Standard Commutative Rings

Release 10.3

The Sage Development Team

Mar 20, 2024
CONTENTS

1 Integers 1
2 Rationals 151
3 Indices and Tables 193
Python Module Index 195
Index 197
CHAPTER ONE

INTEGERS

1.1 Ring \mathbb{Z} of Integers

The `IntegerRing_class` represents the ring \mathbb{Z} of (arbitrary precision) integers. Each integer is an instance of `Integer`, which is defined in a Pyrex extension module that wraps GMP integers (the `mpz_t` type in GMP).

```python
sage: Z = IntegerRing(); Z
Integer Ring
sage: Z.characteristic()
0
sage: Z.is_field()
False
```

There is a unique instance of the integer ring. To create an `Integer`, coerce either a Python int, long, or a string. Various other types will also coerce to the integers, when it makes sense.

```python
sage: a = Z(1234); a
1234
sage: b = Z(5678); b
5678
sage: type(a)
<class 'sage.rings.integer.Integer'>
sage: a + b
6912
sage: Z('94803849083985934859834583945394')
94803849083985934859834583945394
```

```python
sage.rings.integer_ring.IntegerRing()
```

Return the integer ring.

EXAMPLES:

```python
sage: IntegerRing()
Integer Ring
sage: ZZ==IntegerRing()
True
```

```python
class sage.rings.integer_ring.IntegerRing_class
Bases: PrincipalIdealDomain
```

The ring of integers.

In order to introduce the ring \mathbb{Z} of integers, we illustrate creation, calling a few functions, and working with its elements.
One can give strings to create integers. Strings starting with $0x$ are interpreted as hexadecimal, and strings starting with $0o$ are interpreted as octal:

```python
sage: parent('37')
<... 'str'>
sage: parent(Z('37'))
Integer Ring
sage: Z('0x10')
16
sage: Z('0x1a')
26
sage: Z('0o20')
16
```

As an inverse to `digits()`, lists of digits are accepted, provided that you give a base. The lists are interpreted in little-endian order, so that entry i of the list is the coefficient of base^i:

```python
sage: Z([4,1,7], base=100)
70104
sage: Z([4,1,7], base=10)
714
sage: Z([3, 7], 10)
73
sage: Z([3, 7], 9)
66
sage: Z([], 10)
0
```

Alphanumeric strings can be used for bases $2..36$; letters a to z represent numbers 10 to 36. Letter case does not matter.

```python
sage: Z("sage", base=32)
928270
sage: Z("SAGE", base=32)
928270
sage: Z("Sage", base=32)
928270
sage: Z([14, 16, 10, 28], base=32)
928270
```

We next illustrate basic arithmetic in \mathbb{Z}:
When we divide two integers using `/`, the result is automatically coerced to the field of rational numbers, even if the result is an integer.

```sage
sage: a / b
617/2839
sage: type(a/b)
<class 'sage.rings.rational.Rational'>
sage: a/a
1
sage: type(a/a)
<class 'sage.rings.rational.Rational'>
```

For floor division, use the `//` operator instead:

```sage
sage: a // b
0
sage: type(a//b)
<class 'sage.rings.integer.Integer'>
```

Next we illustrate arithmetic with automatic coercion. The types that coerce are: str, int, long, Integer.

```sage
sage: a + 17
1251
sage: a * 374
461516
sage: 374 * a
461516
sage: a/19
1234/19
sage: 0 + Z(-64)
-64
```

Integers can be coerced:

```sage
sage: a = Z(-64)
sage: int(a)
-64
```

We can create integers from several types of objects:
Arbitrary numeric bases are supported; strings or list of integers are used to provide the digits (more details in `IntegerRing_class`):

```
sage: Z("sage", base=32)
sage: Z([14, 16, 10, 28], base=32)
```

The `digits` method allows you to get the list of digits of an integer in a different basis (note that the digits are returned in little-endian order):

```
sage: b = Z([4,1,7], base=100)
sage: b.digits(base=71)
sage: Z(15).digits(2)
sage: Z(15).digits(3)
```

The `str` method returns a string of the digits, using letters `a` to `z` to represent digits 10..36:

```
sage: Z(928270).str(base=32)
```

Note that `str` only works with bases 2 through 36.

absolute_degree()

Return the absolute degree of the integers, which is 1.

Here, absolute degree refers to the rank of the ring as a module over the integers.

EXAMPLES:

```
sage: ZZ.absolute_degree()
```

characteristic()

Return the characteristic of the integers, which is 0.

EXAMPLES:

```
sage: ZZ.characteristic()
```

completion (p, prec, extras=[])

Return the metric completion of the integers at the prime `p`.

INPUT:
• \(p \) – a prime (or infinity)
• \(\text{prec} \) – the desired precision
• \(\text{extras} \) – any further parameters to pass to the method used to create the completion.

OUTPUT:
• The completion of \(\mathbb{Z} \) at \(p \).

EXAMPLES:

```
sage: ZZ.completion(infinity, 53)
Integer Ring
sage: ZZ.completion(5, 15, {'print_mode': 'bars'}) # needs sage.rings.padics
5-adic Ring with capped relative precision 15
```

degree()

Return the degree of the integers, which is 1.

Here, degree refers to the rank of the ring as a module over the integers.

EXAMPLES:

```
sage: ZZ.degree()
1
```

extension (poly, names, **kwds)

Return the order generated by the specified list of polynomials.

INPUT:
• poly – a list of one or more polynomials
• names – a parameter which will be passed to \(\text{EquationOrder()} \).
• embedding – a parameter which will be passed to \(\text{EquationOrder()} \).

OUTPUT:
• Given a single polynomial as input, return the order generated by a root of the polynomial in the field generated by a root of the polynomial.

Given a list of polynomials as input, return the relative order generated by a root of the first polynomial in the list, over the order generated by the roots of the subsequent polynomials.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: ZZ.extension(x^2 - 5, 'a') # needs sage.rings.number_field
Order of conductor 2 generated by a in Number Field in a with defining polynomial x^2 - 5
sage: ZZ.extension([x^2 + 1, x^2 + 2], 'a,b') # needs sage.rings.number_field
Relative Order generated by [-b*a - 1, -3*a + 2*b] in Number Field in a with defining polynomial x^2 + 1 over its base field
```

fraction_field()

Return the field of rational numbers - the fraction field of the integers.

EXAMPLES:
from_bytes(*input_bytes, byteorder='big', is_signed=False*)

Return the integer represented by the given array of bytes.

Internally relies on the python int.from_bytes() method.

INPUT:
- input_bytes – a bytes-like object or iterable producing bytes
- byteorder – str (default: "big"); determines the byte order of input_bytes; can only be "big" or "little"
- is_signed – boolean (default: False); determines whether to use two’s complement to represent the integer

EXAMPLES:

sage: ZZ.from_bytes(b'

gen(*n=0*)

Return the additive generator of the integers, which is 1.

INPUT:
- n (default: 0) – In a ring with more than one generator, the optional parameter n indicates which generator to return; since there is only one generator in this case, the only valid value for n is 0.

EXAMPLES:

sage: ZZ.gen()
1
sage: type(ZZ.gen())
<class 'sage.rings.integer.Integer'>

gens()

Return the tuple (1,) containing a single element, the additive generator of the integers, which is 1.

EXAMPLES:

sage: ZZ.gens(); ZZ.gens()[0]
(1,)
1
sage: type(ZZ.gens()[0])
<class 'sage.rings.integer.Integer'>

is_field(*proof=True*)

Return False since the integers are not a field.

EXAMPLES:

sage: ZZ.is_field()
False
is_integrally_closed()
Return that the integer ring is, in fact, integrally closed.

Note: This should rather be inherited from the category of DedekindDomains.

EXAMPLES:

```
sage: ZZ.is_integrally_closed()
True
```

krull_dimension()
Return the Krull dimension of the integers, which is 1.

Note: This should rather be inherited from the category of DedekindDomains.

EXAMPLES:

```
sage: ZZ.krull_dimension()
1
```

ngens()
Return the number of additive generators of the ring, which is 1.

EXAMPLES:

```
sage: ZZ.ngens()
1
sage: len(ZZ.gens())
1
```

order()
Return the order (cardinality) of the integers, which is +Infinity.

EXAMPLES:

```
sage: ZZ.order()
+Infinity
```

parameter()
Return an integer of degree 1 for the Euclidean property of \(\mathbb{Z} \), namely 1.

EXAMPLES:

```
sage: ZZ.parameter()
1
```

quotient (I, names=None, **kwds)
Return the quotient of \(\mathbb{Z} \) by the ideal or integer \(I \).

EXAMPLES:

```
sage: ZZ.quo(6*ZZ)
Ring of integers modulo 6
sage: ZZ.quo(0*ZZ)
```

(continues on next page)
random_element \((x=None, y=None, \text{distribution}=\text{None}) \)

Return a random integer.

INPUT:

- \(x, y \) integers – bounds for the result.
- \(\text{distribution} \) – a string:
 - 'uniform'
 - 'mpz_rrandomb'
 - '1/n'
 - 'gaussian'

OUTPUT:

- With no input, return a random integer.
 - If only one integer \(x \) is given, return an integer between 0 and \(x - 1 \).
 - If two integers are given, return an integer between \(x \) and \(y - 1 \) inclusive.
- If at least one bound is given, the default distribution is the uniform distribution; otherwise, it is the distribution described below.

If the distribution '1/n' is specified, the bounds are ignored.

If the distribution 'mpz_rrandomb' is specified, the output is in the range from 0 to \(2^x - 1 \).

If the distribution 'gaussian' is specified, the output is sampled from a discrete Gaussian distribution with parameter \(\sigma = x \) and centered at zero. That is, the integer \(v \) is returned with probability proportional to \(\exp(-v^2/(2\sigma^2)) \). See `sage.stats.distributions.discrete_gaussian_integer` for details. Note that if many samples from the same discrete Gaussian distribution are needed, it is faster to construct a `sage.stats.distributions.discrete_gaussian_integer.DiscreteGaussianDistributionIntegerSampler` object which is then repeatedly queried.

The default distribution for `ZZ.random_element()` is based on \(X = \text{trunc}(4/(5R)) \), where \(R \) is a random variable uniformly distributed between \(-1\) and 1. This gives \(\Pr(X = 0) = 1/5 \), and \(\Pr(X = n) = 2/(5n(|n| + 1)) \) for \(n \neq 0 \). Most of the samples will be small; \(-1\), 0, and 1 occur with probability \(1/5 \) each. But we also have a small but non-negligible proportion of “outliers”; \(\Pr(|X| \geq n) = 4/(5n) \), so for instance, we expect that \(|X| \geq 1000 \) on one in 1250 samples.

We actually use an easy-to-compute truncation of the above distribution; the probabilities given above hold fairly well up to about \(|n| = 10000 \), but around \(|n| = 30000 \) some values will never be returned at all, and we will never return anything greater than \(2^{30} \).

EXAMPLES:

```python
sage: ZZ.random_element().parent() is ZZ
True
```
The default uniform distribution is integers in \([-2, 2]\):

```
sage: from collections import defaultdict
dsage: def add_samples(*args, **kwds):
    ...:     global dic, counter
    ...:     for _ in range(100):
    ...:         counter += 1
    ...:         dic[ZZ.random_element(*args, **kwds)] += 1
sage: def prob(x):
    ...:     return 1/5
sage: dic = defaultdict(Integer)
sage: counter = 0.0
sage: add_samples(distribution="uniform")
sage: while any(abs(dic[i]/counter - prob(i)) > 0.01 for i in dic):
    ...:     add_samples(distribution="uniform")
```

Here we use the distribution '1/n':

```
sage: def prob(n):
    ...:     if n == 0:
    ...:         return 1/5
    ...:     return 2/(5*abs(n)*(abs(n) + 1))
sage: dic = defaultdict(Integer)
sage: counter = 0.0
sage: add_samples(distribution="1/n")
sage: while any(abs(dic[i]/counter - prob(i)) > 0.01 for i in dic):
    ...:     add_samples(distribution="1/n")
```

If a range is given, the default distribution is uniform in that range:

```
sage: -10 <= ZZ.random_element(-10, 10) < 10
True
sage: def prob(x):
    ...:     return 1/20
sage: dic = defaultdict(Integer)
sage: counter = 0.0
sage: add_samples(-10, 10)
sage: while any(abs(dic[i]/counter - prob(i)) > 0.01 for i in dic):
    ...:     add_samples(-10, 10)
sage: 0 <= ZZ.random_element(5) < 5
True
sage: def prob(x):
    ...:     return 1/5
sage: dic = defaultdict(Integer)
sage: counter = 0.0
sage: add_samples(5)
sage: while any(abs(dic[i]/counter - prob(i)) > 0.01 for i in dic):
    ...:     add_samples(5)
sage: while ZZ.random_element(10^50) < 10^49:
    ...:     pass
```

Notice that the right endpoint is not included:

```
sage: all(ZZ.random_element(-2, 2) < 2 for _ in range(100))
True
```
We return a sample from a discrete Gaussian distribution:

```sage
sage: ZZ.random_element(11.0, distribution="gaussian").parent() is ZZ
# needs sage.modules
True
```

range *(start, end=None, step=None)*

Optimized range function for Sage integers.

AUTHORS:

- Robert Bradshaw (2007-09-20)

EXAMPLES:

```sage
sage: ZZ.range(10) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: ZZ.range(-5, 5) [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
sage: ZZ.range(0, 50, 5) [0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
sage: ZZ.range(0, 50, -5) []
sage: ZZ.range(50, 0, -5) [50, 45, 40, 35, 30, 25, 20, 15, 10, 5]
sage: ZZ.range(50, 0, 5) []
sage: ZZ.range(50, -1, -5) [50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 0]
```

It uses different code if the step doesn’t fit in a long:

```sage
sage: ZZ.range(0, 2^83, 2^80) [0, 1208925819614629174706176, 2417851639229258349412352, 362677458843887524118528, 4835703278458516698824704, ...
˓→0644629098073145873530880, 725355491768775048237056, 8462480737302404222943232]
```

Make sure github issue #8818 is fixed:

```sage
sage: ZZ.range(1r, 10r) [1, 2, 3, 4, 5, 6, 7, 8, 9]
```

residue_field *(prime, check=True, names=None)*

Return the residue field of the integers modulo the given prime, i.e. \(\mathbb{Z}/p\mathbb{Z} \).

INPUT:

- **prime** - a prime number
- **check** - (boolean, default True) whether or not to check the primality of prime
- **names** - ignored (for compatibility with number fields)

OUTPUT: The residue field at this prime.

EXAMPLES:

```sage
sage: # needs sage.libs.pari
sage: F = ZZ.residue_field(61); F
```

(continues on next page)
Residue field of Integers modulo 61
\begin{verbatim}
pi = F.reduction_map(); pi
Partially defined reduction map:
 From: Rational Field
 To: Residue field of Integers modulo 61
sage: pi(123/234)
6
sage: pi(1/61)
Traceback (most recent call last):...
ZeroDivisionError: Cannot reduce rational 1/61 modulo 61:
it has negative valuation
\end{verbatim}

Construction can be from a prime ideal instead of a prime:
\begin{verbatim}
sage: ZZ.residue_field(ZZ.ideal(97))
Residue field of Integers modulo 97
\end{verbatim}

\textbf{valuation}(p)

Return the discrete valuation with uniformizer p.

EXAMPLES:
\begin{verbatim}
sage: v = ZZ.valuation(3); v
needs sage.rings.padics
3-adic valuation
sage: v(3)
needs sage.rings.padics
1
\end{verbatim}

See also:
\texttt{Order.valuation()}, \texttt{RationalField.valuation()}

\textbf{zeta}(n=2)

Return a primitive n-th root of unity in the integers, or raise an error if none exists.

INPUT:

\begin{itemize}
 \item n – (default 2) a positive integer
\end{itemize}

OUTPUT:

an n-th root of unity in \mathbb{Z}

EXAMPLES:
\begin{verbatim}
sage: ZZ.zeta()
-1
sage: ZZ.zeta(1)
1
\end{verbatim}
sage: ZZ.zeta(3)
Traceback (most recent call last):
...
ValueError: no nth root of unity in integer ring

sage: ZZ.zeta(0)
Traceback (most recent call last):
...
ValueError: n must be positive in zeta()

sage.rings.integer_ring.crt_basis (X, xgcd=None)
Compute and return a Chinese Remainder Theorem basis for the list X of coprime integers.

INPUT:
• X – a list of Integers that are coprime in pairs.
• xgcd – an optional parameter which is ignored.

OUTPUT:
• E - a list of Integers such that $E[i] = 1 \pmod{X[i]}$ and $E[i] = 0 \pmod{X[j]}$ for all $j \neq i$.

For this explanation, let $E[i]$ be denoted by E_i.

The E_i have the property that if A is a list of objects, e.g., integers, vectors, matrices, etc., where A_i is understood modulo X_i, then a CRT lift of A is simply

$$\sum_i E_i A_i.$$

ALGORITHM: To compute E_i, compute integers s and t such that

$$sX_i + t \prod_{i \neq j} X_j = 1.$$

Then

$$E_i = t \prod_{i \neq j} X[j].$$

Notice that equation (*) implies that E_i is congruent to 1 modulo X_i and to 0 modulo the other X_j for $j \neq i$.

COMPLEXITY: We compute len(X) extended GCD’s.

EXAMPLES:

sage: X = [11,20,31,51]
sage: E = crt_basis([11,20,31,51])
sage: E[0] % X[0], E[1] % X[0], E[2] % X[0], E[3] % X[0]
(1, 0, 0, 0)
(0, 1, 0, 0)
(0, 0, 1, 0)
(0, 0, 0, 1)

sage.rings.integer_ring.is_IntegerRing (x)
Internal function: return True if x is the ring Z of integers.
1.2 Elements of the ring \(\mathbb{Z} \) of integers

Sage has highly optimized and extensive functionality for arithmetic with integers and the ring of integers.

EXAMPLES:

Add 2 integers:

```python
sage: a = Integer(3); b = Integer(4)
sage: a + b == 7
True
```

Add an integer and a real number:

```python
sage: a + 4.0
# needs sage.rings.real_mpfr
7.00000000000000
```

Add an integer and a rational number:

```python
sage: a + Rational(2)/5
17/5
```

Add an integer and a complex number:

```python
sage: # needs sage.rings.real_mpfr
sage: b = ComplexField().0 + 1.5
sage: loads((a + b).dumps()) == a + b
True

sage: z = 32
sage: -z
-32
sage: z = 0; -z
0
sage: z = -0; -z
0
sage: z = -1; -z
1
```

Multiplication:

```python
sage: a = Integer(3); b = Integer(4)
sage: a * b == 12
True
sage: loads((a * 4.0).dumps()) == a*b
True
sage: a * Rational(2)/5
6/5

sage: [2,3] * 4
[2, 3, 2, 3, 2, 3, 2, 3]

sage: 'sage' * Integer(3)
'sagesagesage'
```

COERCIONS:
Return version of this integer in the multi-precision floating real field \(\mathbb{R} \):

```python
sage: n = 9390823
sage: RR = RealField(200)  # needs sage.rings.real_mpfr
sage: RR(n)  # needs sage.rings.real_mpfr
9.3908230000000000000000000000000000000000000000000000000000e6
```

AUTHORS:

- William Stein (2005): initial version
- Gonzalo Tornaria (2006-03-02): vastly improved python/GMP conversion; hashing
- Didier Deshommes (2006-03-06): numerous examples and docstrings
- William Stein (2006-03-31): changes to reflect GMP bug fixes
- William Stein (2006-04-14): added GMP factorial method (since it’s now very fast).
- David Harvey (2006-09-15): added nth_root, exact_log
- David Harvey (2006-09-16): attempt to optimise Integer constructor
- Rishikesh (2007-02-25): changed quo_rem so that the rem is positive
- David Harvey, Martin Albrecht, Robert Bradshaw (2007-03-01): optimized Integer constructor and pool
- Pablo De Napoli (2007-04-01): multiplicative_order should return +infinity for non zero numbers
- Robert Bradshaw (2007-04-12): is_perfect_power, Jacobi symbol (with Kronecker extension). Convert some methods to use GMP directly rather than PARI, Integer(), PY_NEW(Integer)
- David Roe (2007-03-21): sped up valuation and is_square, added val_unit, is_power, is_power_of and divide_knowing_divisible_by
- Robert Bradshaw (2008-03-26): gamma function, multifactorials
- Robert Bradshaw (2008-10-02): bounded squarefree part
- David Loeffler (2011-01-15): fixed bug #10625 (inverse_mod should accept an ideal as argument)
- Vincent Delecroix (2010-12-28): added unicode in Integer.__init__
- David Roe (2012-03): deprecate is_power() in favour of is_perfect_power() (see github issue #12116)
- Vincent Delecroix (2017-05-03): faster integer-rational comparisons
- Vincent Klein (2017-05-11): add __mpz__() to class Integer
- Vincent Klein (2017-05-22): Integer constructor support gmpy2.mpz parameter
- Samuel Lelièvre (2018-08-02): document that divisors are sorted (github issue #25983)

```
sage.rings.integer.GCD_list(v)
```

Return the greatest common divisor of a list of integers.

INPUT:

- \(v \) – list or tuple

Elements of \(v \) are converted to Sage integers. An empty list has GCD zero.

This function is used, for example, by `rings/arith.py`.

EXAMPLES:
sage: from sage.rings.integer import GCD_list
sage: w = GCD_list([3,9,30]); w
3
sage: type(w)
<class 'sage.rings.integer.Integer'>

Check that the bug reported in github issue #3118 has been fixed:

sage: sage.rings.integer.GCD_list([2,2,3])
1

The inputs are converted to Sage integers.

sage: w = GCD_list([int(3), int(9), '30']); w
3
sage: type(w)
<class 'sage.rings.integer.Integer'>

Check that the GCD of the empty list is zero (github issue #17257):

sage: GCD_list([])
0

class sage.rings.integer.Integer

Bases: EuclideanDomainElement

The Integer class represents arbitrary precision integers. It derives from the Element class, so integers can be used as ring elements anywhere in Sage.

The constructor of Integer interprets strings that begin with 0o as octal numbers, strings that begin with 0x as hexadecimal numbers and strings that begin with 0b as binary numbers.

The class Integer is implemented in Cython, as a wrapper of the GMP mpz_t integer type.

EXAMPLES:

sage: Integer(123)
123
sage: Integer("123")
123
Sage Integers support PEP 3127 literals:

sage: Integer('0x12')
18
sage: Integer('-0o12')
-10
sage: Integer('+0b101010')
42

Conversion from PARI:

sage: Integer(pari('-10380104371593008048799446356441519384'))
-10380104371593008048799446356441519384
sage: Integer(pari('Pol([-3])'))
-3

1.2. Elements of the ring \(\mathbb{Z} \) of integers
Conversion from gmpy2:

```python
sage: from gmpy2 import mpz
sage: Integer(mpz(3))
3
```

```python
def __pow__(left, right, modulus):
    Return (left ^ right) % modulus.
```

EXAMPLES:

```python
sage: 2^-6
1/64
sage: 2^6
64
sage: 2^0
1
sage: 2^-0
1
sage: (-1)^(1/3)
# needs sage.symbolic
(-1)^(1/3)
```

For consistency with Python and MPFR, \(0^0\) is defined to be 1 in Sage:

```python
sage: 0^0
1
```

See also http://www.faqs.org/faqs/sci-math-faq/0to0/ and https://math.stackexchange.com/questions/11150/zero-to-the-zero-power-is-00-1.

The base need not be a Sage integer. If it is a Python type, the result is a Python type too:

```python
sage: r = int(2) ^ 10; r; type(r)
1024
<... 'int'>
sage: r = int(3) ^ -3; r; type(r)
0.037037037037037035
<... 'float'>
sage: r = float(2.5) ^ 10; r; type(r)
9536.7431640625
<... 'float'>
```

We raise 2 to various interesting exponents:

```python
sage: 2^x  # symbolic x
# needs sage.symbolic
2^x
sage: 2^1.5  # real number
# needs sage.rings.real_mpfr
2.82842712474619
sage: 2^float(1.5)  # python float abs tol 3e-16
2.8284271247461903
sage: 2^I  # complex number
# needs sage.symbolic
2^I
sage: r = 2 ^ int(-3); r; type(r)
1/8
```
A symbolic sum:

```
sage: # needs sage.symbolic
sage: x, y, z = var('x,y,z')
sage: 2^(x + y + z)
sage: # needs sage.symbolic
sage: 2^(1/2)
sage: sqrt(2)
sage: 2^(-1/2)
sage: 1/2*sqrt(2)
```

additive_order()

Return the additive order of self.

EXAMPLES:

```
sage: ZZ(0).additive_order()
1
sage: ZZ(1).additive_order()
+Infinity
```

as_integer_ratio()

Return the pair `(self.numerator(), self.denominator())`, which is `(self, 1)`.

EXAMPLES:

```
sage: x = -12
sage: x.as_integer_ratio()
(-12, 1)
```

balanced_digits (base=10, positive_shift=True)

Return the list of balanced digits for self in the given base.

The balanced base uses digits centered around zero. Thus if `b` is odd, there is only one possibility, namely digits between `-b//2` and `b//2` (both included). For instance in base 9, one uses digits from -4 to 4. If `b` is even, one has to choose between digits from `-b//2` to `b//2 + 1` or `-b//2` to `b//2` (base 10 for instance: either -5 to 4 or -4 to 5), and this is defined by the value of positive_shift.

INPUT:

- `base` – integer (default: 10); when `base` is 2, only the nonnegative or the nonpositive integers can be represented by `balanced_digits`. Thus we say base must be greater than 2.

- `positive_shift` – boolean (default: True); for even bases, the representation uses digits from `-b//2` to `b//2` if set to True, and from `-b//2` to `b//2 - 1` otherwise. This has no effect for odd bases.

EXAMPLES:

1.2. Elements of the ring \(\mathbb{Z}\) of integers
See also:

digits

binary()

Return the binary digits of self as a string.

EXAMPLES:

```
sage: print(Integer(15).binary())
1111
sage: print(Integer(16).binary())
10000
sage: print(Integer(16938402384092843092843098243).binary())
110110111011100011111100011000110100111010001111111111111111111010000000001010010000111111000010000011
```

binomial (m, algorithm='gmp')

Return the binomial coefficient “self choose m”.

INPUT:

- m – an integer
- algorithm = 'gmp' (default), 'mpir' (an alias for gmp), or 'pari'; 'gmp' is faster for small m, and 'pari' tends to be faster for large m

OUTPUT: integer

EXAMPLES:

```
sage: 10.binomial(2)
45
```

(continues on next page)
The argument \(m \) or \((self - m)\) must fit into an unsigned long:

```
sage: (2**256).binomial(2**256)
    1
sage: (2**256).binomial(2**256 - 1)
    11579208923731619542357098500868790785326998466564056403945758400791312963936
sage: (2**256).binomial(2**128)
    Traceback (most recent call last): ...
    OverflowError: m must fit in an unsigned long
```

bit_length()

Return the number of bits required to represent this integer.

Identical to \(\text{int}.\text{bit_length()}\).

EXAMPLES:

```
sage: 500.bit_length()
    9
sage: 5.bit_length()
    3
sage: 0.bit_length() == len(0.bits()) == 0.ndigits(base=2)
    True
sage: 12345.bit_length() == len(12345.binary())
    True
sage: 1023.bit_length()
    10
sage: 1024.bit_length()
    11
```

bits()

Return the bits in \(self\) as a list, least significant first. The result satisfies the identity

\[
x = \sum (b \cdot 2^e \text{ for } e, b \text{ in enumerate}(x.\text{bits}()))
\]

Negative numbers will have negative “bits”. (So, strictly speaking, the entries of the returned list are not really members of \(\mathbb{Z}/2\mathbb{Z}\).)

This method just calls \(\text{digits()}\) with \(\text{base}=2\).

See also:

- **bit_length()**, a faster way to compute \(\text{len}(x.\text{bits}())\)
- **binary()**, which returns a string in perhaps more familiar notation

EXAMPLES:

1.2. Elements of the ring \(\mathbb{Z}\) of integers
sage: 500.bits()
[0, 0, 1, 0, 1, 1, 1, 1, 1]
sage: 11.bits()
[1, 1, 0, 1]
sage: (-99).bits()
[-1, -1, 0, 0, 0, -1, -1]

ceil()

Return the ceiling of self, which is self since self is an integer.

EXAMPLES:

sage: n = 6
sage: n.ceil()
6

class_number (proof=True)

Return the class number of the quadratic order with this discriminant.

INPUT:

• self – an integer congruent to 0 or 1 mod 4 which is not a square
• proof (boolean, default True) – if False, then for negative discriminants a faster algorithm is used by the PARI library which is known to give incorrect results when the class group has many cyclic factors. However, the results are correct for discriminants D with $|D| \leq 2 \cdot 10^{10}$.

OUTPUT:

(integer) the class number of the quadratic order with this discriminant.

Note: For positive D, this is not always equal to the number of classes of primitive binary quadratic forms of discriminant D, which is equal to the narrow class number. The two notions are the same when $D < 0$, or $D > 0$ and the fundamental unit of the order has negative norm; otherwise the number of classes of forms is twice this class number.

EXAMPLES:

sage: (-163).class_number() # needs sage.libs.pari
1
sage: (-104).class_number() # needs sage.libs.pari
6
sage: [(4*n + 1), (4*n + 1).class_number()] for n in [21..29] # needs sage.libs.pari
[(85, 2),
 (89, 1),
 (93, 1),
 (97, 1),
 (101, 1),
 (105, 2),
 (109, 1),
 (113, 1),
 (117, 1)]
conjugate()

Return the complex conjugate of this integer, which is the integer itself.

EXAMPLES:

```
sage: n = 205
sage: n.conjugate()
205
```

coprime_integers(m)
Return the non-negative integers < m that are coprime to this integer.

EXAMPLES:

```
sage: n = 8
sage: n.coprime_integers(8)
[1, 3, 5, 7]
sage: n.coprime_integers(11)
[1, 3, 5, 7, 9]
sage: n = 5; n.coprime_integers(10)
[1, 2, 3, 4, 6, 7, 8, 9]
sage: n.coprime_integers(5)
[1, 2, 3, 4]
sage: n = 99; n.coprime_integers(99)
[1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 46, 47, 49, 50, 52, 53, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 79, 80, 82, 83, 85, 86, 89, 91, 92, 94, 95, 97, 98]
```

AUTHORS:

- Naqi Jaffery (2006-01-24): examples
- David Roe (2017-10-02): Use sieving
- Jeroen Demeyer (2018-06-25): allow returning zero (only relevant for 1.coprime_integers(n))

ALGORITHM:
Create an integer with m bits and set bits at every multiple of a prime p that divides this integer and is less than m. Then return a list of integers corresponding to the unset bits.

crt(y, m, n)
Return the unique integer between 0 and mn that is congruent to the integer modulo m and to y modulo n.

We assume that m and n are coprime.

EXAMPLES:

```
sage: n = 17
sage: m = n.crt(5, 23, 11); m
247
sage: m%23
17
sage: m%11
5
```

denominator()
Return the denominator of this integer, which of course is always 1.

EXAMPLES:
digits (base=10, digits=None, padto=0)

Return a list of digits for self in the given base in little endian order.
The returned value is unspecified if self is a negative number and the digits are given.

INPUT:

- base - integer (default: 10)
- digits - optional indexable object as source for the digits
- padto - the minimal length of the returned list, sufficient number of zeros are added to make the list minimum that length (default: 0)

As a shorthand for digits(2), you can use bits().
Also see ndigits().

EXAMPLES:

sage: 17.digits()
[7, 1]
sage: 5.digits(base=2, digits=["zero","one"])
['one', 'zero', 'one']
sage: 5.digits(3)
[2, 1]
sage: 0.digits(base=10) # 0 has 0 digits
[]
sage: 0.digits(base=2) # 0 has 0 digits
[]
sage: 10.digits(16,'0123456789abcdef')
['a']
sage: 0.digits(16,'0123456789abcdef')
[]
sage: 0.digits(16,'0123456789abcdef',padto=1)
['0']
sage: 123.digits(base=10,padto=5)
[3, 2, 1, 0, 0]
sage: 123.digits(base=2,padto=3) # padto is the minimal length
[1, 1, 0, 1, 1, 1]
sage: 123.digits(base=2,padto=10,digits=(1,-1))
[-1, -1, 1, -1, -1, -1, 1, 1, 1]
sage: a=9939082340; a.digits(10)
[0, 4, 3, 2, 8, 0, 9, 3, 9, 9]
sage: a.digits(512)
[100, 302, 26, 74]
sage: (-12).digits(10)
[-2, -1]
sage: (-12).digits(2)
[0, 0, -1, -1]

We support large bases.
The inverse of this method – constructing an integer from a list of digits and a base – can be done using the above method or by simply using `ZZ()` with a base:

```
sage: x = 123; ZZ(x.digits(), 10)
123
sage: x == ZZ(x.digits(6), 6)
True
sage: x == ZZ(x.digits(25), 25)
True
```

Using `sum()` and `enumerate()` to do the same thing is slightly faster in many cases (and `balanced_sum()` may be faster yet). Of course it gives the same result:

```
sage: base = 4
sage: sum(digit * base^i for i, digit in enumerate(x.digits(base))) == ZZ(x.digits(base), base)
True
```

Note: In some cases it is faster to give a digits collection. This would be particularly true for computing the digits of a series of small numbers. In these cases, the code is careful to allocate as few python objects as reasonably possible.

```
sage: digits = list(range(15))
sage: l = [ZZ(i).digits(15,digits) for i in range(100)]
[1, 1]
```

This function is comparable to `str()` for speed.

```
sage: n=3^100000
sage: n.digits(base=10)[-1]  # slightly slower than str
# needs sage.rings.real_interval_field
1
sage: n=10^10000
sage: n.digits(base=10)[-1]  # slightly faster than str
# needs sage.rings.real_interval_field
1
```

AUTHORS:

- Joel B. Mohler (2008-03-02): significantly rewrote this entire function

```
divide_knowing_divisible_by(right)
Return the integer `self / right` when `self` is divisible by `right`.
```

1.2. Elements of the ring \(\mathbb{Z} \) of integers
If `self` is not divisible by right, the return value is undefined, and may not even be close to `self / right` for multi-word integers.

EXAMPLES:

```
sage: a = 8; b = 4
sage: a.divide_knowing_divisible_by(b)
2
sage: (100000).divide_knowing_divisible_by(25)
4000
sage: (100000).divide_knowing_divisible_by(26)  # close (random)
3846
```

However, often it's way off.

```
sage: a = 2^70; a
1180591620717411303424
sage: a // 11  # floor divide
107326510974310118493
sage: a.divide_knowing_divisible_by(11)  # way off and possibly random
4321536147874342238897045040
```

divides \((n)\)

Return `True` if `self` divides `n`.

EXAMPLES:

```
sage: Z = IntegerRing()
sage: Z(5).divides(Z(10))
True
sage: Z(0).divides(Z(5))
False
sage: Z(10).divides(Z(5))
False
```

divisors \((method=None)\)

Return the list of all positive integer divisors of this integer, sorted in increasing order.

EXAMPLES:

```
sage: (-3).divisors()
[1, 3]
sage: 6.divisors()
[1, 2, 3, 6]
sage: 28.divisors()
[1, 2, 4, 7, 14, 28]
sage: (2^5).divisors()
[1, 2, 4, 8, 16, 32]
sage: 100.divisors()
[1, 2, 4, 5, 10, 20, 25, 50, 100]
sage: 1.divisors()
[1]
sage: 0.divisors()
Traceback (most recent call last):
  ...
ValueError: n must be nonzero
sage: (2^3 * 3^2 * 17).divisors()
[1, 2, 3, 4, 6, 8, 9, 12, 17, 18, 24, 34, 36, 51, 68, 72,
```

(continues on next page)
102, 136, 153, 204, 306, 408, 612, 1224

sage: a = odd_part(factorial(31))
sage: v = a.divisors() # needs sage.libs.pari
sage: len(v) # needs sage.libs.pari
172800
sage: prod(e + 1 for p, e in factor(a)) # needs sage.libs.pari
172800
sage: all(t.divides(a) for t in v) # needs sage.libs.pari
True

sage: n = 2^551 - 1
sage: L = n.divisors() # needs sage.libs.pari
sage: len(L) # needs sage.libs.pari
256
sage: L[-1] == n # needs sage.libs.pari
True

Note: If one first computes all the divisors and then sorts it, the sorting step can easily dominate the runtime. Note, however, that (non-negative) multiplication on the left preserves relative order. One can leverage this fact to keep the list in order as one computes it using a process similar to that of the merge sort algorithm.

euclidean_degree()

Return the degree of this element as an element of an Euclidean domain.

If this is an element in the ring of integers, this is simply its absolute value.

EXAMPLES:

sage: ZZ(1).euclidean_degree()
1

exact_log (m)

Return the largest integer k such that $m^k \leq \text{self}$, i.e., the floor of $\log_m(\text{self})$.

This is guaranteed to return the correct answer even when the usual log function doesn’t have sufficient precision.

INPUT:

- m - integer ≥ 2

AUTHORS:

- David Harvey (2006-09-15)
- Joel B. Mohler (2009-04-08) – rewrote this to handle small cases and/or easy cases up to 100x faster.

EXAMPLES:
sage: Integer(125).exact_log(5)
3
sage: Integer(124).exact_log(5)
2
sage: Integer(126).exact_log(5)
3
sage: Integer(3).exact_log(5)
0
sage: Integer(1).exact_log(5)
0
sage: Integer(178^1700).exact_log(178)
1700
sage: Integer(178^1700-1).exact_log(178)
1699
sage: Integer(178^1700+1).exact_log(178)
1700
sage: # we need to exercise the large base code path too
sage: Integer(1780^1700-1).exact_log(1780) # needs sage.rings.real_interval_field
1699
sage: # The following are very very fast.
sage: # Note that for base m a perfect power of 2, we get the exact log by counting bits.
sage: n = 2983579823750185701375109835; m = 32
sage: n.exact_log(m)
18
sage: # The next is a favorite of mine. The log2 approximate is exact and immediately provable.
sage: n = 90153710570912709517902579010793251709257901270941709247901209742124
sage: m = 213509721309572
sage: n.exact_log(m)
4

sage: # needs sage.rings.real_mpfr
sage: x = 3^100000
sage: RR(log(RR(x), 3))
100000.000000000
sage: RR(log(RR(x + 100000), 3))
100000.000000000

sage: # needs sage.rings.real_mpfr
sage: x.exact_log(3)
100000
sage: (x + 1).exact_log(3)
100000
sage: (x - 1).exact_log(3)
99999

sage: # needs sage.rings.real_mpfr
sage: x.exact_log(2.5)
Traceback (most recent call last):
 ...TypeError: Attempt to coerce non-integral RealNumber to Integer

\texttt{exp}(\texttt{prec}=\texttt{None})

Return the exponential function of \texttt{self} as a real number.
This function is provided only so that Sage integers may be treated in the same manner as real numbers when convenient.

INPUT:

- `prec` - integer (default: None): if None, returns symbolic, else to given bits of precision as in RealField

EXAMPLES:

```python
sage: Integer(8).exp()  # needs sage.symbolic
e^8
sage: Integer(8).exp(prec=100)  # needs sage.symbolic
2980.9579870417282747435920995
sage: exp(Integer(8))  # needs sage.symbolic
e^8
```

For even fairly large numbers, this may not be useful.

```python
sage: y = Integer(145^145)
sage: y.exp()  # needs sage.symbolic
^∞
```

`factor` (algorithm='pari', proof=None, limit=None, int_=False, verbose=0)

Return the prime factorization of this integer as a formal Factorization object.

INPUT:

- `algorithm` - string
 - 'pari' - (default) use the PARI library
 - 'flint' - use the FLINT library
 - 'kash' - use the KASH computer algebra system (requires kash)
 - 'magma' - use the MAGMA computer algebra system (requires an installation of MAGMA)
 - 'qsieve' - use Bill Hart’s quadratic sieve code; WARNING: this may not work as expected, see qsieve? for more information
 - 'ecm' - use ECM-GMP, an implementation of Hendrik Lenstra’s elliptic curve method.

- `proof` - bool (default: True) whether or not to prove primality of each factor (only applicable for 'pari' and 'ecm').

- `limit` - int or None (default: None) if limit is given it must fit in a signed int, and the factorization is done using trial division and primes up to limit.

OUTPUT:

- a Factorization object containing the prime factors and their multiplicities

EXAMPLES:
This factorization can be converted into a list of pairs (p, e), where p is prime and e is a positive integer. Each pair can also be accessed directly by its index (ordered by increasing size of the prime):

```
sage: f = 60.factor()
sage: list(f)
[(2, 2), (3, 1), (5, 1)]
sage: f[2]
(5, 1)
```

Similarly, the factorization can be converted to a dictionary so the exponent can be extracted for each prime:

```
sage: f = (3^6).factor()
sage: dict(f)
{3: 6}
sage: dict(f)[3]
6
```

We use `proof=False`, which doesn't prove correctness of the primes that appear in the factorization:

```
sage: n = 92038409284239038428164127822
sage: n.factor(algorithm='flint')
# needs sage.libs.flint
2 * 3 * 11 * 13 * 41 * 73 * 22650083 * 1424602265462161
```

An example where FLINT is used:

```
sage: n = 82862385732327628428164127822
sage: n.factor(algorithm='flint')
# needs sage.libs.flint
2 * 3 * 11 * 13 * 41 * 73 * 22650083 * 1424602265462161
```

We factor using a quadratic sieve algorithm:

```
sage: # needs sage.libs pari
sage: p = next_prime(10^20)
sage: q = next_prime(10^21)
sage: n = p * q
sage: n.factor(algorithm='qsieve')
# needs sage.libs.flint
doctest:... RuntimeWarning: the factorization returned
by qsieve may be incomplete (the factors may not be prime)
or even wrong; see qsieve? for details
1000000000000000039 * 1000000000000000001
```

We factor using the elliptic curve method:
sage: # needs sage.libs.pari
sage: p = next_prime(10^15)
sage: q = next_prime(10^21)
sage: n = p * q
sage: n.factor(algorithm='ecm')
1000000000000037 * 1000000000000000000117

factorial()

Return the factorial \(n! = 1 \cdot 2 \cdot 3 \cdots n \).

If the input does not fit in an unsigned long int, an **OverflowError** is raised.

EXAMPLES:

```
sage: for n in srange(7):
    ....:     print("{} {}\n{} 1\n{} 2\n{} 3\n{} 4\n{} 5\n{} 6\n\nLarge integers raise an **OverflowError:**

```
sage: (2**64).factorial()
Traceback (most recent call last):
 ...
OverflowError: argument too large for factorial

```

And negative ones a **ValueError:**

```
sage: (-1).factorial()
Traceback (most recent call last):
 ...
ValueError: factorial only defined for non-negative integers
```

floor()

Return the floor of \( self \), which is just \( self \) since \( self \) is an integer.

**EXAMPLES:**

```
sage: n = 6
sage: n.floor()
6
```

gamma()

The gamma function on integers is the factorial function (shifted by one) on positive integers, and \( \pm \infty \) on non-positive integers.

**EXAMPLES:**

```
sage: # needs sage.symbolic
sage: gamma(5)
24
sage: gamma(0)
```

(continues on next page)
Infinity
sage: gamma(-1)
Infinity
sage: gamma(-2^150)
Infinity

**global_height** *(prec=None)*

Return the absolute logarithmic height of this rational integer.

**INPUT:**

- prec (int) – desired floating point precision (default: default RealField precision).

**OUTPUT:**

(real) The absolute logarithmic height of this rational integer.

**ALGORITHM:**

The height of the integer $n$ is $\log |n|$.

**EXAMPLES:**

```
sage: # needs sage.rings.real_mpfr
sage: ZZ(5).global_height()
1.60943791243410
sage: ZZ(-2).global_height(prec=100)
0.69314718055994530941723212146
sage: exp(_)
2.0000000000000000000000000000
```

**hex()**

Return the hexadecimal digits of self in lower case.

**Note:** ‘0x’ is *not* prepended to the result like is done by the corresponding Python function on int. This is for efficiency sake—adding and stripping the string wastes time; since this function is used for conversions from integers to other C-library structures, it is important that it be fast.

**EXAMPLES:**

```
sage: print(Integer(15).hex())
f
sage: print(Integer(16).hex())
10
sage: print(Integer(16938402384092843092843098243).hex())
36bble3929da8fe2802f083
```

**imag()**

Return the imaginary part of self, which is zero.

**EXAMPLES:**

```
sage: Integer(9).imag()
0
```
**inverse_mod**(*n*)

Return the inverse of self modulo \( n \), if this inverse exists.

Otherwise, raise a `ZeroDivisionError` exception.

**INPUT:**

- `self` - Integer
- `n` - Integer, or ideal of integer ring

**OUTPUT:**

- `x` - Integer such that \( x \cdot self = 1 \pmod{m} \), or raises `ZeroDivisionError`.

**IMPLEMENTATION:**

Call the `mpz_invert` GMP library function.

**EXAMPLES:**

```python
sage: a = Integer(189)
sage: a.inverse_mod(10000) # long time
4709
sage: a.inverse_mod(-10000) # long time
4709
sage: a.inverse_mod(1890) # long time
Traceback (most recent call last):
 ...ZeroDivisionError: inverse of Mod(189, 1890) does not exist
sage: a = Integer(19)**100000 # long time
sage: c = a.inverse_mod(a*a) # long time
Traceback (most recent call last):
 ...ZeroDivisionError: inverse of Mod(..., ...) does not exist
```

We check that [github issue #10625](https://github.com/) is fixed:

```python
sage: ZZ(2).inverse_mod(ZZ.ideal(3))
2
```

We check that [github issue #9955](https://github.com/) is fixed:

```python
sage: Rational(3) % Rational(-1)
0
```

**inverse_of_unit**()

Return inverse of `self` if `self` is a unit in the integers, i.e., `self` is \( -1 \) or \( 1 \). Otherwise, raise a `ZeroDivisionError`.

**EXAMPLES:**

```python
sage: (1).inverse_of_unit()
1
sage: (-1).inverse_of_unit()
-1
sage: 5.inverse_of_unit()
Traceback (most recent call last):
 ...ArithmeticError: inverse does not exist
```
is_discriminant()

Return True if this integer is a discriminant.

Note: A discriminant is an integer congruent to 0 or 1 modulo 4.

EXAMPLES:

```
sage: (-1).is_discriminant()
False
sage: (-4).is_discriminant()
True
sage: 100.is_discriminant()
True
sage: 101.is_discriminant()
True
```

is_fundamental_discriminant()

Return True if this integer is a fundamental discriminant.

Note: A fundamental discriminant is a discriminant, not 0 or 1 and not a square multiple of a smaller discriminant.

EXAMPLES:

```
sage: (-4).is_fundamental_discriminant() # needs sage.libs.pari
True
sage: (-12).is_fundamental_discriminant()
False
sage: 101.is_fundamental_discriminant() # needs sage.libs.pari
True
```

is_integer()

Return True as they are integers

EXAMPLES:

```
sage: sqrt(4).is_integer()
True
```

is_integral()

Return True since integers are integral, i.e., satisfy a monic polynomial with integer coefficients.

EXAMPLES:

```
sage: Integer(3).is_integral()
True
```
is_irreducible()
 Return True if self is irreducible, i.e. +/- prime

EXAMPLES:

```
sage: z = 2^31 - 1
sage: z.is_irreducible() # needs sage.libs.pari
True
sage: z = 2^31
sage: z.is_irreducible()
False
sage: z = 7
sage: z.is_irreducible()
True
sage: z = -7
sage: z.is_irreducible()
True
```

is_norm(K, element=False, proof=True)
 See QQ(self).is_norm().

EXAMPLES:

```
sage: n = 7
sage: n.is_norm(QQ)
True
sage: n.is_norm(QQ, element=True)
(True, 7)

sage: x = polygen(ZZ, 'x')
sage: K = NumberField(x^2 - 2, 'beta')
sage: n = 4
sage: n.is_norm(K)
True
sage: 5.is_norm(K)
False
sage: n.is_norm(K, element=True)
(True, -4*beta + 6)

sage: n.is_norm(K, element=True)[1].norm()
4
sage: n = 5
sage: n.is_norm(K, element=True)
(False, None)
```

is_one()
 Return True if the integer is 1, otherwise False.

EXAMPLES:

```
sage: Integer(1).is_one()
True
sage: Integer(0).is_one()
False
```

is_perfect_power()
 Return True if self is a perfect power, i.e. if there exist integers a and b, b > 1 with self = a^b.
See also:

- **perfect_power()**: Finds the minimal base for which this integer is a perfect power.
- **is_power_of()**: If you know the base already, this method is the fastest option.
- **is_prime_power()**: Checks whether the base is prime.

**EXAMPLES:**

```python
sage: Integer(-27).is_perfect_power()
True
sage: Integer(12).is_perfect_power()
False

sage: z = 8
sage: z.is_perfect_power()
True
sage: 144.is_perfect_power() # 144 is 12^2
True
sage: 10.is_perfect_power() # 10 isn't a perfect power
False
sage: (-8).is_perfect_power() # -8 is (-2)^3
True
sage: (-4).is_perfect_power() # -4 isn't a perfect power
False
```

**is_power_of(n)**

Return True if there is an integer \( b \) with \( \text{self} = n^b \).  

See also:

- **perfect_power()**: Finds the minimal base for which this integer is a perfect power.
- **is_perfect_power()**: If you don’t know the base but just want to know if this integer is a perfect power, use this function.
- **is_prime_power()**: Checks whether the base is prime.

**EXAMPLES:**

```python
sage: Integer(64).is_power_of(4)
True
sage: Integer(64).is_power_of(16)
False
```

**Note:** For large integers `self`, **is_power_of()** is faster than **is_perfect_power()**. The following examples give some indication of how much faster.

```python
sage: b = lcm(range(1,10000))
sage: b.exact_log(2)
14446
sage: t = cputime()
sage: for a in range(2, 1000): k = b.is_perfect_power()
sage: cputime(t) # random
0.532032999999976
```

(continues on next page)
sage: t = cputime()
sage: for a in range(2, 1000): k = b.is_power_of(2)
sage: cputime(t)  # random
0.0
sage: t = cputime()
sage: for a in range(2, 1000): k = b.is_power_of(3)
sage: cputime(t)  # random
0.032002000000000308

sage: b = lcm(range(1, 1000))
sage: b.exact_log(2)
1437
sage: t = cputime(); TWO = int(2)
sage: for a in range(2, 10000): k = b.is_power_of(TWO)
sage: cputime(t)  # random
0.0040000000000000036
sage: for a in range(2, 10000): k = b.is_power_of(a)
sage: cputime(t)  # random
0.02800199999999986

is_prime (proof=None)
Test whether self is prime.

INPUT:

• proof – Boolean or None (default). If False, use a strong pseudo-primality test (see is_pseudo
doprime()). If True, use a provable primality test. If unset, use the default arithmetic
proof flag.

Note: Integer primes are by definition positive! This is different than Magma, but the same as in PARI. See
also the is_irreducible() method.

EXAMPLES:

sage: z = 2^31 - 1
sage: z.is_prime()  # needs sage.libs.pari
True
sage: z = 2^31
sage: z.is_prime()
False
sage: z = 7
sage: z.is_prime()
True
sage: z = -7

(continues on next page)
When starting Sage the arithmetic proof flag is True. We can change it to False as follows:

```
sage: proof.arithmetic()
True
sage: n = 10^100 + 267
sage: timeit("n.is_prime()") # not tested
5 loops, best of 3: 163 ms per loop
sage: proof.arithmetic(False)
False
sage: timeit("n.is_prime()") # not tested
1000 loops, best of 3: 573 us per loop
```

ALGORITHM:

Calls the PARI function pari:isprime.

**is_prime_power**(proof=None, get_data=False)

Return True if this integer is a prime power, and False otherwise.

A prime power is a prime number raised to a positive power. Hence 1 is not a prime power.

For a method that uses a pseudoprimality test instead see **is_pseudoprime_power()**.

INPUT:

- proof – Boolean or None (default). If False, use a strong pseudo-primality test (see **is_pseudoprime()**). If True, use a provable primality test. If unset, use the default arithmetic proof flag.
- get_data – (default False), if True return a pair (p, k) such that this integer equals p^k with p a prime and k a positive integer or the pair (self, 0) otherwise.

See also:

- **perfect_power()**: Finds the minimal base for which integer is a perfect power.
- **is_perfect_power()**: Doesn't test whether the base is prime.
- **is_power_of()**: If you know the base already this method is the fastest option.
- **is_pseudoprime_power()**: If the entry is very large.

EXAMPLES:
With the `get_data` keyword set to `True`:

```python
sage: # needs sage.libs.pari
sage: (3^100).is_prime_power(get_data=True)
(3, 100)
sage: (12).is_prime_power(get_data=True)
(12, 0)
sage: (p^97).is_prime_power(get_data=True)
(100000000000000000039, 97)
sage: q = p.next_prime(); q
100000000000000000129
sage: (p*q).is_prime_power(get_data=True)
(1000000000000000001680000000000005031, 0)
```

The method works for large entries when `proof=False`:

```python
sage: proof.arithmetic(False)

sage: ((10^500 + 961)^4).is_prime_power()
needs sage.libs.pari
True
```

We check that Github issue #4777 is fixed:

```python
sage: n = 150607571^14
sage: n.is_prime_power()
needs sage.libs.pari
True
```

```python
is_pseudoprime()
```

Test whether `self` is a pseudoprime.

1.2. Elements of the ring $\mathbb{Z}$ of integers
This uses PARI’s Baillie-PSW probabilistic primality test. Currently, there are no known pseudoprimes for Baillie-PSW that are not actually prime. However, it is conjectured that there are infinitely many.

See Wikipedia article Baillie-PSW_primality_test

**EXAMPLES:**

```python
sage: z = 2^31 - 1
sage: z.is_pseudoprime() # needs sage.libs.pari
True
sage: z = 2^31
sage: z.is_pseudoprime() # needs sage.libs.pari
False
```

**is_pseudoprime_power**(get_data=False)

Test if this number is a power of a pseudoprime number.

For large numbers, this method might be faster than `is_prime_power()`.

**INPUT:**

- `get_data` – (default False) if True return a pair \((p, k)\) such that this number equals \(p^k\) with \(p\) a pseudoprime and \(k\) a positive integer or the pair \((self, 0)\) otherwise.

**EXAMPLES:**

```python
sage: # needs sage.libs.pari
sage: x = 10^200 + 357
sage: x.is_pseudoprime() # needs sage.libs.pari
True
sage: (x^12).is_pseudoprime_power() # needs sage.libs.pari
True
sage: (x^12).is_pseudoprime_power(get_data=True) # needs sage.libs.pari
(1000...000357, 12)
sage: (997^100).is_pseudoprime_power() # needs sage.libs.pari
True
sage: (998^100).is_pseudoprime_power() # needs sage.libs.pari
False
sage: (((10^1000 + 453)^2).is_pseudoprime_power() # needs sage.libs.pari
True
```

**is_rational**()

Return True as an integer is a rational number.

**EXAMPLES:**

```python
sage: 5.is_rational()
True
```

**is_square**()

Return True if self is a perfect square.

**EXAMPLES:**

```python
sage: Integer(4).is_square()
True
sage: Integer(41).is_square()
False
```
is_squarefree()
Return True if this integer is not divisible by the square of any prime and False otherwise.

EXAMPLES:

```
sage: 100.is_squarefree() # needs sage.libs.pari
False
sage: 102.is_squarefree() # needs sage.libs.pari
True
sage: 0.is_squarefree() # needs sage.libs.pari
False
```

is_unit()
Return True if this integer is a unit, i.e., 1 or −1.

EXAMPLES:

```
sage: for n in srange(-2,3):
 : print("{} {}\n".format(n, n.is_unit()))
-2 False
-1 True
0 False
1 True
2 False
```

isqrt()
Return the integer floor of the square root of self, or raises an ValueError if self is negative.

EXAMPLES:

```
sage: a = Integer(5)
sage: a.isqrt()
2

sage: Integer(-102).isqrt()
Traceback (most recent call last):
...
ValueError: square root of negative integer not defined
```

jacobi(b)
Calculate the Jacobi symbol \( \frac{a}{b} \).

EXAMPLES:

```
sage: z = -1
sage: z.jacobi(17) 1
sage: z.jacobi(19) -1
sage: z.jacobi(17*19) -1
sage: (2).jacobi(17) 1
sage: (3).jacobi(19)
```

(continues on next page)
\texttt{sage: (6).jacobi(17*19)}
\texttt{-1}
\texttt{sage: (6).jacobi(33)}
\texttt{0}
\texttt{sage: a = 3; b = 7}
\texttt{sage: a.jacobi(b) == -b.jacobi(a)}
\texttt{True}

\textbf{kronecker} (\(b\))

Calculate the Kronecker symbol \(\left(\frac{\text{self}}{\text{b}}\right)\) with the Kronecker extension \((\text{self}/2) = (2/\text{self})\) when \text{self} is odd, or \((\text{self}/2) = 0\) when \text{self} is even.

\textbf{EXAMPLES:}

\texttt{sage: z = 5}
\texttt{sage: z.kronecker(41)}
\texttt{1}
\texttt{sage: z.kronecker(43)}
\texttt{-1}
\texttt{sage: z.kronecker(8)}
\texttt{-1}
\texttt{sage: z.kronecker(15)}
\texttt{0}
\texttt{sage: a = 2; b = 5}
\texttt{sage: a.kronecker(b) == b.kronecker(a)}
\texttt{True}

\textbf{list}()

Return a list with this integer in it, to be compatible with the method for number fields.

\textbf{EXAMPLES:}

\texttt{sage: m = 5}
\texttt{sage: m.list()} \\
\texttt{[5]}

\textbf{log} (\(m=\text{None}, \text{prec}=\text{None}\))

Return symbolic log by default, unless the logarithm is exact (for an integer argument). When \text{prec} is given, the \texttt{RealField} approximation to that bit precision is used.

This function is provided primarily so that Sage integers may be treated in the same manner as real numbers when convenient. Direct use of \texttt{exact_log()} is probably best for arithmetic log computation.

\textbf{INPUT:}

- \(m\) - default: natural log base \(e\)
- \text{prec} - integer (default: \text{None}): if \text{None}, returns symbolic, else to given bits of precision as in \texttt{RealField}

\textbf{EXAMPLES:}

\texttt{sage: Integer(124).log(5)} \\
\texttt{# needs sage.symbolic}
\texttt{log(124)/log(5)}
\texttt{sage: Integer(124).log(5, 100)} \\
\texttt{# needs sage.rings.real_mpfr}
For extremely large numbers, this works:

```sage
sage: x = 3^100000
sage: log(x, 3) # needs sage.rings.real_interval_field
100000
```

Also \( \log(x) \), giving a symbolic output, works in a reasonable amount of time for this \( x \):

```sage
sage: x = 3^100000
sage: log(x) # needs sage.symbolic
log(1334971414230...5522000001)
```

But approximations are probably more useful in this case, and work to as high a precision as we desire:

```sage
sage: x.log(3, 53) # default precision for RealField
100000.000000000
sage: (x + 1).log(3, 53) # needs sage.rings.real_mpfr
100000.000000000
sage: (x + 1).log(3, 1000) # needs sage.rings.real_mpfr
100000.
```

We can use non-integer bases, with default \( e \):

```sage
sage: x.log(2.5, prec=53) # needs sage.rings.real_mpfr
119897.784671579
```

We also get logarithms of negative integers, via the symbolic ring, using the branch from \(-\pi\) to \(\pi\):

```sage
sage: log(-1) # needs sage.symbolic
I*pi
```

The logarithm of zero is done likewise:

```sage
sage: log(0) # needs sage.symbolic
-Infinity
```

Some rational bases yield integer logarithms (github issue #21517):
Check that Python ints are accepted (github issue #21518):

```
sage: ZZ(8).log(int(2))
3
```

### multifactorial \( (k) \)

Compute the \( k \)-th factorial \( n!(k) \) of \( \text{self} \).

The multifactorial number \( n!(k) \) is defined for non-negative integers \( n \) as follows. For \( k = 1 \) this is the standard factorial, and for \( k \) greater than 1 it is the product of every \( k \)-th terms down from \( n \) to 1. The recursive definition is used to extend this function to the negative integers \( n \).

This function uses direct call to GMP if \( k \) and \( n \) are non-negative and uses simple transformation for other cases.

**EXAMPLES:**

```
sage: 5.multifactorial(1)
120
sage: 5.multifactorial(2)
15
sage: 5.multifactorial(3)
10
sage: 23.multifactorial(2)
316234143225
sage: prod([1..23, step=2])
316234143225
sage: (-29).multifactorial(7)
1/2640
sage: (-3).multifactorial(5)
1/2
sage: (-9).multifactorial(3)
Traceback (most recent call last):
 ... ValueError: multifactorial undefined
```

When entries are too large an **OverflowError** is raised:

```
sage: (2**64).multifactorial(2)
Traceback (most recent call last):
 ... OverflowError: argument too large for multifactorial
```

### multiplicative_order ()

Return the multiplicative order of \( \text{self} \).

**EXAMPLES:**

```
sage: ZZ(1).multiplicative_order()
1
sage: ZZ(-1).multiplicative_order()
2
sage: ZZ(0).multiplicative_order()
(continues on next page)```
\texttt{nbits()}

Alias for \texttt{bit_length()}.

\texttt{ndigits(\texttt{base}=10)}

Return the number of digits of \texttt{self} expressed in the given base.

INPUT:

\begin{itemize}
 \item \texttt{base} - integer (default: 10)
\end{itemize}

EXAMPLES:

\begin{verbatim}
sage: n = 52
sage: n.ndigits()
sage: n = -10003
sage: n.ndigits()
sage: n = 15
sage: n.ndigits(2)
sage: n = 1000**1000000+1
sage: n.ndigits()
 \text{needs sage.rings.real_interval_field}
3000001
sage: n = 1000**1000000-1
sage: n.ndigits()
 \text{needs sage.rings.real_interval_field}
3000000
sage: n = 10**10000000-10**9999990
sage: n.ndigits()
 \text{needs sage.rings.real_interval_field}
10000000
\end{verbatim}

\texttt{next_prime(\texttt{proof}=None)}

Return the next prime after \texttt{self}.

This method calls the PARI function \texttt{pari:nextprime}.

INPUT:

\begin{itemize}
 \item \texttt{proof} - bool or None (default: None, see \texttt{proof.arithmetic} or \texttt{sage.structure.proof})
 \end{itemize}

Note that the global Sage default is \texttt{proof=True}

EXAMPLES:

\begin{verbatim}
sage: 100.next_prime()
 \text{needs sage.libs.pari}
101
sage: (10^50).next_prime()
 \text{needs sage.libs.pari}
10000000000000000000000000000000151
\end{verbatim}

Use \texttt{proof=False}, which is way faster since it does not need a primality proof:
```python
sage: b = (2^1024).next_prime(proof=False)  # Needs sage.libs.pari
sage: b - 2^1024  # Needs sage.libs.pari
643
```

```python
sage: Integer(0).next_prime()  # Needs sage.libs.pari
2
sage: Integer(1001).next_prime()  # Needs sage.libs.pari
1009
```

next_prime_power

Return the next prime power after `self`.

INPUT:

- `proof` - if `True` ensure that the returned value is the next prime power and if set to `False` uses probabilistic methods (i.e. the result is not guaranteed). By default it uses global configuration variables to determine which alternative to use (see `proof.arithmetic` or `sage.structure.proof`).

ALGORITHM:

The algorithm is naive. It computes the next power of 2 and goes through the odd numbers calling `is_prime_power()`.

See also:

- `previous_prime_power`
- `is_prime_power`
- `next_prime`
- `previous_prime`

EXAMPLES:

```python
sage: (-1).next_prime_power() 2
sage: 2.next_prime_power() 3
sage: 103.next_prime_power()  # Needs sage.libs.pari
107
sage: 107.next_prime_power() 109
sage: 2044.next_prime_power()  # Needs sage.libs.pari
2048
```

next_probable_prime

Return the next probable prime after `self`, as determined by PARI.

EXAMPLES:
nth_root \((n, \text{truncate_mode}=0) \)

Return the (possibly truncated) \(n \)-th root of \(\text{self} \).

INPUT:

- \(n \) - integer \(\geq 1 \) (must fit in the \texttt{C int} type).
- \(\text{truncate_mode} \) - boolean, whether to allow truncation if \(\text{self} \) is not an \(n \)-th power.

OUTPUT:

If \(\text{truncate_mode} \) is 0 (default), then returns the exact \(n \)'th root if \(\text{self} \) is an \(n \)'th power, or raises a \texttt{ValueError} if it is not.

If \(\text{truncate_mode} \) is 1, then if either \(n \) is odd or \(\text{self} \) is positive, returns a pair \((\text{root, exact_flag}) \) where \(\text{root} \) is the truncated \(n \)-th root (rounded towards zero) and \(\text{exact_flag} \) is a boolean indicating whether the root extraction was exact; otherwise raises a \texttt{ValueError}.

AUTHORS:

- David Harvey (2006-09-15)
- Interface changed by John Cremona (2009-04-04)

EXAMPLES:

```
sage: Integer(125).nth_root(3)
5
sage: Integer(124).nth_root(3)
Traceback (most recent call last):
  ... ValueError: 124 is not a 3rd power
sage: Integer(124).nth_root(3, truncate_mode=1)
(4, False)
sage: Integer(125).nth_root(3, truncate_mode=1)
(5, True)
sage: Integer(126).nth_root(3, truncate_mode=1)
(5, False)
sage: Integer(-125).nth_root(3)
-5
sage: Integer(-125).nth_root(3, truncate_mode=1)
(-5, True)
sage: Integer(-124).nth_root(3, truncate_mode=1)
(-4, False)
```

(continues on next page)
Standard Commutative Rings, Release 10.3

```python
sage: Integer(-126).nth_root(3, truncate_mode=1)
(-5, False)
sage: Integer(125).nth_root(2, True)
(11, False)
sage: Integer(125).nth_root(3, True)
(5, True)
sage: Integer(125).nth_root(-5)
Traceback (most recent call last):
  ... ValueError: n (= -5) must be positive
sage: Integer(-25).nth_root(2)
Traceback (most recent call last):
  ... ValueError: cannot take even root of negative number
sage: a=9
sage: a.nth_root(3)
Traceback (most recent call last):
  ... ValueError: 9 is not a 3rd power
sage: a.nth_root(22)
Traceback (most recent call last):
  ... ValueError: 9 is not a 22nd power
sage: ZZ(2^20).nth_root(21)
Traceback (most recent call last):
  ... ValueError: 1048576 is not a 21st power
sage: ZZ(2^20).nth_root(21, truncate_mode=1)
(1, False)
```

numerator()

Return the numerator of this integer.

EXAMPLES:

```python
sage: x = 5
sage: x.numerator()
5
sage: x = 0
sage: x.numerator()
0
```

oct()

Return the digits of self in base 8.

Note: ‘0’ (or ‘0o’) is not prepended to the result like is done by the corresponding Python function on
int. This is for efficiency sake—adding and stripping the string wastes time; since this function is used for conversions from integers to other C-library structures, it is important that it be fast.

EXAMPLES:

```
sage: print(Integer(800).oct())
1440
sage: print(Integer(8).oct())
10
sage: print(Integer(-50).oct())
-62
sage: print(Integer(-899).oct())
-1603
sage: print(Integer(16938402384092843092843098243).oct())
15535436162247215217705000570203
```

Behavior of Sage integers vs. Python integers:

```
sage: Integer(10).oct()
'12'
sage: oct(int(10))
'0o12'
sage: Integer(-23).oct()
'-27'
sage: oct(int(-23))
'-0o27'
```

odd_part()
The odd part of the integer n. This is $n/2^v$, where $v = \text{valuation}(n, 2)$.

IMPLEMENTATION:

Currently returns 0 when self is 0. This behaviour is fairly arbitrary, and in Sage 4.6 this special case was not handled at all, eventually propagating a TypeError. The caller should not rely on the behaviour in case self is 0.

EXAMPLES:

```
sage: odd_part(5)
5
sage: odd_part(4)
1
sage: odd_part(factorial(31))
122529844256906551386796875
```

ord(p)
Return the p-adic valuation of self.

INPUT:

- p - an integer at least 2.

EXAMPLES:

```
sage: n = 60
sage: n.valuation(2)
2
```
We do not require that \(p \) is a prime:

```
sage: (2^11).valuation(4)
5
```

`ordinal_str()`

Return a string representation of the ordinal associated to `self`.

EXAMPLES:

```
sage: [ZZ(n).ordinal_str() for n in range(25)]
['0th', '1st', '2nd', '3rd', '4th', ...
 '10th', '11th', '12th', '13th', '14th', ...
 '20th', '21st', '22nd', '23rd', '24th']
sage: ZZ(1001).ordinal_str()
'1001st'
sage: ZZ(113).ordinal_str()
'113th'
sage: ZZ(112).ordinal_str()
'112th'
sage: ZZ(111).ordinal_str()
'111th'
```

`p_primary_part(p)`

Return the \(p \)-primary part of `self`.

INPUT:

- \(p \) – a prime integer.

OUTPUT: Largest power of \(p \) dividing `self`.

EXAMPLES:
sage: n = 40
sage: n.p_primary_part(2)
8
sage: n.p_primary_part(5)
5
sage: n.p_primary_part(7)
1
sage: n.p_primary_part(6)
Traceback (most recent call last):
 ...
ValueError: 6 is not a prime number

perfect_power()

Return \((a, b)\), where this integer is \(a^b\) and \(b\) is maximal.

If called on \(-1, 0\) or \(1\), \(b\) will be 1, since there is no maximal value of \(b\).

See also:

- **is_perfect_power()**: testing whether an integer is a perfect power is usually faster than finding \(a\) and \(b\).
- **is_prime_power()**: checks whether the base is prime.
- **is_power_of()**: if you know the base already, this method is the fastest option.

EXAMPLES:

```python
sage: 144.perfect_power()  # needs sage.libs.pari
(12, 2)
sage: 1.perfect_power()
(1, 1)
sage: 0.perfect_power()
(0, 1)
sage: (-1).perfect_power()
(-1, 1)
sage: (-8).perfect_power()  # needs sage.libs.pari
(-2, 3)
sage: (-4).perfect_power()
(-4, 1)
sage: (101^29).perfect_power()  # needs sage.libs.pari
(101, 29)
sage: (-243).perfect_power()  # needs sage.libs.pari
(-3, 5)
sage: (-64).perfect_power()  # needs sage.libs.pari
(-4, 3)
```

popcount()

Return the number of 1 bits in the binary representation. If `self < 0`, we return Infinity.

EXAMPLES:
sage: n = 123
sage: n.str(2)
'1111011'
sage: n.popcount()
6

sage: n = -17
sage: n.popcount()
+Infinity

powermod \((exp, mod)\)

Compute \(self^{**exp} \mod mod\).

EXAMPLES:

sage: z = 2
sage: z.powermod(31,31)
2
sage: z.powermod(0,31)
1
sage: z.powermod(-31,31) == 2^{-31} \% 31
True

As expected, the following is invalid:

sage: z.powermod(31,0)
Traceback (most recent call last):
...
ZeroDivisionError: cannot raise to a power modulo 0

previous_prime \((proof=None)\)

Return the previous prime before \(self\).

This method calls the PARI function pari:precprime.

INPUT:

- \(proof\) - if True ensure that the returned value is the next prime power and if set to False uses probabilistic methods (i.e. the result is not guaranteed). By default it uses global configuration variables to determine which alternative to use (see proof.arithmetic or sage.structure.proof).

See also:

- next_prime()

EXAMPLES:

sage: 10.previous_prime() # needs sage.libs.pari
7
sage: 7.previous_prime() # needs sage.libs.pari
5
sage: 14376485.previous_prime() # needs sage.libs.pari
14376463
sage: 2.previous_prime()
Traceback (most recent call last):
...
ValueError: no prime less than 2

An example using `proof=False`, which is way faster since it does not need a primality proof:

```python
sage: b = (2^1024).previous_prime(proof=False)  # needs sage.libs.pari
sage: 2^1024 - b                                  # needs sage.libs.pari
105
```

previous_prime_power(`proof=None`)

Return the previous prime power before `self`.

INPUT:

- `proof` - if `True` ensure that the returned value is the next prime power and if set to `False` uses probabilistic methods (i.e. the result is not guaranteed). By default it uses global configuration variables to determine which alternative to use (see `proof.arithmetic` or `sage.structure.proof`).

ALGORITHM:

The algorithm is naive. It computes the previous power of 2 and goes through the odd numbers calling the method `is_prime_power()`.

See also:

- `next_prime_power()`
- `is_prime_power()`
- `previous_prime()`
- `next_prime()`

EXAMPLES:

```python
sage: # needs sage.libs.pari
sage: 3.previous_prime_power()                      # needs sage.libs.pari
2
sage: 103.previous_prime_power()                    # needs sage.libs.pari
101
sage: 107.previous_prime_power()                    # needs sage.libs.pari
103
sage: 2044.previous_prime_power()                   # needs sage.libs.pari
2039
sage: 2.previous_prime_power()                     # needs sage.libs.pari
Traceback (most recent call last):
...
ValueError: no prime power less than 2
```

prime_divisors(*`args`, **`kwds`)

Return the prime divisors of this integer, sorted in increasing order.

If this integer is negative, we do not include -1 among its prime divisors, since -1 is not a prime number.

INPUT:

1.2. Elements of the ring \mathbb{Z} of integers
• limit – (integer, optional keyword argument) Return only prime divisors up to this bound, and the factorization is done by checking primes up to limit using trial division.

Any additional arguments are passed on to the factor() method.

EXAMPLES:

```python
sage: a = 1; a.prime_divisors()
[]
sage: a = 100; a.prime_divisors()
[2, 5]
sage: a = -100; a.prime_divisors()
[2, 5]
sage: a = 2004; a.prime_divisors()
[2, 3, 167]
```

Setting the optional limit argument works as expected:

```python
sage: a = 10^100 + 1
sage: a.prime_divisors() # needs sage.libs.pari
[73, 137, 401, 1201, 1601, 1676321, 5964848081,
  1296944190290575055138577118456427449907570947656757821537291527196801]
sage: a.prime_divisors(limit=10^3)
[73, 137, 401]
sage: a.prime_divisors(limit=10^7)
[73, 137, 401, 1201, 1601, 1676321]
```

prime_factors(*args, **kwds)

Return the prime divisors of this integer, sorted in increasing order.

If this integer is negative, we do not include −1 among its prime divisors, since −1 is not a prime number.

INPUT:

• limit – (integer, optional keyword argument) Return only prime divisors up to this bound, and the factorization is done by checking primes up to limit using trial division.

Any additional arguments are passed on to the factor() method.

EXAMPLES:

```python
sage: a = 1; a.prime_divisors()
[]
sage: a = 100; a.prime_divisors()
[2, 5]
sage: a = -100; a.prime_divisors()
[2, 5]
sage: a = 2004; a.prime_divisors()
[2, 3, 167]
```

Setting the optional limit argument works as expected:

```python
sage: a = 10^100 + 1
sage: a.prime_divisors() # needs sage.libs.pari
[73, 137, 401, 1201, 1601, 1676321, 5964848081,
  1296944190290575055138577118456427449907570947656757821537291527196801]
sage: a.prime_divisors(limit=10^3)
[73, 137, 401]
```

(continues on next page)
prime_to_m_part \((m) \)

Return the prime-to-\(m \) part of \(\text{self} \), i.e., the largest divisor of \(\text{self} \) that is coprime to \(m \).

INPUT:

- \(m \) - Integer

OUTPUT: Integer

EXAMPLES:

```python
sage: 43434.prime_to_m_part(20)
21717
sage: 2048.prime_to_m_part(2)
1
sage: 2048.prime_to_m_part(3)
2048
sage: 0.prime_to_m_part(2)
Traceback (most recent call last):
...
AttributeError: self must be nonzero
```

quo_rem(other)

Return the quotient and the remainder of \(\text{self} \) divided by other. Note that the remainder returned is always either zero or of the same sign as other.

INPUT:

- other - the divisor

OUTPUT:

- \(q \) - the quotient of \(\text{self}/\text{other} \)
- \(r \) - the remainder of \(\text{self}/\text{other} \)

EXAMPLES:

```python
sage: z = Integer(231)
sage: z.quo_rem(2)
(115, 1)
sage: z.quo_rem(-2)
(-116, -1)
sage: z.quo_rem(0)
Traceback (most recent call last):
...
ZeroDivisionError: Integer division by zero
sage: a = ZZ.random_element(10**50)
sage: b = ZZ.random_element(10**15)
sage: q, r = a.quo_rem(b)
sage: q*b + r == a
True
sage: 3.quo_rem(ZZ['x'].0)
(0, 3)
```
rational_reconstruction (m)

Return the rational reconstruction of this integer modulo m, i.e., the unique (if it exists) rational number that reduces to `self` modulo m and whose numerator and denominator is bounded by $\sqrt{m}/2$.

INPUT:

- `self` – Integer
- `m` – Integer

OUTPUT:

- a `Rational`

EXAMPLES:

```python
sage: (3/7)%100
29
sage: (29).rational_reconstruction(100)
3/7
```

real ()

Return the real part of `self`, which is `self`.

EXAMPLES:

```python
sage: Integer(-4).real()
-4
```

round *(mode='away')*

Return the nearest integer to `self`, which is `self` since `self` is an integer.

EXAMPLES:

This example addresses github issue #23502:

```python
sage: n = 6
sage: n.round()
6
```

sign ()

Return the sign of this integer, which is -1, 0, or 1 depending on whether this number is negative, zero, or positive respectively.

OUTPUT: Integer

EXAMPLES:

```python
sage: 500.sign()
1
sage: 0.sign()
0
sage: (-10^43).sign()
-1
```

sqrt *(prec=None, extend=True, all=False)*

The square root function.

INPUT:

- `prec` – integer (default: None): if None, return an exact square root; otherwise return a numerical square root, to the given bits of precision.
• extend – bool (default: True); if True, return a square root in an extension ring, if necessary. Otherwise, raise a ValueError if the square is not in the base ring. Ignored if prec is not None.
• all – bool (default: False); if True, return all square roots of self (a list of length 0, 1, or 2).

EXAMPLES:

```
sage: Integer(144).sqrt() 12
sage: sqrt(Integer(144)) 12

sage: Integer(102).sqrt() ˓→needs sage.symbolic
  sqrt(102)

sage: n = 2
sage: n.sqrt(all=True) ˓→needs sage.symbolic
  [sqrt(2), -sqrt(2)]

sage: n.sqrt(prec=10) ˓→needs sage.rings.real_mpfr
  1.4

sage: n.sqrt(prec=100) ˓→needs sage.rings.real_mpfr
  1.4142135623730950488016887242

sage: n.sqrt(prec=100, all=True) ˓→needs sage.rings.real_mpfr
  [1.4142135623730950488016887242, -1.4142135623730950488016887242]

sage: n.sqrt(extend=False)
  Traceback (most recent call last):
  ...ArithmeticError: square root of 2 is not an integer

sage: (-1).sqrt(extend=False)
  Traceback (most recent call last):
  ...ArithmeticError: square root of -1 is not an integer

sage: Integer(144).sqrt(all=True)
  [12, -12]

sage: Integer(0).sqrt(all=True)
  [0]
```

sqrtrem()

Return \((s, r)\) where \(s\) is the integer square root of \(self\) and \(r\) is the remainder such that \(self = s^2 + r\). Raises ValueError if \(self\) is negative.

EXAMPLES:

```
sage: 25.sqrtrem() (5, 0)
sage: 27.sqrtrem() (5, 2)
sage: 0.sqrtrem() (0, 0)
```

```
sage: Integer(-102).sqrtrem() ˓→needs sage.rings.real_mpfr
  Traceback (most recent call last):
  ...ValueError: square root of negative integer not defined
```

1.2. Elements of the ring \(\mathbb{Z}\) of integers

55
squarefree_part *(bound=-1)*

Return the square free part of \(x \) (=self), i.e., the unique integer \(z \) that \(x = z y^2 \), with \(y^2 \) a perfect square and \(z \) square-free.

Use `self.radical()` for the product of the primes that divide `self`.

If `self` is 0, just returns 0.

EXAMPLES:

```python
sage: squarefree_part(100)
1
sage: squarefree_part(12)
3
sage: squarefree_part(17*37*37)
17
sage: squarefree_part(-17*32)
-34
sage: squarefree_part(1)
1
sage: squarefree_part(-1)
-1
sage: squarefree_part(-2)
-2
sage: squarefree_part(-4)
-1
```

```python
sage: a = 8 * 5^6 * 101^2
sage: a.squarefree_part(bound=2).factor()  # needs sage.libs.pari
2 * 5^6 * 101^2
sage: a.squarefree_part(bound=5).factor()  # needs sage.libs.pari
2 * 101^2
sage: a.squarefree_part(bound=1000)
2
sage: a.squarefree_part(bound=2**14)  # needs sage.libs.pari
2
sage: a = 7^3 * next_prime(2^100)^2 * next_prime(2^200)  # needs sage.libs.pari
```

str *(base=10)*

Return the string representation of `self` in the given base.

EXAMPLES:

```python
sage: Integer(2^10).str(2)
'10000000000'
sage: Integer(2^10).str(17)
'394'
```

```python
sage: two = Integer(2)
sage: two.str(1)
Traceback (most recent call last):
...
ValueError: base (=1) must be between 2 and 36
```
sage: two.str(37)
Traceback (most recent call last):
...
ValueError: base (=37) must be between 2 and 36

sage: big = 10^5000000
sage: s = big.str() # long time (2s on sage.math, 2014)
sage: len(s) # long time (depends on above defn of s)
5000001
sage: s[:10] # long time (depends on above defn of s)
'1000000000'

support()

Return a sorted list of the primes dividing this integer.

OUTPUT: The sorted list of primes appearing in the factorization of this rational with positive exponent.

EXAMPLES:

sage: factorial(10).support()
[2, 3, 5, 7]

sage: (-999).support()
[3, 37]

Trying to find the support of 0 raises an ArithmeticError:

sage: 0.support()
Traceback (most recent call last):
...
ArithmeticError: support of 0 not defined

test_bit(index)

Return the bit at index.

If the index is negative, returns 0.

Although internally a sign-magnitude representation is used for integers, this method pretends to use a two's complement representation. This is illustrated with a negative integer below.

EXAMPLES:

sage: w = 6
sage: w.str(2)
'110'

sage: w.test_bit(2)
1

sage: w.test_bit(-1)
0

sage: x = -20
sage: x.str(2)
'-10100'

sage: x.test_bit(4)
0

sage: x.test_bit(5)
1

sage: x.test_bit(6)
1

1.2. Elements of the ring \(\mathbb{Z} \) of integers
to_bytes *(length=1, byteorder='big', is_signed=False)*

Return an array of bytes representing an integer.

Internally relies on the python `int.to_bytes()` method.

INPUT:

- **length** – positive integer (default: 1); integer is represented in length bytes
- **byteorder** – str (default: "big"); determines the byte order of the output; can only be "big" or "little"
- **is_signed** – boolean (default: False); determines whether to use two’s compliment to represent the integer

Todo: It should be possible to convert straight from the gmp type in cython. This could be significantly faster, but I am unsure of the fastest and cleanest way to do this.

EXAMPLES:

```
sage: (1024).to_bytes(2, byteorder='big')
b'\x04\x00'
sage: (1024).to_bytes(10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
sage: (-1024).to_bytes(10, byteorder='big', is_signed=True)
b'\xff\xff\xff\xff\xff\xff\xff\xff\xff\xc0'
sage: x = 1000
sage: x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03'
```

trailing_zero_bits()

Return the number of trailing zero bits in `self`, i.e. the exponent of the largest power of 2 dividing `self`.

EXAMPLES:

```
sage: 11.trailing_zero_bits()
0
sage: (-11).trailing_zero_bits()
0
sage: (11<<5).trailing_zero_bits()
5
sage: (-11<<5).trailing_zero_bits()
5
sage: 0.trailing_zero_bits()
0
```

trial_division *(bound='LONG_MAX', start=2)*

Return smallest prime divisor of `self` up to bound, beginning checking at start, or abs(self) if no such divisor is found.

INPUT:

- **bound** – a positive integer that fits in a C signed long
- **start** – a positive integer that fits in a C signed long

OUTPUT: A positive integer

EXAMPLES:
You can specify a starting point:

\begin{Verbatim}
sage: n = 3*5*101*103
sage: n.trial_division(start=50)
101
\end{Verbatim}

\textbf{trunc}()

Round this number to the nearest integer, which is \texttt{self} since \texttt{self} is an integer.

\textbf{EXAMPLES:}

\begin{Verbatim}
sage: n = 6
sage: n.trunc()
6
\end{Verbatim}

INPUT:

• p - an integer at least 2.

OUTPUT:

• \(v_p(\text{self})\) - the p-adic valuation of \text{self}

• \(u_p(\text{self})\) - \(\text{self} / p^{v_p(\text{self})}\)

EXAMPLES:

```sage
sage: n = 60
sage: n.val_unit(2)
(2, 15)
sage: n.val_unit(3)
(1, 20)
sage: n.val_unit(7)
(0, 60)
sage: (2^11).val_unit(4)
(5, 2)
sage: 0.val_unit(2)
(+Infinity, 1)
```

valuation (\(p\))

Return the p-adic valuation of self.

INPUT:

• p - an integer at least 2.

EXAMPLES:

```sage
sage: n = 60
sage: n.valuation(2)
2
sage: n.valuation(3)
1
sage: n.valuation(7)
0
sage: n.valuation(1)
Traceback (most recent call last):
...
ValueError: You can only compute the valuation with respect to a integer \(\rightarrow\) larger than 1.
```

We do not require that \(p\) is a prime:

```sage
sage: (2^11).valuation(4)
5
```

xgcd \((n)\)

Return the extended gcd of this element and \(n\).

INPUT:

• \(n\) – an integer
OUTPUT:

A triple \((g, s, t)\) such that \(g\) is the non-negative gcd of \(\text{self}\) and \(n\), and \(s\) and \(t\) are cofactors satisfying the Bezout identity

\[g = s \cdot \text{self} + t \cdot n. \]

Note: There is no guarantee that the cofactors will be minimal. If you need the cofactors to be minimal use \(_xgcd()\). Also, using \(_xgcd()\) directly might be faster in some cases, see github issue #13628.

EXAMPLES:

```python
sage: 6.xgcd(4)
(2, 1, -1)
```

```python
class sage.rings.integer.IntegerWrapper
Bases: Integer

Rationale for the IntegerWrapper class:

With Integer objects, the allocation/deallocation function slots are hijacked with custom functions that stick already allocated Integer objects (with initialized parent and mpz_t fields) into a pool on “deallocation” and then pull them out whenever a new one is needed. Because Integers objects are so common, this is actually a significant savings. However, this does cause issues with subclassing a Python class directly from Integer (but that’s ok for a Cython class).

As a workaround, one can instead derive a class from the intermediate class IntegerWrapper, which sets statically its alloc/dealloc methods to the original Integer alloc/dealloc methods, before they are swapped manually for the custom ones.

The constructor of IntegerWrapper further allows for specifying an alternative parent to IntegerRing.
```

```python
sage: f = ZZ.coerce_map_from(int)
sage: type(f)
<class 'sage.rings.integer.long_to_Z'>
```

```python
sage: f(5r)
5
sage: type(f(5r))
<class 'sage.rings.integer.Integer'>
sage: 1 + 2r
3
sage: type(1 + 2r)
<class 'sage.rings.integer.Integer'>
```

This is intended for internal use by the coercion system, to facilitate fast expressions mixing ints and more complex Python types. Note that (as with all morphisms) the input is forcibly coerced to the domain int if it is not already of the correct type which may have undesirable results:

1.2. Elements of the ring \(\mathbb{Z}\) of integers
sage: f.domain()
Set of Python objects of class 'int'
sage: f(1/3)
0
sage: f(1.7)
1
sage: f("10")
10

A pool is used for small integers:

sage: f(10) is f(10)
True
sage: f(-2) is f(-2)
True

sage.rings.integer.is_Integer(x)
Return True if x is of the Sage Integer type.

EXAMPLES:

sage: from sage.rings.integer import is_Integer
sage: is_Integer(2)
True
sage: is_Integer(2/1)
False
sage: is_Integer(int(2))
False
sage: is_Integer(5)
False

class sage.rings.integer.long_to_Z
Bases: Morphism

EXAMPLES:

sage: f = ZZ.coerce_map_from(int)
sage: f
Native morphism:
 From: Set of Python objects of class 'int'
 To: Integer Ring
sage: f(1rL)
1

sage.rings.integer.make_integer(s)
Create a Sage integer from the base-32 Python string s. This is used in unpickling integers.

EXAMPLES:

sage: from sage.rings.integer import make_integer
sage: make_integer('-29')
-73
sage: make_integer(29)
Traceback (most recent call last):
 ...TypeError: expected str...Integer found
1.3 Cython wrapper for bernmm library

AUTHOR:
- David Harvey (2008-06): initial version

```python
sage.rings.bernmm.bernmm_bern_modp(p, k)
```

Compute $B_k \mod p$, where B_k is the k-th Bernoulli number.
If B_k is not p-integral, return -1.

INPUT:
- p – a prime
- k – non-negative integer

COMPLEXITY:
Pretty much linear in p.

EXAMPLES:

```python
sage: from sage.rings.bernmm import bernmm_bern_modp
sage: bernoulli(0) % 5, bernmm_bern_modp(5, 0)
(1, 1)
sage: bernoulli(1) % 5, bernmm_bern_modp(5, 1)
(2, 2)
sage: bernoulli(2) % 5, bernmm_bern_modp(5, 2)
(1, 1)
sage: bernoulli(3) % 5, bernmm_bern_modp(5, 3)
(0, 0)
sage: bernoulli(4), bernmm_bern_modp(5, 4)
(-1/30, -1)
sage: bernoulli(18) % 5, bernmm_bern_modp(5, 18)
(4, 4)
sage: bernoulli(19) % 5, bernmm_bern_modp(5, 19)
(0, 0)
```

```python
sage: p = 10000019; k = 1000
sage: bernoulli(k) % p
1972762
sage: bernmm_bern_modp(p, k)
1972762
```

```python
sage.rings.bernmm.bernmm_bern_rat(k, num_threads=1)
```

Compute k-th Bernoulli number using a multimodular algorithm. (Wrapper for bernmm library.)

INPUT:
- k – non-negative integer
- num_threads – integer ≥ 1, number of threads to use

COMPLEXITY:
Pretty much quadratic in k. See the paper “A multimodular algorithm for computing Bernoulli numbers”, David Harvey, 2008, for more details.

EXAMPLES:
sage: from sage.rings.bernmm import bernmm_bern_rat

sage: bernmm_bern_rat(0)
1
sage: bernmm_bern_rat(1)
-1/2
sage: bernmm_bern_rat(2)
1/6
sage: bernmm_bern_rat(3)
0
sage: bernmm_bern_rat(100)
-→94598037819122125295227433069493721872702841533066936133385696204311395415197247711/
→33330
sage: bernmm_bern_rat(100, 3)
-→94598037819122125295227433069493721872702841533066936133385696204311395415197247711/
→33330

1.4 Bernoulli numbers modulo p

AUTHOR:

- David Harvey (2006-07-26): initial version
- David Harvey (2006-08-06): new, faster algorithm, also using faster NTL interface
- David Harvey (2007-08-31): algorithm for a single Bernoulli number mod p
- David Harvey (2008-06): added interface to bernmm, removed old code

sage.rings.bernoulli_mod_p.bernoulli_mod_p(p)

Return the Bernoulli numbers $B_0, B_2, \ldots B_{p-3}$ modulo p.

INPUT:

- p – integer, a prime

OUTPUT:

list – Bernoulli numbers modulo p as a list of integers $[B(0), B(2), \ldots B(p-3)]$.

ALGORITHM:

Described in accompanying latex file.

PERFORMANCE:

Should be complexity $O(p \log p)$.

EXAMPLES:

Check the results against PARI’s C-library implementation (that computes exact rationals) for $p = 37$:

sage: bernoulli_mod_p(37)

[1, 31, 16, 15, 16, 4, 17, 32, 31, 15, 15, 17, 12, 29, 2, 0, 2]

sage: [bernoulli(n) % 37 for n in range(0, 36, 2)]

[1, 31, 16, 15, 16, 4, 17, 32, 31, 15, 15, 17, 12, 29, 2, 0, 2]
Boundary case:

```python
sage: bernoulli_mod_p(3)
[1]
```

AUTHOR:

- David Harvey (2006-08-06)

```python
sage.rings.bernoulli_mod_p.bernoulli_mod_p_single(p, k)
```

Return the Bernoulli number \(B_k \mod p\).

If \(B_k\) is not \(p\)-integral, an `ArithmeticError` is raised.

INPUT:

- \(p\) – integer, a prime
- \(k\) – non-negative integer

OUTPUT:

The \(k\)-th Bernoulli number \(\mod p\).

EXAMPLES:

```python
sage: bernoulli_mod_p_single(1009, 48)
628
sage: bernoulli(48) % 1009
628
sage: bernoulli_mod_p_single(1, 5)
Traceback (most recent call last):
  ... ValueError: p (=1) must be a prime >= 3
sage: bernoulli_mod_p_single(100, 4)
Traceback (most recent call last):
  ... ValueError: p (=100) must be a prime
sage: bernoulli_mod_p_single(19, 5)
0
sage: bernoulli_mod_p_single(19, 18)
Traceback (most recent call last):
  ... ArithmeticError: B_k is not integral at p
sage: bernoulli_mod_p_single(19, -4)
Traceback (most recent call last):
  ... ValueError: k must be non-negative
```

Check results against `bernoulli_mod_p`:

```python
sage: bernoulli_mod_p(37)
[1, 31, 16, 15, 16, 4, 17, 32, 22, 31, 15, 15, 17, 12, 29, 2, 0, 2]
sage: [bernoulli_mod_p_single(37, n) % 37 for n in range(0, 36, 2)]
[1, 31, 16, 15, 16, 4, 17, 32, 22, 31, 15, 15, 17, 12, 29, 2, 0, 2]
```

(continues on next page)
AUTHOR:

- David Harvey (2007-08-31)
- David Harvey (2008-06): rewrote to use bernmm library

sage.rings.bernoulli_mod_p.verify_bernoulli_mod_p(data)

Compute checksum for Bernoulli numbers.

It checks the identity

\[
\frac{(p-3)}{2} \sum_{n=0}^{\infty} 2^{2n}(2n+1)B_{2n} \equiv -2 \pmod{p}
\]

(see “Irregular Primes to One Million”, Buhler et al)

INPUT:

- `data` – list, same format as output of `bernoulli_mod_p()` function

OUTPUT: bool – True if checksum passed

EXAMPLES:

```python
sage: from sage.rings.bernoulli_mod_p import verify_bernoulli_mod_p
sage: verify_bernoulli_mod_p(bernoulli_mod_p(next_prime(3)))
True
sage: verify_bernoulli_mod_p(bernoulli_mod_p(next_prime(1000)))
True
sage: verify_bernoulli_mod_p([1, 2, 4, 5, 4])
True
sage: verify_bernoulli_mod_p([1, 2, 3, 4, 5])
False
```

This one should test that long longs are working:

```python
sage: verify_bernoulli_mod_p(bernoulli_mod_p(next_prime(20000)))
True
```

AUTHOR: David Harvey
1.5 Integer factorization functions

AUTHORS:

- Andre Apitzsch (2011-01-13): initial version

```
sage.rings.factorint.aurifeuillian(n, m, F=None, check=True)
```

Return the Aurifeuillian factors $F_n^\pm(m^2n)$.
This is based off Theorem 3 of [Bre1993].

INPUT:
- n – integer
- m – integer
- F – integer (default: None)
- `check` – boolean (default: True)

OUTPUT:
A list of factors.

EXAMPLES:

```
sage: from sage.rings.factorint import aurifeuillian
sage: # needs sage.libs.pari sage.rings.real_interval_field
sage: aurifeuillian(2, 2)
[5, 13]
sage: aurifeuillian(2, 2^5)
[1985, 2113]
sage: aurifeuillian(5, 3)
[1471, 2851]
sage: aurifeuillian(15, 1)
[19231, 142111]
sage: # needs sage.libs.pari
sage: aurifeuillian(12, 3)
Traceback (most recent call last):
  ... ValueError: n has to be square-free
sage: aurifeuillian(1, 2)
Traceback (most recent call last):
  ... ValueError: n has to be greater than 1
sage: aurifeuillian(2, 0)
Traceback (most recent call last):
  ... ValueError: m has to be positive
```

Note: There is no need to set F. It's only for increasing speed of `factor_aurifeuillian()`.

```
sage.rings.factorint.factor_aurifeuillian(n, check=True)
```

Return Aurifeuillian factors of n if $n = x^{(2k-1)x} \pm 1$ (where the sign is `-` if $x = 1 \mod 4$, and `+` otherwise) else n

INPUT:
• n – integer

OUTPUT:
List of factors of n found by Aurifeuillian factorization.

EXAMPLES:

```python
sage: from sage.rings.factorint import factor_aurifeuillian as fa
sage: fa(2^6 + 1)
[5, 13]
sage: fa(2^58 + 1)
[536838145, 536903681]
sage: fa(3^3 + 1)
[4, 1, 7]
sage: fa(5^5 - 1)
[4, 11, 71]
sage: prod(_) == 5^5 - 1
True
sage: fa(2^4 + 1)
[17]
sage: fa((6^2*3)^3 + 1)
[109, 91, 127]
```

REFERENCES:
• http://mathworld.wolfram.com/AurifeuilleanFactorization.html
• [Bre1993] Theorem 3

```python
sage.rings.factorint.factor_cunningham(m, proof=None)
```

Return factorization of `self` obtained using trial division for all primes in the so called Cunningham table. This is efficient if `self` has some factors of type $b^n + 1$ or $b^n - 1$, with b in \{2, 3, 5, 6, 7, 10, 11, 12\}.

You need to install an optional package to use this method, this can be done with the following command line: `sage -i cunningham_tables`.

INPUT:
• `proof` – bool (default: None); whether or not to prove primality of each factor, this is only for factors not in the Cunningham table

EXAMPLES:

```python
sage: from sage.rings.factorint import factor_cunningham
sage: factor_cunningham(2^257-1) # optional - cunningham_tables
535006138814359 * 1155685395246619182673033 * 374550598501810936581776630096313181393
sage: factor_cunningham((3^101+1)*(2^60).next_prime(), proof=False) # optional - cunningham_tables
2^2 * 379963 * 1152921504606847009 * 101729152719872329220830935465878507727527
```

```python
sage.rings.factorint.factor_trial_division(m, limit='LONG_MAX')
```

Return partial factorization of `self` obtained using trial division for all primes up to `limit`, where `limit` must fit in a C signed long.

INPUT:
• `limit` – integer (default: LONG_MAX) that fits in a C signed long

EXAMPLES:
1.6 Integer factorization using FLINT

AUTHORS:
- Michael Orlitzky (2023)

sage.rings.factorint_flint.factor_using_flint(n)
Factor the nonzero integer \(n \) using FLINT.

This function returns a list of (factor, exponent) pairs. The factors will be of type `Integer`, and the exponents will be of type `int`.

INPUT:
- \(n \) – a nonzero sage `Integer`; the number to factor.

OUTPUT:
A list of `(Integer, int)` pairs representing the factors and their exponents.

EXAMPLES:

```python
sage: from sage.rings.factorint_flint import factor_using_flint
sage: n = ZZ(9962572652930382)
sage: factors = factor_using_flint(n)
sage: factors
[(2, 1), (3, 1), (1660428775488397, 1)]
sage: prod( f^e for (f,e) in factors ) == n
True
```

Negative numbers will have a leading factor of `\(-1\)`:

```python
sage: n = ZZ(-1 * 2 * 3)
sage: factor_using_flint(n)
[(-1, 1), (2, 1), (3, 1)]
```

The factorization of unity is empty:

```python
sage: factor_using_flint(ZZ.one())
[]
```

While zero has a single factor, of... zero:

```python
sage: factor_using_flint(ZZ.zero())
[(0, 1)]
```
1.7 Integer factorization using PARI

AUTHORS:
- Jeroen Demeyer (2015)

`sage.rings.factorint_pari.factor_using_pari(n, int_=False, debug_level=0, proof=None)`

Factor this integer using PARI.

This function returns a list of pairs, not a `Factorization` object. The first element of each pair is the factor, of type `Integer` if `int_` is `False` or integer otherwise, the second element is the positive exponent, of type integer.

INPUT:
- `int_` – (default: `False`), whether the factors are of type integer instead of `Integer`
- `debug_level` – (default: `0`), debug level of the call to PARI
- `proof` – (default: `None`), whether the factors are required to be proven prime; if `None`, the global default is used

OUTPUT:
A list of pairs.

EXAMPLES:
```
sage: factor(-2**72 + 3, algorithm='pari')  # indirect doctest
-1 * 83 * 131 * 294971519 * 1472414939
```

Check that PARI’s debug level is properly reset (github issue #18792):
```
sage: alarm(0.5); factor(2^1000 - 1, verbose=5)
Traceback (most recent call last):
  ... AlarmInterrupt
sage: pari.get_debug_level()
0
```

1.8 Basic arithmetic with C integers

```python
class sage.rings.fast_arith.arith_int
    Bases: object
    gcd_int (a, b)
    inverse_mod_int (a, m)
    rational_recon_int (a, m)
        Rational reconstruction of a modulo m.
    xgcd_int (a, b)

class sage.rings.fast_arith.arith_llong
    Bases: object
    gcd_longlong (a, b)
```

Chapter 1. Integers
inverse_mod_longlong\((a, m)\)

rational_recon_longlong\((a, m)\)
Rational reconstruction of a modulo \(m\).

sage.rings.fast_arith.prime_range\((\text{start}, \text{stop}=\text{None}, \text{algorithm}=\text{None}, \text{py_ints}=\text{False})\)
Return a list of all primes between \(\text{start}\) and \(\text{stop} - 1\), inclusive.

If the second argument is omitted, this returns the primes up to the first argument.

The sage command \texttt{primes()} is an alternative that uses less memory (but may be slower), because it returns an iterator, rather than building a list of the primes.

INPUT:

- \texttt{start} – integer, lower bound (default: 1)
- \texttt{stop} – integer, upper bound
- \texttt{algorithm} – optional string (default: None), one of:
 - None: Use algorithm "pari_primes" if \(\text{stop} <= 436273009\) (approximately 4.36E8). Otherwise use algorithm "pari_isprime".
 - "pari_primes": Use PARI's \texttt{pari:primes} function to generate all primes from 2 to \(\text{stop}\). This is fast but may crash if there is insufficient memory. Raises an error if \(\text{stop} > 436273009\).
 - "pari_isprime": Wrapper for \texttt{list(primes(\text{start}, \text{stop}))}. Each (odd) integer in the specified range is tested for primality by applying PARI's \texttt{pari:isprime} function. This is slower but will work for much larger input.
- \texttt{py_ints} – optional boolean (default False), return Python ints rather than Sage Integers (faster). Ignored unless algorithm "pari_primes" is being used.

EXAMPLES:

\begin{verbatim}
sage: prime_range(10)
[2, 3, 5, 7]
sage: prime_range(7)
[2, 3, 5]
sage: prime_range(2000, 2020)
sage: prime_range(2, 2)
[]
sage: prime_range(2, 3)
[2]
sage: prime_range(5, 10)
[5, 7]
sage: prime_range(-100, 10, "pari_isprime")
[2, 3, 5, 7]
sage: prime_range(2, 2, algorithm="pari_isprime")
[]
sage: prime_range(10**16, 10**16+100, "pari_isprime")
[1000000000000000000000001, 1000000000000000000000009, 1000000000000000000000017, 1000000000000000000000057, 1000000000000000000000099]
sage: type(prime_range(8)[0])<class 'sage.rings.integer.Integer'>
sage: type(prime_range(8, algorithm="pari_isprime")[0])<class 'sage.rings.integer.Integer'>
\end{verbatim}
Note: start and stop should be integers, but real numbers will also be accepted as input. In this case, they will be rounded to nearby integers start and stop, so the output will be the primes between start and stop - 1, which may not be exactly the same as the primes between start and stop - 1.

AUTHORS:
- William Stein (original version)
- Craig Citro (rewrote for massive speedup)
- Kevin Stueve (added primes iterator option) 2010-10-16
- Robert Bradshaw (speedup using Pari prime table, py_ints option)

1.9 Fast decomposition of small integers into sums of squares

Implement fast version of decomposition of (small) integers into sum of squares by direct method not relying on factorisation.

AUTHORS:
- Vincent Delecroix (2014): first implementation (github issue #16374)

\[
\text{sage.rings.sum_of_squares.four_squares}(n)
\]

Return a 4-tuple of non-negative integers \((i, j, k, l)\) such that \(i^2 + j^2 + k^2 + l^2 = n\) and \(i \leq j \leq k \leq l\).

The input must be lesser than \(2^{32} = 4294967296\), otherwise an \texttt{OverflowError} is raised.

See also:
\texttt{four_squares()} is much more suited for large input

EXAMPLES:

```
sage: from sage.rings.sum_of_squares import four_squares
sage: four_squares(15447)
(2, 5, 17, 123)
sage: 2^2 + 5^2 + 17^2 + 123^2
15447
sage: four_squares(523439)
(3, 5, 26, 723)
sage: 3^2 + 5^2 + 26^2 + 723^2
523439
sage: four_squares_pyx(2**32)
Traceback (most recent call last):
... OverflowError: ...
```

\[
\text{sage.rings.sum_of_squares.is_sum_of_two_squares}(n)
\]

Return \texttt{True} if \(n\) is a sum of two squares and \texttt{False} otherwise.

The input must be smaller than \(2^{32} = 4294967296\), otherwise an \texttt{OverflowError} is raised.

EXAMPLES:
Fast decomposition of small integers into sums of squares

sage: from sage.rings.sum_of_squares import is_sum_of_two_squares
sage: for x in range(30) if is_sum_of_two_squares_pyx(x)
[0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29]

sage: is_sum_of_two_squares_pyx(232)**
Traceback (most recent call last):
... OverflowError: ...

sage.rings.sum_of_squares.three_squares_pyx(n)
If n is a sum of three squares return a 3-tuple (i, j, k) of Sage integers such that \(i^2 + j^2 + k^2 = n\) and \(i \leq j \leq k\). Otherwise raise a ValueError.

The input must be lesser than \(2^{32} = 4294967296\), otherwise an OverflowError is raised.

EXAMPLES:

sage: from sage.rings.sum_of_squares import three_squares_pyx
sage: three_squares_pyx(0)
(0, 0, 0)
sage: three_squares_pyx(1)
(0, 0, 1)
sage: three_squares_pyx(2)
(0, 1, 1)
sage: three_squares_pyx(3)
(1, 1, 1)
sage: three_squares_pyx(4)
(0, 0, 2)
sage: three_squares_pyx(5)
(0, 1, 2)
sage: three_squares_pyx(6)
(1, 1, 2)
sage: three_squares_pyx(7)
Traceback (most recent call last):
... ValueError: 7 is not a sum of 3 squares
sage: three_squares_pyx(107)
(1, 5, 9)

sage: three_squares_pyx(2**32)
Traceback (most recent call last):
... OverflowError: ...

sage.rings.sum_of_squares.two_squares_pyx(n)
Return a pair of non-negative integers (i, j) such that \(i^2 + j^2 = n\).

If n is not a sum of two squares, a ValueError is raised. The input must be lesser than \(2^{32} = 4294967296\), otherwise an OverflowError is raised.

See also:

two_squares() is much more suited for large inputs

EXAMPLES:

sage: from sage.rings.sum_of_squares import two_squares_pyx
sage: two_squares_pyx(0)
(0, 0)

(continues on next page)
1.10 Fast Arithmetic Functions

sage.arith.functions.LCM_list(v)

Return the LCM of an iterable v.

Elements of v are converted to Sage objects if they aren't already.

This function is used, e.g., by lcm().

INPUT:

- v – an iterable

OUTPUT: integer

EXAMPLES:

```python
sage: from sage.arith.functions import LCM_list
dsage: w = LCM_list([3, 9, 30]); w
90
sage: type(w)
<class 'sage.rings.integer.Integer'>
```

The inputs are converted to Sage integers:

```python
sage: w = LCM_list([int(3), int(9), int(30)]); w
90
sage: type(w)
<class 'sage.rings.integer.Integer'>
```

sage.arith.functions.lcm(a, b=None)

The least common multiple of a and b, or if a is a list and b is omitted the least common multiple of all elements of a.

Note that LCM is an alias for lcm.

INPUT:

- a, b – two elements of a ring with lcm or
- a – a list or tuple of elements of a ring with lcm
OUTPUT:
First, the given elements are coerced into a common parent. Then, their least common multiple in that parent is returned.

EXAMPLES:

```
sage: lcm(97,100)
9700
sage: LCM(97,100)
9700
sage: LCM(0,2)
0
sage: LCM(-3,-5)
15
sage: LCM([1,2,3,4,5])
60
sage: v = LCM(range(1,10000))  # *very* fast!
sage: len(str(v))
4349
```

1.11 Generic implementation of powering

This implements powering of arbitrary objects using a square-and-multiply algorithm.

```
sage.arith.power.generic_power(a, n)
Return a^n.
If n is negative, return (1/a)^n.

INPUT:
• a – any object supporting multiplication (and division if n < 0)
• n – any integer (in the duck typing sense)
```

EXAMPLES:

```
sage: from sage.arith.power import generic_power
sage: generic_power(int(12), int(0))
1
sage: generic_power(int(0), int(100))
0
sage: generic_power(Integer(10), Integer(0))
1
sage: generic_power(Integer(0), Integer(23))
0
sage: sum([generic_power(2,i) for i in range(17)])  # test all 4-bit combinations
131071
sage: F = Zmod(5)
sage: a = generic_power(F(2), 5); a
2
sage: a.parent() is F
True
sage: a = generic_power(F(1), 2)
sage: a.parent() is F
True
```

(continues on next page)
1.12 Utility classes for multi-modular algorithms

```python
sage: class SymbolicMul(str):
....:     def __mul__(self, other):
....:         s = "{}*{}").format(self, other)
....:         return type(self)(s)

sage: x = SymbolicMul("x")
sage: print(generic_power(x, 7))
((x*x)*(x*x))*(x*x)*x)
```

```python
crt (b)
Calculate lift mod \(\prod_{i=0}^{len(b)-1} m_i\).
In the case that offset > 0, z[j] remains unchanged mod \(\prod_{i=0}^{offset-1} m_i\)

INPUT:
- b - a list of length at most self.n

OUTPUT:

```
```
Integer $z$ where $z = b[i]mod m_i$ for $0 <= i < \text{len}(b)$

**EXAMPLES:**

```python
sage: from sage.arith.multi_modular import MultiModularBasis_base
sage: mm = MultiModularBasis_base([10007, 10009, 10037, 10039, 17351])
sage: res = mm.crt([3, 5, 7, 9]); res
8474803647063985
sage: res % 10007
3
sage: res % 10009
5
sage: res % 10037
7
sage: res % 10039
9
```

**extend_with_primes** *(plist, partial_products=None, check=True)*

Extend the stored list of moduli with the given primes in `plist`.

**EXAMPLES:**

```python
sage: from sage.arith.multi_modular import MultiModularBasis_base
sage: mm = MultiModularBasis_base([1009, 10007]); mm
MultiModularBasis with moduli [1009, 10007]
sage: mm.extend_with_primes([10037, 10039])
4
sage: mm
MultiModularBasis with moduli [1009, 10007, 10037, 10039]
```

**list()**

Return a list with the prime moduli.

**EXAMPLES:**

```python
sage: from sage.arith.multi_modular import MultiModularBasis_base
sage: mm = MultiModularBasis_base([46307, 10007]); mm
MultiModularBasis with moduli [46307, 10007]
sage: mm.list()
[46307, 10007]
```

**partial_product(n)**

Return a list containing precomputed partial products.

**EXAMPLES:**

```python
sage: from sage.arith.multi_modular import MultiModularBasis_base
sage: mm = MultiModularBasis_base([46307, 10007]); mm
MultiModularBasis with moduli [46307, 10007]
sage: mm.partial_product(0)
46307
sage: mm.partial_product(1)
463394149
```

**precomputation_list()**

Return a list of the precomputed coefficients $\prod_j 1^{i-1} m_j^{-1} (mod m_i)$ where $m_i$ are the prime moduli.

**EXAMPLES:**
```python
sage: from sage.arith.multi_modular import MultiModularBasis_base
sage: mm = MultiModularBasis_base([46307, 10007]); mm
MultiModularBasis with moduli [46307, 10007]
sage: mm.precomputation_list()
[1, 4013]
```

### prod()

Return the product of the prime moduli.

**EXAMPLES:**

```python
sage: from sage.arith.multi_modular import MultiModularBasis_base
sage: mm = MultiModularBasis_base([46307]); mm
MultiModularBasis with moduli [46307]
sage: mm.prod()
46307
sage: mm = MultiModularBasis_base([46307, 10007]); mm
MultiModularBasis with moduli [46307, 10007]
sage: mm.prod()
463394149
```

### Prod() (Continued)

Return the product of the prime moduli.

**EXAMPLES:**

```python
sage: from sage.arith.multi_modular import MultiModularBasis_base
sage: mm = MultiModularBasis_base([46307])
sage: mm.list() == [10007, p]
True
```

### class sage.arith.multi_modular.MutableMultiModularBasis

Bases: `MultiModularBasis`

Class used for performing multi-modular methods, with the possibility of removing bad primes.

### next_prime()

Pick a new random prime between the bounds given during the initialization of this object, update the pre-computed data, and return the new prime modulus.

**EXAMPLES:**

```python
sage: from sage.arith.multi_modular import MultiModularBasis
sage: mm = MultiModularBasis([10007, 10009, 10037, 10039])
sage: mm
MultiModularBasis with moduli [10007, 10009, 10037, 10039]
sage: prev_prod = mm.prod(); prev_prod
```

### replace_prime(ix)

Replace the prime moduli at the given index with a different one, update the precomputed data accordingly, and return the new prime.

**INPUT:**

- `ix` – index into list of moduli

**OUTPUT:** the new prime modulus

**EXAMPLES:**

```python
sage: from sage.arith.multi_modular import MultiModularBasis
sage: mm = MultiModularBasis([10007, 10009, 10037, 10039])
sage: mm
MultiModularBasis with moduli [10007, 10009, 10037, 10039]
sage: prev_prod = mm.prod(); prev_prod
```

(continues on next page)
1.13 Miscellaneous arithmetic functions

AUTHORS:

• Kevin Stueve (2010-01-17): in \texttt{is\_prime(n)}, delegated calculation to \texttt{n.is\_prime()}

\begin{verbatim}
sage.arith.misc.CRT(a, b, m=None, n=None)

Return a solution to a Chinese Remainder Theorem problem.

INPUT:

• a, b - two residues (elements of some ring for which extended gcd is available), or two lists, one of residues and one of moduli.

• m, n - (default: None) two moduli, or None.

OUTPUT:

If m, n are not None, returns a solution x to the simultaneous congruences \( x \equiv a \mod m \) and \( x \equiv b \mod n \), if one exists. By the Chinese Remainder Theorem, a solution to the simultaneous congruences exists if and only if \( a \equiv b \pmod{\gcd(m, n)} \). The solution x is only well-defined modulo \( \text{lcm}(m, n) \).

If a and b are lists, returns a simultaneous solution to the congruences \( x \equiv a_i \pmod{b_i} \), if one exists.

See also:

• \texttt{CRT\_list()}\end{verbatim}

EXAMPLES:

Using \texttt{crt} by giving it pairs of residues and moduli:

\begin{verbatim}
sage: \texttt{crt(2, 1, 3, 5)}
11
sage: \texttt{crt(13, 20, 100, 301)}
28013
sage: \texttt{crt([2, 1], [3, 5])}
11
\end{verbatim}
sage: crt([13, 20], [100, 301])
28013

You can also use uppercase:

sage: c = CRT(2,3, 3, 5); c
8
sage: c % 3 == 2
True
sage: c % 5 == 3
True

Note that this also works for polynomial rings:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, 'x')

sage: K.<a> = NumberField(x^3 - 7)

sage: R.<y> = K[]

sage: f = y^2 + 3
sage: g = y^3 - 5
sage: CRT(1, 3, f, g)
-3/26*y^4 + 5/26*y^3 + 15/26*y + 53/26
sage: CRT(1, a, f, g)
(-3/52*a + 3/52)*y^4 + (5/52*a - 5/52)*y^3 + (15/52*a - 15/52)*y + 27/52*a + 25/52

You can also do this for any number of moduli:

sage: # needs sage.rings.number_field
sage: K.<a> = NumberField(x^3 - 7)

sage: R.<x> = K[]

sage: CRT([], [])
0
sage: CRT([a], [x])
a
sage: f = x^2 + 3
sage: g = x^3 - 5
sage: h = x^5 + x^2 - 9
sage: k = CRT([1, a, 3], [f, g, h]); k
(127/26988*a - 5807/386828)*x^9 + (45/8996*a - 33677/1160484)*x^8 + (2/173*a - 6/173)*x^7 + (133/6747*a - 5373/96707)*x^6 + (-6/2249*a + 18584/290121)*x^5 + (-277/8996*a + 38847/386828)*x^4 + (-135/4498*a + 42673/193414)*x^3 + (-1005/8996*a + 470245/1160484)*x^2 + (-1215/8996*a + 141165/386828)*x + 621/8996*a + 836445/386828
sage: k.mod(f)
1
sage: k.mod(g)
a
sage: k.mod(h)
3

If the moduli are not coprime, a solution may not exist:

sage: crt(4, 8, 8, 12)
20
sage: crt(4, 6, 8, 12)
Traceback (most recent call last):
...

(continues on next page)
ValueError: no solution to crt problem since gcd(8,12) does not divide 4-6

```sage
x = polygen(QQ)
sage: crt(2, 3, x - 1, x + 1)
-1/2*x + 5/2
sage: crt(2, x, x^2 - 1, x^2 + 1)
-1/2*x^3 + x^2 + 1/2*x + 1
sage: crt(2, x, x^2 - 1, x^3 - 1)
Traceback (most recent call last):
... ValueError: no solution to crt problem since gcd(x^2 - 1,x^3 - 1) does not divide →2-x
```

```sage
sage: crt(int(2), int(3), int(7), int(11))
58
```
crt also work with numpy and gmpy2 numbers:

```sage
sage: import numpy

sage: crt(numpy.int8(2), numpy.int8(3), numpy.int8(7), numpy.int8(11))
58
```
```sage
sage: from gmpy2 import mpz
sage: crt(mpz(2), mpz(3), mpz(7), mpz(11))
58
```

```
```
```
```

sage.arith.misc.CRT_basis(moduli)

Return a CRT basis for the given moduli.

INPUT:

- **moduli** - list of pairwise coprime moduli $m$ which admit an extended Euclidean algorithm

OUTPUT:

- a list of elements $a_i$ of the same length as $m$ such that $a_i$ is congruent to 1 modulo $m_i$ and to 0 modulo $m_j$ for $j \neq i$.

EXAMPLES:

```sage
sage: a1 = ZZ(mod(42,5))
sage: a2 = ZZ(mod(42,13))
sage: c1,c2 = CRT_basis([5,13])
sage: mod(a1*c1+a2*c2,5*13)
42
```

A polynomial example:

```sage
sage: x=polygen(QQ)
sage: mods = [x,x^2+1,2*x-3]
sage: b = CRT_basis(mods)
sage: b
[-2/3*x^3 + x^2 - 2/3*x + 1, 6/13*x^3 - x^2 + 6/13*x, 8/39*x^3 + 8/39*x]
```

(continues on next page)
sage: [[bi % mj for mj in mods] for bi in b]
[[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

sage.arith.misc.CRT_list(values, moduli)

Given a list values of elements and a list of corresponding moduli, find a single element that reduces to each element of values modulo the corresponding moduli.

See also:

• crt()

EXAMPLES:

sage: CRT_list([2,3,2], [3,5,7])
23
sage: x = polygen(QQ)
sage: c = CRT_list([3], [x]); c
3
sage: c.parent()
Univariate Polynomial Ring in x over Rational Field

It also works if the moduli are not coprime:

sage: CRT_list([32,2,2],[60,90,150])
452

But with non coprime moduli there is not always a solution:

sage: CRT_list([32,2,1],[60,90,150])
Traceback (most recent call last):
... 
ValueError: no solution to crt problem since gcd(180,150) does not divide 92-1

The arguments must be lists:

sage: CRT_list([1,2,3],"not a list")
Traceback (most recent call last):
... 
ValueError: arguments to CRT_list should be lists
sage: CRT_list("not a list",[2,3])
Traceback (most recent call last):
... 
ValueError: arguments to CRT_list should be lists

The list of moduli must have the same length as the list of elements:

sage: CRT_list([1,2,3],[2,3,5])
23
sage: CRT_list([1,2,3],[2,3])
Traceback (most recent call last):
... 
ValueError: arguments to CRT_list should be lists of the same length
sage: CRT_list([1,2,3],[2,3,5,7])
Traceback (most recent call last):
... 
ValueError: arguments to CRT_list should be lists of the same length
sage.arith.misc.CRT_vectors(X, moduli)

Vector form of the Chinese Remainder Theorem: given a list of integer vectors \( v_i \) and a list of coprime moduli \( m_i \), find a vector \( w \) such that \( w = v_i \pmod{m_i} \) for all \( i \). This is more efficient than applying \( \text{CRT()} \) to each entry.

INPUT:

- \( X \) - list or tuple, consisting of lists/tuples/vectors/etc of integers of the same length
- \( \text{moduli} \) - list of \( \text{len}(X) \) moduli

OUTPUT:

- list - application of CRT componentwise.

EXAMPLES:

```
sage: CRT_vectors([[3,5,7],[3,5,11]], [2,3])
[3, 5, 5]
sage: CRT_vectors([vector(ZZ, [2,3,1]), Sequence([1,7,8], ZZ)], [8,9])
 #→needs sage.modules
 [10, 43, 17]
```

class sage.arith.misc.Euler_Phi

Bases: object

Return the value of the Euler phi function on the integer \( n \). We defined this to be the number of positive integers \( \leq n \) that are relatively prime to \( n \). Thus if \( n \leq 0 \) then \( \text{euler}\_\phi(n) \) is defined and equals 0.

INPUT:

- \( n \) - an integer

EXAMPLES:

```
sage: euler_phi(1)
1
sage: euler_phi(2)
1
sage: euler_phi(3) #→needs sage.libs.pari
2
sage: euler_phi(12) #→needs sage.libs.pari
4
sage: euler_phi(37) #→needs sage.libs.pari
36
```

Notice that \( \text{euler}\_\phi \) is defined to be 0 on negative numbers and 0.

```
sage: euler_phi(-1)
0
sage: euler_phi(0)
0
sage: type(euler_phi(0))<class 'sage.rings.integer.Integer'>
```

We verify directly that the phi function is correct for 21.

1.13. Miscellaneous arithmetic functions 83
The length of the list of integers ‘i’ in range(n) such that the gcd(i,n) == 1 equals euler_phi(n).

Tests with numpy and gmpy2 numbers:

AUTHORS:

• William Stein
• Alex Clemesha (2006-01-10): some examples

plot (xmin=1, xmax=50, pointsize=30, rgbcolor=(0, 0, 1), join=True, **kwds)
Plot the Euler phi function.

INPUT:

• xmin - default: 1
• xmax - default: 50
• pointsize - default: 30
• rgbcolor - default: (0,0,1)
• join - default: True; whether to join the points.
• **kwds - passed on

EXAMPLES:
Return the greatest common divisor of \(a\) and \(b\).

If \(a\) is a list and \(b\) is omitted, return instead the greatest common divisor of all elements of \(a\).

**INPUT:**

- \(a, b\) – two elements of a ring with gcd or
- \(a\) – a list or tuple of elements of a ring with gcd

Additional keyword arguments are passed to the respectively called methods.

**OUTPUT:**

The given elements are first coerced into a common parent. Then, their greatest common divisor *in that common parent* is returned.

**EXAMPLES:**

```
sage: GCD(97,100)
sage: GCD(97*10^15, 19^20*97^2)
sage: GCD(2/3, 4/5)
sage: GCD([2,4,6,8])
sage: GCD(srange(0,10000,10))
```

Note that to take the gcd of \(n\) elements for \(n \neq 2\) you must put the elements into a list by enclosing them in \([..]\). Before [github issue #4988](#) the following wrongly returned 3 since the third parameter was just ignored:

```
sage: gcd(3, 6, 2)
```

Similarly, giving just one element (which is not a list) gives an error:

```
sage: gcd(3)
```

By convention, the gcd of the empty list is (the integer) 0:

```
sage: gcd([])
```

**class** `sage.arith.misc.Moebius`

**Bases:** object

Return the value of the Möbius function of abs\(n\), where \(n\) is an integer.

**DEFINITION:** \(\mu(n)\) is 0 if \(n\) is not square free, and otherwise equals \((-1)^r\), where \(n\) has \(r\) distinct prime factors.
For simplicity, if \( n = 0 \) we define \( \mu(n) = 0 \).

**IMPLEMENTATION:** Factors or - for integers - uses the PARI C library.

**INPUT:**
- \( n \) - anything that can be factored.

**OUTPUT:** 0, 1, or -1

**EXAMPLES:**

```sage
sage: # needs sage.libs.pari
sage: moebius(-5)
-1
sage: moebius(9)
0
sage: moebius(12)
0
sage: moebius(-35)
1
sage: moebius(-1)
1
sage: moebius(7)
-1
sage: moebius(0) # potentially nonstandard!
0
```
The moebius function even makes sense for non-integer inputs.

```sage
sage: x = GF(7)['x'].0
sage: moebius(x + 2) # needs sage.libs.pari
-1
```

Tests with numpy and gmpy2 numbers:

```sage
sage: from numpy import int8 # needs numpy
sage: moebius(int8(-5)) # needs numpy sage.libs.pari
-1
sage: from gmpy2 import mpz
data: moebius(mpz(-5)) # needs sage.libs.pari
-1
```

```plot``( xmin=0, xmax=50, pointsize=30, rgbcolor=(0, 0, 1), join=True, **kwds)
Plot the Möbius function.

INPUT:
- \(\text{xmin} \) - default: 0
- \(\text{xmax} \) - default: 50
- \(\text{pointsize} \) - default: 30
- \(\text{rgbcolor} \) - default: (0,0,1)
- \(\text{join} \) - default: True; whether to join the points (very helpful in seeing their order).
• **kwds** - passed on

EXAMPLES:

```python
sage: from sage.arith.misc import Moebius
sage: p = Moebius().plot()       # needs sage.libs.pari sage.plot
sage: p.ymax()                   # needs sage.libs.pari sage.plot
1.0
```

```python
range(start, stop=None, step=None)
```

Return the Möbius function evaluated at the given range of values, i.e., the image of the list \(\text{range}(\text{start}, \text{stop}, \text{step})\) under the Möbius function.

This is much faster than directly computing all these values with a list comprehension.

EXAMPLES:

```python
sage: # needs sage.libs.pari
sage: v = moebius.range(-10, 10); v
[1, 0, 0, -1, 1, -1, 0, -1, -1, 1, 0, 1, -1, 0, -1, 1, -1, 0, 0]
sage: v == [moebius(n) for n in range(-10, 10)]
True
sage: v = moebius.range(-1000, 2000, 4)
sage: v == [moebius(n) for n in range(-1000, 2000, 4)]
True
```

class sage.arith.misc.Sigma

Return the sum of the \(k\)-th powers of the divisors of \(n\).

INPUT:

• \(n\) - integer
• \(k\) - integer (default: 1)

OUTPUT: integer

EXAMPLES:

```python
sage: sigma(5)
6
sage: sigma(5, 2)
26
```

The sigma function also has a special plotting method.

```python
sage: P = plot(sigma, 1, 100)  # needs sage.plot
```

This method also works with \(k\)-th powers.

```python
sage: P = plot(sigma, 1, 100, k=2)  # needs sage.plot
```

AUTHORS:

• William Stein: original implementation
• Craig Citro (2007-06-01): rewrote for huge speedup

plot (xmin=1, xmax=50, k=1, pointsize=30, rgbcolor=(0, 0, 1), join=True, **kwds)

Plot the sigma (sum of k-th powers of divisors) function.

INPUT:

• xmin - default: 1
• xmax - default: 50
• k - default: 1
• pointsize - default: 30
• rgbcolor - default: (0,0,1)
• join - default: True; whether to join the points.
• **kwds - passed on

EXAMPLES:

```python
sage: from sage.arith.misc import Sigma
sage: p = Sigma().plot()  # needs sage.libs.pari sage.plot
sage: p.ymax()  # needs sage.libs.pari sage.plot
124.0
```

sage.arith.misc.XGCD (a, b)

Return a triple \((g, s, t)\) such that \(g = s \cdot a + t \cdot b = \gcd(a, b)\).

Note: One exception is if \(a\) and \(b\) are not in a principal ideal domain (see Wikipedia article Principal_ideal_domain), e.g., they are both polynomials over the integers. Then this function can’t in general return \((g, s, t)\) as above, since they need not exist. Instead, over the integers, we first multiply \(g\) by a divisor of the resultant of \(a/g\) and \(b/g\), up to sign.

INPUT:

• \(a, b\) - integers or more generally, element of a ring for which the xgcd make sense (e.g. a field or univariate polynomials).

OUTPUT:

• \(g, s, t\) - such that \(g = s \cdot a + t \cdot b\)

Note: There is no guarantee that the returned cofactors (\(s\) and \(t\)) are minimal.

EXAMPLES:

```python
sage: xgcd(56, 44)
(4, 4, -5)
sage: 4*56 + (-5)*44
4
sage: g, a, b = xgcd(5/1, 7/1); g, a, b
(1, 3, -2)
sage: a*(5/1) + b*(7/1) == g
```

(continues on next page)
Here is an example of a \texttt{xgcd} for two polynomials over the integers, where the linear combination is not the \texttt{gcd} but \texttt{gcd} multiplied by the resultant:

\begin{verbatim}
sage: R.<x> = ZZ[]
sage: xgcd(2*x*(x-1), x^2)
(2*x, -1, 2)
sage: (2*(x-1)).resultant(x)
2
\end{verbatim}

Tests with numpy and gmpy2 types:

\begin{verbatim}
sage: from numpy import int8

sage: xgcd(4, int8(8))
(4, 1, 0)
sage: xgcd(int8(4), int8(8))
(4, 1, 0)
sage: from gmpy2 import mpz

sage: xgcd(mpz(4), mpz(8))
(4, 1, 0)
sage: xgcd(4, mpz(8))
(4, 1, 0)
\end{verbatim}

\texttt{sage.arith.misc.algdep(z, degree, known_bits=None, use_bits=None, known_digits=None, use_digits=None, height_bound=None, proof=False)}

Return an irreducible polynomial of degree at most \texttt{degree} which is approximately satisfied by the number \texttt{z}.

You can specify the number of known bits or digits of \texttt{z} with \texttt{known_bits=k} or \texttt{known_digits=k}. \texttt{PARI} is then told to compute the result using $0.8k$ of these bits/digits. Or, you can specify the precision to use directly with \texttt{use_bits=k} or \texttt{use_digits=k}. If none of these are specified, then the precision is taken from the input value.
A height bound may be specified to indicate the maximum coefficient size of the returned polynomial; if a sufficiently small polynomial is not found, then None will be returned. If proof=True then the result is returned only if it can be proved correct (i.e. the only possible minimal polynomial satisfying the height bound, or no such polynomial exists). Otherwise a ValueError is raised indicating that higher precision is required.

ALGORITHM: Uses LLL for real/complex inputs, pari C-library algdep command otherwise.

Note that algebraic_dependency is a synonym for algdep.

INPUT:

- z - real, complex, or \(p \)-adic number
- degree - an integer
- height_bound - an integer (default: None) specifying the maximum coefficient size for the returned polynomial
- proof - a boolean (default: False), requires height_bound to be set

EXAMPLES:

```sage
sage: algdep(1.8888888888888888, 1) # needs sage.libs.pari
9*x - 17
sage: algdep(0.12121212121212, 1) # needs sage.libs.pari
33*x - 4
sage: algdep(sqrt(2), 2) # needs sage.libs.pari sage.symbolic
x^2 - 2
```

This example involves a complex number:

```sage
sage: z = (1/2) * (1 + RDF(sqrt(3)) * CC.0); z # needs sage.symbolic
0.500000000000000 + 0.866025403784439*I
sage: algdep(z, 6) # needs sage.symbolic
x^2 - x + 1
```

This example involves a \(p \)-adic number:

```sage
sage: K = Qp(3, print_mode=series) # needs sage.rings.padics
sage: a = K(7/19); a
1 + 2*3 + 3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 3^11 + 3^12 + 2*3^15 + 2*3^16 + ...
+ 3^17 + 2*3^19 + O(3^20)
sage: algdep(a, 1) # needs sage.rings.padics
19*x - 7
```

These examples show the importance of proper precision control. We compute a 200-bit approximation to \(\sqrt{2} \) which is wrong in the 33'rd bit:

```sage
sage: # needs sage.libs.pari sage.rings.real_mpfr
sage: z = sqrt(RealField(200)(2)) + (1/2)^33
sage: p = algdep(z, 4); p
227004321085*x^4 - 216947902586*x^3 - 99411220986*x^2 + 82234881648*x - ...
```

(continues on next page)
Standard Commutative Rings, Release 10.3

Using the `height_bound` and `proof` parameters, we can see that \(\pi \) is not the root of an integer polynomial of degree at most 5 and coefficients bounded above by 10:

```python
sage: algdep(pi.n(), 5, height_bound=10, proof=True) is None
True
```

For stronger results, we need more precision:

```python
sage: # needs sage.libs.pari sage.symbolic
sage: algdep(pi.n(200), 5, height_bound=100, proof=True) is None
Traceback (most recent call last):
  ...  ValueError: insufficient precision for non-existence proof
sage: algdep(pi.n(200), 10, height_bound=10, proof=True) is None
Traceback (most recent call last):
  ...  ValueError: insufficient precision for non-existence proof
sage: algdep(pi.n(200), 10, height_bound=10, proof=True) is None
True
```

We can also use `proof=True` to get positive results:

```python
sage: # needs sage.libs.pari sage.symbolic
sage: a = sqrt(2) + sqrt(3) + sqrt(5)
Traceback (most recent call last):
  ...  ValueError: insufficient precision for uniqueness proof
sage: f = algdep(a.n(1000), 8, height_bound=1000, proof=True); f
x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576
sage: f(a).expand()
0
```

`sage.arith.misc.algebraic_dependency` \((z, \text{degree}, \text{known_bits}=`None`, \text{use_bits}=`None`, \text{known_digits}=`None`, \text{use_digits}=`None`, \text{height_bound}=`None`, \text{proof}=`False`)``

Return an irreducible polynomial of degree at most \(\text{degree} \) which is approximately satisfied by the number \(z \).

You can specify the number of known bits or digits of \(z \) with `known_bits=k` or `known_digits=k`. PARI is then told to compute the result using \(0.8k \) of these bits/digits. Or, you can specify the precision to use directly
with `use_bits=k` or `use_digits=k`. If none of these are specified, then the precision is taken from the input value.

A height bound may be specified to indicate the maximum coefficient size of the returned polynomial; if a sufficiently small polynomial is not found, then `None` will be returned. If `proof=True` then the result is returned only if it can be proved correct (i.e. the only possible minimal polynomial satisfying the height bound, or no such polynomial exists). Otherwise a `ValueError` is raised indicating that higher precision is required.

ALGORITHM: Uses LLL for real/complex inputs, PARI C-library `algdep` command otherwise.

Note that `algebraic_dependency` is a synonym for `algdep`.

INPUT:
- `z` - real, complex, or p-adic number
- `degree` - an integer
- `height_bound` - an integer (default: `None`) specifying the maximum coefficient size for the returned polynomial
- `proof` - a boolean (default: `False`), requires `height_bound` to be set

EXAMPLES:

```
sage: algdep(1.888888888888888, 1)  # needs sage.libs.pari
9*x - 17
sage: algdep(0.12121212121212, 1)  # needs sage.libs.pari
33*x - 4
sage: algdep(sqrt(2), 2)  # needs sage.libs.pari sage.symbolic
x^2 - 2
```

This example involves a complex number:

```
sage: z = (1/2) * (1 + RDF(sqrt(3)) * CC.0); z  # needs sage.symbolic
0.500000000000000 + 0.866025403784439*I
sage: algdep(z, 6)  # needs sage.symbolic
x^2 - x + 1
```

This example involves a p-adic number:

```
sage: K = Qp(3, print_mode='series')  # needs sage.rings.padics
sage: a = K(7/19); a  # needs sage.rings.padics
1 + 2*3 + 3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 3^11 + 3^12 + 2*3^15 + 2*3^16...
  + 3^17 + 2*3^19 + O(3^20)
sage: algdep(a, 1)  # needs sage.rings.padics
19*x - 7
```

These examples show the importance of proper precision control. We compute a 200-bit approximation to $\sqrt{2}$ which is wrong in the 33'rd bit:
Using the `height_bound` and `proof` parameters, we can see that π is not the root of an integer polynomial of degree at most 5 and coefficients bounded above by 10:

```
sage: algdep(pi.n(), 5, height_bound=10, proof=True) is None  # needs sage.libs.pari sage.symbolic
True
```

For stronger results, we need more precision:

```
sage: # needs sage.libs.pari sage.symbolic
sage: algdep(pi.n(), 5, height_bound=100, proof=True) is None  # Traceback (most recent call last):
  ... ValueError: insufficient precision for non-existence proof
sage: algdep(pi.n(200), 5, height_bound=100, proof=True) is None
True
```

We can also use `proof=True` to get positive results:

```
sage: # needs sage.libs.pari sage.symbolic
sage: a = sqrt(2) + sqrt(3) + sqrt(5)
Traceback (most recent call last):
  ... ValueError: insufficient precision for uniqueness proof
sage: f = algdep(a.n(1000), 8, height_bound=1000, proof=True); f
x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576
sage: f(a).expand()
0
```

```
sage.arith.misc.bernoulli(n, algorithm='default', num_threads=1)
```

Return the n-th Bernoulli number, as a rational number.

INPUT:
• n - an integer

• algorithm:
 – 'default' – use 'flint' for \(n \leq 20000 \), then 'arb' for \(n \leq 300000 \) and 'bermm' for larger values (this
 is just a heuristic, and not guaranteed to be optimal on all hardware)
 – 'arb' – use the arb library
 – 'flint' – use the FLINT library
 – 'pari' – use the PARI C library
 – 'gap' – use GAP
 – 'gp' – use PARI/GP interpreter
 – 'magma' – use MAGMA (optional)
 – 'bermm' – use bernmm package (a multimodular algorithm)

• num_threads - positive integer, number of threads to use (only used for bernmm algorithm)

EXAMPLES:

```
sage: bernoulli(12)  # needs sage.libs.flint
-691/2730
sage: bernoulli(50)  # needs sage.libs.flint
495057205241079648212477525/66
```

We demonstrate each of the alternative algorithms:

```
sage: bernoulli(12, algorithm='arb')  # needs sage.libs.flint
-691/2730
sage: bernoulli(12, algorithm='flint')  # needs sage.libs.flint
-691/2730
sage: bernoulli(12, algorithm='gap')  # needs sage.libs.gap
-691/2730
sage: bernoulli(12, algorithm='gp')  # needs sage.libs.pari
-691/2730
sage: bernoulli(12, algorithm='magma')  # optional - magma
-691/2730
sage: bernoulli(12, algorithm='pari')  # needs sage.libs.pari
-691/2730
sage: bernoulli(12, algorithm='bermm')  # needs sage.libs.ntl
-691/2730
sage: bernoulli(12, algorithm='bermm', num_threads=4)  # needs sage.libs.ntl
-691/2730
```

AUTHOR:

• David Joyner and William Stein
sage.arith.misc.binomial(\(x, m, **kwds\))

Return the binomial coefficient

\[
\binom{x}{m} = \frac{x(x-1) \cdots (x - m + 1)}{m!}
\]

which is defined for \(m \in \mathbb{Z}\) and any \(x\). We extend this definition to include cases when \(x - m\) is an integer but \(m\) is not by

\[
\binom{x}{m} = \binom{x}{x-m}
\]

If \(m < 0\), return 0.

INPUT:

- \(x, m\) - numbers or symbolic expressions. Either \(m\) or \(x-m\) must be an integer.

OUTPUT: number or symbolic expression (if input is symbolic)

EXAMPLES:

```python
sage: from sage.arith.misc import binomial
dsage: binomial(5, 2)
10
sage: binomial(2, 0)
1
sage: binomial(1/2, 0)
# ... ˓→ needs sage.libs.pari
1
sage: binomial(3, -1)
0
sage: binomial(20, 10)
184756
sage: binomial(-2, 5)
-6
sage: binomial(-5, -2)
0
sage: binomial(RealField()(2.5), 2)
# ... ˓→ needs sage.rings.real_mpfr
1.87500000000000
sage: binomial(Zp(5)(99),50)
3 + 4*5^3 + 2*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 5^9 + 2*5^10 + 3*5^11 +
4*5^12 + 4*5^13 + 2*5^14 + 3*5^15 + 3*5^16 + 4*5^17 + 4*5^18 + 2*5^19 + O(5^20)
sage: binomial(Qp(3)(2/3),2)
2*3^-2 + 2*3^-1 + 2 + 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 +
2*3^8 + 2*3^9 + 2*3^10 + 2*3^11 + 2*3^12 + 2*3^13 + 2*3^14 + 2*3^15 + 2*3^16 +␣ ˓→ 2*3^17 + O(3^18)
sage: n = var('n'); binomial(n, 2)
# ... ˓→ needs sage.symbolic
1/2*(n - 1)*n
sage: n = var('n'); binomial(n, n)
# ... ˓→ needs sage.symbolic
1
sage: n = var('n'); binomial(n, n - 1)
# ... ˓→ needs sage.symbolic
n
sage: binomial(2^100, 2^100)
1
```
If \(x \in \mathbb{Z} \), there is an optional 'algorithm' parameter, which can be 'gmp' (faster for small values; alias: 'mpir') or 'pari' (faster for large values):

```python
sage: a = binomial(100, 45, algorithm='gmp')
sage: b = binomial(100, 45, algorithm='pari')
# => needs sage.libs.pari
sage: a == b
# => needs sage.libs.pari
True
```

```

sage.arith.misc.binomial_coefficients(n)

Return a dictionary containing pairs \( \{(k_1, k_2) : C_{k_1, n} \} \) where \( C_{k_1, n} \) are binomial coefficients and \( n = k_1 + k_2 \).

INPUT:
• \( n \) - an integer

OUTPUT: dict

EXAMPLES:
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
OUTPUT:

• The Carmichael function of $n$.

ALGORITHM:

If $n = 2, 4$ then $\lambda(n) = \varphi(n)$. Let $p \geq 3$ be an odd prime and let $k$ be a positive integer. Then $\lambda(p^k) = p^{k-1}(p - 1) = \varphi(p^k)$. If $k \geq 3$, then $\lambda(2^k) = 2^{k-2}$. Now consider the case where $n > 3$ is composite and let $n = p_1^{k_1} p_2^{k_2} \cdots p_t^{k_t}$ be the prime factorization of $n$. Then

$$\lambda(n) = \lambda(p_1^{k_1} p_2^{k_2} \cdots p_t^{k_t}) = \text{lcm}(\lambda(p_1^{k_1}), \lambda(p_2^{k_2}), \ldots, \lambda(p_t^{k_t}))$$

EXAMPLES:

The Carmichael function of all positive integers up to and including 10:

```
sage: from sage.arith.misc import carmichael_lambda
sage: list(map(carmichael_lambda, [1..10]))
[1, 1, 2, 2, 4, 2, 6, 2, 6, 4]
```

The Carmichael function of the first ten primes:

```
sage: list(map(carmichael_lambda, primes_first_n(10))) # needs sage.libs.pari
[1, 2, 4, 6, 10, 12, 16, 18, 22, 28]
```

Cases where the Carmichael function is equivalent to the Euler phi function:

```
sage: carmichael_lambda(2) == euler_phi(2)
True
sage: carmichael_lambda(4) == euler_phi(4) # needs sage.libs.pari
True
sage: p = random_prime(1000, lbound=3, proof=True) # needs sage.libs.pari
sage: k = randint(1, 1000)
```

```
sage: carmichael_lambda(p^k) == euler_phi(p^k) # needs sage.libs.pari
True
```

A case where $\lambda(n) \neq \varphi(n)$:

```
sage: k = randint(3, 1000)
sage: carmichael_lambda(2^k) == 2^(k - 2) # needs sage.libs.pari
True
sage: carmichael_lambda(2^k) == 2^(k - 2) == euler_phi(2^k) # needs sage.libs.pari
False
```

Verifying the current implementation of the Carmichael function using another implementation. The other implementation that we use for verification is an exhaustive search for the exponent of the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^\times$.

```
sage: from sage.arith.misc import carmichael_lambda
sage: n = randint(1, 500)
sage: c = carmichael_lambda(n)
sage: def coprime(n):
....: return [i for i in range(n) if gcd(i, n) == 1]
sage: def znpower(n, k):
(continues on next page)
Carmichael's theorem states that $a^{\lambda(n)} \equiv 1 \pmod n$ for all elements a of the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^*$. Here, we verify Carmichael's theorem.

```python
sage: from sage.arith.misc import carmichael_lambda
sage: n = randint(2, 1000)
sage: c = carmichael_lambda(n)
sage: ZnZ = IntegerModRing(n)
sage: M = ZnZ.list_of_elements_of_multiplicative_group()
sage: ones = [1] * len(M)
sage: P = [power_mod(a, c, n) for a in M]
sage: P == ones
True
```

REFERENCES:

• Wikipedia article Carmichael_function

`sage.arith.misc.continuant(v, n=None)`

Function returns the continuant of the sequence v (list or tuple).

Definition: see Graham, Knuth and Patashnik, *Concrete Mathematics*, section 6.7: Continuants. The continuant is defined by

• $K_0() = 1$
• $K_1(x_1) = x_1$
• $K_n(x_1, \cdots, x_n) = K_{n-1}(x_n, \cdots, x_{n-1})x_n + K_{n-2}(x_1, \cdots, x_{n-2})$

If $n = \text{None}$ or $n > \text{len}(v)$ the default $n = \text{len}(v)$ is used.

INPUT:

• v - list or tuple of elements of a ring
• n - optional integer

OUTPUT: element of ring (integer, polynomial, etcetera).

EXAMPLES:

```python
sage: continuant([1, 2, 3])
10
sage: p = continuant([2, 1, 2, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10])
sage: q = continuant([1, 2, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10])
sage: p/q
```
We verify the identity

\[K_n(z, z, \cdots, z) = \sum_{k=0}^{n} \binom{n-k}{k} z^{n-2k} \]

for \(n = 6 \) using polynomial arithmetic:

\[
\text{sage: } z = \text{QQ}['z'].0 \\
\text{sage: } \text{continuant}((z,z,z,z,z,z,z,z,z,z,z,z), 6) \\
\text{ } z^6 + 5z^4 + 6z^2 + 1
\]

\[
\text{sage: } \text{continuant}(9) \\
\text{ } \text{Traceback (most recent call last):} \\
\text{...} \\
\text{TypeError: object of type 'sage.rings.integer.Integer' has no len()}
\]

Tests with numpy and gmpy2 numbers:

\[
\text{sage: from numpy import int8} \\
\text{# ...} \\
\text{sage: } \text{continuant}([\text{int8(1), int8(2), int8(3)}]) \\
\text{# ...} \\
\text{sage: from gmpy2 import mpz} \\
\text{sage: } \text{continuant}([\text{mpz(1), mpz(2), mpz(3)}]) \\
\text{mpz(10)}
\]

AUTHORS:

- Jaap Spies (2007-02-06)

\sage\texttt{.arith.misc.crt}(a, b, m=None, n=None)

Return a solution to a Chinese Remainder Theorem problem.

INPUT:

- \(a, b \) - two residues (elements of some ring for which extended \(\text{gcd} \) is available), or two lists, one of residues and one of moduli.

- \(m, n \) - (default: None) two moduli, or None.

OUTPUT:

If \(m, n \) are not None, returns a solution \(x \) to the simultaneous congruences \(x \equiv a \mod m \) and \(x \equiv b \mod n \), if one exists. By the Chinese Remainder Theorem, a solution to the simultaneous congruences exists if and only if \(a \equiv b \pmod{\text{gcd}(m, n)} \). The solution \(x \) is only well-defined modulo \(\text{lcm}(m, n) \).
If \(a \) and \(b \) are lists, returns a simultaneous solution to the congruences \(x \equiv a_i \pmod{b_i} \), if one exists.

See also:

- `CRT_list()`

EXAMPLES:

Using `crt` by giving it pairs of residues and moduli:

```sage
crt(2, 1, 3, 5)  # 11

crt(13, 20, 100, 301)  # 28013

crt([2, 1], [3, 5])  # 11

crt([13, 20], [100, 301])  # 28013
```

You can also use uppercase:

```sage
c = CRT(2,3, 3, 5); c  # 8

c % 3 == 2  # True

c % 5 == 3  # True
```

Note that this also works for polynomial rings:

```sage
# needs sage.rings.number_field
x = polygen(ZZ, 'x')
K.<a> = NumberField(x^3 - 7)
f = x^2 + 3
g = x^3 - 5
f = CRT(1, 3, f, g)
g = CRT(1, a, f, g)
```

You can also do this for any number of moduli:

```sage
# needs sage.rings.number_field
K.<a> = NumberField(x^3 - 7)
f = x^2 + 3
g = x^3 - 5
h = x^5 + x^2 - 9
k = CRT([1, a, 3], [f, g, h]); k
```

(continues on next page)
If the moduli are not coprime, a solution may not exist:

```python
sage: crt(4, 8, 8, 12)
20
sage: crt(4, 6, 8, 12)
Traceback (most recent call last):
  ... ValueError: no solution to crt problem since gcd(8,12) does not divide 4-6
```

```python
sage: x = polygen(QQ)
sage: crt(2, x, x^2 - 1, x^3 - 1)
Traceback (most recent call last):
  ... ValueError: no solution to crt problem since gcd(x^2 - 1,x^3 - 1) does not divide 2-x
```

crt also work with numpy and gmpy2 numbers:

```python
sage: import numpy                           # needs numpy
sage: crtnumpy.int8(2), numpy.int8(3), numpy.int8(7), numpy.int8(11))  # needs numpy
58
sage: from gmpy2 import mpz
sage: crtmmpz(2), mpz(3), mpz(7), mpz(11))
58
sage: crtnumpy.int8(2), 3, numpy.int8(7), numpy.int8(11))  # needs numpy
58
```

`sage.arith.misc.dedekind_psi(N)`

Return the value of the Dedekind psi function at N.

INPUT:

- N – a positive integer

OUTPUT:

an integer
The Dedekind psi function is the multiplicative function defined by

$$
\psi(n) = n \prod_{p|n, p\text{ prime}} \left(1 + \frac{1}{p}\right).
$$

See Wikipedia article Dedekind psi function and OEIS sequence A001615.

EXAMPLES:

```python
sage: from sage.arith.misc import dedekind_psi
sage: [dedekind_psi(d) for d in range(1, 12)]
[1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12]
```

```
sage.arith.misc.dedekind_sum(p, q, algorithm='default')
Return the Dedekind sum $s(p, q)$ defined for integers $p, q$ as

$$
s(p, q) = \sum_{i=0}^{q-1} \left(\left(\frac{i}{q}\right)\left(\frac{pi}{q}\right)\right)
$$

where

$$
\left(\left(x\right)\right) = \begin{cases} 
    x - \lfloor x \rfloor - \frac{1}{2} & \text{if } x \in \mathbb{Q} \setminus \mathbb{Z} \\
    0 & \text{if } x \in \mathbb{Z}. 
\end{cases}
$$

```

Warning: Caution is required as the Dedekind sum sometimes depends on the algorithm or is left undefined when p and q are not coprime.

INPUT:
- p, q – integers
- algorithm – must be one of the following
 - 'default' – (default) use FLINT
 - 'flint' – use FLINT
 - 'pari' – use PARI (gives different results if p and q are not coprime)

OUTPUT: a rational number

EXAMPLES:

Several small values:

```python
sage: for q in range(10): print ([dedekind_sum(p, q) for p in range(q + 1)])
[0]
[0, 0]
[0, 0, 0]
[0, 1/18, -1/18, 0]
[0, 1/8, 0, -1/8, 0]
[0, 1/5, 0, 0, -1/5, 0]
[0, 5/18, 1/18, 0, -1/18, -5/18, 0]
[0, 5/14, 1/14, -1/14, 1/14, -1/14, -5/14, 0]
[0, 7/16, 1/8, 1/16, 0, -1/16, -1/8, -7/16, 0]
[0, 14/27, 4/27, 1/18, -4/27, 4/27, -1/18, -4/27, -14/27, 0]
```
Check relations for restricted arguments:

```sage
sage: q = 23; dedekind_sum(1, q); (q-1)*(q-2)/(12*q)  #...
77/46
```

```sage
needs sage.libs.flint
```

```sage
77/46
```

```sage
sage: p, q = 100, 723  # must be coprime
sage: dedekind_sum(p, q) + dedekind_sum(q, p)  #...
31583/86760
```

```sage
needs sage.libs.flint
```

```sage
31583/86760
```

```sage
We check that evaluation works with large input:
```

```sage
sage: dedekind_sum(3^54 - 1, 2^93 + 1)  #...
459340694971839990630374299870/29710560942849126597578981379
```

```sage
needs sage.libs.flint
```

```sage
459340694971839990630374299870/29710560942849126597578981379
```

```sage
We check consistency of the results:
```

```sage
sage: dedekind_sum(5, 7, algorithm='default')  #...
-1/14
```

```sage
needs sage.libs.flint
```

```sage
-1/14
```

```sage
sage: dedekind_sum(5, 7, algorithm='flint')  #...
-1/14
```

```sage
needs sage.libs.flint
```

```sage
-1/14
```

```sage
sage: dedekind_sum(5, 7, algorithm='pari')  #...
-1/14
```

```sage
needs sage.libs.pari
```

```sage
-1/14
```

```sage
sage: dedekind_sum(6, 8, algorithm='default')  #...
-1/8
```

```sage
needs sage.libs.flint
```

```sage
-1/8
```

```sage
sage: dedekind_sum(6, 8, algorithm='flint')  #...
-1/8
```

```sage
needs sage.libs.flint
```

```sage
-1/8
```

```sage
sage: dedekind_sum(6, 8, algorithm='pari')  #...
-1/8
```

```sage
needs sage.libs.pari
```

```sage
-1/8
```

Tests with numpy and gmpy2 numbers:

```sage
sage: from numpy import int8  #...
```

```sage
needs numpy
```

```sage
sage: dedekind_sum(int8(5), int8(7), algorithm='default')  #...
```

```sage
needs numpy sage.libs.flint
```

```sage
-1/14
```

```sage
sage: from gmpy2 import mpz
```

````sage
sage: dedekind_sum(mpz(5), mpz(7), algorithm='default')  #...
````

```sage
needs sage.libs.flint
```

```sage
-1/14
```

REFERENCES:

- [Ap1997]
- Wikipedia article Dedekind_sum

1.13. Miscellaneous arithmetic functions 103
sage.arith.misc.differences (lis, n=1)

Return the \(n \) successive differences of the elements in \(\text{lis} \).

EXAMPLES:

```python
sage: differences(prime_range(50))  # needs sage.libs.pari
[1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4]

sage: differences([i^2 for i in range(1,11)])
[3, 5, 7, 9, 11, 13, 15, 17, 19]

sage: differences([(i^3 + 3*i for i in range(1,21))])
[10, 22, 40, 64, 94, 130, 172, 220, 274, 334, 400, 472, 550, 634, 724, 820, 922, ...

sage: differences([(i^3 - i^2 for i in range(1,21)], 2)
[10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, 106, 112]

sage: differences([p - i^2 for i, p in enumerate(prime_range(50))], 3)  # needs sage.libs.pari
[-1, 2, -4, 4, -4, 4, 0, -6, 8, -6, 0, 4]
```

Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int8  # needs numpy
sage: differences([int8(1), int8(4), int8(6), int8(19)])  # needs numpy
[3, 2, 13]

sage: from gmpy2 import mpz
sage: differences([mpz(1), mpz(4), mpz(6), mpz(19)])
[mpz(3), mpz(2), mpz(13)]
```

AUTHORS:
- Timothy Clemans (2008-03-09)

sage.arith.misc.divisors (n)

Return the list of all divisors (up to units) of this element of a unique factorization domain.

For an integer, the list of all positive integer divisors of this integer, sorted in increasing order, is returned.

INPUT:
- \(n \) - the element

EXAMPLES:

Divisors of integers:

```python
sage: divisors(-3)
[1, 3]

sage: divisors(6)
[1, 2, 3, 6]

sage: divisors(28)
[1, 2, 4, 7, 14, 28]

sage: divisors(2^5)
[1, 2, 4, 8, 16, 32]

sage: divisors(100)
[1, 2, 4, 5, 10, 20, 25, 50, 100]

sage: divisors(1)
[1]

sage: divisors(0)
```

(continues on next page)
Traceback (most recent call last):
...
ValueError: n must be nonzero
sage: divisors(2^3 * 3^2 * 17)
[1, 2, 3, 4, 6, 8, 9, 12, 17, 18, 24, 34, 36, 51, 68, 72,
102, 136, 153, 204, 306, 408, 612, 1224]

This function works whenever one has unique factorization:

sage: # needs sage.rings.number_field
sage: K.<a> = QuadraticField(7)
sage: divisors(K.ideal(7))
[Fractional ideal (1), Fractional ideal (a), Fractional ideal (7)]
sage: divisors(K.ideal(3))
[Fractional ideal (1), Fractional ideal (a - 2), Fractional ideal (a + 2)]
sage: divisors(K.ideal(35))
[Fractional ideal (1), Fractional ideal (5), Fractional ideal (a),
 Fractional ideal (7), Fractional ideal (5*a), Fractional ideal (35)]

sage.arith.misc.eratosthenes(n)

Return a list of the primes ≤ n.

This is extremely slow and is for educational purposes only.

INPUT:
• n - a positive integer

OUTPUT:
• a list of primes less than or equal to n.

EXAMPLES:

sage: eratosthenes(3)
[2, 3]
sage: eratosthenes(50)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
sage: len(eratosthenes(100))
25
sage: eratosthenes(213) == prime_range(213) #...
True

sage.arith.misc.factor(n, proof=None, int_=False, algorithm='pari', verbose=0, **kwds)

Return the factorization of n. The result depends on the type of n.

If n is an integer, returns the factorization as an object of type Factorization.

If n is not an integer, n.factor(proof=proof, **kwds) gets called. See n.factor?? for more documentation in this case.

Warning: This means that applying factor() to an integer result of a symbolic computation will not factor the integer, because it is considered as an element of a larger symbolic ring.

EXAMPLES:
sage: f(n) = n^2
needs sage.symbolic
sage: is_prime(f(3))
needs sage.symbolic
False
sage: factor(f(3))
needs sage.symbolic
9

INPUT:

- \(n \) – a nonzero integer
- \(\text{proof} \) – bool or None (default: None)
- \(\text{int}_\text{int} \) – bool (default: False) whether to return answers as Python ints
- \(\text{algorithm} \) – string
 - 'pari' – (default) use the PARI C library
 - 'kash' – use KASH computer algebra system (requires that kash be installed)
 - 'magma' – use Magma (requires magma be installed)
- \(\text{verbose} \) – integer (default: 0); PARI's debug variable is set to this; e.g., set to 4 or 8 to see lots of output during factorization.

OUTPUT:

- factorization of \(n \)

The \texttt{qsieve} and \texttt{ecm} commands give access to highly optimized implementations of algorithms for doing certain integer factorization problems. These implementations are not used by the generic \texttt{factor()} command, which currently just calls PARI (note that PARI also implements sieve and ecm algorithms, but they are not as optimized). Thus you might consider using them instead for certain numbers.

The factorization returned is an element of the class \texttt{Factorization}; use \texttt{Factorization??} to see more details, and examples below for usage. A \texttt{Factorization} contains both the unit factor (+1 or −1) and a sorted list of (prime, exponent) pairs.

The factorization displays in pretty-print format but it is easy to obtain access to the (prime, exponent) pairs and the unit, to recover the number from its factorization, and even to multiply two factorizations. See examples below.

EXAMPLES:

sage: factor(500)
2^2 * 5^3
sage: factor(-20)
-1 * 2^2 * 5
sage: f=factor(-20)
sage: list(f)
[(2, 2), (5, 1)]
sage: f.unit()
-1
sage: f.value()
-20
sage: factor(-next_prime(10^2) * next_prime(10^7))
needs sage.libs.pari
-1 * 101 * 10000019
Sage calls PARI’s `pari:factor`, which has `proof=False` by default. Sage has a global proof flag, set to `True` by default (see `sage.structure.proof.proof`, or use `proof.[tab]`). To override the default, call this function with `proof=False`.

Any object which has a factor method can be factored like this:

To access the data in a factorization:

```
sage: # needs sage.libs.pari
sage: f = factor(420); f
2^2 * 3 * 5 * 7
sage: [x for x in f]
[(2, 2), (3, 1), (5, 1), (7, 1)]
sage: [p, e in f]
[2, 3, 5, 7]
sage: [p^e for p, e in f]
[4, 3, 5, 7]
```
We can factor Python, numpy and gmpy2 numbers:

```python
sage: factor(math.pi)
3.141592653589793
sage: import numpy
# → needs numpy
sage: factor(numpy.int8(30))
# → needs numpy sage.libs.pari
2 * 3 * 5
sage: import gmpy2
sage: factor(gmpy2.mpz(30))
2 * 3 * 5
```

```python
sage.arith.misc.factorial (n, algorithm='gmp')
```

Compute the factorial of n, which is the product $1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$.

INPUT:

- n - an integer
- `algorithm` - string (default: ‘gmp’):
 - ‘gmp’ - use the GMP C-library factorial function
 - ‘pari’ - use PARI’s factorial function

OUTPUT: an integer

EXAMPLES:

```python
sage: from sage.arith.misc import factorial
sage: factorial(0)
1
sage: factorial(4)
24
sage: factorial(10)
3628800
sage: factorial(1) == factorial(0)
True
sage: factorial(6) == 6*5*4*3*2
True
sage: factorial(1) == factorial(0)
True
sage: factorial(71) == 71* factorial(70)
True
sage: factorial(-32)
Traceback (most recent call last):
...
ValueError: factorial -- must be nonnegative
```

Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int8
# → needs numpy
sage: factorial(int8(4))
# → needs numpy
24
sage: import gmpy2
sage: factorial(mpz(4))
24
```
PERFORMANCE: This discussion is valid as of April 2006. All timings below are on a Pentium Core Duo 2Ghz MacBook Pro running Linux with a 2.6.16.1 kernel.

- It takes less than a minute to compute the factorial of 10^7 using the GMP algorithm, and the factorial of 10^6 takes less than 4 seconds.
- The GMP algorithm is faster and more memory efficient than the PARI algorithm. E.g., PARI computes 10^7 factorial in 100 seconds on the core duo 2Ghz.
- For comparison, computation in Magma ≤ 2.12-10 of $n!$ is best done using $*[1..n]$. It takes 113 seconds to compute the factorial of 10^7 and 6 seconds to compute the factorial of 10^6. Mathematica V5.2 compute the factorial of 10^7 in 136 seconds and the factorial of 10^6 in 7 seconds. (Mathematica is notably very efficient at memory usage when doing factorial calculations.)

```
sage.arith.misc.falling_factorial(x, a)
```

Return the falling factorial $(x)_a$.

The notation in the literature is a mess: often $(x)_a$, but there are many other notations: GKP: Concrete Mathematics uses x^a.

Definition: for integer $a \geq 0$ we have $x(x - 1) \cdots (x - a + 1)$. In all other cases we use the GAMMA-function: $\frac{\Gamma(x+1)}{\Gamma(x-a+1)}$.

INPUT:
- x – element of a ring
- a – a non-negative integer or
- x and a – any numbers

OUTPUT: the falling factorial

See also:

```
rising_factorial()
```

EXAMPLES:

```
sage: falling_factorial(10, 3)
720
sage: falling_factorial(10, 10)
3628800
sage: factorial(10)
3628800
sage: # needs sage.symbolic
sage: falling_factorial(10, RR('3.0'))
720.000000000000
sage: falling_factorial(10, RR('3.3'))
1310.1163396601
sage: a = falling_factorial(I + 1, I); a
gamma(I + 2)

sage: CC(a)
0.652965496420167 + 0.343065839816545*I
sage: falling_factorial(I, 4)
4*I + 2
sage: M = MatrixSpace(ZZ, 4, 4)
4*I + 10
```

(continues on next page)
sage: A = Matrix([1,0,1,0, 1,0,1,0, 1,0,10,10, 1,0,1,1])
needs sage.modules
sage: falling_factorial(A, 2) # A(A - I)
needs sage.modules
[1 0 10 10]
[1 0 10 10]
[20 0 101 100]
[2 0 11 10]

sage: x = ZZ['x'].0
sage: falling_factorial(x, 4)
x^4 - 6*x^3 + 11*x^2 - 6*x

AUTHORS:

- Jaap Spies (2006-03-05)

sage.arith.misc.four_squares(n)
Write the integer n as a sum of four integer squares.

INPUT:

- n – an integer

OUTPUT: a tuple (a, b, c, d) of non-negative integers such that n = a^2 + b^2 + c^2 + d^2 with a <= b <= c <= d.

EXAMPLES:

sage: four_squares(3)
(0, 1, 1, 1)
sage: four_squares(13)
(0, 0, 2, 3)
sage: four_squares(130)
(0, 0, 3, 11)
sage: four_squares(1101011011004)
(90, 102, 1220, 1049290)
sage: four_squares(10^100 - 1)
needs sage.libs.pari
(155024616290, 2612183768627, 14142135623730950488016887, 99)
sage: for i in range(2^129, 2^129 + 10000): # long time
needs sage.libs.pari
....: S = four_squares(i)
....: assert sum(x^2 for x in S) == i

sage.arith.misc.fundamental_discriminant(D)
Return the discriminant of the quadratic extension \(K = \mathbb{Q}(\sqrt{D}) \), i.e. an integer d congruent to either 0 or 1, mod 4, and such that, at most, the only square dividing it is 4.

INPUT:

- D - an integer

OUTPUT:

- an integer, the fundamental discriminant

EXAMPLES:
Tests with numpy and gmpy2 numbers:

```
sage: from numpy import int8

sage: fundamental_discriminant(int8(102)) # needs numpy
408
sage: from gmpy2 import mpz

sage: fundamental_discriminant(mpz(102))
408
```

`sage.arith.misc.gauss_sum(char_value, finite_field)`

Return the Gauss sums for a general finite field.

INPUT:

- `char_value` – choice of multiplicative character, given by its value on the `finite_field`
- `finite_field` – a finite field

OUTPUT:

an element of the parent ring of `char_value`, that can be any field containing enough roots of unity, for example the UniversalCyclotomicField, QQbar or ComplexField

For a finite field F of characteristic p, the Gauss sum associated to a multiplicative character χ (with values in a ring K) is defined as

$$\sum_{x \in F^\times} \chi(x)\zeta_p^{Tr x},$$

where $\zeta_p \in K$ is a primitive root of unity of order p and Tr is the trace map from F to its prime field F_p.

For more info on Gauss sums, see Wikipedia article Gauss_sum.

Todo: Implement general Gauss sums for an arbitrary pair `(multiplicative_character, additive_character)`

EXAMPLES:

```
sage: # needs sage.libs.pari sage.rings.number_field
sage: from sage.arith.misc import gauss_sum
sage: F = GF(5); q = 5
sage: zq = UniversalCyclotomicField().zeta(q - 1)
```

(continues on next page)
sage: [g*g.conjugate() for g in L]
[1, 5, 5, 5, 1]

sage: # needs sage.libs.pari sage.rings.number_field
sage: F = GF(11**2); q = 11**2
sage: zq = UniversalCyclotomicField().zeta(q - 1)
sage: g = gauss_sum(zq**4, F)

sage: g*g.conjugate()
121

See also:

• sage.rings.padics.misc.gauss_sum() for a p-adic version
• sage.modular.dirichlet.DirichletCharacter.gauss_sum() for prime finite fields
• sage.modular.dirichlet.DirichletCharacter.gauss_sum_numerical() for prime finite fields

sage.arith.misc.gcd(a, b=None, **kwargs)

Return the greatest common divisor of a and b.

If a is a list and b is omitted, return instead the greatest common divisor of all elements of a.

INPUT:

• a, b – two elements of a ring with gcd or
• a – a list or tuple of elements of a ring with gcd

Additional keyword arguments are passed to the respectively called methods.

OUTPUT:

The given elements are first coerced into a common parent. Then, their greatest common divisor in that common parent is returned.

EXAMPLES:

sage: GCD(97,100)
1
sage: GCD(97*10^15, 19^20*97^2)
97
sage: GCD(2/3, 4/5)
2/15
sage: GCD([2,4,6,8])
2
sage: GCD(srange(0,10000,10)) # fast !
10

Note that to take the gcd of n elements for n ≠ 2 you must put the elements into a list by enclosing them in [...]. Before github issue #4988 the following wrongly returned 3 since the third parameter was just ignored:

sage: gcd(3, 6, 2)
Traceback (most recent call last):
...
TypeError: ...gcd() takes ...
sage: gcd([3, 6, 2])
1
Similarly, giving just one element (which is not a list) gives an error:

```
sage: gcd(3)
Traceback (most recent call last):
...  
TypeError: 'sage.rings.integer.Integer' object is not iterable
```

By convention, the gcd of the empty list is (the integer) 0:

```
sage: gcd([])
0
sage: type(gcd([]))
<class 'sage.rings.integer.Integer'>
```

`sage.arith.misc.get_gcd(order)`

Return the fastest gcd function for integers of size no larger than order.

EXAMPLES:

```
sage: sage.arith.misc.get_gcd(4000)
<built-in method gcd_int of sage.rings.fast_arith.arith_int object at ...>
sage: sage.arith.misc.get_gcd(400000)
<built-in method gcd_longlong of sage.rings.fast_arith.arith_llong object at ...>
sage: sage.arith.misc.get_gcd(4000000000)
<function gcd at ...>
```

`sage.arith.misc.get_inverse_mod(order)`

Return the fastest inverse_mod function for integers of size no larger than order.

EXAMPLES:

```
sage: sage.arith.misc.get_inverse_mod(6000)
<built-in method inverse_mod_int of sage.rings.fast_arith.arith_int object at ...>
sage: sage.arith.misc.get_inverse_mod(600000)
<built-in method inverse_mod_longlong of sage.rings.fast_arith.arith_llong object at ...>
sage: sage.arith.misc.get_inverse_mod(6000000000)
<function inverse_mod at ...>
```

`sage.arith.misc.hilbert_conductor(a, b)`

Return the product of all (finite) primes where the Hilbert symbol is -1.

This is the (reduced) discriminant of the quaternion algebra (a, b) over \mathbb{Q}.

INPUT:

- a, b – integers

OUTPUT:

squarefree positive integer

EXAMPLES:

```
sage: # needs sage.libs.pari
sage: hilbert_conductor(-1, -1)
2
sage: hilbert_conductor(-1, -11)
11
sage: hilbert_conductor(-2, -5)
```

(continues on next page)
AUTHOR:

- Gonzalo Tornaria (2009-03-02)

sage.arith.misc.hilbert_conductor_inverse(d)

Finds a pair of integers \((a, b)\) such that \(\text{hilbert_conductor}(a, b) = d\).

The quaternion algebra \((a, b)\) over \(\mathbb{Q}\) will then have (reduced) discriminant \(d\).

INPUT:

- \(d\) – square-free positive integer

OUTPUT: pair of integers

EXAMPLES:

sage: # needs sage.libs.pari
sage: hilbert_conductor_inverse(2)
(-1, -1)

sage: hilbert_conductor_inverse(3)
(-1, -3)

sage: hilbert_conductor_inverse(6)
(-1, 3)

sage: hilbert_conductor_inverse(30)
(-3, -10)

sage: hilbert_conductor_inverse(4)
Traceback (most recent call last):
...
ValueError: d needs to be squarefree

sage: hilbert_conductor_inverse(-1)
Traceback (most recent call last):
...
ValueError: d needs to be positive

AUTHOR:

- Gonzalo Tornaria (2009-03-02)

sage.arith.misc.hilbert_symbol(a, b, p, algorithm='pari')

Return 1 if \(ax^2 + by^2\) \(p\)-adically represents a nonzero square, otherwise returns \(-1\). If either \(a\) or \(b\) is 0, returns 0.

INPUT:

- \(a, b\) - integers
p - integer; either prime or -1 (which represents the archimedean place)

algorithm - string
 - 'pari' - (default) use the PARI C library
 - 'direct' - use a Python implementation
 - 'all' - use both PARI and direct and check that the results agree, then return the common answer

OUTPUT: integer (0, -1, or 1)

EXAMPLES:

```python
sage: # needs sage.libs.pari
sage: hilbert_symbol(-1, -1, -1, algorithm='all')
-1
sage: hilbert_symbol(2, 3, 5, algorithm='all')
1
sage: hilbert_symbol(4, 3, 5, algorithm='all')
1
sage: hilbert_symbol(0, 3, 5, algorithm='all')
0
sage: hilbert_symbol(-1, -1, 2, algorithm='all')
-1
sage: hilbert_symbol(1, -1, 2, algorithm='all')
1
sage: hilbert_symbol(3, -1, 2, algorithm='all')
-1
sage: hilbert_symbol(QQ(-1)/QQ(4), -1, 2, algorithm='all') == -1 # needs sage.libs.pari
True
sage: hilbert_symbol(QQ(-1)/QQ(4), -1, 3) == 1 # needs sage.libs.pari
True
```

Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int8
# needs numpy
sage: hilbert_symbol(int8(2), int8(3), int8(5), algorithm='all') # needs numpy sage.libs.pari
1
sage: from gmpy2 import mpz
sage: hilbert_symbol(mpz(2), mpz(3), mpz(5), algorithm='all') # needs sage.libs.pari
1
```

AUTHORS:

- William Stein and David Kohel (2006-01-05)

sage.arith.misc.integer_ceil(x)

Return the ceiling of x.

EXAMPLES:

```python
sage: integer_ceil(5.4)
6
sage: integer_ceil(x)
```

(continues on next page)
Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import float32
˓→needs numpy
sage: integer_ceil(float32(5.4))  #...
˓→needs numpy
6
sage: from gmpy2 import mpfr
sage: integer_ceil(mpfr(5.4))
6
```

`sage.arith.misc.integer_floor(x)`

Return the largest integer \(\leq x \).

INPUT:
- \(x \) - an object that has a floor method or is coercible to int

OUTPUT: an Integer

EXAMPLES:

```python
sage: integer_floor(5.4)
5
sage: integer_floor(float(5.4))
5
sage: integer_floor(-5/2)
-3
sage: integer_floor(RDF(-5/2))
-3
```

Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import float32
˓→needs numpy
sage: integer_ceil(float32(5.4))  #...
˓→needs numpy
6
sage: from gmpy2 import mpfr
sage: integer_ceil(mpfr(5.4))
6
```

`sage.arith.misc.integer_trunc(i)`

Truncate to the integer closer to zero

EXAMPLES:
sage: from sage.arith.misc import integer_trunc as trunc
sage: trunc(-3/2), trunc(-1), trunc(-1/2), trunc(0), trunc(1/2), trunc(1),
 trunc(3/2)
(-1, -1, 0, 0, 0, 1, 1)
sage: isinstance(trunc(3/2), Integer)
True

sage.arith.misc.inverse_mod(a, m)
The inverse of the ring element a modulo m.
If no special inverse_mod is defined for the elements, it tries to coerce them into integers and perform the inversion there

sage: inverse_mod(7, 1) 0
sage: inverse_mod(5, 14) 3
sage: inverse_mod(3, -5) 2

Tests with numpy and mpz numbers:

sage: from numpy import int8 # needs numpy
 inverse_mod(int8(5), int8(14)) # needs numpy
sage: from gmpy2 import mpz
 inverse_mod(mpz(5), mpz(14))

sage.arith.misc.is_power_of_two(n)
Return whether n is a power of 2.

INPUT:
• n – integer

OUTPUT:
boolean

EXAMPLES:

sage: is_power_of_two(1024) True
sage: is_power_of_two(1) True
sage: is_power_of_two(24) False
sage: is_power_of_two(0) False
sage: is_power_of_two(-4) False

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8 # needs numpy
(continues on next page)
sage: is_power_of_two(int8(16))
\texttt{\# needs numpy}
True
sage: is_power_of_two(int8(24))
\texttt{\# needs numpy}
False
sage: from gmpy2 import mpz
sage: is_power_of_two(mpz(16))
True
sage: is_power_of_two(mpz(24))
False

\texttt{sage.arith.misc.is_prime}(n)

Determine whether \(n\) is a prime element of its parent ring.

INPUT:

- \(n\) – the object for which to determine primality

Exceptional special cases:

- For integers, determine whether \(n\) is a \textit{positive} prime.
- For number fields except \(\mathbb{Q}\), determine whether \(n\) is a prime element \textit{of the maximal order}.

ALGORITHM:

For integers, this function uses a provable primality test or a strong pseudo-primalty test depending on the global \texttt{arithmetic} \texttt{proof} flag.

See also:

- \texttt{is_pseudoprime()}
- \texttt{sage.rings.integer.Integer.is_prime()}

EXAMPLES:

sage: is_prime(389)
True
sage: is_prime(2000)
False
sage: is_prime(2)
True
sage: is_prime(-1)
False
sage: is_prime(1)
False
sage: is_prime(-2)
False

sage: a = 2**2048 + 981
sage: is_prime(a) \texttt{\# not tested \textendash{} takes \textasciitilde{} 1\textmin}
\texttt{\# needs sage.libs.pari}
True
sage: proof.arithmetic(\texttt{False})
sage: is_prime(a) \texttt{\# instantaneous!}
\texttt{\# needs sage.libs.pari}
True
sage: proof.arithmetic(\texttt{True})
sage.arith.misc.is_prime_power(n, get_data=False)
Test whether \(n \) is a positive power of a prime number

This function simply calls the method \(\text{Integer.is_prime_power()} \) of Integers.

INPUT:

- \(n \) – an integer
- \(\text{get_data} \) – if set to \(\text{True} \), return a pair \((p, k)\) such that this integer equals \(p^k \) instead of \(\text{True} \) or \((self, 0) \) instead of \(\text{False} \)

EXAMPLES:

```
sage: # needs sage.libs.pari
sage: is_prime_power(389)
True
sage: is_prime_power(2000)
False
sage: is_prime_power(2)
True
sage: is_prime_power(1024)
True
sage: is_prime_power(1024, get_data=True)
(2, 10)
```

The same results can be obtained with:

```
sage: # needs sage.libs.pari
sage: 389.is_prime_power()
True
sage: 2000.is_prime_power()
False
sage: 2.is_prime_power()
True
sage: 1024.is_prime_power()
True
sage: 1024.is_prime_power(get_data=True)
(2, 10)
```

sage.arith.misc.is_pseudoprime(n)
Test whether \(n \) is a pseudo-prime

The result is \text{NOT} proven correct - \text{this is a pseudo-primality test!}.

INPUT:

- \(n \) – an integer

Note: We do not consider negatives of prime numbers as prime.

EXAMPLES:

```
sage: # needs sage.libs.pari
sage: is_pseudoprime(389)
True
sage: is_pseudoprime(2000)
False
sage: is_pseudoprime(2)
```
(continues on next page)
True

\begin{Verbatim}
sage: is_pseudoprime(-1)
False
sage: factor(-6)
-1 * 2 * 3
sage: is_pseudoprime(1)
False
sage: is_pseudoprime(-2)
False
\end{Verbatim}

\begin{Verbatim}
sage.arith.misc.is_pseudoprime_power(n, get_data=False)
\end{Verbatim}

Test if \(n \) is a power of a pseudoprime.

The result is NOT proven correct - \textit{this IS a pseudo-primality test!}. Note that a prime power is a positive power of a prime number so that 1 is not a prime power.

INPUT:

- \(n \) - an integer
- \(\text{get_data} \) - (boolean) instead of a boolean return a pair \((p, k)\) so that \(n \) equals \(p^k \) and \(p \) is a pseudoprime or \((n, 0)\) otherwise.

EXAMPLES:

\begin{Verbatim}
sage: # needs sage.libs.pari
sage: is_pseudoprime_power(389)
True
sage: is_pseudoprime_power(2000)
False
sage: is_pseudoprime_power(2)
True
sage: is_pseudoprime_power(1024)
True
sage: is_pseudoprime_power(-1)
False
sage: is_pseudoprime_power(1)
False
sage: is_pseudoprime_power(997^100)
True
\end{Verbatim}

Use of the get_data keyword:

\begin{Verbatim}
sage: # needs sage.libs.pari
sage: is_pseudoprime_power(3^1024, get_data=True)
(3, 1024)
sage: is_pseudoprime_power(2^256, get_data=True)
(2, 256)
sage: is_pseudoprime_power(31, get_data=True)
(31, 1)
sage: is_pseudoprime_power(15, get_data=True)
(15, 0)
\end{Verbatim}

Tests with numpy and gmpy2 numbers:

\begin{Verbatim}
sage: from numpy import int16
\end{Verbatim}

(continues on next page)
sage.arith.misc.is_square(n, root=False)

Return whether or not \(n \) is square.

If \(n \) is a square also return the square root. If \(n \) is not square, also return None.

INPUT:

- \(n \) – an integer
- \(\text{root} \) – whether or not to also return a square root (default: False)

OUTPUT:

- bool – whether or not a square
- object – (optional) an actual square if found, and None otherwise.

EXAMPLES:

sage: is_square(2)
False
sage: is_square(4)
True
sage: is_square(2.2)
True
sage: is_square(-2.2)
False
sage: is_square(CDF(-2.2))
#...

Tests with numpy and gmpy2 numbers:

sage: from numpy import int8
#...
sage: is_square(int8(4))
#...

Tests with Polynomial:

1.13. Miscellaneous arithmetic functions
 sage: R.<v> = LaurentPolynomialRing(QQ, 'v')
sage: H = IwahoriHeckeAlgebra('A3', v**2)
 # needs sage.combinat sage.modules
 sage: R.<a,b,c,d> = QQ[]
sage: p = a*b + c*d*a*d*a + 5
 sage: is_square(p**2)
 True

```
sage.arith.misc.is_squarefree(n)
  Test whether n is square free.

EXAMPLES:

```
sage: is_squarefree(100)
 # needs sage.libs.pari
False
 sage: is_squarefree(101)
 # needs sage.libs.pari
True
 sage: R = ZZ['x']
sage: x = R.gen()
 sage: is_squarefree((x^2+x+1) * (x-2))
 # needs sage.libs.pari
True
 sage: is_squarefree((x-1)**2 * (x-3))
 # needs sage.libs.pari
False
 sage: # needs sage.rings.number_field sage.symbolic
 sage: O = ZZ[sqrt(-1)]
sage: I = O.gen(1)
 sage: is_squarefree(I + 1)
 True
 sage: is_squarefree(O(2))
 False
 sage: O(2).factor()
(-I) * (I + 1)^2

This method fails on domains which are not Unique Factorization Domains:

```
sage: O = ZZ[sqrt(-5)]
      # needs sage.rings.number_field sage.symbolic
 sage: a = O.gen(1)
      # needs sage.rings.number_field sage.symbolic
 sage: is_squarefree(a - 3)
      # needs sage.rings.number_field sage.symbolic
Traceback (most recent call last):
  ...
ArithmeticError: non-principal ideal in factorization

Tests with numpy and gmpy2 numbers:

```
sage: # needs sage.libs.pari
 sage: from numpy import int8
 # needs numpy
 sage: is_squarefree(int8(100))
 (continues on next page)
needs numpy
False
sage: is_squarefree(int8(101))
needs numpy
True
sage: from gmpy2 import mpz
sage: is_squarefree(mpz(100))
False
sage: is_squarefree(mpz(101))
True

sage.arith.misc.jacobi_symbol(a, b)
The Jacobi symbol of integers a and b, where b is odd.

Note: The kronecker_symbol() command extends the Jacobi symbol to all integers b.

If
\[b = p_1^{e_1} \cdots p_r^{e_r} \]
then
\[(a|b) = (a|p_1)^{e_1} \cdots (a|p_r)^{e_r} \]
where \((a|p_j)\) are Legendre Symbols.

INPUT:
- a - an integer
- b - an odd integer

EXAMPLES:

sage: jacobi_symbol(10,777)
-1
sage: jacobi_symbol(10,5)
0
sage: jacobi_symbol(10,2)
Traceback (most recent call last):
...
ValueError: second input must be odd, 2 is not odd

Tests with numpy and gmpy2 numbers:

sage: from numpy import int16
sage: from gmpy2 import mpz
sage: int16(10), int16(777))

sage.arith.misc.kronecker (x, y)
The Kronecker symbol \((x|y)\).

INPUT:
• \(x\) – integer
• \(y\) – integer

OUTPUT:
• an integer

EXAMPLES:

<table>
<thead>
<tr>
<th>Code</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sage: kronecker_symbol(13, 21)</code></td>
<td>-1</td>
</tr>
<tr>
<td><code>sage: kronecker_symbol(101, 4)</code></td>
<td>1</td>
</tr>
</tbody>
</table>

This is also available as `kronecker()`:

<table>
<thead>
<tr>
<th>Code</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sage: kronecker(3, 5)</code></td>
<td>-1</td>
</tr>
<tr>
<td><code>sage: kronecker(3, 15)</code></td>
<td>0</td>
</tr>
<tr>
<td><code>sage: kronecker(2, 15)</code></td>
<td>1</td>
</tr>
<tr>
<td><code>sage: kronecker(-2, 15)</code></td>
<td>1</td>
</tr>
<tr>
<td><code>sage: kronecker(2/3, 5)</code></td>
<td>1</td>
</tr>
</tbody>
</table>

Tests with numpy and gmpy2 numbers:

<table>
<thead>
<tr>
<th>Code</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sage: from numpy import int8</code></td>
<td># needs numpy</td>
</tr>
<tr>
<td><code>sage: kronecker_symbol(int8(13), int8(21))</code></td>
<td># needs numpy</td>
</tr>
<tr>
<td><code>sage: from gmpy2 import mpz</code></td>
<td># needs gmpy2</td>
</tr>
<tr>
<td><code>sage: kronecker_symbol(mpz(13), mpz(21))</code></td>
<td>-1</td>
</tr>
</tbody>
</table>

`sage.arith.misc.kronecker_symbol(x, y)`

The Kronecker symbol \((x|y)\).

INPUT:
• \(x\) – integer
• \(y\) – integer

OUTPUT:
• an integer

EXAMPLES:

<table>
<thead>
<tr>
<th>Code</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sage: kronecker_symbol(13, 21)</code></td>
<td>-1</td>
</tr>
<tr>
<td><code>sage: kronecker_symbol(101, 4)</code></td>
<td>1</td>
</tr>
</tbody>
</table>
Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int8  # needs numpy
sage: kronecker_symbol(int8(13), int8(21))  # needs numpy
-1
sage: from gmpy2 import mpz
sage: kronecker_symbol(mpz(13), mpz(21))
-1
```

```

sage.arith.misc.legendre_symbol(x, p)
The Legendre symbol (x|p), for p prime.

**Note:** The `kronecker_symbol()` command extends the Legendre symbol to composite moduli and p = 2.

**INPUT:**

- x - integer
- p - an odd prime number

**EXAMPLES:**

```python
sage: legendre_symbol(2, 3)
-1
sage: legendre_symbol(1, 3)
1
sage: legendre_symbol(1, 2)
Traceback (most recent call last):
... ValueError: p must be odd
sage: legendre_symbol(2, 15)
Traceback (most recent call last):
... ValueError: p must be a prime
sage: kronecker_symbol(2, 15)
1
sage: legendre_symbol(2/3, 7)
-1
```

Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int8 # needs numpy
sage: legendre_symbol(int8(2), int8(3)) # needs numpy
```

(continues on next page)
sage.arith.misc.mqrr_rational_reconstruction(u, m, T)

Maximal Quotient Rational Reconstruction.

For research purposes only - this is pure Python, so slow.

INPUT:
• u, m, T - integers such that m > u ≥ 0, T > 0.

OUTPUT:
Either integers n, d such that d > 0, gcd(n, d) = 1, n/d = u mod m, and T · d · |n| < m, or None.

Reference: Monagan, Maximal Quotient Rational Reconstruction: An Almost Optimal Algorithm for Rational Reconstruction (page 11)

This algorithm is probabilistic.

EXAMPLES:

sage: mqrr_rational_reconstruction(21, 3100, 13)
(21, 1)

Tests with numpy and gmpy2 numbers:

sage: from numpy import int16
# ... needs numpy
sage: mqrr_rational_reconstruction(int16(21), int16(3100), int16(13))  # ...
# ... needs numpy
(21, 1)

sage: from gmpy2 import mpz
sage: mqrr_rational_reconstruction(mpz(21), mpz(3100), mpz(13))
(21, 1)

sage.arith.misc.multinomial(*ks)

Return the multinomial coefficient.

INPUT:
• either an arbitrary number of integer arguments k_1, \ldots, k_n
• or an iterable (e.g. a list) of integers [k_1, \ldots, k_n]

OUTPUT:
Return the integer:

\[
\binom{k_1 + \cdots + k_n}{k_1, \ldots, k_n} = \frac{(\sum_{i=1}^{n} k_i)!}{\prod_{i=1}^{n} k_i!} = \prod_{i=1}^{n} \binom{\sum_{j=1}^{i} k_j}{k_i}
\]

EXAMPLES:
\begin{verbatim}
sage: multinomial(0, 0, 2, 1, 0, 0)
3
sage: multinomial([0, 0, 2, 1, 0, 0])
3
sage: multinomial(3, 2)
10
sage: multinomial(2^30, 2, 1)
618970023101454657175683075
sage: multinomial([2^30, 2, 1])
618970023101454657175683075
sage: multinomial(Composition([1, 3]))
4
sage: multinomial(Partition([4, 2]))
#
˓→ needs sage.combinat
15
\end{verbatim}

AUTHORS:
- Gabriel Ebner

\verb|sage.arith.misc.multinomial_coefficients(m, n)|

Return a dictionary containing pairs \( \{(k_1, k_2, ..., k_m) : C_{k,n}\} \) where \( C_{k,n} \) are multinomial coefficients such that \( n = k_1 + k_2 + ... + k_m \).

INPUT:
- \( m \) - integer
- \( n \) - integer

OUTPUT: dict

EXAMPLES:
\begin{verbatim}
sage: sorted(multinomial_coefficients(2, 5).items())
[((0, 5), 1), ((1, 4), 5), ((2, 3), 10), ((3, 2), 10), ((4, 1), 5), ((5, 0), 1)]
\end{verbatim}

Notice that these are the coefficients of \((x + y)^5\):

\begin{verbatim}
sage: R.<x,y> = QQ[]
sage: (x+y)^5
x^5 + 5*x^4*y + 10*x^3*y^2 + 10*x^2*y^3 + 5*x*y^4 + y^5
\end{verbatim}

\begin{verbatim}
sage: sorted(multinomial_coefficients(3, 2).items())
[((0, 0, 2), 1), ((0, 1, 1), 2), ((0, 2, 0), 1), ((1, 0, 1), 2), ((1, 1, 0), 2), ...
˓→((2, 0, 0), 1)]
\end{verbatim}

ALGORITHM: The algorithm we implement for computing the multinomial coefficients is based on the following result:

\[
\binom{n}{k_1, \ldots, k_m} = \frac{k_1 + 1}{n - k_1} \sum_{i=2}^{m} \frac{n}{k_i - 1, \ldots}
\]

e.g.:

\begin{verbatim}
sage: k = (2, 4, 1, 0, 2, 6, 0, 0, 3, 5, 7, 1) # random value
sage: n = sum(k)
sage: s = 0
sage: for i in range(1, len(k)):
    sage: s += (n - k[i] + 1) / (n - k[i])
\end{verbatim}
sage.arith.misc.next_prime(n, proof=None)
The next prime greater than the integer n. If n is prime, then this function does not return n, but the next prime after n. If the optional argument proof is False, this function only returns a pseudo-prime, as defined by the PARI nextprime function. If it is None, uses the global default (see sage.structure.proof.proof)

INPUT:

- n - integer
- proof - bool or None (default: None)

EXAMPLES:

```
sage: # needs sage.libs.pari
tsage: next_prime(-100) 2
sage: next_prime(1) 2
sage: next_prime(2) 3
sage: next_prime(3) 5
sage: next_prime(4) 5
```

Notice that the next_prime(5) is not 5 but 7.

```
sage: next_prime(5) # needs sage.libs.pari
7
sage: next_prime(2004) # needs sage.libs.pari
2011
```

sage.arith.misc.next_prime_power(n)
Return the smallest prime power greater than n.

Note that if n is a prime power, then this function does not return n, but the next prime power after n.

This function just calls the method Integer.next_prime_power() of Integers.

See also:

- is_prime_power() (and Integer.is_prime_power())
- previous_prime_power() (and Integer.previous_prime_power())

EXAMPLES:

```
sage: # needs sage.libs.pari
tsage: next_prime_power(1)
```

(continues on next page)
The same results can be obtained with:

```
sage: 1.next_prime_power()
sage: 2.next_prime_power()
sage: 10.next_prime_power()
```

Note that 2 is the smallest prime power:

```
sage: next_prime_power(-10)
sage: next_prime_power(0)
```

```
sage.arith.misc.next_probable_prime(n)
```

Return the next probable prime after self, as determined by PARI.

**INPUT:**

- `n` - an integer

**EXAMPLES:**

```
sage: # needs sage.libs.pari
sage: next_probable_prime(-100)
sage: next_probable_prime(19)
sage: next_probable_prime(int(999999999))
sage: next_probable_prime(2^768)
```

```
sage.arith.misc.nth_prime(n)
```

Return the n-th prime number (1-indexed, so that 2 is the 1st prime.)

**INPUT:**

- `n` - a positive integer

**OUTPUT:**

- the n-th prime number

**EXAMPLES:**
```python
sage: nth_prime(3) # needs sage.libs.pari
5
sage: nth_prime(10) # needs sage.libs.pari
29
sage: nth_prime(10^7) # needs sage.libs.pari
179424673
sage: nth_prime(0)
Traceback (most recent call last):
 ...
ValueError: nth prime meaningless for non-positive n (=0)
```

sage.arith.misc.number_of_divisors(n)

Return the number of divisors of the integer n.

INPUT:

- n - a nonzero integer

OUTPUT:

- an integer, the number of divisors of n

EXAMPLES:

```python
sage: number_of_divisors(100) # needs sage.libs.pari
9
sage: number_of_divisors(-720) # needs sage.libs.pari
30
```

Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int8
 # needs numpy
sage: number_of_divisors(int8(100)) # needs numpy sage.libs.pari
9
sage: from gmpy2 import mpz
sage: number_of_divisors(mpz(100)) # needs sage.libs.pari
9
```

sage.arith.misc.odd_part(n)

The odd part of the integer n. This is \(n/2^v\), where \(v = \text{valuation}(n, 2)\).

EXAMPLES:

```python
sage: odd_part(5)
5
sage: odd_part(4)
1
sage: odd_part(factorial(31))
122529844256906551386796875
```
Tests with numpy and gmpy2 numbers:

```sage
from numpy import int8
sage: odd_part(int8(5))
5
```

```
sage: from gmpy2 import mpz
sage: odd_part(mpz(5))
```

 sage.arith.misc.power_mod(a, n, m)  
Return the $n$-th power of $a$ modulo $m$, where $a$ and $m$ are elements of a ring that implements the modulo operator $\%$.

ALGORITHM: square-and-multiply

EXAMPLES:

```sage
sage: power_mod(2, 388, 389)
1
sage: power_mod(2, 390, 391)
285
sage: power_mod(2, -1, 7)
4
sage: power_mod(11, 1, 7)
4
```

This function works for fairly general rings:

```sage
sage: R.<x> = ZZ[]
sage: power_mod(3*x, 10, 7)
4*x^10
sage: power_mod(-3*x^2 + 4, 7, 2*x^3 - 5)
x^14 + x^8 + x^6 + x^3 + 962509*x^2 - 791910*x - 698281
```

 sage.arith.misc.previous_prime(n)  
The largest prime $< n$. The result is provably correct. If $n \leq 1$, this function raises a ValueError.

EXAMPLES:

```sage
sage: # needs sage.libs.pari
sage: previous_prime(10)
7
sage: previous_prime(7)
5
sage: previous_prime(8)
7
sage: previous_prime(7)
5
sage: previous_prime(5)
3
sage: previous_prime(3)
2
sage: previous_prime(2)
Traceback (most recent call last):
...
ValueError: no previous prime
```

(continues on next page)
sage: previous_prime(1)
Traceback (most recent call last):
... 
ValueError: no previous prime
sage: previous_prime(-20)
Traceback (most recent call last):
... 
ValueError: no previous prime

sage.arith.misc.previous_prime_power(n)

Return the largest prime power smaller than n.

The result is provably correct. If n is smaller or equal than 2 this function raises an error.

This function simply call the method Integer.previous_prime_power() of Integers.

See also:

• is_prime_power() (and Integer.is_prime_power())
• next_prime_power() (and Integer.next_prime_power())

EXAMPLES:

sage: # needs sage.libs.pari
sage: previous_prime_power(3)
2
sage: previous_prime_power(10)
9
sage: previous_prime_power(7)
5
sage: previous_prime_power(127)
125

The same results can be obtained with:

sage: # needs sage.libs.pari
sage: 3.previous_prime_power()
2
sage: 10.previous_prime_power()
9
sage: 7.previous_prime_power()
5
sage: 127.previous_prime_power()
125

Input less than or equal to 2 raises errors:

sage: previous_prime_power(2)
Traceback (most recent call last):
... 
ValueError: no prime power less than 2
sage: previous_prime_power(-10)
Traceback (most recent call last):
... 
ValueError: no prime power less than 2
sage.arith.misc.prime_divisors($n$)
Return the list of prime divisors (up to units) of this element of a unique factorization domain.

**INPUT:**
- $n$ – any object which can be decomposed into prime factors

**OUTPUT:**
A list of prime factors of $n$. For integers, this list is sorted in increasing order.

**EXAMPLES:**
Prime divisors of positive integers:

```sage
sage: prime_divisors(1)
[]
sage: prime_divisors(100)
[2, 5]
[2, 3, 167]
```

If $n$ is negative, we do *not* include -1 among the prime divisors, since -1 is not a prime number:

```sage
sage: prime_divisors(-100)
[2, 5]
```

For polynomials we get all irreducible factors:

```sage
sage: R.<x> = PolynomialRing(QQ)
sage: prime_divisors(x^12 - 1) #...
[\[x - 1, x + 1, x^2 - x + 1, x^2 + 1, x^2 + x + 1, x^4 - x^2 + 1\]
```

Tests with numpy and gmpy2 numbers:

```sage
sage: from numpy import int8 #...
sage: prime_divisors(int8(-100)) #...
[2, 5]
sage: from gmpy2 import mpz
sage: prime_divisors(mpz(-100))
[2, 5]
```

sage.arith.misc.prime_factors($n$)
Return the list of prime divisors (up to units) of this element of a unique factorization domain.

**INPUT:**
- $n$ – any object which can be decomposed into prime factors
OUTPUT:
A list of prime factors of \( n \). For integers, this list is sorted in increasing order.

EXAMPLES:
Prime divisors of positive integers:

```
sage: prime_divisors(1)
[]
sage: prime_divisors(100)
[2, 5]
[2, 3, 167]
```

If \( n \) is negative, we do not include -1 among the prime divisors, since -1 is not a prime number:

```
sage: prime_divisors(-100)
[2, 5]
```

For polynomials we get all irreducible factors:

```
sage: R.<x> = PolynomialRing(QQ)
sage: prime_divisors(x^12 - 1)
#... needs sage.libs.pari
[x - 1, x + 1, x^2 - x + 1, x^2 + 1, x^2 + x + 1, x^4 - x^2 + 1]
```

Tests with numpy and gmpy2 numbers:

```
sage: from numpy import int8
#... needs numpy
sage: prime_divisors(int8(-100))
[2, 5]
sage: from gmpy2 import mpz
sage: prime_divisors(mpz(-100))
[2, 5]
```

```
sage.arith.misc.prime_powers(start, stop=None)
```
List of all positive primes powers between \( start \) and \( stop \), inclusive. If the second argument is omitted, returns the prime powers up to the first argument.

INPUT:
- \( start \) - an integer. If two inputs are given, a lower bound for the returned set of prime powers. If this is the only input, then it is an upper bound.
- \( stop \) - an integer (default: None). An upper bound for the returned set of prime powers.

OUTPUT:
The set of all prime powers between \( start \) and \( stop \) or, if only one argument is passed, the set of all prime powers between 1 and \( start \). The number \( n \) is a prime power if \( n = p^k \), where \( p \) is a prime number and \( k \) is a positive integer. Thus, 1 is not a prime power.

EXAMPLES:

```
sage: prime_powers(20)
#... needs sage.libs.pari
[2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19]
```
```python
sage: len(prime_powers(1000))
needs sage.libs.pari
193
sage: len(prime_range(1000))
needs sage.libs.pari
168

sage: # needs sage.libs.pari
sage: a = [z for z in range(95, 1234) if is_prime_power(z)]
sage: b = prime_powers(95, 1234)
sage: len(b)
194
sage: len(a)
194
sage: a[:10]
[97, 101, 103, 107, 109, 113, 121, 125, 127, 128]
sage: b[:10]
[97, 101, 103, 107, 109, 113, 121, 125, 127, 128]
sage: a == b
True

sage: prime_powers(100) == [i for i in range(100) if is_prime_power(i)]
needs sage.libs.pari
True

sage: prime_powers(10, 7)
[]
sage: prime_powers(-5)
[]
sage: prime_powers(-1, 3)
needs sage.libs.pari
[2]
```

`sage.arith.misc.prime_to_m_part(n, m)`

Return the prime-to-m part of n.

This is the largest divisor of n that is coprime to m.

**INPUT:**

- n – Integer (nonzero)
- m – Integer

**OUTPUT:** Integer

**EXAMPLES:**

```python
sage: prime_to_m_part(240, 2)
15
sage: prime_to_m_part(240, 3)
80
sage: prime_to_m_part(240, 5)
48
sage: prime_to_m_part(43434, 20)
21717
```

Note that integers also have a method with the same name:
Tests with numpy and gmpy2 numbers:

```
sage: from numpy import int16
→ needs numpy
sage: prime_to_m_part(int16(240), int16(2)) # → needs numpy
15
```

```
sage: from gmpy2 import mpz
sage: prime_to_m_part(mpz(240), mpz(2))
15
```

```sage
sage.arith.misc.primes(start=2, stop=None, proof=None)
```

Return an iterator over all primes between \( \text{start} \) and \( \text{stop}-1 \), inclusive. This is much slower than \( \text{prime_range()} \), but potentially uses less memory. As with \( \text{next_prime()} \), the optional argument \( \text{proof} \) controls whether the numbers returned are guaranteed to be prime or not.

This command is like the Python 3 \( \text{range()} \) command, except it only iterates over primes. In some cases it is better to use \( \text{primes()} \) than \( \text{prime_range()} \), because \( \text{primes()} \) does not build a list of all primes in the range in memory all at once. However, it is potentially much slower since it simply calls the \( \text{next_prime()} \) function repeatedly, and \( \text{next_prime()} \) is slow.

**INPUT:**

- \( \text{start} \) – an integer (optional, default: 2) lower bound for the primes
- \( \text{stop} \) – an integer (or infinity) upper (open) bound for the primes
- \( \text{proof} \) – bool or None (default: None) If True, the function yields only proven primes. If False, the function uses a pseudo-primality test, which is much faster for really big numbers but does not provide a proof of primality. If None, uses the global default (see \( \text{sage.structure.proof.proof} \))

**OUTPUT:**

- an iterator over primes from \( \text{start} \) to \( \text{stop}-1 \), inclusive

**EXAMPLES:**

```
sage: # needs sage.libs.pari
sage: for p in primes(5, 10):
....: print(p)
5
7
```

```
sage: list(primes(13))
[2, 3, 5, 7, 11]
```

```
sage: list(primes(10^100, 10^100+10^4, proof=False))
```

```
sage: max(primes(10^20, infinity) if is_prime(2*p+1))
100000000000000001243
```

```sage
sage.arith.misc.primes_first_n(n, leave_pari=False)
```

Return the first \( n \) primes.

**INPUT:**

- \( n \) - a nonnegative integer
OUTPUT:

• a list of the first $n$ prime numbers.

EXAMPLES:

```python
sage: primes_first_n(10) # needs sage.libs.pari
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
sage: len(primes_first_n(1000)) # needs sage.libs.pari
1000
sage: primes_first_n(0)
[]
sage.arith.misc.primitive_root (n, check=True)

Return a positive integer that generates the multiplicative group of integers modulo n, if one exists; otherwise, raise a ValueError.

A primitive root exists if $n = 4$ or $n = p^k$ or $n = 2p^k$, where p is an odd prime and k is a nonnegative number.

INPUT:

• n – a non-zero integer
 • check – bool (default: True); if False, then n is assumed to be a positive integer possessing a primitive root, and behavior is undefined otherwise.

OUTPUT:

A primitive root of n. If n is prime, this is the smallest primitive root.

EXAMPLES:

```python
sage: # needs sage.libs.pari
sage: primitive_root(23)
5
sage: primitive_root(-46)
5
sage: primitive_root(25)
2
sage: print([primitive_root(p) for p in primes(100)])
[1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5]
sage: primitive_root(8)
Traceback (most recent call last):
  ... ValueError: no primitive root
```

Note: It takes extra work to check if n has a primitive root; to avoid this, use `check=False`, which may slightly speed things up (but could also result in undefined behavior). For example, the second call below is an order of magnitude faster than the first:

```python
sage: n = 10^50 + 151  # a prime
sage: primitive_root(n)  # needs sage.libs.pari
11
sage: primitive_root(n, check=False)  # needs sage.libs.pari
11
```

1.13. Miscellaneous arithmetic functions
sage.arith.misc.quadratic_residues\((n)\)
Return a sorted list of all squares modulo the integer \(n\) in the range \(0 \leq x < |n|\).

EXAMPLES:

```
sage: quadratic_residues(11)
[0, 1, 3, 4, 5, 9]
sage: quadratic_residues(1)
[0]
sage: quadratic_residues(2)
[0, 1]
sage: quadratic_residues(8)
[0, 1, 4]
sage: quadratic_residues(-10)
[0, 1, 4, 5, 6, 9]
sage: v = quadratic_residues(1000); len(v)
159
```

Tests with numpy and gmpy2 numbers:

```
sage: from numpy import int8  # needs numpy
sage: quadratic_residues(int8(11))  # needs numpy
[0, 1, 3, 4, 5, 9]
sage: from gmpy2 import mpz
sage: quadratic_residues(mpz(11))
[0, 1, 3, 4, 5, 9]
```

sage.arith.misc.radical\((n, *args, **kwds)\)
Return the product of the prime divisors of \(n\).

This calls \(n\).radical\(*args, **kwds\).

EXAMPLES:

```
sage: radical(2 * 3^2 * 5^5)
30
sage: radical(0)
Traceback (most recent call last):
...
ArithmeticError: radical of 0 is not defined
sage: K.<i> = QuadraticField(-1)  # needs sage.rings.number_field
sage: radical(K(2))  # needs sage.rings.number_field
1 + 1
```

Tests with numpy and gmpy2 numbers:

```
sage: from numpy import int8  # needs numpy
sage: radical(int8(50))  # needs numpy
10
sage: from gmpy2 import mpz
sage: radical(mpz(50))
10
```
sage.arith.misc.random_prime\((n,\ proof=None,\ lbound=2)\)

Return a random prime \(p\) between \(lbound\) and \(n\).

The returned prime \(p\) satisfies \(lbound \leq p \leq n\).

The returned prime \(p\) is chosen uniformly at random from the set of prime numbers less than or equal to \(n\).

INPUT:

- \(n\) - an integer \(\geq 2\).
- \(proof\) - bool or None (default: None) If False, the function uses a pseudo-primality test, which is much faster for really big numbers but does not provide a proof of primality. If None, uses the global default (see sage.structure.proof.proof).
- \(lbound\) - an integer \(\geq 2\), lower bound for the chosen primes

EXAMPLES:

```python
sage: # needs sage.libs.pari
sage: p = random_prime(100000)
sage: p.is_prime()
True
sage: p <= 100000
True
sage: random_prime(2)
2
```

Here we generate a random prime between 100 and 200:

```python
sage: p = random_prime(200, lbound=100)
sage: p.is_prime()
True
sage: 100 <= p <= 200
True
```

If all we care about is finding a pseudo prime, then we can pass in \(proof=False\)

```python
sage: p = random_prime(200, proof=False, lbound=100) #...

```

AUTHORS:

- Jon Hanke (2006-08-08): with standard Stein cleanup
- Jonathan Bober (2007-03-17)

sage.arith.misc.rational_reconstruction\((a, m,\ algorithm='fast')\)

This function tries to compute \(x/y\), where \(x/y\) is a rational number in lowest terms such that the reduction of \(x/y\) modulo \(m\) is equal to \(a\) and the absolute values of \(x\) and \(y\) are both \(\leq \sqrt{m}/2\). If such \(x/y\) exists, that pair is unique and this function returns it. If no such pair exists, this function raises ZeroDivisionError.

An efficient algorithm for computing rational reconstruction is very similar to the extended Euclidean algorithm. For more details, see Knuth, Vol 2, 3rd ed, pages 656-657.

INPUT:
• a – an integer
• m – a modulus
• algorithm – (default: 'fast')
 – 'fast' - a fast implementation using direct GMP library calls in Cython.

OUTPUT:
Numerator and denominator n, d of the unique rational number $r = n/d$, if it exists, with n and $|d| \leq \sqrt{N}/2$. Return $\langle 0, 0 \rangle$ if no such number exists.

The algorithm for rational reconstruction is described (with a complete nontrivial proof) on pages 656-657 of Knuth, Vol 2, 3rd ed. as the solution to exercise 51 on page 379. See in particular the conclusion paragraph right in the middle of page 657, which describes the algorithm thus:

This discussion proves that the problem can be solved efficiently by applying Algorithm 4.5.2X with $u = m$ and $v = a$, but with the following replacement for step X2: If $v3 \leq \sqrt{m}/2$, the algorithm terminates. The pair $(x, y) = (|v2|, v3 \cdot \text{sign}(v2))$ is then the unique solution, provided that x and y are coprime and $x \leq \sqrt{m}/2$; otherwise there is no solution. (Alg 4.5.2X is the extended Euclidean algorithm.)

Knuth remarks that this algorithm is due to Wang, Kornerup, and Gregory from around 1983.

EXAMPLES:

```python
sage: m = 100000
sage: (119*inverse_mod(53,m))%m
11323
sage: rational_reconstruction(11323,m)
119/53

sage: rational_reconstruction(400,1000)
Traceback (most recent call last):
  ... ArithmeticError: rational reconstruction of 400 (mod 1000) does not exist

sage: rational_reconstruction(3, 292393)
3
sage: a = Integers(292393)(45/97); a
204977
sage: rational_reconstruction(a, 292393, algorithm='fast')
45/97
sage: rational_reconstruction(293048, 292393)
Traceback (most recent call last):
  ... ArithmeticError: rational reconstruction of 655 (mod 292393) does not exist

sage: rational_reconstruction(0, 0)
Traceback (most recent call last):
  ... ZeroDivisionError: rational reconstruction with zero modulus

sage: rational_reconstruction(0, 1, algorithm="foobar")
Traceback (most recent call last):
  ... ValueError: unknown algorithm 'foobar'
```

Tests with numpy and gmpy2 numbers:
sage.arith.misc.rising_factorial(x, a)

Return the rising factorial \((x)^{a} \).

The notation in the literature is a mess: often \((x)^{a} \), but there are many other notations: GKP: Concrete Mathematics uses \(\binom{x}{a} \).

The rising factorial is also known as the Pochhammer symbol, see Maple and Mathematica.

Definition: for integer \(a \geq 0 \) we have \(x(x+1) \cdots (x+a-1) \). In all other cases we use the GAMMA-function: \(\frac{\Gamma(x+a)}{\Gamma(x)} \).

INPUT:
- \(x \) – element of a ring
- \(a \) – a non-negative integer or
- \(x \) and \(a \) – any numbers

OUTPUT: the rising factorial

See also:

falling_factorial()

EXAMPLES:

sage: rising_factorial(10, 3)
1320

sage: # needs sage.symbolic
sage: rising_factorial(10, RR('3.0'))
1320.00000000000

sage: rising_factorial(10, RR('3.3'))
2826.38895824964

sage: a = rising_factorial(1+I, I); a
Gamma(2*I + 1)/Gamma(I + 1)

sage: CC(a)
0.266816390637832 + 0.122783354006372*I

sage: a = rising_factorial(I, 4); a
-10

sage: x = polygen(ZZ)

sage: rising_factorial(x, 4)
x^4 + 6*x^3 + 11*x^2 + 6*x

AUTHORS:
- Jaap Spies (2006-03-05)

sage.arith.misc.sort_complex_numbers_for_display(nums)

Given a list of complex numbers (or a list of tuples, where the first element of each tuple is a complex number), we sort the list in a “pretty” order.
Real numbers (with a zero imaginary part) come before complex numbers, and are sorted. Complex numbers are sorted by their real part unless their real parts are quite close, in which case they are sorted by their imaginary part.

This is not a useful function mathematically (not least because there is no principled way to determine whether the real components should be treated as equal or not). It is called by various polynomial root-finders; its purpose is to make doctest printing more reproducible.

We deliberately choose a cumbersome name for this function to discourage use, since it is mathematically meaningless.

EXAMPLES:

```python
sage: # needs sage.rings.complex_double
sage: import sage.arith.misc
sage: sort_c = sort_complex_numbers_for_display
sage: nums = [CDF(0) for i in range(3)]

sage: for i in range(3):
    ...:     nums.append(CDF(i + RDF.random_element(-3e-11, 3e-11),
    ...:                     RDF.random_element()))

sage: shuffle(nums)

sage: for i in range(len(nums)):
    ...:     if nums[i].imag():
    ...:         first_non_real = i
    ...:         break
    ...:     else:
    ...:         first_non_real = len(nums)

sage: assert first_non_real >= 3

sage: for i in range(first_non_real - 1):
    ...:     assert nums[i].real() <= nums[i + 1].real()

sage: def truncate(n):
    ...:     if n.real() < 1e-10:
    ...:         return 0
    ...:     else:
    ...:         return n.real().n(digits=9)

sage: for i in range(first_non_real, len(nums) - 1):
    ...:     assert truncate(nums[i]) <= truncate(nums[i + 1])
    ...:     if truncate(nums[i]) == truncate(nums[i + 1]):
    ...:         assert nums[i].imag() <= nums[i + 1].imag()
```

sage.arith.misc.squarefree_divisors *(x)*

Return an iterator over the squarefree divisors (up to units) of this ring element.

Depends on the output of the prime_divisors function.

Squarefree divisors of an integer are not necessarily yielded in increasing order.

INPUT:

- *x* – an element of any ring for which the prime_divisors function works.

EXAMPLES:

Integers with few prime divisors:

```python
sage: list(squarefree_divisors(7))
[1, 7]
sage: list(squarefree_divisors(6))
[1, 2, 3, 6]
```
Squarefree divisors are not yielded in increasing order:

```
sage: list(squarefree_divisors(12))
[1, 2, 3, 6]
```

```
sage: list(squarefree_divisors(30))
[1, 2, 3, 6, 5, 10, 15, 30]
```

```
sage.arith.misc.subfactorial(n)
```
Subfactorial or rencontres numbers, or derangements: number of permutations of \(n \) elements with no fixed points.

INPUT:

- \(n \) - non negative integer

OUTPUT:

- integer - function value

EXAMPLES:

```
sage: subfactorial(0)
1
sage: subfactorial(1)
0
sage: subfactorial(8)
14833
```

Tests with numpy and gmpy2 numbers:

```
sage: from numpy import int8
# \( \rightarrow \) needs numpy
sage: subfactorial(int8(8))
14833
```

```
sage: from gmpy2 import mpz
sage: subfactorial(mpz(8))
14833
```

AUTHORS:

- Jaap Spies (2007-01-23)

```
sage.arith.misc.sum_of_k_squares(k, n)
```
Write the integer \(n \) as a sum of \(k \) integer squares if possible; otherwise raise a \texttt{ValueError}.

INPUT:

- \(k \) – a non-negative integer
- \(n \) – an integer

OUTPUT: a tuple \((x_1, \ldots, x_k)\) of non-negative integers such that their squares sum to \(n \).

EXAMPLES:

```
sage: sum_of_k_squares(2, 9634)
(15, 97)
sage: sum_of_k_squares(3, 9634)
(0, 15, 97)
```

(continues on next page)
Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int16
(sage: sum_of_k_squares(int16(2), int16(9634))
(sage: sum_of_k_squares(int16(2), int16(9634))
(sage: from gmpy2 import mpz
(sage: sum_of_k_squares(mpz(2), mpz(9634))
```
Write the integer n as a sum of three integer squares if possible; otherwise raise a `ValueError`.

INPUT:
- n – an integer

OUTPUT: a tuple (a, b, c) of non-negative integers such that $n = a^2 + b^2 + c^2$ with $a <= b <= c$.

EXAMPLES:

```plaintext
sage: three_squares(389)
(1, 8, 18)
sage: three_squares(946)
(9, 9, 28)
sage: three_squares(2986)
(3, 24, 49)
sage: three_squares(7^100)
(0, 0, 17984650426474121466620280340569649349251249)
sage: three_squares(11^111 - 1)  # needs sage.libs.pari
(616274160655975340150706442680, 901582938385735143295060746161, 6270382387635744140394001363065311967964099981788593947233)
sage: three_squares(7 * 2^41)  # needs sage.libs.pari
(1048576, 2097152, 3145728)
sage: three_squares(7 * 2^42)
Traceback (most recent call last):
... ValueError: 30786325577728 is not a sum of 3 squares
sage: three_squares(0)
(0, 0, 0)
sage: three_squares(-1)
Traceback (most recent call last):
... ValueError: -1 is not a sum of 3 squares
```

ALGORITHM:

See https://schorn.ch/lagrange.html

```python
sage.arith.misc.trial_division(n, bound=None)
```

Return the smallest prime divisor \leq bound of the positive integer n, or n if there is no such prime. If the optional argument bound is omitted, then bound \leq n.

INPUT:
- n- a positive integer
- bound- (optional) a positive integer

OUTPUT:
- int - a prime p=bound that divides n, or n if there is no such prime.

EXAMPLES:

```plaintext
sage: trial_division(15)
3
sage: trial_division(91)
7
sage: trial_division(11)
```

(continues on next page)
Tests with numpy and gmpy2 numbers:

```python
sage: from numpy import int8
# needs numpy
sage: trial_division(int8(91)) # needs numpy
7
sage: from gmpy2 import mpz
sage: trial_division(mpz(91))
7
```

`sage.arith.misc.two_squares(n)`
Write the integer n as a sum of two integer squares if possible; otherwise raise a `ValueError`.

INPUT:
- n – an integer

OUTPUT: a tuple (a, b) of non-negative integers such that $n = a^2 + b^2$ with $a \leq b$.

EXAMPLES:

```python
sage: two_squares(389)
(10, 17)
sage: two_squares(21)
Traceback (most recent call last):
... ValueError: 21 is not a sum of 2 squares
sage: two_squares(21^2)
(0, 21)
sage: a, b = two_squares(100000000000000000129); a, b
# needs sage.libs.pari
(4418521500, 8970878873)
sage: a^2 + b^2
# needs sage.libs.pari
100000000000000000129
sage: two_squares(2^222 + 1)
# needs sage.libs.pari
(253801659504708621991421712450521, 2583712713213354898490304645018692)
sage: two_squares(0)
(0, 0)
sage: two_squares(-1)
Traceback (most recent call last):
... ValueError: -1 is not a sum of 2 squares
```

ALGORITHM:
See https://schorn.ch/lagrange.html
sage.arith.misc.valuation(m, *args, **kwds)

Return the valuation of m.

This function simply calls the m.valuation() method. See the documentation of m.valuation() for a more precise description.

Note that the use of this function is discouraged as it is better to use m.valuation() directly.

Note: This is not always a valuation in the mathematical sense. For more information see: sage.rings.finite_rings.integer_mod.IntegerMod_int.valuation

EXAMPLES:

```python
sage: valuation(512, 2)
9
sage: valuation(1, 2)
0
sage: valuation(5/9, 3)
-2
```

Valuation of 0 is defined, but valuation with respect to 0 is not:

```python
sage: valuation(0, 7)
+Infinity
sage: valuation(3, 0)
Traceback (most recent call last):
  ... ValueError: You can only compute the valuation with respect to a integer larger than 1.
```

Here are some other examples:

```python
sage: valuation(100, 10)
2
sage: valuation(200, 10)
2
sage: valuation(243, 3)
5
sage: valuation(243*10007, 3)
5
sage: valuation(243*10007, 10007)
1
sage: y = QQ['y'].gen()
sage: valuation(y^3, y)
3
sage: x = QQ[['x']].gen()
sage: valuation((x^3-x^2)/(x-4))
2
sage: valuation(4r, 2r)
2
sage: valuation(1r, 1r)
Traceback (most recent call last):
  ... ValueError: You can only compute the valuation with respect to a integer larger than 1.
sage: from numpy import int16
```

(continues on next page)
sage: valuation(int16(512), int16(2))
needs numpy
9
sage: from gmpy2 import mpz
sage: valuation(mpz(512), mpz(2))
9

sage.arith.misc.xgcd(a, b)

Return a triple \((g, s, t)\) such that \(g = s \cdot a + t \cdot b = \gcd(a, b)\).

Note: One exception is if \(a\) and \(b\) are not in a principal ideal domain (see Wikipedia article Principal_ideal_domain), e.g., they are both polynomials over the integers. Then this function can’t in general return \((g, s, t)\) as above, since they need not exist. Instead, over the integers, we first multiply \(g\) by a divisor of the resultant of \(a/g\) and \(b/g\), up to sign.

INPUT:

- \(a, b\) - integers or more generally, element of a ring for which the xgcd make sense (e.g. a field or univariate polynomials).

OUTPUT:

- \(g, s, t\) - such that \(g = s \cdot a + t \cdot b\)

Note: There is no guarantee that the returned cofactors \((s\) and \(t)\) are minimal.

EXAMPLES:

sage: xgcd(56, 44)
(4, 4, -5)
sage: 4*56 + (-5)*44
4

sage: g, a, b = xgcd(5/1, 7/1); g, a, b
(1, 3, -2)
sage: a*(5/1) + b*(7/1) == g
True

sage: x = polygen(QQ)
sage: xgcd(x^3 - 1, x^2 - 1)
(x - 1, 1, -x)

sage: K.<g> = NumberField(x^2 - 3)
needs sage.rings.number_field
sage: g.xgcd(g + 2)
needs sage.rings.number_field
(1, 1/3*g, 0)

sage: # needs sage.rings.number_field
sage: R.<a,b> = K[]
sage: S.<y> = R.fraction_field()[]
sage: xgcd(y^2, a*y + b)
(1, a^2/b^2, ((-a)/b^2)*y + 1/b)
Here is an example of a \texttt{xgcd} for two polynomials over the integers, where the linear combination is not the gcd but the gcd multiplied by the resultant:

\begin{verbatim}
sage: R.<x> = ZZ[]
sage: gcd(2*x*(x-1), x^2)
x
sage: xgcd(2*x*(x-1), x^2)
(2*x, -1, 2)
sage: (2*(x-1)).resultant(x) # needs sage.libs.pari
2
\end{verbatim}

Tests with \texttt{numpy} and \texttt{gmpy2} types:

\begin{verbatim}
sage: from numpy import int8 # needs numpy
sage: xgcd(4, int8(8)) # needs numpy
(4, 1, 0)
sage: xgcd(int8(4), int8(8)) # needs numpy
(4, 1, 0)
sage: from gmpy2 import mpz
sage: xgcd(mpz(4), mpz(8)) # needs numpy
(4, 1, 0)
sage: xgcd(4, mpz(8)) # needs numpy
(4, 1, 0)
\end{verbatim}

\texttt{sage.arith.misc.xkcd}(n='')

This function is similar to the \texttt{xgcd} function, but behaves in a completely different way.

See \url{https://xkcd.com/json.html} for more details.

INPUT:

- \texttt{n} – an integer (optional)

OUTPUT: a fragment of HTML

EXAMPLES:

\begin{verbatim}
sage: xkcd(353) # optional - internet
\end{verbatim}

\texttt{sage.arith.misc.xlcm}(m,n)

Extended \texttt{lcm} function: given two positive integers \(m, n\), returns a triple \((l, m_1, n_1)\) such that \(l = \text{lcm}(m, n) = m_1 \cdot n_1\) where \(m_1 | m, n_1 | n\) and \(\gcd(m_1, n_1) = 1\), all with no factorization.

Used to construct an element of order \(l\) from elements of orders \(m, n\) in any group: see \texttt{sage/groups/generic.py} for examples.

EXAMPLES:
sage: \texttt{xlcm(120,36)}
(360, 40, 9)

See also:

- \texttt{sage.sets.integer_range}
- \texttt{sage.sets.positive_integers}
- \texttt{sage.sets.non_negative_integers}
- \texttt{sage.sets.primes}
2.1 Field \mathbb{Q} of Rational Numbers

The class `RationalField` represents the field \mathbb{Q} of (arbitrary precision) rational numbers. Each rational number is an instance of the class `Rational`.

Interactively, an instance of `RationalField` is available as `QQ`:

```
sage: QQ
Rational Field
```

Values of various types can be converted to rational numbers by using the `__call__()` method of `RationalField` (that is, by treating `QQ` as a function).

```
sage: RealField(9).pi() # needs sage.rings.real_mpfr
3.1
sage: QQ(RealField(9).pi()) # needs sage.rings.real_interval_field sage.rings.real_mpfr
22/7
sage: QQ(RealField().pi()) # needs sage.rings.real_interval_field sage.rings.real_mpfr
245850922/78256779
sage: QQ(35)
35
sage: QQ(12/347)
12/347
sage: QQ(exp(pi*I)) # needs sage.symbolic
-1
sage: x = polygen(ZZ)
```

```
sage: QQ((3*x)/(4*x))
3/4
```

AUTHORS:

- Niles Johnson (2010-08): [github issue #3893](#): `random_element()` should pass on `*args` and `**kwds`.
- Travis Scrimshaw (2012-10-18): Added additional docstrings for full coverage. Removed duplicates of `discriminant()` and `signature()`.
- Anna Haensch (2018-03): Added function `quadratic_defect()`

```
class sage.rings.rational_field.RationalField
    Bases: Singleton, NumberField
```
The class `RationalField` represents the field \mathbb{Q} of rational numbers.

EXAMPLES:

```python
sage: a = 901824309821093812093810928309183091832091
sage: b = QQ(a); b
901824309821093812093810928309183091832091
sage: QQ(b)
901824309821093812093810928309183091832091
sage: QQ(int(93820984323))
93820984323
sage: QQ(ZZ(901824309821093812093810928309183091832091))
901824309821093812093810928309183091832091
sage: QQ('-930482/9320842317')
-930482/9320842317
sage: QQ((-930482, 9320842317))
-930482/9320842317
sage: QQ([9320842317])
9320842317
sage: QQ(pari(39029384023840928309482842098430284398243982394))
39029384023840928309482842098430284398243982394
sage: QQ(sage)
Traceback (most recent call last):
...TypeError: unable to convert 'sage' to a rational
```

Conversion from the reals to the rationals is done by default using continued fractions.

```python
sage: QQ(RR(3929329/32))
3929329/32
sage: QQ(-RR(3929329/32))
-3929329/32
sage: QQ(RR(1/7)) - 1/7
23.2000000000000
sage: a = 23.2; a
23.2000000000000
sage: QQ(a, 10)
116/5
```

If you specify the optional second argument `base`, then the string representation of the float is used.

```python
sage: # needs sage.rings.real_mpfr
sage: QQ(1.2, 2)
6530219459687219/281474976710656
sage: 6530219459687219.0/281474976710656
23.2000000000000
sage: a = 23.2; a
23.2000000000000
sage: QQ(a, 10)
116/5
```

Here's a nice example involving elliptic curves:

```python
sage: # needs sage.rings.real_mpfr sage.schemes
sage: E = EllipticCurve('11a')
sage: L = E.elliptic_curve().at1(300)[0]; L
0.2538418608559106843377589233...
```

(continues on next page)
absolute_degree()
Return the absolute degree of \(\mathbb{Q} \), which is 1.

EXAMPLES:

```
sage: QQ.absolute_degree()  
1
```

absolute_discriminant()
Return the absolute discriminant, which is 1.

EXAMPLES:

```
sage: QQ.absolute_discriminant()  
1
```

absolute_polynomial()
Return a defining polynomial of \(\mathbb{Q} \), as for other number fields.

This is also aliased to \texttt{defining_polynomial()} and \texttt{absolute_polynomial()}.

EXAMPLES:

```
sage: QQ.polynomial()  
x
```

algebraic_closure()
Return the algebraic closure of \texttt{self} (which is \(\overline{\mathbb{Q}} \)).

EXAMPLES:

```
sage: QQ.algebraic_closure()  
# Needs sage.rings.number_field
Algebraic Field
```

automorphisms()
Return all Galois automorphisms of \texttt{self}.

OUTPUT: a sequence containing just the identity morphism

EXAMPLES:

```
sage: QQ.automorphisms()  
[  
  Ring endomorphism of Rational Field  
  Defn: 1 |--> 1  
]
```

characteristic()
Return 0 since the rational field has characteristic 0.

EXAMPLES:
sage: c = QQ.characteristic(); c
0
sage: parent(c)
Integer Ring

class_number()

Return the class number of the field of rational numbers, which is 1.

EXAMPLES:

sage: QQ.class_number()
1

completion(p, prec, extras={})

Return the completion of \(\mathbb{Q} \) at \(p \).

EXAMPLES:

sage: QQ.completion(infinity, 53) # needs sage.rings.real_mpfr
Real Field with 53 bits of precision
sage: QQ.completion(5, 15, {'print_mode': 'bars'}) # needs sage.rings.padics
5-adic Field with capped relative precision 15

complex_embedding(prec=53)

Return embedding of the rational numbers into the complex numbers.

EXAMPLES:

sage: QQ.complex_embedding() # needs sage.rings.real_mpfr
Ring morphism:
 From: Rational Field
 To: Complex Field with 53 bits of precision
 Defn: 1 |--> 1.00000000000000
sage: QQ.complex_embedding(20) # needs sage.rings.real_mpfr
Ring morphism:
 From: Rational Field
 To: Complex Field with 20 bits of precision
 Defn: 1 |--> 1.0000

construction()

Return a pair (functor, parent) such that functor(parent) returns self.

This is the construction of \(\mathbb{Q} \) as the fraction field of \(\mathbb{Z} \).

EXAMPLES:

sage: QQ.construction()
(FractionField, Integer Ring)

defining_polynomial()

Return a defining polynomial of \(\mathbb{Q} \), as for other number fields.

This is also aliased to defining_polynomial() and absolute_polynomial().

EXAMPLES:
sage: QQ.polynomial()
x

degree ()
Return the degree of \(\mathbb{Q} \), which is 1.

EXAMPLES:

sage: QQ.degree()
1

discriminant ()
Return the discriminant of the field of rational numbers, which is 1.

EXAMPLES:

sage: QQ.discriminant()
1

embeddings (\(K \))
Return list of the one embedding of \(\mathbb{Q} \) into \(K \), if it exists.

EXAMPLES:

sage: QQ.embeddings(QQ)
[Identity endomorphism of Rational Field]
sage: QQ.embeddings(CyclotomicField(5))
[Coercion map:
 From: Rational Field
 To: Cyclotomic Field of order 5 and degree 4]

\(K \) must have characteristic 0:

sage: QQ.embeddings(GF(3))
Traceback (most recent call last):
... ValueError: no embeddings of the rational field into K.

extension (\(\text{poly, names, **kwds} \))
Create a field extension of \(\mathbb{Q} \).

EXAMPLES:

We make a single absolute extension:

sage: x = polygen(QQ, 'x')
sage: K.<a> = QQ.extension(x^3 + 5); K
#... Number Field in a with defining polynomial x^3 + 5

We make an extension generated by roots of two polynomials:

sage: K.<a,b> = QQ.extension([x^3 + 5, x^2 + 3]); K
#... Number Field in a with defining polynomial x^3 + 5 over its base field
sage: b^2

(continues on next page)
gen \((n=0) \)

Return the \(n \)-th generator of \(\mathbb{Q} \).

There is only the 0-th generator, which is 1.

EXAMPLES:

```
sage: QQ.gen()
1
```

gens ()

Return a tuple of generators of \(\mathbb{Q} \), which is only \((1,)\).

EXAMPLES:

```
sage: QQ.gens()
(1,)
```

hilbert_symbol_negative_at_S \((S, b, \text{check=True}) \)

Return an integer that has a negative Hilbert symbol with respect to a given rational number and a given set of primes (or places).

The function is algorithm 3.4.1 in [Kir2016]. It finds an integer \(a \) that has negative Hilbert symbol with respect to a given rational number exactly at a given set of primes (or places).

INPUT:

\- \(S \) – a list of rational primes, the infinite place as real embedding of \(\mathbb{Q} \) or as \(-1\)
\- \(b \) – a non-zero rational number which is a non-square locally at every prime in \(S \).
\- \(\text{check} \) – bool (default: \(True \)) perform additional checks on input and confirm the output.

OUTPUT:

\- An integer \(a \) that has negative Hilbert symbol \((a, b)_p \) for every place \(p \) in \(S \) and no other place.

EXAMPLES:

```
sage: QQ.hilbert_symbol_negative_at_S([-1, 5, 3, 2, 7, 11, 13, 23], -10/7) #...
sage: QQ.hilbert_symbol_negative_at_S([3, 5, QQ.places()[0], 11], -15) #...
sage: QQ.hilbert_symbol_negative_at_S([3, 5], 2) #...
```

AUTHORS:

is_absolute()

Q is an absolute extension of Q.

EXAMPLES:

```
sage: QQ.is_absolute()
True
```

is_prime_field()

Return True since Q is a prime field.

EXAMPLES:

```
sage: QQ.is_prime_field()
True
```

maximal_order()

Return the maximal order of the rational numbers, i.e., the ring Z of integers.

EXAMPLES:

```
sage: QQ.maximal_order()
Integer Ring
sage: QQ.ring_of_integers ()
Integer Ring
```

ngens()

Return the number of generators of Q, which is 1.

EXAMPLES:

```
sage: QQ.ngens()
1
```

number_field()

Return the number field associated to Q. Since Q is a number field, this just returns Q again.

EXAMPLES:

```
sage: QQ.number_field() is QQ
True
```

order()

Return the order of Q, which is ∞.

EXAMPLES:

```
sage: QQ.order()
+Infinity
```

places (*all_complex=False, prec=None*)

Return the collection of all infinite places of self, which in this case is just the embedding of self into R.

By default, this returns homomorphisms into RR. If prec is not None, we simply return homomorphisms into RealField(prec) (or RDF if prec=53).

There is an optional flag all_complex, which defaults to False. If all_complex is True, then the real embeddings are returned as embeddings into the corresponding complex field.
For consistency with non-trivial number fields.

EXAMPLES:

```python
sage: QQ.places()          # Needs sage.rings.real_mpfr
[Ring morphism:
  From: Rational Field
  To:   Real Field with 53 bits of precision
  Defn: 1 |--> 1.0000000000000000000000000000000000000000000000000000000000
]
```

```python
sage: QQ.places(prec=53)
[Ring morphism:
  From: Rational Field
  To:   Real Double Field
  Defn: 1 |--> 1.0
]
```  

```python
sage: QQ.places(prec=200, all_complex=True)  # Needs sage.rings.real_mpfr
[Ring morphism:
  From: Rational Field
  To:   Complex Field with 200 bits of precision
  Defn: 1 |--> 1.0000000000000000000000000000000000000000000000000000000000
]
```

polynomial()

Return a defining polynomial of \(\mathbb{Q} \), as for other number fields.

This is also aliased to `defining_polynomial()` and `absolute_polynomial()`.

EXAMPLES:

```python
sage: QQ.polynomial()
x
```

power_basis()

Return a power basis for this number field over its base field.

The power basis is always \([1]\) for the rational field. This method is defined to make the rational field behave more like a number field.

EXAMPLES:

```python
sage: QQ.power_basis()
[1]
```

primes_of_bounded_norm_iter\((B)\)

Iterator yielding all primes less than or equal to \(B \).

INPUT:

- \(B \) – a positive integer; upper bound on the primes generated.

OUTPUT:

An iterator over all integer primes less than or equal to \(B \).

Note: This function exists for compatibility with the related number field method, though it returns prime integers, not ideals.

EXAMPLES:
\begin{verbatim}
sage: it = QQ.primes_of_bounded_norm_iter(10)
sage: list(it) #... ˓→needs sage.libs.pari
[2, 3, 5, 7]
sage: list(QQ.primes_of_bounded_norm_iter(1)) []
\end{verbatim}

quadratic_defect\((a, p, check=True)\)

Return the valuation of the quadratic defect of \(a\) at \(p\).

INPUT:

- \(a\) – an element of self
- \(p\) – a prime ideal or a prime number
- \(check\) – (default: True); check if \(p\) is prime

REFERENCE:

[Kir2016]

EXAMPLES:

\begin{verbatim}
sage: QQ.quadratic_defect(0, 7) +Infinity
sage: QQ.quadratic_defect(5, 7) 0
sage: QQ.quadratic_defect(5, 2) 2
sage: QQ.quadratic_defect(5, 5) 1
\end{verbatim}

random_element\((num bound=None, den bound=None, *args, **kwds)\)

Return a random element of \(Q\).

Elements are constructed by randomly choosing integers for the numerator and denominator, not necessarily coprime.

INPUT:

- \(num_bound\) – a positive integer, specifying a bound on the absolute value of the numerator. If absent, no bound is enforced.
- \(den_bound\) – a positive integer, specifying a bound on the value of the denominator. If absent, the bound for the numerator will be reused.

Any extra positional or keyword arguments are passed through to \texttt{sage.rings.integer_ring.IntegerRing_class.random_element()}.

EXAMPLES:

\begin{verbatim}
sage: QQ.random_element().parent() is QQ True
sage: while QQ.random_element() != 0:
 : pass
sage: while QQ.random_element() != -1/2:
 : pass
\end{verbatim}

In the following example, the resulting numbers range from -5/1 to 5/1 (both inclusive), while the smallest possible positive value is 1/10:
sage: q = QQ.random_element(5, 10)
sage: -5/1 <= q <= 5/1
True
sage: q.denominator() <= 10
True
sage: q.numerator() <= 5
True

Extra positional or keyword arguments are passed through:

sage: QQ.random_element(distribution='1/n').parent() is QQ
True
sage: QQ.random_element(distribution='1/n').parent() is QQ
True

range_by_height (start, end=None)

Range function for rational numbers, ordered by height.

Returns a Python generator for the list of rational numbers with heights in range(start, end). Follows the same convention as Python range(), type range? for details.

See also __iter__().

EXAMPLES:

All rational numbers with height strictly less than 4:

```python
sage: list(QQ.range_by_height(4))
[0, 1, -1, 1/2, -1/2, 2, -2, 1/3, -1/3, 3, -3, 2/3, -2/3, 3/2, -3/2]
```

```
[a.height() for a in QQ.range_by_height(4)]
[1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3]
```

All rational numbers with height 2:

```python
sage: list(QQ.range_by_height(2, 3))
[1/2, -1/2, 2, -2]
```

Nonsensical integer arguments will return an empty generator:

```python
sage: list(QQ.range_by_height(3, 3))
[]
sage: list(QQ.range_by_height(10, 1))
[]
```

There are no rational numbers with height ≤ 0:

```python
sage: list(QQ.range_by_height(-10, 1))
[]
```

relative_discriminant ()

Return the relative discriminant, which is 1.

EXAMPLES:

```python
sage: QQ.relative_discriminant()
1
```
residue_field \((p, \text{check}=\text{True})\)

Return the residue field of \(\mathbb{Q}\) at the prime \(p\), for consistency with other number fields.

INPUT:
- \(p\) – a prime integer.
- \(\text{check}\) (default True) – if True, check the primality of \(p\), else do not.

OUTPUT: The residue field at this prime.

EXAMPLES:

```
sage: QQ.residue_field(5)
Residue field of Integers modulo 5
sage: QQ.residue_field(next_prime(10^9))  # needs sage.rings.finite_rings
Residue field of Integers modulo 1000000007
```

selmer_generators \((S, m, \text{proof}=\text{True}, \text{orders}=\text{False})\)

Return generators of the group \(\mathbb{Q}(S, m)\).

INPUT:
- \(S\) – a set of primes
- \(m\) – a positive integer
- \(\text{proof}\) – ignored
- \(\text{orders}\) (default False) – if True, output two lists, the generators and their orders

OUTPUT:
A list of generators of \(\mathbb{Q}(S, m)\) (and, optionally, their orders in \(\mathbb{Q}^\times/\langle \mathbb{Q}^\times \rangle^m\)). This is the subgroup of \(\mathbb{Q}^\times/\langle \mathbb{Q}^\times \rangle^m\) consisting of elements \(a\) such that the valuation of \(a\) is divisible by \(m\) at all primes not in \(S\). It is equal to the group of \(S\)-units modulo \(m\)-th powers. The group \(\mathbb{Q}(S, m)\) contains the subgroup of those \(a\) such that \(\sqrt{a}/\mathbb{Q}\) is unramified at all primes of \(\mathbb{Q}\) outside of \(S\), but may contain it properly when not all primes dividing \(m\) are in \(S\).

See also:
\(\text{RationalField.selmer_space()}\), which gives additional output when \(m = p\) is prime: as well as generators, it gives an abstract vector space over \(\mathbb{F}_p\) isomorphic to \(\mathbb{Q}(S, p)\) and maps implementing the isomorphism between this space and \(\mathbb{Q}(S, p)\) as a subgroup of \(\mathbb{Q}^\times/\langle \mathbb{Q}^\times \rangle^p\).

EXAMPLES:

```
sage: QQ.selmer_generators([], 2)
[-1]
sage: QQ.selmer_generators([3,], 2)
[-1, 3]
sage: QQ.selmer_generators([5,], 2)
[-1, 5]
```

The previous examples show that the group generated by the output may be strictly larger than the ‘true’ Selmer group of elements giving extensions unramified outside \(S\).

When \(m\) is even, \(-1\) is a generator of order 2:
sage: QQ.selmer_generators((2,3,5,7,), 2, orders=True)
(([-1, 2, 3, 5, 7], [2, 2, 2, 2, 2])
sage: QQ.selmer_generators((2,3,5,7,), 3, orders=True)
([2, 3, 5, 7], [3, 3, 3, 3])

selmer_group(*args, **kwargs)

Deprecated: Use selmer_generators() instead. See github issue #31345 for details.

selmer_group_iterator(S, m, proof=True)

Return an iterator through elements of the finite group $\mathbb{Q}(S, m)$.

INPUT:

- S – a set of primes
- m – a positive integer
- $proof$ – ignored

OUTPUT:

An iterator yielding the distinct elements of $\mathbb{Q}(S, m)$. See the docstring for selmer_generators() for more information.

EXAMPLES:

sage: list(QQ.selmer_group_iterator({}, 2))
[1, -1]
sage: list(QQ.selmer_group_iterator({2}, 2))
[1, 2, -1, -2]
sage: list(QQ.selmer_group_iterator({2,3}, 2))
[1, 3, 2, 6, -1, -3, -2, -6]
sage: list(QQ.selmer_group_iterator({5}, 2))
[1, 5, -1, -5]

selmer_space(S, p, proof=None)

Compute the group $\mathbb{Q}(S, p)$ as a vector space with maps to and from \mathbb{Q}^*.

INPUT:

- S – a list of prime numbers
- p – a prime number

OUTPUT:

(tuple) $\mathbb{Q}Sp, \mathbb{Q}Sp_gens, from_{\mathbb{Q}Sp}, to_{\mathbb{Q}Sp}$ where

- $\mathbb{Q}Sp$ is an abstract vector space over \mathbb{F}_p isomorphic to $\mathbb{Q}(S, p)$;
- $\mathbb{Q}Sp_gens$ is a list of elements of \mathbb{Q}^* generating $\mathbb{Q}(S, p)$;
- $from_{\mathbb{Q}Sp}$ is a function from $\mathbb{Q}Sp$ to \mathbb{Q}^* implementing the isomorphism from the abstract $\mathbb{Q}(S, p)$ to $\mathbb{Q}(S, p)$ as a subgroup of $\mathbb{Q}^*/(\mathbb{Q}^*)^p$;
- $to_{\mathbb{Q}Sp}$ is a partial function from \mathbb{Q}^* to $\mathbb{Q}Sp$, defined on elements a whose image in $\mathbb{Q}^*/(\mathbb{Q}^*)^p$ lies in $\mathbb{Q}(S, p)$, mapping them via the inverse isomorphism to the abstract vector space $\mathbb{Q}Sp$.

The group $\mathbb{Q}(S, p)$ is the finite subgroup of $\mathbb{Q}^*/(\mathbb{Q}^*)^p$ consisting of elements whose valuation at all primes not in S is a multiple of p. It contains the subgroup of those $a \in \mathbb{Q}^*$ such that $\mathbb{Q}(\sqrt[p]{a})/\mathbb{Q}$ is unramified at all primes of \mathbb{Q} outside of S, but may contain it properly when p is not in S.

EXAMPLES:
When S is empty, $\mathbb{Q}(S, p)$ is only nontrivial for $p = 2$:

```sage
sage: QS2, QS2gens, fromQS2, toQS2 = QQ.selmer_space([], 2)  # needs sage.rings.number_field
sage: QS2  # needs sage.rings.number_field
Vector space of dimension 1 over Finite Field of size 2
sage: QS2gens  # needs sage.rings.number_field
[-1]
sage: all(QQ.selmer_space([], p)[0].dimension() == 0  # needs sage.libs.pari sage.rings.number_field
...: for p in primes(3, 10))
True
```

In general there is one generator for each $p \in S$, and an additional generator of -1 when $p = 2$:

```sage
sage: # needs sage.modules sage.rings.number_field
sage: QS2, QS2gens, fromQS2, toQS2 = QQ.selmer_space([5, 7], 2)
sage: QS2
Vector space of dimension 3 over Finite Field of size 2
sage: QS2gens
[5, 7, -1]
sage: toQS2(-7)
(0, 1, 1)
sage: fromQS2((0, 1, 1))
-7
```

The map `fromQS2` is only well-defined modulo p'th powers (in this case, modulo squares):

```sage
sage: toQS2(-5/7)  # needs sage.modules sage.rings.number_field
(1, 1, 1)
sage: fromQS2((1, 1, 1))  # needs sage.modules sage.rings.number_field
-35
sage: ((-5/7)/(-35)).is_square()
True
```

The map `toQS2` is not defined on all of \mathbb{Q}^*, only on those numbers which are squares away from 5 and 7:

```sage
sage: toQS2(210)  # needs sage.modules sage.rings.number_field
Traceback (most recent call last):
... ValueError: argument 210 should have valuations divisible by 2 at all primes in [5, 7]
```

signature()

Return the signature of the rational field, which is $(1, 0)$, since there are 1 real and no complex embeddings.

EXAMPLES:

```sage
sage: QQ.signature()
(1, 0)
```
Return some elements of \(\mathbb{Q} \).

See TestSuite() for a typical use case.

OUTPUT: An iterator over 100 elements of \(\mathbb{Q} \).

EXAMPLES:

\[\text{sage: tuple(QQ.some_elements())}\]
(1/2, -1/2, 2, -2, 0, 1, -1, 42,
2/3, -2/3, 3/2, -3/2, 4/5, -4/5, 5/4, -5/4,
6/7, -6/7, 7/6, -7/6, 8/9, -8/9, 9/8, -9/8,
10/11, -10/11, 11/10, -11/10, 12/13, -12/13, 13/12, -13/12,
14/15, -14/15, 15/14, -15/14, 16/17, -16/17, 17/16, -17/16,
18/19, -18/19, 19/18, -19/18, 20/441, -20/441, 441/20, -441/20,
22/529, -22/529, 529/22, -529/22, 24/625, -24/625, 625/24, -625/24,
...)

\[\text{valuation}(p)\]
Return the discrete valuation with uniformizer \(p \).

EXAMPLES:

\[\text{sage: v = QQ.valuation(3); v}\]
3-adic valuation
\[\text{sage: v(1/3)}\]
\(-1\)

See also:

NumberField_generic.valuation(), IntegerRing_class.valuation()

\[\text{zeta}(n=2)\]
Return a root of unity in self.

INPUT:
- \(n \) – integer (default: 2) order of the root of unity

EXAMPLES:

\[\text{sage: QQ.zeta()}\]
\(-1\)
\[\text{sage: QQ.zeta(2)}\]
\(-1\)
\[\text{sage: QQ.zeta(1)}\]
1
\[\text{sage: QQ.zeta(3)}\]
Traceback (most recent call last):
...
ValueError: no n-th root of unity in rational field
sage.rings.rational_field.frac(n, d)
Return the fraction n/d.

EXAMPLES:

```
sage: from sage.rings.rational_field import frac
sage: frac(1, 2)
1/2
```

sage.rings.rational_field.is_RationalField(x)
Check to see if x is the rational field.

EXAMPLES:

```
sage: from sage.rings.rational_field import is_RationalField as is_RF
sage: is_RF(QQ)
True
sage: is_RF(ZZ)
False
```

2.2 Rational Numbers

AUTHORS:

- William Stein (2005): first version
- Gonzalo Tornaria and William Stein (2006-03-02): greatly improved python/GMP conversion; hashing
- David Harvey (2006-09-15): added nth_root
- Pablo De Napoli (2007-04-01): corrected the implementations of multiplicative_order, is_one; optimized __bool__; documented: lcm,gcd
- Travis Scrimshaw (2012-10-18): Added doctests for full coverage.
- Vincent Delecroix (2013): continued fraction
- Vincent Delecroix (2017-05-03): faster integer-rational comparison
- Vincent Klein (2017-05-11): add __mpq__() to class Rational
- Vincent Klein (2017-05-22): Rational constructor support gmpy2.mpq or gmpy2.mpz parameter. Add __mpz__
to class Rational.

class sage.rings.rational.Q_to_Z
Bases: Map

A morphism from Q to Z.

section()

Return a section of this morphism.

EXAMPLES:
class sage.rings.rational.Rational

Bases: FieldElement

A rational number.

Rational numbers are implemented using the GMP C library.

EXAMPLES:

```sage
class sage.rings.rational.Rational
```

Conversion from fractions:

```sage: import fractions
dsage: f = fractions.Fraction(1r, 2r)
sage: Rational(f)
1/2```

Conversion from PARI:

```sage: Rational(pari('-939082/3992923'))
```

# needs sage.libs pari
-939082/3992923

```sage: Rational(pari('Pol([-1/2]')))
```

# needs sage.libs pari
-1/2

Conversion from fractions:

```sage: a = -2/3
dsage: type(a)
<class 'sage.rings.rational.Rational'>
dsage: parent(a)
Rational Field
```

Traceback (most recent call last):
... TypeError: unable to convert '1/0' to a rational

```sage: a = -2/3
dsage: type(a)
<class 'sage.rings.rational.Rational'>
dsage: parent(a)
Rational Field
```

```sage: Rational((2^99, 2^100))
```

```sage: Rational(("2", "10"), 16)
```

```sage: Rational(QQbar(125/8).nth_root(3))
```

# needs sage.rings.number_field
5/2

```sage: Rational(pari(-939082/3992923))
```

# needs sage.libs pari
-939082/3992923

```sage: Rational(pari(Pol([-1/2])))
```

# needs sage.libs pari
-1/2

Conversion from fractions:

```sage: a = -2/3
dsage: type(a)
<class 'sage.rings.rational.Rational'>
dsage: parent(a)
Rational Field
```

Traceback (most recent call last):
... TypeError: unable to convert '1/0' to a rational

```sage: a = -2/3
dsage: type(a)
<class 'sage.rings.rational.Rational'>
dsage: parent(a)
Rational Field
```

```sage: Rational((2^99, 2^100))
```

```sage: Rational(("2", "10"), 16)
```

```sage: Rational(QQbar(125/8).nth_root(3))
```

# needs sage.rings.number_field
5/2

```sage: Rational(pari(-939082/3992923))
```

# needs sage.libs pari
-939082/3992923

```sage: Rational(pari(Pol([-1/2])))
```

# needs sage.libs pari
-1/2

Conversion from fractions:

```sage: a = -2/3
dsage: type(a)
<class 'sage.rings.rational.Rational'>
dsage: parent(a)
Rational Field
```

Traceback (most recent call last):
... TypeError: unable to convert '1/0' to a rational

```sage: a = -2/3
dsage: type(a)
<class 'sage.rings.rational.Rational'>
dsage: parent(a)
Rational Field
```

```sage: Rational((2^99, 2^100))
```

```sage: Rational(("2", "10"), 16)
```
Conversions from numpy:

```python
sage: # needs numpy
sage: import numpy as np
sage: QQ(np.int8(-15))
-15
sage: QQ(np.int16(-32))
-32
sage: QQ(np.int32('-19'))
-19
sage: QQ(np.uint32('1412'))
1412
sage: QQ(np.float16('12')) # needs numpy
12
```

Conversions from gmpy2:

```python
sage: from gmpy2 import *

sage: QQ(mpq('3/4'))
3/4
sage: QQ(mpz(42))
42
sage: Rational(mpq('2/3'))
2/3
sage: Rational(mpz('5'))
5
```

**absolute_norm()**

Return the norm from \(Q\) to \(Q\) of \(x\) (which is just \(x\)). This was added for compatibility with NumberFields.

**EXAMPLES:**

```python
sage: (6/5).absolute_norm()
6/5
sage: QQ(7/5).absolute_norm()
7/5
```

**additive_order()**

Return the additive order of \(self\).

**OUTPUT:** integer or infinity

**EXAMPLES:**

```python
sage: QQ(0).additive_order()
1
sage: QQ(1).additive_order()
+Infinity
```

**as_integer_ratio()**

Return the pair \(\{\text{self.numerator()}, \text{self.denominator()}\}\).

**EXAMPLES:**

```python
```
sage: x = -12/29
sage: x.as_integer_ratio()
(-12, 29)

ceil()

Return the ceiling of this rational number.

OUTPUT: Integer

If this rational number is an integer, this returns this number, otherwise it returns the floor of this number +1.

EXAMPLES:

sage: n = 5/3; n.ceil()
2
sage: n = -17/19; n.ceil()
0
sage: n = -7/2; n.ceil()
-3
sage: n = 7/2; n.ceil()
4
sage: n = 10/2; n.ceil()
5

charpoly(var='x')

Return the characteristic polynomial of this rational number. This will always be just var - self; this is really here so that code written for number fields won’t crash when applied to rational numbers.

INPUT:

• var - a string

OUTPUT: Polynomial

EXAMPLES:

sage: (1/3).charpoly('x')
x - 1/3

The default is var='x'. (github issue #20967):

sage: a = QQ(2); a.charpoly('x')
x - 2

AUTHORS:

• Craig Citro

conjugate()

Return the complex conjugate of this rational number, which is the number itself.

EXAMPLES:

sage: n = 23/11
sage: n.conjugate()
23/11

content(other)

Return the content of self and other, i.e., the unique positive rational number $c$ such that self/c and other/c are coprime integers.
other can be a rational number or a list of rational numbers.

EXAMPLES:

```sage
code
sage: a = 2/3
sage: a.content(2/3)
2/3
sage: a.content(1/5)
1/15
sage: a.content([2/5, 4/9])
2/45
```

**continued_fraction()**

Return the continued fraction of that rational.

EXAMPLES:

```sage
code
sage: (641/472).continued_fraction()
[1; 2, 1, 3, 1, 4, 1, 5]
sage: a = (355/113).continued_fraction(); a
[3; 7, 16]
sage: a.n(digits=10) # needs sage.rings.real_mpfr
3.141592654
```

It's almost pi!

**continued_fraction_list (type='std')**

Return the list of partial quotients of this rational number.

INPUT:

- type - either “std” (the default) for the standard continued fractions or “hj” for the Hirzebruch-Jung ones.

EXAMPLES:

```sage
code
sage: (13/9).continued_fraction_list()
[1, 2, 4]
sage: 1 + 1/(2 + 1/4)
13/9
sage: (225/157).continued_fraction_list()
[1, 2, 3, 4, 5]
sage: 1 + 1/(2 + 1/(3 + 1/(4 + 1/5)))
225/157
sage: (fibonacci(20)/fibonacci(19)).continued_fraction_list() # needs sage.libs.pari
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]
sage: (-1/3).continued_fraction_list()
[-1, 1, 2]
```

Check that the partial quotients of an integer \( n \) is simply \([n]\):

2.2. Rational Numbers
Standard Commutative Rings, Release 10.3

sage: QQ(1).continued_fraction_list()
[1]
sage: QQ(0).continued_fraction_list()
[0]
sage: QQ(-1).continued_fraction_list()
[-1]

Hirzebruch-Jung continued fractions:

sage: (11/19).continued_fraction_list("hj")
[1, 3, 2, 3, 2]
sage: 1 - 1/(3 - 1/(2 - 1/(3 - 1/2)))
11/19

sage: (225/137).continued_fraction_list("hj")
[2, 3, 5, 10]
sage: 2 - 1/(3 - 1/(5 - 1/10))
225/137

sage: (-23/19).continued_fraction_list("hj")
[-1, 5, 4]
sage: -1 - 1/(5 - 1/4)
-23/19

denom()

Return the denominator of this rational number. denom() is an alias of denominator().

EXAMPLES:

sage: x = -5/11
sage: x.denominator()
11

sage: x = 9/3
sage: x.denominator()
1

sage: x = 5/13
sage: x.denom()
13

denominator()

Return the denominator of this rational number. denom() is an alias of denominator().

EXAMPLES:

sage: x = -5/11
sage: x.denominator()
11

sage: x = 9/3
sage: x.denominator()
1

sage: x = 5/13
sage: x.denom()
13
factor()
Return the factorization of this rational number.

OUTPUT: Factorization

EXAMPLES:

```
sage: (-4/17).factor()
-1 * 2^2 * 17^-1
```

Trying to factor 0 gives an arithmetic error:

```
sage: (0/1).factor()
Traceback (most recent call last):
...
ArithmeticError: factorization of 0 is not defined
```

floor()
Return the floor of this rational number as an integer.

OUTPUT: Integer

EXAMPLES:

```
sage: n = 5/3; n.floor()
1
sage: n = -17/19; n.floor()
-1
sage: n = -7/2; n.floor()
-4
sage: n = 7/2; n.floor()
3
sage: n = 10/2; n.floor()
5
```

gamma (prec=None)
Return the gamma function evaluated at self. This value is exact for integers and half-integers, and returns a symbolic value otherwise. For a numerical approximation, use keyword prec.

EXAMPLES:

```
sage: # needs sage.symbolic
sage: gamma(1/2)
sqrt(pi)
sage: gamma(7/2)
15/8*sqrt(pi)
sage: gamma(-3/2)
4/3*sqrt(pi)
sage: gamma(6/1)
120
sage: gamma(1/3)
gamma(1/3)
```

This function accepts an optional precision argument:

```
sage: (1/3).gamma(prec=100) #...
→ needs sage.rings.real_mpfr
2.67893853470774763365565929410
sage: (1/2).gamma(prec=100) #...
```
(continues on next page)
global_height (prec=None)

Return the absolute logarithmic height of this rational number.

INPUT:

- prec (int) – desired floating point precision (default: default RealField precision).

OUTPUT:

(Real) The absolute logarithmic height of this rational number.

ALGORITHM:

The height is the sum of the total archimedean and non-archimedean components, which is equal to \( \max(\log(n), \log(d)) \) where \( n, d \) are the numerator and denominator of the rational number.

EXAMPLES:

```
sage: # needs sage.rings.real_mpfr
sage: a = QQ(6/25)
sage: a.global_height_arch() + a.global_height_non_arch()
3.21887582486820
sage: a.global_height()
3.21887582486820
sage: (1/a).global_height()
1.42711635564015
sage: QQ(0).global_height()
0.000000000000000
sage: QQ(1).global_height()
0.000000000000000
```

global_height_arch (prec=None)

Return the total archimedean component of the height of this rational number.

INPUT:

- prec (int) – desired floating point precision (default: default RealField precision).

OUTPUT:

(Real) The total archimedean component of the height of this rational number.

ALGORITHM:

Since \( \mathbb{Q} \) has only one infinite place this is just the value of the local height at that place. This separate function is included for compatibility with number fields.

EXAMPLES:

```
sage: a = QQ(6/25)
sage: a.global_height_arch() #...
0.000000000000000
sage: (1/a).global_height_arch() #...
1.42711635564015
sage: (1/a).global_height_arch(100) #...
```

(continues on next page)
global_height_non_arch \(\texttt{prec} = \texttt{None}\)

Return the total non-archimedean component of the height of this rational number.

INPUT:

- \(\texttt{prec}\) (int) – desired floating point precision (default: default RealField precision).

OUTPUT:

(\texttt{real}) The total non-archimedean component of the height of this rational number.

ALGORITHM:

This is the sum of the local heights at all primes \(p\), which may be computed without factorization as the log of the denominator.

EXAMPLES:

```
sage: a = QQ(5/6)
sage: a.support()
[2, 3, 5]
sage: a.global_height_non_arch() # needs sage.rings.real_mpfr
1.79175946922805
```

height()

The max absolute value of the numerator and denominator of \texttt{self}, as an \texttt{Integer}.

OUTPUT: \texttt{Integer}

EXAMPLES:

```
sage: a = 2/3
sage: a.height()
3
sage: a = 34/3
sage: a.height()
34
sage: a = -97/4
sage: a.height()
97
```

AUTHORS:

- Naqi Jaffery (2006-03-05): examples

Note: For the logarithmic height, use \texttt{global_height()}.  

2.2. Rational Numbers

173
imag()  
Return the imaginary part of self, which is zero.

EXAMPLES:

```sage
(1/239).imag()
0
```

is_S_integral(S=[])  
Determine if the rational number is S-integral.

\( x \) is S-integral if \( x.\text{valuation}(p) \geq 0 \) for all \( p \) not in \( S \), i.e., the denominator of \( x \) is divisible only by the primes in \( S \).

INPUT:

- \( S \) – list or tuple of primes.

OUTPUT: bool

Note: Primality of the entries in \( S \) is not checked.

EXAMPLES:

```sage
QQ(1/2).is_S_integral()
False
sage: QQ(1/2).is_S_integral([2])
True
sage: [a for a in range(1,11) if QQ(101/a).is_S_integral([2,5])]
[1, 2, 4, 5, 8, 10]
```

is_S_unit(S=None)  
Determine if the rational number is an S-unit.

\( x \) is an S-unit if \( x.\text{valuation}(p) = 0 \) for all \( p \) not in \( S \), i.e., the numerator and denominator of \( x \) are divisible only by the primes in \( S \).

INPUT:

- \( S \) – list or tuple of primes.

OUTPUT: bool

Note: Primality of the entries in \( S \) is not checked.

EXAMPLES:

```sage
QQ(1/2).is_S_unit()
False
sage: QQ(1/2).is_S_unit([2])
True
sage: [a for a in range(1,11) if QQ(10/a).is_S_unit([2,5])]
[1, 2, 4, 5, 8, 10]
```

is_integer()  
Determine if a rational number is integral (i.e., is in \( \mathbb{Z} \)).

OUTPUT: bool
EXAMPLES:

```
sage: QQ(1/2).is_integral()
False
sage: QQ(4/4).is_integral()
True
```

**is_integral()**

Determine if a rational number is integral (i.e., is in \( \mathbb{Z} \)).

OUTPUT: bool

```
sage: QQ(1/2).is_integral()
False
sage: QQ(4/4).is_integral()
True
```

**is_norm(L, element=False, proof=True)**

Determine whether \( \text{self} \) is the norm of an element of \( L \).

INPUT:

- \( L \) – a number field
- \( \text{element} \) – (default: False) boolean whether to also output an element of which \( \text{self} \) is a norm
- \( \text{proof} \) – If True, then the output is correct unconditionally. If False, then the output assumes GRH.

OUTPUT:

If element is False, then the output is a boolean \( B \), which is True if and only if \( \text{self} \) is the norm of an element of \( L \). If \( \text{element} \) is False, then the output is a pair \((B, x)\), where \( B \) is as above. If \( B \) is True, then \( x \) is an element of \( L \) such that \( \text{self} == x.\text{norm()} \). Otherwise, \( x \) is None.

ALGORITHM:

Uses the PARI function \( \text{pari:bnfnorm} \). See \_bnfnorm().

EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: x = polygen(QQ, 'x')
sage: K = NumberField(x^2 - 2, 'beta')
sage: (1/7).is_norm(K)
True
sage: (1/10).is_norm(K)
False
sage: 0.is_norm(K)
True
sage: (1/7).is_norm(K, element=True)
(True, 1/7*beta + 3/7)
sage: (1/10).is_norm(K, element=True)
(False, None)
sage: (1/691).is_norm(QQ, element=True)
(True, 1/691)
```

The number field doesn’t have to be defined by an integral polynomial:
A non-Galois number field:

```python
sage: # needs sage.rings.number_field
sage: K.<a> = NumberField(x^3 - 2)
```

```python
sage: B, e = (3/5).is_norm(K, element=True); B
True
```

```python
sage: e.norm()
3/5
```

```python
sage: 7.is_norm(K)
```

```
Traceback (most recent call last):
...
NotImplementedError: is_norm is not implemented unconditionally for norms from non-Galois number fields
```

```python
sage: 7.is_norm(K, proof=False)
False
```

AUTHORS:

- Craig Citro (2008-04-05)
- Marco Streng (2010-12-03)

### is_nth_power(n)

Return True if self is an $n$-th power, else False.

**INPUT:**

- $n$ - integer (must fit in C int type)

**Note:** Use this function when you need to test if a rational number is an $n$-th power, but do not need to know the value of its $n$-th root. If the value is needed, use `nth_root()`.

**AUTHORS:**

- John Cremona (2009-04-04)

**EXAMPLES:**

```python
sage: QQ(25/4).is_nth_power(2)
True
```

```python
sage: QQ(125/8).is_nth_power(3)
True
```

```python
sage: QQ(-125/8).is_nth_power(3)
True
```

```python
sage: QQ(25/4).is_nth_power(-2)
True
```

```python
sage: QQ(9/2).is_nth_power(2)
```
False
sage: QQ(-25).is_nth_power(2)
False

\textbf{is\_one()}

Determine if a rational number is one.

OUTPUT: bool

EXAMPLES:

sage: QQ(1/2).is_one()
False
sage: QQ(4/4).is_one()
True

\textbf{is\_padic\_square}(p, check=True)

Determines whether this rational number is a square in \(\mathbb{Q}_p\) (or in \(R\) when \(p = \infty\)).

INPUT:

- \(p\) - a prime number, or \(\infty\)
- check - (default: True); check if \(p\) is prime

EXAMPLES:

sage: QQ(2).is_padic_square(7)
True
sage: QQ(98).is_padic_square(7)
True
sage: QQ(2).is_padic_square(5)
False

\textbf{is\_perfect\_power}(expected\_value=False)

Return True if self is a perfect power.

INPUT:

- expected\_value - (bool) whether or not this rational is expected be a perfect power. This does not affect the correctness of the output, only the runtime.

If expected\_value is False (default) it will check the smallest of the numerator and denominator is a perfect power as a first step, which is often faster than checking if the quotient is a perfect power.

EXAMPLES:

sage: (4/9).is_perfect_power()
True
sage: (144/1).is_perfect_power()
True
sage: (4/3).is_perfect_power()
False
sage: (2/27).is_perfect_power()
False
sage: (4/27).is_perfect_power()
False
sage: (-1/25).is_perfect_power()
False
sage: (-1/27).is_perfect_power()
True
sage: (0/1).is_perfect_power()
True

The second parameter does not change the result, but may change the runtime.

sage: (-1/27).is_perfect_power(True)
True
sage: (-1/25).is_perfect_power(True)
False
sage: (2/27).is_perfect_power(True)
False
sage: (144/1).is_perfect_power(True)
True

This test makes sure we workaround a bug in GMP (see github issue #4612):

sage: [-a for a in srange(100) if not QQ(-a^3).is_perfect_power()]
[]
sage: [-a for a in srange(100) if not QQ(-a^3).is_perfect_power(True)]
[]

is_rational()

Return True since this is a rational number.

EXAMPLES:

sage: (3/4).is_rational()
True

is_square()

Return whether or not this rational number is a square.

OUTPUT: bool

EXAMPLES:

sage: x = 9/4
sage: x.is_square()
True
sage: x = (7/53)^100
sage: x.is_square()
True
sage: x = 4/3
sage: x.is_square()
False
sage: x = -1/4
sage: x.is_square()
False

list()

Return a list with the rational element in it, to be compatible with the method for number fields.

OUTPUT:

• list - the list [self]
EXAMPLES:

```python
sage: m = 5/3
sage: m.list()
[5/3]
```

`local_height (p, prec=None)`

Return the local height of this rational number at the prime $p$.

INPUT:

- $p$ – a prime number
- $\text{prec}$ (int) – desired floating point precision (default: default `RealField` precision).

OUTPUT:

(real) The local height of this rational number at the prime $p$.

EXAMPLES:

```python
sage: a = QQ(25/6)
sage: a.local_height(2) # needs sage.rings.real_mpfr
0.693147180559945
sage: a.local_height(3) # needs sage.rings.real_mpfr
1.09861228866811
sage: a.local_height(5) # needs sage.rings.real_mpfr
0.000000000000000
```

`local_height_arch (prec=None)`

Return the Archimedean local height of this rational number at the infinite place.

INPUT:

- $\text{prec}$ (int) – desired floating point precision (default: default `RealField` precision).

OUTPUT:

(real) The local height of this rational number $x$ at the unique infinite place of $\mathbb{Q}$, which is $\max(\log(|x|), 0)$.

EXAMPLES:

```python
sage: a = QQ(6/25)
sage: a.local_height_arch() # needs sage.rings.real_mpfr
0.000000000000000
sage: (1/a).local_height_arch() # needs sage.rings.real_mpfr
1.42711635564015
sage: (1/a).local_height_arch(100) # needs sage.rings.real_mpfr
1.4271163556401457483890413081
```

`log (m=None, prec=None)`

Return the log of `self`.

INPUT:

- $m$ – the base (default: natural log base e)
Standard Commutative Rings, Release 10.3

- prec - integer (optional); the precision in bits

OUTPUT:

When prec is not given, the log as an element in symbolic ring unless the logarithm is exact. Otherwise the log is a RealField approximation to prec bit precision.

EXAMPLES:

```
sage: (124/345).log(5) # needs sage.symbolic
log(124/345)/log(5)
sage: (124/345).log(5, 100) # needs sage.rings.real_mpfr
-0.63578895682825611710391773754
sage: log(QQ(125)) # needs sage.symbolic
3*log(5)
sage: log(QQ(125), 5) 3
sage: log(QQ(125), 3) # needs sage.symbolic
3*log(5)/log(3)
sage: QQ(8).log(1/2) # needs sage.symbolic
-3
sage: (1/8).log(1/2) 3
sage: (1/2).log(1/8) 1/3
sage: (1/2).log(8) -1/3
sage: (16/81).log(8/27) # needs sage.libs.pari
4/3
sage: (8/27).log(16/81) # needs sage.libs.pari
3/4
sage: log(27/8, 16/81) # needs sage.libs.pari
-3/4
sage: log(16/81, 27/8) # needs sage.libs.pari
-4/3
sage: (125/8).log(5/2) # needs sage.libs.pari
3
sage: (125/8).log(5/2, prec=53) # needs sage.rings.real_mpfr
3.00000000000000
```

**minpoly** 

Return the minimal polynomial of this rational number. This will always be just \( x - \text{self} \); this is really here so that code written for number fields won’t crash when applied to rational numbers.

INPUT:

- var - a string

OUTPUT: Polynomial

EXAMPLES:
AUTHORS:
  • Craig Citro

\texttt{mod\_ui}(n)
Return the remainder upon division of self by the unsigned long integer n.

INPUT:
  • n - an unsigned long integer

OUTPUT: integer

EXAMPLES:
\begin{verbatim}
sage: (-4/17).mod_ui(3)
1
sage: (-4/17).mod_ui(17)
Traceback (most recent call last):
  ...
ArithmeticError: The inverse of 0 modulo 17 is not defined.
\end{verbatim}

\texttt{multiplicative\_order}()
Return the multiplicative order of self.

OUTPUT: Integer or infinity

EXAMPLES:
\begin{verbatim}
sage: QQ(1).multiplicative_order()
1
sage: QQ('1/-1').multiplicative_order()
2
sage: QQ(0).multiplicative_order()
+Infinity
sage: QQ('2/3').multiplicative_order()
+Infinity
sage: QQ('1/2').multiplicative_order()
+Infinity
\end{verbatim}

\texttt{norm}()
Return the norm from \( \mathbb{Q} \) to \( \mathbb{Q} \) of \( x \) (which is just \( x \)). This was added for compatibility with \texttt{NumberField}.

OUTPUT:
  • Rational - reference to self

EXAMPLES:
\begin{verbatim}
sage: (1/3).norm()
1/3
\end{verbatim}

AUTHORS:
  • Craig Citro
\texttt{nth\_root}(n)

Computes the $n$-th root of \texttt{self}, or raises a \texttt{ValueError} if \texttt{self} is not a perfect $n$-th power.

INPUT:

\begin{itemize}
  \item \texttt{n} - integer (must fit in \texttt{C int} type)
\end{itemize}

AUTHORS:

\begin{itemize}
  \item David Harvey (2006-09-15)
\end{itemize}

EXAMPLES:

\begin{verbatim}
sage: (25/4).nth_root(2)
5/2
sage: (125/8).nth_root(3)
5/2
sage: (-125/8).nth_root(3)
-5/2
sage: (25/4).nth_root(-2)
2/5
sage: (9/2).nth_root(2)
Traceback (most recent call last):
...  
ValueError: not a perfect 2nd power
sage: (-25/4).nth_root(2)
Traceback (most recent call last):
...  
ValueError: cannot take even root of negative number
\end{verbatim}

\texttt{numerator()}

Return the numerator of this rational number. \texttt{numerator()} is an alias of \texttt{numerator()}.

EXAMPLES:

\begin{verbatim}
sage: x = 5/11
sage: x.numerator()
5
sage: x = 9/3
sage: x.numerator()
3
sage: x = -5/11
sage: x.numerator()
-5
\end{verbatim}
\textbf{ord}(p) \\
Return the power of $p$ in the factorization of self.

\textbf{INPUT:}

- $p$ - a prime number

\textbf{OUTPUT:}

(integer or infinity) \texttt{Infinity} if \texttt{self} is zero, otherwise the (positive or negative) integer $e$ such that \texttt{self} = $m \times p^e$ with $m$ coprime to $p$.

\textbf{Note:} See also \texttt{valuation()} which returns the pair $(e, m)$. The function \texttt{ord()} is an alias for \texttt{valuation()}.

\textbf{EXAMPLES:}

\begin{verbatim}
  sage: x = -5/9
  sage: x.valuation(5)
  1
  sage: x.ord(5)
  1
  sage: x.valuation(3)
  -2
  sage: x.valuation(2)
  0
\end{verbatim}

Some edge cases:

\begin{verbatim}
  sage: (0/1).valuation(4)
  +Infinity
  sage: (7/16).valuation(4)
  -2
\end{verbatim}

\textbf{period()} \\
Return the period of the repeating part of the decimal expansion of this rational number.

\textbf{ALGORITHM:}

When a rational number $n/d$ with $(n, d) = 1$ is expanded, the period begins after $s$ terms and has length $t$, where $s$ and $t$ are the smallest numbers satisfying $10^s = 10^{s+t} \mod d$. In general if $d = 2^a5^b m$ where $m$ is coprime to 10, then $s = \max(a, b)$ and $t$ is the order of 10 modulo $m$.

\textbf{EXAMPLES:}

\begin{verbatim}
  sage: (1/7).period()  # needs sage.libs.pari
  6
  sage: RR(1/7)  # needs sage.rings.real_mpfr
\end{verbatim}

(continues on next page)
0.142857142857143
\[\texttt{sage: (1/8).period() \# needs sage.libs.pari}\]
1
\[\texttt{sage: RR(1/8) \# needs sage.rings.real_mpfr}\]
0.125000000000000
\[\texttt{sage: RR(1/6) \# needs sage.rings.real_mpfr}\]
0.166666666666667
\[\texttt{sage: (1/6).period() \# needs sage.libs.pari}\]
1
\[\texttt{sage: x = 333/106}\]
\[\texttt{sage: x.period() \# needs sage.libs.pari}\]
13
\[\texttt{sage: RealField(200)(x) \# needs sage.rings.real_mpfr}\]
3.14150943396226415094339622641509433962264150943396226415094339622641509

\textbf{prime_to_S_part} \((S=[])\)

Return \(\texttt{self}\) with all powers of all primes in \(S\) removed.

**INPUT:**

- \(S\) - list or tuple of primes.

**OUTPUT:** rational

**Note:** Primality of the entries in \(S\) is not checked.

\textbf{EXAMPLES:}

\[\texttt{sage: QQ(3/4).prime_to_S_part()}\]
\[3/4\]
\[\texttt{sage: QQ(3/4).prime_to_S_part([2])}\]
\[3\]
\[\texttt{sage: QQ(-3/4).prime_to_S_part([3])}\]
\[-1/4\]
\[\texttt{sage: QQ(700/99).prime_to_S_part([2,3,5])}\]
\[7/11\]
\[\texttt{sage: QQ(-700/99).prime_to_S_part([2,3,5])}\]
\[-7/11\]
\[\texttt{sage: QQ(0).prime_to_S_part([2,3,5])}\]
\[0\]
\[\texttt{sage: QQ(-700/99).prime_to_S_part([])}\]
\[-700/99\]

\textbf{real}()

Return the real part of \(\texttt{self}\), which is \(\texttt{self}\).

**EXAMPLES:**

\[\texttt{sage: (1/2).real()}\]
\[1/2\]
relative_norm()
Return the norm from \( \mathbb{Q} \) to \( \mathbb{Q} \) of \( x \) (which is just \( x \)). This was added for compatibility with NumberFields.

EXAMPLES:

```python
sage: (6/5).relative_norm()
6/5
sage: QQ(7/5).relative_norm()
7/5
```

round(mode=None)
Return the nearest integer to \( \text{self} \), rounding away by default. Deprecation: in the future the default will be changed to rounding to even, for consistency with the built-in Python \texttt{round}().

INPUT:
- \texttt{self} - a rational number
- \texttt{mode} - a rounding mode for half integers:
  - ‘toward’ rounds toward zero
  - ‘away’ (default) rounds away from zero
  - ‘up’ rounds up
  - ‘down’ rounds down
  - ‘even’ rounds toward the even integer
  - ‘odd’ rounds toward the odd integer

OUTPUT: Integer

EXAMPLES:

```python
sage: (9/2).round()
doctest:...: DeprecationWarning: the default rounding for rationals, currently 'away', will be changed to 'even'.
 See https://github.com/sagemath/sage/issues/35473 for details.
5
sage: n = 4/3; n.round()
1
sage: n = -17/4; n.round()
-4
sage: n = -5/2; n.round()
-3
sage: n.round("away")
-3
sage: n.round("up")
-2
sage: n.round("down")
-3
sage: n.round("even")
-2
sage: n.round("odd")
-3
```

sign()
Return the sign of this rational number, which is -1, 0, or 1 depending on whether this number is negative, zero, or positive respectively.
OUTPUT: Integer

EXAMPLES:

\[
\begin{align*}
\text{sage: } & (2/3).\text{sign()} \\
& 1 \\
\text{sage: } & (0/3).\text{sign()} \\
& 0 \\
\text{sage: } & (-1/6).\text{sign()} \\
& -1
\end{align*}
\]

**sqrt** (prec=None, extend=True, all=False)
The square root function.

INPUT:

- prec – integer (default: None): if None, returns an exact square root; otherwise returns a numerical square root if necessary, to the given bits of precision.
- extend – bool (default: True): if True, return a square root in an extension ring, if necessary. Otherwise, raise a `ValueError` if the square is not in the base ring. Ignored if prec is not None.
- all – bool (default: False): if True, return all square roots of self (a list of length 0, 1, or 2).

EXAMPLES:

\[
\begin{align*}
\text{sage: } & x = 25/9 \\
\text{sage: } & x.\sqrt{} \\
& 5/3 \\
\text{sage: } & \sqrt{x} \\
& 5/3 \\
\text{sage: } & x = 64/4 \\
\text{sage: } & x.\sqrt{} \\
& 4 \\
\text{sage: } & x = 100/1 \\
\text{sage: } & x.\sqrt{} \\
& 10 \\
\text{sage: } & x.\sqrt{}(\text{all=}\text{True}) \\
& [10, -10] \\
\text{sage: } & x = 81/5 \\
\text{sage: } & x.\sqrt{} \\
& \text{\# needs sage.symbolic} \\
& 9*\sqrt{(1/5)} \\
\text{sage: } & x = -81/3 \\
\text{sage: } & x.\sqrt{} \\
& \text{\# needs sage.symbolic} \\
& 3*\sqrt{(-3)} \\
\text{sage: } & n = 2/3 \\
\text{sage: } & n.\sqrt{} \\
& \text{\# needs sage.symbolic} \\
& \sqrt{2/3} \\
\text{sage: } & \text{\# needs sage.rings.real_mpfr} \\
\text{sage: } & n.\sqrt{}(\text{prec}=10) \\
& 0.82 \\
\text{sage: } & n.\sqrt{}(\text{prec}=100) \\
& 0.81649658092772603273242802490 \\
\text{sage: } & n.\sqrt{}(\text{prec}=100)^2 \\
& \end{align*}
\]
AUTHORS:

- Naqi Jaffery (2006-03-05): some examples

\texttt{sage:}. \texttt{squarefree_part()} 

Return the square free part of \( x \), i.e., an integer \( z \) such that \( x = zy^2 \), for a perfect square \( y^2 \).

**EXAMPLES:**

\[
\begin{align*}
\texttt{sage: } & a = 1/2 \\
\texttt{sage: } & a.squarefree_part() \\
& 2 \\
\texttt{sage: } & b = a/a.squarefree_part() \\
\texttt{sage: } & b, b.is_square() \\
& (1/4, True) \\
\texttt{sage: } & a = 24/5 \\
\texttt{sage: } & a.squarefree_part() \\
& 30
\end{align*}
\]

\texttt{str(base=10)}

Return a string representation of \texttt{self} in the given \texttt{base}.

**INPUT:**

- \texttt{base} – integer (default: 10); base must be between 2 and 36.

**OUTPUT:** string

**EXAMPLES:**

\[
\begin{align*}
\texttt{sage: } & (-4/17).str() \\
& '\ '-4/17' \\
\texttt{sage: } & (-4/17).str(2) \\
& '\ '-100/10001'
\end{align*}
\]

Note that the base must be at most 36.

\[
\begin{align*}
\texttt{sage: } & (-4/17).str(40) \\
\texttt{Traceback (most recent call last):} \\
& ...
\end{align*}
\]
ValueError: base (=40) must be between 2 and 36

```
sage: (-4/17).str(1)
Traceback (most recent call last):
...
ValueError: base (=1) must be between 2 and 36
```

**support()**

Return a sorted list of the primes where this rational number has non-zero valuation.

**OUTPUT:** The set of primes appearing in the factorization of this rational with nonzero exponent, as a sorted list.

**EXAMPLES:**

```
sage: (-4/17).support()
[2, 17]
```

Trying to find the support of 0 gives an arithmetic error:

```
sage: (0/1).support()
Traceback (most recent call last):
...
ArithmeticError: Support of 0 not defined.
```

**trace()**

Return the trace from $\mathbb{Q}$ to $\mathbb{Q}$ of $x$ (which is just $x$). This was added for compatibility with `NumberFields`.

**OUTPUT:**

- Rational - reference to self

**EXAMPLES:**

```
sage: (1/3).trace()
1/3
```

**AUTHORS:**

- Craig Citro

**trunc()**

Round this rational number to the nearest integer toward zero.

**EXAMPLES:**

```
sage: (5/3).trunc()
1
sage: (-5/3).trunc()
-1
sage: QQ(42).trunc()
42
sage: QQ(-42).trunc()
-42
```

**val_unit**(p)

Return a pair: the $p$-adic valuation of `self`, and the $p$-adic unit of `self`, as a `Rational`.

We do not require the $p$ be prime, but it must be at least 2. For more documentation see `Integer`. **val_unit().**
INPUT:
- $p$ - a prime

OUTPUT:
- int - the $p$-adic valuation of this rational
- Rational - $p$-adic unit part of self

EXAMPLES:

```sage
sage: (-4/17).val_unit(2)
(2, -1/17)
sage: (-4/17).val_unit(17)
(-1, -4)
sage: (0/1).val_unit(17)
(+Infinity, 1)
```

AUTHORS:
- David Roe (2007-04-12)

valuation($p$)

Return the power of $p$ in the factorization of self.

INPUT:
- $p$ - a prime number

OUTPUT:
(integer or infinity) Infinity if self is zero, otherwise the (positive or negative) integer $e$ such that self = $m \times p^e$ with $m$ coprime to $p$.

Note: See also val_unit() which returns the pair $(e, m)$. The function ord() is an alias for valuation().

EXAMPLES:

```sage
sage: x = -5/9
sage: x.valuation(5)
1
sage: x.ord(5)
1
sage: x.valuation(3)
-2
sage: x.valuation(2)
0
```

Some edge cases:

```sage
sage: (0/1).valuation(4)
+Infinity
sage: (7/16).valuation(4)
-2
```

class sage.rings.rational.Z_to_Q

Bases: Morphism

A morphism from $\mathbb{Z}$ to $\mathbb{Q}$. 

2.2. Rational Numbers
is_surjective()
Return whether this morphism is surjective.

EXAMPLES:

```
sage: QQ.coerce_map_from(ZZ).is_surjective()
False
```

section()
Return a section of this morphism.

EXAMPLES:

```
sage: f = QQ.coerce_map_from(ZZ).section(); f
Generic map:
 From: Rational Field
 To: Integer Ring

This map is a morphism in the category of sets with partial maps (see github issue #15618):
```
```
sage: f.parent()
Set of Morphisms from Rational Field to Integer Ring
in Category of sets with partial maps
```

class sage.rings.rational.int_to_Q
Bases: Morphism

A morphism from Python 3 int to Q.
sage.rings.rational.integer_rational_power(a, b)
Compute \(a^b\) as an integer, if it is integral, or return None.
The nonnegative real root is taken for even denominators.

INPUT:

• \(a\) – an Integer
• \(b\) – a nonnegative Rational

OUTPUT:
\(a^b\) as an Integer or None

EXAMPLES:

```
sage: from sage.rings.rational import integer_rational_power
sage: integer_rational_power(49, 1/2)
7
sage: integer_rational_power(27, 1/3)
3
sage: integer_rational_power(-27, 1/3) is None
True
sage: integer_rational_power(-27, 2/3) is None
True
sage: integer_rational_power(512, 7/9)
128
sage: integer_rational_power(27, 1/4) is None
True
```

(continues on next page)
\begin{verbatim}
sage: integer_rational_power(-16, 1/4) is None
True
sage: integer_rational_power(0, 7/9)
0
sage: integer_rational_power(1, 7/9)
1
sage: integer_rational_power(-1, 7/9) is None
True
sage: integer_rational_power(-1, 8/9) is None
True
sage: integer_rational_power(-1, 9/8) is None
True

tests (github issue #11228):
sage: integer_rational_power(-10, QQ(2))
100
sage: integer_rational_power(0, QQ(0))
1
\end{verbatim}

\texttt{sage.rings.rational.\texttt{is\_Rational}(x)}

Return True if \(x\) is of the Sage \texttt{Rational} type.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.rings.rational import \texttt{is\_Rational}
sage: \texttt{is\_Rational}(2)
False
sage: \texttt{is\_Rational}(2/1)
True
sage: \texttt{is\_Rational}(\texttt{int}(2))
False
sage: \texttt{is\_Rational}('5')
False
\end{verbatim}

\texttt{sage.rings.rational.\texttt{make\_rational}(s)}

Make a rational number from \(s\) (a string in base 32)

\textbf{INPUT:}

\begin{itemize}
\item \(s\) - string in base 32
\end{itemize}

\textbf{OUTPUT: Rational}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: (-7/15).str(32)
'-7/f'
sage: sage.rings.rational.make_rational(''-7/f'')
-7/15
\end{verbatim}

\texttt{sage.rings.rational.\texttt{rational\_power\_parts}(a, b, factor\_limit=100000)}

Compute rationals or integers \(c\) and \(d\) such that \(a^b = c \times d^b\) with \(d\) small. This is used for simplifying radicals.

\textbf{INPUT:}

\begin{itemize}
\item \(a\) - a rational or integer
\end{itemize}
• \( b \) – a rational

• \texttt{factor_limit} – the limit used in factoring \( a \)

EXAMPLES:

```python
sage: from sage.rings.rational import rational_power_parts
sage: rational_power_parts(27, 1/2)
(3, 3)
sage: rational_power_parts(-128, 3/4)
(8, -8)
sage: rational_power_parts(-4, 1/2)
(2, -1)
sage: rational_power_parts(-4, 1/3)
(1, -4)
sage: rational_power_parts(9/1000, 1/2)
(3/10, 1/10)
```
CHAPTER
THREE

INDICES AND TABLES

• Index
• Module Index
• Search Page
PYTHON MODULE INDEX

a
sage.arith.functions, 74
sage.arith.misc, 79
sage.arith.multi_modular, 76
sage.arith.power, 75

r
sage.rings.bernmm, 63
sage.rings.bernoulli_mod_p, 64
sage.rings.factorint, 67
sage.rings.factorint_flint, 69
sage.rings.factorint_pari, 70
sage.rings.fast_arith, 70
sage.rings.integer, 13
sage.rings.integer_ring, 1
sage.rings.rational, 165
sage.rings.rational_field, 151
sage.rings.sum_of_squares, 72
Non-alphabetical

__pow__() (sage.rings.integer.Integer method), 16

A
absolute_degree() (sage.rings.integer_ring.IntegerRing_class method), 4
absolute_degree() (sage.rings.rational_field.RationalField method), 153
absolute_discriminant() (sage.rings.rational_field.RationalField method), 153
absolute_norm() (sage.rings.rational.Rational method), 167
absolute_polynomial() (sage.rings.rational_field.RationalField method), 153
additive_order() (sage.rings.integer.Integer method), 17
additive_order() (sage.rings.rational.Rational method), 167
algdep() (in module sage.arith.misc), 89
algebraic_closure() (sage.rings.rational_field.RationalField method), 153
algebraic_dependency() (in module sage.arith.misc), 91
arith_int (class in sage.rings.fast_arith), 70
arith_llong (class in sage.rings.fast_arith), 70
as_integer_ratio() (sage.rings.integer.Integer method), 17
as_integer_ratio() (sage.rings.rational.Rational method), 167
auifeuillian() (in module sage.rings.factorint), 67
automorphisms() (sage.rings.rational_field.RationalField method), 153

B
balanced_digits() (sage.rings.integer.Integer method), 17
bernmm_bern_modp() (in module sage.rings.bernoulli_mod_p), 64
bernoulli_mod_p_single() (in module sage.rings.bernoulli_mod_p), 65
binary() (sage.rings.integer.Integer method), 18
binomial() (in module sage.arith.misc), 94
binomial() (sage.rings.integer.Integer method), 18
binomial_coefficients() (in module sage.arith.misc), 96
bit_length() (sage.rings.integer.Integer method), 19
bits() (sage.rings.integer.Integer method), 19

C
carmichael_lambda() (in module sage.arith.misc), 96
ceil() (sage.rings.integer.Integer method), 20
ceil() (sage.rings.rational.Rational method), 168
characteristic() (sage.rings.integer_ring.IntegerRing_class method), 4
characteristic() (sage.rings.rational_field.RationalField method), 153
carl_poly() (sage.rings.rational.Rational method), 168
class_number() (sage.rings.integer.Integer method), 20
class_number() (sage.rings.rational_field.RationalField method), 154
completion() (sage.rings.integer_ring.IntegerRing_class method), 4
completion() (sage.rings.rational_field.RationalField method), 154
complex_embedding() (sage.rings.rational_field.RationalField method), 154
conjugate() (sage.rings.integer.Integer method), 20
conjugate() (sage.rings.rational.Rational method), 168
correction() (sage.rings.rational_field.RationalField method), 154
content() (sage.rings.rational.Rational method), 168
continuant() (in module sage.arith.misc), 98
continued_fraction() (sage.rings.rational.Rational method), 169
continued_fraction_list()  (sage.rings.rational.Rational method), 169

coprime_integers()  (sage.rings.integer.Integer method), 21

CRT()  (in module sage.arith.misc), 79
crt()  (in module sage.arith.misc), 99
crt()  (in module sage.arith.misc).MultiModularBasis_base method), 76
crt()  (sage.rings.integer.Integer method), 21

CRT_basis()  (in module sage.arith.misc), 81
crt_basis()  (in module sage.rings.integer_ring). 12

CRT_list()  (in module sage.arith.misc), 82

CRT_vectors()  (in module sage.arith.misc), 82

D
dedekind_psi()  (in module sage.arith.misc), 101
dedekind_sum()  (in module sage.arith.misc), 102
defining_polynomial()  (sage.rings.rational_field.RationalField method), 154
degree()  (sage.rings.integer_ring.IntegerRing_class method), 5
degree()  (sage.rings.rational_field.RationalField method), 155
denom()  (sage.rings.rational.Rational method), 170
denominator()  (sage.rings.integer.Integer method), 21
denominator()  (sage.rings.rational.Rational method), 170
differences()  (in module sage.arith.misc), 104
digits()  (sage.rings.integer.Integer method), 22
discriminant()  (sage.rings.rational_field.RationalField method), 155
divide_knowing_divisible_by()  (sage.rings.integer.Integer method), 23
divides()  (sage.rings.integer.Integer method), 24
divisors()  (in module sage.arith.misc), 104
divisors()  (sage.rings.integer.Integer method), 24

E
embeddings()  (sage.rings.rational_field.RationalField method), 155

eratosthenes()  (in module sage.arith.misc), 105
euclidean_degree()  (sage.rings.integer.Integer method), 25

Euler_Phi  (class in sage.arith.misc), 83

exact_log()  (sage.rings.integer.Integer method), 25

exp()  (sage.rings.integer.Integer method), 26

extend_with_primes()  (sage.rings.multi_modular.MultiModularBasis_base method), 77
extension()  (sage.rings.integer_ring.IntegerRing_class method), 5
extension()  (sage.rings.rational_field.RationalField method), 155

F

factor()  (in module sage.arith.misc), 105

factor()  (sage.rings.integer.Integer method), 27

factor()  (sage.rings.rational.Rational method), 170

factor_aurifeuillian()  (in module sage.rings.factorint), 67

factor_cunningham()  (in module sage.rings.factorint), 68

factor_trial_division()  (in module sage.rings.factorint), 68

factor_using_flint()  (in module sage.rings.factorint_flint), 69

factor_using_pari()  (in module sage.rings.factorint_pari), 70

factorial()  (in module sage.arith.misc), 108

factorial()  (sage.rings.integer.Integer method), 29

falling_factorial()  (in module sage.arith.misc), 109

floor()  (sage.rings.integer.Integer method), 29

floor()  (sage.rings.rational.Rational method), 171

four_squares()  (in module sage.arith.misc), 110

four_squares_pyx()  (in module sage.rings.sum_of_squares), 72

dfrac()  (in module sage.rings.rational_field), 164

dfrac()  (sage.rings.integer_ring.IntegerRing_class method), 5

free_integer_pool()  (in module sage.rings.integer), 61

from_bytes()  (sage.rings.integer_ring.IntegerRing_class method), 6

fundamental_discriminant()  (in module sage.arith.misc), 110

G
gamma()  (sage.rings.integer.Integer method), 29

gamma()  (sage.rings.rational.Rational method), 171
gauss_sum()  (in module sage.arith.misc), 111

GCD()  (in module sage.arith/misc), 84

gcd()  (in module sage.arith/misc), 112

gcd_int()  (sage.rings.fast_arith.arith_int method), 70

GCD_list()  (in module sage.rings.integer), 14

gcd_longlong()  (sage.rings.fast_arith.arith_long method), 70

gen()  (sage.rings.integer_ring.IntegerRing_class method), 6

gen()  (sage.rings.rational_field.RationalField method), 156

generic_power()  (in module sage.arith.power), 75

gens()  (sage.rings.integer_ring.IntegerRing_class method), 6

gens()  (sage.rings.rational_field.RationalField method), 156

get_gcd()  (in module sage.arith/misc), 113

get_inverse_mod()  (in module sage.arith/misc), 113
global_height() (sage.rings.integer.Integer method), 30
global_height() (sage.rings.rational.Rational method), 172
global_height_arch() (sage.rings.rational.Rational method), 172
global_height_non_arch() (sage.rings.rational.Rational method), 173

H
height() (sage.rings.rational.Rational method), 173
hex() (sage.rings.integer.Integer method), 30
hilbert_conductor() (in module sage.arith.misc), 113
hilbert_conductor_inverse() (in module sage.arith.misc), 114
hilbert_symbol() (in module sage.arith.misc), 114
hilbert_symbol_negative_at_S() (sage.rings.rational_field.RationalField method), 156

I
imag() (sage.rings.integer.Integer method), 30
imag() (sage.rings.rational.Rational method), 173
int_to_Q (class in sage.rings.rational), 190
int_to_Z (class in sage.rings.integer), 61
Integer (class in sage.rings.integer), 15
integer_ceiling() (in module sage.arith.misc), 115
integer_floor() (in module sage.arith.misc), 116
integer_rational_power() (in module sage.rings.rational), 190
integer_trunc() (in module sage.arith.misc), 116
IntegerRing() (in module sage.rings.integer_ring), 1
IntegerRing_class (class in sage.rings.integer_ring), 1
IntegerWrapper (class in sage.rings.integer), 61
inverse_mod() (in module sage.arith.misc), 117
inverse_mod() (sage.rings.integer.Integer method), 30
inverse_mod_int() (sage.rings.fast_arith.fast_integer method), 70
inverse_mod_longlong() (sage.rings.fast_arith.fast_longlong method), 70
inverse_of_unit() (sage.rings.integer.Integer method), 31
is_absolute() (sage.rings.rational_field.RationalField method), 156
is_discriminant() (sage.rings.integer.Integer method), 32
is_field() (sage.rings.integer_ring.IntegerRing_class method), 6
is_fundamental_discriminant() (sage.rings.integer.Integer method), 32
is_Integer() (in module sage.rings.integer), 62
is_integer() (sage.rings.integer.Integer method), 32
is_integer() (sage.rings.rational.Rational method), 174
isIntegralRing() (in module sage.rings.integer_ring), 12
is_integral() (sage.rings.integer.Integer method), 32
is_integral() (sage.rings.rational.Rational method), 175
is_integrally_closed() (sage.rings.integer.IntegerRing_class method), 6
is_irreducible() (sage.rings.integer.Integer method), 32
is_norm() (sage.rings.integer.Integer method), 33
is_norm() (sage.rings.rational.Rational method), 175
is_nth_power() (sage.rings.rational.Rational method), 176
is_one() (sage.rings.integer.Integer method), 33
is_one() (sage.rings.rational.Rational method), 177
is_padic_square() (sage.rings.rational.Rational method), 177
is_perfect_power() (sage.rings.integer.Integer method), 33
is_perfect_power() (sage.rings.rational.Rational method), 177
is_power_of() (sage.rings.integer.Integer method), 34
is_power_of_two() (in module sage.arith.misc), 117
is_prime() (in module sage.arith.misc), 118
is_prime() (sage.rings.integer.Integer method), 35
is_prime_field() (sage.rings.rational_field.RationalField method), 157
is_prime_power() (in module sage.arith.misc), 118
is_prime_power() (sage.rings.integer.Integer method), 36
is_pseudoprime() (in module sage.arith.misc), 119
is_pseudoprime() (sage.rings.integer.Integer method), 37
is_pseudoprime_power() (in module sage.arith.misc), 120
is_pseudoprime_power() (sage.rings.integer.Integer method), 38
is_Rational() (in module sage.rings.rational), 191
is_rational() (sage.rings.integer.Integer method), 38
is_rational() (sage.rings.rational.Rational method), 178
is_RationalField() (in module sage.rings.rational_field), 165
is_S_integral() (sage.rings.rational.Rational method), 174
is_S_integral() (sage.rings.rational.Rational method), 174
is_square() (in module sage.arith.misc), 121
is_square() (sage.rings.integer.Integer method), 38
is_square() (sage.rings.rational.Rational method), 178

Index 199
is_squarefree() (in module sage.arith.misc), 122
is_squarefree() (sage.rings.integer.Integer method), 38
is_sum_of_two_squares_p() (in module sage.rings.sum_of_squares), 72
is_surjective() (sage.rings.rational.Z_to_Q method), 189
is_unit() (sage.rings.integer.Integer method), 39
isqrt() (sage.rings.integer.Integer method), 39
J
jacobi() (sage.rings.integer.Integer method), 39
jacobi_symbol() (in module sage.arith.misc), 123
K
kronecker() (in module sage.arith.misc), 123
kronecker() (sage.rings.integer.Integer method), 40
kronecker_symbol() (in module sage.arith.misc), 124
krull_dimension() (sage.rings.integer_ring.IntegerRing_class method), 7
L
lcm() (in module sage.arith.functions), 74
LCM_list() (in module sage.arith.functions), 74
legendre_symbol() (in module sage.arith.misc), 125
list() (sage.arith.multi_modular.MultiModularBasis_base method), 77
list() (sage.rings.integer.Integer method), 40
list() (sage.rings.rational.Rational method), 178
local_height() (sage.rings.rational.Rational method), 179
local_height_arch() (sage.rings.rational.Rational method), 179
log() (sage.rings.integer.Integer method), 40
log() (sage.rings.rational.Rational method), 179
long_to_Z (class in sage.rings.integer), 62
M
make_integer() (in module sage.rings.integer), 62
make_rational() (in module sage.rings.rational), 191
maximal_order() (sage.rings.rational_field.RationalField method), 157
minpoly() (sage.rings.rational.Rational method), 180
mod_ui() (sage.rings.rational.Rational method), 181
module
sage.arith.functions, 74
sage.arith.misc, 79
sage.arith.multi_modular, 76
sage.arith.power, 75
sage.rings.bernmm, 63
sage.rings.bernoulli_mod_p, 64
sage.rings.factorint, 67
sage.rings.factorint_flint, 69
sage.rings.factorint pari, 70
sage.rings.fast_arith, 70
sage.rings.integer, 13
sage.rings.integer_field, 1
sage.rings.integer_ring, 165
sage.rings.rational, 151
sage.rings.rational_field, 151
sage.rings.sum_of_squares, 72
Moebius (class in sage.arith.misc), 85
mqr_rational_reconstruction() (in module sage.arith.misc), 126
multifactorial() (sage.rings.integer.Integer method), 42
MultiModularBasis (class in sage.arith.multi_modular), 76
MultiModularBasis_base (class in sage.arith.multi_modular), 76
multinomial() (in module sage.arith.misc), 126
multinomial_coefficients() (in module sage.arith.misc), 127
multiplicative_order() (sage.rings.integer.Integer method), 42
multiplicative_order() (sage.rings.rational.Rational method), 181
MutableMultiModularBasis (class in sage.arith.multi_modular), 78
N
nbits() (sage.rings.integer.Integer method), 43
ndigits() (sage.rings.integer.Integer method), 43
next_prime() (in module sage.arith.misc), 128
next_prime() (sage.arith.multi_modular.MultiModularBasis method), 78
next_prime() (sage.rings.integer.Integer method), 43
next_prime_power() (in module sage.arith.misc), 128
next_prime_power() (sage.rings.integer.Integer method), 44
next_probable_prime() (in module sage.arith.misc), 129
next_probable_prime() (sage.rings.integer.Integer method), 44
ngens() (sage.rings.integer_ring.IntegerRing_class method), 7
ngens() (sage.rings.rational_field.RationalField method), 157
norm() (sage.rings.rational.Rational method), 181
nth_prime() (in module sage.arith.misc), 129
nth_root() (sage.rings.integer.Integer method), 45
nth_root() (sage.rings.rational.Rational method), 181
number_field() (sage.rings.rational_field.RationalField method), 157
number_of_divisors() (in module sage.arith.misc), 130
real() (sage.rings.rational.Rational method), 184
relative_discriminant() (sage.rings.rational_field.RationalField method), 160
relative_norm() (sage.rings.rational.Rational method), 184
replace_prime() (sage.arith.multi_modular.MutableMultiModularBasis method), 78
residue_field() (sage.rings.integer_ring.IntegerRing_class method), 10
residue_field() (sage.rings.rational_field.RationalField method), 160
rising_factorial() (in module sage.arith.misc), 141
round() (sage.rings.integer.Integer method), 54
round() (sage.rings.rational.Rational method), 185
S
sage.arith.functions module, 74
sage.arith.misc module, 79
sage.arith.multi_modular module, 76
sage.arith.power module, 75
sage.rings.bernmm module, 63
sage.rings.bernoulli_mod_p module, 64
sage.rings.factorint module, 67
sage.rings.factorint_flint module, 69
sage.rings.factorint_pari module, 70
sage.rings.fast_arith module, 70
sage.rings.integer module, 13
sage.rings.integer_ring module, 1
sage.rings.rational module, 165
sage.rings.rational_field module, 151
sage.rings.sum_of_squares module, 72
section() (sage.rings.rational.Q_to_Z method), 165
section() (sage.rings.rational.Z_to_Q method), 190
selmer_generators() (sage.rings.rational_field.RationalField method), 161
selmer_group() (sage.rings.rational_field.RationalField method), 162
selmer_group_iterator() (sage.rings.rational_field.RationalField method), 162
selmer_space() (sage.rings.rational_field.RationalField method), 162
Sigma (class in sage.arith.misc), 87
sign() (sage.rings.integer.Integer method), 54
sign() (sage.rings.rational.Rational method), 185
signature() (sage.rings.rational_field.RationalField method), 163
some_elements() (sage.rings.rational_field.RationalField method), 163
sort_complex_numbers_for_display() (in module sage.arith.misc), 141
sqrt() (sage.rings.integer.Integer method), 54
sqrt() (sage.rings.rational.Rational method), 186
sqrtrem() (sage.rings.integer.Integer method), 55
squarefree_divisors() (in module sage.arith.misc), 142
squarefree_part() (sage.rings.integer.Integer method), 55
squarefree_part() (sage.rings.rational.Rational method), 187
str() (sage.rings.integer.Integer method), 56
str() (sage.rings.rational.Rational method), 187
subfactorial() (in module sage.arith.misc), 143
sum_of_k_squares() (in module sage.arith.misc), 143
support() (sage.rings.integer.Integer method), 57
support() (sage.rings.rational.Rational method), 188
T
test_bit() (sage.rings.integer.Integer method), 57
three_squares() (in module sage.arith.misc), 144
three_squares_pyx() (in module sage.rings.sum_of_squares), 73
to_bytes() (sage.rings.integer.Integer method), 57
trace() (sage.rings.rational.Rational method), 188
trailing_zero_bits() (sage.rings.integer.Integer method), 58
trial_division() (in module sage.arith.misc), 145
trial_division() (sage.rings.integer.Integer method), 58
trunc() (sage.rings.integer.Integer method), 59
trunc() (sage.rings.rational.Rational method), 188
two_squares() (in module sage.arith.misc), 146
two_squares_pyx() (in module sage.rings.sum_of_squares), 73
V
val_unit() (sage.rings.integer.Integer method), 59
val_unit() (sage.rings.rational.Rational method), 188
valuation() (in module sage.arith.misc), 146
valuation() (sage.rings.integer_ring.IntegerRing_class method), 11
valuation() (sage.rings.integer.Integer method), 60
valuation() (sage.rings.rational_field.RationalField method), 164
valuation() (sage.rings.rational.Rational method), 189
verify_bernoulli_mod_p() (in module sage.rings.bernoulli_mod_p), 66

X
XGCD() (in module sage.arith.misc), 88
xgcd() (in module sage.arith.misc), 148
xgcd() (sage.rings.integer.Integer method), 60
xgcd_int() (sage.rings.fast_arith.arith_int method), 70
xkcd() (in module sage.arith.misc), 149
xlcm() (in module sage.arith.misc), 149

Z
Z_to_Q (class in sage.rings.rational), 189
zeta() (sage.rings.integer_ring.IntegerRing_class method), 11
zeta() (sage.rings.rational_field.RationalField method), 164