258158477190044730, 70746471270782959),
  (2305567963945518424753102147331756070,)]
```

interpolation

Given a sequence `xs` of values, one per leaf, return a single element `x` which is congruent to the `i`th value in `xs` modulo the `i`th leaf, for all `i`.

This is an explicit version of the Chinese remainder theorem; see also `CRT()`. Using this product tree is faster for repeated calls since the required CRT bases are cached after the first run.

The base ring must support the `xgcd()` function for this method to work.

EXAMPLES:

```python
sage: from sage.rings.generic import ProductTree
sage: vs = prime_range(100)
```

sage: tree = ProductTree(vs)
```
sage: tree.interpolation([1, 1, 2, 1, 9, 1, 7, 15, 8, 20, 15, 6, 27, 11, 2, 6,
  → 0, 25, 49, 5, 51, 4, 19, 74, 13])
```

1085749272377676749812331719267
```

This method is faster than `CRT()` for repeated calls with the same moduli:
leaves()

Return a tuple containing the leaves of this product tree.

EXAMPLES:

```python
sage: from sage.rings.generic import ProductTree
sage: R.<x> = GF(101)[]
sage: vs = [x - i for i in range(1,10)]
sage: tree = ProductTree(vs)
sage: tree.leaves()
(x + 100, x + 99, x + 98, ..., x + 93, x + 92)
sage: tree.leaves() == tuple(vs)
True
```

remainders(x)

Given a value \( x \), return a list of all remainders of \( x \) modulo the leaves of this product tree.

The base ring must support the \% operator for this method to work.

INPUT:

- \( x \) – an element of the base ring of this product tree

EXAMPLES:

```python
sage: from sage.rings.generic import ProductTree
sage: vs = prime_range(100)
sage: tree = ProductTree(vs)
sage: n = 108574927237767649812331719267
sage: tree.remainders(n)
[1, 1, 2, 1, 9, 1, 7, 15, 8, 20, 15, 6, 27, 11, 2, 6, 0, 25, 49, 5, 51, 4, 19, ...
 → 74, 13]
sage: [n % v for v in vs]
[1, 1, 2, 1, 9, 1, 7, 15, 8, 20, 15, 6, 27, 11, 2, 6, 0, 25, 49, 5, 51, 4, 19, ...
 → 74, 13]
```

root()

Return the value at the root of this product tree (i.e., the product of all leaves).

EXAMPLES:

```python
sage: from sage.rings.generic import ProductTree
sage: R.<x> = GF(101)[]
sage: vs = [x - i for i in range(1,10)]
sage: tree = ProductTree(vs)
sage: tree.root()
x^9 + 56*x^8 + 62*x^7 + 44*x^6 + 47*x^5 + 42*x^4 + 15*x^3 + 11*x^2 + 12*x + 13
sage: tree.root() == prod(vs)
True
```
sage.rings.generic.prod_with_derivative(pairs)

Given an iterable of pairs \((f, \partial f)\) of ring elements, return the pair \((\prod f, \partial \prod f)\), assuming \(\partial\) is an operator obeying the standard product rule.

This function is entirely algebraic, hence still works when the elements \(f\) and \(\partial f\) are all passed through some ring homomorphism first. One particularly useful instance of this is evaluating the derivative of a product of polynomials at a point without fully expanding the product; see the second example below.

INPUT:

- \texttt{pairs} – an iterable of tuples \((f, \partial f)\) of elements of a common ring

ALGORITHM: Repeated application of the product rule.

EXAMPLES:

```python
sage: from sage.rings.generic import prod_with_derivative
sage: R.<x> = ZZ
sage: fs = [x^2 + 2*x + 3, 4*x + 5, 6*x^7 + 8*x + 9]
sage: prod(fs)
24*x^10 + 78*x^9 + 132*x^8 + 90*x^7 + 32*x^4 + 140*x^3 + 293*x^2 + 318*x + 135
sage: prod(fs).derivative()
240*x^9 + 702*x^8 + 1056*x^7 + 630*x^6 + 128*x^3 + 420*x^2 + 586*x + 318
sage: F, dF = prod_with_derivative((f, f.derivative()) for f in fs)
sage: F
24*x^10 + 78*x^9 + 132*x^8 + 90*x^7 + 32*x^4 + 140*x^3 + 293*x^2 + 318*x + 135
sage: dF
240*x^9 + 702*x^8 + 1056*x^7 + 630*x^6 + 128*x^3 + 420*x^2 + 586*x + 318
```

The main reason for this function to exist is that it allows us to \textit{evaluate} the derivative of a product of polynomials at a point \(\alpha\) without ever fully expanding the product as a polynomial:

```python
sage: alpha = 42
sage: F(alpha)
442943981574522759
sage: dF(alpha)
104645261461514994
sage: us = [f(alpha) for f in fs]
sage: vs = [f.derivative()(alpha) for f in fs]
sage: prod_with_derivative(zip(us, vs))
(442943981574522759, 104645261461514994)
```
9.1 Big O for various types (power series, p-adics, etc.)

See also:
- asymptotic expansions
- p-adic numbers
- power series
- polynomials

sage.rings.big_oh.O(*x, **kwds)
Big O constructor for various types.

EXAMPLES:
This is useful for writing power series elements:

```
sage: R.<t> = ZZ[[t]]
sage: (1+t)^10 + O(t^5)
1 + 10*t + 45*t^2 + 120*t^3 + 210*t^4 + O(t^5)
```

A power series ring is created implicitly if a polynomial element is passed:

```
sage: R.<x> = QQ[[x]]
sage: O(x^100)
O(x^100)
sage: 1/(1+x+O(x^5))
1 - x + x^2 - x^3 + x^4 + O(x^5)
sage: R.<u,v> = QQ[[u, v]]
sage: 1 + u + v^2 + O(u, v)^5
1 + u + v^2 + O(u, v)^5
```

This is also useful to create p-adic numbers:

```
sage: O(7^6) #...
→ needs sage.rings.padics
0(7^6)
sage: 1/3 + O(7^6) #...
→ needs sage.rings.padics
5 + 4*7 + 4*7^2 + 4*7^3 + 4*7^4 + 4*7^5 + O(7^6)
```

It behaves well with respect to adding negative powers of $p$:  

```
```
There are problems if you add a rational with very negative valuation to an $O$-Term:

```sage
sage: 11^-12 + O(11^15) # needs sage.rings.padics
11^-12 + O(11^8)
```

The reason that this fails is that the constructor doesn’t know the right precision cap to use. If you cast explicitly or use other means of element creation, you can get around this issue:

```sage
sage: # needs sage.rings.padics
sage: K = Qp(11, 30)
sage: K(11^-12) + O(11^15) # needs sage.rings.padics
11^-12 + O(11^15)
sage: K(11^-12, absprec=15) # needs sage.rings.padics
11^-12 + O(11^15)
sage: K(11^-12, 15) # needs sage.rings.padics
11^-12 + O(11^15)
```

We can also work with asymptotic expansions:

```sage
sage: A.<n> = AsymptoticRing(growth_group='QQ^n * n^QQ * log(n)^QQ', coefficient_ring=QQ); A # needs sage.symbolic
Asymptotic Ring <QQ^n * n^QQ * log(n)^QQ * Signs^n> over Rational Field
sage: O(n) # needs sage.symbolic
O(n)
```

Application with Puiseux series:

```sage
sage: P.<y> = PuiseuxSeriesRing(ZZ)
sage: y^(1/5) + O(y^(1/3)) # needs sage.rings.padics
y^(1/5) + O(y^(1/3))
sage: y^(1/3) + O(y^(1/5)) # needs sage.rings.padics
O(y^(1/5))
```

### 9.2 Signed and Unsigned Infinities

The unsigned infinity “ring” is the set of two elements

1. infinity
2. A number less than infinity

The rules for arithmetic are that the unsigned infinity ring does not canonically coerce to any other ring, and all other rings canonically coerce to the unsigned infinity ring, sending all elements to the single element “a number less than infinity” of
the unsigned infinity ring. Arithmetic and comparisons then take place in the unsigned infinity ring, where all arithmetic operations that are well-defined are defined.

The infinity “ring” is the set of five elements

1. plus infinity
2. a positive finite element
3. zero
4. a negative finite element
5. negative infinity

The infinity ring coerces to the unsigned infinity ring, sending the infinite elements to infinity and the non-infinite elements to “a number less than infinity.” Any ordered ring coerces to the infinity ring in the obvious way.

**Note:** The shorthand \texttt{oo} is predefined in Sage to be the same as \texttt{+Infinity} in the infinity ring. It is considered equal to, but not the same as \texttt{Infinity} in the \texttt{UnsignedInfinityRing}.

**EXAMPLES:**

We fetch the unsigned infinity ring and create some elements:

```python
sage: P = UnsignedInfinityRing; P
The Unsigned Infinity Ring
sage: P(5)
A number less than infinity
sage: P.ngens()
1
sage: unsigned_oo = P.0; unsigned_oo
Infinity
```

We compare finite numbers with infinity:

```python
sage: 5 < unsigned_oo
True
sage: 5 > unsigned_oo
False
sage: unsigned_oo < 5
False
sage: unsigned_oo > 5
True
```

Demonstrating the shorthand \texttt{oo} versus \texttt{Infinity}:

```python
sage: oo
+Infinity
sage: oo is InfinityRing.0
True
sage: oo is UnsignedInfinityRing.0
False
sage: oo == UnsignedInfinityRing.0
True
```

We do arithmetic:

```python
sage: unsigned_oo + 5
Infinity
```
We make \( \frac{1}{\text{unsigned}_\infty} \) return the integer 0 so that arithmetic of the following type works:

\[
\text{sage: } (1/\text{unsigned}_\infty) + 2
\]
\[2\]
\[
\text{sage: } 32/5 - (2.439/\text{unsigned}_\infty)
\]
\[32/5\]

Note that many operations are not defined, since the result is not well-defined:

\[
\text{sage: } \text{unsigned}_\infty/0
\]

Traceback (most recent call last):
...
ValueError: quotient of number < oo by number < oo not defined

What happened above is that 0 is canonically coerced to “A number less than infinity” in the unsigned infinity ring. Next, Sage tries to divide by multiplying with its inverse. Finally, this inverse is not well-defined.

\[
\text{sage: } 0/\text{unsigned}_\infty
\]
\[0\]
\[
\text{sage: } \text{unsigned}_\infty * 0
\]

Traceback (most recent call last):
...
ValueError: unsigned oo times smaller number not defined
\[
\text{sage: } \text{unsigned}_\infty/\text{unsigned}_\infty
\]

Traceback (most recent call last):
...
ValueError: unsigned oo times smaller number not defined

In the infinity ring, we can negate infinity, multiply positive numbers by infinity, etc.

\[
\text{sage: } P = \text{InfinityRing}; P
\]

The Infinity Ring
\[
\text{sage: } P(5)
\]

A positive finite number

The symbol \( \infty \) is predefined as a shorthand for \(+\infty\):

\[
\text{sage: } \infty
\]

+\infty

We compare finite and infinite elements:

\[
\text{sage: } 5 < \infty
\]

True
\[
\text{sage: } P(-5) < P(5)
\]

True
\[
\text{sage: } P(2) < P(3)
\]

False
\[
\text{sage: } -\infty < \infty
\]

True

We can do more arithmetic than in the unsigned infinity ring:

\[
\text{sage: } 2 * \infty
\]

+\infty
\[
\text{sage: } -2 * \infty
\]

-\infty
\[
\text{sage: } 1 - \infty
\]

(continues on next page)
We make $1 / \infty$ and $1 / -\infty$ return the integer 0 instead of the infinity ring Zero so that arithmetic of the following type works:

```python
sage: (1/oo) + 2
2
sage: 32/5 - (2.439/-oo)
32/5
```

If we try to subtract infinities or multiply infinity by zero we still get an error:

```python
sage: oo - oo
Traceback (most recent call last):
 ... SignError: cannot add infinity to minus infinity
sage: 0 * oo
Traceback (most recent call last):
 ... SignError: cannot multiply infinity by zero
sage: P(2) + P(-3)
Traceback (most recent call last):
 ... SignError: cannot add positive finite value to negative finite value
```

Signed infinity can also be represented by RR / RDF elements. But unsigned infinity cannot:

```python
sage: oo in RR, oo in RDF
(True, True)
sage: unsigned_infinity in RR, unsigned_infinity in RDF
(False, False)
```

```python
class sage.rings.infinity.AnInfinity
 Bases: object

 lcm(x)
 Return the least common multiple of \(\infty \) and \(x \), which is by definition \(\infty \) unless \(x \) is 0.

 EXAMPLES:

 sage: oo.lcm(0)
 0
 sage: oo.lcm(oo)
 +Infinity
 sage: oo.lcm(-oo)
 +Infinity
 sage: oo.lcm(10)
 +Infinity
 sage: (-oo).lcm(10)
 +Infinity
```

```python
class sage.rings.infinity.FiniteNumber(parent, x)
 Bases: RingElement
```

9.2. Signed and Unsigned Infinities
Initialize self.

**sign()**
Return the sign of self.

**EXAMPLES:**

```python
sage: sign(InfinityRing(2))
1
sage: sign(InfinityRing(0))
0
sage: sign(InfinityRing(-2))
-1
```

**sqrt()**

**EXAMPLES:**

```python
sage: InfinityRing(7).sqrt()
A positive finite number
sage: InfinityRing(0).sqrt()
Zero
sage: InfinityRing(-.001).sqrt()
Traceback (most recent call last):
... SignError: cannot take square root of a negative number
```

**class** `sage.rings.infinity.InfinityRing_class`

Bases: `Singleton, CommutativeRing`

Initialize self.

**fraction_field()**

This isn’t really a ring, let alone an integral domain.

**gen(n=0)**

The two generators are plus and minus infinity.

**EXAMPLES:**

```python
sage: InfinityRing.gen(0)
+Infinity
sage: InfinityRing.gen(1)
-Infinity
sage: InfinityRing.gen(2)
Traceback (most recent call last):
... IndexError: n must be 0 or 1
```

**gens()**

The two generators are plus and minus infinity.

**EXAMPLES:**

```python
sage: InfinityRing.gens()
(+Infinity, -Infinity)
```

**is_commutative()**

The Infinity Ring is commutative

**EXAMPLES:**
sage: InfinityRing.is_commutative()
True

is_zero()

The Infinity Ring is not zero

EXAMPLES:

sage: InfinityRing.is_zero()
False

ngens()

The two generators are plus and minus infinity.

EXAMPLES:

sage: InfinityRing.ngens()
2
sage: len(InfinityRing.gens())
2

class sage.rings.infinity.LessThanInfinity(*args)

Bases: _uniq, RingElement

Initialize self.

EXAMPLES:

sage: sage.rings.infinity.LessThanInfinity() is UnsignedInfinityRing(5)
True

sign()

Raise an error because the sign of self is not well defined.

EXAMPLES:

sage: sign(UnsignedInfinityRing(2))
Traceback (most recent call last):
...  
NotImplementedError: sign of number < oo is not well defined
sage: sign(UnsignedInfinityRing(0))
Traceback (most recent call last):
...  
NotImplementedError: sign of number < oo is not well defined
sage: sign(UnsignedInfinityRing(-2))
Traceback (most recent call last):
...  
NotImplementedError: sign of number < oo is not well defined

class sage.rings.infinity.MinusInfinity(*args)

Bases: _uniq, AnInfinity, InfinityElement

Initialize self.

sqrt()

EXAMPLES:
```python
sage: (-oo).sqrt()
Traceback (most recent call last):
...
SignError: cannot take square root of negative infinity
```

```python
class sage.rings.infinity.PlusInfinity(*args)
 Bases: _uniq, AnInfinity, InfinityElement
 Initialize self.

 sqrt()
 The square root of self.
 The square root of infinity is infinity.
 EXAMPLES:

 sage: oo.sqrt()
 +Infinity
```

```python
class sage.rings.infinity.UnsignedInfinity(*args)
 Bases: _uniq, AnInfinity, InfinityElement
 Initialize self.
```

```python
class sage.rings.infinity.UnsignedInfinityRing_class
 Bases: Singleton, CommutativeRing
 Initialize self.

 fraction_field()
 The unsigned infinity ring isn’t an integral domain.
 EXAMPLES:

 sage: UnsignedInfinityRing.fraction_field()
 Traceback (most recent call last):
 ...
 TypeError: infinity ring has no fraction field
```

```python
gen(n=0)
 The “generator” of self is the infinity object.
 EXAMPLES:

 sage: UnsignedInfinityRing.gen()
 Infinity
 sage: UnsignedInfinityRing.gen(1)
 Traceback (most recent call last):
 ...
 IndexError: UnsignedInfinityRing only has one generator
```
**gens()**

The “generator” of `self` is the infinity object.

EXAMPLES:

```python
sage: UnsignedInfinityRing.gens()
(Infinity,)
```

**less_than_infinity()**

This is the element that represents a finite value.

EXAMPLES:

```python
sage: UnsignedInfinityRing.less_than_infinity()
A number less than infinity
sage: UnsignedInfinityRing(5) is UnsignedInfinityRing.less_than_infinity()
True
```

**ngens()**

The unsigned infinity ring has one “generator.”

EXAMPLES:

```python
sage: UnsignedInfinityRing.ngens()
1
sage: len(UnsignedInfinityRing.gens())
1
```

**sage.rings.infinity.is_Infinite(x)**

This is a type check for infinity elements.

EXAMPLES:

```python
sage: sage.rings.infinity.is_Infinite(oo)
True
sage: sage.rings.infinity.is_Infinite(-oo)
True
sage: sage.rings.infinity.is_Infinite(unsigned_infinity)
True
sage: sage.rings.infinity.is_Infinite(3)
False
sage: sage.rings.infinity.is_Infinite(RR(infinity))
False
sage: sage.rings.infinity.is_Infinite(ZZ)
False
```

**sage.rings.infinity.test_comparison(ring)**

Check comparison with infinity

INPUT:

- `ring` – a sub-ring of the real numbers

OUTPUT:

Various attempts are made to generate elements of `ring`. An assertion is triggered if one of these elements does not compare correctly with plus/minus infinity.

EXAMPLES:
Comparison with number fields does not work:

```
sage: x = polygen(ZZ, 'x')
sage: K.<sqrt3> = NumberField(x^2 - 3) # needs sage.rings.number_field
sage: oo < 1 + sqrt3 and (1 + sqrt3 < oo) # known bug # needs sage.rings.number_field
False
```

The symbolic ring handles its own infinities, but answers `False` (meaning: cannot decide) already for some very elementary comparisons:

```
sage: test_comparison(SR) # known bug # needs sage.symbolic
Traceback (most recent call last):
...
AssertionError: testing -1000.0 in Symbolic Ring: id = ...
```

```
sage: from sage.rings.infinity import test_signed_infinity
sage: test_signed_infinity(pos_inf)
```

Test consistency of infinity representations.

There are different possible representations of infinity in Sage. These are all consistent with the infinity ring, that is, compare with infinity in the expected way. See also [github issue #14045](https://github.com/sagemath/sage/issues/14045)

**INPUT:**

- `pos_inf` – a representation of positive infinity.

**OUTPUT:**

An assertion error is raised if the representation is not consistent with the infinity ring.

Check that [github issue #14045](https://github.com/sagemath/sage/issues/14045) is fixed:

```
sage: InfinityRing(float('+inf'))
+Infinity
sage: InfinityRing(float('-inf'))
-Infinity
sage: oo > float('+inf')
False
sage: oo == float('+inf')
True
```

**EXAMPLES:**
9.3 Support Python’s numbers abstract base class

See also:

PEP 3141 for more information about numbers.
10.1 Derivations

Let \( A \) be a ring and \( B \) be a bimodule over \( A \). A derivation \( d : A \to B \) is an additive map that satisfies the Leibniz rule

\[
d(xy) = xd(y) + d(x)y.
\]

If \( B \) is an algebra over \( A \) and if we are given in addition a ring homomorphism \( \theta : A \to B \), a twisted derivation with respect to \( \theta \) (or a \( \theta \)-derivation) is an additive map \( d : A \to B \) such that

\[
d(xy) = \theta(x)d(y) + d(x)y.
\]

When \( \theta \) is the morphism defining the structure of \( A \)-algebra on \( B \), a \( \theta \)-derivation is nothing but a derivation. In general, if \( \iota : A \to B \) denotes the defining morphism above, one easily checks that \( \theta - \iota \) is a \( \theta \)-derivation.

This file provides support for derivations and twisted derivations over commutative rings with values in algebras (i.e. we require that \( B \) is a commutative \( A \)-algebra). In this case, the set of derivations (resp. \( \theta \)-derivations) is a module over \( B \).

Given a ring \( A \), the module of derivations over \( A \) can be created as follows:

```sage
sage: A.<x,y,z> = QQ[]
sage: M = A.derivation_module()
sage: M
Module of derivations over
Multivariate Polynomial Ring in x, y, z over Rational Field
```

The method `gens()` returns the generators of this module:

```sage
sage: A.<x,y,z> = QQ[]
sage: M = A.derivation_module()
sage: M.gens()
(d/dx, d/dy, d/dz)
```

We can combine them in order to create all derivations:

```sage
sage: d = 2*M.gen(0) + z*M.gen(1) + (x^2 + y^2)*M.gen(2)
sage: d
2*d/dx + z*d/dy + (x^2 + y^2)*d/dz
```

and now play with them:

```sage
sage: d(x + y + z)
x^2 + y^2 + z + 2
sage: P = A.random_element()
```

(continues on next page)
Alternatively we can use the method `derivation()` of the ring $A$ to create derivations:

```plaintext
sage: Dx = A.derivation(x); Dx
d/dx
sage: Dy = A.derivation(y); Dy
d/dy
sage: Dz = A.derivation(z); Dz
d/dz
sage: A.derivation([2, z, x^2+y^2])
2*d/dx + z*d/dy + (x^2 + y^2)*d/dz
```

Sage knows moreover that $M$ is a Lie algebra:

```plaintext
sage: M.category()
Join of
 Category of Lie algebras with basis over Rational Field and
 Category of modules with basis over
 Multivariate Polynomial Ring in x, y, z over Rational Field
```

Computations of Lie brackets are implemented as well:

```plaintext
dx: Dx.bracket(Dy)
0
dx: d.bracket(Dx)
-2*x*d/dz
```

At the creation of a module of derivations, a codomain can be specified:

```plaintext
dx: B = A.fraction_field()
dx: A.derivation_module(B)
Module of derivations from Multivariate Polynomial Ring in x, y, z over Rational Field to Fraction Field of Multivariate Polynomial Ring in x, y, z over Rational Field
```

Alternatively, one can specify a morphism $f$ with domain $A$. In this case, the codomain of the derivations is the codomain of $f$ but the latter is viewed as an algebra over $A$ through the homomorphism $f$. This construction is useful, for example, if we want to work with derivations on $A$ at a certain point, e.g. $(0, 1, 2)$. Indeed, in order to achieve this, we first define the evaluation map at this point:

```plaintext
dx: ev = A.hom([QQ(0), QQ(1), QQ(2)])
dx: ev
Ring morphism:
 From: Multivariate Polynomial Ring in x, y, z over Rational Field
 To: Rational Field
 Defn: x |--> 0
 y |--> 1
 z |--> 2
```

Now we use this ring homomorphism to define a structure of $A$-algebra on $Q$ and then build the following module of derivations:

```plaintext
dx: M = A.derivation_module(ev)
dx: M
```

(continues on next page)
Module of derivations from Multivariate Polynomial Ring in x, y, z over Rational Field to Rational Field

```
sage: M.gens()
(d/dx, d/dy, d/dz)
```

Elements in $M$ then acts as derivations at $(0, 1, 2)$:

```
sage: Dx = M.gen(0)
sage: Dy = M.gen(1)
sage: Dz = M.gen(2)
sage: f = x^2 + y^2 + z^2
sage: Dx(f) # = 2*x evaluated at (0,1,2)
0
sage: Dy(f) # = 2*y evaluated at (0,1,2)
2
sage: Dz(f) # = 2*z evaluated at (0,1,2)
4
```

Twisted derivations are handled similarly:

```
sage: theta = B.hom([B(y),B(z),B(x)])
sage: theta
Ring endomorphism of Fraction Field of Multivariate Polynomial Ring in x, y, z over Rational Field
 Defn: x |--> y
 y |--> z
 z |--> x
sage: M = B.derivation_module(twist=theta)
sage: M
Module of twisted derivations over Fraction Field of Multivariate Polynomial Ring in x, y, z over Rational Field (twisting morphism: x |--> y, y |--> z, z |--> x)
```

Over a field, one proves that every $\theta$-derivation is a multiple of $\theta - id$, so that:

```
sage: d = M.gen(); d
[x |--> y, y |--> z, z |--> x] - id
```

and then:

```
sage: d(x)
-x + y
sage: d(y)
-y + z
sage: d(z)
x - z
sage: d(x + y + z)
0
```

**AUTHOR:**

- Xavier Caruso (2018-09)

**class** `sage.rings.derivation.RingDerivation`

**Bases:** `ModuleElement`

An abstract class for twisted and untwisted derivations over commutative rings.
codomain()  
Return the codomain of this derivation.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: f = R.derivation(); f
d/dx
sage: f.codomain()
Univariate Polynomial Ring in x over Rational Field
```

```
sage: f.codomain() is R
True
```

```
sage: S.<y> = R[]
sage: M = R.derivation_module(S)
sage: M.random_element().codomain()
Univariate Polynomial Ring in y over
 Univariate Polynomial Ring in x over Rational Field
```

```
sage: M.random_element().codomain() is S
True
```

domain()  
Return the domain of this derivation.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: f = R.derivation(y); f
 d/dy
sage: f.domain()
Multivariate Polynomial Ring in x, y over Integer
```

```
sage: f.domain() is R
True
```

class sage.rings.derivation.RingDerivationModule (domain, codomain, twist=None)

Bases: Module, UniqueRepresentation

A class for modules of derivations over a commutative ring.

basis()  
Return a basis of this module of derivations.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.basis()
 (d/dx, d/dy)
```

codomain()  
Return the codomain of the derivations in this module.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
 Module of derivations over Multivariate Polynomial Ring in x, y over Integer
```

(continues on next page)
**defining_morphism()**

Return the morphism defining the structure of algebra of the codomain over the domain.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: M = R.derivation_module()
sage: M.defining_morphism()
Identity endomorphism of Univariate Polynomial Ring in x over Rational Field

sage: S.<y> = R[]
sage: M = R.derivation_module(S)
sage: M.defining_morphism()
Polynomial base injection morphism:
 From: Univariate Polynomial Ring in x over Rational Field
 To: Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over Rational Field

sage: ev = R.hom([QQ(0)])
sage: M = R.derivation_module(ev)
sage: M.defining_morphism()
Ring morphism:
 From: Univariate Polynomial Ring in x over Rational Field
 To: Rational Field
 Defn: x |--> 0
```

**domain()**

Return the domain of the derivations in this module.

**EXAMPLES:**

```python
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer Ring

sage: M.domain()
Multivariate Polynomial Ring in x, y over Integer Ring
```

**dual_basis()**

Return the dual basis of the canonical basis of this module of derivations (which is that returned by the method `basis()`).

**Note:** The dual basis of \((d_1, \ldots, d_n)\) is a family \((x_1, \ldots, x_n)\) of elements in the domain such that \(d_i(x_i) = 1\) and \(d_i(x_j) = 0\) if \(i \neq j\).

**EXAMPLES:**

```python
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
```
**gen** \((n=0)\)

Return the \(n\)-th generator of this module of derivations.

**INPUT:**

- \(n\) – an integer (default: 0)

**EXAMPLES:**

```python
sage: R.<x,y> = ZZ[
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer Ring
sage: M.gen()
d/dx
sage: M.gen(1)
d/dy
```

**gens ()**

Return the generators of this module of derivations.

**EXAMPLES:**

```python
sage: R.<x,y> = ZZ[
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer Ring
sage: M.gens()
(d/dx, d/dy)
```

We check that, for a nontrivial twist over a field, the module of twisted derivation is a vector space of dimension 1 generated by \(\text{twist} - \text{id}\):

```python
sage: K = R.fraction_field()
sage: theta = K.hom([K(y),K(x)])
sage: M = K.derivation_module(twist=theta); M
Module of twisted derivations over Fraction Field of Multivariate Polynomial Ring in x, y over Integer Ring (twisting morphism: x \mapsto y, y \mapsto x)
sage: M.gens()
([x \mapsto y, y \mapsto x] - id,)
```

**ngens ()**

Return the number of generators of this module of derivations.

**EXAMPLES:**

```python
sage: R.<x,y> = ZZ[
sage: M = R.derivation_module(); M
Module of derivations over Multivariate Polynomial Ring in x, y over Integer Ring
sage: M.ngens()
2
```

Indeed, generators are:
We check that, for a nontrivial twist over a field, the module of twisted derivation is a vector space of dimension 1 generated by twist - id:

```
sage: K = R.fraction_field()
sage: theta = K.hom([K(y),K(x)])
sage: M = K.derivation_module(twist=theta); M
Module of twisted derivations over Fraction Field of Multivariate Polynomial
Ring in x, y over Integer Ring (twisting morphism: x |--> y, y |--> x)
sage: M.ngens()
1
sage: M.gen()
[x |--> y, y |--> x] - id
```

```
random_element(*args, **kwds)
```

Return a random derivation in this module.

**EXAMPLES:**

```
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.random_element() # random
(x^2 + x*y - 3*y^2 + x + 1)*d/dx + (-2*x^2 + 3*x*y + 10*y^2 + 2*x + 8)*d/dy
```

```
ring_of_constants()
```

Return the subring of the domain consisting of elements $x$ such that $d(x) = 0$ for all derivation $d$ in this module.

**EXAMPLES:**

```
sage: R.<x,y> = QQ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
sage: M.ring_of_constants()
Rational Field
```

```
some_elements()
```

Return a list of elements of this module.

**EXAMPLES:**

```
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.some_elements()
[d/dx, d/dy, x*d/dx, x*d/dy, y*d/dx, y*d/dy]
```

```
twisting_morphism()
```

Return the twisting homomorphism of the derivations in this module.

**EXAMPLES:**

```
sage: R.<x,y> = ZZ[]
sage: theta = R.hom([y,x])
sage: M = R.derivation_module(twist=theta); M
```
Module of twisted derivations over Multivariate Polynomial Ring in \( x, y \) over Integer Ring (twisting morphism: \( x \mapsto y, y \mapsto x \))

```python
sage: M.twisting_morphism()
Ring endomorphism of Multivariate Polynomial Ring in \(x, y \) over Integer Ring
 Defn: \(x \mapsto y \)
 \(y \mapsto x \)
```

When the derivations are untwisted, this method returns nothing:

```python
sage: M = R.derivation_module()
sage: M.twisting_morphism()
```

**class** `sage.rings.derivation.RingDerivationWithTwist_generic`

Bases: `RingDerivation`

The class handles \( \theta \)-derivations of the form \( \lambda (\theta - \iota) \) (where \( \iota \) is the defining morphism of the codomain over the domain) for a scalar \( \lambda \) varying in the codomain.

**extend_to_fraction_field()**

Return the extension of this derivation to fraction fields of the domain and the codomain.

**EXAMPLES:**

```python
sage: R.<x,y> = ZZ[]
sage: theta = R.hom([y,x])
sage: d = R.derivation(x, twist=theta)
sage: D = d.extend_to_fraction_field(); D
needs sage.libs.singular
x*(\([x \mapsto y, y \mapsto x] - id \))

sage: D.domain()
needs sage.libs.singular
Fraction Field of Multivariate Polynomial Ring in \(x, y \) over Integer Ring

sage: D(1/x)
needs sage.libs.singular
(x - y)/y
```

**list()**

Return the list of coefficient of this twisted derivation on the canonical basis.

**EXAMPLES:**

```python
sage: R.<x,y> = QQ[]
sage: K = R.fraction_field()
sage: theta = K.hom([y,x])
sage: M = K.derivation_module(twist=theta)
sage: M.basis()
Family (twisting_morphism - id,)
sage: f = (x+y) * M.gen()
sage: f
(x + y) * (twisting_morphism - id)
sage: f.list()
[x + y]
```
postcompose (morphism)

Return the twisted derivation obtained by applying first this twisted derivation and then morphism.

INPUT:

- morphism – a homomorphism of rings whose domain is the codomain of this derivation or a ring into which the codomain of this derivation

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: theta = R.hom([y,x])
sage: D = R.derivation(x, twist=theta); D
x*(x |--> y, y |--> x) - id
sage: f = R.hom([x^2, y^3])
sage: g = D.precompose(f); g
x^2*(x |--> y^3, y |--> x^2) - [x |--> x^2, y |--> y^3]
```

Observe that the g is no longer a \(\theta\)-derivation but a \((\theta \circ f)\)-derivation:

```
sage: g.parent().twisting_morphism()
Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring
Defn: x |--> y^2
 y |--> x^3
```

precompose (morphism)

Return the twisted derivation obtained by applying first morphism and then this twisted derivation.

INPUT:

- morphism – a homomorphism of rings whose codomain is the domain of this derivation or a ring that coerces to the domain of this derivation

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: theta = R.hom([y,x])
sage: D = R.derivation(x, twist=theta); D
x*(x |--> y, y |--> x) - id
sage: f = R.hom([x^2, y^3])
sage: g = D.postcompose(f); g
x*(y^2, y |--> x^3) - [x |--> x^2, y |--> y^3]
```

Observe that the g is no longer a \(\theta\)-derivation but a \((f \circ \theta)\)-derivation:

```
sage: g.parent().twisting_morphism()
Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring
Defn: x |--> y^3
 y |--> x^2
```

class sage.rings.derivation.RingDerivationWithoutTwist

An abstract class for untwisted derivations.

extend_to_fraction_field()

Return the extension of this derivation to fraction fields of the domain and the codomain.

EXAMPLES:
is_zero()  
Return True if this derivation is zero.  

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: f = R.derivation(); f
d/dx
sage: f.is_zero()
False
sage: (f-f).is_zero()
True
```

list()  
Return the list of coefficient of this derivation on the canonical basis.  

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: M = R.derivation_module()
Family (d/dx, d/dy)
sage: R.derivation(x).list()
[1, 0]
sage: R.derivation(y).list()
[0, 1]
sage: f = x*R.derivation(x) + y*R.derivation(y); f
x*d/dx + y*d/dy
sage: f.list()
[x, y]
```

monomial_coefficients()  
Return dictionary of nonzero coordinates (on the canonical basis) of this derivation.  

More precisely, this returns a dictionary whose keys are indices of basis elements and whose values are the corresponding coefficients.  

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: M = R.derivation_module()
(continues on next page)
sage: M.basis()
Family \(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \)

sage: R.derivation(x).monomial_coefficients()
\{0: 1\}
sage: R.derivation(y).monomial_coefficients()
\{1: 1\}

sage: f = x*R.derivation(x) + y*R.derivation(y); f
\frac{\partial}{\partial x} x + \frac{\partial}{\partial y} y

sage: f.monomial_coefficients()
\{0: x, 1: y\}

\textbf{postcompose (morphism)}

Return the derivation obtained by applying first this derivation and then \texttt{morphism}.

\textbf{INPUT:}

\begin{itemize}
 \item \texttt{morphism} – a homomorphism of rings whose domain is the codomain of this derivation or a ring into which the codomain of this derivation coerces
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: A.<x,y>= QQ[

sage: ev = A.hom([QQ(0), QQ(1)])
sage: Dx = A.derivation(x)
sage: Dy = A.derivation(y)

We can define the derivation at \((0,1)\) just by postcomposing with \texttt{ev}:

sage: dx = Dx.postcompose(ev)
sage: dy = Dy.postcompose(ev)
sage: f = x^2 + y^2

sage: dx(f)
0

sage: dy(f)
2
\end{verbatim}

Note that we cannot avoid the creation of the evaluation morphism: if we pass in \texttt{QQ} instead, an error is raised since there is no coercion morphism from \texttt{A} to \texttt{QQ}:

\begin{verbatim}
sage: Dx.postcompose(QQ)
Traceback (most recent call last):
...
TypeError: the codomain of the derivation does not coerce to the given ring
\end{verbatim}

Note that this method cannot be used to compose derivations:

\begin{verbatim}
sage: Dx.precompose(Dy)
Traceback (most recent call last):
...
TypeError: you must give a homomorphism of rings
\end{verbatim}

\textbf{precompose (morphism)}

Return the derivation obtained by applying first \texttt{morphism} and then this derivation.

\textbf{INPUT:}
• morphism—a homomorphism of rings whose codomain is the domain of this derivation or a ring that coerces to the domain of this derivation

EXAMPLES:

```
sage: A.<x> = QQ[

sage: B.<x,y> = QQ[

sage: D = B.derivation(x) - 2*x*B.derivation(y); D

d/dx - 2*x*d/dy
```

When restricting to A, the term d/dy disappears (since it vanishes on A):

```
sage: D.precompose(A)

d/dx
```

If we restrict to another well chosen subring, the derivation vanishes:

```
sage: C.<t> = QQ[

sage: f = C.hom([x^2 + y]); f

Ring morphism:
  From: Univariate Polynomial Ring in t over Rational Field
  To:   Multivariate Polynomial Ring in x, y over Rational Field
        Defn: t |--> x^2 + y

sage: D.precompose(f)

0
```

Note that this method cannot be used to compose derivations:

```
sage: D.precompose(D)

Traceback (most recent call last):
  ... TypeError: you must give a homomorphism of rings
```

`pth_power()`

Return the p-th power of this derivation where p is the characteristic of the domain.

Note: Leibniz rule implies that this is again a derivation.

EXAMPLES:

```
sage: # needs sage.rings.finite_rings

sage: R.<x,y> = GF(5)[

sage: Dx = R.derivation(x)

sage: Dx.pth_power()

0

sage: (x*Dx + y*Dy).pth_power()  # needs sage.rings.finite_rings

x*d/dx + y*d/dy
```

An error is raised if the domain has characteristic zero:
```
sage: R.<x,y> = QQ[

sage: Dx = R.derivation(x)
sage: Dx.pth_power()
Traceback (most recent call last):
...
TypeError: the domain of the derivation must have positive and prime characterize
```

or if the characteristic is not a prime number:
```
sage: R.<x,y> = Integers(10)[

sage: Dx = R.derivation(x)
sage: Dx.pth_power()
Traceback (most recent call last):
...
TypeError: the domain of the derivation must have positive and prime characterize
```

```c

class sage.rings.derivation.RingDerivationWithoutTwist_fraction_field (parent, arg=None)
Bases: RingDerivationWithoutTwist_wrapper

This class handles derivations over fraction fields.

class sage.rings.derivation.RingDerivationWithoutTwist_function (parent, arg=None)
Bases: RingDerivationWithoutTwist

A class for untwisted derivations over rings whose elements are either polynomials, rational fractions, power series or Laurent series.

is_zero ()

Return True if this derivation is zero.

EXAMPLES:
```
sage: R.<x,y> = ZZ[

sage: f = R.derivation(); f
d/dx
sage: f.is_zero()
False
sage: (f-f).is_zero()
True
```

list ()

Return the list of coefficient of this derivation on the canonical basis.

EXAMPLES:
```
sage: R.<x,y> = GF(5)[[

sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)

sage: R.derivation(x).list()
[1, 0]
sage: R.derivation(y).list()
[0, 1]
```
(continues on next page)
```python
sage: f = x*R.derivation(x) + y*R.derivation(y); f
x*d/dx + y*d/dy
sage: f.list()
[x, y]
```

```python
class sage.rings.derivation.RingDerivationWithoutTwist_quotient(parent, arg=None)
 Bases: RingDerivationWithoutTwist_wrapper

 This class handles derivations over quotient rings.

class sage.rings.derivation.RingDerivationWithoutTwist_wrapper(parent, arg=None)
 Bases: RingDerivationWithoutTwist

 This class is a wrapper for derivation.

 It is useful for changing the parent without changing the computation rules for derivations. It is used for derivations over fraction fields and quotient rings.

 list()

 Return the list of coefficient of this derivation on the canonical basis.

 EXAMPLES:

    ```python
    sage: # needs sage.libs.singular
    sage: R.<X,Y> = GF(5)[]
    sage: S.<x,y> = R.quo([X^5, Y^5])
    sage: M = S.derivation_module()
    sage: M.basis()
    Family (d/dx, d/dy)
    sage: S.derivation(x).list()
    [1, 0]
    sage: S.derivation(y).list()
    [0, 1]
    sage: f = x*S.derivation(x) + y*S.derivation(y); f
    x*d/dx + y*d/dy
    sage: f.list()
    [x, y]
    ```

class sage.rings.derivation.RingDerivationWithoutTwist_zero(parent, arg=None)
 Bases: RingDerivationWithoutTwist

 This class can only represent the zero derivation.

 It is used when the parent is the zero derivation module (e.g., when its domain is ZZ, QQ, a finite field, etc.)

 is_zero()

 Return True if this derivation vanishes.

 EXAMPLES:

    ```python
    sage: M = QQ.derivation_module()
    sage: M().is_zero()
    True
    ```

 list()

 Return the list of coefficient of this derivation on the canonical basis.

 EXAMPLES:
```
```
sage: M = QQ.derivation_module()
sage: M().list()
[]
```
INDICES AND TABLES

- Index
- Module Index
- Search Page
sage.rings.abc, 20
sage.rings.big_oh, 151
sage.rings.derivation, 163
sage.rings.fraction_field, 89
sage.rings.fraction_field_element, 95
sage.rings.generic, 147
sage.rings.homset, 67
sage.rings.ideal, 29
sage.rings.ideal_monoid, 44
sage.rings.infinity, 152
sage.rings.localization, 101
sage.rings.morphism, 49
sage.rings.nc_ideals, 45
sage.rings.numbers_abc, 161
sage.rings.quotient_ring, 71
sage.rings.quotient_ring_element, 84
sage.rings.ring, 1
sage.rings.ring_extension, 111
sage.rings.ring_extension_element, 132
sage.rings.ring_extension_morphism, 143
INDEX

A

absolute_base() (sage.rings.ring_extension.RingExtension_generic method), 118
absolute_degree() (sage.rings.ring_extension.RingExtension_generic method), 119
absolute_norm() (sage.rings.ideal.Ideal_generic method), 32
additive_order() (sage.rings.ring_extension_element.RingExtensionElement method), 132
Algebra (class in sage.rings.ring), 2
algebraic_closure() (sage.rings.ring_field.Field method), 7
AlgebraicField (class in sage.rings.abc), 20
AlgebraicField_common (class in sage.rings.abc), 21
AlgebraicRealField (class in sage.rings.abc), 21
ambient() (sage.rings.quotient_ring.QuotientRing_nc method), 76
AnInfinity (class in sage.rings.infinity), 155
apply_morphism() (sage.rings.ideal.Ideal_generic method), 32
associated_primes() (sage.rings.ideal.Ideal_generic method), 33
bases() (sage.rings.ring_extension.RingExtension_generic method), 120
basis() (sage.rings.derivation.RingDerivationModule method), 166
basis_over() (sage.rings.ring_extension.RingExtensionWithBasis method), 114

B

backend() (sage.rings.ring_extension_element.RingExtensionElement method), 132
backend() (sage.rings.ring_extension.RingExtension_generic method), 119
base() (sage.rings.ring_extension.RingExtension_generic method), 119
base_extend() (sage.rings.ring.Ring method), 12
base_map() (sage.rings.morphism.RingHomomorphism_im_gens method), 65
base_map() (sage.rings.ring_extension_morphism.RingExtensionHomomorphism method), 144
base_ring() (sage.rings.fraction_field.FractionField_generic method), 92
base_ring() (sage.rings.ideal.Ideal_generic method), 33

C

CallableSymbolicExpressionRing (class in sage.rings.abc), 22
category() (sage.rings.ideal.Ideal_generic method), 33
category() (sage.rings.ring.Ring method), 12
characteristic() (sage.rings.fraction_field.FractionField_generic method), 92
characteristic() (sage.rings.localization.Localization method), 105
characteristic() (sage.rings.quotient_ring.QuotientRing_nc method), 76
charpoly() (sage.rings.ring_extension_element.RingExtensionWithBasisElement method), 120
codomain() (sage.rings.derivation.RingDerivationModule method), 165
codomain() (sage.rings.derivation.RingDerivationModule method), 166
class_group() (sage.rings.ring.PrincipalIdealDomain method), 10
class_number() (sage.rings.fraction_field.FractionField_Ipoly_field method), 91
class_group() (sage.rings.ring_extension_extension_with_basis.ExtensionWithBasis method), 136
codomain() (sage.rings.derivation.RingDerivationModule method), 165
codomain() (sage.rings.derivation.RingDerivationModule method), 166
common_base() (in module sage.rings.ring_extension), 130
CommutativeAlgebra (class in sage.rings.ring), 2
CommutativeRing (class in sage.rings.ring), 2
ComplexBallField (class in sage.rings.abc), 22
ComplexDoubleField (class in sage.rings.abc), 22
ComplexField (class in sage.rings.abc), 23
ComplexIntervalField (class in sage.rings.abc), 23
construction() (sage.rings.fraction_field.FractionField_generic method), 92
construction() (sage.rings.quotient_ring.QuotientRing_nc method), 76
is_defined_over() (sage.rings.ring_extension.RingExtension_generic method), 126
is_exact() (sage.rings.fraction_field.FractionField_generic method), 93
is_exact() (sage.rings.ring.Ring method), 15
is_field() (sage.rings.fraction_field.FractionField_generic method), 93
is_field() (sage.rings.localization.Localization method), 106
is_field() (sage.rings.quotient_ring.QuotientRing_nc method), 79
is_field() (sage.rings.ring_extension.RingExtension_generic method), 127
is_FractionField() (in module sage.rings.fraction_field), 94
is_FractionFieldElement() (in module sage.rings.fraction_field_element), 99
is_free_over() (sage.rings.ring_extension.RingExtension_generic method), 128
is_Ideal() (in module sage.rings.ideal), 44
is_identity() (sage.rings.ring_extension_morphism.RingExtensionHomomorphism method), 145
is_Infinite() (in module sage.rings.infinity), 159
is_injective() (sage.rings.fraction_field.FieldEmbedding method), 90
is_injective() (sage.rings.ring_extension_morphism.MapFreeModuleToRelativeRing method), 143
is_injective() (sage.rings.ring_extension_morphism.MapRelativeRingToFreeModule method), 143
is_injective() (sage.rings.ring_extension_morphism.RingExtensionHomomorphism method), 145
is_integral() (sage.rings.fraction_field_element.FractionFieldElement_Ipoly_field method), 98
is_integral_domain() (sage.rings.quotient_ring.QuotientRing_nc method), 79
is_integral_domain() (sage.rings.ring.IntegralDomain method), 9
is_integral_domain() (sage.rings.ring.Ring method), 16
is_integrrally_closed() (sage.rings.ring.Field method), 8
is_integrrally_closed() (sage.rings.ring.IntegralRing method), 16
is_infinite() (sage.rings.field.Field method), 37
is_invertible() (sage.rings.morphism.RingHomomorphism method), 59
is_maximal() (sage.rings.ideal.IdealGeneric Method), 35
is_maximal() (sage.rings.ideal.Ideal_pid method), 40
is_nilpotent() (sage.rings.ring_extension_element.RingExtensionElement method), 133
is_noetherian() (sage.rings.quotient_ring.QuotientRing_nc method), 80
is_noetherian() (sage.rings.ring.NoetherianRing method), 10
is_noetherian() (sage.rings.ring.PrincipalIdealDomain method), 12
is_noetherian() (sage.rings.ring.Ring method), 16
is_one() (sage.rings.fraction_field.FractionFieldElement method), 95
is_primary() (sage.rings.ideal.IdealGeneric Method), 36
is_prime() (sage.rings.ideal.IdealGeneric Method), 36
is_prime() (sage.rings.ideal.Ideal_pid method), 41
is_prime() (sage.rings.ring_extension_element.RingExtensionElement method), 133
is_prime_field() (sage.rings.ring.Ring method), 17
is_principal() (sage.rings.ideal.IdealGeneric Method), 37
is_principal() (sage.rings.ideal.IdealPrincipal method), 43
is_PrincipalIdeal() (in module sage.rings.quotient_ring), 83
is_Ring() (in module sage.rings.ring), 20
is_RingHomset() (in module sage.rings.homset), 68
is_square() (sage.rings.fraction_field_element.FractionFieldElement method), 95
is_square() (sage.rings.ring_extension_element.RingExtensionElement method), 134
is_subring() (sage.rings.ring.Ring method), 17
is_surjective() (sage.rings.fraction_field.FieldEmbedding method), 90
is_surjective() (sage.rings.morphism.RingHomomorphism method), 59
is_surjective() (sage.rings.ring_extension_morphism.MapFreeModuleToRelativeRing method), 143
is_surjective() (sage.rings.ring_extension_morphism.MapRelativeRingToFreeModule method), 143
is_surjective() (sage.rings.ring_extension_morphism.RingExtensionHomomorphism method), 145
is_trivial() (sage.rings.ideal.IdealGeneric Method), 37
is_unit() (sage.rings.localization.LocalizationElement method), 37
monomial_coefficients() (sage.rings.derivation.RingDerivationWithoutTwist method), 172
monomials() (sage.rings.quotient_ring_element.QuotientRingElement method), 86
morphism_from_cover() (sage.rings.morphism.RingHomomorphism_from_quotient method), 65
multiplicative_order() (sage.rings.ring_extension_element.RingExtensionElement method), 134

N
natural_map() (sage.rings.homset.RingHomset_generic method), 67
ngens() (sage.rings.derivation.RingDerivationModule method), 168
ngens() (sage.rings.fraction_field.FractionField_generic method), 93
ngens() (sage.rings.ideal.Ideal_generic method), 38
ngens() (sage.rings.infinity.InfinityRing_class method), 157
ngens() (sage.rings.infinity.UnsignedInfinityRing_class method), 159
ngens() (sage.rings.localization.Localization method), 107
ngens() (sage.rings.quotient_ring.QuotientRing_nc method), 82
ngens() (sage.rings.ring_extension.RingExtension_generic method), 128
NoetherianRing (class in sage.rings.ring), 10
norm() (sage.rings.ideal.Ideal_generic method), 38
norm() (sage.rings.ring_extension_element.RingExtensionWithBasisElement method), 139
normalize_extra_units() (in module sage.rings.localization), 108
ninth_root() (sage.rings.fraction_field_element.FractionFieldElement method), 96
NumberField_cyclotomic (class in sage.rings.abc), 24
NumberField_quadratic (class in sage.rings.abc), 24
numerator() (sage.rings.fraction_field_element.FractionFieldElement method), 97
numerator() (sage.rings.localization.LocalizationElement method), 108
numerator() (sage.rings.ring_extension_element.RingExtensionFractionFieldElement method), 135

O
O() (in module sage.rings.big_oh), 151
one() (sage.rings.ring.Ring method), 17
Order (class in sage.rings.abc), 25
order() (sage.rings.ring.Ring method), 17

P
pAdicField (class in sage.rings.abc), 28
pAdicRing (class in sage.rings.abc), 28
PlusInfinity (class in sage.rings.infinity), 158
polynomial() (sage.rings.ring_extension_element.RingExtensionWithBasisElement method), 140
postcompose() (sage.rings.derivation.RingDerivationWithoutTwist method), 173
postcompose() (sage.rings.derivation.RingDerivationWithTwist_generic method), 170
power() (sage.rings.morphism.FrobeniusEndomorphism_generic method), 55
precompose() (sage.rings.derivation.RingDerivationWithoutTwist method), 173
precompose() (sage.rings.derivation.RingDerivationWithTwist_generic method), 171
primary_decomposition() (sage.rings.ideal.Ideal_generic method), 38
prime_subfield() (sage.rings.ring.Field method), 9
principal_ideal() (sage.rings.ring.Ring method), 18
PrincipalIdealDomain (class in sage.rings.ring), 10
print_options() (sage.rings.ring_extension.RingExtension_generic method), 129
prod_with_derivative() (in module sage.rings.generic), 149
ProductTree (class in sage.rings.generic), 147
pth_power() (sage.rings.derivation.RingDerivationWithoutTwist method), 174
pushforward() (sage.rings.morphism.RingHomomorphism method), 60
Python Enhancement Proposals
PEP 3141, 161

Q
QuotientRing() (in module sage.rings.quotient_ring), 72
QuotientRing_generic (class in sage.rings.quotient_ring), 74
QuotientRing_nc (class in sage.rings.quotient_ring), 75
QuotientRingElement (class in sage.rings.quotient_ring_element), 84
QuotientRingIdeal_generic (class in sage.rings.quotient_ring), 74
QuotientRingIdeal_principal (class in sage.rings.quotient_ring), 74

R
random_element() (sage.rings.derivation.RingDerivationModule method), 169
module, 163
sage.rings.fraction_field module, 89
sage.rings.fraction_field_element module, 95
sage.rings.generic module, 147
sage.rings.homset module, 67
sage.rings.ideal module, 29
sage.rings.ideal_monoid module, 44
sage.rings.infinity module, 152
sage.rings.localization module, 101
sage.rings.morphism module, 49
sage.rings.noncommutative_ideals module, 45
sage.rings.numbers_abc module, 161
sage.rings.quotient_ring module, 71
sage.rings.quotient_ring_element module, 84
sage.rings.ring module, 1
sage.rings.ring_extension module, 111
sage.rings.ring_extension_element module, 132
sage.rings.ring_extension_morphism module, 143
section() (sage.rings.fraction_field.FractionFieldEmbedding method), 90
side() (sage.rings.noncommutative_ideals.Ideal_nc method), 46
sign() (sage.rings.infinity.FiniteNumber method), 156
sign() (sage.rings.infinity.LessThanInfinity method), 157
SignError, 158
some_elements() (sage.rings.derivation.RingDerivationModule method), 169
some_elements() (sage.rings.fraction_field.FractionField_generic method), 169
specialization() (sage.rings.fraction_field_element.FractionFieldElement method), 97
sqrt() (sage.rings.infinity.FiniteNumber method), 156
sqrt() (sage.rings.infinity.MinusInfinity method), 157
sqrt() (sage.rings.infinity.PlusInfinity method), 158
sqrt() (sage.rings.ring_extension_element.RingExtensionElement method), 134
subs() (sage.rings.fraction_field_element.FractionFieldElement method), 97
support() (sage.rings.fraction_field_element.FractionFieldElement_poly_field method), 98
SymbolicRing (class in sage.rings.abc), 27
T
term_order() (sage.rings.quotient_ring.QuotientRing_nc method), 83
test_comparison() (in module sage.rings.infinity), 159
test_signed_infinity() (in module sage.rings.infinity), 160
tower_bases() (in module sage.rings.ring_extension), 131
trace() (sage.rings.ring_extension_element.RingExtensionWithBasisElement method), 141
twisting_morphism() (sage.rings.derivation.RingDerivationModule method), 169
U
underlying_map() (sage.rings.morphism.RingHomomorphism_from_base method), 63
unit_ideal() (sage.rings.ring.Ring method), 18
UniversalCyclotomicField (class in sage.rings.abc), 27
UnsignedInfinity (class in sage.rings.infinity), 158
UnsignedInfinityRing_class (class in sage.rings.infinity), 158
V
valuation() (sage.rings.fraction_field_element.FractionFieldElement method), 97
variable_names() (in module sage.rings.ring_extension), 132
variables() (sage.rings.quotient_ring_element.QuotientRingElement method), 87
vector() (sage.rings.ring_extension_element.RingExtensionWithBasisElement method), 142
Z
zero() (sage.rings.homset.RingHomset_generic method), 68
zero() (sage.rings.ring.Ring method), 18
zero_ideal() (sage.rings.ring.Ring method), 18
zeta() (sage.rings.ring.Ring method), 19
zeta_order() (sage.rings.ring.Ring method), 20