<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Solvers</td>
<td>3</td>
</tr>
<tr>
<td>2 Converters</td>
<td>19</td>
</tr>
<tr>
<td>3 Highlevel Interfaces</td>
<td>27</td>
</tr>
<tr>
<td>4 Indices and Tables</td>
<td>31</td>
</tr>
<tr>
<td>Bibliography</td>
<td>33</td>
</tr>
<tr>
<td>Python Module Index</td>
<td>35</td>
</tr>
<tr>
<td>Index</td>
<td>37</td>
</tr>
</tbody>
</table>
Sage supports solving clauses in Conjunctive Normal Form (see Wikipedia article Conjunctive_normal_form), i.e., SAT solving, via an interface inspired by the usual DIMACS format used in SAT solving [SG09]. For example, to express that:

\[x_1 \lor x_2 \lor \neg x_3 \]

should be true, we write:

\((1, 2, -3) \)

Warning: Variable indices must start at one.
By default, Sage solves SAT instances as an Integer Linear Program (see sage.numerical.mip), but any SAT solver supporting the DIMACS input format is easily interfaced using the sage.sat.solvers.dimacs.DIMACS blueprint. Sage ships with pre-written interfaces for RSat [RS] and Glucose [GL]. Furthermore, Sage provides an interface to the CryptoMiniSat [CMS] SAT solver which can be used interchangeably with DIMACS-based solvers. For this last solver, the optional CryptoMiniSat package must be installed, this can be accomplished by typing the following in the shell:

```
sage -i cryptominisat sagelib
```

We now show how to solve a simple SAT problem.

\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3)\]

In Sage’s notation:

```
sage: solver = SAT()
sage: solver.add_clause( ( 1, 2, 3) )
sage: solver.add_clause( ( 1, 2, -3) )
sage: solver()  # random
(None, True, True, False)
```

Note: add_clause() creates new variables when necessary. When using CryptoMiniSat, it creates all variables up to the given index. Hence, adding a literal involving the variable 1000 creates up to 1000 internal variables.

DIMACS-base solvers can also be used to write DIMACS files:

```
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: solver.add_clause( ( 1, 2, 3) )
sage: solver.add_clause( ( 1, 2, -3) )
sage: _ = solver.write()
sage: for line in open(fn).readlines():
    ....:     print(line)
```

Alternatively, there is sage.sat.solvers.dimacs.DIMACS.clauses():

```
p cnf 3 2
1 2 3 0
1 2 -3 0
```
These files can then be passed external SAT solvers.

1.1 Details on Specific Solvers

1.1.1 Abstract SAT Solver

All SAT solvers must inherit from this class.

Note: Our SAT solver interfaces are 1-based, i.e., literals start at 1. This is consistent with the popular DIMACS format for SAT solving but not with Python’s 0-based convention. However, this also allows to construct clauses using simple integers.

AUTHORS:

- Martin Albrecht (2012): first version

sage.sat.solvers.satsolver.SAT

Return a SatSolver **instance.**

Through this class, one can define and solve SAT problems.

INPUT:

- **solver** (string) – select a solver. Admissible values are:

 - "cryptominisat" – note that the cryptominisat package must be installed.
 - "picosat" – note that the pycosat package must be installed.
 - "glucose" – note that the glucose package must be installed.
 - "glucose-syrup" – note that the glucose package must be installed.
 - "LP" – use SatLP to solve the SAT instance.
 - None (default) – use CryptoMiniSat if available, else PicoSAT if available, and a LP solver otherwise.

EXAMPLES:

```python
sage: SAT(solver="LP")
an ILP-based SAT Solver
```

class sage.sat.solvers.satsolver.SatSolver

Bases: object
add_clause(lits)
Add a new clause to set of clauses.

INPUT:
- lits - a tuple of integers != 0

Note: If any element e in lits has abs(e) greater than the number of variables generated so far, then new variables are created automatically.

EXAMPLES:
```
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
sage: solver.add_clause( (1, -2 , 3) )
Traceback (most recent call last):
  ... 
NotImplementedError
```

clauses(filename=None)
Return original clauses.

INPUT:
- filename'' - if not ``None clauses are written to filename in DIMACS format (default: None)

OUTPUT:
If filename is None then a list of lits, is_xor, rhs tuples is returned, where lits is a tuple of literals, is_xor is always False and rhs is always None.

If filename points to a writable file, then the list of original clauses is written to that file in DIMACS format.

EXAMPLES:
```
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
sage: solver.clauses() 
Traceback (most recent call last):
  ... 
NotImplementedError
```

conflict_clause()
Return conflict clause if this instance is UNSAT and the last call used assumptions.

EXAMPLES:
```
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
sage: solver.conflict_clause()  
Traceback (most recent call last):
  ... 
NotImplementedError
```

learnt_clauses(unitary_only=False)
Return learnt clauses.
INPUT:

- **unitary_only** - return only unitary learnt clauses (default: False)

EXAMPLES:

```
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
sage: solver.learnt_clauses()
Traceback (most recent call last):
  ...  
NotImplementedError

sage: solver.learnt_clauses(unitary_only=True)
Traceback (most recent call last):
  ...  
NotImplementedError
```

nvars()

Return the number of variables.

EXAMPLES:

```
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
sage: solver.nvars()
Traceback (most recent call last):
  ...  
NotImplementedError
```

read(filename)

Reads DIMAC files.

The differences were summarized in the discussion on the ticket trac ticket #16924. This method assumes the following DIMACS format:

- Any line starting with “c” is a comment
- Any line starting with “p” is a header
- Any variable 1-n can be used
- Every line containing a clause must end with a “0”

The format is extended to allow lines starting with “x” defining xor clauses, with the notation introduced in cryptominisat, see https://www.msoos.org/xor-clauses/

INPUT:

- **filename** - The name of a file as a string or a file object

EXAMPLES:

```
sage: from io import StringIO
sage: file_object = StringIO("c A sample .cnf file.
p cnf 3 2
1 -3 0
2 3 -1 0")
```

(continues on next page)
```python
sage: from sage.sat.solvers.dimacs import DIMACS
sage: solver = DIMACS()
sage: solver.read(file_object)
```

```python
[((1, -3), False, None), ((2, 3, -1), False, None)]
```

With xor clauses:

```python
sage: from io import StringIO
sage: file_object = StringIO("c A sample .cnf file with xor clauses.
\n1 2 0\n3 0\nx1 2 3 0")
```

```python
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
```

```python
sage: solver = CryptoMiniSat()
```

```python
sage: solver.read(file_object)
```

```python
[((1, 2), False, None), ((3,), False, None), ((1, 2, 3), True, True)]
```

```python
sage: solver()  # optional - cryptominisat
(None, True, True, True)
```

`trait_names()`
Allow alias to appear in tab completion.

EXAMPLES:

```python
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
```

```python
sage: solver.trait_names()  # optional - cryptominisat
['gens']
```

`var(decision=None)`
Return a new variable.

INPUT:

• decision - is this variable a decision variable?

EXAMPLES:

```python
sage: from sage.sat.solvers.satsolver import SatSolver
sage: solver = SatSolver()
```

```python
sage: solver.var()  # optional - cryptominisat
Traceback (most recent call last):
... Not Implemented Error
```
1.1.2 SAT-Solvers via DIMACS Files

Sage supports calling SAT solvers using the popular DIMACS format. This module implements infrastructure to make it easy to add new such interfaces and some example interfaces.

Currently, interfaces to **RSat** and **Glucose** are included by default.

Note: Our SAT solver interfaces are 1-based, i.e., literals start at 1. This is consistent with the popular DIMACS format for SAT solving but not with Python’s 0-based convention. However, this also allows to construct clauses using simple integers.

AUTHORS:

• Martin Albrecht (2012): first version

Classes and Methods

```python
class sage.sat.solvers.dimacs.DIMACS(command=None, filename=None, verbosity=0, **kwds)
```

Generic DIMACS Solver.

Note: Usually, users won’t have to use this class directly but some class which inherits from this class.

__init__ (command=None, filename=None, verbosity=0, **kwds)

Construct a new generic DIMACS solver.

INPUT:

• command - a named format string with the command to run. The string must contain {input} and may contain {output} if the solvers writes the solution to an output file. For example “sat-solver {input}” is a valid command. If None then the class variable command is used. (default: None)

• filename - a filename to write clauses to in DIMACS format, must be writable. If None a temporary filename is chosen automatically. (default: None)

• verbosity - a verbosity level, where zero means silent and anything else means verbose output. (default: 0)

• **kwds - accepted for compatibility with other solves, ignored.

__call__ (assumptions=None)

Run ‘command’ and collect output.

INPUT:

• assumptions - ignored, accepted for compatibility with other solvers (default: None)

add_clause (lits)

Add a new clause to set of clauses.

INPUT:

• lits - a tuple of integers != 0

Note: If any element e in lits has \(\text{abs}(e) \) greater than the number of variables generated so far, then new variables are created automatically.
EXAMPLES:

```python
sage: from sage.sat.solvers.dimacs import DIMACS
sage: solver = DIMACS()
sage: solver.var()
1
sage: solver.var(decision=True)
2
sage: solver.add_clause((1, -2, 3))
sage: solver
DIMACS Solver:
```

clauses *(filename=None)*

Return original clauses.

INPUT:

- filename - if not None clauses are written to filename in DIMACS format (default: None)

OUTPUT:

If filename is None then a list of lits, is_xor, rhs tuples is returned, where lits is a tuple of literals, is_xor is always False and rhs is always None.

If filename points to a writable file, then the list of original clauses is written to that file in DIMACS format.

EXAMPLES:

```python
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS()
sage: solver.add_clause((1, 2, 3))
sage: solver.clauses()
[((1, 2, 3), False, None)]
sage: solver.add_clause((1, 2, -3))
sage: solver.clauses(fn)
sage: print(open(fn).read())
p cnf 3 2
1 2 3 0
1 2 -3 0
```

nvars()

Return the number of variables.

EXAMPLES:

```python
sage: from sage.sat.solvers.dimacs import DIMACS
sage: solver = DIMACS()
sage: solver.var()
1
sage: solver.var(decision=True)
2
sage: solver.nvars()
2
```
static render_dimacs(clauses, filename, nlits)

Produce DIMACS file `filename` from `clauses`.

INPUT:

- `clauses` - a list of clauses, either in simple format as a list of literals or in extended format for Cryp-
toMiniSat: a tuple of literals, `is_xor` and `rhs`.
- `filename` - the file to write to
- `nlits` -- the number of literals appearing in ```clauses```

EXAMPLES:

```python
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS()
sage: solver.add_clause( (1, 2, -3) )
sage: DIMACS.render_dimacs(solver.clauses(), fn, solver.nvars())
sage: print(open(fn).read())
p cnf 3 1
1 2 -3 0
```

This is equivalent to:

```python
sage: solver.clauses(fn)
sage: print(open(fn).read())
p cnf 3 1
1 2 -3 0
```

This function also accepts a “simple” format:

```python
sage: DIMACS.render_dimacs([ (1,2), (1,2,-3) ], fn, 3)
sage: print(open(fn).read())
p cnf 3 2
1 2 0
1 2 -3 0
```

var(decision=None)

Return a new variable.

INPUT:

- `decision` - accepted for compatibility with other solvers, ignored.

EXAMPLES:

```python
sage: from sage.sat.solvers.dimacs import DIMACS
sage: solver = DIMACS()
sage: solver.var()
1
```

write(filename=None)

Write DIMACS file.

INPUT:

- `filename` - if `None` default filename specified at initialization is used for writing to (default: `None`)

EXAMPLES:

```python
```
```python
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: solver.add_clause( (1, -2, 3) )
sage: _ = solver.write()
sage: for line in open(fn).readlines():
    print(line)
p cnf 3 1
1 -2 3 0
```

```python
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS()
sage: solver.add_clause( (1, -2, 3) )
sage: _ = solver.write(fn)
sage: for line in open(fn).readlines():
    print(line)
p cnf 3 1
1 -2 3 0
```

```python
class sage.sat.solvers.dimacs.Glucose(command=None, filename=None, verbosity=0, **kwds)
Bases: sage.sat.solvers.dimacs.DIMACS

An instance of the Glucose solver.

For information on Glucose see: http://www.labri.fr/perso/lsimon/glucose/

EXAMPLES:
```
```python
sage: from sage.sat.solvers import Glucose
sage: solver = Glucose()
sage: solver
DIMACS Solver: 'glucose -verb=2 {input} {output}'
sage: solver.add_clause( (1, 2, 3) )
sage: solver.add_clause( (-1,) )
sage: solver.add_clause( (-2,) )
sage: solver()                       # optional - glucose
(None, False, False, True)
```

```python
class sage.sat.solvers.dimacs.GlucoseSyrup(command=None, filename=None, verbosity=0, **kwds)
Bases: sage.sat.solvers.dimacs.DIMACS

An instance of the Glucose-syrup parallel solver.

For information on Glucose see: http://www.labri.fr/perso/lsimon/glucose/
```

```python
class sage.sat.solvers.dimacs.RSat(command=None, filename=None, verbosity=0, **kwds)
Bases: sage.sat.solvers.dimacs.DIMACS

An instance of the RSat solver.

For information on RSat see: http://reasoning.cs.ucla.edu/rsat/
```

1.1. Details on Specific Solvers
1.1.3 PicoSAT Solver

This solver relies on the pycosat Python bindings to PicoSAT.
The pycosat package should be installed on your Sage installation.

AUTHORS:

• Thierry Monteil (2018): initial version.

class sage.sat.solvers.picosat.PicoSAT(verbosity=0, prop_limit=0)
Bases: sage.sat.solvers.satsolver.SatSolver

PicoSAT Solver.

INPUT:

• verbosity – an integer between 0 and 2 (default: 0); verbosity
• prop_limit – an integer (default: 0); the propagation limit

EXAMPLES:

```
sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT() # optional - pycosat

add_clause(lits)
Add a new clause to set of clauses.

INPUT:

• lits – a tuple of nonzero integers

Note: If any element e in lits has abs(e) greater than the number of variables generated so far, then new variables are created automatically.

EXAMPLES:

```
sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT() # optional - pycosat
sage: solver.add_clause((1, 2, 3, 4, 5, 6, 7, 8, -9)) # optional - pycosat

clauses(filename=None)
Return original clauses.

INPUT:

• filename – (optional) if given, clauses are written to filename in DIMACS format

OUTPUT:

If filename is None then a list of lits is returned, where lits is a list of literals.
If filename points to a writable file, then the list of original clauses is written to that file in DIMACS format.

EXAMPLES:

```
sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT() # optional - pycosat
sage: solver.add_clause((1, -2, 3)) # optional - pycosat
```
```python
sage: solver.clauses()  # optional - pycosat
[[1, 2, 3, 4, 5, 6, 7, 8, -9]]
```

DIMACS format output:

```python
sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT()  # optional - pycosat
sage: solver.add_clause((1, 2, 4))  # optional - pycosat
sage: solver.add_clause((1, 2, -4))  # optional - pycosat
sage: fn = tmp_filename()  # optional - pycosat
sage: solver.clauses(fn)  # optional - pycosat
sage: print(open(fn).read())  # optional - pycosat
p cnf 4 2
1 2 4 0
1 2 -4 0
```

```python
nvars()
```

Return the number of variables. Note that for compatibility with DIMACS convention, the number of variables corresponds to the maximal index of the variables used.

EXAMPLES:

```python
sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT()  # optional - pycosat
sage: solver.nvars()  # optional - pycosat
0
```

If a variable with intermediate index is not used, it is still considered as a variable:

```python
sage: solver.add_clause((1,-2,4))  # optional - pycosat
sage: solver.nvars()  # optional - pycosat
4
```

```python
var(decision=None)
```

Return a new variable.

INPUT:

- decision – ignored; accepted for compatibility with other solvers

EXAMPLES:

```python
sage: from sage.sat.solvers.picosat import PicoSAT
sage: solver = PicoSAT()  # optional - pycosat
sage: solver.var()  # optional - pycosat
1
sage: solver.add_clause((-1,2,-4))  # optional - pycosat
sage: solver.var()  # optional - pycosat
5
```
1.1.4 Solve SAT problems Integer Linear Programming

The class defined here is a SatSolver that solves its instance using MixedIntegerLinearProgram. Its performance can be expected to be slower than when using CryptoMiniSat.

class sage.sat.solvers.sat_lp.SatLP(solver, verbose=None, integrality_tolerance=0)
Bases: sage.sat.solvers.satsolver.SatSolver

Initializes the instance

INPUT:

• solver – (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – integer (default: 0). Sets the level of verbosity of the LP solver. Set to 0 by default, which means quiet.

• integrality_tolerance – parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

EXAMPLES:

sage: S=SAT(solver="LP"); S
an ILP-based SAT Solver

add_clause(lits)

Add a new clause to set of clauses.

INPUT:

• lits - a tuple of integers != 0

Note: If any element e in lits has abs(e) greater than the number of variables generated so far, then new variables are created automatically.

EXAMPLES:

sage: S=SAT(solver="LP"); S
an ILP-based SAT Solver
sage: for u,v in graphs.CycleGraph(6).edges(labels=False):
 : u,v = u+1,v+1
 : S.add_clause((u,v))
 : S.add_clause((-u,-v))

nvars()

Return the number of variables.

EXAMPLES:

sage: S=SAT(solver="LP"); S
an ILP-based SAT Solver
sage: S.var()
1
sage: S.var()
2
(continues on next page)
sage: S.nvars()
2

var()
Return a new variable.

EXAMPLES:

sage: S=SAT(solver="LP"); S
an ILP-based SAT Solver
sage: S.var()
1

1.1.5 CryptoMiniSat Solver

This solver relies on Python bindings provided by upstream cryptominisat.
The cryptominisat package should be installed on your Sage installation.

AUTHORS:

• Thierry Monteil (2017): complete rewrite, using upstream Python bindings, works with cryptominisat 5.
• Martin Albrecht (2012): first version, as a cython interface, works with cryptominisat 2.

class sage.sat.solvers.cryptominisat.CryptoMiniSat(verbosity=0, confl_limit=None, threads=None)
Bases: sage.sat.solvers.satsolver.SatSolver

CryptoMiniSat Solver.

INPUT:

• verbosity – an integer between 0 and 15 (default: 0). Verbosity.
• confl_limit – an integer (default: None). Abort after this many conflicts. If set to None, never aborts.
• threads – an integer (default: None). The number of thread to use. If set to None, the number of threads used corresponds to the number of cpus.

EXAMPLES:

sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
sage: solver = CryptoMiniSat() # optional ~
cryptominisat

add_clause(lits)
Add a new clause to set of clauses.

INPUT:

• lits – a tuple of nonzero integers.

Note: If any element e in lits has abs(e) greater than the number of variables generated so far, then new variables are created automatically.

EXAMPLES:
```python
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
sage: solver = CryptoMiniSat()  # optional - cryptominisat
sage: solver.add_clause((1, -2, 3))  # optional - cryptominisat
```

add_xor_clause *(lits, rhs=True)*
Add a new XOR clause to set of clauses.

INPUT:
- **lits** – a tuple of positive integers.
- **rhs** – boolean (default: True). Whether this XOR clause should be evaluated to True or False.

EXAMPLES:

```python
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
sage: solver = CryptoMiniSat()  # optional - cryptominisat
sage: solver.add_xor_clause((1, 2, 3), False)  # optional - cryptominisat
```

clauses *(filename=None)*
Return original clauses.

INPUT:
- **filename** – if not None clauses are written to filename in DIMACS format (default: None)

OUTPUT:
If filename is None then a list of lits, is_xor, rhs tuples is returned, where lits is a tuple of literals, is_xor is always False and rhs is always None.
If filename points to a writable file, then the list of original clauses is written to that file in DIMACS format.

EXAMPLES:

```python
sage: from sage.sat.solvers import CryptoMiniSat
sage: solver = CryptoMiniSat()  # optional - cryptominisat
sage: solver.add_clause((1, 2, 4))  # optional - cryptominisat
sage: solver.add_clause((1, 2, -4))  # optional - cryptominisat
```

DIMACS format output:

```python
sage: from sage.sat.solvers import CryptoMiniSat
sage: solver = CryptoMiniSat()  # optional - cryptominisat
sage: solver.add_clause((1, 2, 4))  # optional - cryptominisat
sage: solver.add_clause((1, 2, -4))  # optional - cryptominisat
```

(continues on next page)
Note that in cryptominisat, the DIMACS standard format is augmented with the following extension: having an x in front of a line makes that line an XOR clause:

```python
sage: solver.add_xor_clause((1,2,3), rhs=True)  # optional - cryptominisat
sage: solver.clauses(fn)  # optional - cryptominisat
sage: print(open(fn).read())  # optional - cryptominisat
p cnf 4 3
1 2 4 0
1 2 -4 0
x1 2 3 0
```

Note that inverting an xor-clause is equivalent to inverting one of the variables:

```python
sage: solver.add_xor_clause((1,2,5), rhs=False)  # optional - cryptominisat
sage: solver.clauses(fn)  # optional - cryptominisat
sage: print(open(fn).read())  # optional - cryptominisat
p cnf 5 4
1 2 4 0
1 2 -4 0
x1 2 3 0
x1 2 -5 0
```

`nvars()`

Return the number of variables. Note that for compatibility with DIMACS convention, the number of variables corresponds to the maximal index of the variables used.

EXAMPLES:

```python
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
sage: solver = CryptoMiniSat()  # optional - cryptominisat
sage: solver.nvars()  # optional - cryptominisat
0
```

If a variable with intermediate index is not used, it is still considered as a variable:

```python
sage: solver.add_clause((1,-2,4))  # optional - cryptominisat
sage: solver.nvars()  # optional - cryptominisat
4
```

`var(decision=None)`

Return a new variable.

INPUT:
• decision – accepted for compatibility with other solvers, ignored.

EXAMPLES:

```
sage: from sage.sat.solvers.cryptominisat import CryptoMiniSat
sage: solver = CryptoMiniSat()  # optional - cryptominisat
sage: solver.var()  # optional - cryptominisat
1

sage: solver.add_clause((-1,2,-4))  # optional - cryptominisat
sage: solver.var()  # optional - cryptominisat
5
```
Sage supports conversion from Boolean polynomials (also known as Algebraic Normal Form) to Conjunctive Normal Form:

```
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B)
sage: e.clauses_sparse(a*b + a + 1)
sage: _ = solver.write()
sage: print(open(fn).read())
p cnf 3 2
-2 0
1 0
```

2.1 Details on Specific Converters

2.1.1 An ANF to CNF Converter using a Dense/Sparse Strategy

This converter is based on two converters. The first one, by Martin Albrecht, was based on [CB2007], this is the basis of the “dense” part of the converter. It was later improved by Mate Soos. The second one, by Michael Brickenstein, uses a reduced truth table based approach and forms the “sparse” part of the converter.

AUTHORS:

- Martin Albrecht - (2008-09) initial version of ‘anf2cnf.py’
- Michael Brickenstein - (2009) ’cnf.py’ for PolyBoRi
- Mate Soos - (2010) improved version of ‘anf2cnf.py’
- Martin Albrecht - (2012) unified and added to Sage
Classes and Methods

class sage.sat.converters.polybori.CNFEnder(solver, ring, max_vars_sparse=6,
 use_xor_clauses=None, cutting_number=6,
 random_seed=16)

Bases: sage.sat.converters.anf2cnf.ANF2CNFConverter

ANF to CNF Converter using a Dense/Sparse Strategy. This converter distinguishes two classes of polynomials.

1. Sparse polynomials are those with at most max_vars_sparse variables. Those are converted using reduced
 truth-tables based on PolyBoRi’s internal representation.

2. Polynomials with more variables are converted by introducing new variables for monomials and by converting
 these linearised polynomials.

Linearised polynomials are converted either by splitting XOR chains – into chunks of length cutting_number
– or by constructing XOR clauses if the underlying solver supports it. This behaviour is disabled by passing
use_xor_clauses=False.

__init__(solver, ring, max_vars_sparse=6, use_xor_clauses=None, cutting_number=6, random_seed=16)

Construct ANF to CNF converter over ring passing clauses to solver.

INPUT:
 • solver - a SAT-solver instance
 • ring - a sage.rings.polynomial.pbori.BooleanPolynomialRing
 • max_vars_sparse - maximum number of variables for direct conversion
 • use_xor_clauses - use XOR clauses; if None use if solver supports it. (default: None)
 • cutting_number - maximum length of XOR chains after splitting if XOR clauses are not supported
 (default: 6)
 • random_seed - the direct conversion method uses randomness, this sets the seed (default: 16)

EXAMPLES:

We compare the sparse and the dense strategies, sparse first:

```
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B)
sage: e.clauses_sparse(a*b + a + 1)
sage: _ = solver.write()
sage: print(open(fn).read())
p cnf 3 2
-2 0
1 0
```

Now, we convert using the dense strategy:

```
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
```

(continues on next page)
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B)
sage: e.clauses_dense(a*b + a + 1)
sage: _ = solver.write()
sage: print(open(fn).read())
p cnf 4 5
 1 -4 0
 2 -4 0
 4 -1 -2 0
 -4 -1 0
 4 1 0
sage: e.phi
[None, a, b, c, a*b]

Note: This constructor generates SAT variables for each Boolean polynomial variable.

__call__(F)
Encode the boolean polynomials in F.

INPUT:
- F - an iterable of sage.rings.polynomial.polybori.BooleanPolynomial

OUTPUT: An inverse map int -> variable

EXAMPLES:

sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B, max_vars_sparse=2)
sage: e([a*b + a + 1, a*b+ a + c])
[None, a, b, c, a*b]
sage: _ = solver.write()
sage: print(open(fn).read())
p cnf 4 9
 -2 0
 1 0
 1 -4 0
 2 -4 0
 4 -1 -2 0
 -4 -1 -3 0
 4 1 -3 0
 4 -1 3 0
 -4 1 3 0
sage: e.phi
[None, a, b, c, a*b]
clauses (/)*

Convert \(f \) using the sparse strategy if \(f.\text{nvariables}() \) is at most \(\text{max_vars_sparse} \) and the dense strategy otherwise.

INPUT:

- \(f \) - a `sage.rings.polynomial.pbori.BooleanPolynomial`

EXAMPLES:

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
go to sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B, max_vars_sparse=2)
sage: e.clauses(a*b + a + 1)
sage: _ = solver.write()
sage: print(open(fn).read())
p cnf 3 2
-2 0
1 0
sage: e.phi
[None, a, b, c]
```

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
go to sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B, max_vars_sparse=2)
sage: e.clauses(a*b + a + c)
sage: _ = solver.write()
sage: print(open(fn).read())
p cnf 4 7
1 -4 0
2 -4 0
4 -1 -2 0
-4 -1 -3 0
4 1 -3 0
4 -1 3 0
-4 1 3 0
sage: e.phi
[None, a, b, c, a*b]
```

clauses_dense (/)*

Convert \(f \) using the dense strategy.

INPUT:

- \(f \) - a `sage.rings.polynomial.pbori.BooleanPolynomial`

EXAMPLES:

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
go to sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B, max_vars_sparse=2)
sage: e.clauses(a*b + a + c)
sage: _ = solver.write()
sage: print(open(fn).read())
p cnf 4 7
1 -4 0
2 -4 0
4 -1 -2 0
-4 -1 -3 0
4 1 -3 0
4 -1 3 0
-4 1 3 0
sage: e.phi
[None, a, b, c, a*b]
```
```python
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
```
```
sage: solver = DIMACS(filename=fn)
```
```
sage: e = CNFEncoder(solver, B)
```
```
sage: e.clauses_dense(a*b + a + 1)
```
```
sage: _ = solver.write()
```
```
sage: print(open(fn).read())
```
```
p cnf 4 5
1 -4 0
2 -4 0
4 -1 -2 0
-4 -1 0
4 1 0
```
```
sage: e.phi
```
```
[None, a, b, c, a*b]
```

clauses_sparse(f)

Convert f using the sparse strategy.

INPUT:

- f - a `sage.rings.polynomial.pbori.BooleanPolynomial`

EXAMPLES:

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)
sage: e = CNFEncoder(solver, B)
sage: e.clauses_sparse(a*b + a + 1)
sage: _ = solver.write()
sage: print(open(fn).read())
```
```
p cnf 3 2
-2 0
1 0
```
```
sage: e.phi
```
```
[None, a, b, c]
```

monomial(m)

Return SAT variable for m

INPUT:

- m - a monomial.

OUTPUT: An index for a SAT variable corresponding to m.

EXAMPLES:

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
```

(continues on next page)
If monomial is called on a new monomial, a new variable is created:

```
sage: e.monomial(a*b*c)
5
sage: e.phi
[None, a, b, c, a*b, a*b*c]
```

If monomial is called on a monomial that was queried before, the index of the old variable is returned and no new variable is created:

```
sage: e.monomial(a*b)
4
sage: e.phi
[None, a, b, c, a*b, a*b*c]
```

.. note::

 For correctness, this function is cached.

permutations(length, equal_zero)

Return permutations of length length which are equal to zero if equal_zero and equal to one otherwise.

A variable is false if the integer in its position is smaller than zero and true otherwise.

INPUT:

* length – the number of variables
* equal_zero – should the sum be equal to zero?

EXAMPLES:

```
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: B.<a,b,c> = BooleanPolynomialRing()
```

```
sage: ce = CNFEncoder(DIMACS(), B)
sage: ce.permutations(3, True)

[[[-1, -1, -1], [1, 1, -1], [1, -1, 1], [-1, 1, 1]]

sage: ce.permutations(3, False)

[[[1, -1, -1], [-1, 1, -1], [-1, -1, 1], [1, 1, 1]]
```

phi

Map SAT variables to polynomial variables.

EXAMPLES:

```
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
```

(continues on next page)
```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: ce = CNFEncoder(DIMACS(), B)
sage: ce.var()
4
sage: ce.phi
[None, a, b, c, None]
```

split_xor *(monomial_list, equal_zero)*

Split XOR chains into subchains.

INPUT:

- monomial_list - a list of monomials
- equal_zero - is the constant coefficient zero?

EXAMPLES:

```python
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing()

sage: ce = CNFEncoder(DIMACS(), B, cutting_number=3)

sage: ce.split_xor([1,2,3,4,5,6], False)

[[[1, 7], False], [[7, 2, 8], True], [[8, 3, 9], True], [[9, 4, 10], True],
 ..., [[10, 5, 11], True], [[11, 6], True]]

sage: ce = CNFEncoder(DIMACS(), B, cutting_number=4)

sage: ce.split_xor([1,2,3,4,5,6], False)

[[[1, 2, 7], False], [[7, 3, 4, 8], True], [[8, 5, 6], True]]

sage: ce = CNFEncoder(DIMACS(), B, cutting_number=5)

sage: ce.split_xor([1,2,3,4,5,6], False)

[[[1, 2, 3, 7], False], [[7, 4, 5, 6], True]]
```

to_polynomial *(c)*

Convert clause to `sage.rings.polynomial.pbori.BooleanPolynomial`

INPUT:

- c - a clause

EXAMPLES:

```python
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: B.<a,b,c> = BooleanPolynomialRing()

sage: fn = tmp_filename()
sage: solver = DIMACS(filename=fn)

sage: e = CNFEncoder(solver, B, max_vars_sparse=2)

sage: _ = e([a*b + a + 1, a*b+ a + c])

sage: e.to_polynomial( (1,-2,3) )
a*b*c + a*b + b*c + b
```

var *(n= None, decision = None)*

Return a new variable.

2.1. Details on Specific Converters
This is a thin wrapper around the SAT-solvers function where we keep track of which SAT variable corresponds to which monomial.

INPUT:

- m - something the new variables maps to, usually a monomial
- decision - is this variable a decision variable?

EXAMPLES:

```python
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: ce = CNFEncoder(DIMACS(), B)
sage: ce.var()
4
```

zero_blocks(f)

Divide the zero set of f into blocks.

EXAMPLES:

```python
sage: B.<a,b,c> = BooleanPolynomialRing()
sage: from sage.sat.converters.polybori import CNFEncoder
sage: from sage.sat.solvers.dimacs import DIMACS
sage: e = CNFEncoder(DIMACS(), B)
sage: sorted(sorted(d.items()) for d in e.zero_blocks(a*b*c))
[[[c, 0]], [[b, 0]], [[a, 0]]]
```

Note: This function is randomised.
Sage provides various high level functions which make working with Boolean polynomials easier. We construct a very small-scale AES system of equations and pass it to a SAT solver:

```python
sage: sr = mq.SR(1,1,1,4,gf2=True,polybori=True)
sage: while True:
    try:
        F,s = sr.polynomial_system()
        break
    except ZeroDivisionError:
        pass
sage: from sage.sat.boolean_polynomials import solve as solve_sat
    # optional - cryptominisat
sage: s = solve_sat(F)
    # optional - cryptominisat
sage: F.subs(s[0])
    # optional - cryptominisat
```

Polynomial Sequence with 36 Polynomials in 0 Variables

3.1 Details on Specific Highlevel Interfaces

3.1.1 SAT Functions for Boolean Polynomials

These high level functions support solving and learning from Boolean polynomial systems. In this context, “learning” means the construction of new polynomials in the ideal spanned by the original polynomials.

AUTHOR:

- Martin Albrecht (2012): initial version

Functions

```python
sage.sat.boolean_polynomials.learn(F, converter=None, solver=None, max_learnt_length=3, interreduction=False, **kwds)
```

Learn new polynomials by running SAT-solver `solver` on SAT-instance produced by `converter` from `F`.

INPUT:

- `F` - a sequence of Boolean polynomials
- `converter` - an ANF to CNF converter class or object. If `converter` is `None` then `sage.sat.converters.polybori.CNFEncoder` is used to construct a new converter. (default: `None`)
• solver - a SAT-solver class or object. If solver is None then sage.sat.solvers.cryptominisat.CryptoMiniSat is used to construct a new converter. (default: None)
• max_learnt_length - only clauses of length <= max_length_learnt are considered and converted to polynomials. (default: 3)
• interreduction - inter-reduce the resulting polynomials (default: False)

Note: More parameters can be passed to the converter and the solver by prefixing them with c_ and s_ respectively. For example, to increase CryptoMiniSat’s verbosity level, pass s_verbosity=1.

OUTPUT:
A sequence of Boolean polynomials.

EXAMPLES:

```python
sage: from sage.sat.boolean_polynomials import learn as learn_sat  # optional - cryptominisat

We construct a simple system and solve it:

```python
code
sage: set_random_seed(2300) # optional - cryptominisat
sage: sr = mq.SR(1,2,2,4,gf2=True,polybori=True) # optional - cryptominisat
sage: F,s = sr.polynomial_system() # optional - cryptominisat
sage: H = learn_sat(F) # optional - cryptominisat
sage: H[-1] # optional - cryptominisat
k033 + 1
```

**sage.sat.boolean_polynomials.solve(F, converter=None, solver=None, n=1, target_variables=None, **kwds)**
Solves system of Boolean polynomials F by solving the SAT-problem – produced by converter – using solver.

**INPUT:**
• F - a sequence of Boolean polynomials
• n - number of solutions to return. If n is +infinity then all solutions are returned. If n < infinity then n solutions are returned if F has at least n solutions. Otherwise, all solutions of F are returned. (default: 1)
• converter - an ANF to CNF converter class or object. If converter is None then sage.sat.converters.polybori.CNFEncoder is used to construct a new converter. (default: None)
• solver - a SAT-solver class or object. If solver is None then sage.sat.solvers.cryptominisat.CryptoMiniSat is used to construct a new converter. (default: None)
• target_variables - a list of variables. The elements of the list are used to exclude a particular combination of variable assignments of a solution from any further solution. Furthermore target_variables denotes which variable-value pairs appear in the solutions. If target_variables is None all variables appearing in the polynomials of F are used to construct exclusion clauses. (default: None)
• **kwds - parameters can be passed to the converter and the solver by prefixing them with c_ and s_ respectively. For example, to increase CryptoMiniSat’s verbosity level, pass s_verbosity=1.

**OUTPUT:**
A list of dictionaries, each of which contains a variable assignment solving F.

**EXAMPLES:**

We construct a very small-scale AES system of equations:
and pass it to a SAT solver:

```python
sage: from sage.sat.boolean_polynomials import solve as solve_sat
 # optional - cryptominisat
sage: s = solve_sat(F) # optional - cryptominisat
sage: F.subs(s[0]) # optional - cryptominisat
```

This time we pass a few options through to the converter and the solver:

```python
sage: s = solve_sat(F, s_verbosity=1, c_max_vars_sparse=4, c_cutting_number=8) # optional - cryptominisat
...
Polynomial Sequence with 36 Polynomials in 0 Variables
```

We construct a very simple system with three solutions and ask for a specific number of solutions:

```python
sage: R.<a,b> = BooleanPolynomialRing() # optional - cryptominisat
sage: f = a*b # optional - cryptominisat
sage: l = solve_sat([f],n=1) # optional - cryptominisat
len(l) == 1, f.subs(l[0]) # optional - cryptominisat
(True, 0)

sage: l = solve_sat([a*b],n=2) # optional - cryptominisat
len(l) == 2, f.subs(l[0]), f.subs(l[1]) # optional - cryptominisat
(True, 0, 0)

sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=3)) # optional - cryptominisat
[(0, 0), (0, 1), (1, 0)]

In the next example we see how the `target_variables` parameter works:

```python
sage: from sage.sat.boolean_polynomials import solve as solve_sat  # optional - cryptominisat
sage: R.<a,b,c,d> = BooleanPolynomialRing()  # optional - cryptominisat
sage: F = [a+b, a+c+d]  # optional - cryptominisat
```

First the normal use case:
Now we are only interested in the solutions of the variables \(a\) and \(b\):

```python
sage: solve_sat(F, n=infinity, target_variables=[a, b])  # optional - cryptominisat
[(b: 0, a: 0), (b: 1, a: 1)]
```

Here, we generate and solve the cubic equations of the AES SBox (see trac ticket #26676):

```python
sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence  # optional - cryptominisat, long time
sage: from sage.sat.boolean_polynomials import solve as solve_sat  # optional - cryptominisat, long time
sage: sr = sage.crypto.mq.SR(1, 4, 4, 8, allow_zero_inversions = True)  # optional - cryptominisat, long time
sage: sb = sr.sbox()  # optional - cryptominisat, long time
sage: eqs = sb.polynomials(degree = 3)  # optional - cryptominisat, long time
sage: eqs = PolynomialSequence(eqs)  # optional - cryptominisat, long time
sage: variables = map(str, eqs.variables())  # optional - cryptominisat, long time
sage: variables = ','.join(variables)  # optional - cryptominisat, long time
sage: R = BooleanPolynomialRing(16, variables)  # optional - cryptominisat, long time
sage: eqs = [R(eq) for eq in eqs]  # optional - cryptominisat, long time
sage: sls_aes = solve_sat(eqs, n = infinity)  # optional - cryptominisat, long time
sage: len(sls_aes)  # optional - cryptominisat, long time
256
```

Note: Although supported, passing converter and solver objects instead of classes is discouraged because these objects are stateful.

REFERENCES:
CHAPTER
FOUR

INDICES AND TABLES

• Index
• Module Index
• Search Page
BIBLIOGRAPHY

S

sage.sat.boolean_polynomials, 27
sage.sat.converters.polybori, 19
sage.sat.solvers.cryptominisat, 15
sage.sat.solvers.dimacs, 8
sage.sat.solvers.picosat, 12
sage.sat.solvers.sat_lp, 14
sage.sat.solvers.satsolver, 4
INDEX

Symbols
__call__() (sage.sat.converters.polybori.CNFEncoder method), 21
__call__() (sage.sat.solvers.dimacs.DIMACS method), 8
__init__() (sage.sat.converters.polybori.CNFEncoder method), 20
__init__() (sage.sat.solvers.dimacs.DIMACS method), 8

A
add_clause() (sage.sat.solvers.cryptominisat.CryptoMiniSat method), 15
add_clause() (sage.sat.solvers.dimacs.DIMACS method), 8
add_clause() (sage.sat.solvers.picosat.PicoSAT method), 12
add_clause() (sage.sat.solvers.sat_lp.SatLP method), 14
add_clause() (sage.sat.solvers.satsolver.SatSolver method), 4
add_xor_clause() (sage.sat.solvers.cryptominisat.CryptoMiniSat method), 16

C
clauses() (sage.sat.converters.polybori.CNFEncoder method), 21
clauses() (sage.sat.solvers.cryptominisat.CryptoMiniSat method), 16
clauses() (sage.sat.solvers.dimacs.DIMACS method), 9
clauses() (sage.sat.solvers.picosat.PicoSAT method), 12
clauses() (sage.sat.solvers.satsolver.SatSolver method), 5
clauses_dense() (sage.sat.converters.polybori.CNFEncoder method), 22
clauses_sparse() (sage.sat.converters.polybori.CNFEncoder method), 23
CNFEncoder (class in sage.sat.converters.polybori), 20
CNFEncoder.permutations() (in module sage.sat.converters.polybori), 24

conflict_clause() (sage.sat.solvers.satsolver.SatSolver method), 5

CryptoMiniSat (class in sage.sat.solvers.cryptominisat), 15

D
DIMACS (class in sage.sat.solvers.dimacs), 8

G
Glucose (class in sage.sat.solvers.dimacs), 11
GlucoseSyrup (class in sage.sat.solvers.dimacs), 11

L
learn() (in module sage.boolean_polynomials), 27
learnt_clauses() (sage.sat.solvers.satsolver.SatSolver method), 5

M
module
sage.sat.boolean_polynomials, 27
sage.sat.converters.polybori, 19
sage.sat.solvers.cryptominisat, 15
sage.sat.solvers.dimacs, 8
sage.sat.solvers.picosat, 12
sage.sat.solvers.sat_lp, 14
sage.sat.solvers.satsolver, 4

monomial() (sage.sat.converters.polybori.CNFEncoder method), 23

N
nvars() (sage.sat.solvers.cryptominisat.CryptoMiniSat method), 17
nvars() (sage.sat.solvers.dimacs.DIMACS method), 9
nvars() (sage.sat.solvers.picosat.PicoSAT method), 13
nvars() (sage.sat.solvers.sat_lp.SatLP method), 14
nvars() (sage.sat.solvers.satsolver.SatSolver method), 6

P
phi (sage.sat.converters.polybori.CNFEncoder attribute), 24
PicoSAT (class in sage.sat.solvers.picosat), 12
R
read() (sage.sat.solvers.satsolver.SatSolver method), 6
render_dimacs() (sage.sat.solvers.dimacs.DIMACS static method), 9
RSat (class in sage.sat.solvers.dimacs), 11
S
sage.sat.boolean_polynomials module, 27
sage.sat.converters.polybori module, 19
sage.sat.solvers.cryptominisat module, 15
sage.sat.solvers.dimacs module, 8
sage.sat.solvers.picosat module, 12
sage.sat.solvers.sat_lp module, 14
sage.sat.solvers.satsolver module, 4
SAT() (in module sage.sat.solvers.satsolver), 4
SatLP (class in sage.sat.solvers.sat_lp), 14
SatSolver (class in sage.sat.solvers.satsolver), 4
solve() (in module sage.sat.boolean_polynomials), 28
split_xor() (sage.sat.converters.polybori.CNFEncoder method), 25
T
to_polynomial() (sage.sat.converters.polybori.CNFEncoder method), 25
trait_names() (sage.sat.solvers.satsolver.SatSolver method), 7
V
var() (sage.sat.converters.polybori.CNFEncoder method), 25
var() (sage.sat.solvers.cryptominisat.CryptoMiniSat method), 17
var() (sage.sat.solvers.dimacs.DIMACS method), 10
var() (sage.sat.solvers.picosat.PicoSAT method), 13
var() (sage.sat.solvers.sat_lp.SatLP method), 15
var() (sage.sat.solvers.satsolver.SatSolver method), 7
W
write() (sage.sat.solvers.dimacs.DIMACS method), 10
Z
zero_blocks() (sage.sat.converters.polybori.CNFEncoder method), 26