Sage supports solving clauses in Conjunctive Normal Form (see Wikipedia article Conjunctive_normal_form), i.e., SAT solving, via an interface inspired by the usual DIMACS format used in SAT solving [SG09]. For example, to express that:

\[x_1 \lor x_2 \lor (\neg x_3) \]

should be true, we write:

\[(1, 2, -3) \]

Warning: Variable indices **must** start at one.
By default, Sage solves SAT instances as an Integer Linear Program (see `sage.numerical.mip`), but any SAT solver supporting the DIMACS input format is easily interfaced using the `sage.sat.solvers.dimacs.DIMACS` blueprint. Sage ships with pre-written interfaces for RSat [RS] and Glucose [GL]. Furthermore, Sage provides an interface to the CryptoMiniSat [CMS] SAT solver which can be used interchangeably with DIMACS-based solvers. For this last solver, the optional CryptoMiniSat package must be installed, this can be accomplished by typing the following in the shell:

```
sage -i cryptominisat sagelib
```

We now show how to solve a simple SAT problem.

\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3)\]

In Sage’s notation:

```
sage: solver = SAT()
sage: solver.add_clause( ( 1, 2, 3) )
sage: solver.add_clause( ( 1, 2, -3) )
sage: solver()  # random
(None, True, True, False)
```

Note: `add_clause()` creates new variables when necessary. When using CryptoMiniSat, it creates all variables up to the given index. Hence, adding a literal involving the variable 1000 creates up to 1000 internal variables.

DIMACS-base solvers can also be used to write DIMACS files:

```
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: solver.add_clause( ( 1, 2, 3) )
sage: solver.add_clause( ( 1, 2, -3) )
sage: _ = solver.write()
sage: for line in open(fn).readlines():
    print(line)
p cnf 3 2
  1 2 3 0
  1 2 -3 0
```

Alternatively, there is `sage.sat.solvers.dimacs.DIMACS.clauses()`:
These files can then be passed external SAT solvers.

1.1 Details on Specific Solvers

1.1.1 Abstract SAT Solver

All SAT solvers must inherit from this class.

Note: Our SAT solver interfaces are 1-based, i.e., literals start at 1. This is consistent with the popular DIMACS format for SAT solving but not with Python's 0-based convention. However, this also allows to construct clauses using simple integers.

AUTHORS:
- Martin Albrecht (2012): first version

```python
sage.sat.solvers.satsolver.SAT(solver=None, *args, **kwds)
```

Return a `SatSolver` instance.

Through this class, one can define and solve SAT problems.

INPUT:
- `solver` (string) – select a solver. Admissible values are:
 - "cryptominisat" – note that the cryptominisat package must be installed.
 - "picosat" – note that the pycosat package must be installed.
 - "glucose" – note that the glucose package must be installed.
 - "glucose-syrup" – note that the glucose package must be installed.
 - "LP" – use SatLP to solve the SAT instance.
 - None (default) – use CryptoMiniSat if available, else PicoSAT if available, and a LP solver otherwise.

EXAMPLES:

```python
sage: SAT(solver="LP")
# needs sage.numerical.mip
```

An ILP-based SAT Solver

```python
class sage.sat.solvers.satsolver.SatSolver
```

Bases: object

Chapter 1. Solvers
add_clause(lits)
Add a new clause to set of clauses.

INPUT:

• lits - a tuple of integers != 0

Note: If any element e in lits has $|e|$ greater than the number of variables generated so far, then new variables are created automatically.

EXAMPLES:

```
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
sage: solver.add_clause( (1, -2, 3) )
Traceback (most recent call last):
... Not Implemented Error
```

clauses(filename=None)
Return original clauses.

INPUT:

• filename' - if not None clauses are written to filename in DIMACS format (default: None)

OUTPUT:

If filename is None then a list of lits, is_xor, rhs tuples is returned, where lits is a tuple of literals, is_xor is always False and rhs is always None.

If filename points to a writable file, then the list of original clauses is written to that file in DIMACS format.

EXAMPLES:

```
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
sage: solver.clauses()
Traceback (most recent call last):
... Not Implemented Error
```

conflict_clause()
Return conflict clause if this instance is UNSAT and the last call used assumptions.

EXAMPLES:

```
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
sage: solver.conflict_clause()
Traceback (most recent call last):
... Not Implemented Error
```

learnt_clauses(unitary_only=False)
Return learnt clauses.
INPUT:

- unitary_only - return only unitary learnt clauses (default: False)

EXAMPLES:

```
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
sage: solver.learnt_clauses()
Traceback (most recent call last):
  ...:
NotImplementedError
sage: solver.learnt_clauses(unitary_only=True)
Traceback (most recent call last):
  ...:
NotImplementedError
```

nvars()

Return the number of variables.

EXAMPLES:

```
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
sage: solver.nvars()
Traceback (most recent call last):
  ...:
NotImplementedError
```

read(filename)

Reads DIMAC files.

The differences were summarized in the discussion on the issue github issue #16924. This method assumes the following DIMACS format:

- Any line starting with “c” is a comment
- Any line starting with “p” is a header
- Any variable 1-n can be used
- Every line containing a clause must end with a “0”

The format is extended to allow lines starting with “x” defining xor clauses, with the notation introduced in cryptominisat, see https://www.msoos.org/xor-clauses/

INPUT:

- filename - The name of a file as a string or a file object

EXAMPLES:

```
sage: from io import StringIO
sage: file_object = StringIO("c A sample .cnf file.
p cnf 3 2
1 -3 0
2 3 -
1 0 ")
```

(continues on next page)
With xor clauses:

```python
from sage.sat.solvers.cryptominisat import CryptoMiniSat
file_object = StringIO("c A sample .cnf file with xor clauses.
" +
"p cnf 3
+3
0
0
1 2 0
1 3
x1 2 3 0")
solver = CryptoMiniSat()  # optional - pycryptosat
solver.read(file_object)  # optional - pycryptosat
solver.clauses()  # optional - pycryptosat
[((1, 2), False, None), ((3,), False, None), ((1, 2, 3), True, True)]
solver()  # optional - pycryptosat
(Noned, True, True, True)
```

```python
var(decision=None)
```

Return a new variable.

INPUT:

• decision - is this variable a decision variable?

EXAMPLES:

```python
from sage.sat.solvers.satsolver import SatSolver
solver = SatSolver()
solver.var()
Traceback (most recent call last):
  ... Not Implemented Error
```

1.1.2 SAT-Solvers via DIMACS Files

Sage supports calling SAT solvers using the popular DIMACS format. This module implements infrastructure to make it easy to add new such interfaces and some example interfaces.

Currently, interfaces to **RSat** and **Glucose** are included by default.

Note: Our SAT solver interfaces are 1-based, i.e., literals start at 1. This is consistent with the popular DIMACS format for SAT solving but not with Python’s 0-based convention. However, this also allows to construct clauses using simple integers.

AUTHORS:

• Martin Albrecht (2012): first version

• Sébastien Labbé (2018): adding Glucose SAT solver
• Sébastien Labbé (2023): adding Kissat SAT solver

Classes and Methods

class sage.sat.solvers.dimacs.DIMACS(command=None, filename=None, verbosity=0, **kwds)

Bases: SatSolver

Generic DIMACS Solver.

Note: Usually, users won’t have to use this class directly but some class which inherits from this class.

__init__(command=None, filename=None, verbosity=0, **kwds)

Construct a new generic DIMACS solver.

INPUT:

• command - a named format string with the command to run. The string must contain {input} and may contain {output} if the solvers writes the solution to an output file. For example “sat-solver {input}” is a valid command. If None then the class variable command is used. (default: None)

• filename - a filename to write clauses to in DIMACS format, must be writable. If None a temporary filename is chosen automatically. (default: None)

• verbosity - a verbosity level, where zero means silent and anything else means verbose output. (default: 0)

• **kwds - accepted for compatibility with other solves, ignored.

__call__(assumptions=None)

Solve this instance and return the parsed output.

INPUT:

• assumptions - ignored, accepted for compatibility with other solvers (default: None)

OUTPUT:

• If this instance is SAT: A tuple of length nvars()+1 where the i-th entry holds an assignment for the i-th variables (the 0-th entry is always None).

• If this instance is UNSAT: False

EXAMPLES:

When the problem is SAT:

```
sage: from sage.sat.solvers import RSat
sage: solver = RSat()
sage: solver.add_clause( ( 1, 2, 3) )
sage: solver.add_clause( ( -1,) )
sage: solver.add_clause( ( -2,) )
sage: solver() # optional - rsat
(None, False, False, True)
```

When the problem is UNSAT:

```
sage: solver = RSat()
sage: solver.add_clause((1,2))
sage: solver.add_clause((-1,2))
(continues on next page)```
add_clause (lits)
Add a new clause to set of clauses.

INPUT:
- lits - a tuple of integers != 0

Note: If any element e in lits has abs(e) greater than the number of variables generated so far, then new variables are created automatically.

EXAMPLES:
```
sage: from sage.sat.solvers.dimacs import DIMACS
sage: solver = DIMACS()
sage: solver.var() 1
sage: solver.var(decision=True) 2
sage: solver.add_clause((1, -2 , 3))
sage: solver
DIMACS Solver: ''
```
INPUT:

- filename - if not None clauses are written to filename in DIMACS format (default: None)

OUTPUT:

If filename is None then a list of lits, is_xor, rhs tuples is returned, where lits is a tuple of literals, is_xor is always False and rhs is always None.

If filename points to a writable file, then the list of original clauses is written to that file in DIMACS format.

EXAMPLES:

```
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS()
sage: solver.add_clause((1, 2, 3))
sage: solver.clauses()
[(1, 2, 3), False, None]
sage: solver.add_clause((1, 2, -3))
sage: solver.clauses(fn)
sage: print(open(fn).read())
p cnf 3 2
1 2 3 0
1 2 -3 0
```

```
command = ''
```

```
nvars()

Return the number of variables.
```

EXAMPLES:

```
sage: from sage.sat.solvers.dimacs import DIMACS
sage: solver = DIMACS()
sage: solver.var()
sage: solver.var(decision=True)
sage: solver.nvars()
```

```
static render_dimacs (clauses, filename, nlits)

Produce DIMACS file filename from clauses.

INPUT:

- clauses - a list of clauses, either in simple format as a list of literals or in extended format for CryptoMiniSat: a tuple of literals, is_xor and rhs.
- filename - the file to write to
- nlits -- the number of literals appearing in ```clauses```

EXAMPLES:

```
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS()
```
This is equivalent to:

```
sage: solver.clauses(fn)
sage: print(open(fn).read())
p cnf 3 1
 1 2 -3 0
```

This function also accepts a “simple” format:

```
sage: DIMACS.render_dimacs([(1,2), (1,2,-3)], fn, 3)
sage: print(open(fn).read())
p cnf 3 2
 1 2 0
 1 2 -3 0
```

`var(decision=None)`

Return a new variable.

INPUT:

- `decision` - accepted for compatibility with other solvers, ignored.

EXAMPLES:

```
sage: from sage.sat.solvers.dimacs import DIMACS
sage: solver = DIMACS()
sage: solver.var()
1
```

`write(filename=None)`

Write DIMACS file.

INPUT:

- `filename` - if None default filename specified at initialization is used for writing to (default: None)

EXAMPLES:

```
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS()
sage: solver.add_clause((1, -2, 3))
_ = solver.write()
sage: for line in open(fn).readlines():
    print(line)
p cnf 3 1
 1 -2 3 0
```

(continues on next page)
class sage.sat.solvers.dimacs.Glucose(command=None, filename=None, verbosity=0, **kwds)

Bases: DIMACS

An instance of the Glucose solver.

For information on Glucose see: http://www.labri.fr/perso/lsimon/glucose/

EXAMPLES:

```python
class sage.sat.solvers.dimacs.Glucose:
    def write(self, fn):
        pass

    def __call__(self):
        pass
```

When the problem is SAT:

```python
sage: from sage.sat.solvers import Glucose
sage: solver = Glucose()
sage: solver
DIMACS Solver: 'glucose -verb=0 -model {input}'
```

```python
sage: solver1 = Glucose()
sage: solver1.add_clause((1, 2, 3))
```

```python
sage: solver2 = Glucose()
sage: solver2.add_clause((1, 2))
sage: solver2.add_clause((-1, 2))
sage: solver2.add_clause((1, -2))
sage: solver2.add_clause((-1, -2))
sage: solver2()  # optional - glucose
False
```

With one hundred variables:

```python
sage: solver3 = Glucose()
sage: solver3.add_clause((1, 2, 100))
sage: solver3.add_clause((-1,))
sage: solver3.add_clause((-2,))
```

```python
sage: solver3()  # optional - glucose
(None, False, False, ..., True)
```

command = 'glucose -verb=0 -model {input}'

class sage.sat.solvers.dimacs.GlucoseSyrup(command=None, filename=None, verbosity=0, **kwds)

Bases: DIMACS

An instance of the Glucose-syrup parallel solver.

For information on Glucose see: http://www.labri.fr/perso/lsimon/glucose/
EXAMPLES:

```python
sage: from sage.sat.solvers import GlucoseSyrup
sage: solver = GlucoseSyrup()
sage: solver
DIMACS Solver: 'glucose-syrup -model -verb=0 {input}'
```

When the problem is SAT:

```python
sage: solver1 = GlucoseSyrup()
sage: solver1.add_clause( ( 1, 2, 3) )
sage: solver1.add_clause( (-1,) )
sage: solver1.add_clause( (-2,) )
sage: solver1()  # optional - glucose
(None, False, False, True)
```

When the problem is UNSAT:

```python
sage: solver2 = GlucoseSyrup()
sage: solver2.add_clause((1,2))
sage: solver2.add_clause((-1,2))
sage: solver2.add_clause((1,-2))
sage: solver2.add_clause((-1,-2))
sage: solver2()  # optional - glucose
False
```

With one hundred variables:

```python
sage: solver3 = GlucoseSyrup()
sage: solver3.add_clause( ( 1, 2, 100) )
sage: solver3.add_clause( ( -1,) )
sage: solver3.add_clause( ( -2,) )
sage: solver3()  # optional - glucose
(Non, False, False, ..., True)
```

```python
command = 'glucose-syrup -model -verb=0 {input}'

class sage.sat.solvers.dimacs.Kissat (command=None, filename=None, verbosity=0, **kwds)
Bases: DIMACS
An instance of the Kissat SAT solver
For information on Kissat see: http://fmv.jku.at/kissat/

EXAMPLES:

```python
sage: from sage.sat.solvers import Kissat
sage: solver = Kissat()
sage: solver
DIMACS Solver: 'kissat -q {input}'
```

When the problem is SAT:

```python
sage: solver1 = Kissat()
sage: solver1.add_clause((1, 2, 3))
sage: solver1.add_clause((-1,))
sage: solver1.add_clause((-2,))
sage: solver1() # optional - kissat
(Non, False, False, True)
```

1.1. Details on Specific Solvers
When the problem is UNSAT:

```
sage: solver2 = Kissat()
sage: solver2.add_clause((1,2))
sage: solver2.add_clause((-1,2))
sage: solver2.add_clause((1,-2))
sage: solver2.add_clause((-1,-2))
sage: solver2() # optional - kissat
False
```

With one hundred variables:

```
sage: solver3 = Kissat()
sage: solver3.add_clause((1, 2, 100))
sage: solver3.add_clause((-1,))
sage: solver3.add_clause((-2,))
sage: solver3() # optional - kissat
(Non, False, False, ..., True)
```

```
command = 'kissat -q {input}'
```

### class sage.sat.solvers.dimacs.RSat

```
class sage.sat.solvers.dimacs.RSat(command=None, filename=None, verbosity=0, **kwds)
```

Bases: `DIMACS`

An instance of the RSat solver.

For information on RSat see: [http://reasoning.cs.ucla.edu/rsat/](http://reasoning.cs.ucla.edu/rsat/)

#### EXAMPLES:

```
sage: from sage.sat.solvers import RSat
sage: solver = RSat()
sage: solver
DIMACS Solver: 'rsat {input} -v -s'
```

When the problem is SAT:

```
sage: from sage.sat.solvers import RSat
sage: solver = RSat()
sage: solver.add_clause((1, 2, 3))
sage: solver.add_clause((-1,))
sage: solver.add_clause((-2,))
sage: solver() # optional - rsat
(Non, False, False, True)
```

When the problem is UNSAT:

```
sage: solver = RSat()
sage: solver.add_clause((1,2))
sage: solver.add_clause((-1,2))
sage: solver.add_clause((1,-2))
sage: solver.add_clause((-1,-2))
sage: solver() # optional - rsat
False
```

```
command = 'rsat {input} -v -s'
```
1.1.3 PicoSAT Solver

This solver relies on the pycosat Python bindings to PicoSAT. The pycosat package should be installed on your Sage installation.

AUTHORS:


```python
class sage.sat.solvers.picosat.PicoSAT(verbosity=0, prop_limit=0)
 Bases: SatSolver
 PicoSAT Solver.

INPUT:

- verbosity – an integer between 0 and 2 (default: 0); verbosity
- prop_limit – an integer (default: 0); the propagation limit

EXAMPLES:
```

```python
sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT() # optional - pycosat
```

```python
add_clause(lits)

Add a new clause to set of clauses.

INPUT:

- lits – a tuple of nonzero integers

Note: If any element e in lits has \(\text{abs}(e) \) greater than the number of variables generated so far, then new variables are created automatically.

EXAMPLES:
```

```python
sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT() # optional - pycosat
sage: solver.add_clause((1, -2, 3)) # optional - pycosat
```

```python
clauses(filename=None)

Return original clauses.

INPUT:

- filename – (optional) if given, clauses are written to filename in DIMACS format

OUTPUT:

If filename is None then a list of lits is returned, where lits is a list of literals.

If filename points to a writable file, then the list of original clauses is written to that file in DIMACS format.

EXAMPLES:
```

```python
sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT() # optional - pycosat
sage: solver.add_clause((1, -2, 3)) # optional - pycosat
```
sage: solver.clauses() # optional - pycosat
[[1, 2, 3, 4, 5, 6, 7, 8, -9]]

DIMACS format output:

sage: # optional - pycosat
sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT()

sage: solver.add_clause((1, 2, 4))

sage: solver.add_clause((1, 2, -4))

sage: fn = tmp_filename()

sage: solver.clauses(fn)

sage: print(open(fn).read())

p cnf 4 2
1 2 4 0
1 2 -4 0

nvars()

Return the number of variables.

Note that for compatibility with DIMACS convention, the number of variables corresponds to the maximal index of the variables used.

EXAMPLES:

sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT() # optional - pycosat

sage: solver.nvars() # optional - pycosat
0

If a variable with intermediate index is not used, it is still considered as a variable:

sage: solver.add_clause((1,-2,4)) # optional - pycosat

sage: solver.nvars() # optional - pycosat
4

var (decision=None)

Return a new variable.

INPUT:

- decision – ignored; accepted for compatibility with other solvers

EXAMPLES:

sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT() # optional - pycosat

sage: solver.var() # optional - pycosat
1

sage: solver.add_clause((-1,2,-4)) # optional - pycosat

sage: solver.var() # optional - pycosat
5
1.1.4 Solve SAT problems Integer Linear Programming

The class defined here is a \texttt{SatSolver} that solves its instance using \texttt{MixedIntegerLinearProgram}. Its performance can be expected to be slower than when using \texttt{CryptoMiniSat}.

\begin{verbatim}
class sage.sat.solvers.sat_lp.SatLP (solver=None, verbose=0, *, integrality_tolerance=0.001)

Initializes the instance

INPUT:

- \texttt{solver} – (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to \texttt{None}, the default one is used. For more information on MILP solvers and which default solver is used, see the method \texttt{solve} of the class \texttt{MixedIntegerLinearProgram}.
- \texttt{verbose} – integer (default: 0). Sets the level of verbosity of the LP solver. Set to 0 by default, which means quiet.
- \texttt{integrality_tolerance} – parameter for use with MILP solvers over an inexact base ring; see \texttt{MixedIntegerLinearProgram.get_values}.

EXAMPLES:

\begin{verbatim}
sage: S=SAT(solver="LP"); S
an ILP-based SAT Solver
\end{verbatim}
\end{verbatim}

\texttt{add_clause (lits)}

Add a new clause to set of clauses.

INPUT:

- \texttt{lits} - a tuple of integers \(!= 0\)

\begin{verbatim}
Note: If any element \(e\) in \texttt{lits} has \(\text{abs}(e)\) greater than the number of variables generated so far, then new variables are created automatically.
\end{verbatim}

\begin{verbatim}
EXAMPLES:

\begin{verbatim}
sage: S=SAT(solver="LP"); S
an ILP-based SAT Solver
sage: for u,v \texttt{in} graphs.CycleGraph(6).edges(sort=False, labels=False):
    ....:   u,v = u+1,v+1
    ....:   S.add_clause((u,v))
    ....:   S.add_clause((-u,-v))
\end{verbatim}
\end{verbatim}
\end{verbatim}

\texttt{nvars ()}

Return the number of variables.

EXAMPLES:

\begin{verbatim}
\begin{verbatim}
sage: S=SAT(solver="LP"); S
an ILP-based SAT Solver
sage: S.var()
1
sage: S.var()
2
sage: S.nvars()
2
\end{verbatim}
\end{verbatim}
\end{verbatim}
var()

Return a new variable.

EXAMPLES:

```
sage: S=SAT(solver="LP"); S
an ILP-based SAT Solver
sage: S.var()
1
```

### 1.1.5 CryptoMiniSat Solver

This solver relies on Python bindings provided by upstream cryptominisat.

The cryptominisat package should be installed on your Sage installation.

**AUTHORS:**


```python
class sage.sat.solvers.cryptominisat.CryptoMiniSat(verbosity=0, confl_limit=None, threads=None)
```

**INPUT:**

- **verbosity** — an integer between 0 and 15 (default: 0). Verbosity.
- **confl_limit** — an integer (default: None). Abort after this many conflicts. If set to None, never aborts.
- **threads** — an integer (default: None). The number of thread to use. If set to None, the number of threads used corresponds to the number of cpus.

**EXAMPLES:**

```
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
sage: solver = CryptoMiniSat() # optional - pycryptosat
```

**add_clause(lits)**

Add a new clause to set of clauses.

**INPUT:**

- **lits** — a tuple of nonzero integers.

**Note:** If any element e in lits has abs(e) greater than the number of variables generated so far, then new variables are created automatically.

**EXAMPLES:**

```
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
sage: solver = CryptoMiniSat() # optional - pycryptosat
```

(continues on next page)
add_xor_clause(lits, rhs=True)

Add a new XOR clause to set of clauses.

INPUT:

  • lits – a tuple of positive integers.
  • rhs – boolean (default: True). Whether this XOR clause should be evaluated to True or False.

EXAMPLES:

```python
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
sage: solver = CryptoMiniSat() # optional - pycryptosat
sage: solver.add_xor_clause((1, 2, 3), False) # optional - pycryptosat
```

clauses(filename=None)

Return original clauses.

INPUT:

  • filename – if not None clauses are written to filename in DIMACS format (default: None)

OUTPUT:

  If filename is None then a list of lits, is_xor, rhs tuples is returned, where lits is a tuple of literals, is_xor is always False and rhs is always None.

  If filename points to a writable file, then the list of original clauses is written to that file in DIMACS format.

EXAMPLES:

```python
sage: from sage.sat.solvers import CryptoMiniSat
sage: solver = CryptoMiniSat()
sage: solver.add_clause((1, 2, 3, 4, 5, 6, 7, 8, -9))
sage: solver.add_xor_clause((1, 2, 3, 4, 5, 6, 7, 8, 9), rhs=True)
sage: solver.clauses()
[((1, 2, 3, 4, 5, 6, 7, 8, -9), False, None),
 ((1, 2, 3, 4, 5, 6, 7, 8, 9), True, True)]
```

DIMACS format output:

```python
sage: from sage.sat.solvers import CryptoMiniSat
sage: solver = CryptoMiniSat()
sage: solver.add_clause((1, 2, 4))
sage: solver.add_clause((1, 2, -4))
sage: fn = tmp_filename()
sage: solver.clauses(fn)
sage: print(open(fn).read())
p cnf 4 2
 1 2 4 0
 1 2 -4 0
```

1.1. Details on Specific Solvers
Note that in cryptominisat, the DIMACS standard format is augmented with the following extension: having an $\times$ in front of a line makes that line an XOR clause:

```python
sage: solver.add_xor_clause((1,2,3), rhs=True) # optional - pycryptosat
sage: solver.clauses(fn) # optional - pycryptosat
sage: print(open(fn).read()) # optional - pycryptosat
p cnf 4 3
 1 2 4 0
 1 2 -4 0
 x1 2 3 0
```

Note that inverting an xor-clause is equivalent to inverting one of the variables:

```python
sage: solver.add_xor_clause((1,2,5), rhs=False) # optional - pycryptosat
sage: solver.clauses(fn) # optional - pycryptosat
sage: print(open(fn).read()) # optional - pycryptosat
p cnf 5 4
 1 2 4 0
 1 2 -4 0
 x1 2 3 0
 x1 2 -5 0
```

**nvars()**

Return the number of variables.

Note that for compatibility with DIMACS convention, the number of variables corresponds to the maximal index of the variables used.

EXAMPLES:

```python
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
sage: solver = CryptoMiniSat() # optional - pycryptosat
sage: solver.nvars() # optional - pycryptosat
0
```

If a variable with intermediate index is not used, it is still considered as a variable:

```python
sage: solver.add_clause((1,-2,4)) # optional - pycryptosat
sage: solver.nvars() # optional - pycryptosat
4
```

**var**(decision=None)

Return a new variable.

INPUT:

- decision — accepted for compatibility with other solvers, ignored.

EXAMPLES:

```python
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
sage: solver = CryptoMiniSat() # optional - pycryptosat
sage: solver.var() # optional - pycryptosat
```
sage: solver.add_clause((-1,2,-4)) # optional ~
→pycryptosat
sage: solver.var() # optional ~
→pycryptosat
Sage supports conversion from Boolean polynomials (also known as Algebraic Normal Form) to Conjunctive Normal Form:

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B)
sage: e.clauses_sparse(a*b + a + 1)
sage: _ = solver.write()
sage: print(open(fn).read())
p cnf 3 2
-2 0
1 0
```

### 2.1 Details on Specific Converters

#### 2.1.1 An ANF to CNF Converter using a Dense/Sparse Strategy

This converter is based on two converters. The first one, by Martin Albrecht, was based on [CB2007], this is the basis of the “dense” part of the converter. It was later improved by Mate Soos. The second one, by Michael Brickenstein, uses a reduced truth table based approach and forms the “sparse” part of the converter.

**AUTHORS:**

- Martin Albrecht - (2008-09) initial version of ‘anf2cnf.py’
- Michael Brickenstein - (2009) ‘cnf.py’ for PolyBoRi
- Mate Soos - (2010) improved version of ‘anf2cnf.py’
- Martin Albrecht - (2012) unified and added to Sage
Classes and Methods

class sage.sat.converters.polybori.CNFEncoder(solver, ring, max_vars_sparse=6, use_xor_clauses=None, cutting_number=6, random_seed=16)

Bases: ANF2CNFConverter

ANF to CNF Converter using a Dense/Sparse Strategy. This converter distinguishes two classes of polynomials.

1. Sparse polynomials are those with at most \( \text{max\_vars\_sparse} \) variables. Those are converted using reduced truth-tables based on PolyBoRi’s internal representation.

2. Polynomials with more variables are converted by introducing new variables for monomials and by converting these linearised polynomials.

Linearised polynomials are converted either by splitting XOR chains – into chunks of length \( \text{cutting\_number} \) – or by constructing XOR clauses if the underlying solver supports it. This behaviour is disabled by passing \( \text{use\_xor\_clauses}=\text{False} \).

\_init\_(solver, ring, max_vars_sparse=6, use_xor_clauses=None, cutting_number=6, random_seed=16)

Construct ANF to CNF converter over \( \text{ring} \) passing clauses to \( \text{solver} \).

INPUT:

- \( \text{solver} \) - a SAT-solver instance
- \( \text{ring} \) - a \( \text{sage.rings.polynomial.pbori.BooleanPolynomialRing} \)
- \( \text{max\_vars\_sparse} \) - maximum number of variables for direct conversion
- \( \text{use\_xor\_clauses} \) - use XOR clauses; if None use if \( \text{solver} \) supports it. (default: None)
- \( \text{cutting\_number} \) - maximum length of XOR chains after splitting if XOR clauses are not supported (default: 6)
- \( \text{random\_seed} \) - the direct conversion method uses randomness, this sets the seed (default: 16)

EXAMPLES:

We compare the sparse and the dense strategies, sparse first:

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B)
sage: e.clauses_sparse(a*b + a + 1)
sage: _ = solver.write()
sage: print(open(fn).read())
p cnf 3 2
-2 0
1 0
sage: e.phi
[None, a, b, c]
```

Now, we convert using the dense strategy:

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
```
\[
\begin{align*}
\text{sage: } & \quad fn = \text{tmp\_filename()} \\
\text{sage: } & \quad \text{solver } = \text{DIMACS(filename}=fn) \\
\text{sage: } & \quad e = \text{CNFEncoder(solver, B)} \\
\text{sage: } & \quad e.clauses\_dense(a*b + a + 1) \\
\text{sage: } & \quad _\_ = \text{solver\_write()} \\
\text{sage: } & \quad \text{print(open(fn).read())} \\
\end{align*}
\]

\[
\begin{align*}
\text{p cnf 4 5} \\
1 & -4 0 \\
2 & -4 0 \\
4 & -1 -2 0 \\
-4 & -1 0 \\
4 & 1 0 \\
\text{sage: } & \quad e\phi \\
[\text{None, a, b, c, a*b}] \\
\end{align*}
\]

**Note:** This constructor generates SAT variables for each Boolean polynomial variable.

\[
\begin{align*}
\text{\_call\_} (F)
\end{align*}
\]

Encode the boolean polynomials in \( F \).

**INPUT:**

- \( F \) - an iterable of \texttt{sage.rings.polynomial.pbori.BooleanPolynomial}

**OUTPUT:** An inverse map \( \text{int} \rightarrow \text{variable} \)

**EXAMPLES:**

\[
\begin{align*}
\text{sage: } & \quad B.<a,b,c> = \text{BooleanPolynomialRing()} \\
\text{sage: } & \quad \text{from sage.sat.converters.polybori import CNFEncoder} \\
\text{sage: } & \quad \text{from sage.sat.solvers.dimacs import DIMACS} \\
\text{sage: } & \quad fn = \text{tmp\_filename()} \\
\text{sage: } & \quad \text{solver } = \text{DIMACS(filename}=fn) \\
\text{sage: } & \quad e = \text{CNFEncoder(solver, B, max\_vars\_sparse=2)} \\
\text{sage: } & \quad e([[a*b + a + 1, a*b+ a + c]]) \\
[\text{None, a, b, c, a*b}] \\
\text{sage: } & \quad _\_ = \text{solver\_write()} \\
\text{sage: } & \quad \text{print(open(fn).read())} \\
\end{align*}
\]

\[
\begin{align*}
\text{p cnf 4 9} \\
-2 & 0 \\
1 & 0 \\
1 & -4 0 \\
2 & -4 0 \\
4 & -1 -2 0 \\
-4 & -1 -3 0 \\
4 & 1 -3 0 \\
4 & -1 3 0 \\
-4 & 1 3 0 \\
\text{sage: } & \quad e\phi \\
[\text{None, a, b, c, a*b}] \\
\end{align*}
\]

\[
\begin{align*}
\text{clauses} (f)
\end{align*}
\]

Convert \( f \) using the sparse strategy if \( f\text{.nvariables}() \) is at most \texttt{max\_vars\_sparse} and the dense strategy otherwise.

**INPUT:**
• \texttt{f -a \texttt{sage.rings.polynomial.pbori.BooleanPolynomial}}

EXAMPLES:

\begin{verbatim}
\begin{verbatim}
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B, max_vars_sparse=2)
sage: e.clauses(a*b + a + 1)
sage: _ = solver.write()
sage: print(open(fn).read())
p cnf 3 2
-2 0
1 0
sage: e.phi
[None, a, b, c]
\end{verbatim}
\end{verbatim}

\begin{verbatim}
\begin{verbatim}
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B, max_vars_sparse=2)
sage: e.clauses(a*b + a + c)
sage: _ = solver.write()
sage: print(open(fn).read())
p cnf 4 7
1 -4 0
2 -4 0
4 -1 -2 0
-4 -1 -3 0
4 1 -3 0
4 -1 3 0
-4 1 3 0
sage: e.phi
[None, a, b, c, a*b]
\end{verbatim}
\end{verbatim}

\texttt{clauses\_dense(\textit{f})}

Convert \textit{f} using the dense strategy.

INPUT:

• \texttt{f -a \texttt{sage.rings.polynomial.pbori.BooleanPolynomial}}

EXAMPLES:

\begin{verbatim}
\begin{verbatim}
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B)
sage: e.clauses_dense(a*b + a + 1)
sage: _ = solver.write()
sage: print(open(fn).read())
p cnf 4 5
\end{verbatim}
\end{verbatim}

(continues on next page)
 clauses\_sparse(f)
Convert f using the sparse strategy.

**INPUT:**

- f - a sage.rings.polynomial.pbori.BooleanPolynomial

**EXAMPLES:**

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
def clauses_sparse(f):
 return CNFEncoder(sol).cnf
```

monomial(m)
Return SAT variable for m

**INPUT:**

- m - a monomial.

**OUTPUT:** An index for a SAT variable corresponding to m.

**EXAMPLES:**

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
def monomial(m):
 return CNFEncoder(sol).cnf
```

If monomial is called on a new monomial, a new variable is created:

```python
sage: e.monomial(a*b*c)
5
sage: e.phi
[None, a, b, c, a*b]```
If monomial is called on a monomial that was queried before, the index of the old variable is returned and no new variable is created:

```python
sage: e.monomial(a*b)
4
sage: e.phi
[None, a, b, c, a*b, a*b*c]
```

Note: For correctness, this function is cached.

```python
permutations = Cached version of <function CNFEncoder.permutations>
```

property phi
Map SAT variables to polynomial variables.

EXAMPLES:

```python
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: ce = CNFEncoder(DIMACS(), B)
sage: ce.var()
4
sage: ce.phi
[None, a, b, c, None]
```

split_xor (monomial_list, equal_zero)
Split XOR chains into subchains.

INPUT:

- `monomial_list` - a list of monomials
- `equal_zero` - is the constant coefficient zero?

EXAMPLES:

```python
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: ce = CNFEncoder(DIMACS(), B, cutting_number=3)
sage: ce.split_xor([1,2,3,4,5,6], False)
[[[1, 7], False], [[7, 2, 8], True], [[8, 3, 9], True], [[9, 4, 10], True], [[10, 5, 11], True]]
sage: ce = CNFEncoder(DIMACS(), B, cutting_number=4)
sage: ce.split_xor([1,2,3,4,5,6], False)
[[[1, 2, 7], False], [[7, 3, 4, 8], True], [[8, 5, 6], True]]
```

to_polynomial (c)
Convert clause to `sage.rings.polynomial.pbori.BooleanPolynomial`

INPUT:
• c - a clause

EXAMPLES:

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B, max_vars_sparse=2)
sage: _ = e([a*b + a + 1, a*b + a + c])
sage: e.to_polynomial( (1,-2,3) )
a*b*c + a*b + b*c + b
```

var\(m=\text{None}, \text{decision} = \text{None}\)

Return a new variable.

This is a thin wrapper around the SAT-solvers function where we keep track of which SAT variable corresponds to which monomial.

INPUT:

• m - something the new variables maps to, usually a monomial

• decision - is this variable a decision variable?

EXAMPLES:

```python
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: ce = CNFEncoder(DIMACS(), B)
sage: ce.var()
4
```

zero_blocks\(f\)

Divide the zero set of \(f\) into blocks.

EXAMPLES:

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: e = CNFEncoder(DIMACS(), B)
sage: sorted(sorted(d.items()) for d in e.zero_blocks(a*b*c))
[[\{c, 0\}], \{(b, 0)\}, \{(a, 0)\}]
```

Note: This function is randomised.
Sage provides various highlevel functions which make working with Boolean polynomials easier. We construct a very small-scale AES system of equations and pass it to a SAT solver:

```plaintext
sage: sr = mq.SR(1,1,1,4,gf2=True,polybori=True)
sage: while True:
    try:
        F,s = sr.polynomial_system()
        break
    except ZeroDivisionError:
        pass
sage: from sage.sat.boolean_polynomials import solve as solve_sat
# optional - pycryptosat
sage: s = solve_sat(F)
# optional - pycryptosat
sage: F.subs(s[0])
```

Polynomial Sequence with 36 Polynomials in 0 Variables

3.1 Details on Specific Highlevel Interfaces

3.1.1 SAT Functions for Boolean Polynomials

These highlevel functions support solving and learning from Boolean polynomial systems. In this context, “learning” means the construction of new polynomials in the ideal spanned by the original polynomials.

AUTHOR:

• Martin Albrecht (2012): initial version

Functions

```
sage.sat.boolean_polynomials.learn(F, converter=None, solver=None, max_learnt_length=3, interreduction=False, **kwds)
```

Learn new polynomials by running SAT-solver solver on SAT-instance produced by converter from F.

INPUT:

• F - a sequence of Boolean polynomials
• converter - an ANF to CNF converter class or object. If converter is None then `sage.sat.converters.polybori.CNFEncoder` is used to construct a new converter. (default: None)
• solver - a SAT-solver class or object. If solver is None then `sage.sat.solvers.cryptominisat.CryptoMiniSat` is used to construct a new converter. (default: None)

• max_learnt_length - only clauses of length \(\leq \text{max_length_learnt} \) are considered and converted to polynomials. (default: 3)

• interreduction - inter-reduce the resulting polynomials (default: False)

Note: More parameters can be passed to the converter and the solver by prefixing them with `c_` and `s_` respectively. For example, to increase CryptoMiniSat’s verbosity level, pass `s_verbosity=1`.

OUTPUT:

A sequence of Boolean polynomials.

EXAMPLES:

```python
sage: from sage.sat.boolean_polynomials import learn as learn_sat
```

We construct a simple system and solve it:

```python
sage: set_random_seed(2300)
sage: sr = mq.SR(1, 2, 2, 4, gf2=True, polybori=True)
sage: F, s = sr.polynomial_system()
sage: H = learn_sat(F)
sage: H[-1]
k033 + 1
```

```python
sage.sat.boolean_polynomials.solve(F, converter=None, solver=None, n=1, target_variables=None, **kwds)
```

Solve system of Boolean polynomials `F` by solving the SAT-problem – produced by `converter` – using `solver`.

INPUT:

• `F` - a sequence of Boolean polynomials

• `n` - number of solutions to return. If `n` is `+infinity` then all solutions are returned. If `n < infinity` then `n` solutions are returned if `F` has at least `n` solutions. Otherwise, all solutions of `F` are returned. (default: 1)

• `converter` - an ANF to CNF converter class or object. If `converter` is None then `sage.sat.converters.polybori.CNFEncoder` is used to construct a new converter. (default: None)

• `solver` - a SAT-solver class or object. If `solver` is None then `sage.sat.solvers.cryptominisat.CryptoMiniSat` is used to construct a new converter. (default: None)

• `target_variables` - a list of variables. The elements of the list are used to exclude a particular combination of variable assignments of a solution from any further solution. Furthermore `target_variables` denotes which variable-value pairs appear in the solutions. If `target_variables` is None all variables appearing in the polynomials of `F` are used to construct exclusion clauses. (default: None)

• `**kwds` - parameters can be passed to the converter and the solver by prefixing them with `c_` and `s_` respectively. For example, to increase CryptoMiniSat’s verbosity level, pass `s_verbosity=1`.

OUTPUT:

A list of dictionaries, each of which contains a variable assignment solving `F`.

EXAMPLES:

We construct a very small-scale AES system of equations:
and pass it to a SAT solver:

```python
sage: from sage.sat.boolean_polynomials import solve as solve_sat
sage: s = solve_sat(F)
sage: F.subs(s[0])
Polynomial Sequence with 36 Polynomials in 0 Variables
```

This time we pass a few options through to the converter and the solver:

```python
sage: s = solve_sat(F, c_max_vars_sparse=4, c_cutting_number=8)
sage: F.subs(s[0])
Polynomial Sequence with 36 Polynomials in 0 Variables
```

We construct a very simple system with three solutions and ask for a specific number of solutions:

```python
sage: B.<a,b> = BooleanPolynomialRing()
sage: f = a*b
sage: l = solve_sat([f], n=1)
sage: len(l) == 1, f.subs(l[0])
(True, 0)
sage: l = solve_sat([a*b], n=2)
sage: len(l) == 2, f.subs(l[0]), f.subs(l[1])
(True, 0, 0)
sage: sorted((d[a], d[b]) for d in solve_sat([a*b], n=infinity))
[(0, 0), (0, 1), (1, 0)]
sage: sorted((d[a], d[b]) for d in solve_sat([a*b], n=infinity))
[(0, 0), (0, 1), (1, 0)]
sage: sorted((d[a], d[b]) for d in solve_sat([a*b], n=infinity))
[(0, 0), (0, 1), (1, 0)]
```

In the next example we see how the `target_variables` parameter works:

```python
sage: from sage.sat.boolean_polynomials import solve as solve_sat
sage: R.<a,b,c,d> = BooleanPolynomialRing()
sage: F = [a + b, a + c + d]
```

First the normal use case:

```python
sage: sorted((D[a], D[b], D[c], D[d]) for D in solve_sat(F, n=infinity))
[(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)]
```

Now we are only interested in the solutions of the variables a and b:

```python
sage: solve_sat(F, n=infinity, target_variables=[a,b])
[({b: 0}, {a: 0}), ({b: 1}, {a: 1})]
```

Here, we generate and solve the cubic equations of the AES SBox (see github issue #26676):
```python
sage: # long time
sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence
sage: from sage.sat.boolean_polynomials import solve as solve_sat
sage: sr = sage.crypto.mq.SR(1, 4, 4, 8, allow_zero_inversions=True)
```
```python
sage: sb = sr.sbox()
sage: eqs = sb.polynomials(degree=3)
sage: eqs = PolynomialSequence(eqs)
sage: variables = map(str, eqs.variables())
sage: variables = ','.join(variables)
sage: R = BooleanPolynomialRing(16, variables)
sage: eqs = [R(eq) for eq in eqs]
sage: sls_aes = solve_sat(eqs, n=infinity)
```
```python
len(sls_aes)
```
```
256
```

Note: Although supported, passing converter and solver objects instead of classes is discouraged because these objects are stateful.

REFERENCES:
CHAPTER
FOUR

INDICES AND TABLES

• Index
• Module Index
• Search Page
BIBLIOGRAPHY

S
sage.sat.boolean_polynomials, 31
sage.sat.converters.polybori, 23
sage.sat.solvers.cryptominisat, 18
sage.sat.solvers.dimacs, 7
sage.sat.solvers.picosat, 15
sage.sat.solvers.sat_lp, 17
sage.sat.solvers.satsolver, 4
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Module/Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>call()</td>
<td>(sage.sat.converters.polybori.CNFEncoder method)</td>
<td>25</td>
</tr>
<tr>
<td>call()</td>
<td>(sage.sat.solvers.dimacs.DIMACS method)</td>
<td>8</td>
</tr>
<tr>
<td>init()</td>
<td>(sage.sat.converters.polybori.CNFEncoder method)</td>
<td>24</td>
</tr>
<tr>
<td>init()</td>
<td>(sage.sat.solvers.dimacs.DIMACS method)</td>
<td>8</td>
</tr>
<tr>
<td>add_clause()</td>
<td>(sage.sat.solvers.cryptominisat.CryptoMiniSat method)</td>
<td>18</td>
</tr>
<tr>
<td>add_clause()</td>
<td>(sage.sat.solvers.dimacs.DIMACS method)</td>
<td>9</td>
</tr>
<tr>
<td>add_clause()</td>
<td>(sage.sat.solvers.picosat.PicoSAT method)</td>
<td>15</td>
</tr>
<tr>
<td>add_clause()</td>
<td>(sage.sat.solvers.sat_LP.SatLP method)</td>
<td>17</td>
</tr>
<tr>
<td>add_xor_clause()</td>
<td>(sage.sat.solvers.cryptominisat.CryptoMiniSat method)</td>
<td>19</td>
</tr>
<tr>
<td>clauses()</td>
<td>(sage.sat.converters.polybori.CNFEncoder method)</td>
<td>25</td>
</tr>
<tr>
<td>clauses()</td>
<td>(sage.sat.solvers.cryptominisat.CryptoMiniSat method)</td>
<td>19</td>
</tr>
<tr>
<td>clauses()</td>
<td>(sage.sat.solvers.dimacs.DIMACS method)</td>
<td>9</td>
</tr>
<tr>
<td>clauses()</td>
<td>(sage.sat.solvers.picosat.PicoSAT method)</td>
<td>15</td>
</tr>
<tr>
<td>clauses()</td>
<td>(sage.sat.solvers.sat_solver.SatSolver method)</td>
<td>5</td>
</tr>
<tr>
<td>clauses_dense()</td>
<td>(sage.sat.converters.polybori.CNFEncoder method)</td>
<td>26</td>
</tr>
<tr>
<td>clauses_sparse()</td>
<td>(sage.sat.converters.polybori.CNFEncoder method)</td>
<td>27</td>
</tr>
<tr>
<td>CNFEncoder</td>
<td>(class in sage.sat.converters.polybori)</td>
<td>24</td>
</tr>
<tr>
<td>command</td>
<td>(sage.sat.solvers.dimacs.DIMACS attribute)</td>
<td>10</td>
</tr>
<tr>
<td>command</td>
<td>(sage.sat.solvers.dimacs.Glucose attribute)</td>
<td>12</td>
</tr>
<tr>
<td>command</td>
<td>(sage.sat.solvers.dimacs.GlucoseSyrup attribute)</td>
<td>13</td>
</tr>
<tr>
<td>command</td>
<td>(sage.sat.solvers.dimacs.Kissat attribute)</td>
<td>14</td>
</tr>
<tr>
<td>command</td>
<td>(sage.sat.solvers.dimacs.RSat attribute)</td>
<td>14</td>
</tr>
<tr>
<td>conflict_clause()</td>
<td>(sage.sat.solvers.sat_solver.SatSolver method)</td>
<td>5</td>
</tr>
<tr>
<td>CryptoMiniSat</td>
<td>(class in sage.sat.solvers.cryptominisat)</td>
<td>18</td>
</tr>
<tr>
<td>DIMACS</td>
<td>(class in sage.sat.solvers.dimacs)</td>
<td>8</td>
</tr>
<tr>
<td>Glucose</td>
<td>(class in sage.sat.solvers.dimacs)</td>
<td>12</td>
</tr>
<tr>
<td>GlucoseSyrup</td>
<td>(class in sage.sat.solvers.dimacs)</td>
<td>12</td>
</tr>
<tr>
<td>Kissat</td>
<td>(class in sage.sat.solvers.dimacs)</td>
<td>13</td>
</tr>
<tr>
<td>learn()</td>
<td>(in module sage.sat.boolean_polynomials)</td>
<td>31</td>
</tr>
<tr>
<td>learnt_clauses()</td>
<td>(sage.sat.solvers.sat_solver.SatSolver method)</td>
<td>5</td>
</tr>
<tr>
<td>module</td>
<td>sage.sat.boolean_polynomials</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>sage.sat.converters.polybori</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>sage.sat.solvers.cryptominisat</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>sage.sat.solvers.dimacs</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>sage.sat.solvers.cryptominisat</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>sage.sat.solvers.dimacs</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>sage.sat.solvers.picosat</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>sage.sat.solvers.satlp</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>sage.sat.solvers.satsolver</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(sage.sat.converters.polybori.CNFEncoder method)</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>(sage.sat.converters.polybori.CNFEncoder method)</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>(sage.sat.converters.polybori.CNFEncoder method)</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>(sage.sat.solvers.dimacs.DIMACS method)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(sage.sat.solvers.picosat.PicoSAT method)</td>
<td>16</td>
</tr>
</tbody>
</table>
nvars() (sage.sat.solvers.sat_lp.SatLP method), 17
nvars() (sage.sat.solvers.satsolver.SatSolver method), 6

P
permutations (sage.sat.converters.polybori.CNFEncoder attribute), 28
phi (sage.sat.converters.polybori.CNFEncoder property), 28
PicoSAT (class in sage.sat.solvers.picosat), 15

R
read() (sage.sat.solvers.satsolver.SatSolver method), 6
render_dimacs() (sage.sat.solvers.dimacs.DIMACS static method), 10
RSat (class in sage.sat.solvers.dimacs), 14

S
sage.sat.boolean_polynomials module, 31
sage.sat.converters.polybori module, 23
sage.sat.solvers.cryptominisat module, 18
sage.sat.solvers.dimacs module, 7
sage.sat.solvers.picosat module, 7
sage.sat.solvers.sat_lp module, 15
sage.sat.solvers.satsolver module, 17
SATO() (in module sage.sat.solvers.satsolver), 4
SatLP (class in sage.sat.solvers.sat_lp), 17
SatSolver (class in sage.sat.solvers.satsolver), 4
solve() (in module sage.sat.boolean_polynomials), 32
split_xor() (sage.sat.converters.polybori.CNFEncoder method), 28

T
to_polynomial() (sage.sat.converters.polybori.CNFEncoder method), 28

V
var() (sage.sat.converters.polybori.CNFEncoder method), 29
var() (sage.sat.solvers.cryptominisat.CryptoMiniSat method), 20
var() (sage.sat.solvers.dimacs.DIMACS method), 11
var() (sage.sat.solvers.picosat.PicoSAT method), 16
var() (sage.sat.solvers.sat_lp.SatLP method), 17
var() (sage.sat.solvers.satsolver.SatSolver method), 7

W
write() (sage.sat.solvers.dimacs.DIMACS method), 11