CHAPTER ONE

NON NEGATIVE INTEGER SEMIRING

class sage.rings.semirings.non_negative_integer_semiring.NonNegativeIntegerSemiring
 Bases: NonNegativeIntegers

A class for the semiring of the non negative integers

This parent inherits from the infinite enumerated set of non negative integers and endows it with its natural semiring structure.

EXAMPLES:

sage: NonNegativeIntegerSemiring()
Non negative integer semiring

>>> from sage.all import *

>>> NonNegativeIntegerSemiring()
Non negative integer semiring

For convenience, NN is a shortcut for NonNegativeIntegerSemiring():

sage: NN == NonNegativeIntegerSemiring()
True

sage: NN.category()
Category of facade infinite enumerated commutative semirings

>>> from sage.all import *

>>> NN == NonNegativeIntegerSemiring()
True

>>> NN.category()
Category of facade infinite enumerated commutative semirings

Here is a piece of the Cayley graph for the multiplicative structure:

sage: G = NN.cayley_graph(elements=range(9), generators=[0,1,2,3,5,7])
needs sage.graphs
sage: G
needs sage.graphs
Looped multi-digraph on 9 vertices
sage: G.plot()
needs sage.graphs sage.plot
Graphics object consisting of 48 graphics primitives
This is the Hasse diagram of the divisibility order on \(\mathbb{N} \).

```
sage: Poset(NN.cayley_graph(elements=[1..12], generators=[2,3,5,7,11])).show() # needs sage.combinat.sage.graphs.sage.plot
```

Note: as for \texttt{NonNegativeIntegers}, \(\mathbb{N} \) is currently just a “facade” parent; namely its elements are plain \texttt{Sage Integers} with \texttt{Integer Ring} as parent:

```
sage: x = NN(15); type(x)
<class 'sage.rings.integer.Integer'>
sage: x.parent()
Integer Ring
sage: x+3
18
```

```
additive_semigroup_generators()
```

Returns the additive semigroup generators of \texttt{self}.

EXAMPLES:

```
sage: NN.additive_semigroup_generators()
Family (0, 1)
```

```
additive_semigroup_generators()
```
CHAPTER TWO

TROPICAL SEMIRINGS

AUTHORS:
- Travis Scrimshaw (2013-04-28) - Initial version

class sage.rings.semirings.tropical_semiring.TropicalSemiring (base, use_min=True)

Bases: Parent, UniqueRepresentation

The tropical semiring.

Given an ordered additive semigroup \(R \), we define the tropical semiring \(T = R \cup \{+\infty\} \) by defining tropical addition and multiplication as follows:

\[
a \oplus b = \min(a, b), \quad a \odot b = a + b.
\]

In particular, note that there are no (tropical) additive inverses (except for \(\infty \)), and every element in \(R \) has a (tropical) multiplicative inverse.

There is an alternative definition where we define \(T = R \cup \{-\infty\} \) and alter tropical addition to be defined by

\[
a \oplus b = \max(a, b).
\]

To use the max definition, set the argument \(\text{use_min} = False \).

Warning: \(\text{zero()} \) and \(\text{one()} \) refer to the tropical additive and multiplicative identities respectively. These are not the same as calling \(T(0) \) and \(T(1) \) respectively as these are not the tropical additive and multiplicative identities respectively.

Specifically do not use \(\text{sum}(...) \) as this converts 0 to 0 as a tropical element, which is not the same as \(\text{zero}() \). Instead use the \text{sum} method of the tropical semiring:

```sage
T = TropicalSemiring(QQ)
sage: sum([T(1), T(2)]) # This is wrong
0
sage: T.sum([T(1), T(2)]) # This is correct
1
```

```python
>>> from sage.all import *
>>> T = TropicalSemiring(QQ)
>>> sum([T(Integer(1)), T(Integer(2))]) # This is wrong
0
>>> T.sum([T(Integer(1)), T(Integer(2))]) # This is correct
1
```

Be careful about using code that has not been checked for tropical safety.
INPUT:

- base – the base ordered additive semigroup \(R \)
- use_min – (default: True) if True, then the semiring uses \(a \oplus b = \min(a, b) \); otherwise uses \(a \oplus b = \max(a, b) \)

EXAMPLES:

```python
sage: T = TropicalSemiring(QQ)
sage: elt = T(2); elt
2
```

Recall that tropical addition is the minimum of two elements:

```python
>>> from sage.all import *
>>> T = TropicalSemiring(QQ)
>>> elt = T(Integer(2)); elt
2
```

Tropical multiplication is the addition of two elements:

```python
sage: T(2) * T(3)
5
sage: T(0) * T(-2)
-2
```

We can also do tropical division and arbitrary tropical exponentiation:

```python
sage: T(2) / T(1)
1
sage: T(2)**(-3/7)
-6/7
```

Note that “zero” and “one” are the additive and multiplicative identities of the tropical semiring. In general, they are not the elements 0 and 1 of \(R \), respectively, even if such elements exist (e.g., for \(R = \mathbb{Z} \)), but instead the (tropical) additive and multiplicative identities \(+\infty\) and 0 respectively:
```python
sage: T.zero() + T(3) == T(3)
True
sage: T.one() * T(3) == T(3)
True
sage: T.zero() == T(0)
False
sage: T.one() == T(1)
False

>>> from sage.all import *

>>> T.zero() + T(Integer(3)) == T(Integer(3))
True
>>> T.one() * T(Integer(3)) == T(Integer(3))
True
>>> T.zero() == T(Integer(0))
False
>>> T.one() == T(Integer(1))
False
```

Element

alias of `TropicalSemiringElement`

additive_identity()

Return the (tropical) additive identity element $+\infty$.

EXAMPLES:

```python
sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity
```

```python
>>> from sage.all import *

>>> T = TropicalSemiring(QQ)

T.zero()
+infinity
```

gens()

Return the generators of `self`.

EXAMPLES:

```python
sage: T = TropicalSemiring(QQ)
sage: T.gens()
(1, +infinity)
```

```python
>>> from sage.all import *

>>> T = TropicalSemiring(QQ)

T.gens()
(1, +infinity)
```

infinity()

Return the (tropical) additive identity element $+\infty$.

EXAMPLES:
sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity

>>> from sage.all import *
>>> T = TropicalSemiring(QQ)
>>> T.zero()
+infinity

multiplicative_identity()
Return the (tropical) multiplicative identity element 0.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.one()
0

>>> from sage.all import *
>>> T = TropicalSemiring(QQ)
>>> T.one()
0

one()
Return the (tropical) multiplicative identity element 0.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.one()
0

>>> from sage.all import *
>>> T = TropicalSemiring(QQ)
>>> T.one()
0

zero()
Return the (tropical) additive identity element +∞.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity

>>> from sage.all import *
>>> T = TropicalSemiring(QQ)
>>> T.zero()
+infinity

class sage.rings.semirings.tropical_semiring.TropicalSemiringElement
Bases: Element

An element in the tropical semiring over an ordered additive semigroup \(R \). Either in \(R \) or \(\infty \). The operators +, \cdot are defined as the tropical operators \oplus, \odot respectively.
lift()

Return the value of self lifted to the base.

EXAMPLES:

```python
sage: T = TropicalSemiring(QQ)
sage: elt = T(2)
sage: elt.lift()
2
sage: elt.lift().parent() is QQ
True
sage: T.additive_identity().lift().parent()
The Infinity Ring
```

multiplicative_order()

Return the multiplicative order of self.

EXAMPLES:

```python
sage: T = TropicalSemiring(QQ)
sage: T.multiplicative_identity().multiplicative_order()
1
sage: T.additive_identity().multiplicative_order()
+Infinity
```

class sage.rings.semirings.tropical_semiring.TropicalToTropical

Bases: Map

Map from the tropical semiring to itself (possibly with different bases). Used in coercion.
CHAPTER THREE

INDICES AND TABLES

- Index
- Module Index
- Search Page
r

sage.rings.semirings.non_negative_integer_semiring, 1
sage.rings.semirings.tropical_semiring, 3
additive_identity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5
additive_semigroup_generators()
(sage.rings.semirings.non_negative_integer_semiring.NonNegativeIntegerSemiring method), 2

Element (sage.rings.semirings.tropical_semiring.TropicalSemiring attribute), 5

gens() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5

infinity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5

lift() (sage.rings.semirings.tropical_semiring.TropicalSemiringElement method), 6

module
 sage.rings.semirings.non_negative_integer_semiring, 1
 sage.rings.semirings.tropical_semiring, 3

multiplicative_identity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 6

multiplicative_order() (sage.rings.semirings.tropical_semiring.TropicalSemiringElement method), 7

NonNegativeIntegerSemiring (class in sage.rings.semirings.non_negative_integer_semiring), 1

one() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 6

sage.rings.semirings.non_negative_integer_semiring
module, 1
sage.rings.semirings.tropical_semiring
module, 3

TropicalSemiring (class in sage.rings.semirings.tropical_semiring), 3
TropicalSemiringElement (class in sage.rings.semirings.tropical_semiring), 6
TropicalToTropical (class in sage.rings.semirings.tropical_semiring), 7

zero() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 6