Standard Semirings

Release 10.2

The Sage Development Team

Dec 06, 2023
CONTENTS

1 Non Negative Integer Semiring .. 1
2 Tropical Semirings .. 3
3 Indices and Tables .. 7
Python Module Index .. 9
Index .. 11
CHAPTER ONE

NON NEGATIVE INTEGER SEMIRING

class sage.rings.semirings.non_negative_integer_semiring.NonNegativeIntegerSemiring
 Bases: NonNegativeIntegers

 A class for the semiring of the non negative integers

 This parent inherits from the infinite enumerated set of non negative integers and endows it with its natural
 semiring structure.

 EXAMPLES:

 sage: NonNegativeIntegerSemiring()
 Non negative integer semiring

 For convenience, NN is a shortcut for NonNegativeIntegerSemiring():

 sage: NN == NonNegativeIntegerSemiring()
 True
 sage: NN.category()
 Category of facade infinite enumerated commutative semirings

 Here is a piece of the Cayley graph for the multiplicative structure:

 sage: G = NN.cayley_graph(elements=range(9), generators=[0,1,2,3,5,7])
 # needs sage.graphs
 sage: G
 # needs sage.graphs
 Looped multi-digraph on 9 vertices
 sage: G.plot()
 # needs sage.graphs sage.plot
 Graphics object consisting of 48 graphics primitives

 This is the Hasse diagram of the divisibility order on NN.

 sage: P = Poset(NN.cayley_graph(elements=[1..12], generators=[2,3,5,7,11])).show() # needs
 sage.combinat sage.graphs sage.plot

 Note: as for NonNegativeIntegers, NN is currently just a “facade” parent; namely its elements are plain Sage
 Integers with Integer Ring as parent:

 sage: x = NN(15); type(x)
 <class 'sage.rings.integer.Integer'>
 sage: x.parent()

 (continues on next page)
additive_semigroup_generators()

Returns the additive semigroup generators of self.

EXAMPLES:

```
sage: NN.additive_semigroup_generators()
Family (0, 1)
```
CHAPTER

TWO

TROPICAL SEMIRINGS

AUTHORS:

• Travis Scrimshaw (2013-04-28) - Initial version

class sage.rings.semirings.tropical_semiring.TropicalSemiring(base, use_min=True)

 Bases: Parent, UniqueRepresentation

 The tropical semiring.

 Given an ordered additive semigroup R, we define the tropical semiring $T = R \cup \{+\infty\}$ by defining tropical addition and multiplication as follows:

 $a \oplus b = \min(a, b), \quad a \odot b = a + b.$

 In particular, note that there are no (tropical) additive inverses (except for ∞), and every element in R has a (tropical) multiplicative inverse.

 There is an alternative definition where we define $T = R \cup \{-\infty\}$ and alter tropical addition to be defined by

 $a \oplus b = \max(a, b).$

 To use the \max definition, set the argument $use_min = False$.

 Warning: $zero()$ and $one()$ refer to the tropical additive and multiplicative identities respectively. These are not the same as calling $T(0)$ and $T(1)$ respectively as these are not the tropical additive and multiplicative identities respectively.

 Specifically do not use $\text{sum}(\ldots)$ as this converts 0 to 0 as a tropical element, which is not the same as $zero()$. Instead use the sum method of the tropical semiring:

 sage: T = TropicalSemiring(QQ)
 sage: sum([T(1), T(2)]) # This is wrong
 0
 sage: T.sum([T(1), T(2)]) # This is correct
 1

 Be careful about using code that has not been checked for tropical safety.

INPUT:

• base – the base ordered additive semigroup R

• use_min – (default: True) if True, then the semiring uses $a \oplus b = \min(a, b)$; otherwise uses $a \oplus b = \max(a, b)$
EXAMPLES:

```
sage: T = TropicalSemiring(QQ)
sage: elt = T(2); elt
2
```

Recall that tropical addition is the minimum of two elements:

```
sage: T(3) + T(5)
3
```

Tropical multiplication is the addition of two elements:

```
sage: T(2) * T(3)
5
sage: T(0) * T(-2)
-2
```

We can also do tropical division and arbitrary tropical exponentiation:

```
sage: T(2) / T(1)
1
sage: T(2)^(-3/7)
-6/7
```

Note that “zero” and “one” are the additive and multiplicative identities of the tropical semiring. In general, they are not the elements 0 and 1 of \(R \), respectively, even if such elements exist (e.g., for \(R = \mathbb{Z} \)), but instead the (tropical) additive and multiplicative identities \(+\infty\) and 0 respectively:

```
sage: T.zero() + T(3) == T(3)
True
sage: T.one() * T(3) == T(3)
True
sage: T.zero() == T(0)
False
sage: T.one() == T(1)
False
```

Element

alias of `TropicalSemiringElement`

```
additive_identity()
```

Return the (tropical) additive identity element \(+\infty\).

EXAMPLES:

```
sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity
```

gens()

Return the generators of `self`.

EXAMPLES:
sage: T = TropicalSemiring(QQ)
sage: T.gens()
(1, +infinity)

infinity()

Return the (tropical) additive identity element $+\infty$.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity

multiplicative_identity()

Return the (tropical) multiplicative identity element 0.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.one()
0

one()

Return the (tropical) multiplicative identity element 0.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.one()
0

zero()

Return the (tropical) additive identity element $+\infty$.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: T.zero()
+infinity

class sage.rings.semirings.tropical_semiring.TropicalSemiringElement

Bases: Element

An element in the tropical semiring over an ordered additive semigroup R. Either in R or ∞. The operators $+$, \cdot are defined as the tropical operators \oplus, \odot respectively.

lift()

Return the value of self lifted to the base.

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: elt = T(2)
sage: elt.lift()
2
sage: elt.lift().parent() is QQ
(continues on next page)
True

```
sage: T.additive_identity().lift().parent()
The Infinity Ring
```

multiplicative_order()

Return the multiplicative order of `self`.

EXAMPLES:

```
sage: T = TropicalSemiring(QQ)
sage: T.multiplicative_identity().multiplicative_order()
1
sage: T.additive_identity().multiplicative_order()
+Infinity
```

class sage.rings.semirings.tropical_semiring.TropicalToTropical

Bases: Map

Map from the tropical semiring to itself (possibly with different bases). Used in coercion.
INDICES AND TABLES

- Index
- Module Index
- Search Page
sage.rings.semirings.non_negative_integer_semiring,

sage.rings.semirings.tropical_semiring, 3
INDEX

A
additive_identity()
 (sage.rings.semirings.tropical_semiring.TropicalSemiring
 method), 4
additive_semigroup_generators()
 (sage.rings.semirings.non_negative_integer_semiring.
 NonNegativeIntegerSemiring
 method), 2

E
Element (sage.rings.semirings.tropical_semiring.
 TropicalSemiring
 attribute), 4

G
gens() (sage.rings.semirings.tropical_semiring.
 TropicalSemiring
 method), 4

I
infinity() (sage.rings.semirings.tropical_semiring.
 TropicalSemiring
 method), 5

L
lift() (sage.rings.semirings.tropical_semiring.
 TropicalSemiring
 method), 5

M
module
 sage.rings.semirings.
 non_negative_integer_semiring, 1
 sage.rings.semirings.
 tropical_semiring, 3
multiplicative_identity()
 (sage.rings.semirings.
 tropical_semiring.
 TropicalSemiring
 method), 5
multiplicative_order()
 (sage.rings.semirings.
 tropical_semiring.
 TropicalSemiringElement
 method), 6

N
NonNegativeIntegerSemiring (class in
 sage.rings.
 semirings.
 non_negative_integer_semiring), 1

O
one() (sage.rings.semirings.tropical_semiring.
 TropicalSemiring
 method), 5

S
sage.rings.
 semirings.
 non_negative_integer_semiring
 module, 1
sage.rings.
 semirings.
 tropical_semiring
 module, 3

T
TropicalSemiring (class in
 sage.rings.
 semirings.
 tropical_semiring), 3
TropicalSemiringElement (class in
 sage.rings.
 semirings.
 tropical_semiring), 5
TropicalToTropical (class in
 sage.rings.
 semirings.
 tropical_semiring), 6

Z
zero() (sage.rings.semirings.tropical_semiring.
 TropicalSemiring
 method), 5