Sets

Release 10.3

The Sage Development Team

Mar 20, 2024
CONTENTS

1 Set Constructions 1
2 Sets of Numbers 81
3 Indices and Tables 113
Python Module Index 115
Index .. 117
1.1 Cartesian products

AUTHORS:

- Nicolas Thiery (2010-03): initial version

\texttt{class sage.sets.cartesian_product.CartesianProduct (sets, category, flatten=False)}

Bases: \texttt{UniqueRepresentation, Parent}

A class implementing a raw data structure for Cartesian products of sets (and elements thereof). See \texttt{cartesian_product} for how to construct full fledged Cartesian products.

\textbf{EXAMPLES:}

\begin{verbatim}
 sage: G = cartesian_product([GF(5), Permutations(10)])
 sage: G.cartesian_factors()
 (Finite Field of size 5, Standard permutations of 10)
 sage: G.cardinality()
 18144000
 sage: G.random_element() # random
 (1, [4, 7, 6, 5, 10, 1, 3, 2, 8, 9])
 sage: G.category()
 Join of Category of finite monoids
 and Category of Cartesian products of monoids
 and Category of Cartesian products of finite enumerated sets

 _cartesian_product_of_elements (elements)
 Return the Cartesian product of the given elements.
 This implements Sets.CartesianProducts.ParentMethods._cartesian_product_of_elements(). INPUT:
 \begin{itemize}
 \item elements -- an iterable (e.g. tuple, list) with one element of each Cartesian factor of self
 \end{itemize}

 Warning: This is meant as a fast low-level method. In particular, no coercion is attempted.
 When coercion or sanity checks are desirable, please use instead self(elements) or self._element_constructor_(elements).

 EXAMPLES:
\end{verbatim}
```python
sage: S1 = Sets().example()
sage: S2 = InfiniteEnumeratedSets().example()
sage: C = cartesian_product([S2, S1, S2])
sage: C._cartesian_product_of_elements([S2.an_element(), S1.an_element(), S2.an_element()])
(42, 47, 42)
```

```python
class Element
    Bases: ElementWrapperCheckWrappedClass
cartesian_factors()

    Return the tuple of elements that compose this element.
    EXAMPLES:

    ```python
 sage: A = cartesian_product([ZZ, RR])
sage: A((1, 1.23)).cartesian_factors() # needs sage.rings.real_mpfr
 (1, 1.23000000000000)
sage: type(_)
<... 'tuple'>
```
cartesian_projection(i)

    Return the projection of `self` on the `i`-th factor of the Cartesian product, as per `Sets.CartesianProducts.ElementMethods.cartesian_projection()`.

    INPUT:
    • `i` -- the index of a factor of the Cartesian product
    EXAMPLES:

    ```python
 sage: C = Sets().CartesianProducts().example(); C
 The Cartesian product of (Set of prime numbers (basic implementation), An example of an infinite enumerated set: the non negative integers, An example of a finite enumerated set: {1,2,3})
sage: x = C.an_element(); x
 (47, 42, 1)
sage: x.cartesian_projection(1)
 42
    ```
```
```
cartesian_factors()

    Return the Cartesian factors of `self`.

    See also:
    
    Sets.CartesianProducts.ParentMethods.cartesian_factors().
```
EXAMPLES:

```
sage: cartesian_product([QQ, ZZ, ZZ]).cartesian_factors()
(Rational Field, Integer Ring, Integer Ring)
```

cartesian_projection(i)

Return the natural projection onto the \(i\)-th Cartesian factor of \(self\) as per `Sets.CartesianProducts.ParentMethods.cartesian_projection()`.

INPUT:

- \(i\) – the index of a Cartesian factor of \(self\)

EXAMPLES:

```
sage: C = Sets().CartesianProducts().example(); C
The Cartesian product of (Set of prime numbers (basic implementation), An example of an infinite enumerated set: the non negative integers, An example of a finite enumerated set: \{1,2,3\})
sage: x = C.an_element(); x
(47, 42, 1)
sage: pi = C.cartesian_projection(1)
sage: pi(x)
42
```

cartesian_product\(()\)

Return the construction functor and its arguments for this Cartesian product.

OUTPUT:

A pair whose first entry is a Cartesian product functor and its second entry is a list of the Cartesian factors.

EXAMPLES:

```
sage: cartesian_product([ZZ, QQ]).construction()
(The cartesian_product functorial construction, (Integer Ring, Rational Field))
```

1.2 Families

A Family is an associative container which models a family \((f_i)_{i \in I}\). Then, \(f[i]\) returns the element of the family indexed by \(i\). Whenever available, set and combinatorial class operations (counting, iteration, listing) on the family are induced from those of the index set. Families should be created through the `Family()` function.

AUTHORS:

- Nicolas Thiery (2008-02): initial release

```
class sage.sets.family.AbstractFamily
    Bases: Parent
    The abstract class for family
```

1.2. Families 3
Any family belongs to a class which inherits from `AbstractFamily`.

hidden_keys()
Returns the hidden keys of the family, if any.

EXAMPLES:
```
sage: f = Family({3: 'a', 4: 'b', 7: 'd'})
sage: f.hidden_keys()
[]
```

inverse_family()
Returns the inverse family, with keys and values exchanged. This presumes that there are no duplicate values in `self`.

This default implementation is not lazy and therefore will only work with not too big finite families. It is also cached for the same reason:

```
sage: Family({3: 'a', 4: 'b', 7: 'd'}).inverse_family()
Finite family {'a': 3, 'b': 4, 'd': 7}
sage: Family((3,4,7)).inverse_family()
Finite family {3: 0, 4: 1, 7: 2}
```

items()
Return an iterator for key-value pairs.

A key can only appear once, but if the function is not injective, values may appear multiple times.

EXAMPLES:
```
sage: f = Family([-2, -1, 0, 1, 2], abs)
sage: list(f.items())
[(-2, 2), (-1, 1), (0, 0), (1, 1), (2, 2)]
```

keys()
Return the keys of the family.

EXAMPLES:
```
sage: f = Family({3: 'a', 4: 'b', 7: 'd'})
sage: sorted(f.keys())
[3, 4, 7]
```

map (f, name=None)
Return the family \(f(self[i]) \) for \(i \in I \), where \(I \) is the index set of `self`.

Todo: good name?

EXAMPLES:
```
sage: f = Family({3: 'a', 4: 'b', 7: 'd'})
sage: g = f.map(lambda x: x + '1')
sage: list(g)
['al', 'b1', 'd1']
```

values()

Return the elements (values) of this family.

EXAMPLES:

```
sage: f = Family(["c", "a", "b"], lambda x: x + x)
sage: sorted(f.values())
['aa', 'bb', 'cc']
```

zip(f, other, name=None)

Given two families with same index set \(I\) (and same hidden keys if relevant), returns the family \((f(self[i], other[i]))_{i \in I}\)

Todo: generalize to any number of families and merge with map?

EXAMPLES:

```
sage: f = Family({3: 'a', 4: 'b', 7: 'd'})
sage: g = Family({3: 1, 4: 2, 7: 3})
sage: h = f.zip(lambda x,y: x+y, g)
sage: list(h)
['a1', 'b2', 'd3']
```

class sage.sets.family.EnumeratedFamily(enumset)

Bases: LazyFamily

`EnumeratedFamily` turns an enumerated set \(c\) into a family indexed by the set \(\{0, \ldots, |c| - 1\}\) (or \(\mathbb{NN}\) if \(|c|\) is countably infinite).

Instances should be created via the `Family()` factory. See its documentation for examples and tests.

cardinality()

Return the number of elements in self.

EXAMPLES:

```
sage: from sage.sets.family import EnumeratedFamily
sage: f = EnumeratedFamily(Permutations(3))
sage: f.cardinality()
6
sage: f = Family(NonNegativeIntegers())
sage: f.cardinality()
+Infinity
```

class sage.sets.family.Family(indices=None, function=None, hidden_keys=[], hidden_function=None, lazy=False, name=None)

A Family is an associative container which models a family \((f_i)_{i \in I}\). Then, \(f[i]\) returns the element of the family indexed by \(i\). Whenever available, set and combinatorial class operations (counting, iteration, listing) on the family are induced from those of the index set.

There are several available implementations (classes) for different usages; Family serves as a factory, and will create instances of the appropriate classes depending on its arguments.

INPUT:

- \(indices\) – the indices for the family
Sets, Release 10.3

• function – (optional) the function \(f \) applied to all visible indices; the default is the identity function
• hidden_keys – (optional) a list of hidden indices that can be accessed through `my_family[i]`
• hidden_function – (optional) a function for the hidden indices
• lazy – boolean (default: `False`); whether the family is lazily created or not; if the indices are infinite, then this is automatically made `True`
• name – (optional) the name of the function; only used when the family is lazily created via a function

EXAMPLES:

In its simplest form, a list \(l = [l_0, l_1, \ldots, l_\ell] \) or a tuple by itself is considered as the family \((l_i)_{i \in I}\) where \(I \) is the set \(\{0, \ldots, \ell\} \) where \(\ell \) is \(\text{len}(l) - 1 \). So `Family(l)` returns the corresponding family:

```
sage: f = Family([1, 2, 3])
sage: f
Family (1, 2, 3)
sage: f = Family((1, 2, 3))
sage: f
Family (1, 2, 3)
```

Instead of a list you can as well pass any iterable object:

```
sage: f = Family(2*i+1 for i in [1, 2, 3])
sage: f
Family (3, 5, 7)
```

A family can also be constructed from a dictionary \(t \). The resulting family is very close to \(t \), except that the elements of the family are the values of \(t \). Here, we define the family \((f_i)_{i \in \{3, 4, 7\}}\) with \(f_3 = a \), \(f_4 = b \), and \(f_7 = d \):

```
sage: f = Family({3: 'a', 4: 'b', 7: 'd'})
sage: f
Finite family {3: 'a', 4: 'b', 7: 'd'}
sage: f[7]
'd'
sage: len(f)
3
sage: list(f)
['a', 'b', 'd']
sage: [ x for x in f ]
['a', 'b', 'd']
sage: f.keys()
[3, 4, 7]
sage: 'b' in f
True
sage: 'e' in f
False
```

A family can also be constructed by its index set \(I \) and a function \(f \), as in \((f(i))_{i \in I}\):

```
sage: f = Family([3,4,7], lambda i: 2*i)
sage: f
Finite family {3: 6, 4: 8, 7: 14}
sage: f.keys()
[3, 4, 7]
sage: f[7]
14
```

(continues on next page)
By default, all images are computed right away, and stored in an internal dictionary:

```
sage: f = Family((3,4,7), lambda i: 2*i)
sage: f
Finite family {3: 6, 4: 8, 7: 14}
```

Note that this requires all the elements of the list to be hashable. One can ask instead for the images \(f(i) \) to be computed lazily, when needed:

```
sage: f = Family([3,4,7], lambda i: 2*i, lazy=True)
sage: f
Lazy family <lambda>(i)_{i in [3, 4, 7]}
sage: f[7]
14
sage: list(f)
[6, 8, 14]
sage: [x for x in f]
[6, 8, 14]
```

This allows in particular for modeling infinite families:

```
sage: f = Family(ZZ, lambda i: 2*i, lazy=True)
sage: f
Lazy family <lambda>(i)_{i in Integer Ring}
sage: f.keys()
Integer Ring
sage: f[1]
2
sage: f[-5]
-10
sage: i = iter(f)
sage: next(i), next(i), next(i), next(i), next(i)
(0, 2, -2, 4, -4)
```

Note that the lazy keyword parameter is only needed to force laziness. Usually it is automatically set to a correct default value (ie: `False` for finite data structures and `True` for enumerated sets:

```
sage: f == Family(ZZ, lambda i: 2*i)
True
```

Beware that for those kind of families \(\text{len}(f) \) is not supposed to work. As a replacement, use the .cardinality() method:

```
sage: f = Family(Permutations(3), attrcall("to_lehmer_code"))
sage: f

sage: list(f)
[[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 0], [2, 0, 0], [2, 1, 0]]
sage: f.cardinality()
6
```

1.2. Families
Caveat: Only certain families with lazy behavior can be pickled. In particular, only functions that work with Sage’s `pickle_function` and `unpickle_function` (in `sage.misc.fpickle`) will correctly unpickle. The following two work:

```
sage: f = Family(Permutations(3), lambda p: p.to_lehmer_code()); f
Lazy family (<lambda>(i))_{i in Standard permutations of 3}
sage: f == loads(dumps(f))
True

sage: f = Family(Permutations(3), attrcall("to_lehmer_code")); f
Lazy family (i.to_lehmer_code())_{i in Standard permutations of 3}
sage: f == loads(dumps(f))
True
```

But this one does not:

```
sage: def plus_n(n):
...     return lambda x: x + n
...
sage: f = Family([1,2,3], plus_n(3), lazy=True); f
Lazy family (<lambda>(i))_{i in [1, 2, 3]}
sage: f == loads(dumps(f))
Traceback (most recent call last):
... ValueError: Cannot pickle code objects from closures
```

Finally, it can occasionally be useful to add some hidden elements in a family, which are accessible as `f[i]`, but do not appear in the keys or the container operations:

```
sage: f = Family([3,4,7], lambda i: 2*i, hidden_keys=[2])
sage: f
Finite family {3: 6, 4: 8, 7: 14}
sage: f.keys()
[3, 4, 7]
sage: f.hidden_keys()
[2]
sage: f[7]
14
sage: f[2]
4
sage: list(f)
[6, 8, 14]
sage: [x for x in f]
[6, 8, 14]
sage: len(f)
3
```

The following example illustrates when the function is actually called:

```
sage: def compute_value(i):
...     print('computing 2*'+str(i))
...     return 2*i
...
sage: f = Family([3,4,7], compute_value, hidden_keys=[2])
computing 2*3
computing 2*4
computing 2*7
sage: f
Finite family {3: 6, 4: 8, 7: 14}
sage: f.keys()
[3, 4, 7]
sage: f.hidden_keys()
(continues on next page)
```
Here is a close variant where the function for the hidden keys is different from that for the other keys:

```python
sage: f = Family([3,4,7], lambda i: 2*i, hidden_keys=[2], hidden_function =
˓→lambda i: 3*i)
```

```python
sage: f
Finite family {3: 6, 4: 8, 7: 14}
```

```python
sage: f.keys()
[3, 4, 7]
```

```python
sage: f.hidden_keys()
[2]
```

```python
sage: f[7]
14
```

```python
sage: f[2]
6
```

```python
sage: list(f)
[6, 8, 14]
```

```python
sage: [x for x in f]
[6, 8, 14]
```

```python
sage: len(f)
3
```

Family accept finite and infinite EnumeratedSets as input:

```python
sage: f = Family(FiniteEnumeratedSet([1,2,3]))
```

```python
sage: f
Family (1, 2, 3)
```

```python
sage: f = Family(NonNegativeIntegers())
```

```python
sage: f
Family (Non negative integers)
```

```python
sage: f = Family(FiniteEnumeratedSet([3,4,7]), lambda i: 2*i)
```

```python
sage: f
Finite family {3: 6, 4: 8, 7: 14}
```

```python
sage: f.keys()
{3, 4, 7}
```

```python
sage: f[7]
14
```

```python
sage: list(f)
[6, 8, 14]
```

```python
sage: [x for x in f]
[6, 8, 14]
```

(continues on next page)
class sage.sets.family.FiniteFamily

Bases: AbstractFamily

A FiniteFamily is an associative container which models a finite family \((f_i)_{i \in I}\). Its elements \(f_i\) are therefore its values. Instances should be created via the Family() factory. See its documentation for examples and tests.

EXAMPLES:

We define the family \((f_i)_{i \in \{3, 4, 7\}}\) with \(f_3 = a, f_4 = b, \) and \(f_7 = d:\)

```python
sage: from sage.sets.family import FiniteFamily
sage: f = FiniteFamily({3: a, 4: b, 7: d})
```

Individual elements are accessible as in a usual dictionary:

```python
sage: f[7]
'd'
```

And the other usual dictionary operations are also available:

```python
sage: len(f)
3
sage: f.keys()
[3, 4, 7]
```

However \(f\) behaves as a container for the \(f_i\)'s:

```python
sage: list(f)
['a', 'b', 'd']
sage: [x for x in f]
['a', 'b', 'd']
```

The order of the elements can be specified using the keys optional argument:

```python
sage: f = FiniteFamily({"a": "aa", "b": "bb", "c" : "cc" }, keys = ["c", "a", "b 
˓"])
sage: list(f)
['cc', 'aa', 'bb']
```

cardinality ()

Returns the number of elements in self.

EXAMPLES:

```python
sage: from sage.sets.family import FiniteFamily
sage: f = FiniteFamily({3: 'a', 4: 'b', 7: 'd'})
sage: f.cardinality()
3
```

has_key \((k)\)

Returns whether \(k\) is a key of self

EXAMPLES:
```python
sage: Family({"a":1, "b":2, "c":3}).has_key("a")
True
sage: Family({"a":1, "b":2, "c":3}).has_key("d")
False
```

keys()

Returns the index set of this family

EXAMPLES:

```python
sage: f = Family(["c", "a", "b"], lambda x: x+x)
sage: f.keys()
['c', 'a', 'b']
```

values()

Returns the elements of this family

EXAMPLES:

```python
sage: f = Family(["c", "a", "b"], lambda x: x+x)
sage: f.values()
['cc', 'aa', 'bb']
```

class sage.sets.family.FiniteFamilyWithHiddenKeys(dictionary, hidden_keys, hidden_function, keys=None)

Bases: FiniteFamily

A close variant of `FiniteFamily` where the family contains some hidden keys whose corresponding values are computed lazily (and remembered). Instances should be created via the `Family()` factory. See its documentation for examples and tests.

Caveat: Only instances of this class whose functions are compatible with `sage.misc.fpickle` can be pickled.

hidden_keys()

Returns self's hidden keys.

EXAMPLES:

```python
sage: f = Family([3,4,7], lambda i: 2*i, hidden_keys=[2])
sage: f.hidden_keys()
[2]
```

class sage.sets.family.LazyFamily(set, function, name=None)

Bases: AbstractFamily

A LazyFamily(I, f) is an associative container which models the (possibly infinite) family $(f(i))_{i \in I}$.

Instances should be created via the `Family()` factory. See its documentation for examples and tests.

cardinality()

Return the number of elements in self.

EXAMPLES:

```python
sage: from sage.sets.family import LazyFamily
sage: f = LazyFamily([3,4,7], lambda i: 2*i)
sage: f.cardinality()
```

(continues on next page)
3
sage: l = LazyFamily(NonNegativeIntegers(), lambda i: 2*i)
sage: l.cardinality()
+Infinity

keys()
Returns self's keys.

EXAMPLES:

sage: from sage.sets.family import LazyFamily
sage: f = LazyFamily([3,4,7], lambda i: 2*i)
sage: f.keys()
[3, 4, 7]

class sage.sets.family.TrivialFamily (enumeration)
Bases: AbstractFamily
TrivialFamily turns a list/tuple c into a family indexed by the set \{0, ..., |c| - 1\}.
Instances should be created via the Family() factory. See its documentation for examples and tests.

cardinality()
Return the number of elements in self.

EXAMPLES:

sage: from sage.sets.family import TrivialFamily
sage: f = TrivialFamily([a, b, d])
sage: g = f.map(lambda x: x + 1); g
Family (a1, b1, d1)

keys()
Returns self's keys.

EXAMPLES:

sage: from sage.sets.family import TrivialFamily
sage: f = TrivialFamily([3,4,7])
sage: f.keys()
[0, 1, 2]

map (f, name=None)
Return the family (f(self[i]))$_{i \in I}$, where I is the index set of self.
The result is again a TrivialFamily.

EXAMPLES:

sage: from sage.sets.family import TrivialFamily
sage: f = TrivialFamily(['a', 'b', 'd'])
sage: g = f.map(lambda x: x + '1'); g
Family ('a1', 'b1', 'd1')
1.3 Sets

AUTHORS:

- William Stein (2005) - first version
- William Stein (2006-02-16) - large number of documentation and examples; improved code
- Mike Hansen (2007-3-25) - added differences and symmetric differences; fixed operators
- Florent Hivert (2010-06-17) - Adapted to categories
- Nicolas M. Thiery (2011-03-15) - Added subset and superset methods
- Julian Rueth (2013-04-09) - Collected common code in Set_object_binary, fixed __hash__.

```python
sage.sets.set.Set(X=None, category=None)
```

Create the underlying set of X.

If X is a list, tuple, Python set, or $X.is_finite()$ is True, this returns a wrapper around Python’s enumerated immutable frozenset type with extra functionality. Otherwise it returns a more formal wrapper.

If you need the functionality of mutable sets, use Python’s builtin set type.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: X = Set(GF(9, 'a'))
sage: X
{0, 1, 2, a, a + 1, a + 2, 2*a, 2*a + 1, 2*a + 2}
sage: type(X)
<class 'sage.sets.set.Set_object_enumerated_with_category'>
sage: Y = X.union(Set(QQ))
sage: Y
Set-theoretic union of
 {0, 1, 2, a, a + 1, a + 2, 2*a, 2*a + 1, 2*a + 2} and
 Set of elements of Rational Field
sage: type(Y)
<class 'sage.sets.set.Set_object_union_with_category'>
```

Usually sets can be used as dictionary keys.

```python
sage: # needs sage.symbolic
sage: d = {Set([2*I, 1 + I]): 10}
sage: d
{{I + 1, 2*I}: 10}
sage: d[Set((1+I,2*I))]
10
sage: d[Set((1+I,2*I))]
10
```

The original object is often forgotten.

```python
sage: v = [1,2,3]
sage: X = Set(v)
sage: X
{1, 2, 3}
sage: v.append(5)
sage: X
{1, 2, 3}
```
Set also accepts iterators, but be careful to only give finite sets:

```python
sage: sorted(Set(range(1,6)))
[1, 2, 3, 4, 5]
sage: sorted(Set(list(range(1,6))))
[1, 2, 3, 4, 5]
sage: sorted(Set(iter(range(1,6))))
[1, 2, 3, 4, 5]
```

We can also create sets from different types:

```python
sage: sorted(Set([Sequence([3,1], immutable=True), 5, QQ, Partition([3,1,1]),
                    5, Rational Field, [3, 1, 1], [3, 1]],
                       key=str))  # needs sage.combinat
[5, Rational Field, [3, 1, 1], [3, 1]]
```

Sets with unhashable objects work, but with less functionality:

```python
sage: A = Set([QQ, (3,1), 5])  # hashable
sage: sorted(A.list(), key=repr)
[(3, 1), 5, Rational Field]
sage: type(A)
<class 'sage.sets.set.Set_object_enumerated_with_category'>
sage: B = Set([QQ, [3,1], 5])  # unhashable
sage: sorted(B.list(), key=repr)
Traceback (most recent call last):
  ... AttributeError: 'Set_object_with_category' object has no attribute 'list'...
sage: type(B)
<class 'sage.sets.set.Set_object_with_category'>
```

class `sage.sets.set.Set_add_sub_operators`

Bases: object

Mix-in class providing the operators `__add__` and `__sub__`.

The operators delegate to the methods `union` and `intersection`, which need to be implemented by the class.

class `sage.sets.set.Set_base`

Bases: object

Abstract base class for sets, not necessarily parents.

difference(X)

Return the set difference `self - X`.

EXAMPLES:

```python
sage: X = Set(ZZ).difference(Primes())
sage: 4 in X
True
sage: 3 in X
False
sage: 4/1 in X
True
```
intersection \((X)\)

Return the intersection of \(\text{self}\) and \(X\).

EXAMPLES:

```python
sage: X = Set(ZZ).intersection(Primes())
sage: 4 in X
False
sage: 3 in X
True
sage: 2/1 in X
True

sage: X = Set(GF(9,'b')).intersection(Set(GF(27,'c'))); X
#...
→ needs sage.rings.finite_rings
{}

sage: X = Set(GF(9,'b')).intersection(Set(GF(27,'b'))); X
#...
→ needs sage.rings.finite_rings
{}
```

symmetric_difference \((X)\)

Returns the symmetric difference of \(\text{self}\) and \(X\).

EXAMPLES:

```python
sage: X = Set([1,2,3]).symmetric_difference(Set([3,4]))
sage: X
{1, 2, 4}
```

union \((X)\)

Return the union of \(\text{self}\) and \(X\).

EXAMPLES:

```python
sage: Set(QQ).union(Set(ZZ))
Set-theoretic union of
Set of elements of Rational Field and
Set of elements of Integer Ring
sage: Set(QQ) + Set(ZZ)
Set-theoretic union of
Set of elements of Rational Field and
Set of elements of Integer Ring
sage: X = Set(QQ).union(Set(GF(3))); X
Set-theoretic union of
Set of elements of Rational Field and
{0, 1, 2}
```
sage: 2/3 in X
True
sage: GF(3)(2) in X
needs sage.libs.pari
True
sage: GF(5)(2) in X
False
sage: sorted(Set(GF(7)) + Set(GF(3)), key=int)
[0, 0, 1, 1, 2, 2, 3, 4, 5, 6]

class sage.sets.set.Set_boolean_operators

Bases: object

Mix-in class providing the Boolean operators \texttt{__or__}, \texttt{__and__}, and \texttt{__xor__}.

The operators delegate to the methods \texttt{union}, \texttt{intersection}, and \texttt{symmetric_difference}, which need to be implemented by the class.

class sage.sets.set.Set_object (X, category=None)

Bases: Set_generic, Set_base, Set_boolean_operators, Set_add_sub_operators

A set attached to an almost arbitrary object.

EXAMPLES:

sage: K = GF(19)
sage: Set(K)
\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18\}
sage: S = Set(K)

sage: latex(S)
\left\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18\right\}
sage: TestSuite(S).run()
sage: latex(Set(ZZ))
\Bold{Z}

cardinality()

Return the cardinality of this set, which is either an integer or \texttt{Infinity}.

EXAMPLES:

sage: Set(ZZ).cardinality()
+Infinity
sage: Primes().cardinality()
+Infinity
sage: Set(GF(5)).cardinality()
5
sage: Set(GF(5^2,'a')).cardinality()
needs sage.rings.finite_rings
25

is_empty()

Return boolean representing emptiness of the set.

OUTPUT:

True if the set is empty. False if otherwise.
EXAMPLES:

```python
sage: Set([]).is_empty()
True
sage: Set([0]).is_empty()
False
sage: Set([1..100]).is_empty()
False
sage: Set(SymmetricGroup(2).list()).is_empty()  # needs sage.groups
False
sage: Set(ZZ).is_empty()
False
```

is_finite()

Return True if self is finite.

EXAMPLES:

```python
sage: Set(QQ).is_finite()
False
sage: Set(GF(250037)).is_finite()  # needs sage.rings.finite_rings
True
sage: Set(Integers(2^1000000)).is_finite()
True
sage: Set([1,'a',ZZ]).is_finite()
True
```

object()

Return underlying object.

EXAMPLES:

```python
sage: X = Set(QQ)
sage: X.object()
Rational Field
sage: X = Primes()
sage: X.object()
Set of all prime numbers: 2, 3, 5, 7, ...
```

subsets(size=None)

Return the Subsets object representing the subsets of a set. If size is specified, return the subsets of that size.

EXAMPLES:

```python
sage: X = Set([1, 2, 3])
sage: list(X.subsets())
[{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]
sage: list(X.subsets(2))
[{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]
```

subsets_lattice()

Return the lattice of subsets ordered by containment.

EXAMPLES:

Sets, Release 10.3

class sage.sets.set.Set_object_binary(X, Y, op, latex_op, category=None)
Bases: Set_object

An abstract common base class for sets defined by a binary operation (ex. Set_object_union, Set_object_intersection, Set_object_difference, and Set_object_symmetric_difference).

INPUT:
• X, Y – sets, the operands to op
• op – a string describing the binary operation
• latex_op – a string used for rendering this object in LaTeX

EXAMPLES:

```python
sage: X = Set(QQ^2)  # needs sage.modules
sage: Y = Set(ZZ)
sage: from sage.sets.set import Set_object_binary
sage: S = Set_object_binary(X, Y, "union", "\cup"); S  # needs sage.modules
Set-theoretic union of
Set of elements of Vector space of dimension 2 over Rational Field and
Set of elements of Integer Ring
```

class sage.sets.set.Set_object_difference(X, Y, category=None)
Bases: Set_object_binary

Formal difference of two sets.

is_finite()

Return whether this set is finite.

EXAMPLES:

```python
sage: X = Set(range(10))
sage: Y = Set(range(-10,5))
sage: Z = Set(QQ)
sage: X.difference(Y).is_finite()  # True
sage: X.difference(Z).is_finite()  # True
sage: Z.difference(X).is_finite()  # False
sage: Z.difference(Set(ZZ)).is_finite()  # Traceback (most recent call last):
... Not Implemented Error
```
class sage.sets.set.Set_objectEnumerated(X, category=None)

Bases: Set_object

A finite enumerated set.

cardinality()

Return the cardinality of self.

EXAMPLES:

sage: Set([1,1]).cardinality()
1

difference(other)

Return the set difference self - other.

EXAMPLES:

sage: X = Set([1,2,3,4])
sage: Y = Set([1,2])
sage: X.difference(Y)
{3, 4}
sage: Z = Set(ZZ)
sage: W = Set([2.5, 4, 5, 6])
sage: W.difference(Z) # needs sage.rings.real_mpfr
{2.50000000000000}

frozenset()

Return the Python frozenset object associated to this set, which is an immutable set (hence hashable).

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: X = Set(GF(8, 'c'))
sage: X
{0, 1, c, c + 1, c^2, c^2 + 1, c^2 + c, c^2 + c + 1}
sage: s = X.set(); s
{0, 1, c, c + 1, c^2, c^2 + 1, c^2 + c, c^2 + c + 1}
sage: hash(s)
Traceback (most recent call last):
... TypeError: unhashable type: 'set'
sage: s = X.frozenset(); s
frozenset({0, 1, c, c + 1, c^2, c^2 + 1, c^2 + c, c^2 + c + 1})

sage: hash(s) != hash(tuple(X.set())) # needs sage.rings.finite_rings
True

sage: type(s) # needs sage.rings.finite_rings
<... 'frozenset'>

intersection(other)

Return the intersection of self and other.

EXAMPLES:
is_finite()

Return True as this is a finite set.

EXAMPLES:

```sage
sage: Set(GF(19)).is_finite()
True
```
sage: # needs sage.rings.finite_rings
sage: X = Set(GF(8,'c'))
sage: X
{0, 1, c, c + 1, c^2, c^2 + 1, c^2 + c, c^2 + c + 1}
sage: X.list()
[0, 1, c, c + 1, c^2, c^2 + 1, c^2 + c, c^2 + c + 1]
sage: type(X.list())
<... 'list'>

Todo: FIXME: What should be the order of the result? That of self.object()? Or the order given by set(self.object())? Note that __getitem__() is currently implemented in term of this list method, which is really inefficient …

random_element()
Return a random element in this set.

EXAMPLES:

sage: Set([1,2,3]).random_element() # random
2

set()
Return the Python set object associated to this set.

Python has a notion of finite set, and often Sage sets have an associated Python set. This function returns that set.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: X = Set(GF(8,'c'))
sage: X
{0, 1, c, c + 1, c^2, c^2 + 1, c^2 + c, c^2 + c + 1}
sage: X.set()
{0, 1, c, c + 1, c^2, c^2 + 1, c^2 + c, c^2 + c + 1}
sage: type(X.set())
<... 'set'>
sage: type(X)
<class 'sage.sets.set.Set_object_enumerated_with_category'>

symmetric_difference(other)
Return the symmetric difference of self and other.

EXAMPLES:

sage: X = Set([1,2,3,4])
sage: Y = Set([1,2])
sage: X.symmetric_difference(Y)
{3, 4}
sage: Y.symmetric_difference(X)
{3, 4}
sage: Z = Set(ZZ)
sage: W = Set([2.5, 4, 5, 6])
sage: U = W.symmetric_difference(Z)
sage: 2.5 in U
True
sage: 4 in U
False
(continues on next page)
sage: V = Z.symmetric_difference(W)
sage: V == U
True
sage: 2.5 in V
True
sage: 6 in V
False

union(other)

Return the union of self and other.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: X = Set(GF(8,'c'))
sage: Y = Set([GF(8,'c').0, 1, 2, 3])
sage: X
{0, 1, c, c + 1, c^2, c^2 + 1, c^2 + c, c^2 + c + 1}
sage: sorted(Y)
[1, 2, 3, c]
sage: sorted(X.union(Y), key=str)
[0, 1, 2, 3, c, c + 1, c^2, c^2 + 1, c^2 + c, c^2 + c + 1]
sage: X.symmetric_difference(Y).is_finite()
True
sage: X.symmetric_difference(Z).is_finite()
False
sage: Z.symmetric_difference(X).is_finite()
False
sage: Z.symmetric_difference(Set(ZZ)).is_finite()
Traceback (most recent call last):
...
NotImplementedError

class sage.sets.set.Set_object_union(X, Y, category=None)

Bases: Set_object_binary

A formal union of two sets.

cardinality()

Return the cardinality of this set.

EXAMPLES:

sage: X = Set(GF(3)).union(Set(GF(2)))
sage: X
{0, 1, 2, 0, 1}
sage: X.cardinality()
5
sage: X = Set(GF(3)).union(Set(ZZ))
sage: X.cardinality()
+Infinity

is_finite()

Return whether this set is finite.

EXAMPLES:

sage: X = Set(range(10))
sage: Y = Set(range(-10,0))
sage: Z = Set(Primes())
sage: X.union(Y).is_finite()
True
sage: X.union(Z).is_finite()
False

sage.sets.set.has_finite_length(obj)

Return True if obj is known to have finite length.

This is mainly meant for pure Python types, so we do not call any Sage-specific methods.

EXAMPLES:

sage: from sage.sets.set import has_finite_length
sage: has_finite_length(tuple(range(10)))
True
sage: has_finite_length(list(range(10)))
True
sage: has_finite_length(set(range(10)))
(continues on next page)
1.4 Disjoint-set data structure

The main entry point is `DisjointSet()` which chooses the appropriate type to return. For more on the data structure, see `DisjointSet()`.

This module defines a class for mutable partitioning of a set, which cannot be used as a key of a dictionary, vertex of a graph etc. For immutable partitioning see `SetPartition`.

AUTHORS:

- Sébastien Labbé (2009-11-24) - Pickling support
- Sébastien Labbé (2010-01) - Inclusion into sage (github issue #6775).

EXAMPLES:

Disjoint set of integers from 0 to n - 1:

```
sage: s = DisjointSet(6)
sage: s
{{0}, {1}, {2}, {3}, {4}, {5}}
sage: s.union(2, 4)
sage: s.union(1, 3)
sage: s.union(5, 1)
sage: s
{{0}, {1, 3, 5}, {2, 4}}
sage: s.find(3)
1
sage: s.find(5)
1
sage: list(map(s.find, range(6)))
[0, 1, 2, 1, 2, 1]
```

Disjoint set of hashables objects:

```
sage: d = DisjointSet('abcde')
sage: d
{{'a'}, {'b'}, {'c'}, {'d'}, {'e'}}
sage: d.union('a','b')
sage: d.union('b','c')
sage: d.union('c','d')
sage: d
{{'a', 'b', 'c', 'd'}, {'e'}}
sage: d.find('c')
'a'
```

sage.sets.disjoint_set.DisjointSet(arg)

Constructs a disjoint set where each element of arg is in its own set. If arg is an integer, then the disjoint set returned is made of the integers from 0 to arg - 1.

A disjoint-set data structure (sometimes called union-find data structure) is a data structure that keeps track of a partitioning of a set into a number of separate, nonoverlapping sets. It performs two operations:

- **find()** – Determine which set a particular element is in.
- **union()** – Combine or merge two sets into a single set.

REFERENCES:

- Wikipedia article Disjoint-set_data_structure

INPUT:

- **arg** – non negative integer or an iterable of hashable objects.

EXAMPLES:

From a non-negative integer:

```python
sage: d = DisjointSet(5)
{{0}, {1}, {2}, {3}, {4}}
```

From an iterable:

```python
sage: D = DisjointSet('abcde')
{{'a'}, {'b'}, {'c'}, {'d'}, {'e'}}
sage: D = DisjointSet(range(6))
{{0}, {1}, {2}, {3}, {4}, {5}}
sage: D = DisjointSet(['yi', 45, 'cheval'])
{{'cheval'}, {'yi'}, {45}}
```

class sage.sets.disjoint_set.DisjointSet_class

Bases: SageObject

cardinality()

Return the number of elements in self, not the number of subsets.

EXAMPLES:

```python
sage: d = DisjointSet(5)
sage: d.cardinality()
5
sage: d.union(2, 4)
sage: d.cardinality()
5
sage: d = DisjointSet(range(5))
sage: d.cardinality()
5
sage: d.union(2, 4)
sage: d.cardinality()
5
```

number_of_subsets()

Return the number of subsets in self.

EXAMPLES:

```python
sage: d = DisjointSet(5)
sage: d.number_of_subsets() 5
```
sage: d = DisjointSet(5)
sage: d.number_of_subsets()
5
sage: d.union(2, 4)
sage: d.number_of_subsets()
4
sage: d = DisjointSet(range(5))
sage: d.number_of_subsets()
5
sage: d.union(2, 4)
sage: d.number_of_subsets()
4

class sage.sets.disjoint_set.DisjointSet_of_hashables

Bases: DisjointSet_class

Disjoint set of hashables.

EXAMPLES:

sage: d = DisjointSet('abcde')
sage: d
{{'a'}, {'b'}, {'c'}, {'d'}, {'e'}}
sage: d.union('a', 'c')
sage: d
{{'a', 'c'}, {'b'}, {'d'}, {'e'}}
sage: d.find('a')
'a'

element_to_root_dict()

Return the dictionary where the keys are the elements of self and the values are their representative inside a list.

EXAMPLES:

sage: d = DisjointSet(range(5))
sage: d.union(4,2)
sage: e = d.element_to_root_dict()
sage: sorted(e.items())
[(0, 0), (1, 4), (2, 2), (3, 2), (4, 4)]

find(e)

Return the representative of the set that e currently belongs to.

INPUT:

• e – element in self

EXAMPLES:

sage: e = DisjointSet(range(5))
sage: e.union(4,2)
sage: e
{{0}, {1}, {2, 4}, {3}}
\begin{Verbatim}
sage: e.find(2)
4
sage: e.find(4)
4
sage: e.union(1,3)
sage: e
{{0}, {1, 3}, {2, 4}}
sage: e.find(1)
1
sage: e.find(3)
1
sage: e.union(3,2)
sage: e
{{0}, {1, 2, 3, 4}}
sage: [e.find(i) for i in range(5)]
[0, 1, 1, 1, 1]
sage: e.find(5)
Traceback (most recent call last):
...
KeyError: 5
\end{Verbatim}

\texttt{root_to_elements_dict()}
Return the dictionary where the keys are the roots of \texttt{self} and the values are the elements in the same set.

\textbf{EXAMPLES:}

\begin{Verbatim}
sage: d = DisjointSet(range(5))
sage: d.union(2,3)
sage: d.union(4,1)
sage: e = d.root_to_elements_dict()
sage: sorted(e.items())
[({0}, [0]), (2, [2, 3]), (4, [1, 4])]
\end{Verbatim}

\texttt{to_digraph()}
Return the current digraph of \texttt{self} where (a, b) is an oriented edge if b is the parent of a.

\textbf{EXAMPLES:}

\begin{Verbatim}
sage: d = DisjointSet(range(5))
sage: d.union(2,3)
sage: d.union(4,1)
sage: d.union(3,4)
sage: d
{{0}, {1, 2, 3, 4}}
sage: g = d.to_digraph(); g
 Looped digraph on 5 vertices
\end{Verbatim}

The result depends on the ordering of the union:
union *(e,f)*

Combine the set of *e* and the set of *f* into one.

All elements in those two sets will share the same representative that can be gotten using `find`.

INPUT:

- *e* – element in *self*
- *f* – element in *self*

EXAMPLES:

```python
sage: e = DisjointSet('abcde')
sage: e
{{'a'}, {'b'}, {'c'}, {'d'}, {'e'}}
sage: e.union('a', 'b')
sage: e
{{'a', 'b'}, {'c'}, {'d'}, {'e'}}
sage: e.union('c', 'e')
sage: e
{{'a', 'b', 'c', 'e'}, {'d'}}
sage: e.union('b', 'e')
sage: e
{{'a', 'b', 'c', 'e'}, {'d'}}
```

class `sage.sets.disjoint_set.DisjointSet_of_integers`

Bases: `DisjointSet_class`

Disjoint set of integers from 0 to n-1.

EXAMPLES:

```python
sage: d = DisjointSet(5)
sage: d
{{0}, {1}, {2}, {3}, {4}}
sage: d.union(2, 4)
sage: d
{{0, 2, 4}, {1}, {3}}
sage: d.find(2)
2
```

element_to_root_dict()

Return the dictionary where the keys are the elements of *self* and the values are their representative inside a list.

EXAMPLES:

```python
sage: d = DisjointSet(5)
sage: d.union(2, 3)
sage: d.union(4, 1)
```
find(i)

Return the representative of the set that i currently belongs to.

INPUT:

- i – element in self

EXAMPLES:

```python
sage: e = DisjointSet(5)
sage: e.union(4,2)
sage: e
{{0}, {1}, {2, 4}, {3}}
sage: e.find(2)
4
sage: e.find(4)
4
sage: e.union(1,3)
sage: e
{{0}, {1, 3}, {2, 4}}
sage: e.find(1)
1
sage: e.find(3)
1
sage: e.union(3,2)
sage: e
{{0}, {1, 2, 3, 4}}
sage: [e.find(i) for i in range(5)]
[0, 1, 1, 1, 1]
sage: e.find(5)
Traceback (most recent call last):
... 
ValueError: i(=5) must be between 0 and 4
```

root_to_elements_dict()

Return the dictionary where the keys are the roots of self and the values are the elements in the same set as the root.

EXAMPLES:

```python
sage: d = DisjointSet(5)
sage: sorted(d.root_to_elements_dict().items())
[(0, [0]), (1, [1]), (2, [2]), (3, [3]), (4, [4])]
sage: d.union(2,3)
sage: sorted(d.root_to_elements_dict().items())
[(0, [0]), (1, [1]), (2, [0, 2, 3]), (3, [3]), (4, [4])]
sage: d.union(3,0)
sage: sorted(d.root_to_elements_dict().items())
[(1, [1]), (2, [0, 2, 3]), (3, [0, 3]), (4, [4])]
sage: d
{{0, 2, 3}, {1}, {4}}
```

1.4. Disjoint-set data structure 29
to_digraph()

Return the current digraph of self where \((a, b)\) is an oriented edge if \(b\) is the parent of \(a\).

EXAMPLES:

```
sage: d = DisjointSet(5)
sage: d.union(2,3)
sage: d.union(4,1)
sage: d.union(3,4)
sage: d
{{0}, {1, 2, 3, 4}}
sage: g = d.to_digraph(); g
# needs sage.graphs
Looped digraph on 5 vertices
sage: g.edges(sort=True)
# needs sage.graphs
[(0, 0, None), (1, 2, None), (2, 2, None), (3, 2, None), (4, 2, None)]
```

The result depends on the ordering of the union:

```
sage: d = DisjointSet(5)
sage: d.union(1,2)
sage: d.union(1,3)
sage: d.union(1,4)
sage: d
{{0, 1}, {2}, {3}, {4}}
sage: d.to_digraph().edges(sort=True)
# needs sage.graphs
[(0, 0, None), (1, 1, None), (2, 1, None), (3, 1, None), (4, 1, None)]
```

union(i, j)

Combine the set of \(i\) and the set of \(j\) into one.

All elements in those two sets will share the same representative that can be gotten using find.

INPUT:

- \(i\) – element in self
- \(j\) – element in self

EXAMPLES:

```
sage: d = DisjointSet(5)
sage: d
{{0}, {1}, {2}, {3}, {4}}
sage: d.union(0,1)
sage: d
{{0, 1}, {2}, {3}, {4}}
sage: d.union(2,4)
sage: d
{{0, 1}, {2}, {3}, {4}}
sage: d.union(2,4)
sage: d
{{0, 1}, {2}, {3}, {4}}
sage: d.union(1,4)
sage: d
{{0, 1, 2, 4}, {3}}
sage: d.union(1,5)
Traceback (most recent call last):
... ValueError: j(=5) must be between 0 and 4
```
1.5 Disjoint union of enumerated sets

AUTHORS:

- Florent Hivert (2010-03): classcall related stuff.
- Florent Hivert (2010-12): fixed facade element construction.

```python
class sage.sets.disjoint_union EnumeratedSets.

Bases: UniqueRepresentation, Parent

A class for disjoint unions of enumerated sets.

INPUT:

- `family` – a list (or iterable or family) of enumerated sets
- `keepkey` – a boolean
- `facade` – a boolean

This models the enumerated set obtained by concatenating together the specified ordered sets. The latter are sup-posed to be pairwise disjoint; otherwise, a multiset is created.

The argument `family` can be a list, a tuple, a dictionary, or a family. If it is not a family it is first converted into
a family (see `sage.sets.family.Family()`).

Experimental options:

By default, there is no way to tell from which set of the union an element is generated. The option `keepkey=True`
keeps track of those by returning pairs `(key, el)` where `key` is the index of the set to which `el` belongs. When
this option is specified, the enumerated sets need not be disjoint anymore.

With the option `facade=False` the elements are wrapped in an object whose parent is the disjoint union itself.
The wrapped object can then be recovered using the `value` attribute.

The two options can be combined.

The names of those options is imperfect, and subject to change in future versions. Feedback welcome.

EXAMPLES:

The input can be a list or a tuple of FiniteEnumeratedSets:

```
sage: U1 = DisjointUnionEnumeratedSets((
....: FiniteEnumeratedSet([1,2,3]),
....: FiniteEnumeratedSet([4,5,6]))

sage: U1
Disjoint union of Family ({1, 2, 3}, {4, 5, 6})

sage: U1.list()
[1, 2, 3, 4, 5, 6]

sage: U1.cardinality()
6
```
```
The input can also be a dictionary:

```
sage: U2 = DisjointUnionEnumeratedSets({1: FiniteEnumeratedSet([1,2,3]),
....: 2: FiniteEnumeratedSet([4,5,6])})
sage: U2
Disjoint union of Finite family {1: {1, 2, 3}, 2: {4, 5, 6}}
sage: U2.list()
[1, 2, 3, 4, 5, 6]
sage: U2.cardinality()
6
```

However in that case the enumeration order is not specified.

In general the input can be any family:

```
sage: # needs sage.combinat
sage: U3 = DisjointUnionEnumeratedSets(
....: Family([2,3,4], Permutations, lazy=True))
sage: U3
Disjoint union of Lazy family
<\class 'sage.combinat.permutation.Permutations'>(i)_{i in [2, 3, 4]}
sage: U3.cardinality()
32
sage: it = iter(U3)
sage: [next(it), next(it), next(it), next(it), next(it), next(it)]
[[1, 2], [2, 1], [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1]]
sage: U3.unrank(18)
[2, 4, 1, 3]
```

This allows for infinite unions:

```
sage: # needs sage.combinat
sage: U4 = DisjointUnionEnumeratedSets(
....: Family(NonNegativeIntegers(), Permutations))
sage: U4
Disjoint union of Lazy family
<\class 'sage.combinat.permutation.Permutations'>(i)_{i in Non negative \rightarrow integers}
sage: U4.cardinality()
+Infinity
sage: it = iter(U4)
sage: [next(it), next(it), next(it), next(it), next(it), next(it)]
[[], [1], [1, 2], [2, 1], [1, 2, 3], [1, 3, 2]]
sage: U4.unrank(18)
[2, 3, 1, 4]
```

Warning: Beware that some of the operations assume in that case that infinitely many of the enumerated sets are non empty.
Experimental options

We demonstrate the keepkey option:

```python
sage: # needs sage.combinat
sage: Ukeep = DisjointUnionEnumeratedSets(
    ....:     Family(list(range(4)), Permutations), keepkey=True)
sage: it = iter(Ukeep)
sage: [next(it) for i in range(6)]
[(0, []), (1, [1]), (2, [1, 2]), (2, [2, 1]), (3, [1, 2, 3]), (3, [1, 3, 2])]
sage: type(next(it)[1])
<class 'sage.combinat.permutation.StandardPermutations_n_with_category.element_class'>
```

We now demonstrate the facade option:

```python
sage: # needs sage.combinat
sage: UNoFacade = DisjointUnionEnumeratedSets(
    ....:     Family(list(range(4)), Permutations), facade=False)
sage: it = iter(UNoFacade)
sage: [next(it) for i in range(6)]
[[], [1], [1, 2], [2, 1], [1, 2, 3], [1, 3, 2]]
sage: el = next(it); el
[2, 1, 3]
sage: type(el)
<... sage.structure.element_wrapper.ElementWrapper>
sage: el.parent() == UNoFacade
True
sage: elv = el.value; elv
[2, 1, 3]
sage: type(elv)
<class 'sage.combinat.permutation.StandardPermutations_n_with_category.element_class'>
```

The elements `el` of the disjoint union are simple wrapped elements. So to access the methods, you need to do `el.value`:

```python
sage: el[0]  # needs sage.combinat
Traceback (most recent call last):
  ...
TypeError: 'sage.structure.element_wrapper.ElementWrapper' object is not subscriptable
sage: el.value[0]  # needs sage.combinat
2
```

Possible extensions: the current enumeration order is not suitable for unions of infinite enumerated sets (except possibly for the last one). One could add options to specify alternative enumeration orders (anti-diagonal, round robin, ...) to handle this case.

1.5. Disjoint union of enumerated sets 33
Inheriting from DisjointUnionEnumeratedSets

There are two different use cases for inheriting from DisjointUnionEnumeratedSets: writing a parent which happens to be a disjoint union of some known parents, or writing generic disjoint unions for some particular classes of sage.categories.enumerated_sets.EnumeratedSets.

• In the first use case, the input of the __init__ method is most likely different from that of DisjointUnionEnumeratedSets. Then, one simply writes the __init__ method as usual:

```sage
class MyUnion(DisjointUnionEnumeratedSets):
    def __init__(self):
        DisjointUnionEnumeratedSets.__init__(self, Family([1,2], Permutations))
```

```sage
pp = MyUnion()
pp.list()
[[1], [1, 2], [2, 1]]
```

In case the __init__() method takes optional arguments, or does some normalization on them, a specific method __classcall_private__ is required (see the documentation of UniqueRepresentation).

• In the second use case, the input of the __init__ method is the same as that of DisjointUnionEnumeratedSets; one therefore wants to inherit the __classcall_private__ method as well, which can be achieved as follows:

```sage
class UnionOfSpecialSets(DisjointUnionEnumeratedSets):
    __classcall_private__ = staticmethod(DisjointUnionEnumeratedSets.__classcall_private__)
```

```sage
psp = UnionOfSpecialSets(Family([1,2], Permutations))
psp.list()
[[1], [1, 2], [2, 1]]
```

Element()
an_element()

Return an element of this disjoint union, as per Sets.ParentMethods.an_element().

EXAMPLES:

```sage
U4 = DisjointUnionEnumeratedSets(Family([3, 5, 7], Permutations))
sage: U4.an_element()
[1, 2, 3]
```

cardinality()

Returns the cardinality of this disjoint union.

EXAMPLES:

For finite disjoint unions, the cardinality is computed by summing the cardinalities of the enumerated sets:

```sage
U = DisjointUnionEnumeratedSets(Family([0,1,2,3], Permutations))
sage: U.cardinality()
10
```

For infinite disjoint unions, this makes the assumption that the result is infinite:
1.6 Enumerated set from iterator

EXAMPLES:

We build a set from the iterator `graphs` that returns a canonical representative for each isomorphism class of graphs:

```python
sage: # needs sage.graphs
sage: from sage.sets.set_from_iterator import EnumeratedSetFromIterator
sage: E = EnumeratedSetFromIterator(
    ....:     graphs,
    ....:     name="Graphs",
    ....:     category=InfiniteEnumeratedSets(),
    ....:     cache=True)
sage: E
Graphs
sage: E.unrank(0)
Graph on 0 vertices
sage: E.unrank(4)
Graph on 3 vertices
sage: E.cardinality()
+Infinity
sage: E.category()
Category of facade infinite enumerated sets
```

The module also provides decorator for functions and methods:

```python
sage: from sage.sets.set_from_iterator import set_from_function
sage: @set_from_function
    ....: def f(n):
    ....:     return xsrange(n)
sage: f(3)
{0, 1, 2}
```

```python
sage: f(5)
{0, 1, 2, 3, 4}
```

```python
sage: f(100)
{0, 1, 2, 3, 4, ...}
```

```python
sage: from sage.sets.set_from_iterator import set_from_method
sage: class A:
    ....:     @set_from_method
    ....:     def f(self, n):
```

(continues on next page)
class sage.sets.set_from_iterator.Decorator

Bases: object

Abstract class that manage documentation and sources of the wrapped object.

The method needs to be stored in the attribute self.f

class sage.sets.set_from_iterator.DummyExampleForPicklingTest

Bases: object

Class example to test pickling with the decorator set_from_method.

Warning: This class is intended to be used in doctest only.

EXAMPLES:

```python
sage: from sage.sets.set_from_iterator import DummyExampleForPicklingTest
sage: d = DummyExampleForPicklingTest()
```

\[\{10, 11, 12, 13, 14, \ldots\} \]

\(f() \)

Returns the set between self.start and self.stop.

EXAMPLES:

```python
sage: from sage.sets.set_from_iterator import DummyExampleForPicklingTest
sage: d = DummyExampleForPicklingTest()
```

\[\{10, 11, 12, 13, 14, \ldots\} \]

\(d.f() \)

\[\{10, 11, 12, 13, 14, \ldots\} \]

\(d.start = 4 \)

\(d.stop = 200 \)

\[\{4, 5, 6, 7, 8, \ldots\} \]

start = 10

stop = 100

class sage.sets.set_from_iterator.EnumeratedSetFromIterator(f, args=None, kwds=None, name=None, category=None, cache=False)

Bases: Parent

A class for enumerated set built from an iterator.

INPUT:

- \(f \) – a function that returns an iterable from which the set is built from
• **args** – tuple – arguments to be sent to the function f

• **kwds** – dictionary – keywords to be sent to the function f

• **name** – an optional name for the set

• **category** – (default: None) an optional category for that enumerated set. If you know that your iterator will stop after a finite number of steps you should set it as `FiniteEnumeratedSets`, conversely if you know that your iterator will run over and over you should set it as `InfiniteEnumeratedSets`.

• **cache** – boolean (default: False) – Whether or not use a cache mechanism for the iterator. If True, then the function f is called only once.

EXAMPLES:

```python
sage: from sage.sets.set_from_iterator import EnumeratedSetFromIterator
sage: E = EnumeratedSetFromIterator(graphs, args=(7,)); E
# needs sage.graphs
{Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices,
 Graph on 7 vertices, Graph on 7 vertices, ...}
sage: E.category()
# needs sage.graphs
Category of facade enumerated sets
```

The same example with a cache and a custom name:

```python
sage: E = EnumeratedSetFromIterator(graphs, args=(8,), cache=True,
....: name="Graphs with 8 vertices",
....: category=FiniteEnumeratedSets()); E
Graphs with 8 vertices
sage: E.unrank(3)
# needs sage.graphs
Graph on 8 vertices
sage: E.category()
# needs sage.graphs
Category of facade finite enumerated sets
```

Note: In order to make the `TestSuite` works, the elements of the set should have parents.

```python
clear_cache()  
```

Clear the cache.

EXAMPLES:

```python
sage: from itertools import count
sage: from sage.sets.set_from_iterator import EnumeratedSetFromIterator
sage: E = EnumeratedSetFromIterator(count, args=(1,), cache=True)
sage: e1 = E._cache; e1
lazy list [1, 2, 3, ...]
sage: E.clear_cache()
sage: E._cache
lazy list [1, 2, 3, ...]
sage: e1 is E._cache
False
```

```python
is_parent_of(x)
```

Test whether x is in `self`.
If the set is infinite, only the answer True should be expected in finite time.

EXAMPLES:

```python
sage: from sage.sets.set_from_iterator import EnumeratedSetFromIterator
sage: P = Partitions(12, min_part=2, max_part=5)  # needs sage.combinat
sage: E = EnumeratedSetFromIterator(P.__iter__)  # needs sage.combinat
sage: P([5,5,2]) in E  # needs sage.combinat
True
```

unrank (i)

Returns the element at position i.

EXAMPLES:

```python
sage: from sage.sets.set_from_iterator import EnumeratedSetFromIterator
sage: E = EnumeratedSetFromIterator(graphs, args=(8,), cache=True)
sage: F = EnumeratedSetFromIterator(graphs, args=(8,), cache=False)
sage: E.unrank(2)
Graph on 8 vertices
sage: E.unrank(2) == F.unrank(2)
True
```

class sage.sets.set_from_iterator.EnumeratedSetFromIterator_function_decorator (f=None, name=None, **options)

Bases: Decorator

Decorator for EnumeratedSetFromIterator.

Name could be string or a function (args, kwds) -> string.

Warning: If you are going to use this with the decorator cached_function(), you must place the @cached_function first. See the example below.

EXAMPLES:

```python
sage: from sage.sets.set_from_iterator import set_from_function
sage: @set_from_function
....: def f(n):
....:     for i in range(n):
....:         yield i**2 + i + 1
sage: f(3)
{1, 3, 7}
sage: f(100)
{1, 3, 7, 13, 21, ...}
```

To avoid ambiguity, it is always better to use it with a call which provides optional global initialization for the call to EnumeratedSetFromIterator:
```python
sage: @set_from_function(category=InfiniteEnumeratedSets())
....: def Fibonacci():
....:     a = 1; b = 2
....:     while True:
....:         yield a
....:         a, b = b, a + b
sage: F = Fibonacci(); F
(1, 2, 3, 5, 8, ...)
sage: F.cardinality()
+Infinity
```

A simple example with many options:

```python
sage: @set_from_function(name="From \%(m)d to \%(n)d",
                      category=FiniteEnumeratedSets())
....: def f(m, n):
    return xsrange(m, n + 1)
sage: E = f(3,10); E
From 3 to 10
sage: E.list()
[3, 4, 5, 6, 7, 8, 9, 10]
sage: E = f(1,100); E
From 1 to 100
sage: E.cardinality()
100
sage: f(n=100, m=1) == E
True
```

An example which mixes together `set_from_function()` and `cached_method()`:

```python
sage: @cached_function
....: @set_from_function(name="Graphs on \%(n)d vertices",
                      category=FiniteEnumeratedSets(), cache=True)
....: def Graphs(n):
    return graphs(n)
sage: Graphs(10)
Graphs on 10 vertices
sage: Graphs(10).unrank(0)
Graph on 10 vertices
sage: Graphs(10) is Graphs(10)
True
```

The `@cached_function` must go first:

```python
sage: @set_from_function(name="Graphs on \%(n)d vertices",
                      category=FiniteEnumeratedSets(), cache=True)
....: @cached_function
....: def Graphs(n):
    return graphs(n)
sage: Graphs(10)
Graphs on 10 vertices
sage: Graphs(10).unrank(0)
Graph on 10 vertices
sage: Graphs(10) is Graphs(10)
False
```

1.6. Enumerated set from iterator
class sage.sets.set_from_iterator.EnumeratedSetFromIterator_method_caller (inst, f, name=None, **options)

Bases: Decorator

Caller for decorated method in class.

INPUT:

- inst – an instance of a class
- f – a method of a class of inst (and not of the instance itself)
- name – optional – either a string (which may contains substitution rules from argument or a function args, kwds -> string).
- options – any option accepted by EnumeratedSetFromIterator

class sage.sets.set_from_iterator.EnumeratedSetFromIterator_method_decorator (f=None, **options)

Bases: object

Decorator for enumerated set built from a method.

INPUT:

- f – Optional function from which are built the enumerated sets at each call
- name – Optional string (which may contains substitution rules from argument) or a function (args,kwds) -> string.
- any option accepted by EnumeratedSetFromIterator.

EXAMPLES:

```python
sage: from sage.sets.set_from_iterator import set_from_method
sage: class A():
....:     def n(self): return 12
....:     @set_from_method
....:     def f(self): return xsrange(self.n())
sage: a = A()
sage: print(a.f.__class__)
<class sage.sets.set_from_iterator.EnumeratedSetFromIterator_method_caller>
sage: a.f()
{0, 1, 2, 3, 4, ...}
sage: A.f(a)
{0, 1, 2, 3, 4, ...}
```

A more complicated example with a parametrized name:

```python
sage: class B():
....:     @set_from_method(name="Graphs(%(n)d)", category=FiniteEnumeratedSets())
....:     def graphs(self, n):
....:         return graphs(n)
sage: b = B()
sage: G3 = b.graphs(3); G3
Graphs(3)
sage: G3.cardinality()
#...
```

(continues on next page)
And a last example with a name parametrized by a function:

```python
sage: class D():
    ...: def __init__(self, name): self.name = str(name)
    ...: def __str__(self): return self.name
    ...: @set_from_method(name=lambda self, n: str(self) * n,
    ...:                  category=FiniteEnumeratedSets())
    ...: def subset(self, n):
    ...:     return xsrange(n)

sage: d = D('a')
sage: E = d.subset(3); E
```

Todo: It is not yet possible to use set_from_method in conjunction with cached_method.

```
[0, 1, 2]
sage: F = d.subset(n=10); F
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

1.7 Finite Enumerated Sets

```python
class sage.sets.finite_enumerated_set.FiniteEnumeratedSet(elements)

    Bases: UniqueRepresentation, Parent

    A class for finite enumerated set.

    Returns the finite enumerated set with elements in elements where element is any (finite) iterable object.

    The main purpose is to provide a variant of list or tuple, which is a parent with an interface consistent with EnumeratedSets and has unique representation. The list of the elements is expanded in memory.

    EXAMPLES:
```

```
Note that being an enumerated set, the result depends on the order:

As an abuse, repeated entries in elements are allowed to model multisets:

Finally, the elements are not aware of their parent:

<table>
<thead>
<tr>
<th>an_element()</th>
</tr>
</thead>
<tbody>
<tr>
<td>cardinality()</td>
</tr>
<tr>
<td>first()</td>
</tr>
</tbody>
</table>

Return the first element of the enumeration or raise an EmptySetError if the set is empty.

EXAMPLES:

<table>
<thead>
<tr>
<th>index(x)</th>
</tr>
</thead>
</table>

Returns the index of x in this finite enumerated set.

EXAMPLES:

<table>
<thead>
<tr>
<th>is_parent_of(x)</th>
</tr>
</thead>
</table>
last()
Returns the last element of the iteration or raise an EmptySetError if the set is empty.

EXAMPLES:

```python
sage: S = FiniteEnumeratedSet([0,'a',1.23, 'd'])
sage: S.last()
'd'
```

list()

random_element()
Return a random element.

EXAMPLES:

```python
sage: S = FiniteEnumeratedSet('abc')
sage: S.random_element() # random
'b'
```

rank(x)
Returns the index of x in this finite enumerated set.

EXAMPLES:

```python
sage: S = FiniteEnumeratedSet(['a','b','c'])
sage: S.index('b')
1
```

unrank(i)
Return the element at position i.

EXAMPLES:

```python
sage: S = FiniteEnumeratedSet([1,'a',-51])
sage: S[0], S[1], S[2]
(1, 'a', -51)
```

Traceback (most recent call last):
... 
IndexError: tuple index out of range
```python
sage: S[-1], S[-2], S[-3]
(-51, 'a', 1)
```

Traceback (most recent call last):
... 
IndexError: list index out of range
```
1.8 Recursively enumerated set

A set \(S \) is called recursively enumerable if there is an algorithm that enumerates the members of \(S \). We consider here the recursively enumerated sets that are described by some seeds and a successor function \(\text{successors} \). The successor function may have some structure (symmetric, graded, forest) or not. The elements of a set having a symmetric, graded or forest structure can be enumerated uniquely without keeping all of them in memory. Many kinds of iterators are provided in this module: depth first search, breadth first search or elements of given depth.

See Wikipedia article Recursively_enumerable_set.

See documentation of \texttt{RecursivelyEnumeratedSet()} below for the description of the inputs.

AUTHORS:

• Sébastien Labbé, April 2014, at Sage Days 57, Cernay-la-ville

EXAMPLES:

1.8.1 No hypothesis on the structure

What we mean by “no hypothesis” is that the set is not known to be a forest, symmetric, or graded. However, it may have other structure, like not containing an oriented cycle, that does not help with the enumeration.

In this example, the seed is 0 and the successor function is either \(+2\) or \(+3\). This is the set of non negative linear combinations of 2 and 3:

```python
sage: succ = lambda a:[a+2,a+3]
sage: C = RecursivelyEnumeratedSet([0], succ)
sage: C
A recursively enumerated set (breadth first search)
```

Breadth first search:

```python
sage: it = C.breadth_first_search_iterator()
sage: [next(it) for _ in range(10)]
[0, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

Depth first search:

```python
sage: it = C.depth_first_search_iterator()
sage: [next(it) for _ in range(10)]
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
```

1.8.2 Symmetric structure

The origin \((0, 0)\) as seed and the upper, lower, left and right lattice point as successor function. This function is symmetric since \(p \) is a successor of \(q \) if and only if \(q \) is a successor or \(p \):

```python
sage: succ = lambda a: [(a[0]-1,a[1]), (a[0],a[1]-1), (a[0]+1,a[1]), (a[0],a[1]+1)]
sage: seeds = [(0,0)]
sage: C = RecursivelyEnumeratedSet(seeds, succ, structure='symmetric', enumeration=˓→'depth')
sage: C
A recursively enumerated set with a symmetric structure (depth first search)
```

In this case, depth first search is the default enumeration for iteration:
1.8.3 Graded structure

Identity permutation as seed and permutohedron_succ as successor function:

```python
sage: succ = attrcall("permutohedron_succ")
sage: seed = [Permutation([1..5])]
sage: R = RecursivelyEnumeratedSet(seed, succ, structure='graded')
sage: R
A recursively enumerated set with a graded structure (breadth first search)
```

Depth first search iterator:

```python
sage: it_depth = R.depth_first_search_iterator()
sage: [next(it_depth) for _ in range(5)]
[[1, 2, 3, 4, 5],
 [2, 1, 3, 4, 5],
 [1, 3, 2, 4, 5],
 [1, 2, 4, 3, 5],
 [1, 2, 3, 5, 4]]
```

Breadth first search iterator:

```python
sage: it_breadth = R.breadth_first_search_iterator()
sage: [next(it_breadth) for _ in range(5)]
[[1, 2, 3, 4, 5],
 [2, 1, 3, 4, 5],
 [1, 3, 2, 4, 5],
 [1, 2, 4, 3, 5],
 [1, 2, 3, 5, 4]]
```

Elements of given depth iterator:

```python
sage: sorted(R.elements_of_depth_iterator(9))
[[4, 5, 3, 2, 1], [5, 3, 4, 2, 1], [5, 4, 2, 3, 1], [5, 4, 3, 1, 2]]
```

(continues on next page)
Graded components (set of elements of the same depth):

```
sage: # needs sage.combinat
sage: sorted(R.graded_component(0))
[[1, 2, 3, 4, 5]]
sage: sorted(R.graded_component(1))
[[1, 2, 3, 4, 5], [1, 2, 4, 3, 5], [1, 3, 2, 4, 5], [2, 1, 3, 4, 5]]
sage: sorted(R.graded_component(9))
[[4, 5, 3, 2, 1], [5, 3, 4, 2, 1], [5, 4, 2, 3, 1], [5, 4, 3, 1, 2]]
sage: sorted(R.graded_component(10))
[[5, 4, 3, 2, 1]]
```

1.8.4 Forest structure

The set of words over the alphabet \{a, b\} can be generated from the empty word by appending letter \(a\) or \(b\) as a successor function. This set has a forest structure:

```
sage: seeds = ['']
sage: succ = lambda w: [w+a, w+b]
sage: C = RecursivelyEnumeratedSet(seeds, succ, structure='forest')
sage: C
An enumerated set with a forest structure
```

Depth first search iterator:

```
sage: it = C.depth_first_search_iterator()
sage: [next(it) for _ in range(6)]
['', 'a', 'aa', 'aaa', 'aaaa', 'aaaaa']
```

Breadth first search iterator:

```
sage: it = C.breadth_first_search_iterator()
sage: [next(it) for _ in range(6)]
['', 'a', 'b', 'aa', 'ab', 'ba']
```

1.8.5 Example: Forest structure

This example was provided by Florent Hivert.

How to define a set using those classes?

Only two things are necessary to define a set using a `RecursivelyEnumeratedSet` object (the other classes being very similar):

For the previous example, the two necessary pieces of information are:

- the initial element "";
- the function:
This would actually describe an **infinite** set, as such rules describes “all words” on 3 letters. Hence, it is a good idea to replace the function by:

```python
lambda x: [x + letter for letter in ['a', 'b', 'c']] if len(x) < 2 else []
```

or even:

```python
sage: def children(x):
    ....:    if len(x) < 2:
    ....:        for letter in ['a', 'b', 'c']:
    ....:            yield x+letter
```

We can then create the `RecursivelyEnumeratedSet` object with either:

```python
sage: S = RecursivelyEnumeratedSet([""],
    ....:    lambda x: [x+letter for letter in ['a', 'b', 'c']] if len(x) < 2 else [],
    ....:    structure='forest', enumeration='depth',
    ....:    category=FiniteEnumeratedSets())
sage: S.list()
["", 'a', 'aa', 'ab', 'ac', 'b', 'ba', 'bb', 'bc', 'c', 'ca', 'cb', 'cc']
```

or:

```python
sage: S = RecursivelyEnumeratedSet([""], children,
    ....:    structure='forest', enumeration='depth',
    ....:    category=FiniteEnumeratedSets())
sage: S.list()
["", 'a', 'aa', 'ab', 'ac', 'b', 'ba', 'bb', 'bc', 'c', 'ca', 'cb', 'cc']
```

1.8.6 Example: Forest structure 2

This example was provided by Florent Hivert.

Here is a little more involved example. We want to iterate through all permutations of a given set S. One solution is to take elements of S one by one an insert them at every positions. So a node of the generating tree contains two pieces of information:

- the list `lst` of already inserted element;
- the set `st` of the yet to be inserted element.

We want to generate a permutation only if `st` is empty (leaves on the tree). Also suppose for the sake of the example, that instead of list we want to generate tuples. This selection of some nodes and final mapping of a function to the element is done by the `post_process = f` argument. The convention is that the generated elements are the $s := f(n)$, except when s not `None` when no element is generated at all. Here is the code:

```python
sage: def children(node):
    ....:    (lst, st) = node
    ....:    st = set(st) # make a copy
    ....:    if st:
    ....:        el = st.pop()
    ....:        for i in range(len(lst)+1):
    ....:            yield (lst[0:i]+[el]+lst[i:], st)
```

(continues on next page)
sage: list(children(([1,2], {3,7,9})))
[(1, [2], {3, 7}), ([1, 2], 3, 7), ([1, 2, 9], 3, 7)]

sage: def post_process(node):
....: (l, s) = node
....: return tuple(l) if not s else None

sage: S = RecursivelyEnumeratedSet([(], {1,3,6,8}),
....: children, post_process=post_process,
....: structure='forest', enumeration='depth',
....: category=FiniteEnumeratedSets())

sage: S.list()
[(6, 3, 1, 8), (3, 6, 1, 8), (3, 1, 6, 8), (3, 1, 8, 6), (6, 1, 3, 8),
 (1, 6, 3, 8), (1, 3, 6, 8), (1, 3, 8, 6), (6, 1, 8, 3), (1, 6, 8, 3),
 (1, 8, 6, 3), (1, 8, 3, 6), (6, 3, 8, 1), (3, 6, 8, 1), (3, 8, 6, 1),
 (3, 8, 1, 6), (6, 8, 3, 1), (8, 6, 3, 1), (8, 3, 6, 1), (8, 3, 1, 6),
 (6, 8, 1, 3), (8, 6, 1, 3), (8, 1, 6, 3), (8, 1, 3, 6)]

sage: S.cardinality()
24

sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet (seeds, successors,
structure=None,
enumeration=None,
max_depth=None,
post_process=None,
facade=None,
category=None)

Return a recursively enumerated set.

A set S is called recursively enumerable if there is an algorithm that enumerates the members of S. We consider here the recursively enumerated set that are described by some seeds and a successor function successors.

Let U be a set and $\text{successors} : U \to 2^U$ be a successor function associating to each element of U a subset of U. Let seeds be a subset of U. Let $S \subseteq U$ be the set of elements of U that can be reached from a seed by applying recursively the successors function. This class provides different kinds of iterators (breadth first, depth first, elements of given depth, etc.) for the elements of S.

See Wikipedia article Recursively_enumerable_set.

INPUT:

- seeds – list (or iterable) of hashable objects
- successors – function (or callable) returning a list (or iterable) of hashable objects
- structure – string (optional, default: None), structure of the set, possible values are:
 - None – nothing is known about the structure of the set.
 - 'forest' – if the successors function generates a forest, that is, each element can be reached uniquely from a seed.
 - 'graded' – if the successors function is graded, that is, all paths from a seed to a given element have equal length.
 - 'symmetric' – if the relation is symmetric, that is, $y \in \text{successors}(x)$ if and only if $x \in \text{successors}(y)$
- enumeration – 'depth', 'breadth', 'naive' or None (optional, default: None). The default enumeration for the __iter__ function.
- `max_depth` – integer (optional, default: `float("inf")`), limit the search to a certain depth, currently works only for breadth first search
- `post_process` – (optional, default: `None`), for forest only
- `facade` – (optional, default: `None`)
- `category` – (optional, default: `None`)

EXAMPLES:

A recursive set with no other information:

```python
sage: f = lambda a: [a+3, a+5]
sage: C = RecursivelyEnumeratedSet([0], f)
sage: C
A recursively enumerated set (breadth first search)
sage: it = iter(C)
sage: [next(it) for _ in range(10)]
[0, 3, 5, 6, 8, 10, 9, 11, 13, 15]
```

A recursive set with a forest structure:

```python
sage: f = lambda a: [2*a,2*a+1]
sage: C = RecursivelyEnumeratedSet([1], f, structure='forest')
sage: C
An enumerated set with a forest structure
sage: it = C.depth_first_search_iterator()
sage: [next(it) for _ in range(7)]
[1, 2, 4, 8, 16, 32, 64]
sage: it = C.breadth_first_search_iterator()
sage: [next(it) for _ in range(7)]
[1, 2, 3, 4, 5, 6, 7]
```

A recursive set given by a symmetric relation:

```python
sage: f = lambda a: [a-1,a+1]
sage: C = RecursivelyEnumeratedSet([10, 15], f, structure='symmetric')
sage: C
A recursively enumerated set with a symmetric structure (breadth first search)
sage: it = iter(C)
sage: [next(it) for _ in range(7)]
[10, 15, 9, 11, 14, 16, 8]
```

A recursive set given by a graded relation:

```python
sage: # needs sage.symbolic
def f(a):
....:     return [a + 1, a + I]
sage: C = RecursivelyEnumeratedSet([0], f, structure='graded'); C
A recursively enumerated set with a graded structure (breadth first search)
sage: it = iter(C)
sage: [next(it) for _ in range(7)]
[0, 1, I, 2, 1 + I, 2*I, 3]
```

Warning: If you do not set the good structure, you might obtain bad results, like elements generated twice:

```python
sage: f = lambda a: [a-1,a+1]
sage: C = RecursivelyEnumeratedSet([0], f, structure='graded')
```
```python
sage: it = iter(C)
sage: [next(it) for _ in range(7)]
[0, -1, 1, -2, 0, 2, -3]
```

```python
class sage.sets.recursively EnumeratedSet_forest (roots=None, children=None, post_process=None, algorithm='depth', facade=None, category=None)
```

Bases: `Parent`

The enumerated set of the nodes of the forest having the given `roots`, and where `children(x)` returns the children of the node `x` of the forest.

See also `sage.combinat.backtrack.GenericBacktracker`, `RecursivelyEnumeratedSet_graded`, and `RecursivelyEnumeratedSet_symmetric`.

INPUT:

- `roots` – a list (or iterable)
- `children` – a function returning a list (or iterable, or iterator)
- `post_process` – a function defined over the nodes of the forest (default: no post processing)
- `algorithm` – 'depth' or 'breadth' (default: 'depth')
- `category` – a category (default: `EnumeratedSets`)

The option `post_process` allows for customizing the nodes that are actually produced. Furthermore, if `f(x)` returns `None`, then `x` won’t be output at all.

EXAMPLES:

We construct the set of all binary sequences of length at most three, and list them:

```python
sage: from sage.sets.recursively enumerated set import RecursivelyEnumeratedSet_ →forest
sage: S = RecursivelyEnumeratedSet_forest( [[]],
.....: lambda 1: [1+[0], 1+[1]] if len(1) < 3 else [],
.....: category=FiniteEnumeratedSets())
sage: S.list()
[[], [0], [0, 0], [0, 0, 0], [0, 0, 1], [0, 1], [0, 1, 0], [0, 1, 1],
[1], [1, 0], [1, 0, 0], [1, 0, 1], [1, 1], [1, 1, 0], [1, 1, 1]]
```

`RecursivelyEnumeratedSet_forest` needs to be explicitly told that the set is finite for the following to work:

```python
sage: S.category()
Category of finite enumerated sets
sage: S.cardinality()
15
```
We proceed with the set of all lists of letters in 0, 1, 2 without repetitions, ordered by increasing length (i.e. using a breadth first search through the tree):

```python
sage: from sage.sets.recursivelyEnumeratedSet import RecursivelyEnumeratedSet_forest
sage: tb = RecursivelyEnumeratedSet_forest([[]],
....:   lambda l: [l + [i] for i in range(3) if i not in l],
....:   algorithm = 'breadth',
....:   category=FiniteEnumeratedSets())
sage: tb[0]
[]
sage: tb.cardinality()
16
sage: list(tb)
[[],
 [0], [1], [2],
 [0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1],
 [0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]
```

For infinite sets, this option should be set carefully to ensure that all elements are actually generated. The following example builds the set of all ordered pairs $\(i, j\)$ of nonnegative integers such that $j \leq 1$:

```python
sage: from sage.sets.recursivelyEnumeratedSet import RecursivelyEnumeratedSet_forest
sage: I = RecursivelyEnumeratedSet_forest([(0,0)],
....:   lambda l: [(l[0]+1, l[1]), (l[0], 1)]
....:   if l[1] == 0 else [(l[0], l[1]+1)])
```

With a depth first search, only the elements of the form $(i, 0)$ are generated:

```python
sage: depth_search = I.depth_first_search_iterator()
sage: [next(depth_search) for i in range(7)]
[(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0)]
```

Using instead breadth first search gives the usual anti-diagonal iterator:

```python
sage: breadth_search = I.breadth_first_search_iterator()
sage: [next(breadth_search) for i in range(15)]
[(0, 0),
 (1, 0), (0, 1),
 (2, 0), (1, 1), (0, 2),
 (3, 0), (2, 1), (1, 2), (0, 3),
 (4, 0), (3, 1), (2, 2), (1, 3), (0, 4)]
```

Deriving subclasses

The class of a parent A may derive from `RecursivelyEnumeratedSet_forest` so that A can benefit from enumeration tools. As a running example, we consider the problem of enumerating integers whose binary expansion have at most three nonzero digits. For example, $3 = 2^1 + 2^0$ has two nonzero digits. $15 = 2^3 + 2^2 + 2^1 + 2^0$ has four nonzero digits. In fact, 15 is the smallest integer which is not in the enumerated set.

To achieve this, we use `RecursivelyEnumeratedSet_forest` to enumerate binary tuples with at most three nonzero digits, apply a post processing to recover the corresponding integers, and discard tuples finishing by zero.

A first approach is to pass the `roots` and `children` functions as arguments to `RecursivelyEnumeratedSet_forest.__init__()`.

1.8. Recursively enumerated set
An alternative approach is to implement roots and children as methods of the subclass (in fact they could also be attributes of A). Namely, A.roots() must return an iterable containing the enumeration generators, and A.children(x) must return an iterable over the children of x. Optionally, A can have a method or attribute such that A.post_process(x) returns the desired output for the node x of the tree:

```python
sage: from sage.sets.recursivelyEnumeratedSet import RecursivelyEnumeratedSet_forest
sage: class A(UniqueRepresentation, RecursivelyEnumeratedSet_forest):
    def __init__(self):
        RecursivelyEnumeratedSet_forest.__init__(self, algorithm='breadth',
                                                category=InfiniteEnumeratedSets())
    def roots(self):
        return [()
    def children(self, x):
        if sum(x) < 3:
            return [x+(0,), x+(1,)]
        else:
            return []
    def post_process(self, x):
        if sum(x) == 0 or x[-1] == 0:
            return None
        else:
            return sum(x[i]*2^i for i in range(len(x)))

sage: MyForest = A(); MyForest
An enumerated set with a forest structure
sage: MyForest.category()
Category of infinite enumerated sets
sage: p = iter(MyForest)
[sage: [next(p) for i in range(30)]
[1, 2, 3, 4, 6, 5, 7, 8, 12, 10, 14, 9, 13, 11, 16, 24, 20, 28, 18, 26, 22, 17,
  25, 21, 19, 32, 48, 40, 56, 36]
```

Warning: A RecursivelyEnumeratedSet_forest instance is picklable if and only if the input functions are themselves picklable. This excludes anonymous or interactively defined functions:

```python
sage: def children(x):
    return [x+1]
```
Let us now fake \texttt{children} being defined in a Python module:

\begin{codeblock}
\begin{verbatim}
sage: import __main__
sage: __main__.children = children
sage: S = RecursivelyEnumeratedSet_forest([1], children, category=InfiniteEnumeratedSets())
sage: loads(dumps(S))
\end{verbatim}
\end{codeblock}

\noindent An enumerated set with a forest structure

\noindent \texttt{breadth_first_search_iterator}()

\begin{description}
\item \texttt{Return a breadth first search iterator over the elements of self.}
\end{description}

\noindent \texttt{EXAMPLES:}

\begin{codeblock}
\begin{verbatim}
sage: from sage.sets.recursivelyEnumeratedSet import RecursivelyEnumeratedSet_forest
sage: I = RecursivelyEnumeratedSet_forest([(0,0)], lambda x : [(x[0]+1, x[1]), (x[0], x[1]+1)] if x[1] == 0 else [(x[0], x[1]+1)])
sage: [i for i in I.children((0,0))]
[(1, 0), (0, 1)]
sage: [i for i in I.children((1,0))]
[(2, 0), (1, 1)]
sage: [i for i in I.children((1,1))]
[(1, 2)]
sage: [i for i in I.children((4,1))]
[(5, 0), (4, 1)]
\end{verbatim}
\end{codeblock}

children\texttt{(x)}

\noindent Return the children of the element \texttt{x}

\noindent The result can be a list, an iterable, an iterator, or even a generator.

\noindent \texttt{EXAMPLES:}

\begin{codeblock}
\begin{verbatim}
sage: from sage.sets.recursivelyEnumeratedSet import RecursivelyEnumeratedSet_forest
sage: I = RecursivelyEnumeratedSet_forest([(0,0)], lambda l: [(l[0]+1, l[1]), (l[0], l[1]+1)] if l[1] == 0 else [(l[0], l[1]+1)])
sage: [i for i in I.children((0,0))]
[(1, 0), (0, 1)]
sage: [i for i in I.children((1,0))]
[(2, 0), (1, 1)]
sage: [i for i in I.children((1,1))]
[(1, 2)]
sage: [i for i in I.children((4,1))]
[(5, 0), (4, 1)]
\end{verbatim}
\end{codeblock}
depth_first_search_iterator()

Return a depth first search iterator over the elements of self

EXAMPLES:

```
sage: from sage.sets.recursively_enumerated_set import...
    RecursivelyEnumeratedSet_forest
sage: f = RecursivelyEnumeratedSet_forest([[]],
    lambda l: [l+[0], l+[1]] if len(l) < 3 else [])
sage: list(f.depth_first_search_iterator())
[[], [0], [0, 0], [0, 0, 0], [0, 0, 1], [0, 1], [0, 1, 0], [0, 1, 1], [1], [1, 0], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]]
```

elements_of_depth_iterator(depth=0)

Return an iterator over the elements of self of given depth. An element of depth \(n\) can be obtained applying \(n\) times the children function from a root.

EXAMPLES:

```
sage: from sage.sets.recursively_enumerated_set import...
    RecursivelyEnumeratedSet_forest
sage: S = RecursivelyEnumeratedSet_forest([(0,0)],
    lambda x : [(x[0], x[1]+1)] if x[1] != 0 else [(x[0]+1,0), (x[0], 1)],
    post_process = lambda x: x if ((is_prime(x[0]) and is_prime(x[1]))
    and ((x[0] - x[1]) == 2)) else None)
sage: p = S.elements_of_depth_iterator(8)
sage: next(p)
(5, 3)
sage: S = RecursivelyEnumeratedSet_forest(NN, lambda x : [],
    lambda x: x^2 if x.is_prime() else None)
sage: p = S.elements_of_depth_iterator(0)
sage: [next(p), next(p), next(p), next(p), next(p)]
[4, 9, 25, 49, 121]
```

map_reduce (map_function=None, reduce_function=None, reduce_init=None)

Apply a Map/Reduce algorithm on self

INPUT:

- map_function – a function from the element of self to some set with a reduce operation (e.g.: a monoid). The default value is the constant function 1.
- reduce_function – the reduce function (e.g.: the addition of a monoid). The default value is +.
- reduce_init – the initialisation of the reduction (e.g.: the neutral element of the monoid). The default value is 0.

Note: the effect of the default values is to compute the cardinality of self.

EXAMPLES:

```
sage: seeds = [([i],i) for i in range(1,10)]
sage: def succ(t):
    ....:    list, sum, last = t
```
\[\text{\begin{verbatim}
....: return [(list + [i], sum + i, i) for i in range(1, last)]
\end{verbatim}} \]

\[
\text{\begin{verbatim}
sage: F = RecursivelyEnumeratedSet(seeds, succ,
....: structure='forest', enumeration='depth')
\end{verbatim}} \]

\[
\text{\begin{verbatim}
sage: # needs sage.symbolic
sage: y = var('y')
\end{verbatim}} \]

\[
\text{\begin{verbatim}
sage: def map_function(t):
....: li, sum, _ = t
....: return y ** sum
sage: def reduce_function(x, y):
....: return x + y
\end{verbatim}} \]

\[
\text{\begin{verbatim}
sage: F.map_reduce(map_function, reduce_function, 0)
\end{verbatim}} \]

\[
\begin{align*}
y^45 + y^44 + y^43 + 2*y^42 + 2*y^41 + 3*y^40 + 4*y^39 + 5*y^38 + 6*y^37 \\
+ 8*y^36 + 9*y^35 + 10*y^34 + 12*y^33 + 13*y^32 + 15*y^31 + 17*y^30 \\
+ 18*y^29 + 19*y^28 + 21*y^27 + 21*y^26 + 22*y^25 + 23*y^24 + 23*y^23 \\
+ 23*y^22 + 23*y^21 + 22*y^20 + 21*y^19 + 21*y^18 + 19*y^17 + 18*y^16 \\
+ 17*y^15 + 15*y^14 + 13*y^13 + 12*y^12 + 10*y^11 + 9*y^10 + 8*y^9 + 6*y^8 \\
+ 5*y^7 + 4*y^6 + 3*y^5 + 2*y^4 + 2*y^3 + y^2 + y
\end{align*}
\]

Here is an example with the default values:

\[
\text{\begin{verbatim}
sage: F.map_reduce()
511
\end{verbatim}} \]

See also:

sage.parallel.map_reduce

roots()

Return an iterable over the roots of self.

EXAMPLES:

\[
\text{\begin{verbatim}
sage: from sage.sets.recursively_enumerated_set import _
-

RecursivelyEnumeratedSet_forest
sage: I = RecursivelyEnumeratedSet_forest([(0,0)], lambda l:
....: [(l[0]+1, l[1]),
....: (l[0], 1)] if l[1] == 0 else [(l[0], l[1]+1)])
sage: [i for i in I.roots()]
[(0, 0)]
\end{verbatim}} \]

\[
\text{\begin{verbatim}
sage: I = RecursivelyEnumeratedSet_forest([(0,0),(1,1)], lambda l:
....: [(l[0]+1, l[1]+1)] if l[1] == 0 else [(l[0], l[1]+1)])
\end{verbatim}} \]

\[
\text{\begin{verbatim}
sage: [i for i in I.roots()]
[(0, 0), (1, 1)]
\end{verbatim}} \]

\[
\text{\begin{verbatim}
class sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_generic

Bases: Parent

A generic recursively enumerated set.

For more information, see RecursivelyEnumeratedSet().

EXAMPLES:

\[
\text{\begin{verbatim}
sage: f = lambda a:[a+1]
\end{verbatim}} \]

Different structure for the sets:
A recursively enumerated set (breadth first search)

A recursively enumerated set with a graded structure (breadth first search)

A recursively enumerated set with a symmetric structure (breadth first search)

An enumerated set with a forest structure

Different default enumeration algorithms:

Iterate on the elements of self (breadth first).

The elements are guaranteed to be enumerated in the order in which they are first visited (left-to-right traversal).

INPUT:

- max_depth – (default: self._max_depth) specifies the maximal depth to which elements are computed

EXAMPLES:

```
sage: f = lambda a: [a + 3, a + 5]
sage: C = RecursivelyEnumeratedSet([0], f)
sage: it = C.breadth_first_search_iterator()
sage: [next(it) for _ in range(10)]
[0, 3, 5, 6, 8, 10, 9, 11, 13, 15]
```

Iterate on the elements of self (depth first).

This code remembers every elements generated.

The elements are traversed right-to-left, so the last element returned by the successor function is visited first.

See Wikipedia article Depth-first_search.

EXAMPLES:

```
sage: f = lambda a: [a + 3, a + 5]
sage: C = RecursivelyEnumeratedSet([0], f)
sage: it = C.depth_first_search_iterator()
sage: [next(it) for _ in range(10)]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
```

Iterate over the elements of self of given depth.

An element of depth \(n \) can be obtained applying \(n \) times the successor function to a seed.
INPUT:

• depth – integer

OUTPUT:

An iterator.

EXAMPLES:

```python
sage: f = lambda a: [a-1, a+1]
sage: S = RecursivelyEnumeratedSet([5, 10], f, structure='symmetric')
sage: it = S.elements_of_depth_iterator(2)
sage: sorted(it)
[3, 7, 8, 12]
```

graded_component (depth)

Return the graded component of given depth.

This method caches each lower graded component.

A graded component is a set of elements of the same depth where the depth of an element is its minimal distance to a root.

It is currently implemented only for graded or symmetric structure.

INPUT:

• depth – integer

OUTPUT:

A set.

EXAMPLES:

```python
sage: f = lambda a: [a+3, a+5]
sage: C = RecursivelyEnumeratedSet([0], f)
sage: C.graded_component(0)
Traceback (most recent call last):
  ... Not ImplementedError: graded_component_iterator method currently implemented → only for graded or symmetric structure
```

graded_component_iterator ()

Iterate over the graded components of self.

A graded component is a set of elements of the same depth.

It is currently implemented only for graded or symmetric structure.

OUTPUT:

An iterator of sets.

EXAMPLES:

```python
sage: f = lambda a: [a+3, a+5]
sage: C = RecursivelyEnumeratedSet([0], f)
sage: it = C.graded_component_iterator()  # todo: not implemented
```
naive_search_iterator()
Iterate on the elements of self (in no particular order).
This code remembers every element generated.

seeds()
Return an iterable over the seeds of self.

EXAMPLES:

```python
sage: R = RecursivelyEnumeratedSet([1], lambda x: [x+1, x-1])
sage: R.seeds()
[1]
```

successors
to_digraph (max_depth=None, loops=True, multiedges=True)
Return the directed graph of the recursively enumerated set.

INPUT:
- max_depth – (default: self._max_depth) specifies the maximal depth for which outgoing edges of elements are computed
- loops – (default: True) option for the digraph
- multiedges – (default: True) option of the digraph

OUTPUT:
A directed graph

Warning: If the set is infinite, this will loop forever unless max_depth is finite.

EXAMPLES:

```
sage: child = lambda i: [(i+3) % 10, (i+8) % 10]
sage: R = RecursivelyEnumeratedSet([0], child)
sage: R.to_digraph()  # needs sage.graphs
Looped multi-digraph on 10 vertices
```

Digraph of a recursively enumerated set with a symmetric structure of infinite cardinality using max_depth argument:

```
sage: succ = lambda a: [(a[0]-1,a[1]), (a[0],a[1]-1), (a[0]+1,a[1]), (a[0], a[1]+1)]
sage: seeds = [(0,0)]
sage: C = RecursivelyEnumeratedSet(seeds, succ, structure='symmetric')
sage: C.to_digraph(max_depth=3)  # needs sage.graphs
Looped multi-digraph on 41 vertices
```

The max_depth argument can be given at the creation of the set:

```
sage: C = RecursivelyEnumeratedSet(seeds, succ, structure='symmetric', ...
.....: max_depth=2)
sage: C.to_digraph()  # (continues on next page)
```
Digraph of a recursively enumerated set with a graded structure:

```python
sage: f = lambda a: [a[0]+1, a[1]+1]
sage: C = RecursivelyEnumeratedSet([(0,0)], f, structure='graded')
sage: C.to_digraph(max_depth=4)
```

```
needs sage.graphs
Looped multi-digraph on 25 vertices
```

```
needs sage.graphs
Looped multi-digraph on 21 vertices
```

```
class sage.sets.recursivelyEnumeratedSet.RecursivelyEnumeratedSet_graded
    Bases: RecursivelyEnumeratedSet_generic

Generic tool for constructing ideals of a graded relation.

INPUT:
    - **seeds** -- list (or iterable) of hashable objects
    - **successors** -- function (or callable) returning a list (or iterable)
    - **enumeration** -- 'depth', 'breadth' or None (default: None)
    - **max_depth** -- integer (default: float("inf"))

EXAMPLES:

```python
sage: f = lambda a: [(a[0]+1,a[1]), (a[0],a[1]+1)]
sage: C = RecursivelyEnumeratedSet([(0,0)], f, structure='graded', max_depth=3)
sage: list(C)
[(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)]
```

```
breadth_first_search_iterator (max_depth=None)
 Iterate on the elements of self (breadth first).
 This iterator makes use of the graded structure by remembering only the elements of the current depth.
 The elements are guaranteed to be enumerated in the order in which they are first visited (left-to-right traversal).

INPUT:
 - **max_depth** -- (default: self._max_depth) specifies the maximal depth to which elements are computed

EXAMPLES:

```python
sage: f = lambda a: [(a[0]+1,a[1]), (a[0],a[1]+1)]
sage: C = RecursivelyEnumeratedSet([(0,0)], f, structure='graded')
sage: list(C.breadth_first_search_iterator(max_depth=3))
[(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)]
```
graded_component \textit{(depth)}

Return the graded component of given depth.

This method caches each lower graded component. See \texttt{graded_component_iterator()} to generate each graded component without caching the previous ones.

A graded component is a set of elements of the same depth where the depth of an element is its minimal distance to a root.

\textbf{INPUT:}

- \texttt{depth} – integer

\textbf{OUTPUT:}

A set.

\textbf{EXAMPLES:}

```python
sage: # needs sage.symbolic
sage: def f(a):
...:     return [a + 1, a + I]

sage: C = RecursivelyEnumeratedSet([0], f, structure='graded')
sage: for i in range(5): sorted(C.graded_component(i))

[0]
[I, 1]
[2*I, I + 1, 2]
[3*I, 2*I + 1, I + 2, 3]
[4*I, 3*I + 1, 2*I + 2, I + 3, 4]
```

graded_component_iterator()

Iterate over the graded components of \texttt{self}.

A graded component is a set of elements of the same depth.

The algorithm remembers only the current graded component generated since the structure is graded.

\textbf{OUTPUT:}

An iterator of sets.

\textbf{EXAMPLES:}

```python
sage: f = lambda a: [(a[0]+1,a[1]), (a[0],a[1]+1)]

sage: C = RecursivelyEnumeratedSet([[0,0]], f, structure='graded', max_˓→depth=3)

sage: it = C.graded_component_iterator()
sage: for _ in range(4): sorted(next(it))

[(0, 0)]
[(0, 1), (1, 0)]
[(0, 2), (1, 1), (2, 0)]
[(0, 3), (1, 2), (2, 1), (3, 0)]
```

class sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_symmetric

Generic tool for constructing ideals of a symmetric relation.

\textbf{INPUT:}

- \texttt{seeds} – list (or iterable) of hashable objects
- \texttt{successors} – function (or callable) returning a list (or iterable)
• enumeration – 'depth', 'breadth' or None (default: None)

• max_depth – integer (default: float("inf"))

EXAMPLES:

```python
sage: f = lambda a: [a-1, a+1]
sage: C = RecursivelyEnumeratedSet([0], f, structure='symmetric')
sage: C
A recursively enumerated set with a symmetric structure (breadth first search)
sage: it = iter(C)
sage: [next(it) for _ in range(7)]
[0, -1, 1, -2, 2, -3, 3]
```

`breadth_first_search_iterator (max_depth=None)`

Iterate on the elements of self (breadth first).

This iterator makes use of the graded structure by remembering only the last two graded components since the structure is symmetric.

The elements are guaranteed to be enumerated in the order in which they are first visited (left-to-right traversal).

INPUT:

• max_depth – (default: self._max_depth) specifies the maximal depth to which elements are computed

EXAMPLES:

```python
sage: f = lambda a: [(a[0]-1, a[1]), (a[0], a[1]-1), (a[0]+1, a[1]), (a[0], a[1]+1)]
sage: C = RecursivelyEnumeratedSet([0,0], f, structure='symmetric')
sage: s = list(C.breadth_first_search_iterator(max_depth=2)); s
[(0, 0), (-1, 0), (0, -1), (1, 0), (0, 1), (-2, 0), (-1, -1), (-1, 1), (0, -2), (1, -1), (2, 0), (1, 1), (0, 2)]
```

This iterator is used by default for symmetric structure:

```python
sage: it = iter(C)
sage: s == [next(it) for _ in range(13)]
True
```

`graded_component (depth)`

Return the graded component of given depth.

This method caches each lower graded component. See `graded_component_iterator()` to generate each graded component without caching the previous ones.

A graded component is a set of elements of the same depth where the depth of an element is its minimal distance to a root.

INPUT:

• depth – integer

OUTPUT:

A set.

EXAMPLES:
sets, release 10.3

```
sage: f = lambda a: [a-1, a+1]
sage: C = RecursivelyEnumeratedSet([10, 15], f, structure='symmetric')
sage: for i in range(5): sorted(C.graded_component(i))
[10, 15]
[9, 11, 14, 16]
[8, 12, 13, 17]
[7, 18]
[6, 19]
```

`graded_component_iterator()`

Iterate over the graded components of `self`.

A graded component is a set of elements of the same depth.

The enumeration remembers only the last two graded components generated since the structure is symmetric.

output:

An iterator of sets.

examples:

```
sage: f = lambda a: [a-1, a+1]
sage: S = RecursivelyEnumeratedSet([10], f, structure='symmetric')
sage: it = S.graded_component_iterator()
sage: [sorted(next(it)) for _ in range(5)]
[[10], [9, 11], [8, 12], [7, 13], [6, 14]]
```

Starting with two generators:

```
sage: f = lambda a: [a-1, a+1]
sage: S = RecursivelyEnumeratedSet([5, 10], f, structure='symmetric')
sage: it = S.graded_component_iterator()
sage: [sorted(next(it)) for _ in range(5)]
[[5, 10], [4, 6, 9, 11], [3, 7, 8, 12], [2, 13], [1, 14]]
```

Gaussian integers:

```
sage: # needs sage.symbolic
def f(a):
....:     return [a + 1, a + I]
sage: S = RecursivelyEnumeratedSet([0], f, structure='symmetric')
sage: it = S.graded_component_iterator()
sage: [sorted(next(it)) for _ in range(7)]
[[0],
 [I, 1],
 [2*I, I + 1, 2],
 [3*I, 2*I + 1, I + 2, 3],
 [4*I, 3*I + 1, 2*I + 2, I + 3, 4],
 [5*I, 4*I + 1, 3*I + 2, 2*I + 3, I + 4, 5],
 [6*I, 5*I + 1, 4*I + 2, 3*I + 3, 2*I + 4, I + 5, 6]]
```

`sage.sets.recursively Enumerated_set.search_forest_iterator(roots, children, algorithm='depth')`

Return an iterator on the nodes of the forest having the given roots, and where `children(x)` returns the children of the node `x` of the forest. Note that every node of the tree is returned, not simply the leaves.

input:

- `roots` - a list (or iterable)
• **children** – a function returning a list (or iterable)

• **algorithm** – 'depth' or 'breadth' (default: 'depth')

EXAMPLES:

We construct the prefix tree of binary sequences of length at most three, and enumerate its nodes:

```python
sage: from sage.sets.recursively_enumerated_set import search_forest_iterator
sage: list(search_forest_iterator([], lambda l: [l+[0], l+[1]]
....: if len(l) < 3 else []))
[[], [0], [0, 0], [0, 0, 0], [0, 0, 1], [0, 1], [0, 1, 0],
[0, 1, 1], [1], [1, 0], [1, 0, 0], [1, 0, 1], [1, 1], [1, 1, 0], [1, 1, 1]]
```

By default, the nodes are iterated through by depth first search. We can instead use a breadth first search (increasing depth):

```python
sage: list(search_forest_iterator([], lambda l: [l+[0], l+[1]]
....: if len(l) < 3 else [],
....: algorithm='breadth'))
[[], [0], [1], [0, 0], [0, 1], [1, 0], [1, 1],
[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1],
[1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]]
```

This allows for iterating through trees of infinite depth:

```python
sage: it = search_forest_iterator([], lambda l: [l+[0], l+[1]], algorithm=
˓→'breadth')
sage: [ next(it) for i in range(16) ]
[[], [0], [1], [2],
[0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1],
[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 1, 0]]
```

Here is an iterator through the prefix tree of sequences of letters in 0, 1, 2 without repetitions, sorted by length; the leaves are therefore permutations:

```python
sage: list(search_forest_iterator([], lambda l: [l+[i] for i in range(3) if i
˓→not in l],
....: algorithm='breadth'))
[[], [0], [1], [2],
[0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1],
[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]
```
1.9 Subsets of a Universe Defined by Predicates

```python
class sage.sets.condition_set.ConditionSet (universe, *predicates, names=None, category=None):
    Bases: Set_generic, Set_base, Set_boolean_operators, Set_add_sub_operators, UniqueRepresentation

    Set of elements of a universe that satisfy given predicates

    INPUT:
    • universe – a set
    • *predicates – callables
    • vars or names – (default: inferred from predicates if any predicate is an element of a
      CallableSymbolicExpressionRing_class) variables or names of variables
    • category – (default: inferred from universe) a category

    EXAMPLES:

    sage: Evens = ConditionSet(ZZ, is_even); Evens
    { x ∈ Integer Ring : <function is_even at 0x...>(x) }
    sage: 2 in Evens
    True
    sage: 3 in Evens
    False
    sage: 2.0 in Evens
    True

    sage: Odds = ConditionSet(ZZ, is_odd); Odds
    { x ∈ Integer Ring : <function is_odd at 0x...>(x) }
    sage: EvensAndOdds = Evens | Odds; EvensAndOdds
    Set-theoretic union of
    { x ∈ Integer Ring : <function is_even at 0x...>(x) } and
    { x ∈ Integer Ring : <function is_odd at 0x...>(x) }
    sage: 5 in EvensAndOdds
    True
    sage: 7/2 in EvensAndOdds
    False

    sage: var('y')
    # needs sage.symbolic
    y
    sage: SmallOdds = ConditionSet(ZZ, is_odd, abs(y) <= 11, vars=[y]); SmallOdds
    # needs sage.symbolic
    { y ∈ Integer Ring : abs(y) <= 11, <function is_odd at 0x...>(y) }

    sage: # needs sage.geometry.polyhedron
    sage: P = polytopes.cube(); P
    A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices
    sage: P.rename("P")
    sage: P_inter_B = ConditionSet(P, lambda x: x .norm() < 1.2); P_inter_B
    { x ∈ P : <function <lambda> at 0x...>(x) }
    sage: vector([1, 0, 0]) in P_inter_B
    True
    sage: vector([1, 1, 1]) in P_inter_B
    False
    # needs sage.symbolic
```

(continues on next page)
Iterating over subsets determined by predicates:

```python
declare predicate:
sage: predicate(x, y, z) = sqrt(x^2 + y^2 + z^2) < 1.2; predicate
(x, y, z) |--> sqrt(x^2 + y^2 + z^2) < 1.200000000000000

# create subset with predicate:
sage: P_inter_B_again = ConditionSet(P, predicate); P_inter_B_again
( (x, y, z) ∈ P : sqrt(x^2 + y^2 + z^2) < 1.200000000000000 )

# check membership:
sage: vector([1, 0, 0]) in P_inter_B_again
True
sage: vector([1, 1, 1]) in P_inter_B_again
False
```

Using `ConditionSet` without predicates provides a way of attaching variable names to a set:

```python
# attach variable names to set:
sage: Z3 = ConditionSet(ZZ^3, vars=[x, y, z]); Z3
( (x, y, z) ∈ Ambient free module of rank 3
  over the principal ideal domain Integer Ring )

# get variable names:
sage: Z3.variable_names()
('x', 'y', 'z')

# get arguments:
sage: Z3.arguments()
(x, y, z)

# create another set with variable names:
sage: Q4.<a, b, c, d> = ConditionSet(QQ^4); Q4
( (a, b, c, d) ∈ Vector space of dimension 4 over Rational Field )

# get variable names:
sage: Q4.variable_names()
('a', 'b', 'c', 'd')

# get arguments:
sage: Q4.arguments()
(a, b, c, d)
```

Return the universe of `self`.

EXAMPLES:
Sage: Evens = ConditionSet(ZZ, is_even); Evens
{ x ∈ Integer Ring : <function is_even at 0x...>(x) }
Sage: Evens.ambient()
Integer Ring

arguments()
Return the variables of self as elements of the symbolic ring.

EXAMPLES:

Sage: Odds = ConditionSet(ZZ, is_odd); Odds
{ x ∈ Integer Ring : <function is_odd at 0x...>(x) }
Sage: args = Odds.arguments(); args
needs sage.symbolic
\[(x,)
Sage: args[0].parent()
needs sage.symbolic
Symbolic Ring

intersection(X)
Return the intersection of self and X.

EXAMPLES:

Sage: # needs sage.modules sage.symbolic
Sage: in_small_oblong(x, y) = x^2 + 3*y^2 <= 42
Sage: SmallOblongUniverse = ConditionSet(QQ^2, in_small_oblong)
Sage: SmallOblongUniverse
{ (x, y) ∈ Vector space of dimension 2 over Rational Field : x^2 + 3*y^2 <= 42 }
Sage: parity_check(x, y) = abs(sin(pi/2*(x + y))) < 1/1000
Sage: EvenUniverse = ConditionSet(ZZ^2, parity_check); EvenUniverse
{ (x, y) ∈ Ambient free module of rank 2 over the principal ideal domain Integer Ring : abs(sin(1/2*pi*x + 1/2*pi*y)) < (1/1000) }
Sage: SmallOblongUniverse & EvenUniverse
{ (x, y) ∈ Free module of degree 2 and rank 2 over Integer Ring Echelon basis matrix:
\[
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\] : x^2 + 3*y^2 <= 42, abs(sin(1/2*pi*x + 1/2*pi*y)) < (1/1000) }

Combining two ConditionSet`s with different formal variables works correctly. The formal variables of the intersection are taken from `self`:

Sage: # needs sage.modules sage.symbolic
Sage: SmallMirrorUniverse = ConditionSet(QQ^2, in_small_oblong, vars=(y, x))
Sage: SmallMirrorUniverse
{ (y, x) ∈ Vector space of dimension 2 over Rational Field : 3*x^2 + y^2 <= 42 }
Sage: SmallOblongUniverse & SmallMirrorUniverse
{ (x, y) ∈ Vector space of dimension 2 over Rational Field : x^2 + 3*y^2 <= 42 }
Sage: SmallMirrorUniverse & SmallOblongUniverse
{ (y, x) ∈ Vector space of dimension 2 over Rational Field : 3*x^2 + y^2 <= 42 }
1.10 Maps between finite sets

This module implements parents modeling the set of all maps between two finite sets. At the user level, any such parent should be constructed using the factory class `FiniteSetMaps` which properly selects which of its subclasses to use.

AUTHORS:
- Florent Hivert

```python
class sage.sets.finite_set_maps.FiniteSetEndoMaps_N(n, action, category=None):
    Bases: FiniteSetMaps_MN
    The sets of all maps from \{1, 2, \ldots, n\} to itself
    Users should use the factory class FiniteSetMaps to create instances of this class.
    INPUT:
    - n -- an integer.
    - category -- the category in which the sets of maps is constructed. It must be a sub-category of Monoids().Finite() and EnumeratedSets().Finite() which is the default value.

    Element
    alias of FiniteSetEndoMap_N

    an_element() -> Returns a map in self
    EXAMPLES:
    sage: M = FiniteSetMaps(4)
    sage: M.an_element()
    [3, 2, 1, 0]

    one() -> Returns the identity map
    EXAMPLES:
    sage: M = FiniteSetMaps(4)
    sage: M.one()
    [0, 1, 2, 3]
```

class sage.sets.finite_set_maps.FiniteSetEndoMaps_Set(domain, action, category=None):
 Bases: FiniteSetMaps_Set, FiniteSetEndoMaps_N
 The sets of all maps from a set to itself
 Users should use the factory class FiniteSetMaps to create instances of this class.
 INPUT:
 - domain -- an object in the category FiniteSets().
 - category -- the category in which the sets of maps is constructed. It must be a sub-category of Monoids().Finite() and EnumeratedSets().Finite() which is the default value.

 Element
 alias of FiniteSetEndoMap_Set
Sets, Release 10.3

class sage.sets.finite_set_maps.FiniteSetMaps

Bases: UniqueRepresentation, Parent

Maps between finite sets

Constructs the set of all maps between two sets. The sets can be given using any of the three following ways:

1. an object in the category Sets().
2. a finite iterable. In this case, an object of the class FiniteEnumeratedSet is constructed from the iterable.
3. an integer \(n \) designing the set \(\{0, 1, \ldots, n - 1\} \). In this case an object of the class IntegerRange is constructed.

INPUT:

- domain – a set, finite iterable, or integer.
- codomain – a set, finite iterable, integer, or None (default). In this last case, the maps are endo-maps of the domain.
- action – "left" (default) or "right". The side where the maps act on the domain. This is used in particular to define the meaning of the product (composition) of two maps.
- category – the category in which the sets of maps is constructed. By default, this is FiniteMonoids() if the domain and codomain coincide, and FiniteEnumeratedSets() otherwise.

OUTPUT:

an instance of a subclass of FiniteSetMaps modeling the set of all maps between domain and codomain.

EXAMPLES:

We construct the set \(M \) of all maps from \(\{a, b\} \) to \(\{3, 4, 5\} \):

```sage
M = FiniteSetMaps(["a", "b"], [3, 4, 5]); M
Maps from {'a', 'b'} to {3, 4, 5}
M.cardinality()
9
M.domain()
{'a', 'b'}
M.codomain()
{3, 4, 5}
M for f in M: print(f)
map: a -> 3, b -> 3
map: a -> 3, b -> 4
map: a -> 3, b -> 5
map: a -> 4, b -> 3
map: a -> 4, b -> 4
map: a -> 4, b -> 5
map: a -> 5, b -> 3
map: a -> 5, b -> 4
map: a -> 5, b -> 5
```

Elements can be constructed from functions and dictionaries:

```sage
M(lambda c: ord(c)-94)
map: a -> 3, b -> 4
M.from_dict({"a":3, "b":5})
map: a -> 3, b -> 5
```
If the domain is equal to the codomain, then maps can be composed:

```
sage: M = FiniteSetMaps([1, 2, 3])
sage: f = M.from_dict({1:2, 2:1, 3:3}); f
map: 1 -> 2, 2 -> 1, 3 -> 3
sage: g = M.from_dict({1:2, 2:3, 3:1}); g
map: 1 -> 2, 2 -> 3, 3 -> 1
sage: f * g
map: 1 -> 1, 2 -> 3, 3 -> 2
```

This makes M into a monoid:

```
sage: M.category()
Category of finite enumerated monoids
sage: M.one()
map: 1 -> 1, 2 -> 2, 3 -> 3
```

By default, composition is from right to left, which corresponds to an action on the left. If one specifies `action` to right, then the composition is from left to right:

```
sage: M = FiniteSetMaps([1, 2, 3], action = 'right')
sage: f = M.from_dict({1:2, 2:1, 3:3})
sage: g = M.from_dict({1:2, 2:3, 3:1})
sage: f * g
map: 1 -> 3, 2 -> 2, 3 -> 1
```

If the domains and codomains are both of the form $\{0, \ldots\}$, then one can use the shortcut:

```
sage: M = FiniteSetMaps(2,3); M
Maps from $\{0, 1\}$ to $\{0, 1, 2\}$
sage: M.cardinality()
g
```

For a compact notation, the elements are then printed as lists $[f(i), i = 0, \ldots]$:

```
sage: list(M)
[[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]]
```

cardinality()

The cardinality of `self`

EXAMPLES:

```
sage: FiniteSetMaps(4, 3).cardinality()
81
```

class `sage.sets.finite_set_maps.FiniteSetMaps_MN`(m, n, category=None)

Bases: `FiniteSetMaps`

The set of all maps from $\{1, 2, \ldots, m\}$ to $\{1, 2, \ldots, n\}$.

Users should use the factory class `FiniteSetMaps` to create instances of this class.

INPUT:

- `m, n` – integers
- `category` – the category in which the sets of maps is constructed. It must be a sub-category of `EnumeratedSets().Finite()` which is the default value.
Element

alias of FiniteSetMap_MN

an_element()

Returns a map in self

EXAMPLES:

```
sage: M = FiniteSetMaps(4, 2)
sage: M.an_element()
[0, 0, 0, 0]
sage: M = FiniteSetMaps(0, 0)
sage: M.an_element()
[]
```

An exception EmptySetError is raised if this set is empty, that is if the codomain is empty and the domain is not.

```
sage: M = FiniteSetMaps(4, 0)
sage: M.cardinality()
0
sage: M.an_element()
Traceback (most recent call last):
...
EmptySetError
```

codomain()

The codomain of self

EXAMPLES:

```
sage: FiniteSetMaps(3,2).codomain()
{0, 1}
```

domain()

The domain of self

EXAMPLES:

```
sage: FiniteSetMaps(3,2).domain()
{0, 1, 2}
```

class sage.sets.finite_set_maps.FiniteSetMaps_Set (domain, codomain, category=None)

Bases: FiniteSetMaps_MN

The sets of all maps between two sets

Users should use the factory class FiniteSetMaps to create instances of this class.

INPUT:

- domain – an object in the category FiniteSets()
- codomain – an object in the category FiniteSets()
- category – the category in which the sets of maps is constructed. It must be a sub-category of EnumeratedSets().Finite() which is the default value.
Element
alias of \texttt{FiniteSetMap_Set}

codomain()
The codomain of self
EXEMPLES:

\begin{verbatim}
sage: FiniteSetMaps(["a","b"],[3,4,5]).codomain()
{3, 4, 5}
\end{verbatim}

domain()
The domain of self
EXEMPLES:

\begin{verbatim}
sage: FiniteSetMaps(["a","b"],[3,4,5]).domain()
{\texttt{a}, \texttt{b}}
\end{verbatim}

from_dict\(d\)
Create a map from a dictionary
EXEMPLES:

\begin{verbatim}
sage: M = FiniteSetMaps(["a","b"],[3,4,5])
sage: M.from_dict({\texttt{a}: 3, \texttt{b}: 4})
map: a \rightarrow 3, b \rightarrow 4
\end{verbatim}

1.11 Data structures for maps between finite sets

This module implements several fast Cython data structures for maps between two finite set. Those classes are not intended to be used directly. Instead, such a map should be constructed via its parent, using the class \texttt{FiniteSetMaps}.

EXEMPLES:

To create a map between two sets, one first creates the set of such maps:

\begin{verbatim}
sage: M = FiniteSetMaps(["a","b"],[3,4,5])
\end{verbatim}

The map can then be constructed either from a function:

\begin{verbatim}
sage: f1 = M(\texttt{lambda } c: \texttt{ord(c)}-94); f1
map: a \rightarrow 3, b \rightarrow 4
\end{verbatim}

or from a dictionary:

\begin{verbatim}
sage: f2 = M.from_dict({\texttt{a}:3, \texttt{b}:4}); f2
map: a \rightarrow 3, b \rightarrow 4
\end{verbatim}

The two created maps are equal:

\begin{verbatim}
sage: f1 == f2
True
\end{verbatim}

Internally, maps are represented as the list of the ranks of the images \(f(x)\) in the co-domain, in the order of the domain:
A third fast way to create a map is to use such a list. It should be kept for internal use:

\[
\begin{align*}
\text{sage: } & \text{list(f2)} \\
& [0, 1]
\end{align*}
\]

\[
\begin{align*}
\text{sage: } & \text{M._from_list_([0, 1]); f3} \\
& \text{map: } a \rightarrow 3, \ b \rightarrow 4 \\
\text{sage: } & \text{f1 == f3} \\
& \text{True}
\end{align*}
\]

AUTHORS:

- Florent Hivert

```python
class sage.sets.finite_set_map_cy.FiniteSetEndoMap_N
    Bases: FiniteSetMap_MN
    Maps from range(n) to itself.
    See also:
    FiniteSetMap_MN for assumptions on the parent

class sage.sets.finite_set_map_cy.FiniteSetEndoMap_Set
    Bases: FiniteSetMap_Set
    Maps from a set to itself
    See also:
    FiniteSetMap_Set for assumptions on the parent

class sage.sets.finite_set_map_cy.FiniteSetMap_MN
    Bases: ClonableIntArray
    Data structure for maps from range(m) to range(n).
    We assume that the parent given as argument is such that:
    • m is stored in self.parent()._m
    • n is stored in self.parent()._n
    • the domain is in self.parent().domain()
    • the codomain is in self.parent().codomain()

    check()
    Performs checks on self
    Check that self is a proper function and then calls parent.check_element(self) where parent is the parent of self.

codomain()
    Returns the codomain of self
```

EXAMPLES:

\[
\begin{align*}
\text{sage: } & \text{FiniteSetMaps(4, 3)([1, 0, 2, 1]).codomain()} \\
& \{0, 1, 2\}
\end{align*}
\]
domain()

Returns the domain of self

EXAMPLES:

```
sage: FiniteSetMaps(4, 3)([1, 0, 2, 1]).domain()
{0, 1, 2, 3}
```

fibers()

Returns the fibers of self

OUTPUT:

a dictionary \(d\) such that \(d[y]\) is the set of all \(x\) in domain such that \(f(x) = y\)

EXAMPLES:

```
sage: FiniteSetMaps(4, 3)([1, 0, 2, 1]).fibers()
{0: {1}, 1: {0, 3}, 2: {2}}
sage: F = FiniteSetMaps(['a', 'b', 'c'])
sage: F.from_dict({'a': 'b', 'b': 'a', 'c': 'b'}).fibers() == {'a': {'b'}, 'b': {'a', 'c'}}
True
```

gimage(i)

Returns the image of \(i\) by self

INPUT:

- \(i\) – any object.

Note: if you need speed, please use instead _getimage()

EXAMPLES:

```
sage: fs = FiniteSetMaps(4, 3)([1, 0, 2, 1])
sage: fs.getimage(0), fs.getimage(1), fs.getimage(2), fs.getimage(3)
(1, 0, 2, 1)
```

image_set()

Returns the image set of self

EXAMPLES:

```
sage: FiniteSetMaps(4, 3)([1, 0, 2, 1]).image_set()
{0, 1, 2}
sage: FiniteSetMaps(4, 3)([1, 0, 0, 1]).image_set()
{0, 1}
```

items()

The items of self

Return the list of the ordered pairs \((x, \text{self}(x))\)

EXAMPLES:

```
sage: FiniteSetMaps(4, 3)([1, 0, 2, 1]).items()
[(0, 1), (1, 0), (2, 2), (3, 1)]
```
\textbf{setimage} \((i, j)\)

Set the image of \(i\) as \(j\) in \texttt{self}

Warning: \texttt{self} must be mutable; otherwise an exception is raised.

INPUT:

- \(i, j\) – two object’s

OUTPUT: None

Note: if you need speed, please use instead \texttt{_setimage()}

EXAMPLES:

```
\begin{verbatim}
sage: fs = FiniteSetMaps(4, 3)([1, 0, 2, 1])
sage: fs2 = copy(fs)
sage: fs2.setimage(2, 1)
sage: fs2
[1, 0, 1, 1]
sage: with fs.clone() as fs3:
 ....:   fs3.setimage(0, 2)
 ....:   fs3.setimage(1, 2)
sage: fs3
[2, 2, 2, 1]
\end{verbatim}
```

\textbf{class} \texttt{sage.sets.finite_set_map_cy.FiniteSetMap_Set}

\textbf{Bases:} \texttt{FiniteSetMap_MN}

Data structure for maps

We assume that the parent given as argument is such that:

- the domain is in \texttt{parent.domain()}
- the codomain is in \texttt{parent.codomain()}
- \texttt{parent_m} contains the cardinality of the domain
- \texttt{parent_n} contains the cardinality of the codomain
- \texttt{parent_unrank_domain} and \texttt{parent_rank_domain} is a pair of reciprocal rank and unrank functions between the domain and range (\texttt{parent_m}).
- \texttt{parent_unrank_codomain} and \texttt{parent_rank_codomain} is a pair of reciprocal rank and unrank functions between the codomain and range (\texttt{parent_n}).

\textbf{classmethod} \texttt{from_dict} \((t, parent, d)\)

Creates a \texttt{FiniteSetMap} from a dictionary

Warning: no check is performed!

\textbf{classmethod} \texttt{from_list} \((t, parent, lst)\)

Creates a \texttt{FiniteSetMap} from a list
Warning: no check is performed!

getimage(i)

Returns the image of i by self

INPUT:

• i – an int

EXAMPLES:

```
sage: F = FiniteSetMaps(['a', 'b', 'c', 'd'], ['u', 'v', 'w'])
sage: fs = F._from_list_([1, 0, 2, 1])
sage: list(map(fs.getimage, ['a', 'b', 'c', 'd']))
['v', 'u', 'w', 'v']
```

image_set()

Returns the image set of self

EXAMPLES:

```
sage: F = FiniteSetMaps(['a', 'b', 'c'])
sage: sorted(F.from_dict({'a': 'b', 'b': 'a', 'c': 'b'}).image_set())
['a', 'b']
sage: F = FiniteSetMaps(['a', 'b', 'c'])
sage: F(lambda x: 'c').image_set()
{'c'}
```

items()

The items of self

Return the list of the couple (x, self(x))

EXAMPLES:

```
sage: F = FiniteSetMaps(['a', 'b', 'c'])
sage: F.from_dict({'a': 'b', 'b': 'a', 'c': 'b'}).items()
[('a', 'b'), ('b', 'a'), ('c', 'b')]
```

setimage(i, j)

Set the image of i as j in self

Warning: self must be mutable otherwise an exception is raised.

INPUT:

• i, j – two object’s

OUTPUT: None

EXAMPLES:

```
sage: F = FiniteSetMaps(['a', 'b', 'c', 'd'], ['u', 'v', 'w'])
sage: fs = F(lambda x: 'v')
sage: fs2 = copy(fs)
sage: fs2.setimage('a', 'w')
```

(continues on next page)
\texttt{sage}: \texttt{fs2}
map: a \rightarrow w, b \rightarrow v, c \rightarrow v, d \rightarrow v
\texttt{sage}: \texttt{with fs.clone() as fs3:}
\texttt{....: fs3.setimage("a", "u")}
\texttt{....: fs3.setimage("c", "w")}
\texttt{sage}: fs3
map: a \rightarrow u, b \rightarrow v, c \rightarrow w, d \rightarrow v

\texttt{sage.sets.finite_set_map_cy.FiniteSetMap_Set_from_dict}(t, parent, d)
Creates a \texttt{FiniteSetMap} from a dictionary

\textbf{Warning:} no check is performed!

\texttt{sage.sets.finite_set_map_cy.FiniteSetMap_Set_from_list}(t, parent, lst)
Creates a \texttt{FiniteSetMap} from a list

\textbf{Warning:} no check is performed!

\texttt{sage.sets.finite_set_map_cy.fibers}(f, domain)
Returns the fibers of the function \(f \) on the finite set \(\text{domain} \)

\textbf{INPUT:}
\begin{itemize}
\item \(f \) – a function or callable
\item \(\text{domain} \) – a finite iterable
\end{itemize}

\textbf{OUTPUT:}
\begin{itemize}
\item a dictionary \(d \) such that \(d[y] \) is the set of all \(x \) in \(\text{domain} \) such that \(f(x) = y \)
\end{itemize}

\textbf{EXAMPLES:}

| \texttt{sage}: from sage.sets.finite_set_map_cy import fibers, fibers_args \texttt{sage}: fibers(lambda x: 1, []) |
| \texttt{():} |
| \texttt{1: {1, -1}, 4: {2}, 9: {3, -3}, 16: {4}} |
| \texttt{sage}: fibers(lambda x: x^2, [-1, 2, -3, 1, 3, 4]) |
| \texttt{(1: {1, 2, 3, 4, -3, -1})} |
| \texttt{sage}: fibers(lambda x: 1, [1,1,1]) |
| \texttt{(1: {1})} |

See also:
\texttt{fibers_args()} if one needs to pass extra arguments to \(f \).

\texttt{sage.sets.finite_set_map_cy.fibers_args}(f, domain, *args, **opts)
Returns the fibers of the function \(f \) on the finite set \(\text{domain} \)

It is the same as \texttt{fibers()} except that one can pass extra argument for \(f \) (with a small overhead)

\textbf{EXAMPLES:}
1.12 Totally Ordered Finite Sets

AUTHORS:

- Stepan Starosta (2012): Initial version

class sage.sets.totally_ordered_finite_set.TotallyOrderedFiniteSet(elements, facade=True)

Bases: FiniteEnumeratedSet

Totally ordered finite set.

This is a finite enumerated set assuming that the elements are ordered based upon their rank (i.e. their position in the set).

INPUT:

- elements – A list of elements in the set
- facade – (default: True) if True, a facade is used; it should be set to False if the elements do not inherit from Element or if you want a funny order. See examples for more details.

See also:

FiniteEnumeratedSet

EXAMPLES:

```
sage: S = TotallyOrderedFiniteSet([1,2,3])
sage: S
{1, 2, 3}
sage: S.cardinality()
3
```

By default, totally ordered finite set behaves as a facade:

```
sage: S(1).parent()
Integer Ring
```

It makes comparison fails when it is not the standard order:

```
sage: T1 = TotallyOrderedFiniteSet([3,2,5,1])
sage: T1(3) < T1(1)
False
sage: T2 = TotallyOrderedFiniteSet([3, x])
# needs sage.symbolic
sage: T2(3) < T2(x)
# needs sage.symbolic
3 < x
```

To make the above example work, you should set the argument facade to False in the constructor. In that case, the elements of the set have a dedicated class:
```python
sage: A = TotallyOrderedFiniteSet([3,2,0,'a',7,(0,0),1], facade=False)
sage: A
{3, 2, 0, 'a', 7, (0, 0), 1}
sage: x = A.an_element()
sage: x
3
sage: x.parent()
{3, 2, 0, 'a', 7, (0, 0), 1}
sage: A(3) < A(2)
True
sage: A('a') < A(7)
True
sage: A(3) > A(2)
False
sage: A(1) < A(3)
False
sage: A(3) == A(3)
True
```

But then, the equality comparison is always False with elements outside of the set:

```python
sage: A(1) == 1
False
sage: 1 == A(1)
False
sage: 'a' == A('a')
False
sage: A('a') == 'a'
False
```

Since [github issue #16280](https://github.com/sagemath/sage/issues/16280), totally ordered sets support elements that do not inherit from `sage.structure.element.Element`, whether they are facade or not:

```python
sage: S = TotallyOrderedFiniteSet(['a', 'b'])
sage: S('a')
'a'
sage: S = TotallyOrderedFiniteSet(['a', 'b'], facade=False)
sage: S('a')
'a'
```

Multiple elements are automatically deleted:

```python
sage: TotallyOrderedFiniteSet([1,1,2,1,2,2,5,4])
{1, 2, 5, 4}
```

Element

alias of `TotallyOrderedFiniteSetElement`

le`(x, y)`

Return `True` if `x ≤ y` for the order of `self`.

EXAMPLES:

```python
sage: T = TotallyOrderedFiniteSet([1,3,2], facade=False)
sage: T1, T3, T2 = T.list()
sage: T.le(T1,T3)
True
```
1.13 Set of all objects of a given Python class

`sage.sets.pythonclass.Set_PythonType(typ)`

Return the (unique) Parent that represents the set of Python objects of a specified type.

EXAMPLES:

```python
sage: from sage.sets.pythonclass import Set_PythonType
sage: Set_PythonType(list)
Set of Python objects of class list
sage: Set_PythonType(list) is Set_PythonType(list)
True
sage: S = Set_PythonType(tuple)
sage: S([1,2,3])
(1, 2, 3)
```

S is a parent which models the set of all lists:

```python
sage: S.category()
Category of sets
```

class sage.sets.pythonclass.Set_PythonType_class

Bases: `Set_generic`

The set of Python objects of a given class.

The elements of this set are not instances of `Element`; they are instances of the given class.

INPUT:

- `typ` – a Python (new-style) class

EXAMPLES:
sage: from sage.sets.pythonclass import Set_PythonType
sage: S = Set_PythonType(int); S
Set of Python objects of class 'int'
sage: int('1') in S
True
sage: Integer('1') in S
False
sage: Set_PythonType(2)
Traceback (most recent call last):
 ...TypeError: must be initialized with a class, not 2

cardinality()
EXAMPLES:

sage: from sage.sets.pythonclass import Set_PythonType
sage: S = Set_PythonType(bool)
sage: S.cardinality()
2
sage: S = Set_PythonType(int)
sage: S.cardinality()
+Infinity

object()
EXAMPLES:

sage: from sage.sets.pythonclass import Set_PythonType
sage: Set_PythonType(tuple).object()
<... 'tuple'>

2.1 Integer Range

AUTHORS:
• Nicolas Borie (2010-03): First release.
• Florent Hivert (2010-03): Added a class factory + cardinality method.
• Vincent Delecroix (2012-02): add methods rank/unrank, make it compliant with Python int.

class sage.sets.integer_range.IntegerRange
Bases: UniqueRepresentation, Parent

The class of Integer ranges

Returns an enumerated set containing an arithmetic progression of integers.

INPUT:
• begin – an integer, Infinity or -Infinity
• end – an integer, Infinity or -Infinity
• step – a non zero integer (default to 1)
• middle_point – an integer inside the set (default to None)

OUTPUT:
A parent in the category FiniteEnumeratedSets() or InfiniteEnumeratedSets() depending on the arguments defining self.

IntegerRange(i, j) returns the set of \{i, i+1, i+2, \ldots, j-1\}. start (!) defaults to 0. When step is given, it specifies the increment. The default increment is 1. IntegerRange allows begin and end to be infinite.

IntegerRange is designed to have similar interface Python range. However, whereas range accept and returns Python int, IntegerRange deals with Integer.

If middle_point is given, then the elements are generated starting from it, in a alternating way: \{m, m+1, m-2, m+2, m-2 \ldots\}.

EXAMPLES:

```
sage: list(IntegerRange(5))
[0, 1, 2, 3, 4]
sage: list(IntegerRange(2,5))
[2, 3, 4]
sage: I = IntegerRange(2,100,5); I
```

(continues on next page)
When `begin` and `end` are both finite, `IntegerRange(begin, end, step)` is the set whose list of elements is equivalent to the python construction `range(begin, end, step):

```python
sage: list(IntegerRange(4,105,3)) == list(range(4,105,3))
True
sage: list(IntegerRange(-54,13,12)) == list(range(-54,13,12))
True
```

Except for the type of the numbers:

```python
sage: type(IntegerRange(-54,13,12)[0]), type(list(range(-54,13,12))[0])
(<... 'sage.rings.integer.Integer'>, <... 'int'>)
```

When `begin` is finite and `end` is `+Infinity`, `self` is the infinite arithmetic progression starting from the `begin` by step `step`:

```python
sage: I = IntegerRange(54,Infinity,3); I
{54, 57, ...}
```

When `begin` and `end` are both infinite, you will have to specify the extra argument `middle_point`. `self` is then defined by a point and a progression/regression setting by `step`. The enumeration is done this way: (let us call `m` the `middle_point`) \{`m`, `m` + `step`, `m` - `step`, `m` + 2`step`, `m` - 2`step`, `m` + 3`step`, ...\}:

```python
sage: I = IntegerRange(-Infinity,Infinity,37,-12); I
Integer progression containing -12 with increment 37 and bounded with -Infinity... → and +Infinity
```

```
(54, 57, 60, 63, 66, 69)
```

```
(-12, 25, -49, 62, -86, 99, -123, 136)
```
It is also possible to use the argument `middle_point` for other cases, finite or infinite. The set will be the same as if you didn’t give this extra argument but the enumeration will begin with this `middle_point`:

```
sage: I = IntegerRange(123,-12,-14); I
{123, 109, ..., -3}
sage: list(I)
[123, 109, 95, 81, 67, 53, 39, 25, 11, -3]
sage: J = IntegerRange(123,-12,-14,25); J
Integer progression containing 25 with increment -14 and bounded with 123 and -12
sage: list(J)
[25, 11, 39, -3, 53, 67, 81, 95, 109, 123]
```

Remember that, like for range, if you define a non empty set, `begin` is supposed to be included and `end` is supposed to be excluded. In the same way, when you define a set with a `middle_point`, the `begin` bound will be supposed to be included and the `end` bound supposed to be excluded:

```
sage: I = IntegerRange(-100,100,10,0)
sage: J = list(range(-100,100,10))
sage: 100 in I
False
sage: 100 in J
False
sage: -100 in I
True
sage: -100 in J
True
sage: list(I)
[0, 10, -10, 20, -20, 30, -30, 40, -40, 50, -50, 60, -60, 70, -70, 80, -80, 90, -90, -100]
```

Note: The input is normalized so that:

```
sage: IntegerRange(1, 6, 2) is IntegerRange(1, 7, 2)
True
sage: IntegerRange(1, 8, 3) is IntegerRange(1, 10, 3)
True
```

element_class

alias of `Integer`

```
class sage.sets.integer_range.IntegerRangeEmpty(elements)
    Bases: IntegerRange,FiniteEnumeratedSet

A singleton class for empty integer ranges
See `IntegerRange` for more details.
```

```
class sage.sets.integer_range.IntegerRangeFinite(begin, end, step=1)
    Bases: IntegerRange

The class of finite enumerated sets of integers defined by finite arithmetic progressions
See `IntegerRange` for more details.
```

```
cardinality()
    Return the cardinality of self

EXAMPLES:
```
sage: IntegerRange(123, 12, -4).cardinality()
28
sage: IntegerRange(-57, 12, 8).cardinality()
9
sage: IntegerRange(123, 12, 4).cardinality()
0

rank \(x\)

EXAMPLES:

sage: I = IntegerRange(-57, 36, 8)
sage: I.rank(23)
10
sage: I.rank(10)
23
sage: I.rank(22)
Traceback (most recent call last):
...
IndexError: 22 not in self
sage: I.rank(87)
Traceback (most recent call last):
...
IndexError: 87 not in self

unrank \(i\)

Return the \(i\)-th element of this integer range.

EXAMPLES:

sage: I = IntegerRange(1, 13, 5)
sage: I[0], I[1], I[2]
(1, 6, 11)
sage: I[3]
Traceback (most recent call last):
...
IndexError: out of range
sage: I[-1]
11
sage: I[-4]
Traceback (most recent call last):
...
IndexError: out of range

class sage.sets.integer_range.IntegerRangeFromMiddle(begin, end, step=1, middle_point=1)

Bases: IntegerRange

The class of finite or infinite enumerated sets defined with an inside point, a progression and two limits.

See IntegerRange for more details.
\texttt{next \((elt) \)}

Return the next element of \texttt{elt} in \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.sets.integer_range import IntegerRangeFromMiddle
sage: I = IntegerRangeFromMiddle(-100,100,10,0)
sage: (I.next(0), I.next(10), I.next(-10), I.next(20), I.next(-100))
(10, -10, 20, -20, None)
sage: I = IntegerRangeFromMiddle(-Infinity,Infinity,10,0)
sage: (I.next(0), I.next(10), I.next(-10), I.next(20), I.next(-100))
(10, -10, 20, -20, 110)
sage: I.next(1)
Traceback (most recent call last):
...
LookupError: 1 not in Integer progression containing 0 with increment 10 and
\texttt{bounded with -Infinity and +Infinity}
\end{verbatim}

\begin{class}
\texttt{sage.sets.integer_range.IntegerRangeInfinite} \((begin, step=1) \)
\end{class}

Bases: \texttt{IntegerRange}

The class of infinite enumerated sets of integers defined by infinite arithmetic progressions.

See \texttt{IntegerRange} for more details.

\begin{function}
\texttt{rank} \(\texttt{(x)} \)
\end{function}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: I = IntegerRange(-57,Infinity,8)
sage: I.rank(23)
10
sage: I.unrank(10)
23
sage: I.rank(22)
Traceback (most recent call last):
...
IndexError: 22 not in self
\end{verbatim}

\begin{function}
\texttt{unrank} \(\texttt{(i)} \)
\end{function}

Returns the \texttt{i}-th element of \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: I = IntegerRange(-8,Infinity,3)
sage: I.unrank(1)
-5
\end{verbatim}

\section{2.2 Positive Integers}

\begin{class}
\texttt{sage.sets.positive_integers.PositiveIntegers}
\end{class}

Bases: \texttt{IntegerRangeInfinite}

The enumerated set of positive integers. To fix the ideas, we mean \{1, 2, 3, 4, 5, \ldots\}.

This class implements the set of positive integers, as an enumerated set (see \texttt{InfiniteEnumeratedSets}).

This set is an integer range set. The construction is therefore done by \texttt{IntegerRange} (see \texttt{IntegerRange}).
EXAMPLES:

```python
sage: PP = PositiveIntegers()
sage: PP
Positive integers
sage: PP.cardinality()
+Infinity
sage: TestSuite(PP).run()
sage: list()
Traceback (most recent call last):
... Not ImplementedError: cannot list an infinite set
sage: it = iter(PP)
sage: (next(it), next(it), next(it), next(it), next(it))
(1, 2, 3, 4, 5)
sage: first()
1
```

```
Returns an element of self.

EXAMPLES:

```python
sage: PositiveIntegers().an_element()
42
```

### 2.3 Non Negative Integers

```python
class sage.sets.non_negative_integers.NonNegativeIntegers (category=None)

Bases: UniqueRepresentation, Parent

The enumerated set of non negative integers.

This class implements the set of non negative integers, as an enumerated set (see InfiniteEnumeratedSets).

EXAMPLES:

```python
sage: NN = NonNegativeIntegers()
sage: NN
Non negative integers
sage: NN.cardinality()
+Infinity
sage: TestSuite(NN).run()
sage: list()
Traceback (most recent call last):
... Not ImplementedError: cannot list an infinite set
sage: element_class
<... 'sage.rings.integer.Integer'>
sage: it = iter(NN)
sage: [next(it), next(it), next(it), next(it), next(it)]
[0, 1, 2, 3, 4]
sage: first()
0
```

Currently, this is just a “facade” parent; namely its elements are plain Sage Integers with Integer Ring as parent:
In a later version, there will be an option to specify whether the elements should have *Integer Ring* or *Non-negative integers* as parent:

```python
sage: NN = NonNegativeIntegers(facade = False)  # todo: not implemented
sage: x = NN(5)  # todo: not implemented
sage: x.parent()  # todo: not implemented
Non negative integers
```

This runs generic sanity checks on `NN`:

```python
sage: TestSuite(NN).run()
```

TODO: do not use `NN` any more in the doctests for `NonNegativeIntegers`.

Element

alias of *Integer*

an_element()

EXAMPLES:

```python
sage: NonNegativeIntegers().an_element()
42
```

from_integer

alias of *Integer*

next(*o*)

EXAMPLES:

```python
sage: NN = NonNegativeIntegers()

sage: NN.next(3)
4
```

some_elements()

EXAMPLES:

```python
sage: NonNegativeIntegers().some_elements()
[0, 1, 3, 42]
```

unrank(*rnk*)

EXAMPLES:

```python
sage: NN = NonNegativeIntegers()

sage: NN.unrank(100)
100
```
2.4 The set of prime numbers

AUTHORS:

- William Stein (2005): original version

class sage.sets.primes.Primes(proof)

Bases: Set_generic, UniqueRepresentation

The set of prime numbers.

EXAMPLES:

```
sage: P = Primes(); P
Set of all prime numbers: 2, 3, 5, 7, ...
```

We show various operations on the set of prime numbers:

```
sage: P.cardinality()
+Infinity
sage: R = Primes()

sage: P == R
True

sage: 5 in P
True

sage: 100 in P
False

sage: len(P)
Traceback (most recent call last):
...
NotImplementedError: infinite set
```

first()

Return the first prime number.

EXAMPLES:

```
sage: P = Primes()

sage: P.first()
2
```

next(pr)

Return the next prime number.

EXAMPLES:

```
sage: P = Primes()

sage: P.next(5)  # needs sage.libs.pari
7
```

unrank(n)

Return the n-th prime number.

EXAMPLES:
2.5 Subsets of the Real Line

This module contains subsets of the real line that can be constructed as the union of a finite set of open and closed intervals.

EXAMPLES:

```
sage: RealSet(0,1)
(0, 1)
sage: RealSet((0,1), [2,3])
(0, 1) ∪ [2, 3]
sage: RealSet((1,3), (0,2))
(0, 3)
sage: RealSet(-oo, oo)
(-oo, +oo)
```

Brackets must be balanced in Python, so the naive notation for half-open intervals does not work:

```
sage: RealSet([0,1))
Traceback (most recent call last):
...
SyntaxError: ...
```

Instead, you can use the following construction functions:

```
sage: RealSet.open_closed(0,1)
(0, 1]
sage: RealSet.closed_open(0,1)
[0, 1)
sage: RealSet.point(1/2)
{1/2}
sage: RealSet.unbounded_below_open(0)
(-oo, 0)
sage: RealSet.unbounded_below_closed(0)
(-oo, 0]
sage: RealSet.unbounded_above_open(1)
(1, +oo)
sage: RealSet.unbounded_above_closed(1)
[1, +oo)
```

The lower and upper endpoints will be sorted if necessary:

```
sage: RealSet.interval(1, 0, lower_closed=True, upper_closed=False)
[0, 1)
```

Relations containing symbols and numeric values or constants:
Note that multiple arguments are combined as union:

```sage
sage: RealSet(x == pi)
{pi}
```

```sage
sage: RealSet(x >= 0, x < 1)
(-oo, +oo)
```

```sage
sage: RealSet(x >= 0, x > 1)
[0, +oo)
```

```sage
sage: RealSet(x >= 0, x > -1)
(-1, +oo)
```

AUTHORS:

- Laurent Claessens (2010-12-10): Interval and ContinuousSet, posted to sage-devel at http://www.mail-archive.com/sage-support@googlegroups.com/msg21326.html.
- Ares Ribo (2011-10-24): Extended the previous work defining the class RealSet.
- Jordi Saludes (2011-12-10): Documentation and file reorganization.
- Volker Braun (2013-06-22): Rewrite
- Yueqi Li, Yuan Zhou (2022-07-31): Rewrite RealSet. Adapt faster operations by scan-line (merging) techniques from the code by Matthias Köppe et al., at https://github.com/mkoeppe/cutgeneratingfunctionology/blob/master/cutgeneratingfunctionology/igp/intervals.py

```python
class sage.sets.real_set.InternalRealInterval(lower, lower_closed, upper, upper_closed, check=True)
```

Bases: UniqueRepresentation, Parent

A real interval.

You are not supposed to create `InternalRealInterval` objects yourself. Always use `RealSet` instead.

INPUT:

- `lower` - real or minus infinity; the lower bound of the interval.
- `lower_closed` - boolean; whether the interval is closed at the lower bound
- `upper` - real or (plus) infinity; the upper bound of the interval
- `upper_closed` - boolean; whether the interval is closed at the upper bound
- `check` - boolean; whether to check the other arguments for validity

```python
boundary_points()
```

Generate the the boundary points of `self`

EXAMPLES:
sage: list(RealSet.open_closed(-oo, 1)[0].boundary_points())
[0]
sage: list(RealSet.open(1, 2)[0].boundary_points())
[1, 2]

closure()

Return the closure

OUTPUT:

The closure as a new *InternalRealInterval*

EXAMPLES:

sage: RealSet.open(0,1)[0].closure()
[0, 1]
sage: RealSet.open(-oo,1)[0].closure()
(-oo, 1]
sage: RealSet.open(0, oo)[0].closure()
[0, +oo)

contains(x)

Return whether \(x \) is contained in the interval

INPUT:

- \(x \) – a real number.

OUTPUT:

Boolean.

EXAMPLES:

sage: i = RealSet.open_closed(0,2)[0]; i
(0, 2]
sage: i.contains(0)
False
sage: i.contains(1)
True
sage: i.contains(2)
True

convex_hull(other)

Return the convex hull of the two intervals

OUTPUT:

The convex hull as a new *InternalRealInterval*.

EXAMPLES:

sage: I1 = RealSet.open(0, 1)[0]; I1
(0, 1)
sage: I2 = RealSet.closed(1, 2)[0]; I2
[1, 2]
sage: I1.convex_hull(I2)
(0, 2]
sage: I2.convex_hull(I1)
(0, 2]
element_class

alias of LazyFieldElement

interior()

Return the interior

OUTPUT:
The interior as a new \texttt{InternalRealInterval}

EXAMPLES:

\begin{verbatim}
sage: RealSet.closed(0, 1)[0].interior()
(0, 1)
sage: RealSet.open_closed(-oo, 1)[0].interior()
(-oo, 1)
sage: RealSet.closed_open(0, oo)[0].interior()
(0, +oo)
\end{verbatim}

intersection\,(other)

Return the intersection of the two intervals

INPUT:

\begin{itemize}
\item other \texttt{--} a \texttt{InternalRealInterval}
\end{itemize}

OUTPUT:
The intersection as a new \texttt{InternalRealInterval}

EXAMPLES:

\begin{verbatim}
sage: I1 = RealSet.open(0, 2)[0]; I1
(0, 2)
sage: I2 = RealSet.closed(1, 3)[0]; I2
[1, 3]
sage: I1.intersection(I2)
[1, 2)
sage: I2.intersection(I1)
[1, 2)
sage: I1.closure().intersection(I2.interior())
(1, 2]
sage: I2.interior().intersection(I1.closure())
(1, 2]
sage: I3 = RealSet.closed(10, 11)[0]; I3
[10, 11]
sage: I1.intersection(I3)
\end{verbatim}
is_connected(other)

Test whether two intervals are connected

OUTPUT:

Boolean. Whether the set-theoretic union of the two intervals has a single connected component.

EXAMPLES:

```
sage: I1 = RealSet.open(0, 1)[0]; I1
(0, 1)
sage: I2 = RealSet.closed(1, 2)[0]; I2
[1, 2]
sage: I1.is_connected(I2)
True
sage: I1.is_connected(I2.interior())
False
sage: I1.closure().is_connected(I2.interior())
True
sage: I2.is_connected(I1)
True
sage: I2.interior().is_connected(I1)
False
sage: I2.closure().is_connected(I1.interior())
True
sage: I3 = RealSet.closed(1/2, 3/2)[0]; I3
[1/2, 3/2]
sage: I1.is_connected(I3)
True
sage: I3.is_connected(I1)
True
```
lower()
Return the lower bound

OUTPUT:
The lower bound as it was originally specified.

EXAMPLES:

```
sage: I = RealSet(0, 1)[0]  
sage: I.is_point()  
False  
sage: I.lower()  
0  
sage: I.upper()  
1  
```

lower_closed()
Return whether the interval is open at the lower bound

OUTPUT:
Boolean.

EXAMPLES:

```
sage: I = RealSet.open_closed(0, 1)[0]; I  
(0, 1]  
sage: I.lower_closed()  
False  
sage: I.lower_open()  
True  
sage: I.upper_closed()  
True  
sage: I.upper_open()  
False  
```

lower_open()
Return whether the interval is closed at the upper bound

OUTPUT:
Boolean.

EXAMPLES:

```
sage: I = RealSet.open_closed(0, 1)[0]; I  
(0, 1]  
sage: I.lower_closed()  
False  
sage: I.lower_open()  
True  
sage: I.upper_closed()  
True  
sage: I.upper_open()  
False  
```
upper()

Return the upper bound

OUTPUT:

The upper bound as it was originally specified.

EXAMPLES:

```sage
sage: I = RealSet(0, 1)[0]
sage: I.lower()
0
sage: I.upper()
1
```

upper_closed()

Return whether the interval is closed at the lower bound

OUTPUT:

Boolean.

EXAMPLES:

```sage
sage: I = RealSet.open_closed(0, 1)[0]; I
(0, 1]
sage: I.lower_closed()
False
sage: I.lower_open()
True
sage: I.upper_closed()
True
sage: I.upper_open()
False
```

upper_open()

Return whether the interval is closed at the upper bound

OUTPUT:

Boolean.

EXAMPLES:

```sage
sage: I = RealSet.open_closed(0, 1)[0]; I
(0, 1]
sage: I.lower_closed()
False
sage: I.lower_open()
True
sage: I.upper_closed()
True
sage: I.upper_open()
False
```

class `sage.sets.real_set.RealSet(*intervals, normalized=True)`

Bases: `UniqueRepresentation`, `Parent`, `Set_base`, `Set_boolean_operators`, `Set_add_sub_operators`

A subset of the real line, a finite union of intervals
INPUT:

• *args – arguments defining a real set. Possibilities are either:
 – two extended real numbers a, b, to construct the open interval \((a, b)\), or
 – a list/tuple/iterable of (not necessarily disjoint) intervals or real sets, whose union is taken. The individual intervals can be specified by either
 * a tuple \((a, b)\) of two extended real numbers (constructing an open interval),
 * a list \([a, b]\) of two real numbers (constructing a closed interval),
 * an InternalRealInterval,
 * an OpenInterval.

• structure – (default: None) if None, construct the real set as an instance of RealSet; if "differentiable", construct it as a subset of an instance of RealLine, representing the differentiable manifold \(\mathbb{R}\).

• ambient – (default: None) an instance of RealLine; construct a subset of it. Using this keyword implies structure='differentiable'.

• names or coordinate – coordinate symbol for the canonical chart; see RealLine. Using these keywords implies structure='differentiable'.

• name, latex_name, start_index – see RealLine.

• normalized – (default: None) if True, the input is already normalized, i.e., *args are the connected components (type InternalRealInterval) of the real set in ascending order; no other keyword is provided.

There are also specialized constructors for various types of intervals:

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>RealSet.open()</td>
<td>((a, b))</td>
</tr>
<tr>
<td>RealSet.closed()</td>
<td>([a, b])</td>
</tr>
<tr>
<td>RealSet.point()</td>
<td>([a])</td>
</tr>
<tr>
<td>RealSet.open_closed()</td>
<td>((a, b])</td>
</tr>
<tr>
<td>RealSet.closed_open()</td>
<td>([a, b))</td>
</tr>
<tr>
<td>RealSet.unbounded_below_closed()</td>
<td>((-\infty, b])</td>
</tr>
<tr>
<td>RealSet.unbounded_below_open()</td>
<td>((-\infty, b))</td>
</tr>
<tr>
<td>RealSet.unbounded_above_closed()</td>
<td>([a, +\infty))</td>
</tr>
<tr>
<td>RealSet.unbounded_above_open()</td>
<td>((a, +\infty))</td>
</tr>
<tr>
<td>RealSet.real_line()</td>
<td>((-\infty, +\infty))</td>
</tr>
<tr>
<td>RealSet.interval()</td>
<td>any</td>
</tr>
</tbody>
</table>

EXAMPLES:

```
sage: RealSet(0, 1)    # open set from two numbers
(0, 1)
sage: RealSet(1, 0)    # the two numbers will be sorted
(0, 1)
sage: s1 = RealSet((1, 2)); s1    # tuple of two numbers = open set
(1, 2)
sage: s2 = RealSet([3, 4]); s2    # list of two numbers = closed set
[3, 4]
sage: i1, i2 = s1[0], s2[0]
```
sage: RealSet(i2, i1) # union of intervals
(1, 2) ∪ [3, 4]
sage: RealSet((-oo, 0), x > 6, i1, RealSet.point(5),
needs sage.symbolic
˓→ needs sage.symbolic
....: RealSet.closed_open(4, 3))
(-oo, 0) ∪ (1, 2) ∪ [3, 4) ∪ {5} ∪ (6, +oo)

Initialization from manifold objects:

....: RealSet.closed_open(4, 3))
(-oo, 0) ∪ (1, 2) ∪ [3, 4) ∪ {5} ∪ (6, +oo)

sage: # needs sage.symbolic
sage: R = manifolds.RealLine(); R
Real number line ℝ
sage: RealSet(R)
(-oo, +oo)
sage: I02 = manifolds.OpenInterval(0, 2); I
I
sage: RealSet(I02)
(0, 2)
sage: I01_of_R = manifolds.OpenInterval(0, 1, ambient_interval=R); I01_of_R
Real interval (0, 1)
sage: RealSet(I01_of_R)
(0, 1)
sage: RealSet(I01_of_R.closure())
[0, 1]
sage: I01_of_I02 = manifolds.OpenInterval(0, 1, ambient_interval=I02); I01_of_I02
Real interval (0, 1)
sage: RealSet(I01_of_I02)
(0, 1)
sage: RealSet(I01_of_I02.closure())
(0, 1]

Real sets belong to a subcategory of topological spaces:

sage: RealSet().category()
Join of
 Category of finite sets and
 Category of subobjects of sets and
 Category of connected topological spaces
sage: RealSet.point(1).category()
Join of
 Category of finite sets and
 Category of subobjects of sets and
 Category of connected topological spaces
sage: RealSet([1, 2]).category()
Join of
 Category of infinite sets and
 Category of compact topological spaces and
 Category of subobjects of sets and
 Category of connected topological spaces
sage: RealSet((1, 2), (3, 4)).category()
Join of
 Category of infinite sets and
 Category of subobjects of sets and
 Category of topological spaces

Constructing real sets as manifolds or manifold subsets by passing structure='differentiable':

2.5. Subsets of the Real Line
This is implied when a coordinate name is given using the keywords `coordinate` or `names`:

```sage
RealSet(0, 1, coordinate='λ')
```

Open subset $(0, 1)$ of the Real number line \mathbb{R}

It is also implied by assigning a coordinate name using generator notation:

```sage
P_xi.<ξ> = RealSet.real_line(); P_xi
```

Real number line \mathbb{R}

With the keyword `ambient`, we can construct a subset of a previously constructed manifold:

```sage
# needs sage.symbolic
P_xi = RealSet(0, oo, ambient=P_xi); P_xi
```

Open subset $(0, +\infty)$ of the Real number line \mathbb{R}

```sage
R_xi.subset_family()
```

Set \{$(0, +\infty)$, $(0, 1)$, \mathbb{R}\} of open subsets of the Real number line \mathbb{R}

```sage
F = RealSet.point(0).union(RealSet.point(1)).union(RealSet.point(2)); F
```

Subset \{0} \cup \{1} \cup \{2\} of the Real number line \mathbb{R}

```sage
F_τ = RealSet(F, names="τ"); F_τ
```

Subset \{0} \cup \{1} \cup \{2\} of the Real number line \mathbb{R}

`ambient()`

Return the ambient space (the real line).

EXAMPLES:
static are_pairwise_disjoint (*real_set_collection)

Test whether the real sets are pairwise disjoint

INPUT:

• *real_set_collection — a list/tuple/iterable of RealSet or data that defines one.

OUTPUT:

Boolean.

See also:

is_disjoint()

EXAMPLES:

sage: s1 = RealSet((0, 1), (2, 3))
sage: s2 = RealSet((1, 2))
sage: s3 = RealSet.point(3)
sage: RealSet.are_pairwise_disjoint(s1, s2, s3)
True
sage: RealSet.are_pairwise_disjoint(s1, s2, s3, [10, 10])
True
sage: RealSet.are_pairwise_disjoint(s1, s2, s3, [-1, 1/2])
False

boundary()

Return the topological boundary of self as a new RealSet.

EXAMPLES:

sage: RealSet(-oo, oo).boundary()
{}
sage: RealSet().boundary()
{}
sage: RealSet.point(2).boundary()
{2}
sage: RealSet([1, 2], [3, 4]).boundary()
{1} ∪ {2} ∪ {3} ∪ {4}
sage: RealSet((1, 2), (2, 3)).boundary()
{1} ∪ {2} ∪ {3}

cardinality()

Return the cardinality of the subset of the real line.

OUTPUT:

Integer or infinity. The size of a discrete set is the number of points; the size of a real interval is Infinity.

EXAMPLES:

sage: RealSet([0, 0], [1, 1], [3, 3]).cardinality()
3
sage: RealSet(0, 3).cardinality()
+Infinity
static closed (lower, upper, **kwds)

Construct a closed interval

INPUT:

- lower, upper – two real numbers or infinity. They will be sorted if necessary.
- **kwds – see RealSet.

OUTPUT:

A new RealSet.

EXAMPLES:

```
sage: RealSet.closed(1, 0)
[0, 1]
```

static closed_open (lower, upper, **kwds)

Construct a half-open interval

INPUT:

- lower, upper – two real numbers or infinity. They will be sorted if necessary.
- **kwds – see RealSet.

OUTPUT:

A new RealSet that is closed at the lower bound and open at the upper bound.

EXAMPLES:

```
sage: RealSet.closed_open(1, 0)
[0, 1)
```

closure ()

Return the topological closure of self as a new RealSet.

EXAMPLES:

```
sage: RealSet(-oo, oo).closure()
(-oo, +oo)
sage: RealSet((1, 2), (2, 3)).closure()
[1, 3]
sage: RealSet().closure()
{}
```

complement ()

Return the complement

OUTPUT:

The set-theoretic complement as a new RealSet.

EXAMPLES:

```
sage: RealSet(0,1).complement()
(-oo, 0] ∪ [1, +oo)
sage: s1 = RealSet(0,2) + RealSet.unbounded_above_closed(10); s1
(0, 2) ∪ [10, +oo)
```

(continues on next page)
contains \((x)\)

Return whether \(x\) is contained in the set

INPUT:

* \(x\) – a real number.

OUTPUT:

Boolean.

EXAMPLES:

```sage
s = RealSet(0, 2) + RealSet.unbounded_above_closed(10); s
(0, 2) \cup \[10, +\infty)
```

```sage
s.contains(1)
True
```

```sage
s.contains(0)
False
```

```sage
s.contains(10.0)
True
```

```sage
10 \text{ in } s \quad \# \text{ syntactic sugar}
```

```sage
s.contains(\infty)
False
```

```sage
RealSet().contains(1)
False
```

static convex_hull(*\text{real_set_collection})

Return the convex hull of real sets.

INPUT:

* \text{real_set_collection} – a list/tuple/iterable of \text{RealSet} or data that defines one.

OUTPUT:

The convex hull as a new \text{RealSet}.

EXAMPLES:

```sage
s1 = RealSet(0, 2) + RealSet.unbounded_above_closed(10); s1 \ #\ \text{unbounded}
```

```sage
s = RealSet(1, 3) + RealSet.unbounded_below_closed(-10); s2
(-\infty, -10] \cup (1, 3)
```

```sage
s2.complement()
(-10, 1] \cup [3, +\infty)
```

```sage
s3 = RealSet((0, 2), RealSet.point(8)); s3
(0, 2) \cup \{8\}
```

```sage
s4 = RealSet(); s4 \ #\ \text{empty set}
```

```sage
RealSet().contains(1)
False
```

```sage
RealSet.convex_hull(s1)
```

(continues on next page)
(continued from previous page)

\begin{verbatim}
(0, +oo)
sage: RealSet.convex_hull(s2)
(-oo, 3)
sage: RealSet.convex_hull(s3)
(0, 8]
sage: RealSet.convex_hull(s4)
{}
sage: RealSet.convex_hull(s1, s2)
(-oo, +oo)
sage: RealSet.convex_hull(s2, s3)
(-oo, 8]
sage: RealSet.convex_hull(s2, s3, s4)
(-oo, 8]
\end{verbatim}

\textbf{difference} (\texttt{other})

Return self with other subtracted

\textbf{INPUT}:

- \texttt{other} – a \texttt{RealSet} or data that defines one.

\textbf{OUTPUT}:

The set-theoretic difference of self with other removed as a new \texttt{RealSet}.

\textbf{EXAMPLES}:

\begin{verbatim}
sage: s1 = RealSet(0,2) + RealSet.unbounded_above_closed(10); s1
(0, 2) ∪ [10, +oo)
sage: s2 = RealSet(1,3) + RealSet.unbounded_below_closed(-10); s2
(-oo, -10] ∪ (1, 3)
sage: s1.difference(s2)
(0, 1] ∪ [10, +oo)
sage: s1 - s2 # syntactic sugar
(0, 1] ∪ [10, +oo)
sage: s2.difference(s1)
(-oo, -10] ∪ (2, 3)
sage: s2 - s1 # syntactic sugar
(-oo, -10] ∪ (2, 3)
sage: s1.difference(1,11)
(0, 1] ∪ [11, +oo)
\end{verbatim}

\textbf{get_interval} (\texttt{i})

Return the \texttt{i}-th connected component.

Note that the intervals representing the real set are always normalized, i.e., they are sorted, disjoint and not connected.

\textbf{INPUT}:

- \texttt{i} – integer.

\textbf{OUTPUT}:

The \texttt{i}-th connected component as a \texttt{InternalRealInterval}.

\textbf{EXAMPLES}:

\begin{verbatim}
sage: s = RealSet(RealSet.open_closed(0,1), RealSet.closed_open(2,3))
sage: s.get_interval(0)
\end{verbatim}
inf()

Return the infimum

OUTPUT:

A real number or infinity.

EXAMPLES:

```
sage: s = RealSet(-oo, oo); s
(-oo, +oo)
sage: s.inf()
-oo
```

interior()

Return the topological interior of self as a new RealSet.

EXAMPLES:

```
sage: RealSet().interior()
{}
sage: RealSet(1, 3).interior()
(1, 3)
sage: RealSet([1, 2], (3, 4)).interior()
(1, 2) ∪ (3, 4)
```

intersection(*real_set_collection)

Return the intersection of real sets

INPUT:

- *real_set_collection — a list/tuple/iterable of RealSet or data that defines one.

OUTPUT:

The set-theoretic intersection as a new RealSet.

EXAMPLES:

```
sage: s1 = RealSet(0, 2) + RealSet.unbounded_above_closed(10); s1
(0, 2) ∪ [10, +oo)
sage: s1.intersection(s2)
```

(continues on next page)
(1, 2)
sage: s1 & s2 # syntactic sugar
(1, 2)
sage: s3 = RealSet((0, 1), (2, 3)); s3
(0, 1) ∪ (2, 3)
sage: s4 = RealSet([0, 1], [2, 3]); s4
[0, 1] ∪ [2, 3]
sage: s3.intersection(s4)
(0, 1) ∪ (2, 3)
sage: s3.intersection([1, 2])
{}
sage: s4.intersection([1, 2])
(1) ∪ (2)
sage: s4.intersection(1, 2)
{}
sage: s5 = RealSet.closed_open(1, 10); s5
[1, 10)
sage: s5.intersection(-oo, +oo)
[1, 10)
sage: s5.intersection(x != 2, (-oo, 3), RealSet.real_line()[0])
needs sage.symbolic
[1, 2) ∪ (2, 3)

static interval (lower, upper, lower_closed, upper_closed, **kwds)
Construct an interval

INPUT:

- lower, upper – two real numbers or infinity. They will be sorted if necessary.
- lower_closed, upper_closed – boolean; whether the interval is closed at the lower and upper bound of the interval, respectively.
- **kwds – see RealSet.

OUTPUT:

A new RealSet.

EXAMPLES:

sage: RealSet.interval(1, 0, lower_closed=True, upper_closed=False)
[0, 1]

is_closed()

Return whether self is a closed set.

EXAMPLES:

sage: RealSet().is_closed()
True
sage: RealSet.point(1).is_closed()
True
sage: RealSet([1, 2]).is_closed()
True
sage: RealSet([1, 2], (3, 4)).is_closed()
False
sage: RealSet(-oo, +oo).is_closed()
True
is_connected()

Return whether `self` is a connected set.

OUTPUT:

Boolean.

EXAMPLES:

```python
sage: s1 = RealSet((1, 2), (2, 4)); s1
(1, 2) ∪ (2, 4)
sage: s1.is_connected()
False
sage: s2 = RealSet((1, 2), (2, 4), RealSet.point(2)); s2
(1, 4)
sage: s2.is_connected()
True
sage: s3 = RealSet(1,3) + RealSet.unbounded_below_closed(-10); s3
(-oo, -10] ∪ (1, 3)
sage: s3.is_connected()
False
sage: RealSet(x != 0).is_connected()  # ~needs sage.symbolic
False
sage: RealSet(-oo, oo).is_connected()
True
sage: RealSet().is_connected()
False
```

is_disjoint (other**)**

Test whether the two sets are disjoint

INPUT:

- `other` – a `RealSet` or data defining one.

OUTPUT:

Boolean.

See also:

`are_pairwise_disjoint()`

EXAMPLES:

```python
sage: s = RealSet((0, 1), (2, 3)); s
(0, 1) ∪ (2, 3)
sage: s.is_disjoint(RealSet([1, 2]))
True
sage: s.is_disjoint([3/2, 5/2])
False
sage: s.is_disjoint(RealSet())
True
sage: s.is_disjoint(RealSet().real_line())
False
```

is_disjoint_from (args**, **kwargs**)**

Deprecated: Use `is_disjoint()` instead. See github issue #31927 for details.
is_empty()

Return whether the set is empty

EXAMPLES:

```python
sage: RealSet(0, 1).is_empty()
False
sage: RealSet(0, 0).is_empty()
True
sage: RealSet.interval(1, 1, lower_closed=False, upper_closed=True).is_empty()
False
```  

is_included_in(*args, **kwds)

Deprecated: Use `is_subset()` instead. See github issue #31927 for details.

is_open()

Return whether `self` is an open set.

EXAMPLES:

```python
sage: RealSet().is_open()
True
sage: RealSet.point(1).is_open()
False
sage: RealSet((1, 2)).is_open()
True
sage: RealSet([1, 2], (3, 4)).is_open()
False
sage: RealSet(-oo, +oo).is_open()
True
```  

is_subset(*other)

Return whether `self` is a subset of `other`.

INPUT:

- *other – a `RealSet` or something that defines one.

OUTPUT:

Boolean.

EXAMPLES:

```python
sage: I = RealSet((1,2))
sage: J = RealSet((1,3))
sage: K = RealSet((2,3))
sage: I.is_subset(J)
True
sage: J.is_subset(K)
False
```  

is_universe()

Return whether the set is the ambient space (the real line).

EXAMPLES:
```
sage: RealSet().ambient().is_universe()
True
```

lift (*x*)

Lift *x* to the ambient space for *self*. This version of the method just returns *x*.

EXAMPLES:

```
sage: s = RealSet(0, 2); s
(0, 2)
sage: s.lift(1)
1
```

n_components ()

Return the number of connected components

See also *get_interval()*

EXAMPLES:

```
sage: s = RealSet(RealSet.open_closed(0,1), RealSet.closed_open(2,3))
sage: s.n_components()
2
```

normalize (*intervals*)

Bring a collection of intervals into canonical form

INPUT:

- *intervals* – a list/tuple/iterable of intervals.

OUTPUT:

A tuple of intervals such that

- they are sorted in ascending order (by lower bound)
- there is a gap between each interval
- all intervals are non-empty

EXAMPLES:

```
sage: i1 = RealSet((0, 1))[0]
sage: i2 = RealSet([1, 2])[0]
sage: i3 = RealSet((2, 3))[0]
sage: RealSet.normalize([i1, i2, i3])
((0, 3),)
```

static open (*lower*, *upper*, **kwds*)

Construct an open interval

INPUT:

- *lower*, *upper* – two real numbers or infinity. They will be sorted if necessary.
- **kwds** – see *RealSet*.

OUTPUT:

A new *RealSet*.

2.5. Subsets of the Real Line 107
EXAMPLES:

```
sage: RealSet.open(1, 0)
(0, 1)
```

static open_closed *(lower, upper, **kwds)*

Construct a half-open interval

INPUT:
- `lower, upper` – two real numbers or infinity. They will be sorted if necessary.
- `**kwds` – see `RealSet`.

OUTPUT:
A new `RealSet` that is open at the lower bound and closed at the upper bound.

EXAMPLES:

```
sage: RealSet.open_closed(1, 0)
(0, 1]
```

static point *(p, **kwds)*

Construct an interval containing a single point

INPUT:
- `p` – a real number.
- `**kwds` – see `RealSet`.

OUTPUT:
A new `RealSet`.

EXAMPLES:

```
sage: RealSet.open(1, 0)
(0, 1)
```

static real_line *(**kwds)*

Construct the real line

INPUT:
- `**kwds` – see `RealSet`.

EXAMPLES:

```
sage: RealSet.real_line()
(-oo, +oo)
```

retract *(x)*

Retract `x` to `self`.

It raises an error if `x` does not lie in the set `self`.

EXAMPLES:
...
\texttt{sage}: RealSet.unbounded_above_closed(1)
\begin{verbatim}
[1, +\infty)
\end{verbatim}

\textbf{static unbounded_above_open} \textit{(bound, **kwds)}
Construct a semi-infinite interval
\textbf{INPUT:}
\begin{itemize}
 \item bound – a real number.
 \item **kwds – see \texttt{RealSet}.
\end{itemize}
\textbf{OUTPUT:}
A new \texttt{RealSet} from the bound (excluding) to plus infinity.
\textbf{EXAMPLES:}

\texttt{sage}: RealSet.unbounded_above_open(1)
\begin{verbatim}
(1, +\infty)
\end{verbatim}

\textbf{static unbounded_below_closed} \textit{(bound, **kwds)}
Construct a semi-infinite interval
\textbf{INPUT:}
\begin{itemize}
 \item bound – a real number.
\end{itemize}
\textbf{OUTPUT:}
A new \texttt{RealSet} from minus infinity to the bound (including).
\begin{itemize}
 \item **kwds – see \texttt{RealSet}.
\end{itemize}
\textbf{EXAMPLES:}

\texttt{sage}: RealSet.unbounded_below_closed(1)
\begin{verbatim}
(-\infty, 1]
\end{verbatim}

\textbf{static unbounded_below_open} \textit{(bound, **kwds)}
Construct a semi-infinite interval
\textbf{INPUT:}
\begin{itemize}
 \item bound – a real number.
\end{itemize}
\textbf{OUTPUT:}
A new \texttt{RealSet} from minus infinity to the bound (excluding).
\begin{itemize}
 \item **kwds – see \texttt{RealSet}.
\end{itemize}
\textbf{EXAMPLES:}

\texttt{sage}: RealSet.unbounded_below_open(1)
\begin{verbatim}
(-\infty, 1)
\end{verbatim}

\textbf{union} \textit{(*real_set_collection)}
Return the union of real sets
\textbf{INPUT:}
\begin{itemize}
 \item *real_set_collection – a list/tuple/iterable of \texttt{RealSet} or data that defines one.
\end{itemize}
OUTPUT:

The set-theoretic union as a new \textit{RealSet}.

EXAMPLES:

```python
sage: s1 = RealSet(0,2)
sage: s2 = RealSet(1,3)
sage: s1.union(s2)
(0, 3)
sage: s1.union(1,3)
(0, 3)
sage: s1 | s2  # syntactic sugar
(0, 3)
sage: s1 + s2  # syntactic sugar
(0, 3)
sage: RealSet().union(RealSet.real_line())
(-oo, +oo)
sage: s = RealSet().union([1, 2], (2, 3)); s
[1, 3)
sage: RealSet().union((-oo, 0), x > 6, s[0],
˓→needs sage.symbolic
....: RealSet.point(5.0), RealSet.closed_open(2, 4))
(-oo, 0) ∪ [1, 4) ∪ {5} ∪ (6, +oo)
```
CHAPTER THREE

INDICES AND TABLES

• Index
• Module Index
• Search Page
S

sage.sets.cartesian_product, 1
sage.sets.condition_set, 64
sage.sets.disjoint_set, 24
sage.sets.disjoint_union EnumeratedSets, 31
sage.sets.family, 3
sage.sets.finite_enumerated_set, 41
sage.sets.finite_set_map, 71
sage.sets.finite_set_maps, 67
sage.sets.integer_range, 81
sage.sets.non_negative_integers, 86
sage.sets.positive_integers, 85
sage.sets.primes, 88
sage.sets.pythonclass, 79
sage.sets.real_set, 89
sage.sets.recursively_enumerated_set, 44
sage.sets.set, 13
sage.sets.set_from_iterator, 35
sage.sets.totally_ordered_finite_set, 77
Non-alphabetical

_cartesian_product_of_elements() (sage.sets.cartesian_product.CartesianProduct method), 1

A

AbstractFamily (class in sage.sets.family), 3
ambient() (sage.sets.condition_set.ConditionSet method), 65
ambient() (sage.sets.real_set.RealSet method), 98
an_element() (sage.sets.cartesian_product.CartesianProduct method), 2
an_element() (sage.sets.disjoint_union EnumeratedSets method), 34
an_element() (sage.sets.finite enumerated_set.FiniteEnumeratedSet method), 42
an_element() (sage.sets.finite_set_maps.FiniteSetMaps_N method), 67
an_element() (sage.sets.finite_set_maps.FiniteSetMaps_MN method), 70
an_element() (sage.sets.non_negative_integers.NonNegativeIntegers method), 87
an_element() (sage.sets.positive_integers.PositiveIntegers method), 86
are_pairwise_disjoint() (sage.sets.real_set.RealSet static method), 99
arguments() (sage.sets.condition_set.ConditionSet method), 66

B

boundary() (sage.sets.real_set.RealSet method), 99
boundary_points() (sage.sets.real_set.InternalRealInterval method), 90
breadth_first_search_iterator() (sage.sets.recursively EnumeratedSet_finite method), 53
breadth_first_search_iterator() (sage.sets.recursively EnumeratedSet_forest method), 53
breadth_first_search_iterator() (sage.sets.recursively EnumeratedSet_generic method), 56
breadth_first_search_iterator() (sage.sets.recursively EnumeratedSet_graded method), 59
breadth_first_search_iterator() (sage.sets.recursively EnumeratedSet_symmetric method), 61

C

cardinality() (sage.sets.disjoint set.DisjointSet_class method), 25
cardinality() (sage.sets.disjoint UnionEnumeratedSets method), 34
cardinality() (sage.sets.family.EnumeratedFamily method), 5
cardinality() (sage.sets.family.FiniteFamily method), 10
cardinality() (sage.sets.family.LazyFamily method), 11
cardinality() (sage.sets.family.TrivialFamily method), 12
cardinality() (sage.sets.finite enumerated_set.FiniteEnumeratedSet method), 42
cardinality() (sage.sets.finite_set_maps.FiniteSetMaps method), 69
cardinality() (sage.sets.integer_range.IntegerRangeFinite method), 83
cardinality() (sage.sets.pythonclass.Set_PythonType class method), 80
cardinality() (sage.sets.real_set.RealSet method), 99
cardinality() (sage.sets.set.Set_object method), 16
cardinality() (sage.sets.set.Set_object enumerated method), 19
cardinality() (sage.sets.set.Set_object_union method), 23
cartesian_factors() (sage.sets.cartesian_product.CartesianProduct method), 2
cartesian_factors() (sage.sets.cartesian_product.CartesianProduct.Element method), 2
cartesian_projection() (sage.sets.cartesian_product.CartesianProduct method), 3
cartesian_projection() (sage.sets.cartesian_product.CartesianProduct.Element method), 2
CartesianProduct (class in sage.sets.cartesian_product), 1
CartesianProduct.Element (class in sage.sets.cartesian_product), 2
check() (sage.sets.finite_set_map_cy.FiniteSetMap_MN method), 72
closure() (sage.sets.real_set.RealSet method), 100
closure() (sage.sets.real_set.RealSet method), 100
closure() (sage.sets.real_set.RealSet method), 100
closure() (sage.sets.real_set.RealSet method), 100
codomain() (sage.sets.finite_set_map_cy.FiniteSetMap_MN method), 72
codomain() (sage.sets.finite_set_map_cy.FiniteSetMap_MN method), 72
codomain() (sage.sets.finite_set_maps.FiniteSetMaps_MN method), 70
codomain() (sage.sets.finite_set_maps.FiniteSetMaps_MN method), 70
complement() (sage.sets.real_set.RealSet method), 100
ConditionSet (class in sage.sets.condition_set), 64
construction() (sage.sets.cartesian_product.CartesianProduct method), 3
contains() (sage.sets.real_set.InternalRealInterval method), 91
contains() (sage.sets.real_set.RealSet method), 101
convex_hull() (sage.sets.real_set.RealSet method), 91
convex_hull() (sage.sets.real_set.RealSet method), 101

D
Decorator (class in sage.sets.set_from_iterator), 36
depth_first_search_iterator() (sage.sets.recursivelyEnumeratedSet.RecursivelyEnumeratedSet_forest method), 53
depth_first_search_iterator() (sage.sets.recursivelyEnumeratedSet.RecursivelyEnumeratedSet_generic method), 56
difference() (sage.sets.real_set.RealSet method), 102
difference() (sage.sets.set.Set_base method), 14
difference() (sage.sets.set.Set_object Enumerated method), 19
DisjointSet() (in module sage.sets.disjoint_set), 24
DisjointSet_class (class in sage.sets.disjoint_set), 25
DisjointSet_of_hashables (class in sage.sets.disjoint_set), 26
DisjointSet_of_integers (class in sage.sets.disjoint_set), 28
DisjointUnionEnumeratedSets (class in sage.sets.disjoint_unionEnumeratedSets), 31
domain() (sage.sets.finite_set_map_cy.FiniteSetMap_MN method), 72
domain() (sage.sets.finite_set_maps.FiniteSetMaps_MN method), 70
domain() (sage.sets.finite_set_maps.FiniteSetMaps_Set method), 71
DummyExampleForPicklingTest (class in sage.sets.set_from_iterator), 36

E
Element (sage.sets.finite_set_maps.FiniteSetMaps_Set attribute), 67
Element (sage.sets.finite_set_maps.FiniteSetMaps_Set attribute), 67
Element (sage.sets.finite_set_maps.FiniteSetMaps_MN attribute), 69
Element (sage.sets.finite_set_maps.FiniteSetMaps_Set attribute), 70
Element (sage.sets.non_negative_integers.NonNegativeIntegers attribute), 87
Element (sage.sets.totally_ordered_finite_set.TotallyOrderedFiniteSet attribute), 78
Element () (sage.sets.disjoint_unionEnumeratedSets attribute), 34
element_class (sage.sets.integer_range.IntegerRange attribute), 83
element_class (sage.sets.real_set.IntervalRealInterval attribute), 92
element_to_root_dict() (sage.sets.disjoint_set.DisjointSet_of_integers method), 26
element_to_root_dict() (sage.sets.disjoint_set.DisjointSet_of_hashables method), 26
element_to_root_dict() (sage.sets.disjoint_set.DisjointSet_of_hashables method), 26
elements_of_depth_iterator() (sage.sets.recursivelyEnumeratedSet.RecursivelyEnumeratedSet_forest method), 54
elements_of_depth_iterator() (sage.sets.recursivelyEnumeratedSet.RecursivelyEnumeratedSet_generic method), 56
EnumeratedFamily (class in sage.sets.family), 5
EnumeratedSetFromIterator (class in sage.sets.set_from_iterator), 36
EnumeratedSetFromIterator_function_decorator (class in sage.sets.set_from_iterator), 38
EnumeratedSetFromIterator_method_caller (class in sage.sets.set_from_iterator), 39
<table>
<thead>
<tr>
<th>Method/Constructor</th>
<th>Class/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>f()</td>
<td>(sage.sets.set_from_iterator.DummyExampleForPicklingTest method), 36</td>
</tr>
<tr>
<td>Family()</td>
<td>(in module sage.sets.family), 5</td>
</tr>
<tr>
<td>fibers()</td>
<td>(module sage.sets.finite_set_map_cy), 76</td>
</tr>
<tr>
<td>fibers()</td>
<td>(sage.sets.finite_set_map_cy.FiniteSetMap_MN method), 73</td>
</tr>
<tr>
<td>fibers_args()</td>
<td>(module sage.sets.finite_set_map_cy), 76</td>
</tr>
<tr>
<td>find()</td>
<td>(sage.sets.disjoint_set.DisjointSet_of_hashables method), 26</td>
</tr>
<tr>
<td>find()</td>
<td>(sage.sets.disjoint_set.DisjointSet_of_integers method), 29</td>
</tr>
<tr>
<td>FiniteEnumeratedSet</td>
<td>(class in sage.sets.finiteEnumerated_set), 41</td>
</tr>
<tr>
<td>FiniteFamily</td>
<td>(class in sage.sets.family), 10</td>
</tr>
<tr>
<td>FiniteFamilyWithHiddenKeys</td>
<td>(class in sage.sets.family), 11</td>
</tr>
<tr>
<td>FiniteSetEndoMap_N</td>
<td>(class in sage.sets.finite_set_map_cy), 72</td>
</tr>
<tr>
<td>FiniteSetEndoMap_Set</td>
<td>(class in sage.sets.finite_set_map_cy), 72</td>
</tr>
<tr>
<td>FiniteSetEndoMaps_N</td>
<td>(class in sage.sets.finite_set_map_cy), 72</td>
</tr>
<tr>
<td>FiniteSetEndoMaps_Set</td>
<td>(class in sage.sets.finite_set_map_cy), 72</td>
</tr>
<tr>
<td>FiniteSetMap_MN</td>
<td>(class in sage.sets.finite_set_map_cy), 72</td>
</tr>
<tr>
<td>FiniteSetMap_Set</td>
<td>(class in sage.sets.finite_set_map_cy), 74</td>
</tr>
<tr>
<td>FiniteSetMap_Set_from_dict()</td>
<td>(module sage.sets.finite_set_map_cy), 76</td>
</tr>
<tr>
<td>FiniteSetMap_Set_from_list()</td>
<td>(module sage.sets.finite_set_map_cy), 76</td>
</tr>
<tr>
<td>FiniteSetMaps</td>
<td>(class in sage.sets.finite_set_maps), 67</td>
</tr>
<tr>
<td>FiniteSetMaps_MN</td>
<td>(class in sage.sets.finite_set_maps), 69</td>
</tr>
<tr>
<td>FiniteSetMaps_Set</td>
<td>(class in sage.sets.finite_set_maps), 70</td>
</tr>
<tr>
<td>first()</td>
<td>(sage.sets.finiteEnumerated_set.FiniteEnumeratedSet method), 42</td>
</tr>
<tr>
<td>first()</td>
<td>(sage.sets.primes.Primes method), 88</td>
</tr>
<tr>
<td>from_dict()</td>
<td>(sage.sets.finite_set_map_cy.FiniteSetMap_Set class method), 74</td>
</tr>
<tr>
<td>from_dict()</td>
<td>(sage.sets.finite_set_maps.FiniteSetMap_Set class method), 71</td>
</tr>
<tr>
<td>from_integer</td>
<td>(sage.sets.non_negative_integers.NonNegativeIntegers attribute), 87</td>
</tr>
<tr>
<td>from_list()</td>
<td>(sage.sets.finite_set_map_cy.FiniteSetMap_Set class method), 74</td>
</tr>
<tr>
<td>frozenset()</td>
<td>(sage.sets.Set_object_enumerated method), 19</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>get_interval()</td>
<td>(sage.sets.real_set.RealSet method), 102</td>
</tr>
<tr>
<td>getimage()</td>
<td>(sage.sets.finite_set_map_cy.FiniteSetMap_MN method), 73</td>
</tr>
<tr>
<td>getimage()</td>
<td>(sage.sets.finite_set_map_cy.FiniteSetMap_Set method), 75</td>
</tr>
<tr>
<td>graded_component()</td>
<td>(sage.sets.recursivelyEnumerated_set.RecursivelyEnumeratedSet_generic method), 57</td>
</tr>
<tr>
<td>graded_component()</td>
<td>(sage.sets.recursivelyEnumerated_set.RecursivelyEnumeratedSet_graded method), 59</td>
</tr>
<tr>
<td>graded_component()</td>
<td>(sage.sets.recursivelyEnumerated_set.RecursivelyEnumeratedSet_symmetric method), 61</td>
</tr>
<tr>
<td>graded_component_iterator()</td>
<td>(sage.sets.recursivelyEnumerated_set.RecursivelyEnumeratedSet_graded method), 60</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>has_finite_length()</td>
<td>(module sage.sets.set), 23</td>
</tr>
<tr>
<td>has_key()</td>
<td>(sage.sets.family.FiniteFamily method), 10</td>
</tr>
<tr>
<td>hidden_keys()</td>
<td>(sage.sets.family.AbstractFamily method), 4</td>
</tr>
<tr>
<td>hidden_keys()</td>
<td>(sage.sets.family.FiniteFamilyWithHiddenKeys method), 11</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>image_set()</td>
<td>(sage.sets.finite_set_map_cy.FiniteSetMap_MN method), 73</td>
</tr>
<tr>
<td>image_set()</td>
<td>(sage.sets.finite_set_map_cy.FiniteSetMap_Set method), 75</td>
</tr>
<tr>
<td>index()</td>
<td>(sage.sets.finiteEnumerated_set.FiniteEnumeratedSet method), 42</td>
</tr>
<tr>
<td>inf()</td>
<td>(sage.sets.real_set.RealSet method), 103</td>
</tr>
<tr>
<td>IntegerRange</td>
<td>(class in sage.sets.integer_range), 81</td>
</tr>
<tr>
<td>IntegerRangeEmpty</td>
<td>(class in sage.sets.integer_range), 83</td>
</tr>
<tr>
<td>IntegerRangeFinite</td>
<td>(class in sage.sets.integer_range), 83</td>
</tr>
<tr>
<td>IntegerRangeFromMiddle</td>
<td>(class in sage.sets.integer_range), 84</td>
</tr>
<tr>
<td>IntegerRangeInfinite</td>
<td>(class in sage.sets.integer_range), 85</td>
</tr>
</tbody>
</table>
interior() (sage.sets.real_set.InternalRealInterval method), 92
interior() (sage.sets.real_set.RealSet method), 103
InternalRealInterval (class in sage.sets.real_set), 90
intersection() (sage.sets.condition_set.ConditionSet method), 66
intersection() (sage.sets.real_set.InternalRealInterval method), 92
intersection() (sage.sets.real_set.RealSet method), 103
intersection() (sage.sets.set.Set_base method), 15
intersection() (sage.sets.set.Set_object_enumerated method), 19
interval() (sage.sets.real_set.RealSet static method), 104
inverse_family() (sage.sets.family.AbstractFamily method), 4
is_closed() (sage.sets.real_set.RealSet method), 104
is_connected() (sage.sets.real_set.InternalRealInterval method), 93
is_connected() (sage.sets.real_set.RealSet method), 104
is_disjoint() (sage.sets.real_set.RealSet method), 105
is_disjoint_from() (sage.sets.real_set.RealSet method), 105
is_empty() (sage.sets.real_set.AbstractSet method), 93
is_empty() (sage.sets.real_set.RealSet method), 105
is_empty() (sage.sets.set.Set_object method), 16
is_finite() (sage.sets.set.Set_object method), 17
is_finite() (sage.sets.set.Set_object_difference method), 18
is_finite() (sage.sets.set.Set_object_enumerated method), 20
is_finite() (sage.sets.set.Set_object_intersection method), 22
is_finite() (sage.sets.set.Set_object_symmetric_difference method), 22
is_finite() (sage.sets.set.Set_object_union method), 23
is_included_in() (sage.sets.real_set.RealSet method), 106
is_open() (sage.sets.real_set.RealSet method), 106
is_parent_of() (sage.sets.finite_set_map_cy.FiniteSetMap_forest method), 73
is_point() (sage.sets.real_set.RealSet method), 93
is_subset() (sage.sets.real_set.RealSet method), 106
is_universe() (sage.sets.real_set.RealSet method), 106
issubset() (sage.sets.set.Set_object_enumerated method), 20
issuperset() (sage.sets.set.Set_object_enumerated method), 20
items() (sage.sets.family.AbstractFamily method), 4
items() (sage.sets.finite_set_map_cy.FiniteSetMap_MN method), 73
items() (sage.sets.finite_set_map_cy.FiniteSetMap_Set method), 75
K
keys() (sage.sets.family.AbstractFamily method), 4
keys() (sage.sets.family.FiniteFamily method), 11
keys() (sage.sets.family.LazyFamily method), 12
keys() (sage.sets.family.TrivialFamily method), 12
L
last() (sage.sets.finite_enumerated_set.FiniteEnumeratedSet method), 42
LazyFamily (class in sage.sets.family), 11
le() (sage.sets.totally_ordered_finite_set.TotallyOrderedFiniteSet method), 78
lift() (sage.sets.real_set.RealSet method), 107
list() (sage.sets.finite_enumerated_set.FiniteEnumeratedSet method), 43
list() (sage.sets.set.Set_object_enumerated method), 20
lower() (sage.sets.real_set.InternalRealInterval method), 94
lower_closed() (sage.sets.real_set.InternalRealInterval method), 94
lower_open() (sage.sets.real_set.InternalRealInterval method), 94
M
map() (sage.sets.family.AbstractFamily method), 4
map() (sage.sets.family.TrivialFamily method), 12
map_reduce() (sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest method), 54
module
sage.sets.cartesian_product, 1
sage.sets.condition_set, 64
sage.sets.disjoint_set, 24
sage.sets.disjoint_union_enumerated_sets, 31
sage.sets.family, 3
sage.sets.finite_enumerated_set, 41
sage.sets.finite_set_map_cy, 71
sage.sets.finite_set_maps, 67
sage.sets.integer_range, 81
sage.sets.non_negative_integers, 86
sage.sets.positive_integers, 85
sage.sets.primes, 88
sage.sets.pythonclass, 79
sage.sets.real_set, 89
sage.sets.recur_sively enumerated_set, 44
sage.sets.set, 13
sage.sets.set_from_iterator, 35
sage.sets.totally_ordered_fi_nite_set, 77

N
n_components() (sage.sets.real_set.RealSet method), 107
naive_search_iterator() (sage.sets.recursively enumerated_set.Recur_sivelyEnumerated_Set_generic method), 57
next() (sage.sets.integer_range.IntegerRangeFromMiddle method), 84
next() (sage.sets.non_negative_integers.NonNegativeIntegers method), 87
next() (sage.sets.primes.Primes method), 88
NonNegativeIntegers (class in sage.sets.non_negative_integers), 86
normalize() (sage.sets.real_set.RealSet method), 107
number_of_subsets() (sage.sets.disjoint_set.DisjointSet_class method), 25

O
object() (sage.sets.pythonclass.Set_Type_class method), 80
object() (sage.sets.Set_object method), 17
one() (sage.sets.finite_set_maps.FiniteSetEndoMaps_N method), 67
open() (sage.sets.real_set.RealSet static method), 107
open_closed() (sage.sets.real_set.RealSet static method), 108

P
point() (sage.sets.real_set.RealSet static method), 108
PositiveIntegers (class in sage.sets.positive_integers), 85
Primes (class in sage.sets.primes), 88

R
random_element() (sage.sets.finite enumerated_set.FiniteEnumeratedSet method), 43
random_element() (sage.sets.set.Set_object enumerated method), 21
rank() (sage.sets.finite enumerated_set.FiniteEnumeratedSet method), 43
rank() (sage.sets.integer_range.IntegerRangeF inite method), 84
rank() (sage.sets.integer_range.IntegerRangeInfinite method), 85
real_line() (sage.sets.real_set.RealSet static method), 108
RealSet (class in sage.sets.real_set), 95
RecursivelyEnumeratedSet() (in module sage.sets.recur_sively enumerated_set), 48
RecursivelyEnumeratedSet_forest (class in sage.sets.recur_sively enumerated_set), 50
RecursivelyEnumeratedSet_graded (class in sage.sets.recur_sively enumerated_set), 55
RecursivelyEnumeratedSet_symmetric (class in sage.sets.recur_sively enumerated_set), 60
retract() (sage.sets.real_set.RealSet method), 108
root_to_elements_dict() (sage.sets.disjoint_set.DisjointSet_of hashables method), 27
root_to_elements_dict() (sage.sets.disjoint_set.DisjointSet_of_integers method), 29
roots() (sage.sets.recur_sively enumerated_set.Recur_sivelyEnumeratedSet_forest method), 55

S
sage.sets.cartesian_product module, 1
sage.sets.condition_set module, 64
sage.sets.disjoint_set module, 24
sage.sets.disjoint_union enumerated_sets module, 31
sage.sets.family module, 3
sage.sets.finite enumerated_set module, 41
sage.sets.finite_set_map_cy module, 71
sage.sets.finite_set_maps module, 67
sage.sets.integer_range module, 81
sage.sets.non_negative_integers module, 86
sage.sets.positive_integers module, 85
sage.sets.primes module, 88
sage.sets.pythonclass module, 79
sage.sets.real_set module, 89
sage.sets.recur_sively enumerated_set module, 44
sage.sets.set
module, 13
sage.sets.set_from_iterator
module, 35
sage.sets.totally_ordered_finite_set
module, 77
search_forest_iterator() (in module
sage.sets.recursively Enumerated_set), 62
seeds() (sage.sets.recursively Enumerated_set.RecursivelyEnumeratedSet_generic method), 58
Set() (in module sage.sets.set), 13
set() (sage.sets.set.Set_object Enumerated method), 21
Set_add_sub_operators (class in sage.sets.set), 14
Set_base (class in sage.sets.set), 14
Set_boolean_operators (class in sage.sets.set), 16
set_from_function (in module sage.set.set_from_iterator), 41
set_from_method (in module sage.set.set_from_iterator), 41
Set_object (class in sage.sets.set), 16
Set_object_binary (class in sage.sets.set), 18
Set_object_difference (class in sage.sets.set), 18
Set_object_enumerated (class in sage.sets.set), 18
Set_object_intersection (class in sage.sets.set),
22
Set_object_symmetric_difference (class in
sage.sets.set), 22
Set_object_union (class in sage.sets.set), 22
Set_PythonType() (in module sage.sets.pythonclass), 79
Set_PythonType_class (class in sage.sets.pythonclass), 79
setimage() (sage.sets.finite_set_map_cy.FiniteSetMap_MN method), 73
setimage() (sage.sets.finite_set_map_cy.FiniteSetMap_MN method), 75
some_elements() (sage.sets.non_negative_integers.NonNegativeIntegers method), 87
start (sage.sets.set_from_iterator.DummyExampleForPicklingTest attribute), 36
stop (sage.sets.set_from_iterator.DummyExampleForPicklingTest attribute), 36
subsets() (sage.sets.set.Set_object method), 17
subsets_lattice() (sage.sets.set.Set_object method), 17
successors (sage.sets.recursively Enumerated_set.RecursivelyEnumeratedSet_generic attribute), 58
sup() (sage.sets.real_set.RealSet method), 109
symmetric_difference() (sage.sets.real_set.RealSet method), 109
symmetric_difference() (sage.sets.set.Set_object method), 15
symmetric_difference() (sage.sets.set.Set_object Enumerated method), 21
T
to_digraph() (sage.sets.disjoint_set.DisjointSet_of_hashes method), 27
to_digraph() (sage.sets.disjoint_set.DisjointSet_of_integers method), 29
to_digraph() (sage.sets.recursively Enumerated_set.RecursivelyEnumeratedSet_generic method), 58
TotallyOrderedFiniteSet (class in sage.sets.totally_ordered_finite_set), 77
TotallyOrderedFiniteSetElement (class in sage.sets.totally_ordered_finite_set), 79
TrivialFamily (class in sage.sets.family), 12
U
unbounded_above_closed() (sage.sets.real_set.RealSet static method), 109
unbounded_above_open() (sage.sets.real_set.RealSet static method), 110
unbounded_below_closed() (sage.sets.real_set.RealSet static method), 110
unbounded_below_open() (sage.sets.real_set.RealSet static method), 110
union() (sage.sets.disjoint_set.DisjointSet_of_hashes method), 28
union() (sage.sets.disjoint_set.DisjointSet_of_integers method), 30
union() (sage.sets.real_set.RealSet method), 110
union() (sage.sets.set.Set_base method), 15
union() (sage.sets.set.Set_object Enumerated method), 22
unrank() (sage.sets.finite_enumerated_set.FiniteEnumeratedSet method), 43
unrank() (sage.sets.integer_range.IntegerRangeFinite method), 84
unrank() (sage.sets.integer_range.IntegerRangeInfinite method), 85
unrank() (sage.sets.non_negative_integers.NonNegativeIntegers method), 87
unrank() (sage.sets.primes.Primes method), 88
unrank() (sage.sets.set_from_iterator.EnumeratedSetFromIterator method), 38
upper() (sage.sets.real_set.InternalRealInterval method), 94
upper_closed() (sage.sets.real_set.InternalRealInterval method), 95
upper_open() (sage.sets.real_set.InternalRealInterval method), 95
V
values() (sage.sets.family.AbstractFamily method), 4
values() (sage.sets.family.FiniteFamily method), 11
W

\texttt{wrapped_class (sage.sets.cartesian_product.Cartesian-Product.Element attribute), 2}

Z

\texttt{zip () (sage.sets.family.AbstractFamily method), 5}