CONTENTS

1 Non Negative Integer Semiring 1
2 Tropical Semirings 3
3 Indices and Tables 7
Python Module Index 9
Index 11
sage.rings.semirings.non_negative_integer_semiring.NN = Non negative integer semiring
class sage.rings.semirings.non_negative_integer_semiring.NonNegativeIntegerSemiring
 Bases: sage.sets.non_negative_integers.NonNegativeIntegers
 A class for the semiring of the non negative integers
 This parent inherits from the infinite enumerated set of non negative integers and endows it with its natural
 semiring structure.
 EXAMPLES:

 sage: NonNegativeIntegerSemiring()
 Non negative integer semiring

 For convenience, NN is a shortcut for NonNegativeIntegerSemiring():

 sage: NN == NonNegativeIntegerSemiring()
 True
 sage: NN.category()
 Category of facade infinite enumerated commutative semirings

 Here is a piece of the Cayley graph for the multiplicative structure:

 sage: G = NN.cayley_graph(elements=range(9), generators=[0,1,2,3,5,7])
 sage: G
 Looped multi-digraph on 9 vertices
 sage: G.plot()
 Graphics object consisting of 48 graphics primitives

 This is the Hasse diagram of the divisibility order on NN.
 sage: Poset(NN.cayley_graph(elements=[1..12], generators=[2,3,5,7,11])).show()

 Note: as for NonNegativeIntegers, NN is currently just a “facade” parent; namely its elements are plain Sage
 Integer Ring as parent:

 sage: x = NN(15); type(x)
 <class 'sage.rings.integer.Integer'>
 sage: x.parent()
 Integer Ring
 sage: x+3
 18
additive_semigroup_generators()

Returns the additive semigroup generators of self.

EXAMPLES:

```python
sage: NN.additive_semigroup_generators()
Family (0, 1)
```
CHAPTER TWO

TROPICAL SEMIRINGS

AUTHORS:

• Travis Scrimshaw (2013-04-28) - Initial version

```python
class sage.rings.semirings.tropical_semiring.TropicalSemiring(base, use_min=True)
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.UniqueRepresentation

The tropical semiring.

Given an ordered additive semigroup \( R \), we define the tropical semiring \( T = R \cup \{+\infty\} \) by defining tropical addition and multiplication as follows:

\[
a \oplus b = \min(a, b), \quad a \odot b = a + b.
\]

In particular, note that there are no (tropical) additive inverses (except for \( +\infty \)), and every element in \( R \) has a (tropical) multiplicative inverse.

There is an alternative definition where we define \( T = R \cup \{-\infty\} \) and alter tropical addition to be defined by

\[
a \oplus b = \max(a, b).
\]

To use the max definition, set the argument `use_min = False`.

**Warning:** `zero()` and `one()` refer to the tropical additive and multiplicative identities respectively. These are not the same as calling \( T(0) \) and \( T(1) \) respectively as these are not the tropical additive and multiplicative identities respectively.

Specifically do not use `sum(...)` as this converts 0 to 0 as a tropical element, which is not the same as `zero()`. Instead use the `sum` method of the tropical semiring:

```python
sage: T = TropicalSemiring(QQ)
sage: sum([T(1), T(2)]) # This is wrong
0
sage: T.sum([T(1), T(2)]) # This is correct
1
```

Be careful about using code that has not been checked for tropical safety.

INPUT:

• `base` – the base ordered additive semigroup \( R \)
• `use_min` – (default: `True`) if `True`, then the semiring uses $a \oplus b = \min(a, b)$; otherwise uses $a \oplus b = \max(a, b)$

**EXAMPLES:**

```python
sage: T = TropicalSemiring(QQ)
sage: elt = T(2); elt
2
Recall that tropical addition is the minimum of two elements:

```python
sage: T(3) + T(5)
3
```

Tropical multiplication is the addition of two elements:

```python
sage: T(2) * T(3)
5
sage: T(0) * T(-2)
-2
```

We can also do tropical division and arbitrary tropical exponentiation:

```python
sage: T(2) / T(1)
1
sage: T(2)^(-3/7)
-6/7
```

Note that “zero” and “one” are the additive and multiplicative identities of the tropical semiring. In general, they are not the elements 0 and 1 of R, respectively, even if such elements exist (e.g., for $R = \mathbb{Z}$), but instead the (tropical) additive and multiplicative identities $+\infty$ and 0 respectively:

```python
sage: T.zero() + T(3) == T(3)
True
sage: T.one() * T(3) == T(3)
True
sage: T.zero() == T(0)
False
sage: T.one() == T(1)
False
```

Element

alias of `TropicalSemiringElement`

additive_identity()

Return the (tropical) additive identity element $+\infty$.

EXAMPLES:

```python
sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity
```

gens()

Return the generators of `self`.

EXAMPLES:

```python
```
sage: T = TropicalSemiring(QQ)
sage: T.gens()
(1, +infinity)

infinity()

Return the (tropical) additive identity element $+\infty$.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity

multiplicative_identity()

Return the (tropical) multiplicative identity element 0.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.one()
0

one()

Return the (tropical) multiplicative identity element 0.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.one()
0

zero()

Return the (tropical) additive identity element $+\infty$.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity

class sage.rings.semirings.tropical_semiring.TropicalSemiringElement

Bases: sage.structure.element.Element

An element in the tropical semiring over an ordered additive semigroup R. Either in R or ∞. The operators $+, \cdot$ are defined as the tropical operators \oplus, \odot respectively.

lift()

Return the value of self lifted to the base.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: elt = T(2)
sage: elt.lift()
2
sage: elt.lift().parent() is QQ
True
The Infinity Ring

multiplicative_order()
 Return the multiplicative order of self.

 EXAMPLES:

 sage: T = TropicalSemiring(QQ)
sage: T.multiplicative_identity().multiplicative_order()
1
sage: T.additive_identity().multiplicative_order()
+Infinity

class sage.rings.semirings.tropical_semiring.TropicalToTropical
 Bases: sage.categories.map.Map

 Map from the tropical semiring to itself (possibly with different bases). Used in coercion.
INDICES AND TABLES

- Index
- Module Index
- Search Page
sage.rings.semirings.non_negative_integer_semiring, 1
sage.rings.semirings.tropical_semiring, 3
INDEX

A
additive_identity()
(sage.rings.semirings.tropical_semiring.TropicalSemiring
method), 4
additive_semigroup_generators()
(sage.rings.semirings.non_negative_integer_semiring.NonNegativeIntegerSemiring
method), 1

E
Element (sage.rings.semirings.tropical_semiring.TropicalSemiring
attribute), 4

G
gens() (sage.rings.semirings.tropical_semiring.TropicalSemiring
method), 4

I
infinity() (sage.rings.semirings.tropical_semiring.TropicalSemiring
method), 5

L
lift() (sage.rings.semirings.tropical_semiring.TropicalSemiringElement
method), 5

M
module
 sage.rings.semirings.non_negative_integer_semiring, 1
 sage.rings.semirings.tropical_semiring, 3
multiplicative_identity()
 (sage.rings.semirings.tropical_semiring.TropicalSemiring
method), 5
multiplicative_order()
 (sage.rings.semirings.tropical_semiring.TropicalSemiringElement
method), 6

N
NN (in module sage.rings.semirings.non_negative_integer_semiring), 1
NonNegativeIntegerSemiring (class in
 sage.rings.semirings.non_negative_integer_semiring), 1

O
one() (sage.rings.semirings.tropical_semiring.TropicalSemiring
method), 5

S
sage.rings.semirings.non_negative_integer_semiring
module, 1
sage.rings.semirings.tropical_semiring
module, 3

T
TropicalSemiring (class in
 sage.rings.semirings.tropical_semiring), 3
TropicalSemiringElement (class in
 sage.rings.semirings.tropical_semiring), 5
TropicalToTropical (class in
 sage.rings.semirings.tropical_semiring), 6

Z
zero() (sage.rings.semirings.tropical_semiring.TropicalSemiring
method), 5