Standard Semirings

Release 10.3

The Sage Development Team

Mar 20, 2024
1 Non Negative Integer Semiring 1
2 Tropical Semirings 3
3 Indices and Tables 7
Python Module Index 9
Index 11
class
sage.rings.semirings.non_negative_integer_semiring.NonNegativeIntegerSemiring

Bases: NonNegativeIntegers

A class for the semiring of the non negative integers

This parent inherits from the infinite enumerated set of non negative integers and endows it with its natural semiring structure.

EXAMPLES:

sage: NonNegativeIntegerSemiring()
Non negative integer semiring

For convenience, NN is a shortcut for NonNegativeIntegerSemiring():

sage: NN == NonNegativeIntegerSemiring()
True

sage: NN.category()
Category of facade infinite enumerated commutative semirings

Here is a piece of the Cayley graph for the multiplicative structure:

sage: G = NN.cayley_graph(elements=range(9), generators=[0,1,2,3,5,7])
"needs sage.graphs"

sage: G
"needs sage.graphs"
Looped multi-digraph on 9 vertices

sage: G.plot()
"needs sage.graphs sage.plot"
Graphics object consisting of 48 graphics primitives

This is the Hasse diagram of the divisibility order on NN.

sage: Poset(NN.cayley_graph(elements=[1..12], generators=[2,3,5,7,11])).show() # needs sage.combinat.sage.graphs sage.plot

Note: as for NonNegativeIntegers, NN is currently just a “facade” parent; namely its elements are plain Sage Integers with Integer Ring as parent:

sage: x = NN(15); type(x)
<class 'sage.rings.integer.Integer'>
sage: x.parent()
Integer Ring

(continues on next page)
additive_semigroup_generators()

Returns the additive semigroup generators of self.

EXAMPLES:

```python
sage: NN.additive_semigroup_generators()
Family (0, 1)
```
CHAPTER TWO

TROPICAL SEMIRINGS

AUTHORS:

• Travis Scrimshaw (2013-04-28) - Initial version

class sage.rings.semirings.tropical_semiring.TropicalSemiring(base, use_min=True)
 Bases: Parent, UniqueRepresentation

The tropical semiring.

Given an ordered additive semigroup R, we define the tropical semiring $T = R \cup \{+\infty\}$ by defining tropical addition and multiplication as follows:

$$a \oplus b = \min(a, b), \quad a \odot b = a + b.$$

In particular, note that there are no (tropical) additive inverses (except for ∞), and every element in R has a (tropical) multiplicative inverse.

There is an alternative definition where we define $T = R \cup \{-\infty\}$ and alter tropical addition to be defined by

$$a \oplus b = \max(a, b).$$

To use the max definition, set the argument $use_{min} = False$.

Warning: $zero()$ and $one()$ refer to the tropical additive and multiplicative identities respectively. These are not the same as calling $T(0)$ and $T(1)$ respectively as these are not the tropical additive and multiplicative identities respectively.

Specifically do not use $sum(...)$ as this converts 0 to 0 as a tropical element, which is not the same as $zero()$. Instead use the sum method of the tropical semiring:

```
sage: T = TropicalSemiring(QQ)
sage: sum([T(1), T(2)]) # This is wrong
0
sage: T.sum([T(1), T(2)]) # This is correct
1
```

Be careful about using code that has not been checked for tropical safety.

INPUT:

• $base$ – the base ordered additive semigroup R

• use_{min} – (default: True) if True, then the semiring uses $a \oplus b = \min(a, b)$; otherwise uses $a \oplus b = \max(a, b)$
EXAMPLES:

```python
sage: T = TropicalSemiring(QQ)
sage: elt = T(2); elt
2
```

Recall that tropical addition is the minimum of two elements:

```python
sage: T(3) + T(5)
3
```

Tropical multiplication is the addition of two elements:

```python
sage: T(2) * T(3)
5
sage: T(0) * T(-2)
-2
```

We can also do tropical division and arbitrary tropical exponentiation:

```python
sage: T(2) / T(1)
1
sage: T(2)^(-3/7)
-6/7
```

Note that “zero” and “one” are the additive and multiplicative identities of the tropical semiring. In general, they are not the elements 0 and 1 of R, respectively, even if such elements exist (e.g., for $R = \mathbb{Z}$), but instead the (tropical) additive and multiplicative identities $+\infty$ and 0 respectively:

```python
sage: T.zero() + T(3) == T(3)
True
sage: T.one() * T(3) == T(3)
True
sage: T.zero() == T(0)
False
sage: T.one() == T(1)
False
```

Element

alias of *TropicalSemiringElement*

additive_identity()

Return the (tropical) additive identity element $+\infty$.

EXAMPLES:

```python
sage: T = TropicalSemiring(QQ)
sage: T.zero() +infinity
```

gens()

Return the generators of `self`.

EXAMPLES:

```python
sage: T = TropicalSemiring(QQ)
sage: T.gens()
(1, +infinity)
```
infinity()
Return the (tropical) additive identity element $+\infty$.

EXAMPLES:
```
sage: T = TropicalSemiring(QQ)
sage: T.zero() +infinity
```

multiplicative_identity()
Return the (tropical) multiplicative identity element 0.

EXAMPLES:
```
sage: T = TropicalSemiring(QQ)
sage: T.one() 0
```

one()
Return the (tropical) multiplicative identity element 0.

EXAMPLES:
```
sage: T = TropicalSemiring(QQ)
sage: T.one() 0
```

zero()
Return the (tropical) additive identity element $+\infty$.

EXAMPLES:
```
sage: T = TropicalSemiring(QQ)
sage: T.zero() +infinity
```

class sage.rings.semirings.tropical_semiring.TropicalSemiringElement
Bases: Element
An element in the tropical semiring over an ordered additive semigroup R. Either in R or ∞. The operators $+, \cdot$ are defined as the tropical operators \oplus, \odot respectively.

lift()
Return the value of self lifted to the base.

EXAMPLES:
```
sage: T = TropicalSemiring(QQ)
sage: elt = T(2)
sage: elt.lift() 2
sage: elt.lift().parent() is QQ True
sage: T.additive_identity().lift().parent() The Infinity Ring
```

multiplicative_order()
Return the multiplicative order of self.

EXAMPLES:
sage: T = TropicalSemiring(QQ)
sage: T.multiplicative_identity().multiplicative_order()
1
sage: T.additive_identity().multiplicative_order()
+Infinity

class sage.rings.semirings.tropical_semiring.TropicalToTropical
 Bases: Map

Map from the tropical semiring to itself (possibly with different bases). Used in coercion.
INDICES AND TABLES

- Index
- Module Index
- Search Page
sage.rings.semirings.non_negative_integer_semiring, 1
sage.rings.semirings.tropical_semiring, 3
INDEX

A
additive_identity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 4
additive_semigroup_generators() (sage.rings.semirings.non_negative_integer_semiring.NonNegativeIntegerSemiring method), 2

E
Element (sage.rings.semirings.tropical_semiring.TropicalSemiring attribute), 4

G
gens() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 4

I
infinity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 4

L
lift() (sage.rings.semirings.tropical_semiring.TropicalSemiringElement method), 5

M
module
 sage.rings.semirings.non_negative_integer_semiring, 1
 sage.rings.semirings.tropical_semiring, 3
multiplicative_identity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5
multiplicative_order() (sage.rings.semirings.tropical_semiring.TropicalSemiringElement method), 5

N
NonNegativeIntegerSemiring (class in sage.rings.semirings.non_negative_integer_semiring), 1

O
one() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5

S
sage.rings.semirings.non_negative_integer_semiring module, 1
sage.rings.semirings.tropical_semiring module, 3

T
TropicalSemiring (class in sage.rings.semirings.tropical_semiring), 3
TropicalSemiringElement (class in sage.rings.semirings.tropical_semiring), 5
TropicalToTropical (class in sage.rings.semirings.tropical_semiring), 6

Z
zero() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5