CONTENTS

1 Non Negative Integer Semiring 1
2 Tropical Semirings 3
3 Indices and Tables 7
Python Module Index 9
Index 11
CHAPTER ONE

NON NEGATIVE INTEGER SEMIRING

sage.rings.semirings.non_negative_integer_semiring.NN = Non negative integer semiring
class sage.rings.semirings.non_negative_integer_semiring.NonNegativeIntegerSemiring
 Bases: sage.sets.non_negative_integers.NonNegativeIntegers

A class for the semiring of the non negative integers

This parent inherits from the infinite enumerated set of non negative integers and endows it with its natural
semiring structure.

EXAMPLES:

 sage: NonNegativeIntegerSemiring()
 Non negative integer semiring

For convenience, NN is a shortcut for NonNegativeIntegerSemiring():

 sage: NN == NonNegativeIntegerSemiring()
 True
 sage: NN.category()
 Category of facade infinite enumerated commutative semirings

Here is a piece of the Cayley graph for the multiplicative structure:

 sage: G = NN.cayley_graph(elements=range(9), generators=[0,1,2,3,5,7])
 sage: G
 Looped multi-digraph on 9 vertices
 sage: G.plot()
 Graphics object consisting of 48 graphics primitives

This is the Hasse diagram of the divisibility order on NN.

 sage: Poset(NN.cayley_graph(elements=[1..12], generators=[2,3,5,7,11])).show()

Note: as for NonNegativeIntegers, NN is currently just a “facade” parent; namely its elements are plain Sage
Integers with Integer Ring as parent:

 sage: x = NN(15); type(x)
 <type 'sage.rings.integer.Integer'>
 sage: x.parent()
 Integer Ring
 sage: x+3
 18
additive_semigroup_generators()

Returns the additive semigroup generators of self.

EXAMPLES:

```
sage: NN.additive_semigroup_generators()
Family (0, 1)
```
TROPICAL SEMIRINGS

AUTHORS:

• Travis Scrimshaw (2013-04-28) - Initial version

class sage.rings.semirings.tropical_semiring.TropicalSemiring(base, use_min=True)

Bases:
sage.structure.parent.Parent, sage.structure.unique_representation.UniqueRepresentation

The tropical semiring.

Given an ordered additive semigroup \(R \), we define the tropical semiring \(T = R \cup \{+\infty\} \) by defining tropical addition and multiplication as follows:

\[
a \oplus b = \min(a, b), \quad a \odot b = a + b.
\]

In particular, note that there are no (tropical) additive inverses (except for \(\infty \)), and every element in \(R \) has a (tropical) multiplicative inverse.

There is an alternative definition where we define \(T = R \cup \{-\infty\} \) and alter tropical addition to be defined by

\[
a \oplus b = \max(a, b).
\]

To use the \(\max \) definition, set the argument \(\text{use_min} = \text{False} \).

Warning: \(\text{zero()} \) and \(\text{one()} \) refer to the tropical additive and multiplicative identities respectively. These are not the same as calling \(T(0) \) and \(T(1) \) respectively as these are not the tropical additive and multiplicative identities respectively.

Specifically do not use \(\text{sum}(\ldots) \) as this converts 0 to 0 as a tropical element, which is not the same as \(\text{zero()} \). Instead use the \(\text{sum} \) method of the tropical semiring:

```sage
T = TropicalSemiring(QQ)

sage: sum([T(1), T(2)]) # This is wrong
0

sage: T.sum([T(1), T(2)]) # This is correct
1
```

Be careful about using code that has not been checked for tropical safety.

INPUT:

• base – the base ordered additive semigroup \(R \)
• **use_min** – (default: **True**) if **True**, then the semiring uses \(a \oplus b = \min(a, b) \); otherwise uses \(a \oplus b = \max(a, b) \).

EXAMPLES:

```plaintext
sage: T = TropicalSemiring(QQ)
sage: elt = T(2); elt
2
```

Recall that tropical addition is the minimum of two elements:

```plaintext
sage: T(3) + T(5)
3
```

Tropical multiplication is the addition of two elements:

```plaintext
sage: T(2) * T(3)
5
sage: T(0) * T(-2)
-2
```

We can also do tropical division and arbitrary tropical exponentiation:

```plaintext
sage: T(2) / T(1)
1
sage: T(2)^(-3/7)
-6/7
```

Note that “zero” and “one” are the additive and multiplicative identities of the tropical semiring. In general, they are **not** the elements 0 and 1 of \(R \), respectively, even if such elements exist (e.g., for \(R = \mathbb{Z} \)), but instead the (tropical) additive and multiplicative identities \(+\infty\) and 0 respectively:

```plaintext
sage: T.zero() + T(3) == T(3)
True
sage: T.one() * T(3) == T(3)
True
sage: T.zero() == T(0)
False
sage: T.one() == T(1)
False
```

Element

alias of *TropicalSemiringElement*

additive_identity()

Return the (tropical) additive identity element \(+\infty\).

EXAMPLES:

```plaintext
sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity
```

gens()

Return the generators of **self**.

EXAMPLES:

```plaintext
```
sage: T = TropicalSemiring(QQ)
sage: T.gens()
(1, +infinity)

infinity()
Return the (tropical) additive identity element $+\infty$.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity

multiplicative_identity()
Return the (tropical) multiplicative identity element 0.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.one()
0

one()
Return the (tropical) multiplicative identity element 0.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.one()
0

zero()
Return the (tropical) additive identity element $+\infty$.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity

class sage.rings.semirings.tropical_semiring.TropicalSemiringElement
Bases: sage.structure.element.Element

An element in the tropical semiring over an ordered additive semigroup R. Either in R or ∞. The operators $+, \cdot$ are defined as the tropical operators \oplus, \odot respectively.

lift()
Return the value of self lifted to the base.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: elt = T(2)
sage: elt.lift()
2
sage: elt.lift().parent() is QQ
True
(continues on next page)
The Infinity Ring

multiplicative_order()

Return the multiplicative order of self.

EXAMPLES:

```
sage: T = TropicalSemiring(QQ)
sage: T.multiplicative_identity().multiplicative_order()  # 1
sage: T.additive_identity().multiplicative_order()  # +Infinity
```

class sage.rings.semirings.tropical_semiring.TropicalToTropical

Map from the tropical semiring to itself (possibly with different bases). Used in coercion.
CHAPTER THREE

INDICES AND TABLES

• Index
• Module Index
• Search Page
sage.rings.semirings.non_negative_integer_semiring, 1
sage.rings.semirings.tropical_semiring, 3
additive_identity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 4
additive_semigroup_generators() (sage.rings.semirings.non_negative_integer_semiring.NonNegativeIntegerSemiring method), 1
Element (sage.rings.semirings.tropical_semiring.TropicalSemiring attribute), 4
gens() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 4
infinity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5
lift() (sage.rings.semirings.tropical_semiring.TropicalSemiringElement method), 5
module
 sage.rings.semirings.non_negative_integer_semiring, 1
 sage.rings.semirings.tropical_semiring, 3
multiplicative_identity() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5
multiplicative_order() (sage.rings.semirings.tropical_semiring.TropicalSemiringElement method), 6

one() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5
NonNegativeIntegerSemiring (class in sage.rings.semirings.non_negative_integer_semiring), 1
zero() (sage.rings.semirings.tropical_semiring.TropicalSemiring method), 5