Sat

Release 9.6

The Sage Development Team

May 16, 2022
CONTENTS

1 Solvers 3
2 Converters 19
3 Highlevel Interfaces 27
4 Indices and Tables 31
 Bibliography 33
 Python Module Index 35
 Index 37
Sage supports solving clauses in Conjunctive Normal Form (see Wikipedia article Conjunctive_normal_form), i.e., SAT solving, via an interface inspired by the usual DIMACS format used in SAT solving [SG09]. For example, to express that:

\[\text{x1 OR x2 OR (NOT x3)} \]

should be true, we write:

\[(1, 2, -3) \]

Warning: Variable indices must start at one.
By default, Sage solves SAT instances as an Integer Linear Program (see `sage.numerical.mip`), but any SAT solver supporting the DIMACS input format is easily interfaced using the `sage.sat.solvers.dimacs.DIMACS` blueprint. Sage ships with pre-written interfaces for RSat [RS] and Glucose [GL]. Furthermore, Sage provides an interface to the CryptoMiniSat [CMS] SAT solver which can be used interchangeably with DIMACS-based solvers. For this last solver, the optional CryptoMiniSat package must be installed, this can be accomplished by typing the following in the shell:

```
  sage -i cryptominisat sagelib
```

We now show how to solve a simple SAT problem.

\[(x_1 \text{ OR } x_2 \text{ OR } x_3) \text{ AND } (x_1 \text{ OR } x_2 \text{ OR } (\text{NOT } x_3))\]

In Sage’s notation:

```
sage: solver = SAT()
sage: solver.add_clause( ( 1, 2, 3) )
sage: solver.add_clause( ( 1, 2, -3) )
sage: solver()  # random
(None, True, True, False)
```

Note: `add_clause()` creates new variables when necessary. When using CryptoMiniSat, it creates all variables up to the given index. Hence, adding a literal involving the variable 1000 creates up to 1000 internal variables.

DIMACS-base solvers can also be used to write DIMACS files:

```
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: solver.add_clause( ( 1, 2, 3) )
sage: solver.add_clause( ( 1, 2, -3) )
sage: _ = solver.write()
sage: for line in open(fn).readlines():
    ....:     print(line)
```

```
p cnf 3 2
 1 2 3 0
1 2 -3 0
```

Alternatively, there is `sage.sat.solvers.dimacs.DIMACS.clauses()`:
These files can then be passed external SAT solvers.

1.1 Details on Specific Solvers

1.1.1 Abstract SAT Solver

All SAT solvers must inherit from this class.

Note: Our SAT solver interfaces are 1-based, i.e., literals start at 1. This is consistent with the popular DIMACS format for SAT solving but not with Python’s 0-based convention. However, this also allows to construct clauses using simple integers.

AUTHORS:
- Martin Albrecht (2012): first version

```python
sage.sat.solvers.satsolver.SAT(solver=None, *args, **kwds)
```

Return a `SatSolver` instance.

Through this class, one can define and solve SAT problems.

INPUT:

- `solver` (string) – select a solver. Admissible values are:
 - "cryptominisat" – note that the cryptominisat package must be installed.
 - "picosat" – note that the pycosat package must be installed.
 - "glucose" – note that the glucose package must be installed.
 - "glucose-syrup" – note that the glucose package must be installed.
 - "LP" – use `SatLP` to solve the SAT instance.
 - None (default) – use CryptoMiniSat if available, else PicoSAT if available, and a LP solver otherwise.

EXAMPLES:

```python
sage: SAT(solver="LP")
an ILP-based SAT Solver
```

class `sage.sat.solvers.satsolver.SatSolver`

Bases: `object`
add_clause(lits)
Add a new clause to set of clauses.

INPUT:
- lits - a tuple of integers != 0

Note: If any element e in lits has abs(e) greater than the number of variables generated so far, then new variables are created automatically.

EXAMPLES:

```python
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
sage: solver.add_clause( (1, -2, 3) )
Traceback (most recent call last):
... NotImplementedError
```

clauses(filename=None)
Return original clauses.

INPUT:
- filename - if not None clauses are written to filename in DIMACS format (default: None)

OUTPUT:
- If filename is None then a list of lits, is_xor, rhs tuples is returned, where lits is a tuple of literals, is_xor is always False and rhs is always None.
- If filename points to a writable file, then the list of original clauses is written to that file in DIMACS format.

EXAMPLES:

```python
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
sage: solver.clauses()
Traceback (most recent call last):
... NotImplementedError
```

conflict_clause()
Return conflict clause if this instance is UNSAT and the last call used assumptions.

EXAMPLES:

```python
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
sage: solver.conflict_clause()
Traceback (most recent call last):
... NotImplementedError
```

learnt_clauses(unitary_only=False)
Return learnt clauses.
INPUT:

- `unitary_only` - return only unitary learnt clauses (default: False)

EXAMPLES:

```
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
sage: solver.learnt_clauses()
Traceback (most recent call last):
...  
NotImplementedError

sage: solver.learnt_clauses(unitary_only=True)
Traceback (most recent call last):
...  
NotImplementedError
```

nvars()

Return the number of variables.

EXAMPLES:

```
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
sage: solver.nvars()
Traceback (most recent call last):
...  
NotImplementedError
```

read(filename)

Reads DIMAC files.

The differences were summarized in the discussion on the ticket trac ticket #16924. This method assumes the following DIMACS format:

- Any line starting with “c” is a comment
- Any line starting with “p” is a header
- Any variable 1-n can be used
- Every line containing a clause must end with a “0”

The format is extended to allow lines starting with “x” defining xor clauses, with the notation introduced in cryptominisat, see https://www.msoos.org/xor-clauses/

INPUT:

- `filename` - The name of a file as a string or a file object

EXAMPLES:

```
sage: from io import StringIO
sage: file_object = StringIO("c A sample .cnf file.
  p cnf 3 2
  1 -3 0
  2 3 -1
  ...
...
```

(continues on next page)
sage: from sage.sat.solvers.dimacs import DIMACS
sage: solver = DIMACS()
sage: solver.read(file_object)
(save clauses)

With xor clauses:

sage: from io import StringIO
sage: file_object = StringIO("c A sample .cnf file with xor clauses.
 p cnf 3 3
 ~n1 2 0\n3 0
x1 2 3 0")
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
(sage)::optional - pycryptosat
sage: solver = CryptoMiniSat()
(sage)::optional - pycryptosat
sage: solver.read(file_object)
(sage)::optional - pycryptosat
sage: solver.clauses()
(sage)::optional - pycryptosat
[[((1, 2), False, None), ((3,), False, None), ((1, 2, 3), True, True)]

sage: solver()
(Non, True, True, True)

\[
\text{var(} \text{decision=} \text{None})
\]

Return a new variable.

INPUT:

- decision - is this variable a decision variable?

EXAMPLES:

sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()

Traceback (most recent call last):
...
NotImplementedError

1.1.2 SAT-Solvers via DIMACS Files

Sage supports calling SAT solvers using the popular DIMACS format. This module implements infrastructure to make it easy to add new such interfaces and some example interfaces.

Currently, interfaces to RSat and Glucose are included by default.

\textbf{Note:} Our SAT solver interfaces are 1-based, i.e., literals start at 1. This is consistent with the popular DIMACS format for SAT solving but not with Python's 0-based convention. However, this also allows to construct clauses using simple integers.

\textbf{AUTHORS:}
• Martin Albrecht (2012): first version

Classes and Methods

class sage.sat.solvers.dimacs.DIMACS(command=None, filename=None, verbosity=0, **kwds)
 Bases: sage.sat.solvers.satsolver.SatSolver
 Generic DIMACS Solver.

 Note: Usually, users won’t have to use this class directly but some class which inherits from this class.

 __init__(command=None, filename=None, verbosity=0, **kwds)
 Construct a new generic DIMACS solver.
 INPUT:
 • command - a named format string with the command to run. The string must contain {input} and may contain {output} if the solvers writes the solution to an output file. For example “sat-solver {input}” is a valid command. If None then the class variable command is used. (default: None)
 • filename - a filename to write clauses to in DIMACS format, must be writable. If None a temporary filename is chosen automatically. (default: None)
 • verbosity - a verbosity level, where zero means silent and anything else means verbose output. (default: 0)
 • **kwds - accepted for compatibility with other solves, ignored.

 __call__(assumptions=None)
 Run ‘command’ and collect output.
 INPUT:
 • assumptions - ignored, accepted for compatibility with other solves (default: None)

 add_clause(lits)
 Add a new clause to set of clauses.
 INPUT:
 • lits - a tuple of integers != 0

 Note: If any element e in lits has abs(e) greater than the number of variables generated so far, then new variables are created automatically.

 EXAMPLES:

 sage: from sage.sat.solvers.dimacs import DIMACS
 sage: solver = DIMACS()
 sage: solver.var() 1
 sage: solver.var(True) 2
 sage: solver.add_clause((1, -2 , 3))
 sage: solver
 DIMACS Solver: ''
clauses\((\text{filename}=\text{None})\)

Return original clauses.

INPUT:

- filename - if not None clauses are written to filename in DIMACS format (default: None)

OUTPUT:

If filename is None then a list of lits, is_xor, rhs tuples is returned, where lits is a tuple of literals, is_xor is always False and rhs is always None.

If filename points to a writable file, then the list of original clauses is written to that file in DIMACS format.

EXAMPLES:

```python
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS()
sage: solver.add_clause( (1, 2, 3) )
sage: solver.clauses()
[((1, 2, 3), False, None)]
sage: solver.add_clause( (1, 2, -3) )
sage: solver.clauses(fn)
```

nvars()

Return the number of variables.

EXAMPLES:

```python
sage: from sage.sat.solvers.dimacs import DIMACS
sage: solver = DIMACS()
```

static render_dimacs\((\text{clauses}, \text{filename}, \text{nlits})\)

Produce DIMACS file filename from clauses.

INPUT:

- clauses - a list of clauses, either in simple format as a list of literals or in extended format for CryptoMiniSat: a tuple of literals, is_xor and rhs.
- filename - the file to write to
- nlits -- the number of literals appearing in ```clauses```

EXAMPLES:
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS()
 solver.add_clause((1, 2, -3))
sage: DIMACS.render_dimacs(solver.clauses(), fn, solver.nvars())
sage: print(open(fn).read())

p cnf 3 1
 1 2 -3 0

This is equivalent to:

sage: solver.clauses(fn)
sage: print(open(fn).read())
p cnf 3 1
 1 2 -3 0

This function also accepts a “simple” format:

sage: DIMACS.render_dimacs([(1,2), (1,2,-3)], fn, 3)
sage: print(open(fn).read())
p cnf 3 2
 1 2 0
 1 2 -3 0

\texttt{var}(\texttt{decision=None})

Return a new variable.

\textbf{INPUT:}

- decision - accepted for compatibility with other solvers, ignored.

\textbf{EXAMPLES:}

sage: from sage.sat.solvers.dimacs import DIMACS
sage: solver = DIMACS()
sage: solver.var()

write(\texttt{filename=None})

Write DIMACS file.

\textbf{INPUT:}

- filename - if None default filename specified at initialization is used for writing to (default: None)

\textbf{EXAMPLES:}

sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: solver.add_clause((1, -2 , 3))
 _ = solver.write()
sage: print(open(fn).readlines()):
 p cnf 3 1
 1 -2 3 0

(continues on next page)
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS()
sage: solver.add_clause((1, -2, 3))
sage: _ = solver.write(fn)
sage: for line in open(fn).readlines():
 : print(line)
1 cnf 3 1
1 -2 3 0

class sage.sat.solvers.dimacs.Glucose(command=None, filename=None, verbosity=0, **kwds)
Bases: sage.sat.solvers.dimacs.DIMACS
An instance of the Glucose solver.

For information on Glucose see: http://www.labri.fr/perso/lsimon/glucose/

EXAMPLES:

sage: from sage.sat.solvers import Glucose
sage: solver = Glucose()
DGIMACS Solver: 'glucose -verb=2 {input} {output}'
sage: solver.add_clause((1, 2, 3))
sage: solver.add_clause((-1,))
sage: solver.add_clause((-2,))
sage: solver() # optional - glucose
(None, False, False, True)

class sage.sat.solvers.dimacs.GlucoseSyrup(command=None, filename=None, verbosity=0, **kwds)
Bases: sage.sat.solvers.dimacs.DIMACS
An instance of the Glucose-syrup parallel solver.

For information on Glucose see: http://www.labri.fr/perso/lsimon/glucose/

class sage.sat.solvers.dimacs.RSat(command=None, filename=None, verbosity=0, **kwds)
Bases: sage.sat.solvers.dimacs.DIMACS
An instance of the RSat solver.

For information on RSat see: http://reasoning.cs.ucla.edu/rsat/

1.1.3 PicoSAT Solver

This solver relies on the pycosat Python bindings to PicoSAT.
The pycosat package should be installed on your Sage installation.

AUTHORS:

• Thierry Monteil (2018): initial version.

class sage.sat.solvers.picosat.PicoSAT(verbosity=0, prop_limit=0)
Bases: sage.sat.solvers.satsolver.SatSolver
PicoSAT Solver.
INPUT:

• verbosity – an integer between 0 and 2 (default: 0); verbosity

• prop_limit – an integer (default: 0); the propagation limit

EXAMPLES:

```
sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT()  # optional - pycosat
```

add_clause(lits)
Add a new clause to set of clauses.

INPUT:

• lits – a tuple of nonzero integers

Note: If any element e in lits has abs(e) greater than the number of variables generated so far, then new variables are created automatically.

EXAMPLES:

```
sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT()  # optional - pycosat
```

```
sage: solver.add_clause((1, -2, 3))  # optional - pycosat
```

clauses(filename=None)
Return original clauses.

INPUT:

• filename – (optional) if given, clauses are written to filename in DIMACS format

OUTPUT:

If filename is None then a list of lits is returned, where lits is a list of literals.

If filename points to a writable file, then the list of original clauses is written to that file in DIMACS format.

EXAMPLES:

```
sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT()  # optional - pycosat
```

```
sage: solver.add_clause((1, 2, 4))  # optional - pycosat
```

```
sage: solver.add_clause((1, 2, -4))  # optional - pycosat
```

```
sage: fn = tmp_filename()  # optional - pycosat
```

```
sage: solver.clauses(fn)  # optional - pycosat
```

```
sage: print(open(fn).read())  # optional - pycosat
```

DIMACS format output:

```
sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT()  # optional - pycosat
```

```
sage: solver.add_clause((1, 2, 4))  # optional - pycosat
```

```
sage: solver.add_clause((1, 2, -4))  # optional - pycosat
```

```
sage: fn = tmp_filename()  # optional - pycosat
```

```
sage: solver.clauses(fn)  # optional - pycosat
```

```
sage: print(open(fn).read())  # optional - pycosat
```

(continues on next page)
nvars()
Return the number of variables. Note that for compatibility with DIMACS convention, the number of
variables corresponds to the maximal index of the variables used.

EXAMPLES:

```python
sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT()  # optional - pycosat
sage: solver.nvars()  # optional - pycosat
0
```

If a variable with intermediate index is not used, it is still considered as a variable:

```python
sage: solver.add_clause((1,-2,4))  # optional - pycosat
sage: solver.nvars()  # optional - pycosat
4
```

var(decision=None)
Return a new variable.

INPUT:

• decision – ignored; accepted for compatibility with other solvers

EXAMPLES:

```python
sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT()  # optional - pycosat
sage: solver.var()  # optional - pycosat
1
```

1.1.4 Solve SAT problems Integer Linear Programming

The class defined here is a SatSolver that solves its instance using MixedIntegerLinearProgram. Its performance
can be expected to be slower than when using CryptoMiniSat.

```python
class sage.sat.solvers.sat_lp.SatLP(solver, verbose=None, integrality_tolerance=0)
    Bases: sage.sat.solvers.sat_solver.SatSolver

    Initializes the instance

    INPUT:

    • solver – (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If set
to None, the default one is used. For more information on MILP solvers and which default solver is used,
    see the method solve of the class MixedIntegerLinearProgram.
    • verbose – integer (default: 0). Sets the level of verbosity of the LP solver. Set to 0 by default, which
    means quiet.
```
• `integrality_tolerance` – parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

EXAMPLES:

```sage
S = SAT(solver="LP"); S
```

An ILP-based SAT Solver

add_clause(lits)

Add a new clause to set of clauses.

INPUT:

• `lits` - a tuple of integers != 0

Note: If any element \(e \) in `lits` has `abs(e)` greater than the number of variables generated so far, then new variables are created automatically.

EXAMPLES:

```sage
for u, v in graphs.CycleGraph(6).edges(labels=False):
    u, v = u+1, v+1
    S.add_clause((u, v))
    S.add_clause((-u, -v))
```

nvars()

Return the number of variables.

EXAMPLES:

```sage
S = SAT(solver="LP"); S
S.var()
1
S.var()
2
S.nvars()
2
```

var()

Return a new variable.

EXAMPLES:

```sage
S = SAT(solver="LP"); S
S.var()
1
```
1.1.5 CryptoMiniSat Solver

This solver relies on Python bindings provided by upstream cryptominisat.
The cryptominisat package should be installed on your Sage installation.

AUTHORS:
• Thierry Monteil (2017): complete rewrite, using upstream Python bindings, works with cryptominisat 5.
• Martin Albrecht (2012): first version, as a cython interface, works with cryptominisat 2.

class sage.sat.solvers.cryptominisat.CryptoMiniSat(verbosity=0, confl_limit=None, threads=None)
Bases: sage.sat.solvers.satsolver.SatSolver

CryptoMiniSat Solver.

INPUT:
• verbosity – an integer between 0 and 15 (default: 0). Verbosity.
• confl_limit – an integer (default: None). Abort after this many conflicts. If set to None, never aborts.
• threads – an integer (default: None). The number of thread to use. If set to None, the number of threads used corresponds to the number of cpus.

EXAMPLES:

```python
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
sage: solver = CryptoMiniSat()  # optional - pycryptosat
```

add_clause(lits)
Add a new clause to set of clauses.

INPUT:
• lits – a tuple of nonzero integers.

Note: If any element \(e \) in lits has \(\text{abs}(e) \) greater than the number of variables generated so far, then new variables are created automatically.

EXAMPLES:

```python
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
sage: solver = CryptoMiniSat()  # optional - pycryptosat
sage: solver.add_clause((1, -2, 3))  # optional - pycryptosat
```

add_xor_clause(lits, rhs=True)
Add a new XOR clause to set of clauses.

INPUT:
• lits – a tuple of positive integers.
• rhs – boolean (default: True). Whether this XOR clause should be evaluated to True or False.

EXAMPLES:
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
sage: solver = CryptoMiniSat() # optional - pycryptosat
sage: solver.add_xor_clause((1, 2, 3), False) # optional - pycryptosat

\textbf{clauses}(\texttt{filename=None})

Return original clauses.

INPUT:

- \texttt{filename} – if not None clauses are written to \texttt{filename} in DIMACS format (default: None)

OUTPUT:

If \texttt{filename} is None then a list of \texttt{lits, is_xor, rhs} tuples is returned, where \texttt{lits} is a tuple of literals, \texttt{is_xor} is always False and \texttt{rhs} is always None.

If \texttt{filename} points to a writable file, then the list of original clauses is written to that file in DIMACS format.

EXAMPLES:

sage: from sage.sat.solvers import CryptoMiniSat
sage: solver = CryptoMiniSat() # optional - pycryptosat
sage: solver.add_clause((1, 2, 4)) # optional - pycryptosat
sage: solver.add_clause((1, 2, -4)) # optional - pycryptosat
sage: fn = tmp_filename() # optional - pycryptosat
sage: solver.clauses(fn) # optional - pycryptosat
sage: print(open(fn).read()) # optional - pycryptosat
p cnf 4 2
1 2 4 0
1 2 -4 0

\textbf{DIMACS format output:}

sage: from sage.sat.solvers import CryptoMiniSat
sage: solver = CryptoMiniSat() # optional - pycryptosat
sage: solver.add_xor_clause((1, 2, 3), rhs=True) # optional - pycryptosat
sage: solver.clauses(fn) # optional - pycryptosat
sage: print(open(fn).read()) # optional - pycryptosat
p cnf 4 3
1 2 4 0
1 2 -4 0

Note that in cryptominisat, the DIMACS standard format is augmented with the following extension: having an \texttt{x} in front of a line makes that line an XOR clause:
Note that inverting an xor-clause is equivalent to inverting one of the variables:

```
sage: solver.add_xor_clause((1,2,5), rhs=False)  # optional - pycryptosat
sage: solver.clauses(fn)  # optional - pycryptosat
sage: print(open(fn).read())  # optional - pycryptosat
p cnf 5 4
1 2 4 0
1 2 -4 0
x1 2 3 0
x1 2 -5 0
```

\textbf{nvars()}

Return the number of variables. Note that for compatibility with DIMACS convention, the number of variables corresponds to the maximal index of the variables used.

EXAMPLES:

```
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
sage: solver = CryptoMiniSat()  # optional - pycryptosat
```

```
sage: solver.nvars()  # optional - pycryptosat
0
```

If a variable with intermediate index is not used, it is still considered as a variable:

```
sage: solver.add_clause((1,-2,4))  # optional - pycryptosat
```

```
sage: solver.nvars()  # optional - pycryptosat
4
```

\textbf{var(\texttt{decision=None})}

Return a new variable.

INPUT:

- \texttt{decision} – accepted for compatibility with other solvers, ignored.

EXAMPLES:

```
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
sage: solver = CryptoMiniSat()  # optional - pycryptosat
```

```
sage: solver.var()  # optional - pycryptosat
1
```

(continues on next page)
Sage supports conversion from Boolean polynomials (also known as Algebraic Normal Form) to Conjunctive Normal Form:

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B)
sage: e.clauses_sparse(a*b + a + 1)
sage: _ = solver.write()
sage: print(open(fn).read())
```

```
p cnf 3 2
-2 0
1 0
```

2.1 Details on Specific Converters

2.1.1 An ANF to CNF Converter using a Dense/Sparse Strategy

This converter is based on two converters. The first one, by Martin Albrecht, was based on [CB2007], this is the basis of the “dense” part of the converter. It was later improved by Mate Soos. The second one, by Michael Brickenstein, uses a reduced truth table based approach and forms the “sparse” part of the converter.

AUTHORS:

- Martin Albrecht - (2008-09) initial version of ‘anf2cnf.py’
- Michael Brickenstein - (2009) ‘cnf.py’ for PolyBoRi
- Mate Soos - (2010) improved version of ‘anf2cnf.py’
- Martin Albrecht - (2012) unified and added to Sage
Classes and Methods

```python
class sage.sat.converters.polybori.CNFEncoder(solver, ring, max_vars_sparse=6,
       use_xor_clauses=None, cutting_number=6,
       random_seed=16)
```

Bases: sage.sat.converters.anf2cnf.ANF2CNFConverter

ANF to CNF Converter using a Dense/Sparse Strategy. This converter distinguishes two classes of polynomials.

1. Sparse polynomials are those with at most `max_vars_sparse` variables. Those are converted using reduced truth-tables based on PolyBoRi’s internal representation.

2. Polynomials with more variables are converted by introducing new variables for monomials and by converting these linearised polynomials.

Linearised polynomials are converted either by splitting XOR chains – into chunks of length `cutting_number` – or by constructing XOR clauses if the underlying solver supports it. This behaviour is disabled by passing `use_xor_clauses=False`.

```python
__init__(solver, ring, max_vars_sparse=6, use_xor_clauses=None, cutting_number=6, random_seed=16)
```

Construct ANF to CNF converter over `ring` passing clauses to `solver`.

INPUT:

- `solver` - a SAT-solver instance
- `ring` - a `sage.rings.polynomial.pbori.BooleanPolynomialRing`
- `max_vars_sparse` - maximum number of variables for direct conversion
- `use_xor_clauses` - use XOR clauses; if `None` use if `solver` supports it. (default: `None`)
- `cutting_number` - maximum length of XOR chains after splitting if XOR clauses are not supported (default: 6)
- `random_seed` - the direct conversion method uses randomness, this sets the seed (default: 16)

EXAMPLES:

We compare the sparse and the dense strategies, sparse first:

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B)
sage: e.clauses_sparse(a*b + a + 1)
sage: _ = solver.write()
sage: print(open(fn).read())
p cnf 3 2
-2 0
1 0
```

Now, we convert using the dense strategy:

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
```

(continues on next page)
```python
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
```
```python
sage: e = CNFEncoder(solver, B)
```
```python
sage: e.clauses_dense(a*b + a + 1)
```
```python
sage: _ = solver.write()
```
```python
sage: print(open(fn).read())
p cnf 4 5
1 -4 0
2 -4 0
4 -1 -2 0
-4 -1 0
4 1 0
```
```python
sage: e.phi
[None, a, b, c, a*b]
```

Note: This constructor generates SAT variables for each Boolean polynomial variable.

```python
__call__(F)
```

Encode the boolean polynomials in F.

INPUT:

- F - an iterable of `sage.rings.polynomial.pbori.BooleanPolynomial`

OUTPUT: An inverse map int -> variable

EXAMPLES:

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B, max_vars_sparse=2)
sage: e([a*b + a + 1, a*b + a + c])
[None, a, b, c, a*b]
sage: _ = solver.write()
sage: print(open(fn).read())
p cnf 4 9
-2 0
1 0
1 -4 0
2 -4 0
4 -1 -2 0
-4 -1 -3 0
4 1 -3 0
4 -1 3 0
-4 1 3 0
```
```python
sage: e.phi
[None, a, b, c, a*b]
```

2.1. Details on Specific Converters 21
clauses(/f/)
Convert \(f \) using the sparse strategy if \(f.nvariables() \) is at most \(\text{max_vars_sparse} \) and the dense strategy otherwise.

INPUT:
- \(f \) - a sage.rings.polynomial.pbori.BooleanPolynomial

EXAMPLES:

```
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B, max_vars_sparse=2)
sage: e.clauses(a*b + a + 1)
sage: _ = solver.write()
sage: print(open(fn).read())
 p cnf 3 2
 -2 0
 1 0
sage: e.phi
[None, a, b, c]
```

clauses_dense(/f/)
Convert \(f \) using the dense strategy.

INPUT:
- \(f \) - a sage.rings.polynomial.pbori.BooleanPolynomial

EXAMPLES:

```
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B, max_vars_sparse=2)
sage: e.clauses(a*b + a + c)
sage: _ = solver.write()
sage: print(open(fn).read())
 p cnf 4 7
 1 -4 0
 2 -4 0
 4 -1 -2 0
 -4 -1 -3 0
 4 1 -3 0
 4 -1 3 0
 -4 1 3 0
sage: e.phi
[None, a, b, c, a*b]
```
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B)
sage: e.clauses_dense(a*b + a + 1)
sage: _ = solver.write()
sage: print(open(fn).read())

p cnf 4 5
1 -4 0
2 -4 0
4 -1 -2 0
-4 -1 0
4 1 0
sage: e.phi
[None, a, b, c, a*b]

\textbf{clauses_sparse}(f)

Convert \(f \) using the sparse strategy.

INPUT:

- \(f \) - a \texttt{sage.rings.polynomial.pbori.BooleanPolynomial}

EXAMPLES:

sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B)
sage: e.clauses_sparse(a*b + a + 1)
sage: _ = solver.write()
sage: print(open(fn).read())

p cnf 3 2
-2 0
1 0
sage: e.phi
[None, a, b, c]

\textbf{monomial}(m)

Return SAT variable for \(m \)

INPUT:

- \(m \) - a monomial.

OUTPUT: An index for a SAT variable corresponding to \(m \).

EXAMPLES:

sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
If monomial is called on a new monomial, a new variable is created:

```python
sage: e.monomial(a*b*c)
5
sage: e.phi
[None, a, b, c, a*b, a*b*c]
```

If monomial is called on a monomial that was queried before, the index of the old variable is returned and no new variable is created:

```python
sage: e.monomial(a*b)
4
sage: e.phi
[None, a, b, c, a*b, a*b*c]
```

.. note::

For correctness, this function is cached.

permutations(length, equal_zero)

Return permutations of length length which are equal to zero if equal_zero and equal to one otherwise. A variable is false if the integer in its position is smaller than zero and true otherwise.

INPUT:

- length – the number of variables
- equal_zero – should the sum be equal to zero?

EXAMPLES:

```python
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: B.<a,b,c> = BooleanPolynomialRing()
``` 

```python
sage: ce = CNFEncoder(DIMACS(), B)
``` 

```python
sage: ce.permutations(3, True)
[[[-1, -1, -1], [1, 1, -1], [1, -1, 1], [-1, 1, 1]]
```

```python
sage: ce.permutations(3, False)
[[[1, -1, -1], [-1, 1, -1], [-1, -1, 1], [1, 1, 1]]
```

phi

Map SAT variables to polynomial variables.

EXAMPLES:

```python
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
``` 

```python
(continues on next page)```
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: ce = CNFEncoder(DIMACS(), B)
sage: ce.var()
4
sage: ce.phi
[None, a, b, c, None]

split_xor(monomial_list, equal_zero)
Split XOR chains into subchains.

INPUT:

- monomial_list - a list of monomials
- equal_zero - is the constant coefficient zero?

EXAMPLES:

sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()
sage: ce = CNFEncoder(DIMACS(), B, cutting_number=3)
sage: ce.split_xor([1,2,3,4,5,6], False)
[[[1, 7], False], [[7, 2, 8], True], [[8, 3, 9], True], [[9, 4, 10], True], ...
    [[10, 5, 11], True], [[11, 6], True]]
sage: ce = CNFEncoder(DIMACS(), B, cutting_number=4)
sage: ce.split_xor([1,2,3,4,5,6], False)
[[[1, 2, 7], False], [[7, 3, 4, 8], True], [[8, 5, 6], True]]
sage: ce = CNFEncoder(DIMACS(), B, cutting_number=5)
sage: ce.split_xor([1,2,3,4,5,6], False)
[[[1, 2, 3, 7], False], [[7, 4, 5, 6], True]]

to_polynomial(c)
Convert clause to sage.rings.polynomial.pbori.BooleanPolynomial

INPUT:

- c - a clause

EXAMPLES:

sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B, max_vars_sparse=2)
sage: _ = e([a*b + a + 1, a*b + a + c])
sage: e.to_polynomial( (1,-2,3) )
a*b*c + a*b + b*c + b

var(n=None, decision=None)
Return a new variable.

2.1. Details on Specific Converters 25
This is a thin wrapper around the SAT-solvers function where we keep track of which SAT variable corresponds to which monomial.

**INPUT:**
- m - something the new variables maps to, usually a monomial
- decision - is this variable a decision variable?

**EXAMPLES:**
```python
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: B.<a,b,c> = BooleanPolynomialRing()
\[ce = CNFEncoder(DIMACS(), B)\]
\[ce.var()\]
```

**zero_blocks**
Divide the zero set of \( f \) into blocks.

**EXAMPLES:**
```python
sage: B.<a,b,c> = BooleanPolynomialRing()
\[sage: from sage.sat.converters.polybori import CNFEncoder\]
\[sage: from sage.sat.solvers.dimacs import DIMACS\]
\[sage: e = CNFEncoder(DIMACS(), B)\]
\[sage: sorted(sorted(d.items()) for d in e.zero_blocks(a*b*c))\]
\[
\{[(c, 0)], [(b, 0)], [(a, 0)]\}
\]
```

**Note:** This function is randomised.
Sage provides various highlevel functions which make working with Boolean polynomials easier. We construct a very small-scale AES system of equations and pass it to a SAT solver:

```sage
sage: sr = mq.SR(1,1,1,4,gf2=True,polybori=True)
sage: while True:
 try:
 F,s = sr.polynomial_system()
 break
 except ZeroDivisionError:
 pass
sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional -
˓→pycryptosat
sage: s = solve_sat(F) # optional -
˓→pycryptosat
sage: F.subs(s[0]) # optional -
˓→pycryptosat
Polynomial Sequence with 36 Polynomials in 0 Variables
```

### 3.1 Details on Specific Highlevel Interfaces

#### 3.1.1 SAT Functions for Boolean Polynomials

These highlevel functions support solving and learning from Boolean polynomial systems. In this context, “learning” means the construction of new polynomials in the ideal spanned by the original polynomials.

**AUTHOR:**

- Martin Albrecht (2012): initial version

**Functions**

```python
sage.sat.boolean_polynomials.learn(F, converter=None, solver=None, max_learnt_length=3,
interreduction=False, **kwds)
```

Learn new polynomials by running SAT-solver `solver` on SAT-instance produced by `converter` from `F`.

**INPUT:**

- `F` - a sequence of Boolean polynomials
- `converter` - an ANF to CNF converter class or object. If `converter` is `None` then `sage.sat.converters.polybori.CNFEncoder` is used to construct a new converter. (default: `None`)
• solver - a SAT-solver class or object. If solver is None then sage.sat.solvers.cryptominisat.CryptoMiniSat is used to construct a new converter. (default: None)
• max_learnt_length - only clauses of length <= max_length_learnt are considered and converted to polynomials. (default: 3)
• interreduction - inter-reduce the resulting polynomials (default: False)

Note: More parameters can be passed to the converter and the solver by prefixing them with c_ and s_ respectively. For example, to increase CryptoMiniSat’s verbosity level, pass s_verbosity=1.

OUTPUT:
A sequence of Boolean polynomials.

EXAMPLES:
sage: from sage.sat.boolean_polynomials import learn as learn_sat  # optional - pycryptosat

We construct a simple system and solve it:
sage: set_random_seed(2300)  # optional - pycryptosat
sage: sr = mq.SR(1,2,2,4,gf2=True,polybori=True)  # optional - pycryptosat
sage: F,s = sr.polynomial_system()  # optional - pycryptosat
sage: H = learn_sat(F)  # optional - pycryptosat
sage: H[-1]  # optional - pycryptosat
k033 + 1

sage.sat.boolean_polynomials.solve(F, converter=None, solver=None, n=1, target_variables=None, **kwds)
Solve system of Boolean polynomials F by solving the SAT-problem – produced by converter – using solver.

INPUT:
• F - a sequence of Boolean polynomials
• n - number of solutions to return. If n is +infinity then all solutions are returned. If n < infinity then n solutions are returned if F has at least n solutions. Otherwise, all solutions of F are returned. (default: 1)
• converter - an ANF to CNF converter class or object. If converter is None then sage.sat.converters.polybori.CNFEncoder is used to construct a new converter. (default: None)
• solver - a SAT-solver class or object. If solver is None then sage.sat.solvers.cryptominisat.CryptoMiniSat is used to construct a new converter. (default: None)
• target_variables - a list of variables. The elements of the list are used to exclude a particular combination of variable assignments of a solution from any further solution. Furthermore target_variables denotes which variable-value pairs appear in the solutions. If target_variables is None all variables appearing in the polynomials of F are used to construct exclusion clauses. (default: None)
• **kwds - parameters can be passed to the converter and the solver by prefixing them with c_ and s_ respectively. For example, to increase CryptoMiniSat’s verbosity level, pass s_verbosity=1.

OUTPUT:
A list of dictionaries, each of which contains a variable assignment solving F.

EXAMPLES:
We construct a very small-scale AES system of equations:
sage: sr = mq.SR(1,1,1,4,gf2=True,polybori=True)
sage: while True:  # workaround (see :trac:`31891`)
    ....:     try:
    ....:         F, s = sr.polynomial_system()
    ....:         break
    ....:     except ZeroDivisionError:
    ....:         pass

and pass it to a SAT solver:

sage: from sage.sat.boolean_polynomials import solve as solve_sat  # optional - pycryptosat
sage: s = solve_sat(F)  # optional - pycryptosat
c ...

This time we pass a few options through to the converter and the solver:

sage: s = solve_sat(F, s_verbosity=1, c_max_vars_sparse=4, c_cutting_number=8)  # optional - pycryptosat
c ...

We construct a very simple system with three solutions and ask for a specific number of solutions:

sage: B.<a,b> = BooleanPolynomialRing()  # optional - pycryptosat
sage: f = a*b  # optional - pycryptosat
sage: l = solve_sat([f],n=1)  # optional - pycryptosat
sage: len(l) == 1, f.subs(l[0])  # optional - pycryptosat
(True, 0)
sage: l = solve_sat([a*b],n=2)  # optional - pycryptosat
sage: len(l) == 2, f.subs(l[0]), f.subs(l[1])  # optional - pycryptosat
(True, 0, 0)
sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=3))  # optional - pycryptosat
[(0, 0), (0, 1), (1, 0)]
sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=4))  # optional - pycryptosat
[(0, 0), (0, 1), (1, 0)]
sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=infinity))  # optional - pycryptosat
[(0, 0), (0, 1), (1, 0)]

In the next example we see how the target_variables parameter works:

sage: from sage.sat.boolean_polynomials import solve as solve_sat  # optional - pycryptosat
sage: R.<a,b,c,d> = BooleanPolynomialRing()  # optional - pycryptosat

(continues on next page)
First the normal use case:

```python
sage: sorted((D[a], D[b], D[c], D[d]) for D in solve_sat(F,n=infinity)) # optional - pycryptosat
[(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)]
```

Now we are only interested in the solutions of the variables a and b:

```python
sage: solve_sat(F,n=infinity,target_variables=[a,b]) # optional - pycryptosat
[{b: 0, a: 0}, {b: 1, a: 1}]
```

Here, we generate and solve the cubic equations of the AES SBox (see trac ticket #26676):

```python
sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence
 # optional - pycryptosat, long time
sage: from sage.sat.boolean_polynomials import solve as solve_sat
 # optional - pycryptosat, long time
sage: sr = sage.crypto.mq.SR(1, 4, 4, 8, allow_zero_inversions = True) # optional - pycryptosat, long time
sage: sb = sr.sbox() # optional - pycryptosat, long time
sage: eqs = sb.polynomials(degree = 3) # optional - pycryptosat, long time
sage: variables = map(str, eqs.variables()) # optional - pycryptosat, long time
sage: variables = ','.join(variables) # optional - pycryptosat, long time
sage: R = BooleanPolynomialRing(16, variables) # optional - pycryptosat, long time
sage: eqs = [R(eq) for eq in eqs] # optional - pycryptosat, long time
sage: sls_aes = solve_sat(eqs, n = infinity) # optional - pycryptosat, long time
sage: len(sls_aes) # optional - pycryptosat, long time
256
```

Note: Although supported, passing converter and solver objects instead of classes is discouraged because these objects are stateful.

REFERENCES:
CHAPTER
FOUR

INDICES AND TABLES

- Index
- Module Index
- Search Page
BIBLIOGRAPHY

S

sage.sat.boolean_polynomials, 27
sage.sat.converters.polybori, 19
sage.sat.solvers.cryptominisat, 15
sage.sat.solvers.dimacs, 7
sage.sat.solvers.picosat, 11
sage.sat.solvers.sat_lp, 13
sage.sat.solvers.satsolver, 4
R
read() (sage.sat.solvers.satsolver.SatSolver method), 6
render_dimacs() (sage.sat.solvers.dimacs.DIMACS static method), 9
RSat (class in sage.sat.solvers.dimacs), 11

S
sage.sat.boolean_polynomials module, 27
sage.sat.converters.polybori module, 19
sage.sat.solvers.cryptominisat module, 15
sage.sat.solvers.dimacs module, 7
sage.sat.solvers.picosat module, 11
sage.sat.solvers.sat_lp module, 13
sage.sat.solvers.satsolver module, 4
SAT() (in module sage.sat.solvers.satsolver), 4
SatLP (class in sage.sat.solvers.sat_lp), 13
SatSolver (class in sage.sat.solvers.satsolver), 4
solve() (in module sage.sat.boolean_polynomials), 28
split_xor() (sage.sat.converters.polybori.CNFEncoder method), 25

T
to_polynomial() (sage.sat.converters.polybori.CNFEncoder method), 25

V
var() (sage.sat.converters.polybori.CNFEncoder method), 25
var() (sage.sat.solvers.cryptominisat.CryptoMiniSat method), 17
var() (sage.sat.solvers.dimacs.DIMACS method), 10
var() (sage.sat.solvers.picosat.PicoSAT method), 13
var() (sage.sat.solvers.sat_lp.SatLP method), 14
var() (sage.sat.solvers.satsolver.SatSolver method), 7

W
write() (sage.sat.solvers.dimacs.DIMACS method), 10

Z
zero_blocks() (sage.sat.converters.polybori.CNFEncoder method), 26