1 Integers 1
2 Rationals 151
3 Indices and Tables 193
Python Module Index 195
Index 197
1.1 Ring \(\mathbb{Z} \) of Integers

The \texttt{IntegerRing_class} represents the ring \(\mathbb{Z} \) of (arbitrary precision) integers. Each integer is an instance of \texttt{Integer}, which is defined in a Pyrex extension module that wraps GMP integers (the \texttt{mpz_t} type in GMP).

\begin{verbatim}
sage: Z = IntegerRing(); Z
Integer Ring
sage: Z.characteristic()
0
sage: Z.is_field()
False
\end{verbatim}

There is a unique instance of the \texttt{integer ring}. To create an \texttt{Integer}, coerce either a Python int, long, or a string. Various other types will also coerce to the integers, when it makes sense.

\begin{verbatim}
sage: a = Z(1234); a
1234
sage: b = Z(5678); b
5678
sage: type(a)
<class 'sage.rings.integer.Integer'>
sage: a + b
6912
sage: Z('948038490839859834583945394')
948038490839859834583945394
\end{verbatim}

\begin{verbatim}
sage.rings.integer_ring.IntegerRing()
 Return the integer ring.

EXAMPLES:

sage: IntegerRing()
Integer Ring
sage: ZZ==IntegerRing()
True
\end{verbatim}

\begin{verbatim}
class sage.rings.integer_ring.IntegerRing_class
 Bases: PrincipalIdealDomain

 The ring of integers.
\end{verbatim}
In order to introduce the ring \mathbb{Z} of integers, we illustrate creation, calling a few functions, and working with its elements.

```
sage: Z = IntegerRing(); Z
Integer Ring
sage: Z.characteristic()
0
sage: Z.is_field()
False
sage: Z.category()
Join of Category of euclidean domains
    and Category of infinite enumerated sets
    and Category of metric spaces
sage: Z(2^(2^5) + 1)
4294967297
```

One can give strings to create integers. Strings starting with 0x are interpreted as hexadecimal, and strings starting with 0o are interpreted as octal:

```
sage: parent('37')
<... 'str'>
sage: parent(Z('37'))
Integer Ring
sage: Z('0x10')
16
sage: Z('0x1a')
26
sage: Z('0o20')
16
```

As an inverse to `digits()`, lists of digits are accepted, provided that you give a base. The lists are interpreted in little-endian order, so that entry i of the list is the coefficient of base^i:

```
sage: Z([4,1,7],base=100)
70104
sage: Z([4,1,7],base=10)
714
sage: Z([3, 7], 10)
73
sage: Z([3, 7], 9)
66
sage: Z([], 10)
0
```

Alphanumeric strings can be used for bases 2..36; letters a to z represent numbers 10 to 36. Letter case does not matter.

```
sage: Z("sage",base=32)
928270
sage: Z("SAGE",base=32)
928270
sage: Z("Sage",base=32)
928270
sage: Z([14, 16, 28],base=32)
928270
```

(continues on next page)
We next illustrate basic arithmetic in \(\mathbb{Z} \):

\begin{verbatim}
sage: a = Z(1234); a
1234
sage: b = Z(5678); b
5678
sage: type(a)
<class 'sage.rings.integer.Integer'>
sage: a + b
6912
sage: b + a
6912
sage: a * b
7006652
sage: b * a
7006652
sage: a - b
-4444
sage: b - a
4444
\end{verbatim}

When we divide two integers using \(/\), the result is automatically coerced to the field of rational numbers, even if the result is an integer.

\begin{verbatim}
sage: a / b
617/2839
sage: type(a/b)
<class 'sage.rings.rational.Rational'>
sage: a/a
1
sage: type(a/a)
<class 'sage.rings.rational.Rational'>
\end{verbatim}

For floor division, use the \(//\) operator instead:

\begin{verbatim}
sage: a // b
0
sage: type(a//b)
<class 'sage.rings.integer.Integer'>
\end{verbatim}

Next we illustrate arithmetic with automatic coercion. The types that coerce are: str, int, long, Integer.

\begin{verbatim}
Sage: a + 17
1251
Sage: a * 374
461516
Sage: 374 * a
461516
Sage: a/19
\end{verbatim}
Integers can be coerced:

```
sage: a = Z(-64)
```
```
sage: int(a)
```
```
-64
```

We can create integers from several types of objects:

```
sage: Z(17/1)
17
```
```
sage: Z(Mod(19,23))
19
```
```
sage: Z(2 + 3*5 + O(5^3))
17
```

Arbitrary numeric bases are supported; strings or list of integers are used to provide the digits (more details in `IntegerRing_class`):

```
sage: Z("sage",base=32)
928270
```
```
sage: Z([14, 16, 10, 28],base=32)
928270
```

The `digits` method allows you to get the list of digits of an integer in a different basis (note that the digits are returned in little-endian order):

```
sage: b = Z([4,1,7],base=100)
sage: b
70104
```
```
sage: b.digits(base=71)
[27, 64, 13]
```
```
sage: Z(15).digits(2)
[1, 1, 1, 1]
```
```
sage: Z(15).digits(3)
[0, 2, 1]
```

The `str` method returns a string of the digits, using letters a to z to represent digits 10..36:

```
sage: Z(928270).str(base=32)
'sage'
```

Note that `str` only works with bases 2 through 36.

absolute_degree()

Return the absolute degree of the integers, which is 1.

Here, absolute degree refers to the rank of the ring as a module over the integers.

EXAMPLES:
sage: ZZ.absolute_degree()
1

characteristic()

Return the characteristic of the integers, which is 0.

EXAMPLES:

sage: ZZ.characteristic()
0

completion(p, $prec$, extras={})

Return the metric completion of the integers at the prime p.

INPUT:

• p – a prime (or infinity)
• $prec$ – the desired precision
• $extras$ – any further parameters to pass to the method used to create the completion.

OUTPUT:

• The completion of \mathbb{Z} at p.

EXAMPLES:

sage: ZZ.completion(infinity, 53)
Integer Ring
sage: ZZ.completion(5, 15, {'print_mode': 'bars'})
5-adic Ring with capped relative precision 15

degree()

Return the degree of the integers, which is 1.

Here, degree refers to the rank of the ring as a module over the integers.

EXAMPLES:

sage: ZZ.degree()
1

extension($poly$, $names$, **kwds)

Return the order generated by the specified list of polynomials.

INPUT:

• $poly$ – a list of one or more polynomials
• $names$ – a parameter which will be passed to EquationOrder().
• $embedding$ – a parameter which will be passed to EquationOrder().

OUTPUT:

• Given a single polynomial as input, return the order generated by a root of the polynomial in the field generated by a root of the polynomial.

Given a list of polynomials as input, return the relative order generated by a root of the first polynomial in the list, over the order generated by the roots of the subsequent polynomials.

1.1. Ring \mathbb{Z} of Integers
EXAMPLES:

```
sage: ZZ.extension(x^2-5, 'a')
Order in Number Field in a with defining polynomial x^2 - 5
sage: ZZ.extension([x^2 + 1, x^2 + 2], 'a,b')
Relative Order in Number Field in a with defining polynomial
x^2 + 1 over its base field
```

fraction_field()

Return the field of rational numbers - the fraction field of the integers.

EXAMPLES:

```
sage: ZZ.fraction_field()
Rational Field
sage: ZZ.fraction_field() == QQ
True
```

gen(n=0)

Return the additive generator of the integers, which is 1.

INPUT:

- n (default: 0) – In a ring with more than one generator, the optional parameter n indicates which generator to return; since there is only one generator in this case, the only valid value for n is 0.

EXAMPLES:

```
sage: ZZ.gen()
1
sage: type(ZZ.gen())
<class 'sage.rings.integer.Integer'>
```

gens()

Return the tuple (1,) containing a single element, the additive generator of the integers, which is 1.

EXAMPLES:

```
sage: ZZ.gens(); ZZ.gens()[0]
(1,)
1
sage: type(ZZ.gens()[0])
<class 'sage.rings.integer.Integer'>
```

is_field(proof=True)

Return False since the integers are not a field.

EXAMPLES:

```
sage: ZZ.is_field()
False
```

is_integrally_closed()

Return that the integer ring is, in fact, integrally closed.

EXAMPLES:
```python
sage: ZZ.is_integrally_closed()
True
```

is_noetherian()
Return True since the integers are a Noetherian ring.

```python
sage: ZZ.is_noetherian()
True
```

krull_dimension()
Return the Krull dimension of the integers, which is 1.

```python
sage: ZZ.krull_dimension()
1
```

ngens()
Return the number of additive generators of the ring, which is 1.

```python
sage: ZZ.ngens()
1
sage: len(ZZ.gens())
1
```

order()
Return the order (cardinality) of the integers, which is +Infinity.

```python
sage: ZZ.order()
+Infinity
```

parameter()
Return an integer of degree 1 for the Euclidean property of \(\mathbb{Z} \), namely 1.

```python
sage: ZZ.parameter()
1
```

quotient(I, names=None, **kwds)
Return the quotient of \(\mathbb{Z} \) by the ideal or integer I.

```python
sage: ZZ.quo(6*ZZ)
Ring of integers modulo 6
sage: ZZ.quo(0*ZZ)
Integer Ring
sage: ZZ.quo(3)
```

(continues on next page)
Ring of integers modulo 3

\[\text{sage: ZZ.quo(3*QQ)} \]

Traceback (most recent call last):
...
TypeError: I must be an ideal of ZZ

\texttt{random_element}(x=\text{None}, y=\text{None}, \text{distribution}=\text{None})

Return a random integer.

INPUT:

- \(x, y\) integers – bounds for the result.
- \textbf{distribution} – a string:
 - 'uniform'
 - 'mpz_rrandomb'
 - '1/n'
 - 'gaussian'

OUTPUT:

- With no input, return a random integer.
 If only one integer \(x\) is given, return an integer between 0 and \(x - 1\).
 If two integers are given, return an integer between \(x\) and \(y - 1\) inclusive.
 If at least one bound is given, the default distribution is the uniform distribution; otherwise, it is the distribution described below.
 If the distribution '1/n' is specified, the bounds are ignored.
 If the distribution 'mpz_rrandomb' is specified, the output is in the range from 0 to \(2^x - 1\).
 If the distribution 'gaussian' is specified, the output is sampled from a discrete Gaussian distribution with parameter \(\sigma = x\) and centered at zero. That is, the integer \(v\) is returned with probability proportional to \(\exp(-v^2/(2\sigma^2))\). See \texttt{sage.stats.distributions.discrete_gaussian_integer} for details. Note that if many samples from the same discrete Gaussian distribution are needed, it is faster to construct a \texttt{sage.stats.distributions.discrete_gaussian_integer.DiscreteGaussianDistributionIntegerSampler} object which is then repeatedly queried.

The default distribution for \texttt{ZZ.random_element()} is based on \(X = \text{trunc}(4/(5R))\), where \(R\) is a random variable uniformly distributed between \(-1\) and 1. This gives \(\Pr(X = 0) = 1/5\), and \(\Pr(X = n) = 2/(5n)(|n| + 1)\) for \(n \neq 0\). Most of the samples will be small; \(-1, 0, \text{and} 1\) occur with probability 1/5 each. But we also have a small but non-negligible proportion of “outliers”; \(\Pr(|X| \geq n) = 4/(5n)\), so for instance, we expect that \(|X| \geq 1000\) on one in 1250 samples.

We actually use an easy-to-compute truncation of the above distribution; the probabilities given above hold fairly well up to about \(|n| = 10000\), but around \(|n| = 30000\) some values will never be returned at all, and we will never return anything greater than \(2^{30}\).

EXEMPLARY:

\[\text{sage: ZZ.random_element().parent()} \text{ is ZZ} \]
True

The default uniform distribution is integers in \([-2, 2]\):
Here we use the distribution '1/n':

```python
sage: def prob(n):
    ....:    if n == 0:
    ....:        return 1/5
    ....:    return 2/(5*abs(n)*(abs(n) + 1))
```

If a range is given, the default distribution is uniform in that range:

```python
sage: all(ZZ.random_element(-2, 2) < 2 for _ in range(100))
True
```

Notice that the right endpoint is not included:

```python
sage: all(ZZ.random_element(-2, 2) < 2 for _ in range(100))
True
```
We return a sample from a discrete Gaussian distribution:

```
sage: ZZ.random_element(11.0, distribution="gaussian").parent() is ZZ
True
```

range *(start, end=None, step=None)*

Optimized range function for Sage integers.

AUTHORS:

- Robert Bradshaw (2007-09-20)

EXAMPLES:

```
sage: ZZ.range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: ZZ.range(-5,5)
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
sage: ZZ.range(0,50,5)
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
sage: ZZ.range(0,50,-5)
[]
sage: ZZ.range(50,0,-5)
[50, 45, 40, 35, 30, 25, 20, 15, 10, 5]
sage: ZZ.range(50,-1,-5)
[50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 0]
```

It uses different code if the step doesn’t fit in a long:

```
sage: ZZ.range(0,2^83,2^80)
[0, 1208925819614629174706176, 2417851639229258349412352,
  3626777458843887524118528, 4835703278458516698824704,
  6044629098073145873530880, 7253554917687775048237056,
  8462480737302404222943232]
```

Make sure github issue #8818 is fixed:

```
sage: ZZ.range(1r, 10r)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
```

residue_field *(prime, check=True, names=None)*

Return the residue field of the integers modulo the given prime, i.e. \(\mathbb{Z}/p\mathbb{Z} \).

INPUT:

- **prime** - a prime number
- **check** - (boolean, default True) whether or not to check the primality of prime
- **names** - ignored (for compatibility with number fields)

OUTPUT: The residue field at this prime.

EXAMPLES:
sage: F = ZZ.residue_field(61); F
Residue field of Integers modulo 61
sage: pi = F.reduction_map(); pi
Partially defined reduction map:
 From: Rational Field
 To: Residue field of Integers modulo 61
sage: pi(123/234)
6
sage: pi(1/61)
Traceback (most recent call last):
... ZeroDivisionError: Cannot reduce rational 1/61 modulo 61: it has negative valuation
sage: lift = F.lift_map(); lift
Lifting map:
 From: Residue field of Integers modulo 61
 To: Integer Ring
sage: lift(F(12345/67890))
33
sage: (12345/67890) % 61
33
Construction can be from a prime ideal instead of a prime:

sage: ZZ.residue_field(ZZ.ideal(97))
Residue field of Integers modulo 97

valuation(p)
Return the discrete valuation with uniformizer p.

EXAMPLES:

sage: v = ZZ.valuation(3); v
3-adic valuation
sage: v(3)
1
See also:
Order.valuation(), RationalField.valuation()

zeta(n=2)
Return a primitive n-th root of unity in the integers, or raise an error if none exists.

INPUT:

• n – (default 2) a positive integer

OUTPUT:

an n-th root of unity in Z

EXAMPLES:

sage: ZZ.zeta()
-1
sage: ZZ.zeta(1)
(continues on next page)
sage.rings.integer_ring.crt_basis(X, xgcd=None)

Compute and return a Chinese Remainder Theorem basis for the list X of coprime integers.

INPUT:
- • X – a list of Integers that are coprime in pairs.
- • xgcd – an optional parameter which is ignored.

OUTPUT:
- • E - a list of Integers such that $E[i] = 1 \pmod{X[i]}$ and $E[i] = 0 \pmod{X[j]}$ for all $j \neq i$.

For this explanation, let $E[i]$ be denoted by E_i.

The E_i have the property that if A is a list of objects, e.g., integers, vectors, matrices, etc., where A_i is understood modulo X_i, then a CRT lift of A is simply

$$\sum_i E_i A_i.$$

ALGORITHM: To compute E_i, compute integers s and t such that

$$sX_i + t \prod_{i \neq j} X_j = 1.$$

Then

$$E_i = t \prod_{i \neq j} X[j].$$

Notice that equation (*) implies that E_i is congruent to 1 modulo X_i and to 0 modulo the other X_j for $j \neq i$.

COMPLEXITY: We compute $\text{len}(X)$ extended GCD’s.

EXAMPLES:

```python
sage: X = [11, 20, 31, 51]
sage: E = crt_basis([11, 20, 31, 51])
sage: E[0]*X[0], E[1]*X[0], E[2]%X[0], E[3]%X[0] (1, 0, 0, 0)
sage: E[0]*X[1], E[1]*X[1], E[2]%X[1], E[3]%X[1] (0, 1, 0, 0)
sage: E[0]*X[2], E[1]*X[2], E[2]%X[2], E[3]%X[2] (0, 0, 1, 0)
sage: E[0]*X[3], E[1]*X[3], E[2]%X[3], E[3]%X[3] (0, 0, 0, 1)
```

sage.rings.integer_ring.is_IntegerRing(x)

Internal function: return True iff x is the ring Z of integers.
1.2 Elements of the ring \mathbb{Z} of integers

Sage has highly optimized and extensive functionality for arithmetic with integers and the ring of integers.

EXAMPLES:

Add 2 integers:

```
sage: a = Integer(3) ; b = Integer(4)
sage: a + b == 7
True
```

Add an integer and a real number:

```
sage: a + 4.0
7.00000000000000
```

Add an integer and a rational number:

```
sage: a + Rational(2)/5
17/5
```

Add an integer and a complex number:

```
sage: b = ComplexField().0 + 1.5
sage: loads((a+b).dumps()) == a+b
True
```

```
sage: z = 32
sage: -z
-32
sage: z = 0; -z
0
sage: z = -1; -z
1
```

Multiplication:

```
sage: a = Integer(3) ; b = Integer(4)
sage: a * b == 12
True
```

```
sage: loads((a * 4.0).dumps()) == a*b
True
```

```
sage: [2,3] * 4
[2, 3, 2, 3, 2, 3, 2, 3]
```

```
sage: 'sage'*Integer(3)
'sagesagesage'
```

COERCIONS:
Return version of this integer in the multi-precision floating real field R:

```python
sage: n = 9390823
sage: RR = RealField(200)
sage: RR(n)
9.3908230000000000000000000000000000000000000000000000000000e6
```

AUTHORS:
- William Stein (2005): initial version
- Gonzalo Tornaria (2006-03-02): vastly improved python/GMP conversion; hashing
- Didier Deshommes (2006-03-06): numerous examples and docstrings
- William Stein (2006-03-31): changes to reflect GMP bug fixes
- William Stein (2006-04-14): added GMP factorial method (since it’s now very fast).
- David Harvey (2006-09-15): added nth_root, exact_log
- David Harvey (2006-09-16): attempt to optimise Integer constructor
- Rishikesh (2007-02-25): changed quo_rem so that the rem is positive
- David Harvey, Martin Albrecht, Robert Bradshaw (2007-03-01): optimized Integer constructor and pool
- Pablo De Napoli (2007-04-01): multiplicative_order should return +infinite for non zero numbers
- Robert Bradshaw (2007-04-12): is_perfect_power, Jacobi symbol (with Kronecker extension). Convert some methods to use GMP directly rather than PARI, Integer(), PY_NEW(Integer)
- David Roe (2007-03-21): sped up valuation and is_square, added val_unit, is_power, is_power_of and divide_knowing_divisible_by
- Robert Bradshaw (2008-03-26): gamma function, multifactorials
- Robert Bradshaw (2008-10-02): bounded squarefree part
- David Loeffler (2011-01-15): fixed bug #10625 (inverse_mod should accept an ideal as argument)
- Vincent Delecroix (2010-12-28): added unicode in Integer.__init__
- David Roe (2012-03): deprecate is_power() in favour of is_perfect_power() (see github issue #12116)
- Vincent Delecroix (2017-05-03): faster integer-rational comparisons
- Vincent Klein (2017-05-11): add __mpz__() to class Integer
- Vincent Klein (2017-05-22): Integer constructor support gmpy2.mpz parameter
- Samuel Lelièvre (2018-08-02): document that divisors are sorted (github issue #25983)

```python
sage.rings.integer.GCD_list(v)
```

Return the greatest common divisor of a list of integers.

INPUT:
- `v` – list or tuple

Elements of `v` are converted to Sage integers. An empty list has GCD zero.

This function is used, for example, by `rings/arith.py`.

EXAMPLES:
```
sage: from sage.rings.integer import GCD_list
sage: w = GCD_list([3,9,30]); w
3
sage: type(w)
<class 'sage.rings.integer.Integer'>
```

Check that the bug reported in github issue #3118 has been fixed:

```
sage: sage.rings.integer.GCD_list([2,2,3])
1
```

The inputs are converted to Sage integers.

```
sage: w = GCD_list([int(3), int(9), '30']); w
3
sage: type(w)
<class 'sage.rings.integer.Integer'>
```

Check that the GCD of the empty list is zero (github issue #17257):

```
sage: GCD_list([])
0
```

class sage.rings.integer.Integer

Bases: EuclideanDomainElement

The Integer class represents arbitrary precision integers. It derives from the Element class, so integers can be used as ring elements anywhere in Sage.

Integer() interprets strings that begin with $0o$ as octal numbers, strings that begin with $0x$ as hexadecimal numbers and strings that begin with $0b$ as binary numbers.

The class Integer is implemented in Cython, as a wrapper of the GMP mpz_t integer type.

EXAMPLES:

```
sage: Integer(123)
123
sage: Integer("123")
123
```

Sage Integers support PEP 3127 literals:

```
sage: Integer('0x12')
18
sage: Integer('-0o12')
-10
sage: Integer('+0b101010')
42
```

Conversion from PARI:

```
sage: Integer(pari('-10380104371593008048799446356441519384'))     # optional -
<- sage.libs.pari
-10380104371593008048799446356441519384
sage: Integer(pari('Pol([-3])'))                                # optional -
(continues on next page)
```

1.2. Elements of the ring \(\mathbb{Z}\) of integers
Conversion from gmpy2:

```python
sage: from gmpy2 import mpz
sage: Integer(mpz(3))
3
```

```python
__pow__(left, right, modulus)
```

Return \((left ^ right) \mod modulus\).

EXAMPLES:

```python
sage: 2^-6
1/64
sage: 2^6
64
sage: 2^0
1
sage: 2^-0
1
sage: (-1)^(1/3)
# optional - sage.
-1
```

For consistency with Python and MPFR, \(0^0\) is defined to be 1 in Sage:

```python
sage: 0^0
1
```

See also http://www.faqs.org/faqs/sci-math-faq/0to0/ and https://math.stackexchange.com/questions/11150/zero-to-the-zero-power-is-00-1.

The base need not be a Sage integer. If it is a Python type, the result is a Python type too:

```python
sage: r = int(2) ^ 10; r; type(r)
1024
sage: r = int(3) ^ -3; r; type(r)
0.037037037037037035
sage: r = float(2.5) ^ 10; r; type(r)
9536.7431640625
```

We raise 2 to various interesting exponents:

```python
sage: 2^x  # symbolic x  # optional - sage.
    symbolic
sage: 2^x
2.82842712474619
sage: 2^float(1.5)  # python float abs tol 3e-16
```

(continues on next page)
A symbolic sum:

\[
\text{sage: } x, y, z = \text{var('x,y,z')} \\
\text{\hspace{1em} \rightarrow \text{symbolic}} \\
\text{sage: } 2^{x + y + z} \\
\text{\hspace{1em} \rightarrow \text{symbolic}} \\
2^{x + y + z} \\
\text{sage: } 2^{(1/2)} \\
\text{\hspace{1em} \rightarrow \text{symbolic}} \\
sqrt(2) \\
\text{sage: } 2^{(-1/2)} \\
\text{\hspace{1em} \rightarrow \text{symbolic}} \\
1/2*sqrt(2)
\]

additive_order()
Return the additive order of self.

EXAMPLES:

\[
\text{sage: } \text{ZZ(0).additive_order()} \\
1 \\
\text{sage: } \text{ZZ(1).additive_order()} \\
+Infinity
\]

as_integer_ratio()
Return the pair (self.numerator(), self.denominator()), which is (self, 1).

EXAMPLES:

\[
\text{sage: } x = -12 \\
\text{sage: } x.as_integer_ratio() \\
(-12, 1)
\]

balanced_digits(base=10, positive_shift=True)
Return the list of balanced digits for self in the given base.

The balanced base \(b\) uses \(b\) digits centered around zero. Thus if \(b\) is odd, there is only one possibility, namely digits between \(-b/2\) and \(b/2\) (both included). For instance in base 9, one uses digits from -4 to 4. If \(b\) is even, one has to choose between digits from \(-b/2\) to \(b/2 - 1\) or \(-b/2 + 1\) to \(b/2\) (base 10 for instance: either -5 to 4 or -4 to 5), and this is defined by the value of positive_shift.

INPUT:
• base – integer (default: 10); when base is 2, only the nonnegative or the nonpositive integers can be represented by balanced_digits. Thus we say base must be greater than 2.

• positive_shift – boolean (default: True); for even bases, the representation uses digits from \(-b/2 + 1\) to \(b/2\) if set to True, and from \(-b/2\) to \(b/2 - 1\) otherwise. This has no effect for odd bases.

EXAMPLES:

```
sage: 8.balanced_digits(3)
[-1, 0, 1]
sage: (-15).balanced_digits(5)
[0, 2, -1]
sage: 17.balanced_digits(6)
[-1, 3]
sage: 17.balanced_digits(6, positive_shift=False)
[-1, -3, 1]
sage: (-46).balanced_digits()
[4, 5, -1]
sage: (-46).balanced_digits(positive_shift=False)
[4, -5]
sage: (-23).balanced_digits(12)
[1, -2]
sage: (-23).balanced_digits(12, positive_shift=False)
[1, -2]
sage: 0.balanced_digits(7)
[]
sage: 14.balanced_digits(5.8)
Traceback (most recent call last):
  ... ValueError: base must be an integer
sage: 14.balanced_digits(2)
Traceback (most recent call last):
  ... ValueError: base must be > 2
```

See also:

digits

\texttt{binary()}

Return the binary digits of self as a string.

EXAMPLES:

```
sage: print(Integer(15).binary())
1111
sage: print(Integer(16).binary())
10000
sage: print(Integer(16938402384092843092843098243).binary())
11011011011010001111000111010001100100011101100100000010001100010001100011000110001000000111
```

\texttt{binomial(m, algorithm='gmp')}

Return the binomial coefficient “self choose m”.

INPUT:

• m – an integer
• algorithm – 'gmp' (default), 'mpir' (an alias for gmp), or 'pari'; 'gmp' is faster for small \(m\), and 'pari' tends to be faster for large \(m\)

OUTPUT:
• integer

EXAMPLES:

```python
sage: 10.binomial(2)
45
sage: 10.binomial(2, algorithm='pari')  # optional - sage.libs.pari
45
sage: 10.binomial(-2)
0
sage: (-2).binomial(3)
-4
sage: (-3).binomial(0)
1
```

The argument \(m\) or \((self-m)\) must fit into unsigned long:

```python
sage: (2**256).binomial(2**256)
1
sage: (2**256).binomial(2**256-1)
115792089237316195423570985008687907853269984665640564039457584007913129639936
sage: (2**256).binomial(2**128)
Traceback (most recent call last):
  ...
OverflowError: m must fit in an unsigned long
```

bit_length()

Return the number of bits required to represent this integer.

Identical to `int.bit_length()`.

EXAMPLES:

```python
sage: 500.bit_length()
9
sage: 5.bit_length()
3
sage: 0.bit_length() == len(0.bits()) == 0.ndigits(base=2)
True
sage: 12345.bit_length() == len(12345.binary())
True
sage: 1023.bit_length()
10
sage: 1024.bit_length()
11
```

bits()

Return the bits in self as a list, least significant first. The result satisfies the identity

\[
x = \sum (b \times 2^e \text{ for } b, e \text{ in enumerate(x.bits())})
\]
Negative numbers will have negative "bits". (So, strictly speaking, the entries of the returned list are not really members of \(\mathbb{Z}/2\mathbb{Z} \).)

This method just calls \texttt{digits()} with \texttt{base=2}.

See also:

- \texttt{bit_length()}, a faster way to compute \(\text{len(x.bits())} \)
- \texttt{binary()}, which returns a string in perhaps more familiar notation

EXAMPLES:

```
sage: 500.bits()  # 500 in binary
[0, 0, 1, 0, 1, 1, 1, 1, 1]
sage: 11.bits()  
[1, 1, 0, 1]
sage: (-99).bits()  # -99 in binary
[-1, -1, 0, 0, 0, -1, -1]
```

\texttt{ceil()}

Return the ceiling of self, which is self since self is an integer.

EXAMPLES:

```
sage: n = 6
sage: n.ceil()  # the ceiling of 6 is 6
6
```

\texttt{class_number}(\texttt{proof=True})

Return the class number of the quadratic order with this discriminant.

INPUT:

- \texttt{self} – an integer congruent to 0 or 1 \(\mod 4 \) which is not a square
- \texttt{proof} (boolean, default \texttt{True}) – if \texttt{False} then for negative discriminants a faster algorithm is used by the PARI library which is known to give incorrect results when the class group has many cyclic factors. However the results are correct for discriminants \(D \) with \(|D| \leq 2 \cdot 10^{10} \).

OUTPUT:

(integer) the class number of the quadratic order with this discriminant.

Note: For positive \(D \), this is not always equal to the number of classes of primitive binary quadratic forms of discriminant \(D \), which is equal to the narrow class number. The two notions are the same when \(D < 0 \), or \(D > 0 \) and the fundamental unit of the order has negative norm; otherwise the number of classes of forms is twice this class number.

EXAMPLES:

```
sage: (-163).class_number()  # optional - sage.  
# Output: 1
libs.pari
1
sage: (-104).class_number()  # optional - sage.
# Output: 6
libs.pari
6
```

(continues on next page)
sage: [[((4*n+1),(4*n+1).class_number()) for n in [21..29]] # optional - sage.
˓→libs.pari
[(85, 2),
 (89, 1),
 (93, 1),
 (97, 1),
 (101, 1),
 (105, 2),
 (109, 1),
 (113, 1),
 (117, 1)]

conjugate()

Return the complex conjugate of this integer, which is the integer itself.

EXAMPLES:

```python
sage: n = 205
sage: n.conjugate()
205
```

coprime_integers(m)

Return the non-negative integers < m that are coprime to this integer.

EXAMPLES:

```python
sage: n = 8
sage: n.coprime_integers(8)
[1, 3, 5, 7]
sage: n.coprime_integers(11)
[1, 3, 5, 7, 9]
sage: n = 5; n.coprime_integers(10)
[1, 2, 3, 4, 6, 7, 8, 9]
sage: n.coprime_integers(5)
[1, 2, 3, 4]
sage: n = 99; n.coprime_integers(99)
[1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 46, 47, 49, 50, 52, 53, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 79, 80, 82, 83, 85, 86, 89, 91, 92, 94, 95, 97, 98]
```

AUTHORS:

- Naqi Jaffery (2006-01-24): examples
- David Roe (2017-10-02): Use sieving
- Jeroen Demeyer (2018-06-25): allow returning zero (only relevant for 1.coprime_integers(n))

ALGORITHM:

Create an integer with m bits and set bits at every multiple of a prime p that divides this integer and is less than m. Then return a list of integers corresponding to the unset bits.

crt(y, m, n)

Return the unique integer between 0 and mn that is congruent to the integer modulo m and to y modulo n. We assume that m and n are coprime.
EXAMPLES:

```
sage: n = 17
sage: m = n.crt(5, 23, 11); m
247
sage: m%23
17
sage: m%11
5
```

denominator()

Return the denominator of this integer, which of course is always 1.

EXAMPLES:

```
sage: x = 5
sage: x.denominator()
1
sage: x = 0
sage: x.denominator()
1
```

digits(base=10, digits=None, padto=0)

Return a list of digits for self in the given base in little endian order.

The returned value is unspecified if self is a negative number and the digits are given.

INPUT:

- base - integer (default: 10)
- digits - optional indexable object as source for the digits
- padto - the minimal length of the returned list, sufficient number of zeros are added to make the list minimum that length (default: 0)

As a shorthand for digits(2), you can use bits().

Also see ndigits().

EXAMPLES:

```
sage: 17.digits()
[7, 1]
sage: 5.digits(base=2, digits=["zero","one"])
[\text{'one'}, \text{'zero'}, \text{'one'}]
sage: 5.digits(3)
[2, 1]
sage: 0.digits(base=10)  # 0 has 0 digits
[]
sage: 0.digits(base=2)  # 0 has 0 digits
[]
sage: 10.digits(16,'0123456789abcdef')
[\text{'a'}]
sage: 0.digits(16,'0123456789abcdef')
[]
sage: 0.digits(16,'0123456789abcdef',padto=1)
[\text{'0'}]
```
We support large bases.

The inverse of this method – constructing an integer from a list of digits and a base – can be done using the above method or by simply using \texttt{ZZ()} with a base:

Using \texttt{sum()} and \texttt{enumerate()} to do the same thing is slightly faster in many cases (and \texttt{balanced_sum()} may be faster yet). Of course it gives the same result:

Note: In some cases it is faster to give a digits collection. This would be particularly true for computing the digits of a series of small numbers. In these cases, the code is careful to allocate as few python objects as reasonably possible.
This function is comparable to `str` for speed.

AUTHORS:

- Joel B. Mohler (2008-03-02): significantly rewrote this entire function

divide_knowing_divisible_by(right)

Returns the integer self / right when self is divisible by right.

If self is not divisible by right, the return value is undefined, and may not even be close to self/right for multi-word integers.

EXAMPLES:

```
sage: a = 8; b = 4
sage: a.divide_knowing_divisible_by(b)
2
sage: (100000).divide_knowing_divisible_by(25)
4000
sage: (100000).divide_knowing_divisible_by(26) # close (random)
3846
```

However, often it’s way off.

```
sage: a = 2^70; a
1180591620717411303424
sage: a // 11 # floor divide
107326510974310118493
sage: a.divide_knowing_divisible_by(11) # way off and possibly random
43215361478743422388970455040
```

divides(n)

Return True if self divides n.

EXAMPLES:

```
sage: Z = IntegerRing()
sage: Z(5).divides(Z(10))
True
sage: Z(0).divides(Z(5))
False
sage: Z(10).divides(Z(5))
False
```
divisors(method=None)

Return the list of all positive integer divisors of this integer, sorted in increasing order.

EXAMPLES:

```python
sage: (-3).divisors()
[1, 3]
sage: 6.divisors()
[1, 2, 3, 6]
sage: 28.divisors()
[1, 2, 4, 7, 14, 28]
sage: (2^5).divisors()
[1, 2, 4, 8, 16, 32]
sage: 100.divisors()
[1, 2, 4, 5, 10, 20, 25, 50, 100]
sage: 1.divisors()
[1]
sage: 0.divisors()
Traceback (most recent call last):
...
ValueError: n must be nonzero
```

Note: If one first computes all the divisors and then sorts it, the sorting step can easily dominate the runtime. Note, however, that (non-negative) multiplication on the left preserves relative order. One can leverage this fact to keep the list in order as one computes it using a process similar to that of the merge sort algorithm.

euclidean_degree()

Return the degree of this element as an element of an Euclidean domain.

If this is an element in the ring of integers, this is simply its absolute value.

EXAMPLES:
sage: ZZ(1).euclidean_degree()
1

exact_log(m)

Returns the largest integer k such that $m^k \leq$ self, i.e., the floor of \log_m(self).

This is guaranteed to return the correct answer even when the usual log function doesn't have sufficient precision.

INPUT:

- m - integer ≥ 2

AUTHORS:

- David Harvey (2006-09-15)
- Joel B. Mohler (2009-04-08) – rewrote this to handle small cases and/or easy cases up to 100x faster.

EXAMPLES:

sage: Integer(125).exact_log(5)
3
sage: Integer(124).exact_log(5)
2
sage: Integer(126).exact_log(5)
3
sage: Integer(3).exact_log(5)
0
sage: Integer(1).exact_log(5)
0
sage: Integer(178^1700).exact_log(178)
1700
sage: Integer(178^1700-1).exact_log(178)
1699
sage: Integer(178^1700+1).exact_log(178)
1700
sage: # we need to exercise the large base code path too
sage: Integer(1780^1700-1).exact_log(1780)
1699
sage: # The following are very very fast.
sage: # Note that for base m a perfect power of 2, we get the exact log by counting bits.
sage: n=2983579823750185701375109835; m=32
sage: n.exact_log(m)
18
sage: # The next is a favorite of mine. The log2 approximate is exact and immediately provable.
sage: n=901537105701270951792579010793251709257901270941709247901209742124;
 m=213509721309572
sage: n.exact_log(m)
4
\begin{verbatim}
sage: x = 3^100000
sage: RR(log(RR(x), 3))
100000.000000000
sage: RR(log(RR(x + 100000), 3))
100000.000000000
sage: x.exact_log(3)
100000
sage: (x+1).exact_log(3)
100000
sage: (x-1).exact_log(3)
99999
sage: x.exact_log(2.5)
Traceback (most recent call last):
 ... TypeError: Attempt to coerce non-integral RealNumber to Integer
\end{verbatim}

\texttt{exp} \texttt{(prec=None)}

Returns the exponential function of self as a real number.

This function is provided only so that Sage integers may be treated in the same manner as real numbers when convenient.

INPUT:

\begin{itemize}
 \item \texttt{prec} - integer (default: None): if None, returns symbolic, else to given bits of precision as in RealField
\end{itemize}

EXAMPLES:

\begin{verbatim}
sage: Integer(8).exp() # optional - sage.
\rightarrow symbolic
e^8
sage: Integer(8).exp(prec=100) # optional - sage.
\rightarrow symbolic
2980.9579870417282747435920995
sage: exp(Integer(8)) # optional - sage.
\rightarrow symbolic
e^8
\end{verbatim}

For even fairly large numbers, this may not be useful.

\begin{verbatim}
sage: y = Integer(145^145)
sage: y.exp() # optional - sage.
\rightarrow symbolic
e^\rightarrow250242070113490792104595852795536756979321836584215652603235924094327073065541682248761100040
sage: y.exp(prec=53) # default RealField precision # optional - sage.
\rightarrow symbolic+infinity
\end{verbatim}

\texttt{factor} \texttt{(algorithm='pari', proof=None, limit=None, int_=False, verbose=0)}

Return the prime factorization of this integer as a formal Factorization object.

INPUT:

1.2. Elements of the ring \(\mathbb{Z} \) of integers

27
• algorithm - string
 – 'pari' - (default) use the PARI library
 – 'flint' - use the FLINT library
 – 'kash' - use the KASH computer algebra system (requires kash)
 – 'magma' - use the MAGMA computer algebra system (requires an installation of MAGMA)
 – 'qsieve' - use Bill Hart’s quadratic sieve code; WARNING: this may not work as expected, see
 qsieve? for more information
 – 'ecm' - use ECM-GMP, an implementation of Hendrik Lenstra’s elliptic curve method.
• proof - bool (default: True) whether or not to prove primality of each factor (only applicable for
 'pari' and 'ecm').
• limit - int or None (default: None) if limit is given it must fit in a signed int, and the factorization is
 done using trial division and primes up to limit.

OUTPUT:
• a Factorization object containing the prime factors and their multiplicities

EXAMPLES:

```python
sage: n = 2^100 - 1; n.factor()             # optional - sage.libs.pari
3 * 5^3 * 11 * 31 * 101 * 251 * 601 * 1801 * 4051 * 8101 * 268501
```

This factorization can be converted into a list of pairs \((p, e)\), where \(p\) is prime and \(e\) is a positive integer. Each pair can also be accessed directly by its index (ordered by increasing size of the prime):

```python
sage: f = 60.factor()
sage: list(f)
[(2, 2), (3, 1), (5, 1)]
sage: f[2]
(5, 1)
```

Similarly, the factorization can be converted to a dictionary so the exponent can be extracted for each prime:

```python
sage: f = (3^6).factor()
sage: dict(f)
{3: 6}
sage: dict(f)[3]
6
```

We use proof=False, which doesn’t prove correctness of the primes that appear in the factorization:

```python
sage: n = 920384092842390423848290348203948092384082349082
sage: n.factor(proof=False)  # optional - sage.libs.pari
2 * 11 * 1531 * 4402903 * 10023679 * 619162955472170540533894518173
sage: n.factor(proof=True)   # optional - sage.libs.pari
2 * 11 * 1531 * 4402903 * 10023679 * 619162955472170540533894518173
```

We factor using trial division only:
An example where FLINT is used:

```sage
nen = 82862385732327628428164127822
sage: n.factor(algorithm='flint')
2 * 3 * 11 * 13 * 41 * 73 * 22650083 * 1424602265462161
```

We factor using a quadratic sieve algorithm:

```sage
p = next_prime(10^20)
# Optional - sage.libs.pari
q = next_prime(10^21)
# Optional - sage.libs.pari
n = p * q
# Optional - sage.libs.pari
sage: n.factor(algorithm='qsieve')
# Optional - sage.libs.pari
doctest:... RuntimeWarning: the factorization returned by qsieve may be incomplete (the factors may not be prime) or even wrong; see qsieve? for details
100000000000000000039 * 1000000000000000000117
```

We factor using the elliptic curve method:

```sage
p = next_prime(10^15)
# Optional - sage.libs.pari
q = next_prime(10^21)
# Optional - sage.libs.pari
n = p * q
# Optional - sage.libs.pari
sage: n.factor(algorithm='ecm')
# Optional - sage.libs.pari
1000000000000037 * 1000000000000000000117
```

factorial()

Return the factorial $n! = 1 \cdot 2 \cdot 3 \cdots n$.

If the input does not fit in an unsigned long int an OverflowError is raised.

EXAMPLES:

```sage
for n in srange(7):
  print("{} {}".format(n, n.factorial()))
0 1
1 1
2 2
3 6
4 24
5 120
6 720
```

Large integers raise an OverflowError:
sage: (2**64).factorial()
Traceback (most recent call last):
 ...
OverflowError: argument too large for factorial

And negative ones a ValueError:

sage: (-1).factorial()
Traceback (most recent call last):
 ...
ValueError: factorial only defined for non-negative integers

floor()

Return the floor of self, which is just self since self is an integer.

EXAMPLES:

sage: n = 6
sage: n.floor()
6

gamma()

The gamma function on integers is the factorial function (shifted by one) on positive integers, and \pm \infty on non-positive integers.

EXAMPLES:

sage: gamma(5)
24
sage: gamma(0)
Infinity
sage: gamma(-1)
Infinity
sage: gamma(-2^150)
Infinity

global_height(prec=None)

Returns the absolute logarithmic height of this rational integer.

INPUT:

• prec (int) – desired floating point precision (default: default RealField precision).

OUTPUT:

(real) The absolute logarithmic height of this rational integer.

ALGORITHM:

The height of the integer n is \log |n|.

EXAMPLES:

sage: ZZ(5).global_height()
1.60943791243410
sage: ZZ(-2).global_height(prec=100)
0.69314718055994530941723212146

(continues on next page)
hex()

Return the hexadecimal digits of self in lower case.

Note: ‘0x’ is not prepended to the result like is done by the corresponding Python function on int. This is for efficiency sake—adding and stripping the string wastes time; since this function is used for conversions from integers to other C-library structures, it is important that it be fast.

EXAMPLES:

```
sage: print(Integer(15).hex())
'f'
sage: print(Integer(16).hex())
'10'
sage: print(Integer(16938402384092843092843098243).hex())
'36bb1e3929d1a8fe2802f083'
```

imag()

Returns the imaginary part of self, which is zero.

EXAMPLES:

```
sage: Integer(9).imag()
0
```

inverse_mod(n)

Return the inverse of self modulo n, if this inverse exists. Otherwise, raises a ZeroDivisionError exception.

INPUT:

* self - Integer
* n - Integer, or ideal of integer ring

OUTPUT:

* x - Integer such that x*(self) = 1 (mod m), or raises ZeroDivisionError.

IMPLEMENTATION:

Call the mpz_invert GMP library function.

EXAMPLES:

```
sage: a = Integer(189)
sage: a.inverse_mod(10000)
4709
sage: a.inverse_mod(-10000)
4709
sage: a.inverse_mod(1890)
Traceback (most recent call last):
...
```
ZeroDivisionError: inverse of Mod(189, 1890) does not exist
sage: a = Integer(19)**100000 # long time
sage: c = a.inverse_mod(a*a) # long time
Traceback (most recent call last):
 ...
ZeroDivisionError: inverse of Mod(..., ...) does not exist

We check that github issue #10625 is fixed:

sage: ZZ(2).inverse_mod(ZZ.ideal(3))
2

We check that github issue #9955 is fixed:

sage: Rational(3) % Rational(-1)
0

inverse_of_unit()
Return inverse of self if self is a unit in the integers, i.e., self is -1 or 1. Otherwise, raise a ZeroDivisionError.

EXAMPLES:

sage: (1).inverse_of_unit()
1
sage: (-1).inverse_of_unit()
-1
sage: 5.inverse_of_unit()
Traceback (most recent call last):
 ...
ArithmeticError: inverse does not exist
sage: 0.inverse_of_unit()
Traceback (most recent call last):
 ...
ArithmeticError: inverse does not exist

is_discriminant()
Returns True if this integer is a discriminant.

Note: A discriminant is an integer congruent to 0 or 1 modulo 4.

EXAMPLES:

sage: (-1).is_discriminant()
False
sage: (-4).is_discriminant()
True
sage: 100.is_discriminant()
True
sage: 101.is_discriminant()
True
is_fundamental_discriminant()
Returns True if this integer is a fundamental_discriminant.

Note: A fundamental discriminant is a discriminant, not 0 or 1 and not a square multiple of a smaller discriminant.

EXAMPLES:

```sage
sage: (-4).is_fundamental_discriminant()
True
sage: (-12).is_fundamental_discriminant()
False
sage: 101.is_fundamental_discriminant()
True
```

is_integer()
Returns True as they are integers

EXAMPLES:

```sage
sage: sqrt(4).is_integer()
True
```

is_integral()
Return True since integers are integral, i.e., satisfy a monic polynomial with integer coefficients.

EXAMPLES:

```sage
sage: Integer(3).is_integral()
True
```

is_irreducible()
Returns True if self is irreducible, i.e. +/- prime

EXAMPLES:

```sage
sage: z = 2^31 - 1
sage: z.is_irreducible() # optional - sage.libs.pari
True
sage: z = 2^31
sage: z.is_irreducible() # optional - sage.libs.pari
False
sage: z = 7
sage: z.is_irreducible() # optional - sage.libs.pari
True
sage: z = -7
sage: z.is_irreducible() # optional - sage.libs.pari
True
```

is_norm(K, element=False, proof=True)
See QQ(self).is_norm().

EXAMPLES:

1.2. Elements of the ring Z of integers
sage: K = NumberField(x^2 - 2, 'beta') # optional - sage.rings.number_field
sage: n = 4
sage: n.is_norm(K) # optional - sage.rings.number_field
True
sage: 5.is_norm(K) # optional - sage.rings.number_field
False
sage: 7.is_norm(QQ)
True
sage: n.is_norm(K, element=True) # optional - sage.rings.number_field
(True, -4*beta + 6)

sage: n = 5
sage: n.is_norm(K, element=True) # optional - sage.rings.number_field
(False, None)

sage: n = 7
sage: n.is_norm(QQ, element=True)
(True, 7)

is_one()
Returns True if the integer is 1, otherwise False.

EXAMPLES:

sage: Integer(1).is_one()
True
sage: Integer(0).is_one()
False

is_perfect_power()
Returns True if self is a perfect power, i.e. if there exist integers a and b > 1 with self = a^b.

See also:

• perfect_power(): Finds the minimal base for which this integer is a perfect power.
• is_power_of(): If you know the base already this method is the fastest option.
• is_prime_power(): Checks whether the base is prime.

EXAMPLES:

sage: Integer(-27).is_perfect_power()
True
sage: Integer(12).is_perfect_power()
False

sage: z = 8

(continues on next page)
sage: z.is_perfect_power()
True
sage: 144.is_perfect_power()
True
sage: 10.is_perfect_power()
False
sage: (-8).is_perfect_power()
True
sage: (-4).is_perfect_power()
False

is_power_of(n)
Returns True if there is an integer b with self = n^b.

See also:

• perfect_power(): Finds the minimal base for which this integer is a perfect power.
• is_perfect_power(): If you don’t know the base but just want to know if this integer is a perfect power, use this function.
• is_prime_power(): Checks whether the base is prime.

EXAMPLES:

sage: Integer(64).is_power_of(4)
True
sage: Integer(64).is_power_of(16)
False

Note: For large integers self, is_power_of() is faster than is_perfect_power(). The following examples give some indication of how much faster.

```
sage: b = lcm(range(1,10000))
sage: b.exact_log(2)
14446
sage: t=cputime()
sage: for a in range(2, 1000): k = b.is_perfect_power()
sage: cputime(t)  # random
0.53203299999999976
sage: t=cputime()
sage: for a in range(2, 1000): k = b.is_power_of(2)
sage: cputime(t)  # random
0.0
sage: t=cputime()
sage: for a in range(2, 1000): k = b.is_power_of(3)
sage: cputime(t)  # random
0.032002000000000308
```

1.2. Elements of the ring \(\mathbb{Z} \) of integers
1437

```python
sage: t=cputime()
```

```python
sage: for a in range(2, 10000): k = b.is_perfect_power()  # note that we change
˓→the range from the example above
```

```python
sage: cputime(t)  # random
0.17201100000000036
```

```python
sage: t=cputime(); TWO=int(2)
```

```python
sage: for a in range(2, 10000): k = b.is_power_of(TWO)
```

```python
sage: cputime(t)  # random
0.004000000000000036
```

```python
sage: t=cputime()
```

```python
sage: for a in range(2, 10000): k = b.is_power_of(3)
```

```python
sage: cputime(t)  # random
0.040000000000000011
```

```python
sage: t=cputime()
```

```python
sage: for a in range(2, 10000): k = b.is_power_of(a)
```

```python
sage: cputime(t)  # random
0.02800199999999986
```

is_prime *(proof=None)*

Test whether self is prime.

INPUT:

- proof – Boolean or None (default). If False, use a strong pseudo-primality test (see `is_pseudoprime()`). If True, use a provable primality test. If unset, use the default arithmetic proof flag.

Note: Integer primes are by definition positive! This is different than Magma, but the same as in PARI. See also the `is_irreducible()` method.

EXAMPLES:

```python
sage: z = 2^31 - 1
sage: z.is_prime()  # optional - sage.libs.pari
True
```

```python
sage: z = 2^31
sage: z.is_prime()  # optional - sage.libs.pari
False
```

```python
sage: z = 7
sage: z.is_prime()  # optional - sage.libs.pari
True
```

```python
sage: z = -7
sage: z.is_prime()  # optional - sage.libs.pari
False
```

```python
sage: z.is_irreducible()  # optional - sage.libs.pari
True
```

```python
sage: z = 10^80 + 129
sage: z.is_prime(proof=False)  # optional - sage.libs.pari
True
```

(continues on next page)
When starting Sage the arithmetic proof flag is True. We can change it to False as follows:

```
sage: proof.arithmetic()
True
sage: n = 10^100 + 267
sage: timeit("n.is_prime()")  # not tested  # optional - sage.libs.pari
5 loops, best of 3: 163 ms per loop
sage: proof.arithmetic(False)
False
sage: timeit("n.is_prime()")  # not tested  # optional - sage.libs.pari
1000 loops, best of 3: 573 us per loop
```

ALGORITHM:
Calls the PARI `isprime` function.

is_prime_power\(\text{proof=\text{None, get_data=False}}\)
Return True if this integer is a prime power, and False otherwise.

A prime power is a prime number raised to a positive power. Hence 1 is not a prime power.

For a method that uses a pseudoprimality test instead see `is_pseudoprime_power()`.

INPUT:

- **proof** – Boolean or None (default). If False, use a strong pseudo-primality test (see `is_pseudoprime()`). If True, use a provable primality test. If unset, use the default arithmetic proof flag.
- **get_data** – (default False), if True return a pair \((p, k)\) such that this integer equals \(p^k\) with \(p\) a prime and \(k\) a positive integer or the pair \((\text{self, 0})\) otherwise.

See also:

- **perfect_power()**: Finds the minimal base for which integer is a perfect power.
- **is_perfect_power()**: Doesn’t test whether the base is prime.
- **is_power_of()**: If you know the base already this method is the fastest option.
- **is_pseudoprime_power()**: If the entry is very large.

EXAMPLES:

```
sage: 17.is_prime_power()  # optional - sage.libs.pari
True
sage: 10.is_prime_power()  # optional - sage.libs.pari
False
sage: 64.is_prime_power()  # optional - sage.libs.pari
True
sage: (3^10000).is_prime_power()  # optional - sage.libs.pari
True
sage: (10000).is_prime_power()  # optional - sage.libs.pari
False
```
sage: (-3).is_prime_power() # optional - sage.libs.pari
False
sage: 0.is_prime_power() # optional - sage.libs.pari
False
sage: 1.is_prime_power() # optional - sage.libs.pari
False
sage: p = next_prime(10^20); p
100000000000000000039
sage: p.is_prime_power() # optional - sage.libs.pari
True
sage: (p^97).is_prime_power() # optional - sage.libs.pari
True
sage: (p+1).is_prime_power() # optional - sage.libs.pari
False

With the get_data keyword set to True:

sage: (3^100).is_prime_power(get_data=True) # optional - sage.libs.pari
(3, 100)
sage: 12.is_prime_power(get_data=True) # optional - sage.libs.pari
(12, 0)
sage: (p^97).is_prime_power(get_data=True) # optional - sage.libs.pari
(10000000000000000000039, 97)
sage: q = p.next_prime(); q
100000000000000000129
sage: (p*q).is_prime_power(get_data=True) # optional - sage.libs.pari
(1000000000000000001680000000000000005031, 0)

The method works for large entries when \(proof = False \):

sage: proof.arithmetic(False)
sage: ((10^500 + 961)^4).is_prime_power() # optional - sage.libs.pari
True
sage: proof.arithmetic(True)

We check that github issue #4777 is fixed:

sage: n = 150607571^14
sage: n.is_prime_power() # optional - sage.libs.pari
True

\textbf{is_pseudoprime()} \\
Test whether \texttt{self} is a pseudoprime.

This uses PARI's Baillie-PSW probabilistic primality test. Currently, there are no known pseudoprimes for Baillie-PSW that are not actually prime. However it is conjectured that there are infinitely many.

See Wikipedia article Baillie-PSW_primality_test

\textbf{EXAMPLES:}

sage: z = 2^31 - 1
\textbf{sage: z.is_pseudoprime()} # optional - sage.libs.pari
True
is_pseudoprime_power(get_data=False)
Test if this number is a power of a pseudoprime number.
For large numbers, this method might be faster than is_prime_power().

INPUT:
• get_data – (default False) if True return a pair (p, k) such that this number equals p^k with p a pseudoprime and k a positive integer or the pair $(self, 0)$ otherwise.

EXAMPLES:

```
sage: x = 10^200 + 357
sage: x.is_pseudoprime()                               # optional - sage.libs.pari
True
sage: (x^12).is_pseudoprime_power()                    # optional - sage.libs.pari
True
sage: (x^12).is_pseudoprime_power(get_data=True)      # optional - sage.libs.pari
(1000...000357, 12)
sage: (997^100).is_pseudoprime_power()                # optional - sage.libs.pari
True
sage: (998^100).is_pseudoprime_power()                # optional - sage.libs.pari
False
sage: ((10^1000 + 453)^2).is_pseudoprime_power()      # optional - sage.libs.pari
True
```

is_rational()
Return True as an integer is a rational number.

EXAMPLES:

```
sage: 5.is_rational()
True
```

is_square()
Returns True if self is a perfect square.

EXAMPLES:

```
sage: Integer(4).is_square()
True
sage: Integer(41).is_square()
False
```

1.2. Elements of the ring \mathbb{Z} of integers
is_squarefree()
Returns True if this integer is not divisible by the square of any prime and False otherwise.

EXAMPLES:

```sage
sage: 100.is_squarefree()      # optional - sage.libs.pari
False
sage: 102.is_squarefree()      # optional - sage.libs.pari
True
sage: 0.is_squarefree()       # optional - sage.libs.pari
False
```

is_unit()
Returns true if this integer is a unit, i.e., 1 or −1.

EXAMPLES:

```sage
sage: for n in srange(-2,3):
       print("{} {}".format(n, n.is_unit()))
-2 False
-1 True
0 False
1 True
2 False
```

isqrt()
Returns the integer floor of the square root of self, or raises a ValueError if self is negative.

EXAMPLES:

```sage
sage: a = Integer(5)
sage: a.isqrt()
2
```

```
sage: Integer(-102).isqrt()
Traceback (most recent call last):
...
ValueError: square root of negative integer not defined.
```

jacobi(b)
Calculate the Jacobi symbol \(\left(\frac{\text{self}}{b} \right) \).

EXAMPLES:

```sage
sage: z = -1
sage: z.jacobi(17)
1
sage: z.jacobi(19)
1
sage: z.jacobi(17*19)
-1
sage: (2).jacobi(17)
1
sage: (3).jacobi(19)
```

(continues on next page)
-1
sage: (6).jacobi(17*19)
-1
sage: (6).jacobi(33)
0
sage: a = 3; b = 7
sage: a.jacobi(b) == -b.jacobi(a)
True

kronecker(b)

Calculate the Kronecker symbol \(\left(\frac{\text{self}}{b} \right) \) with the Kronecker extension \(\left(\frac{\text{self}/2}{b} \right) = \left(\frac{2}{\text{self}} \right) \) when \(\text{self} \) is odd, or \(\left(\frac{\text{self}/2}{b} \right) = 0 \) when \(\text{self} \) is even.

EXAMPLES:
sage: z = 5
sage: z.kronecker(41)
1
sage: z.kronecker(43)
-1
sage: z.kronecker(8)
-1
sage: z.kronecker(15)
0
sage: a = 2; b = 5
sage: a.kronecker(b) == b.kronecker(a)
True

list()

Return a list with this integer in it, to be compatible with the method for number fields.

EXAMPLES:
sage: m = 5
sage: m.list()
[5]

log(m=None, prec=None)

Returns symbolic log by default, unless the logarithm is exact (for an integer argument). When precision is given, the RealField approximation to that bit precision is used.

This function is provided primarily so that Sage integers may be treated in the same manner as real numbers when convenient. Direct use of exact_log is probably best for arithmetic log computation.

INPUT:

- m - default: natural log base e
- prec - integer (default: None): if None, returns symbolic, else to given bits of precision as in RealField

EXAMPLES:
\rightarrow symbolic
log(124)/log(5)
For extremely large numbers, this works:

```
sage: x = 3^100000
sage: log(x, 3)
100000
```

With the new Pynac symbolic backend, \(\log(x) \) also works in a reasonable amount of time for this \(x \):

```
sage: x = 3^100000
sage: log(x)
log(1334971414230...5522000001)
```

But approximations are probably more useful in this case, and work to as high a precision as we desire:

```
sage: x.log(3,53) # default precision for RealField
100000.000000000
sage: (x+1).log(3,1000)
100000.
```

We can use non-integer bases, with default \(e \):

```
sage: x.log(2.5,prec=53)
119897.784671579
```

We also get logarithms of negative integers, via the symbolic ring, using the branch from \(-\pi\) to \(\pi\):

```
sage: log(-1)
I*pi
```

The logarithm of zero is done likewise:

```
sage: log(0)
-Infinity
```

Some rational bases yield integer logarithms (github issue #21517):

```
sage: ZZ(8).log(1/2)
-3
```

Check that Python ints are accepted (github issue #21518):
multifactorial\((k)\)
Compute the \(k\)-th factorial \(n^{(k)}\) of self.
The multifactorial number \(n^{(k)}\) is defined for non-negative integers \(n\) as follows. For \(k = 1\) this is the standard factorial, and for \(k\) greater than 1 it is the product of every \(k\)-th terms down from \(n\) to 1. The recursive definition is used to extend this function to the negative integers \(n\).
This function uses direct call to GMP if \(k\) and \(n\) are non-negative and uses simple transformation for other cases.
EXAMPLES:
```
sage: 5.multifactorial(1)
120
sage: 5.multifactorial(2)
15
sage: 5.multifactorial(3)
10
sage: 23.multifactorial(2)
316234143225
sage: prod([1..23, step=2])
316234143225
sage: (-29).multifactorial(7)
1/2640
sage: (-3).multifactorial(5)
1/2
sage: (-9).multifactorial(3)
Traceback (most recent call last):
... ValueError: multifactorial undefined
```
When entries are too large an \texttt{OverflowError} is raised:
```
sage: (2**64).multifactorial(2)
Traceback (most recent call last):
... OverflowError: argument too large for multifactorial
```
\texttt{multiplicative_order()}
Return the multiplicative order of self.
EXAMPLES:
```
sage: ZZ(1).multiplicative_order()
1
sage: ZZ(-1).multiplicative_order()
2
sage: ZZ(0).multiplicative_order()
+Infinity
```

sage: ZZ(2).multiplicative_order()
+Infinity

nbits()

Alias for bit_length().

ndigits(base=10)

Return the number of digits of self expressed in the given base.

INPUT:

• base - integer (default: 10)

EXAMPLES:

sage: n = 52
sage: n.ndigits()
2
sage: n = -10003
sage: n.ndigits()
5
sage: n = 15
sage: n.ndigits(2)
4
sage: n = 1000**1000000+1
sage: n.ndigits()
3000001
sage: n = 1000**1000000-1
sage: n.ndigits()
3000000
sage: n = 10**10000000-10**9999990
sage: n.ndigits()
10000000

next_prime(proof=None)

Return the next prime after self.

This method calls the PARI nextprime function.

INPUT:

• proof - bool or None (default: None, see proof.arithmetic or sage.structure.proof) Note that the global Sage default is proof=True

EXAMPLES:

sage: 100.next_prime() # optional - sage.libs.pari
101
sage: (10**50).next_prime() # optional - sage.libs.pari
1000151

Use proof=False, which is way faster since it does not need a primality proof:

sage: b = (2^1024).next_prime(proof=False) # optional - sage.libs.pari
sage: b - 2^1024 # optional - sage.libs.pari
643
next_prime_power(proof=None)

Return the next prime power after self.

INPUT:

- **proof** - if True ensure that the returned value is the next prime power and if set to False uses probabilistic methods (i.e. the result is not guaranteed). By default it uses global configuration variables to determine which alternative to use (see proof.arithmetic or sage.structure.proof).

ALGORITHM:

The algorithm is naive. It computes the next power of 2 and go through the odd numbers calling is_prime_power()

See also:

- previous_prime_power()
- is_prime_power()
- next_prime()
- previous_prime()

EXAMPLES:

```
sage: (-1).next_prime_power()
2
sage: 2.next_prime_power()        # optional - sage.libs.pari
3
sage: 103.next_prime_power()      # optional - sage.libs.pari
107
sage: 107.next_prime_power()      # optional - sage.libs.pari
109
sage: 2044.next_prime_power()     # optional - sage.libs.pari
2048
```

next_probable_prime()

Return the next probable prime after self, as determined by PARI.

EXAMPLES:

```
sage: (-37).next_probable_prime()        # optional - sage.libs.pari
2
sage: (100).next_probable_prime()        # optional - sage.libs.pari
101
sage: (2^512).next_probable_prime()      # optional - sage.libs.pari
1340780792994259709957492499820584612747936582059239337723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084171
```

nth_root\((n, \text{truncate_mode}=0)\)

Returns the (possibly truncated) n'th root of self.

INPUT:

- \(n\) - integer \(>= 1\) (must fit in C int type).
- \(\text{truncate_mode}\) - boolean, whether to allow truncation if self is not an n'th power.

OUTPUT:

If \(\text{truncate_mode}\) is 0 (default), then returns the exact n'th root if self is an n'th power, or raises a ValueError if it is not.

If \(\text{truncate_mode}\) is 1, then if either \(n\) is odd or self is positive, returns a pair \((\text{root}, \text{exact_flag})\) where root is the truncated nth root (rounded towards zero) and exact_flag is a boolean indicating whether the root extraction was exact; otherwise raises a ValueError.

AUTHORS:

- David Harvey (2006-09-15)
- Interface changed by John Cremona (2009-04-04)

EXAMPLES:

```python
sage: Integer(125).nth_root(3)
5
sage: Integer(124).nth_root(3)
Traceback (most recent call last):
  ... ValueError: 124 is not a 3rd power
sage: Integer(124).nth_root(3, truncate_mode=1)
(4, False)
sage: Integer(125).nth_root(3, truncate_mode=1)
(5, True)
sage: Integer(126).nth_root(3, truncate_mode=1)
(5, False)
```

```python
sage: Integer(-125).nth_root(3)
-5
sage: Integer(-125).nth_root(3, truncate_mode=1)
(-5, True)
sage: Integer(-124).nth_root(3, truncate_mode=1)
(-4, False)
sage: Integer(-126).nth_root(3, truncate_mode=1)
(-5, False)
```
sage: Integer(125).nth_root(2, True)
(11, False)
sage: Integer(125).nth_root(3, True)
(5, True)

sage: Integer(125).nth_root(-5)
Traceback (most recent call last):
 ... ValueError: n (=5) must be positive

sage: Integer(-25).nth_root(2)
Traceback (most recent call last):
 ... ValueError: cannot take even root of negative number

sage: a=9
sage: a.nth_root(3)
Traceback (most recent call last):
 ... ValueError: 9 is not a 3rd power
sage: a.nth_root(22)
Traceback (most recent call last):
 ... ValueError: 9 is not a 22nd power

sage: ZZ(2^20).nth_root(21)
Traceback (most recent call last):
 ... ValueError: 1048576 is not a 21st power
sage: ZZ(2^20).nth_root(21, truncate_mode=1)
(1, False)

numerator()

Return the numerator of this integer.

EXAMPLES:

```python
sage: x = 5
sage: x.numerator()
5

sage: x = 0
sage: x.numerator()
0
```

oct()

Return the digits of self in base 8.

Note: ‘0’ (or ‘0o’) is not prepended to the result like is done by the corresponding Python function on int. This is for efficiency sake—adding and stripping the string wastes time; since this function is used for

1.2. Elements of the ring \(Z\) of integers 47
conversions from integers to other C-library structures, it is important that it be fast.

EXAMPLES:

```
sage: print(Integer(800).oct())
1440
sage: print(Integer(8).oct())
10
sage: print(Integer(-50).oct())
-62
sage: print(Integer(-899).oct())
-1603
sage: print(Integer(16938402384092843092843098243).oct())
15535436162247215217705000570203
```

Behavior of Sage integers vs. Python integers:

```
sage: Integer(10).oct()
'12'
sage: oct(int(10))
'0o12'
sage: Integer(-23).oct()
'-27'
sage: oct(int(-23))
'-0o27'
```

odd_part()

The odd part of the integer \(n \). This is \(n/2^v \), where \(v = \text{valuation}(n, 2) \).

IMPLEMENTATION:

Currently returns 0 when self is 0. This behaviour is fairly arbitrary, and in Sage 4.6 this special case was not handled at all, eventually propagating a TypeError. The caller should not rely on the behaviour in case self is 0.

EXAMPLES:

```
sage: odd_part(5)
5
sage: odd_part(4)
1
sage: odd_part(factorial(31))
122529844256906551386796875
```

ord

Return the \(p \)-adic valuation of self.

INPUT:

- \(p \) - an integer at least 2.

EXAMPLES:

```
sage: n = 60
sage: n.valuation(2)
```

(continues on next page)
We do not require that p is a prime:

```sage
sage: (2^11).valuation(4)
sage: 5
```

ordinal_str()

Returns a string representation of the ordinal associated to self.

EXAMPLES:

```sage
sage: [ZZ(n).ordinal_str() for n in range(25)]
['0th', '1st', '2nd', '3rd', '4th', ...
 '10th', '11th', '12th', '13th', '14th', ...
 '20th', '21st', '22nd', '23rd', '24th']
sage: ZZ(1001).ordinal_str()
'1001st'
sage: ZZ(113).ordinal_str()
'113th'
sage: ZZ(112).ordinal_str()
'112th'
sage: ZZ(111).ordinal_str()
'111th'
```

p_primary_part(p)

Return the p-primary part of self.

INPUT:

1.2. Elements of the ring \mathbb{Z} of integers
• \(p \) – a prime integer.

OUTPUT: Largest power of \(p \) dividing \(\text{self} \).

EXAMPLES:

```
sage: n = 40
sage: n.p_primary_part(2) 8
sage: n.p_primary_part(5) 5
sage: n.p_primary_part(7) 1
sage: n.p_primary_part(6)
Traceback (most recent call last):
  ... ValueError: 6 is not a prime number
```

perfect_power()

Returns \((a, b) \), where this integer is \(a^b \) and \(b \) is maximal.

If called on \(-1, 0\) or \(1\), \(b \) will be \(1\), since there is no maximal value of \(b \).

See also:

- **is_perfect_power()**: testing whether an integer is a perfect power is usually faster than finding \(a \) and \(b \).
- **is_prime_power()**: checks whether the base is prime.
- **is_power_of()**: if you know the base already, this method is the fastest option.

EXAMPLES:

```
sage: 144.perfect_power()  # optional - sage.libs.pari
(12, 2)
sage: 1.perfect_power()   # optional - sage.libs.pari
(1, 1)
sage: 0.perfect_power()   # optional - sage.libs.pari
(0, 1)
sage: (-1).perfect_power() # optional - sage.libs.pari
(-1, 1)
sage: (-8).perfect_power() # optional - sage.libs.pari
(-2, 3)
sage: (-4).perfect_power() # optional - sage.libs.pari
(-4, 1)
sage: (101^29).perfect_power() # optional - sage.libs.pari
(101, 29)
sage: (-243).perfect_power() # optional - sage.libs.pari
(-3, 5)
sage: (-64).perfect_power() # optional - sage.libs.pari
(-4, 3)
```

popcount()

Return the number of 1 bits in the binary representation. If \(\text{self}<0 \), we return Infinity.

EXAMPLES:
.. code-block:: python

 sage: n = 123
 sage: n.str(2)
 '1111011'
 sage: n.popcount()
 6
 sage: n = -17
 sage: n.popcount()
 +Infinity

.. function:: powermod(exp, mod)

 Compute \(n^{exp} \mod mod \).

 EXAMPLES:

 .. code-block:: python

 sage: z = 2
 sage: z.powermod(31,31)
 2
 sage: z.powermod(0,31)
 1
 sage: z.powermod(-31,31) == 2^{-31} \mod 31
 True

 As expected, the following is invalid:

 .. code-block:: python

 sage: z.powermod(31,0)
 Traceback (most recent call last):
 ...
 ZeroDivisionError: cannot raise to a power modulo 0

.. function:: previous_prime(proof=None)

 Returns the previous prime before \(n \).

 This method calls the PARI \texttt{precprime} function.

 INPUT:

 - \texttt{proof} - if True ensure that the returned value is the next prime power and if set to False uses probabilistic methods (i.e. the result is not guaranteed). By default it uses global configuration variables to determine which alternative to use (see \texttt{proof.arithmetic} or \texttt{sage.structure.proof}).

 See also:

 - \texttt{next_prime()}

 EXAMPLES:

 .. code-block:: python

 sage: 10.previous_prime() # optional - sage.libs.pari
 7
 sage: 7.previous_prime() # optional - sage.libs.pari
 5
 sage: 14376485.previous_prime() # optional - sage.libs.pari
 14376463
 sage: 2.previous_prime() # optional - sage.libs.pari

 (continues on next page)
An example using `proof=False`, which is way faster since it does not need a primality proof:

```
sage: b = (2^1024).previous_prime(proof=False)  # optional - sage.libs.pari
sage: 2^1024 - b                                # optional - sage.libs.pari
 105
```

`previous_prime_power(proof=None)`

Return the previous prime power before self.

INPUT:

- `proof` - if `True` ensure that the returned value is the next prime power and if set to `False` uses probabilistic methods (i.e. the result is not guaranteed). By default it uses global configuration variables to determine which alternative to use (see `proof.arithmetic` or `sage.structure.proof`).

ALGORITHM:

The algorithm is naive. It computes the previous power of 2 and go through the odd numbers calling the method `is_prime_power()`.

See also:

- `next_prime_power()`
- `is_prime_power()`
- `previous_prime()`
- `next_prime()`

EXAMPLES:

```
sage: 3.previous_prime_power()                       # optional - sage.libs.pari
  2

sage: 103.previous_prime_power()                     # optional - sage.libs.pari
  101

sage: 107.previous_prime_power()                     # optional - sage.libs.pari
  103

sage: 2044.previous_prime_power()                    # optional - sage.libs.pari
  2039

sage: 2.previous_prime_power()                      # optional - sage.libs.pari
  Traceback (most recent call last):
  ...  
  ValueError: no prime power less than 2
```

`prime_divisors(*args, **kwds)`

Return the prime divisors of this integer, sorted in increasing order.
If this integer is negative, we do not include -1 among its prime divisors, since -1 is not a prime number.

INPUT:

- `limit` – (integer, optional keyword argument) Return only prime divisors up to this bound, and the factorization is done by checking primes up to `limit` using trial division.

Any additional arguments are passed on to the `factor()` method.

EXAMPLES:

```
sage: a = 1; a.prime_divisors()
[]
sage: a = 100; a.prime_divisors()
[2, 5]
sage: a = -100; a.prime_divisors()
[2, 5]
sage: a = 2004; a.prime_divisors()
[2, 3, 167]
```

Setting the optional `limit` argument works as expected:

```
sage: a = 10^100 + 1
sage: a.prime_divisors()
[73, 137, 401, 1201, 1601, 1676321, 5964848081, 12969419629057750551385771184564274499075700947656757821537291527196801]
sage: a.prime_divisors(limit=10^3)
[73, 137, 401]
sage: a.prime_divisors(limit=10^7)
[73, 137, 401, 1201, 1601, 1676321]
```

`prime_factors(*args, **kwds)`

Return the prime divisors of this integer, sorted in increasing order.

If this integer is negative, we do not include -1 among its prime divisors, since -1 is not a prime number.

INPUT:

- `limit` – (integer, optional keyword argument) Return only prime divisors up to this bound, and the factorization is done by checking primes up to `limit` using trial division.

Any additional arguments are passed on to the `factor()` method.

EXAMPLES:

```
sage: a = 1; a.prime_divisors()
[]
sage: a = 100; a.prime_divisors()
[2, 5]
sage: a = -100; a.prime_divisors()
[2, 5]
sage: a = 2004; a.prime_divisors()
[2, 3, 167]
```

Setting the optional `limit` argument works as expected:

```
sage: a = 10^100 + 1
sage: a.prime_divisors()
```

(continues on next page)
prime_to_m_part(m)
Returns the prime-to-m part of self, i.e., the largest divisor of self that is coprime to m.

INPUT:
• m - Integer

OUTPUT: Integer

EXAMPLES:

```sage
data = [73, 137, 401, 1201, 1601, 1676321, 5964848081, 129694419629057750551385771184564274499075700947656757821537291527196801]
sage: a.prime_divisors(limit=10^3)
[73, 137, 401]
sage: a.prime_divisors(limit=10^7)
[73, 137, 401, 1201, 1601, 1676321]
```

```sage
sage: a.prime_to_m_part(20)
21717
sage: a.prime_to_m_part(2)
1
sage: a.prime_to_m_part(3)
2048
sage: a.prime_to_m_part(2)
Traceback (most recent call last):
... ArithmeticError: self must be nonzero
```

quo_rem($other$)
Returns the quotient and the remainder of self divided by other. Note that the remainder returned is always either zero or of the same sign as other.

INPUT:
• $other$ - the divisor

OUTPUT:
• q - the quotient of self/other
• r - the remainder of self/other

EXAMPLES:

```sage
z = Integer(231)
sage: z.quo_rem(2)
(115, 1)
sage: z.quo_rem(-2)
(-116, -1)
sage: z.quo_rem(0)
Traceback (most recent call last):
... ZeroDivisionError: Integer division by zero
```

```sage
a = ZZ.random_element(10**50)
```
sage: b = ZZ.random_element(10**15)
sage: q, r = a.quo_rem(b)
sage: q*b + r == a
True
sage: 3.quo_rem(ZZ['x'].0)
(0, 3)

rational_reconstruction(m)

Return the rational reconstruction of this integer modulo m, i.e., the unique (if it exists) rational number that reduces to self modulo m and whose numerator and denominator is bounded by sqrt(m/2).

INPUT:

• self – Integer
• m – Integer

OUTPUT:

• a Rational

EXAMPLES:

sage: (3/7)%100
29
sage: (29).rational_reconstruction(100)
3/7

real()

Returns the real part of self, which is self.

EXAMPLES:

sage: Integer(-4).real()
-4

round(mode='away')

Returns the nearest integer to self, which is self since self is an integer.

EXAMPLES:

This example addresses github issue #23502:

sage: n = 6
sage: n.round()
6

sign()

Returns the sign of this integer, which is -1, 0, or 1 depending on whether this number is negative, zero, or positive respectively.

OUTPUT: Integer

EXAMPLES:
sage: 500.sign()
1
sage: 0.sign()
0
sage: (-10^43).sign()
-1

\textbf{sqrt}(\texttt{prec=\texttt{None}}, \texttt{extend=\texttt{True}}, \texttt{all=\texttt{False}})
The square root function.

\textbf{INPUT:}

- \texttt{prec} - integer (default: \texttt{None}): if \texttt{None}, return an exact square root; otherwise return a numerical square root, to the given bits of precision.
- \texttt{extend} - bool (default: \texttt{True}); if \texttt{True}, return a square root in an extension ring, if necessary. Otherwise, raise a \texttt{ValueError} if the square is not in the base ring. Ignored if \texttt{prec} is not \texttt{None}.
- \texttt{all} - bool (default: \texttt{False}); if \texttt{True}, return all square roots of \texttt{self} (a list of length 0, 1 or 2).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Integer(144).sqrt()
12
sage: sqrt(Integer(144))
12
sage: Integer(102).sqrt()
optional - sage.
˓
→ symbolic
sqrt(102)
sage: n = 2
sage: n.sqrt(all=True)
optional - sage.
→ symbolic
[sqrt(2), -sqrt(2)]
sage: n.sqrt(prec=10)
1.4
sage: n.sqrt(prec=100)
1.4142135623730950488016887242
sage: n.sqrt(prec=100, all=True)
[1.4142135623730950488016887242, -1.4142135623730950488016887242]
sage: n.sqrt(extend=False)
Traceback (most recent call last):
...
ArithmeticError: square root of 2 is not an integer
sage: (-1).sqrt(extend=False)
Traceback (most recent call last):
...
ArithmeticError: square root of -1 is not an integer
sage: Integer(144).sqrt(all=True)
[12, -12]
sage: Integer(0).sqrt(all=True)
[0]
\end{verbatim}

\textbf{sqrtrem()}

Return \((s, r)\) where \(s\) is the integer square root of \texttt{self} and \(r\) is the remainder such that \texttt{self} = \(s^2 + r\). Raises \texttt{ValueError} if \texttt{self} is negative.
EXAMPLES:

```
sage: 25.sqrtrem()
(5, 0)
sage: 27.sqrtrem()
(5, 2)
sage: 0.sqrtrem()
(0, 0)
```

```
sage: Integer(-102).sqrtrem()
Traceback (most recent call last):
...
ValueError: square root of negative integer not defined.
```

squarefree_part *(bound=1)*

Return the square free part of \(x (=\text{self}) \), i.e., the unique integer \(z \) that \(x = zy^2 \), with \(y^2 \) a perfect square and \(z \) square-free.

Use `self.radical()` for the product of the primes that divide `self`.

If `self` is 0, just returns 0.

EXAMPLES:

```
sage: squarefree_part(100)
1
sage: squarefree_part(12)
3
sage: squarefree_part(17^3 * 37)
17
sage: squarefree_part(-17^3 * 32)
-34
sage: squarefree_part(1)
1
sage: squarefree_part(-1)
-1
sage: squarefree_part(-2)
-2
sage: squarefree_part(-4)
-1
```

```
sage: a = 8 * 5^6 * 101^2
sage: a.squarefree_part(bound=2).factor()
2 * 5^6 * 101^2
sage: a.squarefree_part(bound=5).factor()
2 * 101^2
sage: a.squarefree_part(bound=1000)
2
sage: a.squarefree_part(bound=2**14)
2
```

```
sage: 7^3 * next_prime(2^100)^2 * next_prime(2^200)  # optional - sage.
˓→libs.pari
sage: a / a.squarefree_part(bound=1000)  # optional - sage.
˓→libs.pari
```

1.2. Elements of the ring \(\mathbb{Z} \) of integers
\texttt{str}(\texttt{base=}10)

Return the string representation of \texttt{self} in the given base.

\texttt{sage: Integer(2^10).str(2)}
\texttt{'}10000000000'\texttt{)
\texttt{sage: Integer(2^10).str(17)}
\texttt{'}394'\texttt{)

\texttt{sage: two=Integer(2)}
\texttt{sage: two.str(1)}
Traceback (most recent call last):
...
ValueError: base (=1) must be between 2 and 36

\texttt{sage: two.str(37)}
Traceback (most recent call last):
...
ValueError: base (=37) must be between 2 and 36

\texttt{sage: big = 10^5000000}
\texttt{sage: s = big.str()} \# long time (2s on sage.math, 2014)
\texttt{sage: len(s)} \# long time (depends on above defn of s)
5000001
\texttt{sage: s[\text{:10}]} \# long time (depends on above defn of s)
\texttt{'}1000000000'\texttt{)

\texttt{support()}

Return a sorted list of the primes dividing this integer.

OUTPUT: The sorted list of primes appearing in the factorization of this rational with positive exponent.

\texttt{sage: factorial(10).support()}
\texttt{[2, 3, 5, 7]}
\texttt{sage: \text{(-999).support()}}
\texttt{[3, 37]}

Trying to find the support of 0 gives an arithmetic error:

\texttt{sage: 0.support()}
Traceback (most recent call last):
...
\texttt{ArithmeticError: Support of 0 not defined.}

\text{test_bit}(\text{index})

Return the bit at \text{index}.

If the index is negative, returns 0.

Although internally a sign-magnitude representation is used for integers, this method pretends to use a two’s complement representation. This is illustrated with a negative integer below.

\texttt{EXAMPLES:}
trailing_zero_bits()
Return the number of trailing zero bits in self, i.e. the exponent of the largest power of 2 dividing self.

EXAMPLES:

```
sage: 11.trailing_zero_bits()
0
sage: (-11).trailing_zero_bits()
0
sage: (11<<5).trailing_zero_bits()
5
sage: (-11<<5).trailing_zero_bits()
5
sage: 0.trailing_zero_bits()
0
```

trial_division(bound='LONG_MAX', start=2)
Return smallest prime divisor of self up to bound, beginning checking at start, or abs(self) if no such divisor is found.

INPUT:

- **bound** – a positive integer that fits in a C signed long
- **start** – a positive integer that fits in a C signed long

OUTPUT:

- a positive integer

EXAMPLES:

```
sage: n = next_prime(10^6)*next_prime(10^7); n.trial_division() #optional - sage.libs.pari
1000003
sage: (-n).trial_division() #optional - sage.libs.pari
1000003
sage: n.trial_division(bound=100) #optional - sage.libs.pari
```

(continues on next page)
You can specify a starting point:

sage: n = 3*5*101*103
trunc()

Round this number to the nearest integer, which is self since self is an integer.

EXAMPLES:

```
sage: n = 6
sage: n.trunc()
6
```

val_unit(p)

INPUT:

• p - an integer at least 2.

OUTPUT:

• v_p(self) - the p-adic valuation of self
• u_p(self) - $self / p^{v_p(self)}$

EXAMPLES:

```
sage: n = 60
sage: n.val_unit(2)
(2, 15)
sage: n.val_unit(3)
(1, 20)
sage: n.val_unit(7)
(0, 60)
sage: (2**11).val_unit(4)
(5, 2)
sage: 0.val_unit(2)
(+Infinity, 1)
```

valuation(p)

Return the p-adic valuation of self.

INPUT:

• p - an integer at least 2.

EXAMPLES:

```
sage: n = 60
sage: n.valuation(2)
2
sage: n.valuation(3)
1
sage: n.valuation(7)
0
sage: n.valuation(1)
Traceback (most recent call last):
```

(continues on next page)
ValueError: You can only compute the valuation with respect to a integer larger than 1.

We do not require that \(p \) is a prime:

```
(2^11).valuation(4)
```

\[
xgcd(n)
\]

Return the extended gcd of this element and \(n \).

INPUT:

- \(n \) – an integer

OUTPUT:

A triple \((g, s, t)\) such that \(g \) is the non-negative gcd of \(\text{self} \) and \(n \), and \(s \) and \(t \) are cofactors satisfying the Bezout identity

\[
g = s \cdot \text{self} + t \cdot n.
\]

Note: There is no guarantee that the cofactors will be minimal. If you need the cofactors to be minimal use \(_xgcd()\). Also, using \(_xgcd()\) directly might be faster in some cases, see [github issue #13628](https://github.com/sagemath/sage/issues/13628).

EXAMPLES:

```
6.xgcd(4)
```

\[
(2, 1, -1)
\]

class `sage.rings.integer.IntegerWrapper`

Bases: `Integer`

Rationale for the `IntegerWrapper` class:

With `Integers`, the allocation/deallocation function slots are hijacked with custom functions that stick already allocated `Integers` (with initialized `parent` and `mpz_t` fields) into a pool on “deallocation” and then pull them out whenever a new one is needed. Because `Integers` are so common, this is actually a significant savings. However, this does cause issues with subclassing a Python class directly from `Integer` (but that’s ok for a Cython class).

As a workaround, one can instead derive a class from the intermediate class `IntegerWrapper`, which sets statically its alloc/dealloc methods to the original `Integer` alloc/dealloc methods, before they are swapped manually for the custom ones.

The constructor of `IntegerWrapper` further allows for specifying an alternative parent to `IntegerRing()`.

sage.rings.integer.free_integer_pool()

class `sage.rings.integer.int_to_Z`

Bases: `Morphism`

Morphism from Python ints to Sage integers.

EXAMPLES:
This is intended for internal use by the coercion system, to facilitate fast expressions mixing ints and more complex Python types. Note that (as with all morphisms) the input is forcibly coerced to the domain int if it is not already of the correct type which may have undesirable results:

\[
\text{sage: f.domain()}
\]

Set of Python objects of class 'int'

\[
\text{sage: f(1/3)}
\]

0

\[
\text{sage: f(1.7)}
\]

1

\[
\text{sage: f("10")}
\]

10

A pool is used for small integers:

\[
\text{sage: f(10) is f(10)}
\]

True

\[
\text{sage: f(-2) is f(-2)}
\]

True

sage.rings.integer.is_Integer(x)

Return true if x is of the Sage integer type.

EXAMPLES:

\[
\text{sage: from sage.rings.integer import is_Integer}
\]

\[
\text{sage: is_Integer(2)}
\]

True

\[
\text{sage: is_Integer(2/1)}
\]

False

\[
\text{sage: is_Integer(int(2))}
\]

False

\[
\text{sage: is_Integer('5')}
\]

False

class sage.rings.integer.long_to_Z

Bases: Morphism

EXAMPLES:

\[
\text{sage: f = ZZ.coerce_map_from(int)}
\]

\[
\text{sage: f}
\]
Native morphism:
 From: Set of Python objects of class 'int'
 To: Integer Ring
\sage:\ \texttt{f(1rL)}
1
\begin{Verbatim}
\texttt{sage.rings.integer.make_integer(s)}
\end{Verbatim}
Create a Sage integer from the base-32 Python string \textit{s}. This is used in unpickling integers.

\textbf{EXAMPLES:}
\begin{Verbatim}
\texttt{\sage: \texttt{from sage.rings.integer import make_integer}}
\texttt{\sage: make_integer('\texttt{-29}')}
-73
\texttt{\sage: make_integer(29)}
Traceback (most recent call last):
...\texttt{TypeError: expected str...Integer found}
\end{Verbatim}

\subsection{1.3 Cython wrapper for bernmm library}

\textbf{AUTHOR:}

- David Harvey (2008-06): initial version

\begin{Verbatim}
\texttt{sage.rings.bernnum.bernnum_bern_modp(p, k)}
\end{Verbatim}
Computes \(B_k \mod p \), where \(B_k \) is the \(k \)-th Bernoulli number.
If \(B_k \) is not \(p \)-integral, returns -1.

\textbf{INPUT:}

- \(p \) – a prime
- \(k \) – non-negative integer

\textbf{COMPLEXITY:}

Pretty much linear in \(p \).

\textbf{EXAMPLES:}
\begin{Verbatim}
\texttt{\sage: \texttt{from sage.rings.bernnum import bernnum_bern_modp}}
\texttt{\sage: bernoulli(0) \% 5, bernnum_bern_modp(5, 0)}
(1, 1)
\texttt{\sage: bernoulli(1) \% 5, bernnum_bern_modp(5, 1)}
(2, 2)
\texttt{\sage: bernoulli(2) \% 5, bernnum_bern_modp(5, 2)}
(1, 1)
\texttt{\sage: bernoulli(3) \% 5, bernnum_bern_modp(5, 3)}
(0, 0)
\texttt{\sage: bernoulli(4), bernnum_bern_modp(5, 4)}
(-1/30, -1)
\texttt{\sage: bernoulli(18) \% 5, bernnum_bern_modp(5, 18)}
(4, 4)
\end{Verbatim}
sage: bernoulli(19) % 5, bernmm_bern_modp(5, 19)
(0, 0)
sage: p = 10000019; k = 1000
sage: bernoulli(k) % p
1972762
sage: bernmm_bern_modp(p, k)
1972762

sage.rings.bernmm.bernmm_bern_rat(k, num_threads=1)

Computes k-th Bernoulli number using a multimodular algorithm. (Wrapper for bernmm library.)

INPUT:

• k – non-negative integer
• num_threads – integer >= 1, number of threads to use

COMPLEXITY:

Pretty much quadratic in \(k \). See the paper “A multimodular algorithm for computing Bernoulli numbers”, David Harvey, 2008, for more details.

EXAMPLES:

sage: from sage.rings.bernmm import bernmm_bern_rat
sage: bernmm_bern_rat(0)
1
sage: bernmm_bern_rat(1)
-1/2
sage: bernmm_bern_rat(2)
1/6
sage: bernmm_bern_rat(3)
0
sage: bernmm_bern_rat(100)
-94598037819122125295227433069493721872702841533066936133385696204311395415197247711/33330
sage: bernmm_bern_rat(100, 3)
-94598037819122125295227433069493721872702841533066936133385696204311395415197247711/33330

1.4 Bernoulli numbers modulo p

AUTHOR:

• David Harvey (2006-07-26): initial version
• David Harvey (2006-08-06): new, faster algorithm, also using faster NTL interface
• David Harvey (2007-08-31): algorithm for a single Bernoulli number mod p
• David Harvey (2008-06): added interface to bernmm, removed old code

```python
sage.rings.bernoulli_mod_p.bernoulli_mod_p(p)
```

Return the Bernoulli numbers $B_0, B_2, \ldots B_{p-3}$ modulo p.

INPUT:
- p – integer, a prime

OUTPUT:
- list – Bernoulli numbers modulo p as a list of integers $[B(0), B(2), \ldots B(p-3)]$.

ALGORITHM:
Described in accompanying latex file.

PERFORMANCE:
Should be complexity $O(p \log p)$.

EXAMPLES:
Check the results against PARI’s C-library implementation (that computes exact rationals) for $p = 37$:

```python
sage: bernoulli_mod_p(37)
[1, 31, 16, 15, 16, 4, 17, 32, 22, 31, 15, 15, 17, 12, 29, 2, 0, 2]
sage: [bernoulli(n) % 37 for n in range(0, 36, 2)]
[1, 31, 16, 15, 16, 4, 17, 32, 22, 31, 15, 15, 17, 12, 29, 2, 0, 2]
```

Boundary case:

```python
sage: bernoulli_mod_p(3)
[1]
```

AUTHOR:
– David Harvey (2006-08-06)

```python
sage.rings.bernoulli_mod_p.bernoulli_mod_p_single(p, k)
```

Return the Bernoulli number $B_k \mod p$.

If B_k is not p-integral, an ArithmeticError is raised.

INPUT:
- p – integer, a prime
- k – non-negative integer

OUTPUT:
- The k-th Bernoulli number mod p.

EXAMPLES:

```python
sage: bernoulli_mod_p_single(1009, 48)
628
sage: [bernoulli(n) % 1009 for n in range(0, 36, 2)]
[1, 31, 16, 15, 16, 4, 17, 32, 22, 31, 15, 15, 17, 12, 29, 2, 0, 2]
```
(continues on next page)
... ValueError: p (=1) must be a prime >= 3

sage: bernoulli_mod_p_single(100, 4)
Traceback (most recent call last):
... ValueError: p (=100) must be a prime

sage: bernoulli_mod_p_single(19, 5)
0

sage: bernoulli_mod_p_single(19, 18)
Traceback (most recent call last):
... ArithmeticError: B_k is not integral at p

sage: bernoulli_mod_p_single(19, -4)
Traceback (most recent call last):
... ValueError: k must be non-negative

Check results against bernoulli_mod_p:

sage: bernoulli_mod_p(37)
[1, 31, 16, 15, 16, 4, 17, 32, 22, 31, 15, 15, 17, 12, 29, 2, 0, 2]
sage: [bernoulli_mod_p_single(37, n) % 37 for n in range(0, 36, 2)]
[1, 31, 16, 15, 16, 4, 17, 32, 22, 31, 15, 15, 17, 12, 29, 2, 0, 2]

sage: bernoulli_mod_p(31)
[1, 26, 1, 17, 1, 9, 11, 27, 14, 23, 13, 22, 14, 8, 14]
sage: [bernoulli_mod_p_single(31, n) % 31 for n in range(0, 30, 2)]
[1, 26, 1, 17, 1, 9, 11, 27, 14, 23, 13, 22, 14, 8, 14]

sage: bernoulli_mod_p(3)
[1]
sage: [bernoulli_mod_p_single(3, n) % 3 for n in range(0, 2, 2)]
[1]

sage: bernoulli_mod_p(5)
[1, 1]
sage: [bernoulli_mod_p_single(5, n) % 5 for n in range(0, 4, 2)]
[1, 1]

sage: bernoulli_mod_p(7)
[1, 6, 3]
sage: [bernoulli_mod_p_single(7, n) % 7 for n in range(0, 6, 2)]
[1, 6, 3]

AUTHOR:
– David Harvey (2007-08-31) – David Harvey (2008-06): rewrote to use bernmm library

sage.rings.bernoulli_mod_p.verify_bernoulli_mod_p(data)

Compute checksum for Bernoulli numbers.

1.4. Bernoulli numbers modulo p
It checks the identity
\[
\frac{(p-3)}{2} \sum_{n=0}^{2n} 2^{2n}(2n+1)B_{2n} \equiv -2 \pmod{p}
\]
(see “Irregular Primes to One Million”, Buhler et al)

INPUT:
- data – list, same format as output of bernoulli_mod_p function

OUTPUT:
- bool – True if checksum passed

EXAMPLES:

```python
sage: from sage.rings.bernoulli_mod_p import verify_bernoulli_mod_p
sage: verify_bernoulli_mod_p(bernoulli_mod_p(next_prime(3)))
True
sage: verify_bernoulli_mod_p(bernoulli_mod_p(next_prime(1000)))
True
sage: verify_bernoulli_mod_p([1, 2, 4, 5, 4])
True
sage: verify_bernoulli_mod_p([1, 2, 3, 4, 5])
False
```

This one should test that long longs are working:

```python
sage: verify_bernoulli_mod_p(bernoulli_mod_p(next_prime(20000)))
True
```

AUTHOR: David Harvey

1.5 Integer factorization functions

AUTHORS:
- Andre Apitzsch (2011-01-13): initial version

```python
sage.rings.factorint.aurifeuillian(n, m, F=None, check=True)
```
Return the Aurifeuillian factors $F_n^{\pm}(m^2n)$.
This is based off Theorem 3 of [Bre1993].

INPUT:
- n – integer
- m – integer
- F – integer (default: None)
- check – boolean (default: True)

OUTPUT:
A list of factors.

EXAMPLES:
sage: from sage.rings.factorint import aurifeuillian
sage: aurifeuillian(2,2)
[5, 13]
sage: aurifeuillian(2,2^5)
[1985, 2113]
sage: aurifeuillian(5,3)
[1471, 2851]
sage: aurifeuillian(15,1)
[19231, 142111]
sage: aurifeuillian(12,3)
Traceback (most recent call last):
 ... # ValueError: n has to be square-free
sage: aurifeuillian(1,2)
Traceback (most recent call last):
 ... # ValueError: n has to be greater than 1
sage: aurifeuillian(2,0)
Traceback (most recent call last):
 ... # ValueError: m has to be positive

Note: There is no need to set \(F \). It’s only for increasing speed of `factor_aurifeuillian()`.

`sage.rings.factorint.factor_aurifeuillian(n, check=True)`

Return Aurifeuillian factors of \(n \) if \(n = x^{(2k-1)x} \pm 1 \) (where the sign is ‘-’ if \(x \equiv 1 \mod 4 \), and ‘+’ otherwise) else \(n \)

INPUT:

- \(n \) – integer

OUTPUT:

List of factors of \(n \) found by Aurifeuillian factorization.

EXAMPLES:

sage: from sage.rings.factorint import factor_aurifeuillian as fa
sage: fa(2^6+1)
[5, 13]
sage: fa(2^58+1)
[536838145, 536903681]
sage: fa(3^3+1)
[4, 1, 7]
sage: fa(5^5-1)
[4, 11, 71]
sage: prod(_) == 5^5-1
True
sage: fa(2^4+1)
[17]
sage: fa((6^2*3)^3+1)
[109, 91, 127]
REFERENCES:

- http://mathworld.wolfram.com/AurifeuilleanFactorization.html
- [Bre1993] Theorem 3

sage.rings.factorint.factor_cunningham(m, proof=None)

Return factorization of self obtained using trial division for all primes in the so called Cunningham table. This is efficient if self has some factors of type $b^n + 1$ or $b^n - 1$, with b in $\{2, 3, 5, 6, 7, 10, 11, 12\}$.

You need to install an optional package to use this method, this can be done with the following command line:
sage -i cunningham_tables

INPUT:

- proof – bool (default: None); whether or not to prove primality of each factor, this is only for factors not in the Cunningham table

EXAMPLES:

```
sage: from sage.rings.factorint import factor_cunningham
sage: factor_cunningham(2^257-1)  # optional - cunningham_tables
535006138814359 * 1155685395246619182673033 *
    → 374550598501810936581776630096313181393
```

```
sage: factor_cunningham((3^101+1)*(2^60).next_prime(), proof=False)  # optional - cunningham_tables
2^2 * 379963 * 1152921504606847009 * 101729152719872329220830935465875077827527
```

sage.rings.factorint.factor_trial_division(m, limit='LONG_MAX')

Return partial factorization of self obtained using trial division for all primes up to limit, where limit must fit in a C signed long.

INPUT:

- limit – integer (default: LONG_MAX) that fits in a C signed long

EXAMPLES:

```
sage: from sage.rings.factorint import factor_trial_division
sage: n = 920384092842390423848290348203948092384082349082
sage: factor_trial_division(n, 1000)
2 * 11 * 41835640583745019265831379463815822381094652231
sage: factor_trial_division(n, 2000)
2 * 11 * 1531 * 2732569600587397691594630609938486205809701
```

sage.rings.factorint.factor_using_flint(n)

Factor the nonzero integer n using FLINT.

This function returns a list of (factor, exponent) pairs. The factors will be of type Integer, and the exponents will be of type int.

INPUT:

- n – a nonzero sage Integer; the number to factor.

OUTPUT:

A list of (Integer, int) pairs representing the factors and their exponents.

EXAMPLES:
sage: from sage.rings.factorint import factor_using_flint
sage: n = ZZ(9962572652930382)
1.5. Integer factorization functions
71
sage: factors = factor_using_flint(n)
sage: factors
[(2, 1), (3, 1), (1660428775488397, 1)]
sage: prod(f^e for (f,e) in factors) == n
True

Negative numbers will have a leading factor of `(-1)^1`::

sage: n = ZZ(-1 * 2 * 3)
sage: factor_using_flint(n)
[(-1, 1), (2, 1), (3, 1)]

The factorization of unity is empty:

sage: factor_using_flint(ZZ.one())
[]

While zero has a single factor, of... zero:

sage: factor_using_flint(ZZ.zero())
[0, 1]

sage.rings.factorint.factor_using_pari(n, int_=False, debug_level=0, proof=None)
Factor this integer using PARI.
This function returns a list of pairs, not a Factorization object. The first element of each pair is the factor, of type Integer if int_ is False or int otherwise, the second element is the positive exponent, of type int.

INPUT:
• int_ – (default: False), whether the factors are of type int instead of Integer
• debug_level – (default: 0), debug level of the call to PARI
• proof – (default: None), whether the factors are required to be proven prime; if None, the global default is used

OUTPUT:
A list of pairs.

EXAMPLES:

sage: factor(-2**72 + 3, algorithm='pari') # indirect doctest
-1 * 83 * 131 * 294971519 * 1472414939

Check that PARI’s debug level is properly reset (github issue #18792):

sage: alarm(0.5); factor(2^1000 - 1, verbose=5)
Traceback (most recent call last):
 ...
AlarmInterrupt
sage: pari.get_debug_level()
0
1.6 Basic arithmetic with C integers

class sage.rings.fast_arith.arith_int
 Bases: object
 gcd_int(a, b)
 inverse_mod_int(a, m)
 rational_recon_int(a, m)
 Rational reconstruction of a modulo m.
 xgcd_int(a, b)

class sage.rings.fast_arith.arith_llong
 Bases: object
 gcd_longlong(a, b)
 inverse_mod_longlong(a, m)
 rational_recon_longlong(a, m)
 Rational reconstruction of a modulo m.

sage.rings.fast_arith.prime_range(start, stop=None, algorithm=None, py_ints=False)
 Return a list of all primes between start and stop - 1, inclusive.
 If the second argument is omitted, this returns the primes up to the first argument.
 The sage command primes() is an alternative that uses less memory (but may be slower),
 because it returns an iterator, rather than building a list of the primes.

 INPUT:
 • start – integer, lower bound (default: 1)
 • stop – integer, upper bound
 • algorithm – optional string (default: None), one of:
 – None: Use algorithm "pari_primes" if stop <= 436273009 (approximately 4.36E8).
 Otherwise use algorithm "pari_isprime".
 – "pari_primes": Use PARI's pari:primes function to generate all primes from 2 to stop.
 This is fast but may crash if there is insufficient memory. Raises an error if stop > 436273009.
 – "pari_isprime": Wrapper for list(primes(start, stop)). Each (odd) integer in the specified
 range is tested for primality by applying PARI's pari:isprime function. This is slower but will
 work for much larger input.
 • py_ints – optional boolean (default False), return Python ints rather than Sage Integers (faster).
 Ignored unless algorithm "pari_primes" is being used.

 EXAMPLES:
 sage: prime_range(10)
 [2, 3, 5, 7]
 sage: prime_range(7)
 [2, 3, 5]
 sage: prime_range(2000, 2020)
 (continues on next page)
Note: start and stop should be integers, but real numbers will also be accepted as input. In this case, they will be rounded to nearby integers start* and stop*, so the output will be the primes between start* and stop* - 1, which may not be exactly the same as the primes between start and stop - 1.

AUTHORS:

• William Stein (original version)
• Craig Citro (rewrote for massive speedup)
• Kevin Stueve (added primes iterator option) 2010-10-16
• Robert Bradshaw (speedup using Pari prime table, py_ints option)

1.7 Fast decomposition of small integers into sums of squares

Implement fast version of decomposition of (small) integers into sum of squares by direct method not relying on factorisation.

AUTHORS:

• Vincent Delecroix (2014): first implementation (github issue #16374)

sage.rings.sum_of_squares.four_squares_pynx(n)

Return a 4-tuple of non-negative integers \((i, j, k, l)\) such that \(i^2 + j^2 + k^2 + l^2 = n\) and \(i \leq j \leq k \leq l\).

The input must be lesser than \(2^{32} = 4294967296\), otherwise an OverflowError is raised.

See also:

four_squares() is much more suited for large input

EXAMPLES:
sage: from sage.rings.sum_of_squares import four_squares_pyx
sage: four_squares_pyx(15447)
(2, 5, 17, 123)
sage: 2^2 + 5^2 + 17^2 + 123^2
15447
sage: four_squares_pyx(523439)
(3, 5, 26, 723)
sage: 3^2 + 5^2 + 26^2 + 723^2
523439
sage: four_squares_pyx(2**32)
Traceback (most recent call last):
... OverflowError: ...

sage.rings.sum_of_squares.is_sum_of_two_squares_pyx(n)
Return True if n is a sum of two squares and False otherwise.
The input must be smaller than 2^{32} = 4294967296, otherwise an OverflowError is raised.
EXAMPLES:

sage: from sage.rings.sum_of_squares import is_sum_of_two_squares_pyx
sage: [x for x in range(30) if is_sum_of_two_squares_pyx(x)]
[0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29]

sage: is_sum_of_two_squares_pyx(2**32)
Traceback (most recent call last):
... OverflowError: ...

sage.rings.sum_of_squares.three_squares_pyx(n)
If n is a sum of three squares return a 3-tuple (i,j,k) of Sage integers such that i^2+j^2+k^2 = n and i \leq j \leq k. Otherwise raise a ValueError.
The input must be lesser than 2^{32} = 4294967296, otherwise an OverflowError is raised.
EXAMPLES:

sage: from sage.rings.sum_of_squares import three_squares_pyx
sage: three_squares_pyx(0)
(0, 0, 0)

(continues on next page)
sage: three_squares_pyx(7)
Traceback (most recent call last):
...
ValueError: 7 is not a sum of 3 squares
sage: three_squares_pyx(107)
(1, 5, 9)
sage: three_squares_pyx(2**32)
Traceback (most recent call last):
...
OverflowError: ...

sage.rings.sum_of_squares.two_squares_pyx(n)

Return a pair of non-negative integers \((i, j)\) such that \(i^2 + j^2 = n\).

If \(n\) is not a sum of two squares, a \(ValueError\) is raised. The input must be lesser than \(2^{32} = 4294967296\), otherwise an \(OverflowError\) is raised.

See also:
two_squares() is much more suited for large inputs

EXAMPLES:

sage: from sage.rings.sum_of_squares import two_squares_pyx
sage: two_squares_pyx(0)
(0, 0)
sage: two_squares_pyx(1)
(0, 1)
sage: two_squares_pyx(2)
(1, 1)
sage: two_squares_pyx(3)
Traceback (most recent call last):
...
ValueError: 3 is not a sum of 2 squares
sage: two_squares_pyx(106)
(5, 9)
sage: two_squares_pyx(2**32)
Traceback (most recent call last):
...
OverflowError: ...

1.8 Fast Arithmetic Functions

sage.arith.functions.LCM_list(v)

Return the LCM of an iterable \(v\).

Elements of \(v\) are converted to Sage objects if they aren’t already.

This function is used, e.g., by \(lcm()\).

INPUT:
• v – an iterable

OUTPUT: integer

EXAMPLES:

```
sage: from sage.arith.functions import LCM_list
sage: w = LCM_list([3,9,30]); w
90
sage: type(w)
<class 'sage.rings.integer.Integer'>
```

The inputs are converted to Sage integers:

```
sage: w = LCM_list([int(3), int(9), int(30)]); w
90
sage: type(w)
<class 'sage.rings.integer.Integer'>
```

`sage.arith.functions.lcm(a, b=None)`

The least common multiple of a and b, or if a is a list and b is omitted the least common multiple of all elements of a.

Note that LCM is an alias for lcm.

INPUT:

• a, b – two elements of a ring with lcm or
• a – a list or tuple of elements of a ring with lcm

OUTPUT:

First, the given elements are coerced into a common parent. Then, their least common multiple in that parent is returned.

EXAMPLES:

```
sage: lcm(97,100)
9700
sage: LCM(97,100)
9700
sage: LCM(0,2)
0
sage: LCM(-3,-5)
15
sage: LCM([1,2,3,4,5])
60
sage: v = LCM(range(1,10000))  # *very* fast!
sage: len(str(v))
4349
```
1.9 Generic implementation of powering

This implements powering of arbitrary objects using a square-and-multiply algorithm.

\texttt{sage.arith.power.generic_power}(a, n)

Return a^n.

If n is negative, return $(1/a)^{-n}$.

\textbf{INPUT:}

- a – any object supporting multiplication (and division if $n < 0$)
- n – any integer (in the duck typing sense)

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.arith.power import generic_power
sage: generic_power(int(12), int(0))
1
sage: generic_power(int(0), int(100))
0
sage: generic_power(Integer(10), Integer(0))
1
sage: generic_power(Integer(0), Integer(23))
0
sage: sum([generic_power(2, i) for i in range(17)]) # test all 4-bit combinations
131071
sage: F = Zmod(5)
sage: a = generic_power(F(2), 5); a
2
sage: a.parent() is F
True
sage: a = generic_power(F(1), 2)
sage: a.parent() is F
True

sage: generic_power(int(5), 0)
1
sage: generic_power(2, 5/4)
Traceback (most recent call last):
 ... NotImplmentedError: non-integral exponents not supported
\end{verbatim}

\begin{verbatim}
sage: class SymbolicMul(str):
....: def __mul__(self, other):
....: s = "({})*({})".format(self, other)
....: return type(self)(s)
\end{verbatim}

\begin{verbatim}
sage: x = SymbolicMul("x")
sage: print(generic_power(x, 7))
(((x*x)*(x*x))*((x*x)*(x*x)))
\end{verbatim}
1.10 Utility classes for multi-modular algorithms

```python
class sage.arith.multi_modular.MultiModularBasis
    Bases: MultiModularBasis_base
    
    Class used for storing a MultiModular bases of a fixed length.

class sage.arith.multi_modular.MultiModularBasis_base
    Bases: object
    
    This class stores a list of machine-sized prime numbers, and can do reduction and Chinese Remainder Theorem lifting modulo these primes.
    
    Lifting implemented via Garner’s algorithm, which has the advantage that all reductions are word-sized. For each \( i \), precompute \( \prod_{j=1}^{i-1} m_j \) and \( \prod_{j=1}^{i-1} m_j^{-1} \mod m_i \).
    
    This class can be initialized in two ways, either with a list of prime moduli or an upper bound for the product of the prime moduli. The prime moduli are generated automatically in the second case.

    EXAMPLES:
    >>> from sage.arith.multi_modular import MultiModularBasis_base
    >>> mm = MultiModularBasis_base([3, 5, 7]); mm
    MultiModularBasis with moduli [3, 5, 7]
    >>> height = 52348798724
    >>> mm = MultiModularBasis_base(height); mm
    MultiModularBasis with moduli [\ldots]
    >>> mm.prod() >= 2*height
    True
```

```python
crt(b)
    
    Calculate lift \( \mod \prod_{i=0}^{\text{len}(b)-1} m_i \).
    
    In the case that \( \text{offset} > 0 \), \( z[j] \) remains unchanged \( \mod \prod_{i=0}^{\text{offset}-1} m_i \)
    
    INPUT:
    * \( b \) - a list of length at most self.n

    OUTPUT:
    
    Integer \( z \) where \( z = b[i] \mod m_i \) for \( 0 \leq i < \text{len}(b) \)

    EXAMPLES:
    >>> from sage.arith.multi_modular import MultiModularBasis_base
    >>> mm = MultiModularBasis_base([[10007, 10009, 10037, 10039, 17351]])
    >>> res = mm.crt([[3, 5, 7, 9]]); res
    8474803647063985
    3
    5
    7
    >>> res % 10007
    3
    >>> res % 10009
    5
    >>> res % 10037
    7
    >>> res % 10039
    9
```
extend_with_primes(\textit{plist}, \textit{partial_products}=None, \textit{check}=True)

Extend the stored list of moduli with the given primes in \textit{plist}.

EXAMPLES:

```python
sage: from sage.arith.multi_modular import MultiModularBasis_base
sage: mm = MultiModularBasis_base([1009, 10007]); mm
MultiModularBasis with moduli [1009, 10007]
sage: mm.extend_with_primes([10037, 10039])
4
sage: mm
MultiModularBasis with moduli [1009, 10007, 10037, 10039]
```

list()

Return a list with the prime moduli.

EXAMPLES:

```python
sage: from sage.arith.multi_modular import MultiModularBasis_base
sage: mm = MultiModularBasis_base([46307, 10007])
sage: mm.list()
[46307, 10007]
```

partial_product(\textit{n})

Return a list containing precomputed partial products.

EXAMPLES:

```python
sage: from sage.arith.multi_modular import MultiModularBasis_base
sage: mm = MultiModularBasis_base([46307, 10007]); mm
MultiModularBasis with moduli [46307, 10007]
sage: mm.partial_product(0)
46307
sage: mm.partial_product(1)
463394149
```

precomputation_list()

Return a list of the precomputed coefficients \(\prod_{j=1}^{i} m_j^{-1}(mod m_i) \) where \(m_i \) are the prime moduli.

EXAMPLES:

```python
sage: from sage.arith.multi_modular import MultiModularBasis_base
sage: mm = MultiModularBasis_base([46307, 10007]); mm
MultiModularBasis with moduli [46307, 10007]
sage: mm.precomputation_list()
[1, 4013]
```

prod()

Return the product of the prime moduli.

EXAMPLES:

```python
sage: from sage.arith.multi_modular import MultiModularBasis_base
sage: mm = MultiModularBasis_base([46307]); mm
MultiModularBasis with moduli [46307]
```
class sage.arith.multi_modular.MutableMultiModularBasis

Bases: MultiModularBasis

Class used for performing multi-modular methods, with the possibility of removing bad primes.

next_prime()

Pick a new random prime between the bounds given during the initialization of this object, update the
precomputed data, and return the new prime modulus.

 EXAMPLES:

 sage: from sage.arith.multi_modular import MutableMultiModularBasis
 sage: mm = MutableMultiModularBasis([10007])
 sage: p = mm.next_prime()
 sage: 1024 < p < 32768
 True
 sage: p != 10007
 True
 sage: mm.list() == [10007, p]
 True

replace_prime(ix)

Replace the prime moduli at the given index with a different one, update the precomputed data accordingly,
and return the new prime.

INPUT:
 * ix – index into list of moduli

OUTPUT: the new prime modulus

 EXAMPLES:

 sage: from sage.arith.multi_modular import MutableMultiModularBasis
 sage: mm = MutableMultiModularBasis([10007, 10009, 10037, 10039])
 sage: mm
 MultiModularBasis with moduli [10007, 10009, 10037, 10039]
 sage: prev_prod = mm.prod(); prev_prod
 10092272478850909
 sage: mm.precomputation_list()
 [1, 5004, 6536, 6060]
 sage: mm.partial_product(2)
 1005306552331
 sage: p = mm.replace_prime(1)
 sage: mm.list() == [10007, p, 10037, 10039]
 True
 sage: mm.prod()*10009 == prev_prod*p
 True
1.11 Miscellaneous arithmetic functions

AUTHORS:

- Kevin Stueve (2010-01-17): in is_prime(n), delegated calculation to n.is_prime()

`sage.arith.misc.CRT(a, b, m=None, n=None)`

Return a solution to a Chinese Remainder Theorem problem.

INPUT:

- `a, b` - two residues (elements of some ring for which extended gcd is available), or two lists, one of residues and one of moduli.
- `m, n` - (default: None) two moduli, or None.

OUTPUT:

If `m, n` are not None, returns a solution `x` to the simultaneous congruences `x ≡ a mod m` and `x ≡ b mod n`, if one exists. By the Chinese Remainder Theorem, a solution to the simultaneous congruences exists if and only if `a ≡ b (mod gcd(m, n))`. The solution `x` is only well-defined modulo lcm(`m, n`).

If `a` and `b` are lists, returns a simultaneous solution to the congruences `x ≡ a_i (mod b_i)`, if one exists.

See also:

- `CRT_list()`

EXAMPLES:

Using `crt` by giving it pairs of residues and moduli:

```
sage: crt(2, 1, 3, 5)
11
sage:.crt(13, 20, 100, 301)
28013
sage: crt([2, 1], [3, 5])
11
sage: crt([13, 20], [100, 301])
28013
```

You can also use upper case:

```
sage: c = CRT(2, 3, 3, 5); c
8
sage: c % 3 == 2
True
```
Note that this also works for polynomial rings:

```python
sage: K.<a> = NumberField(x^3 - 7)
sage: R.<y> = K[]
sage: f = y^2 + 3
sage: g = y^3 - 5
sage: CRT(1,3,f,g)
-3/26*y^4 + 5/26*y^3 + 15/26*y + 53/26
sage: CRT(1,a,f,g)
(-3/52*a + 3/52)*y^4 + (5/52*a - 5/52)*y^3 + (15/52*a - 15/52)*y + 27/52*a + 25/52
```

You can also do this for any number of moduli:

```python
sage: K.<a> = NumberField(x^3 - 7)
sage: R.<x> = K[]
sage: CRT([], [])
0
sage: CRT([a], [x])
a
sage: f = x^2 + 3
sage: g = x^3 - 5
sage: CRT([1, a, 3], [f, g, h]); k
(127/26988*a - 5807/386828)*x^9 + (45/8996*a - 33677/1160484)*x^8 + (2/173*a - 6/173)*x^7 + (133/6747*a - 5373/96707)*x^6 + (-6/2249*a + 18584/290121)*x^5 + (-277/8996*a + 38847/386828)*x^4 + (-135/4498*a + 42673/193414)*x^3 + (-1005/8996*a + 470245/1160484)*x^2 + (-1215/8996*a + 141165/386828)*x + 621/8996*a + 836445/386828
sage: k.mod(f)
1
sage: k.mod(g)
a
sage: k.mod(h)
3
```

If the moduli are not coprime, a solution may not exist:

```python
sage: crt(4,8,12)
20
sage: crt(4,6,12)
Traceback (most recent call last):
... ValueError: no solution to crt problem since gcd(8,12) does not divide 4-6
```

```python
sage: x = polygen(QQ)
sage: crt(2,3,x-1,x+1)
-1/2*x + 5/2
sage: CRT(2,x,x^2-1,x^2+1)
-1/2*x^3 + x^2 + 1/2*x + 1
sage: CRT(2,x,x^2-1,x^3-1)
```

(continues on next page)
Traceback (most recent call last):
...
ValueError: no solution to crt problem since gcd(x^2 - 1,x^3 - 1) does not divide 2-x

sage: crt(int(2), int(3), int(7), int(11))
58

crt also works with numpy and gmpy2 numbers:

sage: import numpy
sage: crt(numpy.int8(2), numpy.int8(3), numpy.int8(7), numpy.int8(11))
58
sage: from gmpy2 import mpz
sage: crt(mpz(2), mpz(3), mpz(7), mpz(11))
58
sage: crt(mpz(2), 3, mpz(7), numpy.int8(11))
58

sage.arith.misc.CRT_basis(moduli)

Return a CRT basis for the given moduli.

INPUT:

• moduli - list of pairwise coprime moduli \(m \) which admit an extended Euclidean algorithm

OUTPUT:

• a list of elements \(a_i \) of the same length as \(m \) such that \(a_i \) is congruent to 1 modulo \(m_i \) and to 0 modulo \(m_j \) for \(j \neq i \).

Note: The pairwise coprimality of the input is not checked.

EXAMPLES:

sage: a1 = ZZ(mod(42,5))
sage: a2 = ZZ(mod(42,13))
sage: c1,c2 = CRT_basis([5,13])
sage: mod(a1*c1+a2*c2,5*13)
42

A polynomial example:

sage: x=polygen(QQ)
sage: mods = [x,x^2+1,2*x-3]
sage: b = CRT_basis(mods)
sage: b
[-2/3*x^3 + x^2 - 2/3*x + 1, 6/13*x^3 - x^2 + 6/13*x, 8/39*x^3 + 8/39*x]
sage: [[bi % mj for mj in mods] for bi in b]
[[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

sage.arith.misc.CRT_list(values, moduli)
Given a list of values of elements and a list of corresponding moduli, find a single element that reduces to each element of values modulo the corresponding moduli.

See also:

- `crt()`

EXAMPLES:

```
sage: CRT_list([2,3,2], [3,5,7])
23
sage: x = polygen(QQ)
sage: c = CRT_list([3], [x]); c
3
sage: c.parent()
Univariate Polynomial Ring in x over Rational Field
```

It also works if the moduli are not coprime:

```
sage: CRT_list([32,2,2], [60,90,150])
452
```

But with non coprime moduli there is not always a solution:

```
sage: CRT_list([32,2,1], [60,90,150])
Traceback (most recent call last):
  ... Value Error: no solution to crt problem since gcd(180,150) does not divide 92-1
```

The arguments must be lists:

```
sage: CRT_list([1,2,3], "not a list")
Traceback (most recent call last):
  ... ValueError: arguments to CRT_list should be lists
sage: CRT_list("not a list", [2,3])
Traceback (most recent call last):
  ... ValueError: arguments to CRT_list should be lists
```

The list of moduli must have the same length as the list of elements:

```
sage: CRT_list([1,2,3], [2,3,5])
23
sage: CRT_list([1,2,3], [2,3])
Traceback (most recent call last):
  ... ValueError: arguments to CRT_list should be lists of the same length
sage: CRT_list([1,2,3], [2,3,5,7])
Traceback (most recent call last):
  ... ValueError: arguments to CRT_list should be lists of the same length
```
sage.arith.misc.CRT_vectors*(X, moduli)***

Vector form of the Chinese Remainder Theorem: given a list of integer vectors \(v_i \) and a list of coprime moduli \(m_i \), find a vector \(w \) such that \(w = v_i \mod m_i \) for all \(i \). This is more efficient than applying \(\text{CRT()} \) to each entry.

INPUT:
 - \(X \) - list or tuple, consisting of lists/tuples/vectors/etc of integers of the same length
 - \(\text{moduli} \) - list of \(\text{len}(X) \) moduli

OUTPUT:
 - list - application of CRT componentwise.

EXAMPLES:

```sage
sage: CRT_vectors([[3,5,7],[3,5,11]], [2,3])
[3, 5, 5]
sage: CRT_vectors([vector(ZZ, [2,3,1]), Sequence([1,7,8],ZZ)], [8,9])
[10, 43, 17]
```

class sage.arith.misc.Euler_Phi

Bases: object

Return the value of the Euler phi function on the integer \(n \). We defined this to be the number of positive integers \(\leq n \) that are relatively prime to \(n \). Thus if \(n \leq 0 \) then \(\text{euler}_\phi(n) \) is defined and equals 0.

INPUT:
 - \(n \) - an integer

EXAMPLES:

```sage
euler_phi(1)
euler_phi(2)
euler_phi(3)
euler_phi(12)
euler_phi(37)
```

Notice that \(\text{euler}_\phi \) is defined to be 0 on negative numbers and 0.

```sage
euler_phi(-1)
euler_phi(0)
type(euler_phi(0))
```

We verify directly that the phi function is correct for 21.
The length of the list of integers ‘i’ in range(n) such that the gcd(i,n) == 1 equals euler_phi(n).

\[
\text{sage: len([i for i in range(21) if gcd(21,i) == 1]) == euler_phi(21)}
\]

True

The phi function also has a special plotting method.

\[
\text{sage: P = plot(euler_phi, -3, 71)}
\]

Tests with numpy and gmpy2 numbers:

\[
\text{sage: from numpy import int8}
\]

\[
\text{sage: euler_phi(int8(37))}
\]

36

\[
\text{sage: from gmpy2 import mpz}
\]

\[
\text{sage: euler_phi(mpz(37))}
\]

36

AUTHORS:

- William Stein
- Alex Clemesha (2006-01-10): some examples

```
plot(xmin=1, xmax=50, pointsize=30, rgbcolor=(0, 0, 1), join=True, **kwds)
```

Plot the Euler phi function.

INPUT:

- \texttt{xmin} - default: 1
- \texttt{xmax} - default: 50
- \texttt{pointsize} - default: 30
- \texttt{rgbcolor} - default: (0,0,1)
- \texttt{join} - default: True; whether to join the points.
- **\texttt{kwds}** - passed on

EXAMPLES:

```python
sage: from sage.arith.misc import Euler_Phi
sage: p = Euler_Phi().plot()
```

```
sage: p.ymax()
```

46.0

\[
sage.arith.misc.GCD(a, b=None, **kwargs)
\]

Return the greatest common divisor of \(a\) and \(b\).

If \(a\) is a list and \(b\) is omitted, return instead the greatest common divisor of all elements of \(a\).

INPUT:

- \(a, b\) – two elements of a ring with gcd or
• a – a list or tuple of elements of a ring with gcd

Additional keyword arguments are passed to the respectively called methods.

OUTPUT:

The given elements are first coerced into a common parent. Then, their greatest common divisor in that common parent is returned.

EXAMPLES:

```sage
GCD(97, 100)
1
GCD(97^10^15, 19^20^97^2)
97
GCD(2/3, 4/5)
2/15
GCD([2, 4, 6, 8])
2
GCD(srange(0, 10000, 10)) # fast !!
10
```

Note that to take the gcd of \(n \) elements for \(n \neq 2 \) you must put the elements into a list by enclosing them in [..]. Before github issue #4988 the following wrongly returned 3 since the third parameter was just ignored:

```sage
gcd(3, 6, 2)
Traceback (most recent call last):
...
TypeError: ...gcd() takes ...
gcd([3, 6, 2])
1
```

Similarly, giving just one element (which is not a list) gives an error:

```sage
gcd(3)
Traceback (most recent call last):
...
TypeError: 'sage.rings.integer.Integer' object is not iterable
```

By convention, the gcd of the empty list is (the integer) 0:

```sage
gcd([])
0
type(gcd([]))
<class 'sage.rings.integer.Integer'>
```

class sage.arith.misc.Moebius

Bases: object

Return the value of the Möbius function of abs(n), where n is an integer.

DEFINITION: \(\mu(n) \) is 0 if \(n \) is not square free, and otherwise equals \((-1)^r\), where \(n \) has \(r \) distinct prime factors.

For simplicity, if \(n = 0 \) we define \(\mu(n) = 0 \).

IMPLEMENTATION: Factors or - for integers - uses the PARI C library.

INPUT:

• n - anything that can be factored.
OUTPUT: 0, 1, or -1

EXAMPLES:

```
sage: moebius(-5)
-1
sage: moebius(9)
0
sage: moebius(12)
0
sage: moebius(-35)
1
sage: moebius(-1)
1
sage: moebius(7)
-1
```

```
sage: moebius(0)  # potentially nonstandard!
0
```

The moebius function even makes sense for non-integer inputs.

```
sage: x = GF(7)['x'].0
sage: moebius(x+2)
-1
```

Tests with numpy and gmpy2 numbers:

```
sage: from numpy import int8
sage: moebius(int8(-5))
-1
sage: from gmpy2 import mpz
sage: moebius(mpz(-5))
-1
```

```
plot(xmin=0, xmax=50, pointsize=30, rgbcolor=(0, 0, 1), join=True, **kwds)

Plot the Möbius function.
```

INPUT:

• xmin - default: 0
• xmax - default: 50
• pointsize - default: 30
• rgbcolor - default: (0,0,1)
• join - default: True; whether to join the points (very helpful in seeing their order).
• **kwds - passed on

EXAMPLES:

```
sage: from sage.arith.misc import Moebius
sage: p = Moebius().plot()
sage: p.ymax()
1.0
```
range \(\texttt{(start, stop=None, step=None)}\)

Return the Möbius function evaluated at the given range of values, i.e., the image of the list range(start, stop, step) under the Möbius function.

This is much faster than directly computing all these values with a list comprehension.

EXAMPLES:

```python
sage: v = moebius.range(-10,10); v
[1, 0, 0, -1, 1, -1, 0, -1, 1, 0, 1, -1, -1, 1, -1, 0, 0]
sage: v == [moebius(n) for n in range(-10,10)]
True
sage: v = moebius.range(-1000, 2000, 4)
sage: v == [moebius(n) for n in range(-1000,2000, 4)]
True
```

class `sage.arith.misc.Sigma`

Bases: `object`

Return the sum of the \(k\)-th powers of the divisors of \(n\).

INPUT:

- \(n\) - integer
- \(k\) - integer (default: 1)

OUTPUT: integer

EXAMPLES:

```python
sage: sigma(5)
6
sage: sigma(5,2)
26
```

The sigma function also has a special plotting method.

```python
sage: P = plot(sigma, 1, 100)
```

This method also works with \(k\)-th powers.

```python
sage: P = plot(sigma, 1, 100, k=2)
```

AUTHORS:

- William Stein: original implementation
- Craig Citro (2007-06-01): rewrote for huge speedup

plot \(\texttt{(xmin=1, xmax=50, k=1, pointsize=30, rgbcolor=(0, 0, 1), join=True, **kwds)}\)

Plot the sigma (sum of \(k\)-th powers of divisors) function.

INPUT:

- \(xmin\) - default: 1
- \(xmax\) - default: 50
- \(k\) - default: 1
- \(pointsize\) - default: 30
• rgbcolor - default: (0,0,1)
• join - default: True; whether to join the points.
• **kwds - passed on

EXAMPLES:

```python
sage: from sage.arith.misc import Sigma
g = Sigma().plot()
p.ymax()
```

`sage.arith.misc.XGCD(a, b)`

Return a triple \((g, s, t)\) such that \(g = s \cdot a + t \cdot b = \gcd(a, b)\).

Note: One exception is if \(a\) and \(b\) are not in a principal ideal domain (see Wikipedia article Principal_ideal_domain), e.g., they are both polynomials over the integers. Then this function can't in general return \((g, s, t)\) as above, since they need not exist. Instead, over the integers, we first multiply \(g\) by a divisor of the resultant of \(a/g\) and \(b/g\), up to sign.

INPUT:

• \(a, b\) - integers or more generally, element of a ring for which the xgcd make sense (e.g. a field or univariate polynomials).

OUTPUT:

• \(g, s, t\) - such that \(g = s \cdot a + t \cdot b\)

Note: There is no guarantee that the returned cofactors (s and t) are minimal.

EXAMPLES:

```python
sage: xgcd(56, 44)
(4, 4, -5)
sage: 4*56 + (-5)*44
4
sage: g, a, b = xgcd(5/1, 7/1); g, a, b
(1, 3, -2)
sage: a*(5/1) + b*(7/1) == g
True
sage: x = polygen(QQ)
sage: xgcd(x^3 - 1, x^2 - 1)
(x - 1, 1, -x)
sage: K.<g> = NumberField(x^2-3)
sage: g.xgcd(g+2)
(1, 1/3*g, 0)
sage: R.<a,b> = K[]
sage: S.<y> = R.fraction_field()
```

(continues on next page)
Here is an example of a xgcd for two polynomials over the integers, where the linear combination is not the gcd but the gcd multiplied by the resultant:

```python
sage: R.<x> = ZZ[]
sage: gcd(2*x*(x-1), x^2)
x
sage: xgcd(2*x*(x-1), x^2)
(2*(x-1)).resultant(x)
2
```

Tests with numpy and gmpy2 types:

```python
sage: from numpy import int8
sage: xgcd(4,int8(8))
(4, 1, 0)
sage: xgcd(int8(4),int8(8))
(4, 1, 0)
sage: from gmpy2 import mpz
sage: xgcd(mpz(4), mpz(8))
(4, 1, 0)
sage: xgcd(4, mpz(8))
(4, 1, 0)
```

```
\texttt{sage.arith.misc.algdep}(z, \texttt{degree}, \texttt{known_bits}=\texttt{None}, \texttt{use_bits}=\texttt{None}, \texttt{known_digits}=\texttt{None}, \texttt{use_digits}=\texttt{None},
\texttt{height_bound}=\texttt{None}, \texttt{proof}=\texttt{False})
```

Return an irreducible polynomial of degree at most \texttt{degree} which is approximately satisfied by the number \(z\).

You can specify the number of known bits or digits of \(z\) with \texttt{known_bits}=k or \texttt{known_digits}=k. PARI is then told to compute the result using 0.8k of these bits/digits. Or, you can specify the precision to use directly with \texttt{use_bits}=k or \texttt{use_digits}=k. If none of these are specified, then the precision is taken from the input value.

A height bound may be specified to indicate the maximum coefficient size of the returned polynomial; if a sufficiently small polynomial is not found, then \texttt{None} will be returned. If \texttt{proof}=\texttt{True} then the result is returned only if it can be proved correct (i.e. the only possible minimal polynomial satisfying the height bound, or no such polynomial exists). Otherwise a \texttt{ValueError} is raised indicating that higher precision is required.

ALGORITHM: Uses LLL for real/complex inputs, PARI C-library \texttt{algdep} command otherwise.

Note that \texttt{algebraic_dependency} is a synonym for \texttt{algdep}.

INPUT:

- \texttt{z} - real, complex, or \(p\)-adic number
- \texttt{degree} - an integer
- \texttt{height_bound} - an integer (default: \texttt{None}) specifying the maximum coefficient size for the returned polynomial
- \texttt{proof} - a boolean (default: \texttt{False}), requires \texttt{height_bound} to be set

EXAMPLES:
This example involves a complex number:

```python
sage: z = (1/2)*(1 + RDF(sqrt(3)) * CC.0); z
0.500000000000000 + 0.866025403784439*I
sage: algdep(z, 6)
x^2 - x + 1
```

This example involves a \(p \)-adic number:

```python
sage: K = Qp(3, print_mode = 'series')
sage: a = K(7/19); a
1 + 2*3 + 3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 3^11 + 3^12 + 2*3^15 + 2*3^16 + ...
˓→3^17 + 2*3^19 + O(3^20)
sage: algdep(a, 1)
19*x - 7
```

These examples show the importance of proper precision control. We compute a 200-bit approximation to \(\sqrt{2} \) which is wrong in the 33'rd bit:

```python
sage: z = sqrt(RealField(200)(2)) + (1/2)^33
sage: p = algdep(z, 4); p
227004321085*x^4 - 216947902586*x^3 - 99411220986*x^2 + 82234881648*x - 211871195088
sage: factor(p)
227004321085*x^4 - 216947902586*x^3 - 99411220986*x^2 + 82234881648*x - 211871195088
sage: algdep(z, 4, known_bits=32)
x^2 - 2
sage: algdep(z, 4, known_digits=10)
x^2 - 2
sage: algdep(z, 4, use_bits=25)
x^2 - 2
sage: algdep(z, 4, use_digits=8)
x^2 - 2
```

Using the `height_bound` and `proof` parameters, we can see that \(pi \) is not the root of an integer polynomial of degree at most 5 and coefficients bounded above by 10:

```python
sage: algdep(pi.n(), 5, height_bound=10, proof=True) is None
True
```

For stronger results, we need more precision:

```python
sage: algdep(pi.n(), 5, height_bound=100, proof=True) is None
Traceback (most recent call last):
...
ValueError: insufficient precision for non-existence proof
sage: algdep(pi.n(200), 5, height_bound=100, proof=True) is None
True
```
sage: algdep(pi.n(), 10, height_bound=10, proof=True) is None
Traceback (most recent call last):
 ...
ValueError: insufficient precision for non-existence proof
sage: algdep(pi.n(200), 10, height_bound=10, proof=True) is None
True

We can also use proof=True to get positive results:

sage: a = sqrt(2) + sqrt(3) + sqrt(5)
sage: algdep(a.n(), 8, height_bound=1000, proof=True)
Traceback (most recent call last):
 ...
ValueError: insufficient precision for uniqueness proof
sage: f = algdep(a.n(1000), 8, height_bound=1000, proof=True); f
x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576
sage: f(a).expand()
0

sage.arith.misc.algebraic_dependency(z, degree, known_bits=None, use_bits=None, known_digits=None, use_digits=None, height_bound=None, proof=False)

Return an irreducible polynomial of degree at most degree which is approximately satisfied by the number z.

You can specify the number of known bits or digits of z with known_bits=k or known_digits=k. PARI is then told to compute the result using 0.8k of these bits/digits. Or, you can specify the precision to use directly with use_bits=k or use_digits=k. If none of these are specified, then the precision is taken from the input value.

A height bound may be specified to indicate the maximum coefficient size of the returned polynomial; if a sufficiently small polynomial is not found, then None will be returned. If proof=True then the result is returned only if it can be proved correct (i.e. the only possible minimal polynomial satisfying the height bound, or no such polynomial exists). Otherwise a ValueError is raised indicating that higher precision is required.

ALGORITHM: Uses LLL for real/complex inputs, PARI C-library algdep command otherwise.

Note that algebraic_dependency is a synonym for algdep.

INPUT:

- z - real, complex, or p-adic number
- degree - an integer
- height_bound - an integer (default: None) specifying the maximum coefficient size for the returned polynomial
- proof - a boolean (default: False), requires height_bound to be set

EXAMPLES:

sage: algdep(1.888888888888888, 1)
9*x - 17
sage: algdep(0.121212121212121212,1)
33*x - 4
sage: algdep(sqrt(2),2)
x^2 - 2

This example involves a complex number.
This example involves a p-adic number:

```python
sage: K = Qp(3, print_mode = 'series')
sage: a = K(7/19); a
1 + 2*3 + 3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 3^11 + 3^12 + 2*3^15 + 2*3^16 +...
˓→3^17 + 2*3^19 + O(3^20)
sage: algdep(a, 1)
19*x - 7
```

These examples show the importance of proper precision control. We compute a 200-bit approximation to $\sqrt{2}$ which is wrong in the 33'rd bit:

```python
sage: z = sqrt(RealField(200)(2)) + (1/2)^33
sage: algdep(z, 4); p
227004321085*x^4 - 216947902586*x^3 - 99411220986*x^2 + 82234881648*x - 211871195088
sage: algdep(z, 4, known_bits=32)
x^2 - 2
sage: algdep(z, 4, known_digits=10)
x^2 - 2
sage: algdep(z, 4, use_bits=25)
x^2 - 2
sage: algdep(z, 4, use_digits=8)
x^2 - 2
```

Using the `height_bound` and `proof` parameters, we can see that π is not the root of an integer polynomial of degree at most 5 and coefficients bounded above by 10:

```python
sage: algdep(pi.n(), 5, height_bound=10, proof=True) is None
True
```

For stronger results, we need more precision:

```python
sage: algdep(pi.n(), 5, height_bound=100, proof=True) is None
Traceback (most recent call last):
...
ValueError: insufficient precision for non-existence proof
sage: algdep(pi.n(200), 5, height_bound=100, proof=True) is None
True
```

```python
sage: algdep(pi.n(), 10, height_bound=10, proof=True) is None
Traceback (most recent call last):
...
ValueError: insufficient precision for non-existence proof
sage: algdep(pi.n(200), 10, height_bound=10, proof=True) is None
Traceback (most recent call last):
...
ValueError: insufficient precision for non-existence proof
```

We can also use `proof=True` to get positive results:
sage: a = sqrt(2) + sqrt(3) + sqrt(5)
sage: algdep(a.n(), 8, height_bound=1000, proof=True)
Traceback (most recent call last):
...
ValueError: insufficient precision for uniqueness proof
sage: f = algdep(a.n(1000), 8, height_bound=1000, proof=True); f
x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576
sage: f(a).expand()
0

sage.arith.misc.bernoulli(n, algorithm='default', num_threads=1)
Return the n-th Bernoulli number, as a rational number.

INPUT:

- n - an integer
- algorithm:
 - 'default' - use 'flint' for n <= 20000, then 'arb' for n <= 300000 and 'bernmm' for larger values (this is just a heuristic, and not guaranteed to be optimal on all hardware)
 - 'arb' - use the arb library
 - 'flint' - use the FLINT library
 - ' pari' - use the PARI C library
 - 'gap' - use GAP
 - 'gp' - use PARI/GP interpreter
 - 'magma' - use MAGMA (optional)
 - 'bernmm' - use bernmm package (a multimodular algorithm)
- num_threads - positive integer, number of threads to use (only used for bernmm algorithm)

EXAMPLES:

sage: bernoulli(12)
-691/2730
sage: bernoulli(50)
495057205241079648212477525/66

We demonstrate each of the alternative algorithms:

sage: bernoulli(12, algorithm='arb')
-691/2730
sage: bernoulli(12, algorithm='flint')
-691/2730
sage: bernoulli(12, algorithm='gap')
-691/2730
sage: bernoulli(12, algorithm='gp')
-691/2730
sage: bernoulli(12, algorithm='magma') # optional - magma
-691/2730
sage: bernoulli(12, algorithm='pari')
-691/2730

(continues on next page)
AUTHOR:

- David Joyner and William Stein

sage.arith.misc.binomial(x, m, **kwds)

Return the binomial coefficient

\[
\binom{x}{m} = \frac{x(x-1)\cdots(x-m+1)}{m!}
\]

which is defined for \(m \in \mathbb{Z} \) and any \(x \). We extend this definition to include cases when \(x - m \) is an integer but \(m \) is not by

\[
\binom{x}{m} = \binom{x}{x-m}
\]

If \(m < 0 \), return 0.

INPUT:

- \(x, m \) - numbers or symbolic expressions. Either \(m \) or \(x-m \) must be an integer.

OUTPUT: number or symbolic expression (if input is symbolic)

EXAMPLES:

sage: from sage.arith.misc import binomial
sage: binomial(5,2)
10
sage: binomial(2,0)
1
sage: binomial(1/2, 0)
1
sage: binomial(3,-1)
0
sage: binomial(20,10)
184756
sage: binomial(-2, 5)
-6
sage: binomial(-5, -2)
0
sage: binomial(RealField()('2.5'), 2)
1.87500000000000
sage: n=var('n'); binomial(n,2)
1/2*(n - 1)*n
sage: n=var('n'); binomial(n,n)
1
sage: n=var('n'); binomial(n,n-1)
n
sage: binomial(2^100, 2^100)
1
\begin{center}
\begin{tabular}{l}
\texttt{sage: x = polygen(ZZ)}
\texttt{sage: binomial(x, 3)}
\texttt{1/6*x^3 - 1/2*x^2 + 1/3*x}
\texttt{sage: binomial(x, x-3)}
\texttt{1/6*x^3 - 1/2*x^2 + 1/3*x}
\end{tabular}
\end{center}

If \(x \in \mathbb{Z} \), there is an optional ‘algorithm’ parameter, which can be ‘gmp’ (faster for small values; alias: ‘mpir’) or ‘pari’ (faster for large values):

\begin{center}
\begin{tabular}{l}
\texttt{sage: a = binomial(100, 45, algorithm='gmp')}
\texttt{sage: b = binomial(100, 45, algorithm='pari')}
\texttt{sage: a == b}
\texttt{True}
\end{tabular}
\end{center}

\texttt{sage.arith.misc.binomial_coefficients(n)}

Return a dictionary containing pairs \((k_1, k_2) : C_{k,n}\) where \(C_{k,n}\) are binomial coefficients and \(n = k_1 + k_2\).

INPUT:

\begin{itemize}
\item n - an integer
\end{itemize}

OUTPUT: dict

EXAMPLES:

\begin{center}
\begin{tabular}{l}
\texttt{sage: sorted(binomial_coefficients(3).items())}
\texttt{[((0, 3), 1), ((1, 2), 3), ((2, 1), 3), ((3, 0), 1)]}
\end{tabular}
\end{center}

Notice the coefficients above are the same as below:

\begin{center}
\begin{tabular}{l}
\texttt{sage: R.<x,y> = QQ[]}
\texttt{sage: (x+y)^3}
\texttt{x^3 + 3*x^2*y + 3*x*y^2 + y^3}
\end{tabular}
\end{center}

Tests with \textsc{numpy} and \textsc{gmpy2} numbers:

\begin{center}
\begin{tabular}{l}
\texttt{sage: from \textsc{numpy} import int8}
\texttt{sage: sorted(binomial_coefficients(int8(3)).items())}
\texttt{[((0, 3), 1), ((1, 2), 3), ((2, 1), 3), ((3, 0), 1)]}
\texttt{sage: from \textsc{gmpy2} import mpz}
\texttt{sage: sorted(binomial_coefficients(mpz(3)).items())}
\texttt{[((0, 3), 1), ((1, 2), 3), ((2, 1), 3), ((3, 0), 1)]}
\end{tabular}
\end{center}

AUTHORS:

\begin{itemize}
\item Fredrik Johansson
\end{itemize}

\texttt{sage.arith.misc.carmichael_lambda(n)}

Return the Carmichael function of a positive integer \(n\).

The Carmichael function of \(n\), denoted \(\lambda(n)\), is the smallest positive integer \(k\) such that \(a^k \equiv 1 \pmod{n}\) for all \(a \in \mathbb{Z}/n\mathbb{Z}\) satisfying \(\gcd(a, n) = 1\). Thus, \(\lambda(n) = k\) is the exponent of the multiplicative group \((\mathbb{Z}/n\mathbb{Z})^*\).

INPUT:

\begin{itemize}
\item n – a positive integer.
OUTPUT:

- The Carmichael function of \(n \).

ALGORITHM:

If \(n = 2, 4 \) then \(\lambda(n) = \varphi(n) \). Let \(p \geq 3 \) be an odd prime and let \(k \) be a positive integer. Then \(\lambda(p^k) = p^{k-1}(p-1) = \varphi(p^k) \). If \(k \geq 3 \), then \(\lambda(2^k) = 2^{k-2} \). Now consider the case where \(n > 3 \) is composite and let
\(n = p_1^{k_1}p_2^{k_2} \cdots p_t^{k_t} \) be the prime factorization of \(n \). Then

\[
\lambda(n) = \lambda(p_1^{k_1}p_2^{k_2} \cdots p_t^{k_t}) = \text{lcm}(\lambda(p_1^{k_1}), \lambda(p_2^{k_2}), \ldots, \lambda(p_t^{k_t}))
\]

EXAMPLES:

The Carmichael function of all positive integers up to and including 10:

```
sage: from sage.arith.misc import carmichael_lambda
dsage: list(map(carmichael_lambda, [1..10]))
[1, 1, 2, 2, 4, 2, 6, 2, 6, 4]
```

The Carmichael function of the first ten primes:

```
sage: list(map(carmichael_lambda, primes_first_n(10)))
[1, 2, 4, 6, 10, 12, 16, 18, 22, 28]
```

Cases where the Carmichael function is equivalent to the Euler phi function:

```
sage: carmichael_lambda(2) == euler_phi(2)
True
sage: carmichael_lambda(4) == euler_phi(4)
True
sage: p = random_prime(1000, lbound=3, proof=True)
sage: k = randint(1, 1000)
sage: carmichael_lambda(p^k) == euler_phi(p^k)
True
```

A case where \(\lambda(n) \neq \varphi(n) \):

```
sage: k = randint(3, 1000)
sage: carmichael_lambda(2^k) == 2^(k - 2)
True
sage: carmichael_lambda(2^k) == 2^(k - 2) == euler_phi(2^k)
False
```

Verifying the current implementation of the Carmichael function using another implementation. The other implementation that we use for verification is an exhaustive search for the exponent of the multiplicative group \((\mathbb{Z}/n\mathbb{Z})^*\).

```
sage: from sage.arith.misc import carmichael_lambda
sage: n = randint(1, 500)
sage: c = carmichael_lambda(n)
sage: def coprime(n):
...:     return [i for i in range(n) if gcd(i, n) == 1]
sage: def znpower(n, k):
...:     L = coprime(n)
...:     return list(map(power_mod, L, [k] * len(L), [n] * len(L)))
```

(continues on next page)
```python
sage: def my_carmichael(n):
    ...:     if n == 1:
    ...:         return 1
    ...:     for k in range(1, n):
    ...:         L = znpower(n, k)
    ...:         ones = [1] * len(L)
    ...:         T = [L[i] == ones[i] for i in range(len(L))]
    ...:         if all(T):
    ...:             return k
sage: c == my_carmichael(n)
True
```

Carmichael’s theorem states that $a^{\lambda(n)} \equiv 1 \pmod{n}$ for all elements a of the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^\times$. Here, we verify Carmichael’s theorem.

```python
sage: from sage.arith.misc import carmichael_lambda
sage: n = randint(2, 1000)
sage: c = carmichael_lambda(n)
sage: ZnZ = IntegerModRing(n)
sage: M = ZnZ.list_of_elements_of_multiplicative_group()
sage: ones = [1] * len(M)
sage: P = [power_mod(a, c, n) for a in M]
sage: P == ones
True
```

REFERENCES:

- Wikipedia article Carmichael_function
- sage.arith.misc.continuant(v, n=None)

Function returns the continuant of the sequence v (list or tuple).

Definition: see Graham, Knuth and Patashnik, *Concrete Mathematics*, section 6.7: Continuants. The continuant is defined by

- $K_0() = 1$
- $K_1(x_1) = x_1$
- $K_n(x_1, \cdots, x_n) = K_{n-1}(x_n, \cdots x_{n-1})x_n + K_{n-2}(x_1, \cdots, x_{n-2})$

If $n = \text{None}$ or $n > \text{len(v)}$ the default $n = \text{len(v)}$ is used.

INPUT:

- v - list or tuple of elements of a ring
- n - optional integer

OUTPUT: element of ring (integer, polynomial, etcetera).

EXAMPLES:

```python
sage: continuant([1,2,3])
10
sage: p = continuant([2, 1, 2, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10])
sage: q = continuant([1, 2, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10])
sage: p/q
```
We verify the identity

\[K_n(z, z, \cdots, z) = \sum_{k=0}^{n} \binom{n-k}{k} z^{n-2k} \]

for \(n = 6 \) using polynomial arithmetic:

```
sage: z = QQ['z'].0
sage: continuant((z,z,z,z,z,z,z,z,z,z,z,z),6)
z^6 + 5*z^4 + 6*z^2 + 1
```

Tests with numpy and gmpy2 numbers:

```
sage: from numpy import int8
sage: continuant([int8(1),int8(2),int8(3)])
10
sage: from gmpy2 import mpz
sage: continuant([mpz(1),mpz(2),mpz(3)])
mpz(10)
```

AUTHORS:

• Jaap Spies (2007-02-06)

`sage.arith.misc.crt(a, b, m=None, n=None)`

Return a solution to a Chinese Remainder Theorem problem.

INPUT:

• a, b - two residues (elements of some ring for which extended gcd is available), or two lists, one of residues and one of moduli.

• m, n - (default: None) two moduli, or None.

OUTPUT:

If m, n are not None, returns a solution \(x \) to the simultaneous congruences \(x \equiv a \mod m \) and \(x \equiv b \mod n \), if one exists. By the Chinese Remainder Theorem, a solution to the simultaneous congruences exists if and only if \(a \equiv b \pmod{\gcd(m, n)} \). The solution \(x \) is only well-defined modulo \(\text{lcm}(m, n) \).
If \(a \) and \(b \) are lists, returns a simultaneous solution to the congruences \(x \equiv a_i \pmod{b_i} \), if one exists.

See also:

- \textit{CRT_list()}

EXAMPLES:

Using \texttt{crt} by giving it pairs of residues and moduli:

<table>
<thead>
<tr>
<th>sage:</th>
<th>crt(2, 1, 3, 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td>sage:</td>
<td>crt(13, 20, 100, 301)</td>
</tr>
<tr>
<td></td>
<td>28013</td>
</tr>
<tr>
<td>sage:</td>
<td>crt([2, 1], [3, 5])</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td>sage:</td>
<td>crt([13, 20], [100, 301])</td>
</tr>
<tr>
<td></td>
<td>28013</td>
</tr>
</tbody>
</table>

You can also use upper case:

<table>
<thead>
<tr>
<th>sage:</th>
<th>c = CRT(2,3, 3, 5); c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>sage:</td>
<td>c % 3 == 2</td>
</tr>
<tr>
<td></td>
<td>True</td>
</tr>
<tr>
<td>sage:</td>
<td>c % 5 == 3</td>
</tr>
<tr>
<td></td>
<td>True</td>
</tr>
</tbody>
</table>

Note that this also works for polynomial rings:

<table>
<thead>
<tr>
<th>sage:</th>
<th>K.<a> = NumberField(x^3 - 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sage:</td>
<td>R.<y> = K[]</td>
</tr>
<tr>
<td>sage:</td>
<td>f = y^2 + 3</td>
</tr>
<tr>
<td>sage:</td>
<td>g = y^3 - 5</td>
</tr>
<tr>
<td>sage:</td>
<td>CRT(1,3,f,g)</td>
</tr>
<tr>
<td></td>
<td>-3/26y^4 + 5/26y^3 + 15/26*y + 53/26</td>
</tr>
<tr>
<td>sage:</td>
<td>CRT(1,a,f,g)</td>
</tr>
<tr>
<td></td>
<td>(-3/52*a + 3/52)y^4 + (5/52a - 5/52)y^3 + (15/52a - 15/52)y + 27/52a + 25/52</td>
</tr>
</tbody>
</table>

You can also do this for any number of moduli:

<table>
<thead>
<tr>
<th>sage:</th>
<th>K.<a> = NumberField(x^3 - 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sage:</td>
<td>R.<x> = K[]</td>
</tr>
<tr>
<td>sage:</td>
<td>CRT([], [])</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>sage:</td>
<td>CRT([a], [x])</td>
</tr>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>sage:</td>
<td>f = x^2 + 3</td>
</tr>
<tr>
<td>sage:</td>
<td>g = x^3 - 5</td>
</tr>
<tr>
<td>sage:</td>
<td>h = x^5 + x^2 - 9</td>
</tr>
<tr>
<td>sage:</td>
<td>k = CRT([1, a, 3], [f, g, h]); k</td>
</tr>
</tbody>
</table>
| | (127/26988*a - 5807/386828)*x^9 + (45/8996*a - 33677/1160484)*x^8 + (2/173*a - 6/-173)*x^7 + (133/6747*a - 5373/96707)*x^6 + (-6/2249*a + 18584/290121)*x^5 + (-277/-8996*a + 38847/386828)*x^4 + (-135/4498*a + 42673/193414)*x^3 + (-1005/8996*a + -470245/1160484)*x^2 + (-1215/8996*a + 141165/386828)*x + 621/8996*a + 836445/
If the moduli are not coprime, a solution may not exist:

```
sage: crt(4, 8, 8, 12)
20
sage: crt(4, 6, 8, 12)
Traceback (most recent call last):
...
ValueError: no solution to crt problem since gcd(8,12) does not divide 4-6
```

```
sage: x = polygen(QQ)
sage: crt(2, 3, x-1, x+1)
-1/2*x + 5/2
sage: crt(2, x, x^2-1, x^3-1)
Traceback (most recent call last):
...
ValueError: no solution to crt problem since gcd(x^2 - 1,x^3 - 1) does not divide 2-x
```

crt also work with numpy and gmpy2 numbers:

```
sage: import numpy
sage: crt(numpy.int8(2), numpy.int8(3), numpy.int8(7), numpy.int8(11))
58
sage: from gmpy2 import mpz
sage: crt(mpz(2), mpz(3), mpz(7), numpy.int8(11))
58
```

`sage.arith.misc.dedekind_psi(N)`

Return the value of the Dedekind psi function at N.

INPUT:

- N – a positive integer

OUTPUT:

an integer
The Dedekind psi function is the multiplicative function defined by

$$\psi(n) = n \prod_{p|n, p \text{ prime}} (1 + 1/p).$$

See Wikipedia article Dedekind_psi_function and OEIS sequence A001615.

EXAMPLES:

```
sage: from sage.arith.misc import dedekind_psi
sage: [dedekind_psi(d) for d in range(1, 12)]
[1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12]
```

```
sage.arith.misc.dedekind_sum(p, q, algorithm='default')
```

Return the Dedekind sum \(s(p, q) \) defined for integers \(p, q \) as

$$s(p, q) = \sum_{i=0}^{q-1} \left(\left(\frac{i}{q} \right) \left(\frac{pi}{q} \right) \right)$$

where

$$\left(\left(x \right) \right) = \begin{cases} x - \lfloor x \rfloor - \frac{1}{2} & \text{if } x \in \mathbb{Q} \setminus \mathbb{Z} \\ 0 & \text{if } x \in \mathbb{Z}. \end{cases}$$

Warning: Caution is required as the Dedekind sum sometimes depends on the algorithm or is left undefined when \(p \) and \(q \) are not coprime.

INPUT:
- \(p, q \) – integers
- **algorithm** – must be one of the following
 - 'default' - (default) use FLINT
 - 'flint' - use FLINT
 - 'pari' - use PARI (gives different results if \(p \) and \(q \) are not coprime)

OUTPUT: a rational number

EXAMPLES:

Several small values:

```
sage: for q in range(10): print([dedekind_sum(p,q) for p in range(q+1)])
[0]
[0, 0]
[0, 0, 0]
[0, 1/18, -1/18, 0]
[0, 1/8, 0, -1/8, 0]
[0, 1/5, 0, 0, -1/5, 0]
[0, 5/18, 1/18, 0, -1/18, -5/18, 0]
[0, 5/14, 1/14, -1/14, 1/14, -1/14, -5/14, 0]
[0, 7/16, 1/8, 1/16, 0, -1/16, -1/8, -7/16, 0]
[0, 14/27, 4/27, 1/18, -4/27, 4/27, -1/18, -4/27, -14/27, 0]
```
Check relations for restricted arguments:

```
sage: q = 23; dedekind_sum(1, q); (q-1)^(q-2)/(12*q)
77/46
77/46
```

```
sage: p, q = 100, 723  # must be coprime
sage: dedekind_sum(p, q) + dedekind_sum(q, p)
31583/86760
sage: -1/4 + (p/q + q/p + 1/(p*q))/12
31583/86760
```

We check that evaluation works with large input:

```
sage: dedekind_sum(3^54 - 1, 2^93 + 1)
4593406949718399906303742998870/29710560942849126597578981379
sage: dedekind_sum(3^54 - 1, 2^93 + 1, algorithm='pari')
4593406949718399906303742998870/29710560942849126597578981379
```

We check consistency of the results:

```
sage: dedekind_sum(5, 7, algorithm='default')
-1/14
sage: dedekind_sum(5, 7, algorithm='flint')
-1/14
sage: dedekind_sum(5, 7, algorithm='pari')
-1/14
sage: dedekind_sum(6, 8, algorithm='default')
-1/8
sage: dedekind_sum(6, 8, algorithm='flint')
-1/8
sage: dedekind_sum(6, 8, algorithm='pari')
-1/8
```

Tests with numpy and gmpy2 numbers:

```
sage: from numpy import int8
sage: dedekind_sum(int8(5), int8(7), algorithm='default')
-1/14
sage: from gmpy2 import mpz
sage: dedekind_sum(mpz(5), mpz(7), algorithm='default')
-1/14
```

REFERENCES:

- [Ap1997]
- Wikipedia article Dedekind_sum

```
sage.arith.misc.differences(lis, n=1)
```

Return the \(n \) successive differences of the elements in \(\text{lis} \).

EXAMPLES:

```
sage: differences(prime_range(50))
[1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4]
sage: differences([i^2 for i in range(1,11)])
```

(continues on next page)
Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int8
differences([int8(1),int8(4),int8(6),int8(19)])
[3, 2, 13]
sage: from gmpy2 import mpz
differences([mpz(1),mpz(4),mpz(6),mpz(19)])
[mpz(3), mpz(2), mpz(13)]
```

AUTHORS:
- Timothy Clemans (2008-03-09)

`sage.arith.misc.divisors(n)`

Return the list of all divisors (up to units) of this element of a unique factorization domain.

For an integer, the list of all positive integer divisors of this integer, sorted in increasing order, is returned.

INPUT:
- `n` - the element

EXAMPLES:
Divisors of integers:

```python
sage: divisors(-3)
[1, 3]
sage: divisors(6)
[1, 2, 3, 6]
sage: divisors(28)
[1, 2, 4, 7, 14, 28]
sage: divisors(2^5)
[1, 2, 4, 8, 16, 32]
sage: divisors(100)
[1, 2, 4, 5, 10, 20, 25, 50, 100]
sage: divisors(1)
[1]
sage: divisors(0)
Traceback (most recent call last):
  ... ValueError: n must be nonzero
sage: divisors(2^3 * 3^2 * 17)
[1, 2, 3, 4, 6, 8, 9, 12, 17, 18, 24, 34, 36, 51, 68, 72, 102, 136, 153, 204, 306, 408, 612, 1224]
```

This function works whenever one has unique factorization:
sage: K.<a> = QuadraticField(7)
sage: divisors(K.ideal(7))
[Fractional ideal (1), Fractional ideal (a), Fractional ideal (7)]
sage: divisors(K.ideal(3))
[Fractional ideal (1), Fractional ideal (3),
 Fractional ideal (a - 2), Fractional ideal (a + 2)]
sage: divisors(K.ideal(35))
[Fractional ideal (1), Fractional ideal (5), Fractional ideal (a),
 Fractional ideal (7), Fractional ideal (5*a), Fractional ideal (35)]

sage.arith.misc.eratosthenes(n)
Return a list of the primes ≤ n.

This is extremely slow and is for educational purposes only.

INPUT:
• n - a positive integer

OUTPUT:
• a list of primes less than or equal to n.

EXAMPLES:

sage: eratosthenes(3)
[2, 3]
sage: eratosthenes(50)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
sage: len(eratosthenes(100))
25
sage: eratosthenes(213) == prime_range(213)
True

sage.arith.misc.factor(n, proof=None, int_=False, algorithm='pari', verbose=0, **kwds)
Return the factorization of n. The result depends on the type of n.

If n is an integer, returns the factorization as an object of type Factorization.

If n is not an integer, n.factor(proof=proof, **kwds) gets called. See n.factor?? for more documentation in this case.

Warning: This means that applying factor to an integer result of a symbolic computation will not factor the integer, because it is considered as an element of a larger symbolic ring.

EXAMPLES:

sage: f(n)=n^2
sage: is_prime(f(3))
False
sage: factor(f(3))
9

INPUT:
• n - an nonzero integer
• proof - bool or None (default: None)
• \texttt{int} - bool (default: False) whether to return answers as Python ints

• \texttt{algorithm} - string
 – 'pari' - (default) use the PARI c library
 – 'flint' - use the FLINT library
 – 'kash' - use KASH computer algebra system (requires that kash be installed)
 – 'magma' - use Magma (requires magma be installed)

• \texttt{verbose} - integer (default: 0); PARI's debug variable is set to this; e.g., set to 4 or 8 to see lots of output during factorization.

OUTPUT:

• factorization of \(n \)

The \texttt{qsieve} and \texttt{ecm} commandsgive access to highly optimized implementations of algorithms for doing certain integer factorization problems. These implementations are not used by the generic \texttt{factor} command, which currently just calls PARI (note that PARI also implements sieve and ecm algorithms, but they are not as optimized). Thus you might consider using them instead for certain numbers.

The factorization returned is an element of the class \texttt{Factorization}; see \texttt{Factorization??} for more details, and examples below for usage. A \texttt{Factorization} contains both the unit factor (+1 or -1) and a sorted list of (prime, exponent) pairs.

The factorization displays in pretty-print format but it is easy to obtain access to the (prime,exponent) pairs and the unit, to recover the number from its factorization, and even to multiply two factorizations. See examples below.

EXAMPLES:

\begin{Verbatim}
sage: factor(500)
2^2 * 5^3
sage: factor(-20)
-1 * 2^2 * 5
sage: f=factor(-20)
sage: list(f)
[(2, 2), (5, 1)]
sage: f.unit()
-1
sage: f.value()
-20
sage: factor(-next_prime(10^2) * next_prime(10^7))
-1 * 101 * 10000019
sage: factor(293292629867846432923017396246429, algorithm='flint')
3 * 4852301647696687 * 20148007492971089
sage: factor(-500, algorithm='kash') # optional - kash
-1 * 2^2 * 5^3
sage: factor(-500, algorithm='magma') # optional - magma
-1 * 2^2 * 5^3
\end{Verbatim}
sage: factor(0)
Traceback (most recent call last):
...
ArithmeticError: factorization of 0 is not defined
sage: factor(1)
1
sage: factor(-1)
-1
sage: factor(2^(2^7)+1)
59649589127497217 * 5704689200685129054721

Sage calls PARI’s factor, which has proof False by default. Sage has a global proof flag, set to True by default (see sage.structure.proof.proof, or proof.[tab]). To override the default, call this function with proof=False.

sage: factor(3^89-1, proof=False)
2 * 179 * 1611479891519807 * 5042939439565996049162197

sage: factor(2^197 + 1)
long time (2s)
3 * 197002597249 * 1348959352853811313 * 251951573867253012259144010843

Any object which has a factor method can be factored like this:

sage: K.<i> = QuadraticField(-1)
sage: factor(122 - 454*i)
(-i) * (-i - 2)^3 * (i + 1)^3 * (-2*i + 3) * (i + 4)

To access the data in a factorization:

sage: f = factor(420); f
2^2 * 3 * 5 * 7
sage: [x for x in f]
[(2, 2), (3, 1), (5, 1), (7, 1)]

sage: [p for p,e in f]
[2, 3, 5, 7]

sage: [e for p,e in f]
[2, 1, 1, 1]

sage: [p^e for p,e in f]
[4, 3, 5, 7]

We can factor Python, numpy and gmpy2 numbers:

sage: factor(math.pi)
3.141592653589793
sage: import numpy
sage: factor(numpy.int8(30))
2 * 3 * 5
sage: import gmpy2
sage: factor(gmpy2.mpz(30))
2 * 3 * 5

sage.arith.misc.factorial(n, algorithm='gmp')

Compute the factorial of n, which is the product 1 · 2 · 3 · · · (n − 1) · n.

INPUT:
• n - an integer
• algorithm - string (default: ‘gmp’):
 – 'gmp' - use the GMP C-library factorial function
 – 'pari' - use PARI’s factorial function

OUTPUT: an integer

EXAMPLES:

```
sage: from sage.arith.misc import factorial
sage: factorial(0)
1
sage: factorial(4)
24
sage: factorial(10)
3628800
sage: factorial(1) == factorial(0)
True
sage: factorial(6) == 6*5*4*3*2
True
sage: factorial(1) == factorial(0)
True
sage: factorial(71) == 71* factorial(70)
True
sage: factorial(-32)
Traceback (most recent call last):
... 
ValueError: factorial -- must be nonnegative
```

Tests with numpy and gmpy2 numbers:

```
sage: from numpy import int8
sage: factorial(int8(4))
24
sage: from gmpy2 import mpz
sage: factorial(mpz(4))
24
```

PERFORMANCE: This discussion is valid as of April 2006. All timings below are on a Pentium Core Duo 2Ghz MacBook Pro running Linux with a 2.6.16.1 kernel.

• It takes less than a minute to compute the factorial of 10^7 using the GMP algorithm, and the factorial of 10^6 takes less than 4 seconds.
• The GMP algorithm is faster and more memory efficient than the PARI algorithm. E.g., PARI computes 10^7 factorial in 100 seconds on the core duo 2Ghz.
• For comparison, computation in Magma ≤ 2.12-10 of $n!$ is best done using $\ast [1..n]$. It takes 113 seconds to compute the factorial of 10^7 and 6 seconds to compute the factorial of 10^6. Mathematica V5.2 compute the factorial of 10^7 in 136 seconds and the factorial of 10^6 in 7 seconds. (Mathematica is notably very efficient at memory usage when doing factorial calculations.)

```
sage.arith.misc.falling_factorial(x, a)
```

Return the falling factorial $(x)_a$.

1.11. Miscellaneous arithmetic functions
The notation in the literature is a mess: often \((x)_a\), but there are many other notations: GKP: Concrete Mathematics uses \(x^a\).

Definition: for integer \(a \geq 0\) we have \(x(x - 1) \cdots (x - a + 1)\). In all other cases we use the GAMMA-function: \(\Gamma(x+1)/\Gamma(x-a+1)\).

INPUT:
- \(x\) – element of a ring
- \(a\) – a non-negative integer or
- \(x\) and \(a\) – any numbers

OUTPUT: the falling factorial

See also: `rising_factorial()`

EXAMPLES:

```
sage: falling_factorial(10, 3)
720
sage: falling_factorial(10, RR('3.0'))
720.000000000000
sage: falling_factorial(10, RR('3.3'))
1310.11633396601
sage: falling_factorial(10, 10)
3628800
sage: factorial(10)
3628800
sage: a = falling_factorial(1+I, I); a
gamma(I + 2)
sage: CC(a)
0.652965496420167 + 0.343065839816545*I
sage: falling_factorial(1+I, 4)
4*I + 2
sage: falling_factorial(I, 4)
-10
```

AUTHORS:
- Jaap Spies (2006-03-05)

`sage.arith.misc.four_squares(n)`

Write the integer \(n\) as a sum of four integer squares.
INPUT:

• \(n \) – an integer

OUTPUT: a tuple \((a, b, c, d)\) of non-negative integers such that \(n = a^2 + b^2 + c^2 + d^2 \) with \(a \leq b \leq c \leq d \).

EXAMPLES:

```python
sage: four_squares(3)
(0, 1, 1, 1)
sage: four_squares(13)
(0, 0, 2, 3)
sage: four_squares(130)
(0, 0, 3, 11)
sage: four_squares(1101011011004)
(90, 1220, 1049290)
sage: four_squares(10^100-1)
(99999999999999999999999999999999999999999999999999)
sage: for i in range(2^129, 2^129+10000):
    # long time
    S = four_squares(i)
    assert sum(x^2 for x in S) == i
```

```python
sage: from numpy import int8
sage: from gmpy2 import mpz
sage: fundamental_discriminant(int8(102))
408
sage: fundamental_discriminant(mpz(102))
408
```

Tests with numpy and gmpy2 numbers:

```python
sage: from gmpy2 import mpz
sage: fundamental_discriminant(mpz(102))
408
```

```python
sage: from gmpy2 import mpz
sage: fundamental_discriminant(mpz(102))
408
```

EXAMPLES:

```python
sage: fundamental_discriminant(102)
408
sage: fundamental_discriminant(720)
5
sage: fundamental_discriminant(2)
8
```

Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int8
sage: from gmpy2 import mpz
sage: fundamental_discriminant(int8(102))
408
sage: fundamental_discriminant(mpz(102))
408
```

EXAMPLES:

```python
sage: gauss_sum(char_value, finite_field)
```

Return the Gauss sums for a general finite field.

INPUT:
• char_value – choice of multiplicative character, given by its value on the finite_field.
 multiplicative_generator()
• finite_field – a finite field

OUTPUT:
an element of the parent ring of char_value, that can be any field containing enough roots of
unity, for example the UniversalCyclotomicField. QQbar or ComplexField

For a finite field F of characteristic p, the Gauss sum associated to a multiplicative character χ (with values in a ring K) is defined as

$$\sum_{x \in F^*} \chi(x) \zeta_p^{Tr x},$$

where $\zeta_p \in K$ is a primitive root of unity of order p and Tr is the trace map from F to its prime field F_p.

For more info on Gauss sums, see Wikipedia article Gauss_sum.

Todo: Implement general Gauss sums for an arbitrary pair (multiplicative_character, additive_character)

EXAMPLES:

```python
sage: from sage.arith.misc import gauss_sum
sage: F = GF(5); q = 5
sage: zq = UniversalCyclotomicField().zeta(q-1)
sage: L = [gauss_sum(zq**i,F) for i in range(5)]; L
[-1,
E(20)^4 + E(20)^13 - E(20)^16 - E(20)^17,
E(5) - E(5)^2 - E(5)^3 + E(5)^4,
E(20)^4 - E(20)^13 - E(20)^16 + E(20)^17,
-1]
sage: [g*g.conjugate() for g in L]
[1, 5, 5, 5, 1]
sage: F = GF(11**2); q = 11**2
sage: zq = UniversalCyclotomicField().zeta(q-1)
sage: g = gauss_sum(zq**4,F)
sage: g*g.conjugate()
121
```

See also:

• sage.rings.padics.misc.gauss_sum() for a p-adic version
• sage.modular.dirichlet.DirichletCharacter.gauss_sum() for prime finite fields
• sage.modular.dirichlet.DirichletCharacter.gauss_sum_numerical() for prime finite fields

sage.arith.misc.gcd(a, b=None, **kwargs)

Return the greatest common divisor of a and b.

If a is a list and b is omitted, return instead the greatest common divisor of all elements of a.

INPUT:

• a, b – two elements of a ring with gcd or
• a – a list or tuple of elements of a ring with gcd

Additional keyword arguments are passed to the respectively called methods.

OUTPUT:

The given elements are first coerced into a common parent. Then, their greatest common divisor in that common parent is returned.

EXAMPLES:

```
sage: GCD(97,100)
1
sage: GCD(97*10^15, 19^20*97^2)
97
sage: GCD(2/3, 4/5)
2/15
sage: GCD([2,4,6,8])
2
sage: GCD(srange(0,10000,10))  # fast !!
10
```

Note that to take the gcd of n elements for $n \neq 2$ you must put the elements into a list by enclosing them in $[.]$. Before github issue #4988 the following wrongly returned 3 since the third parameter was just ignored:

```
sage: gcd(3, 6, 2)
Traceback (most recent call last):
  ...gcd() takes ...
sage: gcd([3, 6, 2])
1
```

Similarly, giving just one element (which is not a list) gives an error:

```
sage: gcd(3)
Traceback (most recent call last):
  ...gcd() takes ...
```

By convention, the gcd of the empty list is (the integer) 0:

```
sage: gcd([])
0
```

```
sage.arith.misc.get_gcd(order)
```

Return the fastest gcd function for integers of size no larger than order.

EXAMPLES:

```
sage: sage.arith.misc.get_gcd(4000)
<built-in method gcd_int of sage.rings.fast_arith.arith_int object at ...>
sage: sage.arith.misc.get_gcd(400000)
<built-in method gcd_longlong of sage.rings.fast_arith.arith_llong object at ...>
sage: sage.arith.misc.get_gcd(4000000000)
<function gcd at ...>
```
sage.arith.misc.get_inverse_mod(order)

Return the fastest inverse_mod function for integers of size no larger than order.

EXAMPLES:

```python
sage: sage.arith.misc.get_inverse_mod(6000)
<built-in method inverse_mod_int of sage.rings.fast_arith.arith_int object at ...>
sage: sage.arith.misc.get_inverse_mod(600000)
<built-in method inverse_mod_longlong of sage.rings.fast_arith.arith_llong object at ...>
sage: sage.arith.misc.get_inverse_mod(6000000000)
<function inverse_mod at ...>
```

sage.arith.misc.hilbert_conductor(a, b)

Return the product of all (finite) primes where the Hilbert symbol is -1.

This is the (reduced) discriminant of the quaternion algebra \((a, b)\) over \(\mathbb{Q}\).

INPUT:

- \(a, b\) – integers

OUTPUT:

squarefree positive integer

EXAMPLES:

```python
sage: hilbert_conductor(-1, -1)
2
sage: hilbert_conductor(-1, -11)
11
sage: hilbert_conductor(-2, -5)
5
sage: hilbert_conductor(-3, -17)
17
```

Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int8
sage: hilbert_conductor(int8(-3), int8(-17))
17
sage: from gmpy2 import mpz
sage: hilbert_conductor(mpz(-3), mpz(-17))
17
```

AUTHOR:

- Gonzalo Tornaria (2009-03-02)

sage.arith.misc.hilbert_conductor_inverse(d)

Finds a pair of integers \((a, b)\) such that \(\text{hilbert_conductor}(a, b) = d\).

The quaternion algebra \((a, b)\) over \(\mathbb{Q}\) will then have (reduced) discriminant \(d\).

INPUT:

- \(d\) – square-free positive integer
OUTPUT: pair of integers

EXAMPLES:

```
sage: hilbert_conductor_inverse(2)
(-1, -1)
sage: hilbert_conductor_inverse(3)
(-1, -3)
sage: hilbert_conductor_inverse(6)
(-1, 3)
sage: hilbert_conductor_inverse(30)
(-3, -10)
sage: hilbert_conductor_inverse(4)
Traceback (most recent call last):
  ... ValueError: d needs to be squarefree
sage: hilbert_conductor_inverse(-1)
Traceback (most recent call last):
  ... ValueError: d needs to be positive
```

AUTHOR:

• Gonzalo Tornaria (2009-03-02)

```
sage.arith.misc.hilbert_symbol(a, b, p, algorithm='pari')
```

Return 1 if \(ax^2 + by^2\) \(p\)-adically represents a nonzero square, otherwise returns \(-1\). If either \(a\) or \(b\) is 0, returns 0.

INPUT:

• \(a, b\) - integers
• \(p\) - integer; either prime or -1 (which represents the archimedean place)
• algorithm - string
 – 'pari' - (default) use the PARI C library
 – 'direct' - use a Python implementation
 – 'all' - use both PARI and direct and check that the results agree, then return the common answer

OUTPUT: integer (0, -1, or 1)

EXAMPLES:

```
sage: hilbert_symbol (-1, -1, -1, algorithm='all')
-1
sage: hilbert_symbol (2,3, 5, algorithm='all')
1
sage: hilbert_symbol (4, 3, 5, algorithm='all')
1
sage: hilbert_symbol (0, 3, 5, algorithm='all')
0
sage: hilbert_symbol (-1, -1, 2, algorithm='all')
-1
sage: hilbert_symbol (1, -1, 2, algorithm='all')
1
```

(continues on next page)
Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int8
sage: hilbert_symbol(int8(2),int8(3),int8(5),algorithm='all')
1
sage: from gmpy2 import mpz
sage: hilbert_symbol(mpz(2),mpz(3),mpz(5),algorithm='all')
1
```

AUTHORS:

• William Stein and David Kohel (2006-01-05)

sage.arith.misc.integer_ceil(x)

Return the ceiling of x.

EXAMPLES:

```python
sage: integer_ceil(5.4)
6
sage: integer_ceil(x)
Traceback (most recent call last):
  ... Not Implemented: computation of ceil of x not implemented
```

Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import float32
sage: integer_ceil(float32(5.4))
6
sage: from gmpy2 import mpfr
sage: integer_ceil(mpfr(5.4))
6
```

sage.arith.misc.integer_floor(x)

Return the largest integer \(\leq x \).

INPUT:

• \(x \) - an object that has a floor method or is coercible to int

OUTPUT: an Integer

EXAMPLES:

```python
sage: integer_floor(5.4)
5
sage: integer_floor(float(5.4))
```

(continues on next page)
5
sage: integer_floor(-5/2)
-3
sage: integer_floor(RDF(-5/2))
-3

sage: integer_floor(x)
Traceback (most recent call last):
...
NotImplementedError: computation of floor of x not implemented

Tests with numpy and gmpy2 numbers:

sage: from numpy import float32
sage: integer_floor(float32(5.4))
5
sage: from gmpy2 import mpfr
sage: integer_floor(mpfr(5.4))
5

sage.arith.misc.integer_trunc(i)

Truncate to the integer closer to zero

EXAMPLES:

sage: from sage.arith.misc import integer_trunc as trunc
sage: trunc(-3/2), trunc(-1), trunc(-1/2), trunc(0), trunc(1/2), trunc(1), trunc(3/2)
(-1, -1, 0, 0, 0, 1, 1)
sage: isinstance(trunc(3/2), Integer)
True

sage.arith.misc.inverse_mod(a, m)

The inverse of the ring element a modulo m.

If no special inverse_mod is defined for the elements, it tries to coerce them into integers and perform the inversion there

sage: inverse_mod(7,1)
0
sage: inverse_mod(5,14)
3
sage: inverse_mod(3,-5)
2

Tests with numpy and mpz numbers:

sage: from numpy import int8
sage: inverse_mod(int8(5),int8(14))
3
sage: from gmpy2 import mpz
sage: inverse_mod(mpz(5),mpz(14))
3

1.11. Miscellaneous arithmetic functions 117
sage.arith.misc.is_power_of_two(n)

Return whether n is a power of 2.

INPUT:

• n – integer

OUTPUT:

boolean

EXAMPLES:

```
sage: is_power_of_two(1024)
True
sage: is_power_of_two(1)
True
sage: is_power_of_two(24)
False
sage: is_power_of_two(0)
False
sage: is_power_of_two(-4)
False
```

Tests with numpy and gmpy2 numbers:

```
sage: from numpy import int8
sage: is_power_of_two(int8(16))
True
sage: is_power_of_two(int8(24))
False
sage: from gmpy2 import mpz
sage: is_power_of_two(mpz(16))
True
sage: is_power_of_two(mpz(24))
False
```

sage.arith.misc.is_prime(n)

Determine whether n is a prime element of its parent ring.

INPUT:

• n – the object for which to determine primality

Exceptional special cases:

• For integers, determine whether n is a positive prime.
• For number fields except \(\mathbb{Q} \), determine whether n is a prime element of the maximal order.

ALGORITHM:

For integers, this function uses a provable primality test or a strong pseudo-primality test depending on the global arithmetic proof flag.

See also:

• is_pseudoprime()
• sage.rings.integer.Integer.is_prime()
EXAMPLES:

```
sage: is_prime(389)  
True
sage: is_prime(2000) 
False
sage: is_prime(2)    
True
sage: is_prime(-1)  
False
sage: is_prime(1)   
False
sage: is_prime(-2)  
False
```

```
sage: a = 2**2048 + 981
sage: is_prime(a)    # not tested - takes ~ 1min
sage: proof.arithmetic(False)

sage: is_prime(a)    # instantaneous!
True
sage: proof.arithmetic(True)
```

sage.arith.misc.is_prime_power(n, get_data=False)

Test whether n is a positive power of a prime number

This function simply calls the method `Integer.is_prime_power()` of Integers.

INPUT:

- `n` – an integer
- `get_data` – if set to True, return a pair (p,k) such that this integer equals p^k instead of True or (self, 0) instead of False

EXAMPLES:

```
sage: is_prime_power(389)  
True
sage: is_prime_power(2000) 
False
sage: is_prime_power(2)    
True
sage: is_prime_power(1024) 
True
sage: is_prime_power(1024, get_data=True)  
(2, 10)
```

The same results can be obtained with:

```
sage: 389.is_prime_power()  
True
sage: 2000.is_prime_power() 
False
sage: 2.is_prime_power()   
True
sage: 1024.is_prime_power() 
```

(continues on next page)
True
sage: 1024.is_prime_power(get_data=True)
(2, 10)

 sage.arith.misc.is_pseudoprime(n)
 Test whether n is a pseudo-prime
 The result is NOT proven correct - this is a pseudo-primality test!
 INPUT:
 • n – an integer

Note: We do not consider negatives of prime numbers as prime.

EXAMPIES:

 sage: is_pseudoprime(389)
 True
 sage: is_pseudoprime(2000)
 False
 sage: is_pseudoprime(2)
 True
 sage: is_pseudoprime(-1)
 False
 sage: factor(-6)
 -1 * 2 * 3
 sage: is_pseudoprime(1)
 False
 sage: is_pseudoprime(-2)
 False

 sage.arith.misc.is_pseudoprime_power(n, get_data=False)
 Test if n is a power of a pseudoprime.
 The result is NOT proven correct - this IS a pseudo-primality test!. Note that a prime power is a positive power of a prime number so that 1 is not a prime power.
 INPUT:
 • n - an integer
 • get_data - (boolean) instead of a boolean return a pair (p, k) so that n equals p^k and p is a pseudoprime or (n, 0) otherwise.

EXAMPIES:

 sage: is_pseudoprime_power(389)
 True
 sage: is_pseudoprime_power(2000)
 False
 sage: is_pseudoprime_power(2)
 True
 sage: is_pseudoprime_power(1024)
 True
sage: is_pseudoprime_power(-1)
False
sage: is_pseudoprime_power(1)
False
sage: is_pseudoprime_power(997^100)
True

Use of the get_data keyword:

sage: is_pseudoprime_power(3^1024, get_data=True)
(3, 1024)
sage: is_pseudoprime_power(2^256, get_data=True)
(2, 256)
sage: is_pseudoprime_power(31, get_data=True)
(31, 1)
sage: is_pseudoprime_power(15, get_data=True)
(15, 0)

Tests with numpy and gmpy2 numbers:

sage: from numpy import int16
sage: is_pseudoprime_power(int16(1024))
True
sage: from gmpy2 import mpz
sage: is_pseudoprime_power(mpz(1024))
True

sage.arith.misc.is_square(n, root=False)
Return whether or not n is square.
If n is a square also return the square root. If n is not square, also return None.

INPUT:
• n – an integer
• root – whether or not to also return a square root (default: False)

OUTPUT:
• bool – whether or not a square
• object – (optional) an actual square if found, and None otherwise.

EXAMPLES:

sage: is_square(2)
False
sage: is_square(4)
True
sage: is_square(2.2)
True
sage: is_square(-2.2)
False
sage: is_square(CDF(-2.2))
True
sage: is_square((x-1)^2)
Traceback (most recent call last):
 ...
NotImplementedError: is_square() not implemented for non-constant or relational elements of Symbolic Ring

sage: is_square(4, True)
(True, 2)

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8
sage: is_square(int8(4))
True
sage: from gmpy2 import mpz
sage: is_square(mpz(4))
True

Tests with Polynomial:

sage: R.<v> = LaurentPolynomialRing(QQ, 'v')
sage: H = IwahoriHeckeAlgebra('A3', v**2)
sage: R.<a,b,c,d> = QQ[]
sage: p = a*b + c*d*a^d*a + 5
sage: is_square(p**2)
True

sage.arith.misc.is_squarefree(n)
Test whether n is square free.

EXAMPLES:

sage: is_squarefree(100)
False
sage: is_squarefree(101)
True

sage: R = ZZ['x']
sage: x = R.gen()
sage: is_squarefree((x^2+1)*(x-2))
True
sage: is_squarefree((x-1)**2*(x-3))
False

sage: O = ZZ[sqrt(-1)]
sage: I = O.gen(1)
sage: is_squarefree(I+1)
True
sage: is_squarefree(O(2))
False

This method fails on domains which are not Unique Factorization Domains:
Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int8
sage: is_squarefree(int8(100))
False
sage: is_squarefree(int8(101))
True
sage: from gmpy2 import mpz
sage: is_squarefree(mpz(100))
False
sage: is_squarefree(mpz(101))
True
```

`sage.arith.misc.jacobi_symbol(a, b)`

The Jacobi symbol of integers a and b, where b is odd.

Note: The `kronecker_symbol()` command extends the Jacobi symbol to all integers b.

If

$$b = p_1^{e_1} \times \cdots \times p_r^{e_r}$$

then

$$(a|b) = (a|p_1)^{e_1} \cdots (a|p_r)^{e_r}$$

where $(a|p_j)$ are Legendre Symbols.

INPUT:

- a - an integer
- b - an odd integer

EXAMPLES:

```python
sage: jacobi_symbol(10, 777)
-1
sage: jacobi_symbol(10, 5)
0
sage: jacobi_symbol(10, 2)
Traceback (most recent call last):
  ...
ValueError: second input must be odd, 2 is not odd
```

Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int16
sage: jacobi_symbol(int16(10), int16(777))
```
sage: from gmpy2 import mpz
sage: jacobi_symbol(mpz(10),mpz(777))
-1

sage.arith.misc.jacobi_symbol(x, y)
The Jacobi symbol \((x|y)\).

INPUT:

- \(x\) – integer
- \(y\) – integer

OUTPUT:

- an integer

EXAMPLES:

sage: jacobi_symbol(10,777)
-1
sage: jacobi_symbol(10,7)
0
sage: jacobi_symbol(2,3)
1
sage: jacobi_symbol(2,15)
1
sage: jacobi_symbol(2,-15)
-1
sage: jacobi_symbol(2,1/3)
0

This is also available as jacobi_symbol():

sage: from numpy import int8
sage: jacobi_symbol(int8(10),int8(777))
-1
sage: from gmpy2 import mpz
sage: jacobi_symbol(mpz(10),mpz(777))
-1

sage.arith.misc.jacobi_symbol(x, y)
The Jacobi symbol \((x|y)\).

INPUT:

- \(x\) – integer
- \(y\) – integer

OUTPUT:
• an integer

EXAMPLES:

```
sage: kronecker_symbol(13,21)
  -1
sage: kronecker_symbol(101,4)
  1
```

This is also available as `kronecker()`:

```
sage: kronecker(3,5)
  -1
sage: kronecker(3,15)
  0
sage: kronecker(2,15)
  1
sage: kronecker(-2,15)
  1
sage: kronecker(2/3,5)
  1
```

Tests with numpy and gmpy2 numbers:

```
sage: from numpy import int8
sage: kronecker_symbol(int8(13), int8(21))
  -1
sage: from gmpy2 import mpz
sage: kronecker_symbol(mpz(13), mpz(21))
  -1
```

`sage.arith.misc.legendre_symbol(x, p)`

The Legendre symbol $(x|p)$, for p prime.

Note: The `kronecker_symbol()` command extends the Legendre symbol to composite moduli and $p = 2$.

INPUT:

• x - integer

• p - an odd prime number

EXAMPLES:

```
sage: legendre_symbol(2,3)
  -1
sage: legendre_symbol(1,3)
  1
sage: legendre_symbol(1,2)
Traceback (most recent call last):
  ...
ValueError: p must be odd
sage: legendre_symbol(2,15)
Traceback (most recent call last):
  ...
```

(continues on next page)
ValueError: p must be a prime

```
sage: kronecker_symbol(2,15)
1
sage: legendre_symbol(2/3,7)
-1
```

Tests with numpy and gmpy2 numbers:

```
sage: from numpy import int8
sage: legendre_symbol(int8(2),int8(3))
-1
sage: from gmpy2 import mpz
sage: legendre_symbol(mpz(2),mpz(3))
-1
```

```
sage.arith.misc.mqrr_rational_reconstruction(u, m, T)
Maximal Quotient Rational Reconstruction.
For research purposes only - this is pure Python, so slow.
INPUT:
• u, m, T - integers such that $m > u \geq 0$, $T > 0$.
OUTPUT:
Either integers $n, d$ such that $d > 0$, \text{gcd}(n, d) = 1$, $n/d = u \mod m$, and $T \cdot d \cdot |n| < m$, or None.
Reference: Monagan, Maximal Quotient Rational Reconstruction: An Almost Optimal Algorithm for Rational Reconstruction (page 11)
This algorithm is probabilistic.
EXAMPLES:
```
sage: mqrr_rational_reconstruction(21,3100,13)
(21, 1)
```

Tests with numpy and gmpy2 numbers:
```
sage: from numpy import int16
sage: mqrr_rational_reconstruction(int16(21),int16(3100),int16(13))
(21, 1)
sage: from gmpy2 import mpz
sage: mqrr_rational_reconstruction(mpz(21),mpz(3100),mpz(13))
(21, 1)
```

```
sage.arith.misc.multinomial(*ks)
Return the multinomial coefficient.
INPUT:
• either an arbitrary number of integer arguments k_1, \ldots, k_n
• or an iterable (e.g. a list) of integers $[k_1, \ldots, k_n]$
OUTPUT:
```
Return the integer:

\[
\binom{k_1 + \ldots + k_n}{k_1, \ldots, k_n} = \frac{(\sum_{i=1}^{n} k_i)!}{\prod_{i=1}^{n} k_i!} = \prod_{i=1}^{n} \binom{n}{k_i}
\]

EXAMPLES:

```
sage: multinomial(0, 0, 2, 1, 0, 0)
3
sage: multinomial([0, 0, 2, 1, 0, 0])
3
sage: multinomial(3, 2)
10
sage: multinomial(2^30, 2, 1)
618970023101454657175683075
sage: multinomial([2^30, 2, 1])
618970023101454657175683075
sage: multinomial(Composition([1, 3]))
4
sage: multinomial(Partition([4, 2]))
15
```

AUTHORS:

• Gabriel Ebner

`sage.arith.misc.multinomial_coefficients(m, n)`

Return a dictionary containing pairs \{\((k_1, k_2, \ldots, k_m) : C_{k, n}\)\} where \(C_{k, n}\) are multinomial coefficients such that \(n = k_1 + k_2 + \ldots + k_m\).

INPUT:

• m - integer
• n - integer

OUTPUT: dict

EXAMPLES:

```
sage: sorted(multinomial_coefficients(2, 5).items())
[((0, 5), 1), ((1, 4), 5), ((2, 3), 10), ((3, 2), 10), ((4, 1), 5), ((5, 0), 1)]
```

Notice that these are the coefficients of \((x + y)^5\):

```
sage: R.<x,y> = QQ[]
sage: (x+y)^5
x^5 + 5*x^4*y + 10*x^3*y^2 + 10*x^2*y^3 + 5*x*y^4 + y^5
```

```
sage: sorted(multinomial_coefficients(3, 2).items())
[((0, 0, 2), 1), ((0, 1, 1), 2), ((0, 2, 0), 1), ((1, 0, 1), 2), ((1, 1, 0), 2), ((2, 0, 0), 1)]
```

ALGORITHM: The algorithm we implement for computing the multinomial coefficients is based on the following result:

\[
\binom{n}{k_1, \ldots, k_m} = \frac{k_1 + 1}{n - k_1} \sum_{i=2}^{m} \binom{n}{k_1 + 1, \ldots, k_i - 1, \ldots}
\]
e.g.:

```python
sage: k = (2, 4, 1, 0, 2, 6, 0, 0, 3, 5, 7, 1) # random value
sage: n = sum(k)
sage: s = 0
sage: for i in range(1, len(k)):
 ...: ki = list(k)
 ...: ki[0] += 1
 ...: ki[i] -= 1
 ...: s += multinomial(n, *ki)
sage: multinomial(n, *k) == (k[0] + 1) / (n - k[0]) * s
True
```

`sage.arith.misc.next_prime(n, proof=None)`

The next prime greater than the integer `n`. If `n` is prime, then this function does not return `n`, but the next prime after `n`. If the optional argument `proof` is `False`, this function only returns a pseudo-prime, as defined by the PARI nextprime function. If it is `None`, uses the global default (see `sage.structure.proof.proof`)

**INPUT:**

- `n` - integer
- `proof` - bool or `None` (default: `None`)

**EXAMPLES:**

```python
sage: next_prime(-100)
2
sage: next_prime(1)
2
sage: next_prime(2)
3
sage: next_prime(3)
5
sage: next_prime(4)
5
```

Notice that the `next_prime(5)` is not 5 but 7.

```python
sage: next_prime(5)
7
2011
```

`sage.arith.misc.next_prime_power(n)`

Return the smallest prime power greater than `n`.

Note that if `n` is a prime power, then this function does not return `n`, but the next prime power after `n`.

This function just calls the method `Integer.next_prime_power()` of Integers.

**See also:**

- `is_prime_power()` (and `Integer.is_prime_power()`)
- `previous_prime_power()` (and `Integer.previous_prime_power()`)

**EXAMPLES:**
The same results can be obtained with:

```python
sage: 1.next_prime_power()
2
sage: 2.next_prime_power()
3
sage: 10.next_prime_power()
11
```

Note that 2 is the smallest prime power:

```python
sage: next_prime_power(-10)
2
sage: next_prime_power(0)
2
```

`sage.arith.misc.next_probable_prime(n)`

Return the next probable prime after self, as determined by PARI.

**INPUT:**

- `n` - an integer

**EXAMPLES:**

```python
sage: next_probable_prime(-100)
2
sage: next_probable_prime(19)
23
sage: next_probable_prime(int(999999999))
1000000007
sage: next_probable_prime(2^768)
155251809230078935148979488462502555256886017116696611139052038026050952686376886330498408828646471
```

`sage.arith.misc.nth_prime(n)`

Return the n-th prime number (1-indexed, so that 2 is the 1st prime.)

**INPUT:**

- `n` – a positive integer

**OUTPUT:**

- the n-th prime number

**EXAMPLES:**
sage: nth_prime(3)
5
sage: nth_prime(10)
29
sage: nth_prime(10^7)
179424673

sage: nth_prime(0)
Traceback (most recent call last):
...
ValueError: nth prime meaningless for non-positive n (=0)

sage.arith.misc.number_of_divisors(n)

Return the number of divisors of the integer n.

INPUT:

• n - a nonzero integer

OUTPUT:

• an integer, the number of divisors of n

EXAMPLES:

sage: number_of_divisors(100)
9
sage: number_of_divisors(-720)
30

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8
sage: number_of_divisors(int8(100))
9
sage: from gmpy2 import mpz
sage: number_of_divisors(mpz(100))
9

sage.arith.misc.odd_part(n)

The odd part of the integer n. This is \(n/2^v\), where \(v = \text{valuation}(n, 2)\).

EXAMPLES:

sage: odd_part(5)
5
sage: odd_part(4)
1
sage: odd_part(factorial(31))
12252984425690651386796875

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8
sage: odd_part(int8(5))
5

(continues on next page)
sage: from gmpy2 import mpz
sage: odd_part(mpz(5))
5

sage.arith.misc.power_mod(a, n, m)
Return the $n$-th power of $a$ modulo $m$, where $a$ and $m$ are elements of a ring that implements the modulo operator %.

ALGORITHM: square-and-multiply

EXAMPLES:

sage: power_mod(2,388,389)
1
sage: power_mod(2,390,391)
285
sage: power_mod(2,-1,7)
4
sage: power_mod(11,1,7)
4

This function works for fairly general rings:

sage: R.<x> = ZZ[]
sage: power_mod(3*x, 10, 7)
4*x^10
sage: power_mod(-3*x^2+4, 7, 2*x^3-5)
x^14 + x^8 + x^6 + x^3 + 962509*x^2 - 791910*x - 698281

sage.arith.misc.previous_prime(n)
The largest prime < n. The result is provably correct. If n <= 1, this function raises a ValueError.

EXAMPLES:

sage: previous_prime(10)
7
sage: previous_prime(7)
5
sage: previous_prime(8)
7
sage: previous_prime(7)
5
sage: previous_prime(5)
3
sage: previous_prime(3)
2
sage: previous_prime(2)
Traceback (most recent call last):
  ... ValueError: no previous prime
sage: previous_prime(1)
Traceback (most recent call last):
  ... ValueError: no previous prime

(continues on next page)
sage: previous_prime(-20)
Traceback (most recent call last):
...
ValueError: no previous prime

`sage.arith.misc.previous_prime_power(n)`

Return the largest prime power smaller than `n`.

The result is provably correct. If `n` is smaller or equal than 2 this function raises an error.

This function simply call the method `Integer.previous_prime_power()` of Integers.

See also:

- `is_prime_power()` (and `Integer.is_prime_power()`)  
- `next_prime_power()` (and `Integer.next_prime_power()`)

EXAMPLES:

```sage
sage: previous_prime_power(3)
2
sage: previous_prime_power(10)
9
sage: previous_prime_power(7)
5
sage: previous_prime_power(127)
125
```

The same results can be obtained with:

```sage
sage: 3.previous_prime_power()
2
sage: 10.previous_prime_power()
9
sage: 7.previous_prime_power()
5
sage: 127.previous_prime_power()
125
```

Input less than or equal to 2 raises errors:

```sage
sage: previous_prime_power(2)
Traceback (most recent call last):
...
ValueError: no prime power less than 2
sage: previous_prime_power(-10)
Traceback (most recent call last):
...
ValueError: no prime power less than 2
```

```sage
sage: n = previous_prime_power(2^16 - 1)
sage: while is_prime(n):
 : n = previous_prime_power(n)
```
```
sage: factor(n)
251^2
```

`sage.arith.misc.prime_divisors(n)`

Return the list of prime divisors (up to units) of this element of a unique factorization domain.

**INPUT:**

- \( n \) – any object which can be decomposed into prime factors

**OUTPUT:**

A list of prime factors of \( n \). For integers, this list is sorted in increasing order.

**EXAMPLES:**

Prime divisors of positive integers:

```
sage: prime_divisors(1)
[]
sage: prime_divisors(100)
[2, 5]
[2, 3, 167]
```

If \( n \) is negative, we do not include -1 among the prime divisors, since -1 is not a prime number:

```
sage: prime_divisors(-100)
[2, 5]
```

For polynomials we get all irreducible factors:

```
sage: R.<x> = PolynomialRing(QQ)
sage: prime_divisors(x^12 - 1)
[x - 1, x + 1, x^2 - x + 1, x^2 + 1, x^2 + x + 1, x^4 - x^2 + 1]
```

Tests with numpy and gmpy2 numbers:

```
sage: from numpy import int8
sage: prime_divisors(int8(-100))
[2, 5]
sage: from gmpy2 import mpz
sage: prime_divisors(mpz(-100))
[2, 5]
```

`sage.arith.misc.prime_factors(n)`

Return the list of prime divisors (up to units) of this element of a unique factorization domain.

**INPUT:**

- \( n \) – any object which can be decomposed into prime factors

**OUTPUT:**

A list of prime factors of \( n \). For integers, this list is sorted in increasing order.

**EXAMPLES:**

Prime divisors of positive integers:
sage: prime_divisors(1)
[]
sage: prime_divisors(100)
[2, 5]
[2, 3, 167]

If \( n \) is negative, we do not include \(-1\) among the prime divisors, since \(-1\) is not a prime number:

sage: prime_divisors(-100)
[2, 5]

For polynomials we get all irreducible factors:

sage: R.<x> = PolynomialRing(QQ)
sage: prime_divisors(x^12 - 1)
[x - 1, x + 1, x^2 - x + 1, x^2 + 1, x^2 + x + 1, x^4 - x^2 + 1]

tests with numpy and gmpy2 numbers:

sage: from numpy import int8
sage: prime_divisors(int8(-100))
[2, 5]
sage: from gmpy2 import mpz
sage: prime_divisors(mpz(-100))
[2, 5]

```
sage.arith.misc.prime_powers(start, stop=None)
```

list of all positive primes powers between \( start \) and \( stop-1 \), inclusive. If the second argument is omitted, returns the prime powers up to the first argument.

INPUT:

• \( start \) - an integer. If two inputs are given, a lower bound for the returned set of prime powers. If this is the only input, then it is an upper bound.

• \( stop \) - an integer (default: None). An upper bound for the returned set of prime powers.

OUTPUT:

The set of all prime powers between \( start \) and \( stop \) or, if only one argument is passed, the set of all prime powers between \( 1 \) and \( start \). The number \( n \) is a prime power if \( n = p^k \), where \( p \) is a prime number and \( k \) is a positive integer. Thus, \( 1 \) is not a prime power.

EXAMPLES:

sage: prime_powers(20)
[2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19]
sage: len(prime_powers(1000))
193
sage: len(prime_range(1000))
168

sage: a = [z for z in range(95,1234) if is_prime_power(z)]
sage: b = prime_powers(95,1234)
sage: len(b)
(continues on next page)
194

```python
sage: len(a)
194
sage: a[:10]
[97, 101, 103, 107, 109, 113, 121, 125, 127, 128]
sage: b[:10]
[97, 101, 103, 107, 109, 113, 121, 125, 127, 128]
sage: a == b
True
sage: prime_powers(100) == [i for i in range(100) if is_prime_power(i)]
True
sage: prime_powers(10,7)
[]
sage: prime_powers(-5)
[]
sage: prime_powers(-1,3)
[2]
```

`sage.arith.misc.prime_to_m_part(n, m)`

Return the prime-to-m part of n.

This is the largest divisor of n that is coprime to m.

**INPUT:**
- n – Integer (nonzero)
- m – Integer

**OUTPUT:** Integer

**EXAMPLES:**

```python
sage: prime_to_m_part(240,2)
15
sage: prime_to_m_part(240,3)
80
sage: prime_to_m_part(240,5)
48
sage: prime_to_m_part(43434,20)
21717
```

Note that integers also have a method with the same name:

```python
sage: 240.prime_to_m_part(2)
15
```

Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int16
sage: prime_to_m_part(int16(240), int16(2))
15
sage: from gmpy2 import mpz
```

(continues on next page)
sage: prime_to_m_part(mzp(240), mzp(2))
15

sage.arith.misc.primes(start=2, stop=None, proof=None)

Return an iterator over all primes between start and stop-1, inclusive. This is much slower than prime_range, but potentially uses less memory. As with next_prime(), the optional argument proof controls whether the numbers returned are guaranteed to be prime or not.

This command is like the Python 3 range command, except it only iterates over primes. In some cases it is better to use primes than prime_range, because primes does not build a list of all primes in the range in memory all at once. However, it is potentially much slower since it simply calls the next_prime() function repeatedly, and next_prime() is slow.

INPUT:

- start - an integer (default: 2) optional argument - giving lower bound for the primes
- stop - an integer (or infinity) - giving upper (open) bound for the primes
- proof - bool or None (default: None) If True, the function yields only proven primes. If False, the function uses a pseudo-primality test, which is much faster for really big numbers but does not provide a proof of primality. If None, uses the global default (see sage.structure.proof.proof)

OUTPUT:

- an iterator over primes from start to stop-1, inclusive

EXAMPLES:

sage: for p in primes(5,10):
    ....:    print(p)
5
7
sage: list(primes(13))
[2, 3, 5, 7, 11]
sage: list(primes(10^1000000000, 10^1000000010))
[100000000019, 100000000033, 100000000061, 100000000069, 100000000097]
sage: max(primes(10^100, 10^100+10^4, proof=False))
10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009631
sage: next(p for p in primes(10^20, infinity) if is_prime(2*p+1))
100000000000000001243

sage.arith.misc.primes_first_n(n, leave_pari=False)

Return the first n primes.

INPUT:

- n - a nonnegative integer

OUTPUT:

- a list of the first n prime numbers.

EXAMPLES:

sage: primes_first_n(10)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
sage: len(primes_first_n(1000))
sage.arith.misc.primitive_root\(n, \text{check=True}\)

Return a positive integer that generates the multiplicative group of integers modulo \(n\), if one exists; otherwise, raise a ValueError.

A primitive root exists if \(n = 4\) or \(n = p^k\) or \(n = 2p^k\), where \(p\) is an odd prime and \(k\) is a nonnegative number.

INPUT:

- \(n\) – a non-zero integer
- \(\text{check}\) – bool (default: True); if False, then \(n\) is assumed to be a positive integer possessing a primitive root, and behavior is undefined otherwise.

OUTPUT:

A primitive root of \(n\). If \(n\) is prime, this is the smallest primitive root.

EXAMPLES:

```
sage: primitive_root(23)
 5
sage: primitive_root(-46)
 5
sage: primitive_root(25)
 2
sage: print([primitive_root(p) for p in primes(100)])
[1, 2, 2, 3, 2, 3, 2, 6, 3, 5, 2, 2, 2, 7, 5, 3, 2, 3, 5]
sage: primitive_root(8)
Traceback (most recent call last):
 ... ValueError: no primitive root
```

**Note:** It takes extra work to check if \(n\) has a primitive root; to avoid this, use check=False, which may slightly speed things up (but could also result in undefined behavior). For example, the second call below is an order of magnitude faster than the first:

```
sage: n = 10^50 + 151 # a prime
sage: primitive_root(n)
11
sage: primitive_root(n, check=False)
11
```

sage.arith.misc.quadratic_residues\(n\)

Return a sorted list of all squares modulo the integer \(n\) in the range \(0 \leq x < |n|\).

EXAMPLES:

```
sage: quadratic_residues(11)
[0, 1, 3, 4, 5, 9]
sage: quadratic_residues(1)
[]
```

(continues on next page)
sage: quadratic_residues(2)
[0, 1]
sage: quadratic_residues(8)
[0, 1, 4]
sage: quadratic_residues(-10)
[0, 1, 4, 5, 6, 9]
sage: v = quadratic_residues(1000); len(v)
159

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8
sage: quadratic_residues(int8(11))
[0, 1, 3, 4, 5, 9]
sage: from gmpy2 import mpz
sage: quadratic_residues(mpz(11))
[0, 1, 3, 4, 5, 9]

sage.arith.misc.radical(n, **args, **kwds)

Return the product of the prime divisors of n.
This calls n.radical(**args, **kwds).

EXAMPLES:

sage: radical(2 * 3^2 * 5^5)
30
sage: radical(0)
Traceback (most recent call last):
  ... ArithmeticError: radical of 0 is not defined
sage: K.<i> = QuadraticField(-1)
sage: radical(K(2))
i + 1

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8
sage: radical(int8(50))
10
sage: from gmpy2 import mpz
sage: radical(mpz(50))
10

sage.arith.misc.random_prime(n, proof=None, lbound=2)

Return a random prime $p$ between $lbound$ and $n$.
The returned prime $p$ satisfies $lbound \leq p \leq n$.
The returned prime $p$ is chosen uniformly at random from the set of prime numbers less than or equal to $n$.

INPUT:

- $n$ - an integer $\geq 2$. 

• **proof** - bool or None (default: None) If False, the function uses a pseudo-primality test, which is much faster for really big numbers but does not provide a proof of primality. If None, uses the global default (see `sage.structure.proof.proof`)

• **lbound** - an integer >= 2, lower bound for the chosen primes

**EXAMPLES:**

```python
sage: p = random_prime(100000)
sage: p.is_prime()
True
sage: p <= 100000
True
sage: random_prime(2)
2
```

Here we generate a random prime between 100 and 200:

```python
sage: p = random_prime(200, lbound=100)
sage: p.is_prime()
True
sage: 100 <= p <= 200
True
```

If all we care about is finding a pseudo prime, then we can pass in `proof=False`

```python
sage: p = random_prime(200, proof=False, lbound=100)
sage: p.is_pseudoprime()
True
sage: 100 <= p <= 200
True
```

**AUTHORS:**

- Jon Hanke (2006-08-08): with standard Stein cleanup
- Jonathan Bober (2007-03-17)

`sage.arith.misc.rational_reconstruction(a, m, algorithm='fast')`

This function tries to compute \( x/y \), where \( x/y \) is a rational number in lowest terms such that the reduction of \( x/y \) modulo \( m \) is equal to \( a \) and the absolute values of \( x \) and \( y \) are both \( \leq \sqrt{m}/2 \). If such \( x/y \) exists, that pair is unique and this function returns it. If no such pair exists, this function raises `ZeroDivisionError`.

An efficient algorithm for computing rational reconstruction is very similar to the extended Euclidean algorithm. For more details, see Knuth, Vol 2, 3rd ed, pages 656-657.

**INPUT:**

- **a** – an integer
- **m** – a modulus
- **algorithm** – (default: ‘fast’)
  - ‘fast’ - a fast implementation using direct GMP library calls in Cython.

**OUTPUT:**

Numerator and denominator \( n, d \) of the unique rational number \( r = n/d \), if it exists, with \( n \) and \( |d| \leq \sqrt{m}/2 \). Return \( (0, 0) \) if no such number exists.
The algorithm for rational reconstruction is described (with a complete nontrivial proof) on pages 656-657 of Knuth, Vol 2, 3rd ed. as the solution to exercise 51 on page 379. See in particular the conclusion paragraph right in the middle of page 657, which describes the algorithm thus:

This discussion proves that the problem can be solved efficiently by applying Algorithm 4.5.2X with \( u = m \) and \( v = a \), but with the following replacement for step X2: If \( v^3 \leq \sqrt{m/2} \), the algorithm terminates. The pair \((x, y) = (\lfloor v^2 \rfloor, v^3 \ast \text{sign}(v^2))\) is then the unique solution, provided that \( x \) and \( y \) are coprime and \( x \leq \sqrt{m/2} \); otherwise there is no solution. (Alg 4.5.2X is the extended Euclidean algorithm.)

Knuth remarks that this algorithm is due to Wang, Kornerup, and Gregory from around 1983.

EXAMPLES:

```python
sage: m = 100000
sage: (119*inverse_mod(53,m))%m
11323
sage: rational_reconstruction(11323,m)
119/53
sage: rational_reconstruction(400,1000)
Traceback (most recent call last):
... ArithmeticError: rational reconstruction of 400 (mod 1000) does not exist
sage: rational_reconstruction(3, 292393)
3
sage: a = Integers(292393)(45/97); a
204977
sage: rational_reconstruction(a, 292393, algorithm='fast')
45/97
sage: rational_reconstruction(293048, 292393)
Traceback (most recent call last):
... ArithmeticError: rational reconstruction of 655 (mod 292393) does not exist
sage: rational_reconstruction(0, 0)
Traceback (most recent call last):
... ZeroDivisionError: rational reconstruction with zero modulus
sage: rational_reconstruction(0, 1, algorithm="foobar")
Traceback (most recent call last):
... ValueError: unknown algorithm 'foobar'
```

Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int32
sage: rational_reconstruction(int32(3), int32(292393))
3
sage: from gmpy2 import mpz
sage: rational_reconstruction(mpz(3), mpz(292393))
3
```

```
sage.arith.misc.rising_factorial(x, a)
Return the rising factorial \((x)^a\).
```

The notation in the literature is a mess: often $(x)^a$, but there are many other notations: GKP: Concrete Mathematics uses $x^a$.

The rising factorial is also known as the Pochhammer symbol, see Maple and Mathematica.

Definition: for integer $a \geq 0$ we have $x(x+1)\cdots(x+a-1)$. In all other cases we use the GAMMA-function: $\frac{\Gamma(x+a)}{\Gamma(x)}$.

INPUT:
- $x$ – element of a ring
- $a$ – a non-negative integer or
- $x$ and $a$ – any numbers

OUTPUT: the rising factorial

See also:
falling_factorial()

EXAMPLES:

```
sage: rising_factorial(10,3)
1320
sage: rising_factorial(10,RR('3.0'))
1320.00000000000
sage: rising_factorial(10,RR('3.3'))
2826.38895824964
sage: a = rising_factorial(1+I, I); a
gamma(2*I + 1)/gamma(I + 1)
sage: CC(a)
0.266816390637832 + 0.122783354006372*I
sage: a = rising_factorial(I, 4); a
-10
sage: x = polygen(ZZ)
sage: rising_factorial(x, 4)
x^4 + 6*x^3 + 11*x^2 + 6*x
```

AUTHORS:
- Jaap Spies (2006-03-05)

1.11. Miscellaneous arithmetic functions 141

sage.arith.misc.sort_complex_numbers_for_display(nums)

Given a list of complex numbers (or a list of tuples, where the first element of each tuple is a complex number), we sort the list in a “pretty” order.

Real numbers (with a zero imaginary part) come before complex numbers, and are sorted. Complex numbers are sorted by their real part unless their real parts are quite close, in which case they are sorted by their imaginary part.

This is not a useful function mathematically (not least because there is no principled way to determine whether the real components should be treated as equal or not). It is called by various polynomial root-finders; its purpose is to make doctest printing more reproducible.
We deliberately choose a cumbersome name for this function to discourage use, since it is mathematically meaningless.

EXAMPLES:

```python
sage: import sage.arith.misc
sage: sort_c = sort_complex_numbers_for_display
sage: nums = [CDF(i) for i in range(3)]
sage: for i in range(3):
 : nums.append(CDF(i + RDF.random_element(-3e-11, 3e-11),
 : RDF.random_element()))
 : nums.append(CDF(i + RDF.random_element(-3e-11, 3e-11),
 : RDF.random_element()))
sage: shuffle(nums)
sage: nums = sort_c(nums)
sage: for i in range(len(nums)):
 : if nums[i].imag():
 : first_non_real = i
 : else:
 : first_non_real = len(nums)
 : break
sage: assert first_non_real >= 3
sage: for i in range(first_non_real - 1):
 : assert nums[i].real() <= nums[i + 1].real()
 : if truncate(nums[i]) == truncate(nums[i + 1]):
 : assert nums[i].imag() <= nums[i + 1].imag()
```

`sage.arith.misc.squarefree_divisors(x)`

Return an iterator over the squarefree divisors (up to units) of this ring element.

Depends on the output of the `prime_divisors` function.

Squarefree divisors of an integer are not necessarily yielded in increasing order.

INPUT:

- `x` – an element of any ring for which the `prime_divisors` function works.

EXAMPLES:

Integers with few prime divisors:

```python
sage: list(squarefree_divisors(7))
[1, 7]
sage: list(squarefree_divisors(6))
[1, 2, 3, 6]
sage: list(squarefree_divisors(12))
[1, 2, 3, 6]
```

Squarefree divisors are not yielded in increasing order:
sage: list(squarefree_divisors(30))
[1, 2, 3, 6, 5, 10, 15, 30]

sage.arith.misc.subfactorial(n)
Subfactorial or rencontres numbers, or derangements: number of permutations of \( n \) elements with no fixed points.

INPUT:
• \( n \) - non negative integer

OUTPUT:
• integer - function value

EXAMPLES:

\[
sage: subfactorial(0)
1
sage: subfactorial(1)
0
sage: subfactorial(8)
14833
\]

Tests with numpy and gmpy2 numbers:

\[
sage: from numpy import int8
sage: subfactorial(int8(8))
14833
sage: from gmpy2 import mpz
sage: subfactorial(mpz(8))
14833
\]

AUTHORS:
• Jaap Spies (2007-01-23)

sage.arith.misc.sum_of_k_squares(k, n)
Write the integer \( n \) as a sum of \( k \) integer squares if possible; otherwise raise a ValueError.

INPUT:
• \( k \) – a non-negative integer
• \( n \) – an integer

OUTPUT: a tuple \((x_1, \ldots, x_k)\) of non-negative integers such that their squares sum to \( n \).

EXAMPLES:

\[
sage: sum_of_k_squares(2, 9634)
(15, 97)
sage: sum_of_k_squares(3, 9634)
(0, 15, 97)
sage: sum_of_k_squares(4, 9634)
(1, 2, 5, 98)
sage: sum_of_k_squares(5, 9634)
(0, 1, 2, 5, 98)
sage: sum_of_k_squares(6, 11^{1111}-1)
(19215400822645944253860020437586326284, 37204645194585992174252915693267578306, ...)
\]
Write the integer $n$ as a sum of three integer squares if possible; otherwise raise a ValueError.

INPUT:

• $n$ – an integer

OUTPUT: a tuple $(a, b, c)$ of non-negative integers such that $n = a^2 + b^2 + c^2$ with $a <= b <= c$.

EXAMPLES:
sage: three_squares(389)
(1, 8, 18)
sage: three_squares(946)
(9, 9, 28)
sage: three_squares(2986)
(3, 24, 49)
sage: three_squares(7^100)
(0, 0, 17984650426471214662028034056649349251249)
sage: three_squares(11^111-1)
(616274160655975340150706442680, 901582938385735143295060746161, ...
→ 627038238763574140394001363065311967964099981788593947233)
sage: three_squares(7 * 2^41)
(1048576, 2097152, 3145728)
sage: three_squares(7 * 2^42)
Traceback (most recent call last):
... ValueError: 30786325577728 is not a sum of 3 squares
sage: three_squares(0)
(0, 0, 0)
sage: three_squares(-1)
Traceback (most recent call last):
... ValueError: -1 is not a sum of 3 squares

ALGORITHM:
See https://schorn.ch/lagrange.html

`sage.arith.misc.trial_division(n, bound=None)`
Return the smallest prime divisor <= bound of the positive integer n, or n if there is no such prime. If the optional argument bound is omitted, then bound <= n.

INPUT:
- n - a positive integer
- bound - (optional) a positive integer

OUTPUT:
- int - a prime p=bound that divides n, or n if there is no such prime.

EXAMPLES:

sage: trial_division(15)
3
sage: trial_division(91)
7
sage: trial_division(11)
11
sage: trial_division(387833, 300)
387833
sage: # 300 is not big enough to split off a
sage: # factor, but 400 is.
sage: trial_division(387833, 400)
389
Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int8
sage: trial_division(int8(91))
7
sage: from gmpy2 import mpz
sage: trial_division(mpz(91))
7
```

`sage.arith.misc.two_squares(n)`

Write the integer $n$ as a sum of two integer squares if possible; otherwise raise a `ValueError`.

**INPUT:**

* $n$ – an integer

**OUTPUT:** a tuple $(a, b)$ of non-negative integers such that $n = a^2 + b^2$ with $a <= b$.

**EXAMPLES:**

```python
sage: two_squares(389)
(10, 17)
sage: two_squares(21)
Traceback (most recent call last):
 ...
ValueError: 21 is not a sum of 2 squares
sage: two_squares(21^2)
(0, 21)
sage: a,b = two_squares(100000000000000000129); a,b
(4418521500, 8970878873)
sage: a^2 + b^2
100000000000000000129
sage: two_squares(2^222+1)
(253801659504708621991421712450521, 2583712713213354898490304645018692)
sage: two_squares(0)
(0, 0)
sage: two_squares(-1)
Traceback (most recent call last):
 ...
ValueError: -1 is not a sum of 2 squares
```

**ALGORITHM:**

See https://schorn.ch/lagrange.html

`sage.arith.misc.valuation(m, *args, **kwds)`

Return the valuation of $m$.

This function simply calls the $m.valuation()` method. See the documentation of $m.valuation()` for a more precise description.

Note that the use of this functions is discouraged as it is better to use $m.valuation()$ directly.

**Note:** This is not always a valuation in the mathematical sense. For more information see: sage.rings.finite_rings.integer_mod.IntegerMod_int.valuation

**EXAMPLES:**
sage: valuation(512,2)
9
sage: valuation(1,2)
0
sage: valuation(5/9, 3)
-2

Valuation of 0 is defined, but valuation with respect to 0 is not:

sage: valuation(0,7)
+Infinity
sage: valuation(3,0)
Traceback (most recent call last):
...
ValueError: You can only compute the valuation with respect to a integer larger than 1.

Here are some other examples:

sage: valuation(100,10)
2
sage: valuation(200,10)
2
sage: valuation(243,3)
5
sage: valuation(243*10007,3)
5
sage: valuation(243*10007,10007)
1
sage: y = QQ['y'].gen()
sage: valuation(y^3, y)
3
sage: x = QQ['x'].gen()
sage: valuation((x^3-x^2)/(x-4))
2
sage: valuation(xr,2r)
2
sage: valuation(1r,1r)
Traceback (most recent call last):
...
ValueError: You can only compute the valuation with respect to a integer larger than 1.

sage: from numpy import int16
sage: valuation(int16(512), int16(2))
9
sage: from gmpy2 import mpz
sage: valuation(mpz(512), mpz(2))
9

sage.arith.misc.xgcd(a, b)
Return a triple \((g, s, t)\) such that \(g = s \cdot a + t \cdot b = \gcd(a, b)\).

Note: One exception is if \(a\) and \(b\) are not in a principal ideal domain (see Wikipedia article Princip-
pal_ideal_domain), e.g., they are both polynomials over the integers. Then this function can't in general return \((g, s, t)\) as above, since they need not exist. Instead, over the integers, we first multiply \(g\) by a divisor of the resultant of \(a/g\) and \(b/g\), up to sign.

**INPUT:**

- \(a, b\) - integers or more generally, element of a ring for which the \text{gcd} make sense (e.g. a field or univariate polynomials).

**OUTPUT:**

- \(g, s, t\) - such that \(g = s \cdot a + t \cdot b\)

**Note:** There is no guarantee that the returned cofactors (s and t) are minimal.

**EXAMPLES:**

```python
sage: xgcd(56, 44)
(4, 4, -5)
sage: 4*56 + (-5)*44
4
sage: g, a, b = xgcd(5/1, 7/1); g, a, b
(1, 3, -2)
sage: a*(5/1) + b*(7/1) == g
True
sage: x = polygen(QQ)
sage: xgcd(x^3 - 1, x^2 - 1)
(x - 1, 1, -x)
sage: K.<g> = NumberField(x^2-3)
sage: g.xgcd(g+2)
(1, 1/3*g, 0)
sage: R.<a,b> = K[]
sage: S.<y> = R.fraction_field()[]
sage: xgcd((b+g)*y^2, (a+g)*y+b)
(1, (a^2 + (2*g)*a + 3)/(b^3 + g*b^2), ((-a + (-g))/b^2)*y + 1/b)
```

Here is an example of a \text{gcd} for two polynomials over the integers, where the linear combination is not the \text{gcd} but the \text{gcd} multiplied by the resultant:

```python
sage: R.<x> = ZZ[]
sage: gcd(2*x*(x-1), x^2)
x
sage: xgcd(2*x*(x-1), x^2)
(2*x, -1, 2)
sage: (2*(x-1)).resultant(x)
2
```

Tests with numpy and gmpy2 types:
sage: from numpy import int8
sage: xgcd(4,int8(8))
(4, 1, 0)
sage: xgcd(int8(4),int8(8))
(4, 1, 0)
sage: from gmpy2 import mpz
sage: xgcd(mpz(4), mpz(8))
(4, 1, 0)
sage: xgcd(4, mpz(8))
(4, 1, 0)

sage.arith.misc.xkcd(n="")

This function is similar to the xgcd function, but behaves in a completely different way. See https://xkcd.com/json.html for more details.

INPUT:

• n – an integer (optional)

OUTPUT: a fragment of HTML

EXAMPLES:

sage: xkcd(353) # optional - internet
<h1>Python</h1><img src="https://imgs.xkcd.com/comics/python.png" title="I wrote 20,\ldots short programs in Python yesterday. It was wonderful. Perl, I'm leaving you."

sage.arith.misc.xlcm(m, n)

Extended lcm function: given two positive integers \( m, n \), returns a triple \((l, m_1, n_1)\) such that \( l = \text{lcm}(m, n) = m_1 \cdot n_1 \) where \( m_1 | m, n_1 | n \) and \( \gcd(m_1, n_1) = 1 \), all with no factorization.

Used to construct an element of order \( l \) from elements of orders \( m, n \) in any group: see sage/groups/generic.py for examples.

EXAMPLES:

sage: xlcm(120,36)
(360, 40, 9)

See also:

• sage.sets.integer_range
• sage.sets.positive_integers
• sage.sets.non_negative_integers
• sage.sets.primes
2.1 Field $\mathbb{Q}$ of Rational Numbers

The class `RationalField` represents the field $\mathbb{Q}$ of (arbitrary precision) rational numbers. Each rational number is an instance of the class `Rational`.

Interactively, an instance of `RationalField` is available as `QQ`:

```python
sage: QQ
Rational Field
```

Values of various types can be converted to rational numbers by using the `__call__` method of `RationalField` (that is, by treating `QQ` as a function).

```python
sage: RealField(9).pi()
3.1
sage: QQ(RealField(9).pi())
22/7
sage: QQ(RealField().pi())
245850922/78256779
sage: QQ(35)
35
sage: QQ('12/347')
12/347
sage: QQ(exp(pi*I))
-1
sage: x = polygen(ZZ)
sage: QQ((3*x)/(4*x))
3/4
```

AUTHORS:

- Niles Johnson (2010-08): github issue #3893: `random_element()` should pass on `*args` and `**kwds`.
- Travis Scrimshaw (2012-10-18): Added additional docstrings for full coverage. Removed duplicates of `discriminant()` and `signature()`.
- Anna Haensch (2018-03): Added function `quadratic_defect()`

```python
class sage.rings.rational_field.RationalField
 Bases: Singleton, NumberField

The class `RationalField` represents the field \mathbb{Q} of rational numbers.
```

EXAMPLES:
Conversion from the reals to the rationals is done by default using continued fractions.

If you specify an optional second base argument, then the string representation of the float is used.

Here’s a nice example involving elliptic curves:
absolute_degree()  
Return the absolute degree of \( \mathbb{Q} \) which is 1.

EXAMPLES:

```
sage: QQ.absolute_degree()
1
```

absolute_discriminant()  
Return the absolute discriminant, which is 1.

EXAMPLES:

```
sage: QQ.absolute_discriminant()
1
```

absolute_polynomial()  
Return a defining polynomial of \( \mathbb{Q} \), as for other number fields.

This is also aliased to `self.defining_polynomial()` and `self.absolute_polynomial()`.

EXAMPLES:

```
sage: QQ.polynomial()
x
```

algebraic_closure()  
Return the algebraic closure of self (which is \( \overline{\mathbb{Q}} \)).

EXAMPLES:

```
sage: QQ.algebraic_closure()
Algebraic Field
```

automorphisms()  
Return all Galois automorphisms of self.

OUTPUT:
  * a sequence containing just the identity morphism

EXAMPLES:

```
sage: QQ.automorphisms()
[
 Ring endomorphism of Rational Field
 Defn: 1 |--> 1
]
```

characteristic()  
Return 0 since the rational field has characteristic 0.

EXAMPLES:

```
sage: c = QQ.characteristic(); c
0
sage: parent(c)
Integer Ring
```
**class_number()**

Return the class number of the field of rational numbers, which is 1.

EXAMPLES:

```sage
debug: QQ.class_number()
1
```

**completion**(\(p, \text{prec}, \text{extras}={}\))

Return the completion of \(\mathbb{Q}\) at \(p\).

EXAMPLES:

```sage
debug: QQ.completion(infinity, 53)
Real Field with 53 bits of precision
sage: QQ.completion(5, 15, \{'\text{print}_\text{mode}': 'bars'\})
5-adic Field with capped relative precision 15
```

**complex_embedding**(\(\text{prec}=53\))

Return embedding of the rational numbers into the complex numbers.

EXAMPLES:

```sage
debug: QQ.complex_embedding()
Ring morphism:
 From: Rational Field
 To: Complex Field with 53 bits of precision
 Defn: 1 |--> 1.00000000000000
sage: QQ.complex_embedding(20)
Ring morphism:
 From: Rational Field
 To: Complex Field with 20 bits of precision
 Defn: 1 |--> 1.0000
```

**construction()**

Returns a pair (functor, parent) such that functor(parent) returns self.

This is the construction of \(\mathbb{Q}\) as the fraction field of \(\mathbb{Z}\).

EXAMPLES:

```sage
debug: QQ.construction()
(FractionField, Integer Ring)
```

**defining_polynomial()**

Return a defining polynomial of \(\mathbb{Q}\), as for other number fields.

This is also aliased to self.defining_polynomial() and self.absolute_polynomial().

EXAMPLES:

```sage
debug: QQ.polynomial()
x
```

**degree()**

Return the degree of \(\mathbb{Q}\) which is 1.

EXAMPLES:
sage: QQ.degree()
1

**discriminant()**
Return the discriminant of the field of rational numbers, which is 1.

EXAMPLES:

sage: QQ.discriminant()
1

**embeddings(K)**
Return list of the one embedding of \( \mathbb{Q} \) into \( K \), if it exists.

EXAMPLES:

sage: QQ.embeddings(QQ)
[Identity endomorphism of Rational Field]

sage: QQ.embeddings(CyclotomicField(5))
[Coercion map:
   From: Rational Field
   To:   Cyclotomic Field of order 5 and degree 4]

\( K \) must have characteristic 0:

sage: QQ.embeddings(GF(3))
Traceback (most recent call last):
  ...  ValueError: no embeddings of the rational field into K.

**extension(poly, names, **kwds)**
Create a field extension of \( \mathbb{Q} \).

EXAMPLES:

We make a single absolute extension:

sage: K.<a> = QQ.extension(x^3 + 5); K
Number Field in a with defining polynomial x^3 + 5

We make an extension generated by roots of two polynomials:

sage: K.<a,b> = QQ.extension([x^3 + 5, x^2 + 3]); K
Number Field in a with defining polynomial x^3 + 5 over its base field

sage: b^2
-3

sage: a^3
-5

**gen(n=0)**
Return the \( n \)-th generator of \( \mathbb{Q} \).

There is only the 0-th generator which is 1.

EXAMPLES:

2.1. Field \( \mathbb{Q} \) of Rational Numbers
sage: QQ.gen()
1

gens()
Return a tuple of generators of $\mathbb{Q}$ which is only $(1,)$.  
EXAMPLES:

sage: QQ.gens()
(1,)

ehilbert_symbol_negative_at_S(S, b, check=True)
Returns an integer that has a negative Hilbert symbol with respect to a given rational number and a given  
set of primes (or places).

The function is algorithm 3.4.1 in [Kir2016]. It finds an integer $a$ that has negative Hilbert symbol with  
respect to a given rational number exactly at a given set of primes (or places).

INPUT:

- $S$ – a list of rational primes, the infinite place as real embedding of $\mathbb{Q}$ or as -1  
- $b$ – a non-zero rational number which is a non-square locally at every prime in $S$.  
- check – bool (default: True) perform additional checks on input and confirm the output.

OUTPUT:

- An integer $a$ that has negative Hilbert symbol $(a, b)_p$ for every place $p$ in $S$ and no other place.

EXAMPLES:

sage: QQ.hilbert_symbol_negative_at_S([-1, 5, 3, 2, 7, 11, 13, 23], -10/7)
-9867
sage: QQ.hilbert_symbol_negative_at_S([3, 5, QQ.places()[0], 11], -15)
-33
sage: QQ.hilbert_symbol_negative_at_S([3, 5, 2])
15

AUTHORS:


is_absolute()
$\mathbb{Q}$ is an absolute extension of $\mathbb{Q}$.

EXAMPLES:

sage: QQ.is_absolute()
True

is_prime_field()
Return True since $\mathbb{Q}$ is a prime field.

EXAMPLES:

sage: QQ.is_prime_field()
True
maximal_order()  
Return the maximal order of the rational numbers, i.e., the ring \( \mathbb{Z} \) of integers.

EXAMPLES:

```sage
sage: QQ.maximal_order()
Integer Ring
sage: QQ.ring_of_integers()
Integer Ring
```

ngens()  
Return the number of generators of \( \mathbb{Q} \) which is 1.

EXAMPLES:

```sage
sage: QQ.ngens()
1
```

number_field()  
Return the number field associated to \( \mathbb{Q} \). Since \( \mathbb{Q} \) is a number field, this just returns \( \mathbb{Q} \) again.

EXAMPLES:

```sage
sage: QQ.number_field() is QQ
True
```

order()  
Return the order of \( \mathbb{Q} \) which is \( \infty \).

EXAMPLES:

```sage
sage: QQ.order()
+Infinity
```

places(all_complex=False, prec=None)  
Return the collection of all infinite places of self, which in this case is just the embedding of self into \( \mathbb{R} \).

By default, this returns homomorphisms into \( \mathbb{R} \). If \( \text{prec} \) is not None, we simply return homomorphisms into \( \text{RealField}(\text{prec}) \) (or \( \text{RDF} \) if \( \text{prec}=53 \)).

There is an optional flag \( \text{all_complex} \), which defaults to False. If \( \text{all_complex} \) is True, then the real embeddings are returned as embeddings into the corresponding complex field.

For consistency with non-trivial number fields.

EXAMPLES:

```sage
sage: QQ.places()
[Ring morphism:
 From: Rational Field
 To: Real Field with 53 bits of precision
 Defn: 1 |--> 1.00000000000000]
sage: QQ.places(prec=53)
[Ring morphism:
 From: Rational Field
 To: Real Double Field
 Defn: 1 |--> 1.0]
```

(continues on next page)
polynomial()  
Return a defining polynomial of $\mathbb{Q}$, as for other number fields.  
This is also aliased to self.defining_polynomial() and self.absolute_polynomial().  
EXAMPLES:

```
sage: QQ.polynomial()
x
```

power_basis()  
Return a power basis for this number field over its base field.  
The power basis is always $[1]$ for the rational field. This method is defined to make the rational field behave more like a number field.  
EXAMPLES:

```
sage: QQ.power_basis()
[1]
```

primes_of_bounded_norm_iter($B$)  
Iterator yielding all primes less than or equal to $B$.  
INPUT:  
• $B$ – a positive integer; upper bound on the primes generated.  
OUTPUT:  
An iterator over all integer primes less than or equal to $B$.  

Note: This function exists for compatibility with the related number field method, though it returns prime integers, not ideals.  
EXAMPLES:

```
sage: it = QQ.primes_of_bounded_norm_iter(10)
sage: list(it)
[2, 3, 5, 7]
sage: list(QQ.primes_of_bounded_norm_iter(1))
[]
```

quadratic_defect($a$, $p$, check=True)  
Return the valuation of the quadratic defect of $a$ at $p$.  
INPUT:  
• $a$ – an element of self  
• $p$ – a prime ideal or a prime number
• check – (default: True); check if \( p \) is prime

REFERENCE:

[Kir2016]

EXAMPLES:

```python
sage: QQ.quadratic_defect(0, 7)
+Infinity
sage: QQ.quadratic_defect(5, 7)
0
sage: QQ.quadratic_defect(5, 2)
2
sage: QQ.quadratic_defect(5, 5)
1
```

**random_element** *(num_bound=None, den_bound=None, *args, **kwds)*

Return an random element of \( \mathbb{Q} \).

Elements are constructed by randomly choosing integers for the numerator and denominator, not necessarily coprime.

INPUT:

• num_bound – a positive integer, specifying a bound on the absolute value of the numerator. If absent, no bound is enforced.

• den_bound – a positive integer, specifying a bound on the value of the denominator. If absent, the bound for the numerator will be reused.

Any extra positional or keyword arguments are passed through to `sage.rings.integer_ring.IntegerRing_class.random_element()`.

EXAMPLES:

```python
sage: QQ.random_element().parent() is QQ
True
sage: while QQ.random_element() != 0:
 : pass
sage: while QQ.random_element() != -1/2:
 : pass

In the following example, the resulting numbers range from -5/1 to 5/1 (both inclusive), while the smallest possible positive value is 1/10:

```python
sage: q = QQ.random_element(5, 10)
sage: -5/1 <= q <= 5/1
True
sage: q.denominator() <= 10
True
sage: q.numerator() <= 5
True
```

Extra positional or keyword arguments are passed through:

```python
sage: QQ.random_element(distribution='1/n').parent() is QQ
True
```

(continues on next page)
sage: QQ.random_element(distribution='1/n').parent() is QQ
True

range_by_height(start, end=None)

Range function for rational numbers, ordered by height.

Returns a Python generator for the list of rational numbers with heights in range(start, end). Follows the same convention as Python range, see range? for details.

See also __iter__().

EXAMPLES:

All rational numbers with height strictly less than 4:

```
sage: list(QQ.range_by_height(4))
[0, 1, -1, 1/2, -1/2, 2, -2, 1/3, -1/3, 3, -3, 2/3, -2/3, 3/2, -3/2]
sage: [a.height() for a in QQ.range_by_height(4)]
[1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3]
```

All rational numbers with height 2:

```
sage: list(QQ.range_by_height(2, 3))
[1/2, -1/2, 2, -2]
```

Nonsensical integer arguments will return an empty generator:

```
sage: list(QQ.range_by_height(3, 3))
[]
sage: list(QQ.range_by_height(10, 1))
[]
```

There are no rational numbers with height ≤ 0:

```
sage: list(QQ.range_by_height(-10, 1))
[]
```

relative_discriminant()

Return the relative discriminant, which is 1.

EXAMPLES:

```
sage: QQ.relative_discriminant()
1
```

residue_field(p, check=True)

Return the residue field of Q at the prime p, for consistency with other number fields.

INPUT:

• p - a prime integer.

• check (default True) - if True check the primality of p, else do not.

OUTPUT: The residue field at this prime.

EXAMPLES:
sage: QQ.residue_field(5)
Residue field of Integers modulo 5
sage: QQ.residue_field(next_prime(10^9))
Residue field of Integers modulo 1000000007

selmer_generators(S, m, proof=True, orders=False)

Return generators of the group $\mathbb{Q}(S, m)$.

INPUT:
- S – a set of primes
- m – a positive integer
- proof – ignored
- orders (default False) – if True, output two lists, the generators and their orders

OUTPUT:
A list of generators of $\mathbb{Q}(S, m)$ (and, optionally, their orders in $\mathbb{Q}^*/(\mathbb{Q}^*)^m$). This is the subgroup of $\mathbb{Q}^*/(\mathbb{Q}^*)^m$ consisting of elements a such that the valuation of a is divisible by m at all primes not in S. It is equal to the group of S-units modulo m-th powers. The group $\mathbb{Q}(S, m)$ contains the subgroup of those a such that $\mathbb{Q}(\sqrt[n]{a})/\mathbb{Q}$ is unramified at all primes of \mathbb{Q} outside of S, but may contain it properly when not all primes dividing m are in S.

See also:
RationalField.selmer_space(), which gives additional output when $m = p$ is prime: as well as generators, it gives an abstract vector space over $GF(p)$ isomorphic to $\mathbb{Q}(S, p)$ and maps implementing the isomorphism between this space and $\mathbb{Q}(S, p)$ as a subgroup of $\mathbb{Q}^*/(\mathbb{Q}^*)^p$.

EXAMPLES:

```
sage: QQ.selmer_generators((), 2)
[-1]
sage: QQ.selmer_generators((3,), 2)
[-1, 3]
sage: QQ.selmer_generators((5,), 2)
[-1, 5]
```

The previous examples show that the group generated by the output may be strictly larger than the ‘true’ Selmer group of elements giving extensions unramified outside S.

When m is even, -1 is a generator of order 2:

```
sage: QQ.selmer_generators((2,3,5,7,), 2, orders=True)
([[-1, 2, 3, 5, 7], [2, 2, 2, 2, 2]])
sage: QQ.selmer_generators((2,3,5,7,), 3, orders=True)
([[2, 3, 5, 7], [3, 3, 3, 3]])
```

selmer_group(*args, **kwds)

Deprecated: Use selmer_generators() instead. See github issue #31345 for details.

selmer_group_iterator(S, m, proof=True)

Return an iterator through elements of the finite group $\mathbb{Q}(S, m)$.

INPUT:
- S – a set of primes

2.1. Field \mathbb{Q} of Rational Numbers
• m – a positive integer
• proof – ignored

OUTPUT:
An iterator yielding the distinct elements of \(\mathbb{Q}(S,m) \). See the docstring for \(\text{selmer_generators()} \) for more information.

EXAMPLES:

```python
sage: list(QQ.selmer_group_iterator(), 2)
[1, -1]
```

```python
sage: list(QQ.selmer_group_iterator((2,)), 2)
[1, 2, -1, -2]
```

```python
sage: list(QQ.selmer_group_iterator((2,3), 2))
[1, 3, 2, 6, -1, -3, -2, -6]
```

```python
sage: list(QQ.selmer_group_iterator((5,), 2))
[1, 5, -1, -5]
```

\(\text{selmer_space}(S, p, \text{proof}=None) \)

Compute the group \(\mathbb{Q}(S, p) \) as a vector space with maps to and from \(\mathbb{Q}^* \).

INPUT:
• S – a list of prime numbers
• p – a prime number

OUTPUT:
(tuple) \(\text{QSp}, \text{QSp_gens}, \text{from_QSp}, \text{to_QSp} \) where
• \(\text{QSp} \) is an abstract vector space over \(GF(p) \) isomorphic to \(\mathbb{Q}(S, p) \);
• \(\text{QSp_gens} \) is a list of elements of \(\mathbb{Q}^* \) generating \(\mathbb{Q}(S, p) \);
• \(\text{from_QSp} \) is a function from \(\text{QSp} \) to \(\mathbb{Q}^* \) implementing the isomorphism from the abstract \(\mathbb{Q}(S, p) \) to \(\mathbb{Q}(S, p) \) as a subgroup of \(\mathbb{Q}^*/(\mathbb{Q}^*)^p \);
• \(\text{to_QSp} \) is a partial function from \(\mathbb{Q}^* \) to \(\text{QSp} \), defined on elements \(a \) whose image in \(\mathbb{Q}^*/(\mathbb{Q}^*)^p \) lies in \(\mathbb{Q}(S, p) \), mapping them via the inverse isomorphism to the abstract vector space \(\text{QSp} \).

The group \(\mathbb{Q}(S, p) \) is the finite subgroup of \(\mathbb{Q}^*/(\mathbb{Q}^*)^p \) consisting of elements whose valuation at all primes not in \(S \) is a multiple of \(p \). It contains the subgroup of those \(a \in \mathbb{Q}^* \) such that \(\mathbb{Q}(\sqrt[p]{a})/\mathbb{Q} \) is unramified at all primes of \(\mathbb{Q} \) outside of \(S \), but may contain it properly when \(p \) is not in \(S \).

EXAMPLES:

When \(S \) is empty, \(\mathbb{Q}(S, p) \) is only nontrivial for \(p = 2 \):

```python
sage: QS2, QS2gens, fromQS2, toQS2 = QQ.selmer_space([], 2)
sage: QS2
Vector space of dimension 1 over Finite Field of size 2
```

```python
sage: QQ.selmer_space([], 2)[0].dimension() == 0 for p in primes(3,10))
True
```

In general there is one generator for each \(p \in S \), and an additional generator of \(-1\) when \(p = 2 \):
\begin{verbatim}
sage: QS2, QS2gens, fromQS2, toQS2 = QQ.selmer_space([5,7], 2)
sage: QS2
Vector space of dimension 3 over Finite Field of size 2
sage: QS2gens
[5, 7, -1]
sage: toQS2(-7)
(0, 1, 1)
sage: fromQS2((0,1,1))
-7

The map \texttt{fromQS2} is only well-defined modulo \(p\)'th powers (in this case, modulo squares):
\begin{verbatim}
sage: toQS2(-5/7)
(1, 1, 1)
sage: fromQS2((1,1,1))
-35
sage: ((-5/7)/(-35)).is_square()
True
\end{verbatim}

The map \texttt{toQS2} is not defined on all of \(\mathbb{Q}^*\), only on those numbers which are squares away from 5 and 7:
\begin{verbatim}
sage: toQS2(210)
Traceback (most recent call last):
...
ValueError: argument 210 should have valuations divisible by 2 at all primes in...
←[5, 7]
\end{verbatim}
\end{verbatim}

\texttt{signature()}

Return the signature of the rational field, which is \((1,0)\), since there are 1 real and no complex embeddings.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: QQ.signature()
(1, 0)
\end{verbatim}

\texttt{some_elements()}

Return some elements of \(\mathbb{Q}\).

See \texttt{TestSuite()} for a typical use case.

\textbf{OUTPUT:}

An iterator over 100 elements of \(\mathbb{Q}\).

\textbf{EXAMPLES:}
\begin{verbatim}
sage: tuple(QQ.some_elements())
(1/2, -1/2, 2, -2, 0, 1, -1, 42, 2/3, -2/3, 3/2, -3/2, 4/5, -4/5, 5/4, -5/4, 6/7, -6/7, 7/6, -7/6, 8/9, -8/9, 9/8, -9/8, 10/11, -10/11, 11/10, -11/10, 12/13, -12/13, 13/12, -13/12,
\end{verbatim}
\end{verbatim}

valuation(ρ)

Return the discrete valuation with uniformizer ρ.

EXAMPLES:

```python
sage: v = QQ.valuation(3); v
3-adic valuation
sage: v(1/3)
-1
```

See also:

NumberField_generic valuation(), IntegerRing_class valuation()

zeta($n=2$)

Return a root of unity in self.

INPUT:

- n – integer (default: 2) order of the root of unity

EXAMPLES:

```python
sage: QQ.zeta()
-1
sage: QQ.zeta(2)
-1
sage: QQ.zeta(1)
1
sage: QQ.zeta(3)
Traceback (most recent call last):
  ... ValueError: no n-th root of unity in rational field
```

sage.rings.rational_field.frac(n, d)

Return the fraction n/d.

EXAMPLES:

```python
sage: from sage.rings.rational_field import frac
sage: frac(1, 2)
1/2
```

sage.rings.rational_field.is_RationalField(x)

Check to see if x is the rational field.

EXAMPLES:
2.2 Rational Numbers

AUTHORS:

- William Stein (2005): first version
- Gonzalo Tornaria and William Stein (2006-03-02): greatly improved python/GMP conversion; hashing
- David Harvey (2006-09-15): added nth_root
- Pablo De Napoli (2007-04-01): corrected the implementations of multiplicative_order, is_one; optimized __bool__; documented: lcm, gcd
- Travis Scrimshaw (2012-10-18): Added doctests for full coverage.
- Vincent Delecroix (2013): continued fraction
- Vincent Delecroix (2017-05-03): faster integer-rational comparison
- Vincent Klein (2017-05-11): add __mpq__() to class Rational
- Vincent Klein (2017-05-22): Rational constructor support gmpy2.mpq or gmpy2.mpz parameter. Add __mpz__ to class Rational.

```python
sage: from sage.rings.rational_field import is_RationalField as is_RF
sage: is_RF(QQ)
True
sage: is_RF(ZZ)
False
```

class sage.rings.rational.Q_to_Z

Bases: Map

A morphism from \mathbb{Q} to \mathbb{Z}.

section()

Return a section of this morphism.

EXAMPLES:

```python
sage: sage.rings.rational.Q_to_Z(QQ, ZZ).section()
Natural morphism:
    From: Integer Ring
    To:  Rational Field
```

class sage.rings.rational.Rational

Bases: FieldElement

A rational number.

Rational numbers are implemented using the GMP C library.

EXAMPLES:
sage: a = -2/3
sage: type(a)
<class 'sage.rings.rational.Rational'>

sage: parent(a)
Rational Field

sage: Rational('1/0')
Traceback (most recent call last):
... TypeError: unable to convert '1/0' to a rational

sage: Rational(1.5)
3/2
sage: Rational('9/6')
3/2
sage: Rational((2^99,2^100))
1/2
sage: Rational("2", "10"), 16
1/8
sage: Rational(QQbar(125/8).nth_root(3))
5/2
sage: Rational(AA(209735/343 - 17910/49*golden_ratio).nth_root(3) + 3*AA(golden_ratio))
53/7
sage: QQ(float(1.5))
3/2
sage: QQ(RDF(1.2))
6/5

Conversion from fractions:

```
sage: import fractions
sage: f = fractions.Fraction(1r, 2r)
sage: Rational(f)
1/2
```

Conversion from PARI:

```
sage: Rational(pari('-939082/3992923'))
-939082/3992923
sage: Rational(pari('Pol([-1/2])'))  #9595
-1/2
```

Conversions from numpy:

```
sage: import numpy as np
sage: QQ(np.int8('-15'))
-15
sage: QQ(np.int16('-32'))
-32
sage: QQ(np.int32('-19'))
-19
sage: QQ(np.uint32('1412'))
1412
```

(continues on next page)
Conversions from gmpy2:

```
sage: from gmpy2 import *
sage: QQ(mpq('3/4'))
   3/4
sage: QQ(mpz(42))
   42
sage: Rational(mpq(2/3))
   2/3
sage: Rational(mpz(5))
   5
```

absolute_norm()

Return the norm from Q to Q of x (which is just x). This was added for compatibility with NumberFields

```
sage: (6/5).absolute_norm()
   6/5
sage: QQ(7/5).absolute_norm()
   7/5
```

additive_order()

Return the additive order of self.

OUTPUT: integer or infinity

```
sage: QQ(0).additive_order()
   1
sage: QQ(1).additive_order()
   +Infinity
```

as_integer_ratio()

Return the pair (self.numerator(), self.denominator()).

```
sage: x = -12/29
sage: x.as_integer_ratio()
(-12, 29)
```

ceil()

Return the ceiling of this rational number.

OUTPUT: Integer

If this rational number is an integer, this returns this number, otherwise it returns the floor of this number +1.

```
```

2.2. Rational Numbers
charpoly($var='x$')

Return the characteristic polynomial of this rational number. This will always be just $var - self$; this is really here so that code written for number fields won't crash when applied to rational numbers.

INPUT:
- var - a string

OUTPUT: Polynomial

EXAMPLES:

```python
sage: (1/3).charpoly('x')
x - 1/3
```

The default is $var='x$'. (github issue #20967):

```python
sage: a = QQ(2); a.charpoly('x')
x - 2
```

AUTHORS:
- Craig Citro

conjugate()

Return the complex conjugate of this rational number, which is the number itself.

EXAMPLES:

```python
sage: n = 23/11
sage: n.conjugate()
23/11
```

content($other$)

Return the content of $self$ and $other$, i.e. the unique positive rational number c such that $self/c$ and $other/c$ are coprime integers.

$other$ can be a rational number or a list of rational numbers.

EXAMPLES:

```python
sage: a = 2/3
sage: a.content(2/3)
2/3
sage: a.content(1/5)
1/15
```

(continues on next page)
continued_fraction()

Return the continued fraction of that rational.

EXAMPLES:

```
sage: (641/472).continued_fraction()
[1; 2, 1, 3, 1, 4, 1, 5]
sage: a = (355/113).continued_fraction(); a
[3; 7, 16]
sage: a.n(digits=10)
3.141592920
sage: pi.n(digits=10)
3.141592654
```

It's almost pi!

continued_fraction_list(type='std')

Return the list of partial quotients of this rational number.

INPUT:

- type - either “std” (the default) for the standard continued fractions or “hj” for the Hirzebruch-Jung ones.

EXAMPLES:

```
sage: (13/9).continued_fraction_list()
[1, 2, 4]
sage: 1 + 1/(2 + 1/4)
13/9
sage: (225/157).continued_fraction_list()
[1, 2, 3, 4, 5]
sage: 1 + 1/(2 + 1/(3 + 1/(4 + 1/5)))
225/157
sage: (fibonacci(20)/fibonacci(19)).continued_fraction_list()
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]
sage: (-1/3).continued_fraction_list()
[-1, 1, 2]
```

Check that the partial quotients of an integer \(n \) is simply \([n]\):

```
sage: QQ(1).continued_fraction_list()
[1]
sage: QQ(0).continued_fraction_list()
[0]
sage: QQ(-1).continued_fraction_list()
[-1]
```
Hirzebruch-Jung continued fractions:

```
sage: (11/19).continued_fraction_list("hj")
[1, 3, 2, 3, 2]
sage: 1 - 1/(3 - 1/(2 - 1/(3 - 1/2)))
11/19
```

```
sage: (225/137).continued_fraction_list("hj")
[2, 3, 5, 10]
sage: 2 - 1/(3 - 1/(5 - 1/10))
225/137
```

```
sage: (-23/19).continued_fraction_list("hj")
[-1, 5, 4]
sage: -1 - 1/(5 - 1/4)
-23/19
```

denom()

Return the denominator of this rational number. denom is an alias of denominator.

EXAMPLES:

```
sage: x = -5/11
sage: x.denominator()
11
```

```
sage: x = 9/3
sage: x.denominator()
1
```

```
sage: x = 5/13
sage: x.denom()
13
```

denominator()

Return the denominator of this rational number. denom is an alias of denominator.

EXAMPLES:

```
sage: x = -5/11
sage: x.denominator()
11
```

```
sage: x = 9/3
sage: x.denominator()
1
```

```
sage: x = 5/13
sage: x.denom()
13
```

factor()

Return the factorization of this rational number.

OUTPUT: Factorization
EXAMPLES:

```sage
sage: (-4/17).factor()
-1 * 2^2 * 17^-1
```

Trying to factor 0 gives an arithmetic error:

```sage
sage: (0/1).factor()
Traceback (most recent call last):
...
ArithmeticError: factorization of 0 is not defined
```

`floor()`

Return the floor of this rational number as an integer.

OUTPUT: Integer

EXAMPLES:

```sage
sage: n = 5/3; n.floor()
1
sage: n = -17/19; n.floor()
-1
sage: n = -7/2; n.floor()
-4
sage: n = 7/2; n.floor()
3
sage: n = 10/2; n.floor()
5
```

`gamma(prec=None)`

Return the gamma function evaluated at `self`. This value is exact for integers and half-integers, and returns a symbolic value otherwise. For a numerical approximation, use keyword `prec`.

EXAMPLES:

```sage
sage: gamma(1/2)
sqrt(pi)
sage: gamma(7/2)
15/8*sqrt(pi)
sage: gamma(-3/2)
4/3*sqrt(pi)
sage: gamma(6/1)
120
sage: gamma(1/3)
gamma(1/3)
```

This function accepts an optional precision argument:

```sage
sage: (1/3).gamma(prec=100)
2.6789385347077476336556929410
sage: (1/2).gamma(prec=100)
1.7724538509055160272981674833
```

`global_height(prec=None)`

Return the absolute logarithmic height of this rational number.
INPUT:

- **prec** (int) – desired floating point precision (default: default RealField precision).

OUTPUT:

(real) The absolute logarithmic height of this rational number.

ALGORITHM:

The height is the sum of the total archimedean and non-archimedean components, which is equal to \(\max(\log(n), \log(d)) \) where \(n, d \) are the numerator and denominator of the rational number.

EXAMPLES:

```python
sage: a = QQ(6/25)
sage: a.global_height_arch() + a.global_height_non_arch()
3.21887582486820
sage: a.global_height()
3.21887582486820
sage: (1/a).global_height()
3.21887582486820
sage: QQ(0).global_height()
0.000000000000000
sage: QQ(1).global_height()
0.000000000000000
```

global_height_arch *(prec=None)*

Return the total archimedean component of the height of this rational number.

INPUT:

- **prec** (int) – desired floating point precision (default: default RealField precision).

OUTPUT:

(real) The total archimedean component of the height of this rational number.

ALGORITHM:

Since \(\mathbb{Q} \) has only one infinite place this is just the value of the local height at that place. This separate function is included for compatibility with number fields.

EXAMPLES:

```python
sage: a = QQ(6/25)
sage: a.global_height_arch()
0.000000000000000
sage: (1/a).global_height_arch()
1.42711635564015
sage: (1/a).global_height_arch(100)
1.4271163556401457483890413081
```

global_height_non_arch *(prec=None)*

Return the total non-archimedean component of the height of this rational number.

INPUT:

- **prec** (int) – desired floating point precision (default: default RealField precision).

OUTPUT:
(real) The total non-archimedean component of the height of this rational number.

ALGORITHM:
This is the sum of the local heights at all primes \(p \), which may be computed without factorization as the log of the denominator.

EXAMPLES:

```sage
sage: a = QQ(5/6)
sage: a.support()
[2, 3, 5]
sage: a.global_height_non_arch()
1.79175946922805
sage: [a.local_height(p) for p in a.support()]
[0.693147180559945, 1.09861228866811, 0.000000000000000]
sage: sum([a.local_height(p) for p in a.support()])
1.79175946922805
```

height()

The max absolute value of the numerator and denominator of \(\text{self} \), as an \texttt{Integer}.

OUTPUT: Integer

EXAMPLES:

```sage
sage: a = 2/3
sage: a.height()
3
sage: a = 34/3
sage: a.height()
34
sage: a = -97/4
sage: a.height()
97
```

AUTHORS:

• Naqi Jaffery (2006-03-05): examples

Note: For the logarithmic height, use \texttt{global_height()}.

imag()

Return the imaginary part of \(\text{self} \), which is zero.

EXAMPLES:

```sage
sage: (1/239).imag()
0
```

is_S_integral(\(S=\emptyset \))

Determine if the rational number is \(S \)-integral.

\(x \) is \(S \)-integral if \(x.\text{valuation}(p)\geq0 \) for all \(p \) not in \(S \), i.e., the denominator of \(x \) is divisible only by the primes in \(S \).

INPUT:
• S – list or tuple of primes.

OUTPUT: bool

Note: Primality of the entries in S is not checked.

EXAMPLES:

```python
sage: QQ(1/2).is_S_integral()
False
sage: QQ(1/2).is_S_integral([2])
True
sage: [a for a in range(1,11) if QQ(101/a).is_S_integral([2,5])]
[1, 2, 4, 5, 8, 10]
```

is_S_unit(S=None)

Determine if the rational number is an S-unit.

\(x \) is an S-unit if \(x.\text{valuation}(p)=0 \) for all \(p \) not in \(S \), i.e., the numerator and denominator of \(x \) are divisible only by the primes in \(S \).

INPUT:

• S – list or tuple of primes.

OUTPUT: bool

Note: Primality of the entries in S is not checked.

EXAMPLES:

```python
sage: QQ(1/2).is_S_unit()
False
sage: QQ(1/2).is_S_unit([2])
True
sage: [a for a in range(1,11) if QQ(10/a).is_S_unit([2,5])]
[1, 2, 4, 5, 8, 10]
```

is_integer()

Determine if a rational number is integral (i.e. is in \(\mathbb{Z} \)).

OUTPUT: bool

EXAMPLES:

```python
sage: QQ(1/2).is_integral()
False
sage: QQ(4/4).is_integral()
True
```

is_integral()

Determine if a rational number is integral (i.e. is in \(\mathbb{Z} \)).

OUTPUT: bool

EXAMPLES:

```python
sage: QQ(1/2).is_integral()
False
sage: QQ(4/4).is_integral()
True
```
sage: QQ(1/2).is_integral()
False
sage: QQ(4/4).is_integral()
True

is_norm(L, element=False, proof=True)
Determine whether self is the norm of an element of L.

INPUT:
- L – a number field
- element – (default: False) boolean whether to also output an element of which self is a norm
- proof – If True, then the output is correct unconditionally. If False, then the output assumes GRH.

OUTPUT:
If element is False, then the output is a boolean B, which is True if and only if self is the norm of an element of L. If element is False, then the output is a pair (B, x), where B is as above. If B is True, then x an element of L such that self == x.norm(). Otherwise, x is None.

ALGORITHM:
Uses PARI's bnfisnorm. See _bnfisnorm().

EXAMPLES:

sage: K = NumberField(x^2 - 2, 'beta')
sage: (1/7).is_norm(K)
True
sage: (1/10).is_norm(K)
False
sage: 0.is_norm(K)
True
sage: (1/7).is_norm(K, element=True)
(True, 1/7*beta + 3/7)
sage: (1/10).is_norm(K, element=True)
(False, None)
sage: (1/691).is_norm(QQ, element=True)
(True, 1/691)

The number field doesn’t have to be defined by an integral polynomial:

sage: B, e = (1/5).is_norm(QuadraticField(5/4, 'a'), element=True)
sage: B
True
sage: e.norm()
1/5

A non-Galois number field:

sage: K.<a> = NumberField(x^3-2)
sage: B, e = (3/5).is_norm(K, element=True); B
True
sage: e.norm()
3/5

(continues on next page)
sage: 7.is_norm(K)
Traceback (most recent call last):
...
NotImplementedError: is_norm is not implemented unconditionally for norms from non-Galois number fields
sage: 7.is_norm(K, proof=False)
False

AUTHORS:
• Craig Citro (2008-04-05)
• Marco Streng (2010-12-03)

\textbf{is_nth_power}(n)

Return True if self is an \(n \)-th power, else False.

\textbf{INPUT:}
• \(n \) - integer (must fit in C int type)

\textbf{Note:} Use this function when you need to test if a rational number is an \(n \)-th power, but do not need to know the value of its \(n \)-th root. If the value is needed, use \texttt{nth_root()}.

AUTHORS:
• John Cremona (2009-04-04)

\textbf{EXAMPLES:}

\begin{verbatim}sage: QQ(25/4).is_nth_power(2)
True
sage: QQ(125/8).is_nth_power(3)
True
sage: QQ(-125/8).is_nth_power(3)
True
sage: QQ(25/4).is_nth_power(-2)
True
sage: QQ(9/2).is_nth_power(2)
False
sage: QQ(-25).is_nth_power(2)
False
\end{verbatim}

\textbf{is_one()}

Determine if a rational number is one.

\textbf{OUTPUT:} bool

\textbf{EXAMPLES:}

\begin{verbatim}sage: QQ(1/2).is_one()
False
sage: QQ(4/4).is_one()
True
\end{verbatim}
is_padic_square\((p, \text{check}=\text{True})\)

Determines whether this rational number is a square in \(\mathbb{Q}_p\) (or in \(R\) when \(p = \text{infinity}\)).

INPUT:

- \(p\) - a prime number, or \(\text{infinity}\)
- \(\text{check}\) – (default: \(\text{True}\)); check if \(p\) is prime

EXAMPLES:

```python
sage: QQ(2).is_padic_square(7)
True
sage: QQ(98).is_padic_square(7)
True
sage: QQ(2).is_padic_square(5)
False
```

is_perfect_power\((\text{expected_value}=\text{False})\)

Return \(\text{True}\) if \(\text{self}\) is a perfect power.

INPUT:

- \(\text{expected_value}\) - (bool) whether or not this rational is expected be a perfect power. This does not affect the correctness of the output, only the runtime.

If \(\text{expected_value}\) is \(\text{False}\) (default) it will check the smallest of the numerator and denominator is a perfect power as a first step, which is often faster than checking if the quotient is a perfect power.

EXAMPLES:

```python
sage: (4/9).is_perfect_power()
True
sage: (144/1).is_perfect_power()
True
sage: (4/3).is_perfect_power()
False
sage: (2/27).is_perfect_power()
False
sage: (4/27).is_perfect_power()
False
sage: (-1/25).is_perfect_power()
False
sage: (-1/27).is_perfect_power()
True
sage: (0/1).is_perfect_power()
True
```

The second parameter does not change the result, but may change the runtime.

```python
sage: (-1/27).is_perfect_power(\text{True})
True
sage: (-1/25).is_perfect_power(\text{True})
False
sage: (2/27).is_perfect_power(\text{True})
False
sage: (144/1).is_perfect_power(\text{True})
True
```
This test makes sure we workaround a bug in GMP (see github issue #4612):

```python
sage: [ -a for a in srange(100) if not QQ(-a^3).is_perfect_power() ]
[]
sage: [ -a for a in srange(100) if not QQ(-a^3).is_perfect_power(True) ]
[]
```

is_rational()

Return True since this is a rational number.

EXAMPLES:

```python
sage: (3/4).is_rational()
True
```

is_square()

Return whether or not this rational number is a square.

OUTPUT: bool

EXAMPLES:

```python
sage: x = 9/4
sage: x.is_square()
True
sage: x = (7/53)^100
sage: x.is_square()
True
sage: x = 4/3
sage: x.is_square()
False
sage: x = -1/4
sage: x.is_square()
False
```

list()

Return a list with the rational element in it, to be compatible with the method for number fields.

OUTPUT:

- list - the list [self]

EXAMPLES:

```python
sage: m = 5/3
sage: m.list()
[5/3]
```

local_height(p, prec=None)

Return the local height of this rational number at the prime \(p \).

INPUT:

- \(p \) – a prime number
- \(\text{prec} \) (int) – desired floating point precision (default: default RealField precision).

OUTPUT:
The local height of this rational number at the prime \(p \).

EXAMPLES:

```python
sage: a = QQ(25/6)
sage: a.local_height(2)
0.693147180559945
sage: a.local_height(3)
1.09861228866811
sage: a.local_height(5)
0.000000000000000
```

local_height_arch *(prec=None)*

Return the Archimedean local height of this rational number at the infinite place.

INPUT:

- `prec` (int) – desired floating point precision (default: default RealField precision).

OUTPUT:

The local height of this rational number \(x \) at the unique infinite place of \(\mathbb{Q} \), which is \(\max(\log(|x|), 0) \).

EXAMPLES:

```python
sage: a = QQ(6/25)
sage: a.local_height_arch()
0.000000000000000
sage: (1/a).local_height_arch()
1.42711635564015
sage: (1/a).local_height_arch(100)
1.4271163556401457483890413081
```

log *(m=None, prec=None)*

Return the log of `self`.

INPUT:

- `m` – the base (default: natural log base e)
- `prec` – integer (optional); the precision in bits

OUTPUT:

When \(\text{prec} \) is not given, the log as an element in symbolic ring unless the logarithm is exact. Otherwise the log is a RealField approximation to \(\text{prec} \) bit precision.

EXAMPLES:

```python
sage: (124/345).log(5)
log(124/345)/log(5)
sage: (124/345).log(5, 100)
-0.63578895682825611710391773754
sage: log(QQ(125))
3*log(5)
sage: log(QQ(125), 5)
3
sage: log(QQ(125), 3)
3*log(5)/log(3)
```

(continues on next page)
sage: QQ(8).log(1/2)
-3
sage: (1/8).log(1/2)
3
sage: (1/2).log(1/8)
1/3
sage: (1/2).log(8)
-1/3
sage: (16/81).log(8/27)
4/3
sage: (8/27).log(16/81)
3/4
sage: log(27/8, 16/81)
-3/4
sage: log(16/81, 27/8)
-4/3
sage: (125/8).log(5/2)
3
sage: (125/8).log(5/2, prec=53)
3.00000000000000

minpoly(var='x')
Return the minimal polynomial of this rational number. This will always be just x - self; this is really here so that code written for number fields won’t crash when applied to rational numbers.

INPUT:
• var - a string

OUTPUT: Polynomial

EXAMPLES:

sage: (1/3).minpoly()
x - 1/3
sage: (1/3).minpoly('y')
y - 1/3

AUTHORS:
• Craig Citro

mod_ui(n)
Return the remainder upon division of self by the unsigned long integer n.

INPUT:
• n - an unsigned long integer

OUTPUT: integer

EXAMPLES:

sage: (-4/17).mod_ui(3)
1
sage: (-4/17).mod_ui(17)
Traceback (most recent call last):
ArithmeticError: The inverse of 0 modulo 17 is not defined.

multiplicative_order()
Return the multiplicative order of self.

OUTPUT: Integer or infinity

EXAMPLES:

```
sage: QQ(1).multiplicative_order()
1
sage: QQ('1/1').multiplicative_order()
2
sage: QQ(0).multiplicative_order()
+Infinity
sage: QQ('2/3').multiplicative_order()
+Infinity
sage: QQ('1/2').multiplicative_order()
+Infinity
```

norm()
Return the norm from \(\mathbb{Q} \) to \(\mathbb{Q} \) of \(x \) (which is just \(x \)). This was added for compatibility with \texttt{NumberFields}.

OUTPUT:

- Rational - reference to self

EXAMPLES:

```
sage: (1/3).norm()
1/3
```

AUTHORS:
- Craig Citro

nth_root(n)
Computes the \(n \)-th root of self, or raises a \texttt{ValueError} if self is not a perfect \(n \)-th power.

INPUT:

- \(n \) - integer (must fit in C int type)

AUTHORS:
- David Harvey (2006-09-15)

EXAMPLES:

```
sage: (25/4).nth_root(2)
5/2
sage: (125/8).nth_root(3)
5/2
sage: (-125/8).nth_root(3)
-5/2
sage: (25/4).nth_root(-2)
2/5
```
sage: (9/2).nth_root(2)
Traceback (most recent call last):
...
ValueError: not a perfect 2nd power

sage: (-25/4).nth_root(2)
Traceback (most recent call last):
...
ValueError: cannot take even root of negative number

numer()

Return the numerator of this rational number. numer is an alias of numerator.

EXAMPLES:

sage: x = 5/11
sage: x.numerator()
5

sage: x = 9/3
sage: x.numerator()
3

sage: x = -5/11
sage: x.numer()
-5

numerator()

Return the numerator of this rational number. numer is an alias of numerator.

EXAMPLES:

sage: x = 5/11
sage: x.numerator()
5

sage: x = 9/3
sage: x.numerator()
3

sage: x = -5/11
sage: x.numer()
-5

ord(p)

Return the power of p in the factorization of self.

INPUT:

• p - a prime number

OUTPUT:

(integer or infinity) Infinity if self is zero, otherwise the (positive or negative) integer e such that self = m * p^e with m coprime to p.
Note: See also `val_unit()` which returns the pair \((e, m)\). The function `ord()` is an alias for `valuation()`.

EXAMPLES:

```
sage: x = -5/9
sage: x.valuation(5)
1
sage: x.ord(5)
1
sage: x.valuation(3)
-2
sage: x.valuation(2)
0
```

Some edge cases:

```
sage: (0/1).valuation(4)
+Infinity
sage: (7/16).valuation(4)
-2
```

`period()`

Return the period of the repeating part of the decimal expansion of this rational number.

ALGORITHM:

When a rational number \(n/d\) with \((n, d) = 1\) is expanded, the period begins after \(s\) terms and has length \(t\), where \(s\) and \(t\) are the smallest numbers satisfying \(10^s \equiv 10^{s+t} \mod d\). In general if \(d = 2^a5^b m\) where \(m\) is coprime to 10, then \(s = \max(a, b)\) and \(t\) is the order of 10 modulo \(m\).

EXAMPLES:

```
sage: (1/7).period()
6
sage: RR(1/7)
0.142857142857143
sage: (1/8).period()
1
sage: RR(1/8)
0.125000000000000
sage: RR(1/6)
0.166666666666667
sage: (1/6).period()
1
sage: x = 333/106
sage: x.period()
13
sage: RealField(200)(x)
3.141594339622641509433962264150943396226415094339622641509433962264150943396226415094339622641509
```

`prime_to_S_part(S=[])`

Return `self` with all powers of all primes in `S` removed.

INPUT:
• S - list or tuple of primes.

OUTPUT: rational

Note: Primality of the entries in S is not checked.

EXAMPLES:

```sage
define(functions)
sage: QQ(3/4).prime_to_S_part()
3/4
sage: QQ(3/4).prime_to_S_part([2])
3
sage: QQ(-3/4).prime_to_S_part([3])
-1/4
sage: QQ(700/99).prime_to_S_part([2,3,5])
7/11
sage: QQ(-700/99).prime_to_S_part([2,3,5])
-7/11
sage: QQ(0).prime_to_S_part([2,3,5])
0
sage: QQ(-700/99).prime_to_S_part([])
-700/99
```

real()

Return the real part of self, which is self.

EXAMPLES:

```sage
define(functions)
sage: (1/2).real()
1/2
```

relative_norm()

Return the norm from Q to Q of x (which is just x). This was added for compatibility with NumberFields

EXAMPLES:

```sage
define(functions)
sage: (6/5).relative_norm()
6/5
sage: QQ(7/5).relative_norm()
7/5
```

round(mode='away')

Return the nearest integer to self, rounding away from 0 by default, for consistency with the builtin Python round.

INPUT:

• **self** - a rational number

• **mode** - a rounding mode for half integers:

 • ‘toward’ rounds toward zero
 • ‘away’ (default) rounds away from zero
 • ‘up’ rounds up
– ‘down’ rounds down
– ‘even’ rounds toward the even integer
– ‘odd’ rounds toward the odd integer

OUTPUT: Integer

EXAMPLES:

```python
sage: (9/2).round()
5
sage: n = 4/3; n.round()
1
sage: n = -17/4; n.round()
-4
sage: n = -5/2; n.round()
-3
sage: n.round("away")
-3
sage: n.round("up")
-2
sage: n.round("down")
-3
sage: n.round("even")
-2
sage: n.round("odd")
-3
```

sign()

Return the sign of this rational number, which is -1, 0, or 1 depending on whether this number is negative, zero, or positive respectively.

OUTPUT: Integer

EXAMPLES:

```python
sage: (2/3).sign()
1
sage: (0/3).sign()
0
sage: (-1/6).sign()
-1
```

sqrt(prec=None, extend=True, all=False)

The square root function.

INPUT:

- prec – integer (default: None): if None, returns an exact square root; otherwise returns a numerical square root if necessary, to the given bits of precision.
- extend – bool (default: True): if True, return a square root in an extension ring, if necessary. Otherwise, raise a `ValueError` if the square is not in the base ring.
- all – bool (default: False): if True, return all square roots of self, instead of just one.

EXAMPLES:
sage: x = 25/9
sage: x.sqrt()
5/3
sage: sqrt(x)
5/3
sage: x = 64/4
sage: x.sqrt()
4
sage: x = 100/1
sage: x.sqrt()
10
sage: x.sqrt(all=True)
[10, -10]

sage: x = 81/5
sage: x.sqrt()
9*sqrt(1/5)

sage: x = -81/3
sage: x.sqrt()
3*sqrt(-3)

sage: n = 2/3
sage: n.sqrt()
sqrt(2/3)

AUTHORS:

• Naqi Jaffery (2006-03-05): some examples

\texttt{squarefree_part()}

Return the square free part of \(x \), i.e., an integer \(z \) such that \(x = zy^2 \), for a perfect square \(y^2 \).

EXAMPLES:

\begin{verbatim}
sage: a = 1/2
sage: a.squarefree_part()
2
\end{verbatim}
\begin{verbatim}
sage: b = a/a.squarefree_part()
sage: b, b.is_square()
(1/4, True)
sage: a = 24/5
sage: a.squarefree_part()
30
\end{verbatim}

\texttt{str}(\texttt{base}=10)

Return a string representation of self in the given base.

INPUT:

- \texttt{base} – integer (default: 10); base must be between 2 and 36.

OUTPUT: string

EXAMPLES:

\begin{verbatim}
sage: (-4/17).str()
'\texttt{-4/17}'
sage: (-4/17).str(2)
'\texttt{-100/10001}'
\end{verbatim}

Note that the base must be at most 36.

\begin{verbatim}
sage: (-4/17).str(40)
Traceback (most recent call last):
...
ValueError: base (=40) must be between 2 and 36
sage: (-4/17).str(1)
Traceback (most recent call last):
...
ValueError: base (=1) must be between 2 and 36
\end{verbatim}

\texttt{support}()

Return a sorted list of the primes where this rational number has non-zero valuation.

OUTPUT: The set of primes appearing in the factorization of this rational with nonzero exponent, as a sorted list.

EXAMPLES:

\begin{verbatim}
sage: (-4/17).support()
[2, 17]
\end{verbatim}

Trying to find the support of 0 gives an arithmetic error:

\begin{verbatim}
sage: (0/1).support()
Traceback (most recent call last):
...
ArithmeticError: Support of 0 not defined.
\end{verbatim}

\texttt{trace}()

Return the trace from \mathbb{Q} to \mathbb{Q} of x (which is just x). This was added for compatibility with \texttt{NumberFields}.

OUTPUT:
• Rational - reference to self

EXAMPLES:

```
sage: (1/3).trace()
1/3
```

AUTHORS:

• Craig Citro

`trunc()`

Round this rational number to the nearest integer toward zero.

EXAMPLES:

```
sage: (5/3).trunc()
1
sage: (-5/3).trunc()
-1
sage: QQ(42).trunc()
42
sage: QQ(-42).trunc()
-42
```

`val_unit(p)`

Return a pair: the \(p \)-adic valuation of `self`, and the \(p \)-adic unit of `self`, as a `Rational`.

We do not require the \(p \) be prime, but it must be at least 2. For more documentation see `Integer`. `val_unit()`.

INPUT:

• \(p \) - a prime

OUTPUT:

• int - the \(p \)-adic valuation of this rational
• Rational - \(p \)-adic unit part of `self`

EXAMPLES:

```
sage: (-4/17).val_unit(2)
(2, -1/17)
sage: (-4/17).val_unit(17)
(-1, -4)
sage: (0/1).val_unit(17)
(+Infinity, 1)
```

AUTHORS:

• David Roe (2007-04-12)

`valuation(p)`

Return the power of \(p \) in the factorization of `self`.

INPUT:

• \(p \) - a prime number
OUTPUT:

(integer or infinity) Infinity if self is zero, otherwise the (positive or negative) integer e such that $self = m * p^e$ with m coprime to p.

Note: See also `val_unit()` which returns the pair (e, m). The function `ord()` is an alias for `valuation()`.

EXAMPLES:

```
sage: x = -5/9
sage: x.valuation(5)
1
sage: x.ord(5)
1
sage: x.valuation(3)
-2
sage: x.valuation(2)
0
```

Some edge cases:

```
sage: (0/1).valuation(4)
+Infinity
sage: (7/16).valuation(4)
-2
```

class sage.rings.rational.Z_to_Q

Bases: Morphism

A morphism from \mathbb{Z} to \mathbb{Q}.

is_surjective()

Return whether this morphism is surjective.

EXAMPLES:

```
sage: QQ.coerce_map_from(ZZ).is_surjective()
False
```

section()

Return a section of this morphism.

EXAMPLES:

```
sage: f = QQ.coerce_map_from(ZZ).section(); f
Generic map:
  From: Rational Field
  To:   Integer Ring
```

This map is a morphism in the category of sets with partial maps (see github issue #15618):

```
sage: f.parent()
Set of Morphisms from Rational Field to Integer Ring in Category of sets with partial maps
```
class sage.rings.rational.int_to_Q

Bases: Morphism

A morphism from Python 2 int to Q.

sage.rings.rational.integer_rational_power(a, b)

Compute a^b as an integer, if it is integral, or return None.

The nonnegative real root is taken for even denominators.

INPUT:

• a – an Integer

• b – a nonnegative Rational

OUTPUT:

a^b as an Integer or None

EXAMPLES:

sage: from sage.rings.rational import integer_rational_power
sage: integer_rational_power(49, 1/2)
7
sage: integer_rational_power(27, 1/3)
3
sage: integer_rational_power(-27, 1/3) is None
True
sage: integer_rational_power(-27, 2/3) is None
True
sage: integer_rational_power(512, 7/9)
128
sage: integer_rational_power(27, 1/4) is None
True
sage: integer_rational_power(-16, 1/4) is None
True
sage: integer_rational_power(0, 7/9)
0
sage: integer_rational_power(1, 7/9)
1
sage: integer_rational_power(-1, 7/9) is None
True
sage: integer_rational_power(-1, 8/9) is None
True
sage: integer_rational_power(-1, 9/8) is None
True

TESTS (github issue #11228):

sage: integer_rational_power(-10, QQ(2))
100
sage: integer_rational_power(0, QQ(0))
1
sage.rings.rational.is_Rational(x)

Return true if x is of the Sage rational number type.

EXAMPLES:

```python
sage: from sage.rings.rational import is_Rational
sage: is_Rational(2)
False
sage: is_Rational(2/1)
True
sage: is_Rational(int(2))
False
sage: is_Rational('5')
False
```

class sage.rings.rational.long_to_Q

Bases: Morphism

A morphism from Python 2 long/Python 3 int to Q.

sage.rings.rational.make_rational(s)

Make a rational number from s (a string in base 32)

INPUT:

• s - string in base 32

OUTPUT: Rational

EXAMPLES:

```python
sage: (-7/15).str(32)
'-7/f'
sage: sage.rings.rational.make_rational('-7/f')
-7/15
```

sage.rings.rational.rational_power_parts(a, b, factor_limit=100000)

Compute rationals or integers c and d such that $a^b = c * d^b$ with d small. This is used for simplifying radicals.

INPUT:

• a – a rational or integer

• b – a rational

• factor_limit – the limit used in factoring a

EXAMPLES:

```python
sage: from sage.rings.rational import rational_power_parts
sage: rational_power_parts(27, 1/2)
(3, 3)
sage: rational_power_parts(-128, 3/4)
(8, -8)
sage: rational_power_parts(-4, 1/2)
(2, -1)
sage: rational_power_parts(-4, 1/3)
(1, -4)
```
sage: rational_power_parts(9/1000, 1/2)
(3/10, 1/10)
INDICES AND TABLES

• Index
• Module Index
• Search Page
a
sage.arith.functions, 75
sage.arith.misc, 81
sage.arith.multi_modular, 78
sage.arith.power, 77

r
sage.rings.bernmm, 64
sage.rings.bernoulli_mod_p, 65
sage.rings.factorint, 68
sage.rings.fast_arith, 72
sage.rings.integer, 13
sage.rings.integer_ring, 1
sage.rings.rational, 165
sage.rings.rational_field, 151
sage.rings.sum_of_squares, 73
INDEX

Symbols

__pow__() (sage.rings.integer.Integer method, 16)

A

absolute_degree() (sage.rings.integer_ring.IntegerRing_class method), 4
absolute_degree() (sage.rings.rational_field.RationalField method), 152
absolute_discriminant() (sage.rings.rational_field.RationalField method), 153
absolute_norm() (sage.rings.rational.Rational method), 167
absolute_polynomial() (sage.rings.rational_field.RationalField method), 153
additive_order() (sage.rings.integer.Integer method), 17
additive_order() (sage.rings.rational.Rational method), 167
algdep() (in module sage.arith.misc), 91
algebraic_closure() (sage.rings.rational_field.RationalField method), 153
algebraic_dependency() (in module sage.arith.misc), 93
arith_int (class in sage.rings.fast_arith), 72
arith_llong (class in sage.rings.fast_arith), 72
as_integer_ratio() (sage.rings.integer.Integer method), 17
as_integer_ratio() (sage.rings.rational.Rational method), 167
aurifeuillian() (in module sage.rings.factorint), 68
automorphisms() (sage.rings.rational_field.RationalField method), 153

B

balanced_digits() (sage.rings.integer.Integer method), 17
bernmum_bern_modp() (in module sage.rings.bermm), 64
bernmum_bern_rat() (in module sage.rings.bermm), 65
bernoulli() (in module sage.arith.misc), 95
bernoulli_mod_p() (in module sage.rings.bermmmod_p), 66
bernoulli_mod_p_single() (in module sage.rings.bermmmod_p), 66
binary() (sage.rings.integer.Integer method), 18
binomial() (in module sage.arith.misc), 96
binomial() (sage.rings.integer.Integer method), 18
binomial_coefficients() (in module sage.arith.misc), 97
bit_length() (sage.rings.integer=Integer method), 19
bits() (sage.rings.integer.Integer method), 19

C

carmichael_lambda() (in module sage.arith.misc), 97
ceil() (sage.rings.integer.Integer method), 20
ceil() (sage.rings.rational.Rational method), 168
characteristic() (sage.rings.integer_ring.IntegerRing_class method), 5
characteristic() (sage.rings.rational_field.RationalField method), 153
charpoly() (sage.rings.rational_field.RationalField method), 154
class_number() (sage.rings.integer.Integer method), 20
class_number() (sage.rings.rational_field.RationalField method), 153
completion() (sage.rings.integer_ring.IntegerRing_class method), 5
completion() (sage.rings.rational_field.RationalField method), 154
complex_embedding() (sage.rings.rational_field.RationalField method), 154
conjugate() (sage.rings.integer.Integer method), 21
conjugate() (sage.rings.rational.Rational method), 168
construction() (sage.rings.rational_field.RationalField method), 154
content() (sage.rings.rational.Rational method), 168
continuant() (in module sage.arith.misc), 99
continued_fraction() (sage.rings.rational.Rational method), 169
continued_fraction_list() (sage.rings.rational.Rational method), 169
coprime_integers() (sage.rings.integer.Integer method), 21
CRT() (in module sage.arith.misc), 81
crt() (in module sage.arithmetic.misc), 100
crt() (sage.arith.multi_modular.MultiModularBase method), 78
crt() (sage.rings.integer.Integer method), 21
crt_basis() (in module sage.arith.misc), 83
crt_basis() (in module sage.rings.integer_ring), 12
CRT_list() (in module sage.arithmetic.misc), 83
CRT_vectors() (in module sage.arithmetic.misc), 84

dedekind_psi() (in module sage.arith.misc), 102
dedekind_sum() (in module sage.arith.misc), 103
defining_polynomial()
 (sage.rings.rational_field.RationalField method), 154
degree() (sage.rings.integer_ring.IntegerRing_class method), 5
degree() (sage.rings.rational_field.RationalField method), 154
denom() (sage.rings.rational.Rational method), 170
denominator() (sage.rings.integer.Integer method), 22
denominator() (sage.rings.rational.Rational method), 170
differences() (in module sage.arith.misc), 104
digits() (sage.rings.integer.Integer method), 24
discriminant() (sage.rings.rational_field.RationalField method), 155
divide_knowing_divisible_by()
 (sage.rings.integer.Integer method), 24
divides() (sage.rings.integer.Integer method), 24
divisors() (in module sage.arith.misc), 105
divisors() (sage.rings.integer.Integer method), 24

eddings() (sage.rings.rational_field.RationalField method), 155
eratosthenes() (in module sage.arith.misc), 106
euclidean_degree() (sage.rings.integer.Integer method), 25
Euler Phi (class in sage.arith.misc), 85
exact_log() (sage.rings.integer.Integer method), 26
exp() (sage.rings.integer.Integer method), 27
extend_with_primes()
 (sage.arith.multi_modular.MultiModularBase method), 78
extension() (sage.rings.integer_ring.IntegerRing_class method), 5
extension() (sage.rings.rational_field.RationalField method), 155

factor() (in module sage.arith.misc), 106
factor() (sage.rings.integer.Integer method), 27
factor() (sage.rings.rational.Rational method), 170
factor_aurifeuillian() (in module sage.rings.factorint), 69
factor_cunningham() (in module sage.rings.factorint), 70
factor_trial_division() (in module sage.rings.factorint), 70
factor_using_flint() (in module sage.rings.factorint), 70
factor_using_pari() (in module sage.rings.factorint), 71
factorial() (in module sage.arith.misc), 108
factorial() (sage.rings.integer.Integer method), 29
falling_factorial() (in module sage.arith.misc), 109
floor() (sage.rings.integer.Integer method), 30
floor() (sage.rings.rational.Rational method), 171
four_squares() (in module sage.arith.misc), 110
four_squares_pyx() (in module sage.rings.sum_of_squares), 73
frac() (in module sage.rings.rational_field), 164
fraction_field() (sage.rings.integer_ring.IntegerRing_class method), 6
free_integer_pool() (in module sage.rings.integer), 62
fundamental_discriminant() (in module sage.arith.misc), 111

G
gamma() (sage.rings.integer.Integer method), 30
gamma() (sage.rings.rational.Rational method), 171
gauss_sum() (in module sage.arith.misc), 111
GCD() (in module sage.arith.misc), 86
gcd() (in module sage.arith.misc), 112
gcd_int() (sage.rings.fast_arith.arith_int method), 72
GCD_list() (in module sage.rings.integer), 14
gcd_longlong() (sage.rings.fast_arith.arith_llong method), 72
gen() (sage.rings.integer_ring.IntegerRing_class method), 6
gen() (sage.rings.rational_field.RationalField method), 155
generic_power() (in module sage.arith.power), 77
gens() (sage.rings.integer_ring.IntegerRing_class method), 6
gens() (sage.rings.rational_field.RationalField method), 156
get_gcd() (in module sage.arith.misc), 113
get_inverse_mod() (in module sage.arith.misc), 113
global_height() (sage.rings.integer.Integer method), 30
oct() (sage.rings.integer.Integer method), 47
odd_part() (in module sage.arith.misc), 130
odd_part() (sage.rings.integer.Integer method), 48
ord() (sage.rings.integer.Integer method), 48
ord() (sage.rings.rational.Rational method), 182
order() (sage.rings.integer_ring.IntegerRing_class method), 7
order() (sage.rings.rational_field.RationalField method), 157
ordinal_str() (sage.rings.integer.Integer method), 49

P
p_primary_part() (sage.rings.integer.Integer method), 49
parameter() (sage.rings.integer_ring.IntegerRing_class method), 7
partial_product() (sage.arith.multi_modular.MultiModularBasis_class method), 79
perfect_power() (sage.rings.integer.Integer method), 50
period() (sage.rings.rational.Rational method), 183
places() (sage.rings.rational_field.RationalField method), 157
plot() (sage.arith.misc.Euler_Phi method), 86
plot() (sage.arith.misc.Moebius method), 88
plot() (sage.arith.misc.Sigma method), 89
polynomial() (sage.rings.rational_field.RationalField method), 158
popcount() (sage.rings.integer.Integer method), 50
power_basis() (sage.rings.rational_field.RationalField method), 158
power_mod() (in module sage.arith.misc), 131
powermod() (sage.rings.integer.Integer method), 51
precomputation_list() (sage.arith.multi_modular.MultiModularBasis_class method), 79
previous_prime() (in module sage.arith.misc), 131
previous_prime() (sage.rings.integer.Integer method), 51
previous_prime_power() (in module sage.arith.misc), 132
previous_prime_power() (sage.rings.integer.Integer method), 52
prime_divisors() (in module sage.arith.misc), 133
prime_divisors() (sage.rings.integer.Integer method), 52
prime_factors() (in module sage.arith.misc), 133
prime_factors() (sage.rings.integer.Integer method), 53
prime_powers() (in module sage.arith.misc), 134
prime_range() (in module sage.rings.fast_arith), 72
prime_to_m_part() (in module sage.arith.misc), 135
prime_to_m_part() (sage.rings.integer.Integer method), 54
prime_to_S_part() (sage.rings.rational.Rational method), 183
primes() (in module sage.arith.misc), 136
primes_first_n() (in module sage.arith.misc), 136
primes_of_bounded_norm_iter() (sage.rings.rational_field.RationalField method), 158
primitive_root() (in module sage.arith.misc), 137
prod() (sage.arith.multi_modular.MultiModularBasis_class method), 79

Q
Q_to_Z (class in sage.rings.rational), 165
quadratic_defect() (sage.rings.rational_field.RationalField method), 158
quadratic_residues() (in module sage.arith.misc), 137
quo_rem() (sage.rings.integer.Integer method), 54
quotient() (sage.rings.integer_ring.IntegerRing_class method), 7

R
radical() (in module sage.arith.misc), 138
random_element() (sage.rings.integer_ring.IntegerRing_class method), 8
random_element() (sage.rings.rational_field.RationalField method), 159
random_prime() (in module sage.arith.misc), 138
range() (sage.arith.misc.Moebius method), 88
range() (sage.rings.integer_ring.IntegerRing_class method), 10
range_by_height() (sage.rings.rational_field.RationalField method), 160
Rational (class in sage.rings.rational), 165
rational_power_parts() (in module sage.rings.integer), 191
rational_recon_int() (sage.rings.fast_arith.arith_int method), 72
rational_recon_longlong() (sage.rings.fast_arith.arith_llong method), 72
rational_reconstruction() (in module sage.arith.misc), 139
rational_reconstruction() (sage.rings.integer.Integer method), 55
RationalField (class in sage.rings.rational_field), 151
real() (sage.rings.integer.Integer method), 55
real() (sage.rings.rational.Rational method), 184
relative_discriminant() (sage.rings.rational_field.RationalField method), 158
Primes() (sage.rings.integer.Integer method), 55
method), 160
relative_norm() (sage.rings.rational.Rational
method), 184
replace_prime() (sage.arith.multi_modular.MutableMultiModularBasis
method), 80
residue_field() (sage.rings.integer_ring.IntegerRing_class
method), 10
residue_field() (sage.rings.rational_field.RationalField
method), 160
rising_factorial() (in module sage.arith.misc), 140
round() (sage.rings.integer.Integer method), 55
round() (sage.rings.rational.Rational method), 184
S
sage.arith.functions
module, 75
sage.arith.misc
module, 81
sage.arith.multi_modular
module, 78
sage.arith.power
module, 77
sage.rings.bernmm
module, 64
sage.rings.bernoulli_mod_p
module, 65
sage.rings.factorint
module, 68
sage.rings.fast_arith
module, 72
sage.rings.integer
module, 13
sage.rings.integer_ring
module, 1
sage.rings.rational
module, 165
sage.rings.rational_field
module, 151
sage.rings.sum_of_squares
module, 73
section() (sage.rings.rational.Q_to_Z method), 165
section() (sage.rings.rational.Z_to_Q method), 189
selmer_generators()
(sage.rings.rational_field.RationalField
method), 161
selmer_group()
(sage.rings.rational_field.RationalField
method), 161
selmer_group_iterator()
(sage.rings.rational_field.RationalField
method), 161
selmer_space()
(sage.rings.rational_field.RationalField
method), 162
Sigma (class in sage.arith.misc), 89
sign() (sage.rings.arith.misc), 89
sign() (sage.rings.rational.Rational method), 185
signature() (sage.rings.rational_field.RationalField
method), 163
signature() (sage.rings.rational_field.RationalField
method), 163
sign() (sage.rings.rational.Rational method), 185
signature() (sage.rings.rational_field.RationalField
method), 163
signature() (sage.rings.rational_field.RationalField
method), 163
signature() (sage.rings.rational.Rational method), 185
sqrt() (sage.rings.integer.Integer method), 56
sqrt() (sage.rings.rational.Rational method), 185
sqrtrem() (sage.rings.integer.Integer method), 56
squarefree_divisors() (in module sage.arith.misc), 142
squarefree_part() (sage.rings.integer.Integer
method), 57
squarefree_part() (sage.rings.rational.Rational
method), 186
str() (sage.rings.integer.Integer method), 57
str() (sage.rings.rational.Rational method), 187
subfactorial() (in module sage.arith.misc), 143
sum_of_k_squares() (in module sage.arith.misc), 143
support() (sage.rings.integer.Integer method), 58
support() (sage.rings.rational.Rational method), 187
T
test_bit() (sage.rings.integer.Integer method), 58
three_squares() (in module sage.arith.misc), 144
three_squares_pyx() (in module sage.rings.sum_of_squares), 74
trace() (sage.rings.rational.Rational method), 187
trailing_zero_bits() (sage.rings.integer.Integer
method), 59
trial_division() (in module sage.arith.misc), 145
trial_division() (sage.rings.integer.Integer method), 59
trunc() (sage.rings.integer.Integer method), 61
trunc() (sage.rings.rational.Rational method), 188
two_squares() (in module sage.arith.misc), 146
two_squares_pyx() (in module sage.rings.sum_of_squares), 75
V
val_unit() (sage.rings.integer.Integer method), 61
val_unit() (sage.rings.rational.Rational method), 188
valuation() (in module sage.arith.misc), 146
valuation() (sage.rings.integer.Integer method), 61
valuation() (sage.rings.integer_ring.IntegerRing_class
method), 11
valuation() (sage.rings.rational.Rational method), 188
valuation() (sage.rings.rational_field.RationalField
method), 164
verify_bernoulli_mod_p() (in module sage.rings.bernoulli_mod_p), 67
X
XGCD() (in module sage.arith.misc), 90
xgcd() (in module sage.arith.misc), 147
xgcd() (sage.rings.integer.Integer method), 62
xgcd_int() (sage.rings.fast_arith.arith_int method), 72
xkcd() (in module sage.arith.misc), 149
xlcm() (in module sage.arith.misc), 149

Z
Z_to_Q (class in sage.rings.rational), 189
zeta() (sage.rings.integer_ring.IntegerRing_class method), 11
zeta() (sage.rings.rational_field.RationalField method), 164