1.1 Cartesian products

AUTHORS:

• Nicolas Thiery (2010-03): initial version

class sage.sets.cartesian_product.CartesianProduct(sets, category, flatten=False)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

A class implementing a raw data structure for Cartesian products of sets (and elements thereof). See cartesian_product for how to construct full fledged Cartesian products.

EXAMPLES:

```python
sage: G = cartesian_product([GF(5), Permutations(10)])
```

```python
sage: G.cartesian_factors()
(Finite Field of size 5, Standard permutations of 10)
```

```python
sage: G.cardinality()
18144000
```

```python
sage: G.random_element()  # random
(1, [4, 7, 6, 5, 10, 1, 3, 2, 8, 9])
```

```python
sage: G.category()
Join of Category of finite monoids
    and Category of Cartesian products of monoids
    and Category of Cartesian products of finite enumerated sets
```

__cartesian_product_of_elements__(elements)

Return the Cartesian product of the given elements.

This implements Sets.CartesianProducts.ParentMethods.__cartesian_product_of_elements__().

INPUT:

• elements – an iterable (e.g. tuple, list) with one element of each Cartesian factor of self

Warning: This is meant as a fast low-level method. In particular, no coercion is attempted. When coercion or sanity checks are desirable, please use instead self(elements) or self._element_constructor_(elements).

EXAMPLES:
sage: S1 = Sets().example()
sage: S2 = InfiniteEnumeratedSets().example()
sage: C = cartesian_product([S2, S1, S2])
sage: C._cartesian_product_of_elements([S2.an_element(), S1.an_element(), S2.an_element()])
(42, 47, 42)

class Element
Bases: sage.structure.element_wrapper.ElementWrapperCheckWrappedClass
cartesian_factors()
Return the tuple of elements that compose this element.

EXAMPLES:

sage: A = cartesian_product([ZZ, RR])
sage: A((1, 1.23)).cartesian_factors() (1, 1.23000000000000)
sage: type(_)
<... 'tuple'>
cartesian_projection(i)
Return the projection of self on the \(i\)-th factor of the Cartesian product, as per Sets.CartesianProducts.ElementMethods.cartesian_projection().

INPUT:
• \(i\) – the index of a factor of the Cartesian product

EXAMPLES:

sage: C = Sets().CartesianProducts().example(); C
The Cartesian product of (Set of prime numbers (basic implementation), An example of an infinite enumerated set: the non negative integers, An example of a finite enumerated set: \{1,2,3\})
sage: x = C.an_element(); x
(47, 42, 1)
sage: x.cartesian_projection(1)
42

wrapped_class
alias of builtins.tuple
an_element()

EXAMPLES:

sage: C = Sets().CartesianProducts().example(); C
The Cartesian product of (Set of prime numbers (basic implementation), An example of an infinite enumerated set: the non negative integers, An example of a finite enumerated set: \{1,2,3\})
sage: C.an_element()
(47, 42, 1)
cartesian_factors()
Return the Cartesian factors of self.

See also:
Sets.CartesianProducts.ParentMethods.cartesian_factors().
EXAMPLES:

```
sage: cartesian_product([QQ, ZZ, ZZ]).cartesian_factors()
(Rational Field, Integer Ring, Integer Ring)
```

cartesian_projection(i)
Return the natural projection onto the \(i\)-th Cartesian factor of \(self\) as per \texttt{Sets.CartesianProducts.}
\texttt{ParentMethods.cartesian_projection()}.

INPUT:
- \(i\) – the index of a Cartesian factor of \(self\)

EXAMPLES:

```
sage: C = Sets().CartesianProducts().example(); C
The Cartesian product of (Set of prime numbers (basic implementation), An example of an infinite enumerated set: the non negative integers, An example of a finite enumerated set: \{1,2,3\})
sage: x = C.an_element(); x
(47, 42, 1)
sage: pi = C.cartesian_projection(1)
sage: pi(x)
42
```

construction()
Return the construction functor and its arguments for this Cartesian product.

OUTPUT:
A pair whose first entry is a Cartesian product functor and its second entry is a list of the Cartesian factors.

EXAMPLES:

```
sage: cartesian_product([ZZ, QQ]).construction()
(The cartesian_product functorial construction, (Integer Ring, Rational Field))
```

1.2 Families

A Family is an associative container which models a family \((f_i)_{i \in I}\). Then, \(f[i]\) returns the element of the family indexed by \(i\). Whenever available, set and combinatorial class operations (counting, iteration, listing) on the family are induced from those of the index set. Families should be created through the \texttt{Family()} function.

AUTHORS:
- Nicolas Thiery (2008-02): initial release

class \textbf{sage.sets.family.AbstractFamily}
Bases: \texttt{sage.structure.parent.Parent}
The abstract class for family

Any family belongs to a class which inherits from AbstractFamily.

hidden_keys()

Returns the hidden keys of the family, if any.

EXAMPLES:

```python
sage: f = Family({3: 'a', 4: 'b', 7: 'd'})
sage: f.hidden_keys()
[]
```

inverse_family()

Returns the inverse family, with keys and values exchanged. This presumes that there are no duplicate values in self.

This default implementation is not lazy and therefore will only work with not too big finite families. It is also cached for the same reason:

```python
sage: Family({3: 'a', 4: 'b', 7: 'd'}).inverse_family()
Finite family {'a': 3, 'b': 4, 'd': 7}
sage: Family((3, 4, 7)).inverse_family()
Finite family {3: 0, 4: 1, 7: 2}
```

map(f, name=None)

Returns the family \(f(\text{self}[i]) \) \(i \in I \), where \(I \) is the index set of self.

Todo: good name?

EXAMPLES:

```python
sage: f = Family({3: 'a', 4: 'b', 7: 'd'})
sage: g = f.map(lambda x: x+1)
sage: list(g)
['a1', 'b1', 'd1']
```

zip(f, other, name=None)

Given two families with same index set \(I \) (and same hidden keys if relevant), returns the family \((f(\text{self}[i], \text{other}[i]))_{i \in I} \)

Todo: generalize to any number of families and merge with map?

EXAMPLES:

```python
sage: f = Family({3: 'a', 4: 'b', 7: 'd'})
sage: g = Family({3: '1', 4: '2', 7: '3'})
sage: h = f.zip(lambda x, y: x+y, g)
sage: list(h)
['a1', 'b2', 'd3']
```

class `sage.sets.family.EnumeratedFamily(enumset)`

Bases: `sage.sets.family.LazyFamily`
EnumeratedFamily turns an enumerated set c into a family indexed by the set $\{0, \ldots, |c| - 1\}$.

Instances should be created via the Family() factory. See its documentation for examples and tests.

cardinality()
Return the number of elements in self.

EXAMPLES:

```python
sage: from sage.sets.family import EnumeratedFamily
sage: f = EnumeratedFamily(Permutations(3))
sage: f.cardinality()
6
sage: f = Family(NonNegativeIntegers())
sage: f.cardinality()
+Infinity
```

sage.sets.family.Family(indices, function=None, hidden_keys=[], hidden_function=None, lazy=False, name=None)

A Family is an associative container which models a family $(f_i)_{i \in I}$. Then, $f[i]$ returns the element of the family indexed by i. Whenever available, set and combinatorial class operations (counting, iteration, listing) on the family are induced from those of the index set.

There are several available implementations (classes) for different usages; Family serves as a factory, and will create instances of the appropriate classes depending on its arguments.

INPUT:

- indices – the indices for the family
- function – (optional) the function f applied to all visible indices; the default is the identity function
- hidden_keys – (optional) a list of hidden indices that can be accessed through my_family[i]
- hidden_function – (optional) a function for the hidden indices
- lazy – boolean (default: False); whether the family is lazily created or not; if the indices are infinite, then this is automatically made True
- name – (optional) the name of the function; only used when the family is lazily created via a function

EXAMPLES:

In its simplest form, a list $l = [l_0, l_1, \ldots, l_\ell]$ or a tuple by itself is considered as the family $(l_i)_{i \in I}$ where I is the set $\{0, \ldots, \ell\}$ where ℓ is len(l) - 1. So Family(l) returns the corresponding family:

```python
sage: f = Family([1,2,3])
sage: f
Family (1, 2, 3)
sage: f = Family((1,2,3))
sage: f
Family (1, 2, 3)
```

Instead of a list you can as well pass any iterable object:

```python
sage: f = Family(2*i+1 for i in [1,2,3])
sage: f
Family (3, 5, 7)
```
A family can also be constructed from a dictionary \(t \). The resulting family is very close to \(t \), except that the elements of the family are the values of \(t \). Here, we define the family \((f_i)_{i \in \{3,4,7\}} \) with \(f_3 = a \), \(f_4 = b \), and \(f_7 = d \):

```python
sage: f = Family({3: 'a', 4: 'b', 7: 'd'})
sage: f
Finite family {3: 'a', 4: 'b', 7: 'd'}
sage: f[7]
'd'
sage: len(f)
3
sage: list(f)
['a', 'b', 'd']
sage: [ x for x in f ]
['a', 'b', 'd']
sage: f.keys()
[3, 4, 7]
sage: 'b' in f
True
sage: 'e' in f
False
```

A family can also be constructed by its index set \(I \) and a function \(f \), as in \((f(i))_{i \in I} \):

```python
sage: f = Family([3,4,7], lambda i: 2*i)
sage: f
Finite family {3: 6, 4: 8, 7: 14}
sage: f.keys()
[3, 4, 7]
sage: f[7]
14
sage: list(f)
[6, 8, 14]
sage: [x for x in f]
[6, 8, 14]
sage: len(f)
3
```

By default, all images are computed right away, and stored in an internal dictionary:

```python
sage: f = Family((3,4,7), lambda i: 2*i)
sage: f
Finite family {3: 6, 4: 8, 7: 14}
```

Note that this requires all the elements of the list to be hashable. One can ask instead for the images \(f(i) \) to be computed lazily, when needed:

```python
sage: f = Family([3,4,7], lambda i: 2*i, lazy=True)
sage: f
Lazy family (<lambda>(i))_{i in [3, 4, 7]}
sage: f[7]
14
sage: list(f)
[6, 8, 14]
```

(continues on next page)
This allows in particular for modeling infinite families:

```
sage: f = Family(ZZ, lambda i: 2*i, lazy=True)
sage: f
Lazy family (<lambda>(i))_{i in Integer Ring}
sage: f.keys()
Integer Ring
sage: f[1]
2
sage: f[-5]
-10
```

Note that the lazy keyword parameter is only needed to force laziness. Usually it is automatically set to a correct default value (ie: False for finite data structures and True for enumerated sets:

```
sage: f == Family(ZZ, lambda i: 2*i)
True
```

Beware that for those kind of families len(f) is not supposed to work. As a replacement, use the .cardinality() method:

```
sage: f = Family(Permutations(3), attrcall("to_lehmer_code"))
sage: list(f)
[[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 0], [2, 0, 0], [2, 1, 0]]
sage: f.cardinality()
6
```

Caveat: Only certain families with lazy behavior can be pickled. In particular, only functions that work with Sage's pickle_function and unpickle_function (in sage.misc.fpickle) will correctly unpickle. The following two work:

```
sage: f = Family(Permutations(3), lambda p: p.to_lehmer_code()); f
Lazy family (<lambda>(i))_{i in Standard permutations of 3}
sage: f == loads(dumps(f))
True
```

But this one does not:

```
sage: def plus_n(n):
    return lambda x: x+n
sage: f = Family([1,2,3], plus_n(3), lazy=True); f
Lazy family (<lambda>(i))_{i in [1, 2, 3]}
sage: f == loads(dumps(f))
```

(continues on next page)
Traceback (most recent call last):
...
ValueError: Cannot pickle code objects from closures

Finally, it can occasionally be useful to add some hidden elements in a family, which are accessible as \texttt{f[i]}, but do not appear in the keys or the container operations:

```python
sage: f = Family([3,4,7], \texttt{lambda i: 2*i, hidden_keys=[2]})
sage: f
Finite family {3: 6, 4: 8, 7: 14}
sage: f.keys()
[3, 4, 7]
sage: f.hidden_keys()
[2]
sage: f[7]
14
sage: f[2]
4
sage: list(f)
[6, 8, 14]
sage: [x for x in f]
[6, 8, 14]
sage: len(f)
3
```

The following example illustrates when the function is actually called:

```python
sage: def compute_value(i):
....:     print('computing 2*'+str(i))
....:     return 2*i
sage: f = Family([3,4,7], compute_value, hidden_keys=[2])
computing 2*3
computing 2*4
computing 2*7
sage: f
Finite family {3: 6, 4: 8, 7: 14}
sage: f.keys()
[3, 4, 7]
sage: f.hidden_keys()
[2]
sage: f[7]
14
sage: f[2]
4
computing 2*2
computing 2*2
4
sage: f[2]
4
sage: list(f)
[6, 8, 14]
sage: [x for x in f]
[6, 8, 14]
sage: len(f)
3
```
Here is a close variant where the function for the hidden keys is different from that for the other keys:

```
sage: f = Family([3,4,7], lambda i: 2*i, hidden_keys=[2], hidden_function = lambda i: 3*i)
sage: f
Finite family {3: 6, 4: 8, 7: 14}
sage: f.keys()
[3, 4, 7]
sage: f.hidden_keys()
[2]
sage: f[7]
14
sage: f[2]
6
sage: list(f)
[6, 8, 14]
sage: [x for x in f]
[6, 8, 14]
sage: len(f)
3
```

Family accept finite and infinite EnumeratedSets as input:

```
sage: f = Family(FiniteEnumeratedSet([1,2,3]))
sage: f
Family (1, 2, 3)
sage: f = Family(NonNegativeIntegers())
sage: f
Family (Non negative integers)
```

```
sage: f = Family(FiniteEnumeratedSet([3,4,7]), lambda i: 2*i)
sage: f
Finite family {3: 6, 4: 8, 7: 14}
sage: f.keys()
[3, 4, 7]
sage: f[7]
14
sage: list(f)
[6, 8, 14]
sage: [x for x in f]
[6, 8, 14]
sage: len(f)
3
```

class sage.sets.family.FiniteFamily(dictionary, keys=None)

Bases: sage.sets.family.AbstractFamily

A *FiniteFamily* is an associative container which models a finite family \((f_i)_{i \in I}\). Its elements \(f_i\) are therefore its values. Instances should be created via the *Family()* factory. See its documentation for examples and tests.

EXAMPLES:

We define the family \((f_i)_{i \in \{3,4,7\}}\) with \(f_3 = a\), \(f_4 = b\), and \(f_7 = d\):
Individual elements are accessible as in a usual dictionary:

```
sage: f[7]
'd'
```

And the other usual dictionary operations are also available:

```
sage: len(f)
3
sage: f.keys()
[3, 4, 7]
```

However `f` behaves as a container for the \(f_i \)'s:

```
sage: list(f)
['a', 'b', 'd']
sage: [ x for x in f ]
['a', 'b', 'd']
```

The order of the elements can be specified using the `keys` optional argument:

```
sage: f = FiniteFamily({"a": "aa", "b": "bb", "c": "cc" }, keys = ["c", "a", "b"])
sage: list(f)
['cc', 'aa', 'bb']
```

cardinality()

Returns the number of elements in self.

EXAMPLES:

```
sage: from sage.sets.family import FiniteFamily
sage: f = FiniteFamily({3: 'a', 4: 'b', 7: 'd'})
sage: f.cardinality()
3
```

has_key(k)

Returns whether `k` is a key of `self`

EXAMPLES:

```
sage: Family({"a":1, "b":2, "c":3}).has_key("a")
True
sage: Family({"a":1, "b":2, "c":3}).has_key("d")
False
```

keys()

Returns the index set of this family

EXAMPLES:

```
sage: f = Family(['c', 'a', 'b'], lambda x: x+x)
sage: f.keys()
['c', 'a', 'b']
```
values()
Returns the elements of this family

EXAMPLES:

```
sage: f = Family(["c", "a", "b"], lambda x: x+x)
sage: f.values()
['cc', 'aa', 'bb']
```

class sage.sets.family.FiniteFamilyWithHiddenKeys(dictionary, hidden_keys, hidden_function, keys=None)

Bases: `sage.sets.family.FiniteFamily`

A close variant of `FiniteFamily` where the family contains some hidden keys whose corresponding values are computed lazily (and remembered). Instances should be created via the `Family()` factory. See its documentation for examples and tests.

Caveat: Only instances of this class whose functions are compatible with `sage.misc.fpickle` can be pickled.

hidden_keys()
Returns self’s hidden keys.

EXAMPLES:

```
sage: f = Family([3,4,7], lambda i: 2*i, hidden_keys=[2])
sage: f.hidden_keys()
[2]
```

class sage.sets.family.LazyFamily(set, function, name=None)

Bases: `sage.sets.family.AbstractFamily`

A LazyFamily(I, f) is an associative container which models the (possibly infinite) family $(f(i))_{i \in I}$.

Instances should be created via the `Family()` factory. See its documentation for examples and tests.

cardinality()
Return the number of elements in self.

EXAMPLES:

```
sage: from sage.sets.family import LazyFamily
sage: f = LazyFamily([3,4,7], lambda i: 2*i)
sage: f.cardinality()
3
sage: l = LazyFamily(NonNegativeIntegers(), lambda i: 2*i)
sage: l.cardinality()
+Infinity
```

keys()
Returns self’s keys.

EXAMPLES:

```
sage: from sage.sets.family import LazyFamily
sage: f = LazyFamily([3,4,7], lambda i: 2*i)
sage: f.keys()
[3, 4, 7]
```
class sage.sets.family.TrivialFamily(enumeration)

Bases: sage.sets.family.AbstractFamily

TrivialFamily turns a list/tuple c into a family indexed by the set $\{0, \ldots, |c| - 1\}$.

Instances should be created via the Family() factory. See its documentation for examples and tests.

cardinality()

Return the number of elements in self.

EXAMPLES:

```
sage: from sage.sets.family import TrivialFamily
sage: f = TrivialFamily([3,4,7])
sage: f.cardinality()
3
```

difference(*others)

Return difference(s) $\{0, 1, \ldots, |c| - 1\} \setminus \{0, 1, \ldots, |c| - 1\}$.

EXAMPLES:

```
sage: from sage.sets.family import TrivialFamily
sage: f = TrivialFamily([3,4,7])
sage: f.difference(Set([2,3]))
```

keys()

Returns self’s keys.

EXAMPLES:

```
sage: from sage.sets.family import TrivialFamily
sage: f = TrivialFamily([3,4,7])
sage: f.keys()
[0, 1, 2]
```

1.3 Sets

AUTHORS:

- William Stein (2005) - first version
- William Stein (2006-02-16) - large number of documentation and examples; improved code
- Mike Hansen (2007-3-25) - added differences and symmetric differences; fixed operators
- Florent Hivert (2010-06-17) - Adapted to categories
- Nicolas M. Thiery (2011-03-15) - Added subset and superset methods
- Julian Rueth (2013-04-09) - Collected common code in Set_object_binary, fixed __hash__.

sage.sets.set.Set(X=None)

Create the underlying set of X.

If X is a list, tuple, Python set, or X.is_finite() is True, this returns a wrapper around Python’s enumerated immutable frozenset type with extra functionality. Otherwise it returns a more formal wrapper.

If you need the functionality of mutable sets, use Python’s builtin set type.

EXAMPLES:

```
sage: X = Set(GF(9, 'a'))
sage: X
{0, 1, 2, a, a + 1, a + 2, 2*a, 2*a + 1, 2*a + 2}
sage: type(X)
<class 'sage.sets.set.Set_object_enumerated_with_category'>
sage: Y = X.union(Set(QQ))
```
sage: Y
Set-theoretic union of \{0, 1, 2, a, a + 1, a + 2, 2^a, 2^a + 1, 2^a + 2\} and Set of elements of Rational Field
sage: type(Y)
<class 'sage.sets.set.Set_object_union_with_category'>

Usually sets can be used as dictionary keys.

sage: d={Set([2*I,1+I]):10}
sage: d
key is randomly ordered
{{I + 1, 2*I}: 10}
sage: d[Set([1+I,2*I])]
10
sage: d[Set((1+I,2*I))]
10
The original object is often forgotten.

sage: v = [1,2,3]
sage: X = Set(v)
sage: X
{1, 2, 3}
sage: v.append(5)
sage: X
{1, 2, 3}
sage: 5 in X
False
Set also accepts iterators, but be careful to only give finite sets:

sage: sorted(Set(range(1,6)))
[1, 2, 3, 4, 5]
sage: sorted(Set(list(range(1,6))))
[1, 2, 3, 4, 5]
sage: sorted(Set(iter(range(1,6))))
[1, 2, 3, 4, 5]
We can also create sets from different types:

sage: sorted(Set([Sequence([3,1], immutable=True), 5, QQ, Partition([3,1,1])]), key=str)
[5, Rational Field, [3, 1, 1], [3, 1]]
Sets with unhashable objects work, but with less functionality:

sage: A = Set([QQ, (3, 1), 5]) # hashable
sage: sorted(A.list(), key=repr)
[(3, 1), 5, Rational Field]
sage: type(A)
<class 'sage.sets.set.Set_object_enumerated_with_category'>
sage: B = Set([QQ, [3, 1], 5]) # unhashable
sage: sorted(B.list(), key=repr)
Traceback (most recent call last):
...
AttributeError: 'Set_object_with_category' object has no attribute 'list'
sage: type(B)
<class 'sage.sets.set.Set_object_with_category'>

class sage.sets.set.Set_add_sub_operators
Bases: object

Mix-in class providing the operators __add__ and __sub__.
The operators delegate to the methods union and intersection, which need to be implemented by the class.

class sage.sets.set.Set_base
Bases: object

Abstract base class for sets, not necessarily parents.

difference(X)
Return the set difference self - X.

EXAMPLES:

sage: X = Set(ZZ).difference(Primes())
sage: 4 in X
True
sage: 3 in X
False
sage: 4/1 in X
True
sage: X = Set(GF(9,'b')).difference(Set(GF(27,'c')))
sage: X
{0, 1, 2, b, b + 1, b + 2, 2*b, 2*b + 1, 2*b + 2}

intersection(X)
Return the intersection of self and X.

EXAMPLES:

sage: X = Set(ZZ).intersection(Primes())
sage: 4 in X
False
sage: 3 in X
True
sage: 2/1 in X
True
sage: X = Set(GF(9,'b')).intersection(Set(GF(27,'c')))
sage: X
{0, 1, 2, b, b + 1, b + 2, 2*b, 2*b + 1, 2*b + 2}

(continues on next page)
sage: X = Set(GF(9, 'b')).intersection(Set(GF(27, 'b')))
sage: X
{}

symmetric_difference(X)

Returns the symmetric difference of self and X.

EXAMPLES:

```python
sage: X = Set([1,2,3]).symmetric_difference(Set([3,4]))
sage: X
{1, 2, 4}
```

union(X)

Return the union of self and X.

EXAMPLES:

```python
sage: Set(QQ).union(Set(ZZ))
Set-theoretic union of Set of elements of Rational Field and Set of elements of Integer Ring
sage: Set(QQ) + Set(ZZ)
Set-theoretic union of Set of elements of Rational Field and Set of elements of Integer Ring
sage: X = Set(QQ).union(Set(GF(3))); X
Set-theoretic union of Set of elements of Rational Field and {0, 1, 2}
sage: 2/3 in X
True
sage: GF(3)(2) in X
True
sage: GF(5)(2) in X
False
sage: sorted(Set(GF(7)) + Set(GF(3)), key=int)
[0, 0, 1, 1, 2, 2, 3, 4, 5, 6]
```

```python
class sage.sets.set.Set_boolean_operators
    Bases: object

    Mix-in class providing the Boolean operators __or__, __and__, __xor__.

    The operators delegate to the methods union, intersection, and symmetric_difference, which need to be implemented by the class.

class sage.sets.set.Set_object(X, category=None)

    A set attached to an almost arbitrary object.

    **EXAMPLES:**

```python
sage: K = GF(19)
sage: Set(K)
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}
sage: S = Set(K)
```
\begin{岚}
sage: latex(S)
\left\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18\right\}
sage: TestSuite(S).run()
sage: latex(Set(ZZ))
\Bold{Z}
\end{岚}

\textbf{cardinality}() 
Return the cardinality of this set, which is either an integer or Infinity.

\textbf{EXAMPLES:}

\begin{岚}
sage: Set(ZZ).cardinality()
+Infinity
sage: Primes().cardinality()
+Infinity
sage: Set(GF(5)).cardinality()
5
sage: Set(GF(5^2,'a')).cardinality()
25
\end{岚}

\textbf{is_empty}() 
Return boolean representing emptiness of the set.

\textbf{OUTPUT:}
True if the set is empty, False if otherwise.

\textbf{EXAMPLES:}

\begin{岚}
sage: Set([]).is_empty()
True
sage: Set([0]).is_empty()
False
sage: Set([1..100]).is_empty()
False
sage: Set(SymmetricGroup(2).list()).is_empty()
False
sage: Set(ZZ).is_empty()
False
\end{岚}

\textbf{is_finite}() 
Return True if self is finite.

\textbf{EXAMPLES:}

\begin{岚}
sage: Set(QQ).is_finite()
False
sage: Set(GF(250037)).is_finite()
True
sage: Set(Integers(2^1000000)).is_finite()
True
sage: Set([1,'a',ZZ]).is_finite()
True
\end{岚}
**object()**
Return underlying object.

EXAMPLES:

```python
sage: X = Set(QQ)
sage: X.object()
Rational Field
sage: X = Primes()
sage: X.object()
Set of all prime numbers: 2, 3, 5, 7, ...
```

**subsets(size=None)**
Return the Subsets object representing the subsets of a set. If size is specified, return the subsets of that size.

EXAMPLES:

```python
sage: X = Set([1, 2, 3])
sage: list(X.subsets())
[[], [1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3]]
sage: list(X.subsets(2))
[[1, 2], [1, 3], [2, 3]]
```

**subsets_lattice()**
Return the lattice of subsets ordered by containment.

EXAMPLES:

```python
sage: X = Set([1, 2, 3])
sage: X.subsets_lattice()
Finite lattice containing 8 elements
sage: Y = Set()
sage: Y.subsets_lattice()
Finite lattice containing 1 elements
```

**class** *sage.sets.set.Set_object_binary(X, Y, op, latex_op)*

**Bases:** *sage.sets.set.Set_object*

An abstract common base class for sets defined by a binary operation (e.g. `Set_object_union`, `Set_object_intersection`, `Set_object_difference`, and `Set_object_symmetric_difference`).

**INPUT:**
* X, Y – sets, the operands to op
* op – a string describing the binary operation
* latex_op – a string used for rendering this object in LaTeX

**EXAMPLES:**

```python
sage: X = Set(QQ^2)
sage: Y = Set(ZZ)
sage: from sage.sets.set import Set_object_binary
sage: S = Set_object_binary(X, Y, "union", "\cup"); S
Set-theoretic union of
Set of elements of Vector space of dimension 2 over Rational Field and
Set of elements of Integer Ring
```
class sage.sets.set.Set_object_difference(X, Y)
   Bases: sage.sets.set.Set_object_binary

   Formal difference of two sets.

   is_finite()
   Return whether this set is finite.

   EXAMPLES:

   sage: X = Set(range(10))
   sage: Y = Set(range(-10,5))
   sage: Z = Set(QQ)
   sage: X.difference(Y).is_finite()
   True
   sage: X.difference(Z).is_finite()
   True
   sage: Z.difference(X).is_finite()
   False
   sage: Z.difference(Set(ZZ)).is_finite()
   Traceback (most recent call last):
     ...
     NotImplementedError

class sage.sets.set.Set_object_enumerated(X)
   Bases: sage.sets.set.Set_object

   A finite enumerated set.

   cardinality()
   Return the cardinality of self.

   EXAMPLES:

   sage: Set([1,1]).cardinality()
   1

   difference(other)
   Return the set difference self - other.

   EXAMPLES:

   sage: X = Set([1,2,3,4])
   sage: Y = Set([1,2])
   sage: X.difference(Y)
   {3, 4}
   sage: Z = Set(ZZ)
   sage: W = Set([2.5, 4, 5, 6])
   sage: W.difference(Z)
   {2.50000000000000}

   frozenset()
   Return the Python frozenset object associated to this set, which is an immutable set (hence hashable).

   EXAMPLES:

   sage: X = Set(GF(8, 'c'))
   sage: X
Sets, Release 9.6

{0, 1, c, c + 1, c^2, c^2 + 1, c^2 + c, c^2 + c + 1}
sage: s = X.set(); s
{0, 1, c, c + 1, c^2, c^2 + 1, c^2 + c, c^2 + c + 1}
sage: hash(s)
Traceback (most recent call last):
  ... 
TypeError: unhashable type: 'set'
sage: s = X.frozenset(); s
frozenset({0, 1, c, c + 1, c^2, c^2 + 1, c^2 + c, c^2 + c + 1})
sage: hash(s) != hash(tuple(X.set()))
True
sage: type(s)
<... 'frozenset'>

intersection(other)
Return the intersection of self and other.

EXAMPLES:

sage: X = Set(GF(8,'c'))
sage: Y = Set([GF(8,'c').0, 1, 2, 3])
sage: X.intersection(Y)
{1, c}

is_finite()
Return True as this is a finite set.

EXAMPLES:

sage: Set(GF(19)).is_finite()
True

issubset(other)
Return whether self is a subset of other.

INPUT:
  • other – a finite Set

EXAMPLES:

sage: X = Set([1,3,5])
sage: Y = Set([0,1,2,3,5,7])
sage: X.issubset(Y)
True
sage: Y.issubset(X)
False
sage: X.issubset(X)
True

issuperset(other)
Return whether self is a superset of other.

INPUT:
• other – a finite Set

EXAMPLES:

```python
sage: X = Set([1,3,5])
sage: Y = Set([0,1,2,3,5])
sage: X.issuperset(Y)
False
sage: Y.issuperset(X)
True
sage: X.issuperset(X)
True
```

**list()**

Return the elements of self, as a list.

EXAMPLES:

```python
sage: X = Set(GF(8, 'c'))
sage: X
{0, 1, c, c + 1, c^2 + 1, c^2 + c + 1}
sage: X.list()
[0, 1, c, c + 1, c^2 + 1, c^2 + c + 1]
sage: type(X.list())
<... 'list'>
```

**Todo:** FIXME: What should be the order of the result? That of self.object()? Or the order given by set(self.object())? Note that __getitem__() is currently implemented in term of this list method, which is really inefficient ...

**random_element()**

Return a random element in this set.

EXAMPLES:

```python
sage: Set([1,2,3]).random_element() # random
2
```

**set()**

Return the Python set object associated to this set.

Python has a notion of finite set, and often Sage sets have an associated Python set. This function returns that set.

EXAMPLES:

```python
sage: X = Set(GF(8, 'c'))
sage: X
{0, 1, c, c + 1, c^2 + 1, c^2 + c + 1}
sage: X.set()
{0, 1, c, c + 1, c^2 + 1, c^2 + c + 1}
sage: type(X.set())
<... 'set'>
sage: type(X)
<class 'sage.sets.set.Set_object_enumerated_with_category'>
```
**symmetric_difference**(other)

Return the symmetric difference of self and other.

EXAMPLES:

```
sage: X = Set([1,2,3,4])
sage: Y = Set([1,2])
sage: X.symmetric_difference(Y)
{3, 4}
sage: Z = Set(ZZ)
sage: W = Set([2.5, 4, 5, 6])
sage: U = W.symmetric_difference(Z)
sage: 2.5 in U
True
sage: 4 in U
False
sage: V = Z.symmetric_difference(W)
sage: V == U
True
sage: 2.5 in V
True
sage: 6 in V
False
```

**union**(other)

Return the union of self and other.

EXAMPLES:

```
sage: X = Set(GF(8,'c'))
sage: Y = Set([GF(8,'c').0, 1, 2, 3])
sage: sorted(Y)
[1, 2, 3, c]
sage: sorted(X.union(Y), key=str)
[0, 1, 2, 3, c, c + 1, c^2, c^2 + 1, c^2 + c, c^2 + c + 1]
```

class sage.sets.set.Set_object_intersection(X, Y)

Formal intersection of two sets.

**is_finite**()

Return whether this set is finite.

EXAMPLES:

```
sage: X = Set(IntegerRange(100))
sage: Y = Set(ZZ)
sage: X.intersection(Y).is_finite()
True
sage: Y.intersection(X).is_finite()
True
sage: Y.intersection(Set(QQ)).is_finite()
Traceback (most recent call last):
```

(continues on next page)
class sage.sets.set.Set_object_symmetric_difference(X, Y)
Bases: sage.sets.set.Set_object_binary

Formal symmetric difference of two sets.

is_finite()
Return whether this set is finite.

EXAMPLES:

```python
sage: X = Set(range(10))
sage: Y = Set(range(-10, 5))
sage: Z = Set(QQ)
sage: X.symmetric_difference(Y).is_finite() # True
sage: X.symmetric_difference(Z).is_finite() # False
sage: Z.symmetric_difference(X).is_finite() # False
sage: Z.symmetric_difference(Set(ZZ)).is_finite() # Traceback (most recent call last):
... # NotImplementedError
```

class sage.sets.set.Set_object_union(X, Y)
Bases: sage.sets.set.Set_object_binary

A formal union of two sets.

cardinality()
Return the cardinality of this set.

EXAMPLES:

```python
sage: X = Set(GF(3)).union(Set(GF(2)))
sage: X # {0, 1, 2, 0, 1}
sage: X.cardinality() # 5

sage: X = Set(GF(3)).union(Set(ZZ))
sage: X.cardinality() # +Infinity
```

is_finite()
Return whether this set is finite.

EXAMPLES:

```python
sage: X = Set(range(10))
sage: Y = Set(range(-10, 0))
sage: Z = Set(Primes())
sage: X.union(Y).is_finite() # (continues on next page)
```
**1.4 Disjoint-set data structure**

The main entry point is `DisjointSet()` which chooses the appropriate type to return. For more on the data structure, see `DisjointSet()`.

This module defines a class for mutable partitioning of a set, which cannot be used as a key of a dictionary, vertex of a graph etc. For immutable partitioning see `SetPartition`.

**AUTHORS:**

- Sébastien Labbé (2009-11-24) - Pickling support
- Sébastien Labbé (2010-01) - Inclusion into sage (trac ticket #6775).

**EXAMPLES:**

Disjoint set of integers from 0 to `n` - 1:

```
sage: s = DisjointSet(6)
sage: s
{{0}, {1}, {2}, {3}, {4}, {5}}
sage: s.union(2, 4)
sage: s.union(1, 3)
sage: s.union(5, 1)
sage: s
{{0}, {1, 3, 5}, {2, 4}}
sage: s.find(3)
1
```
Disjoint set of hashables objects:

```sage
sage: d = DisjointSet('abcde')
sage: d
{{'a'}, {'b'}, {'c'}, {'d'}, {'e'}}
sage: d.union('a', 'b')
sage: d.union('b', 'c')
sage: d.union('c', 'd')
sage: d
{{'a', 'b', 'c', 'd'}, {'e'}}
sage: d.find('c')
'a'
```

`sage.sets.disjoint_set.DisjointSet(arg)`

Constructs a disjoint set where each element of `arg` is in its own set. If `arg` is an integer, then the disjoint set returned is made of the integers from 0 to `arg` - 1.

A disjoint-set data structure (sometimes called union-find data structure) is a data structure that keeps track of a partitioning of a set into a number of separate, nonoverlapping sets. It performs two operations:

- **find()** – Determine which set a particular element is in.
- **union()** – Combine or merge two sets into a single set.

REFERENCES:

- Wikipedia article Disjoint-set_data_structure

INPUT:

- `arg` – non negative integer or an iterable of hashable objects.

EXAMPLES:

From a non-negative integer:

```sage
sage: DisjointSet(5)
{{0}, {1}, {2}, {3}, {4}}
```

From an iterable:

```sage
sage: DisjointSet('abcde')
{{'a'}, {'b'}, {'c'}, {'d'}, {'e'}}
sage: DisjointSet(range(6))
{{0}, {1}, {2}, {3}, {4}, {5}}
sage: DisjointSet(['yi', 45, 'cheval'])
{{'cheval'}, {'yi'}, {45}}
```

```python
class sage.sets.disjoint_set.DisjointSet_class
 Bases: sage.structure.sage_object.SageObject

```
cardinality()
Return the number of elements in self, not the number of subsets.

EXAMPLES:

```python
sage: d = DisjointSet(5)
sage: d.cardinality()
sage: d.union(2, 4)
sage: d.cardinality()
sage: d = DisjointSet(range(5))
sage: d.cardinality()
sage: d.union(2, 4)
sage: d.cardinality()
```

number_of_subsets()
Return the number of subsets in self.

EXAMPLES:

```python
sage: d = DisjointSet(5)
sage: d.number_of_subsets()
sage: d.union(2, 4)
sage: d.number_of_subsets()
sage: d = DisjointSet(range(5))
sage: d.number_of_subsets()
sage: d.union(2, 4)
sage: d.number_of_subsets()
```

class sage.sets.disjoint_set.DisjointSet_of_hashables
Bases: sage.sets.disjoint_set.DisjointSet_class
Disjoint set of hashables.

EXAMPLES:

```python
sage: d = DisjointSet('abcde')
sage: d
{{'a'}, {'b'}, {'c'}, {'d'}, {'e'}}
sage: d.union('a', 'c')
sage: d
{{'a', 'c'}, {'b'}, {'d'}, {'e'}}
sage: d.find('a')
'a'
```

element_to_root_dict()
Return the dictionary where the keys are the elements of self and the values are their representative inside a list.

EXAMPLES:
sets, release 9.6

```
sage: d = DisjointSet(range(5))
sage: d.union(2,3)
sage: d.union(4,1)
sage: e = d.element_to_root_dict()
sage: sorted(e.items())
[(0, 0), (1, 4), (2, 2), (3, 2), (4, 4)]
sage: WordMorphism(e)
WordMorphism: 0->0, 1->4, 2->2, 3->2, 4->4
```

**find(e)**

Return the representative of the set that e currently belongs to.

**INPUT:**

- e - element in self

**EXAMPLES:**

```
sage: e = DisjointSet(range(5))
sage: e.union(4,2)
sage: e
{{0}, {1}, {2, 4}, {3}}
sage: e.find(2)
4
sage: e.find(4)
4
sage: e.union(1,3)
sage: e
{{0}, {1, 3}, {2, 4}}
sage: e.find(1)
1
sage: e.find(3)
1
sage: e.union(3,2)
sage: e
{{0}, {1, 2, 3, 4}}
sage: [e.find(i) for i in range(5)]
[0, 1, 1, 1, 1]
sage: e.find(5)
Traceback (most recent call last):
...
KeyError: 5
```

**root_to_elements_dict()**

Return the dictionary where the keys are the roots of self and the values are the elements in the same set.

**EXAMPLES:**

```
sage: d = DisjointSet(range(5))
sage: d.union(2,3)
sage: d.union(4,1)
sage: e = d.root_to_elements_dict()
sage: sorted(e.items())
[(0, [0]), (2, [2, 3]), (4, [1, 4])]
```
to_digraph()

Return the current digraph of self where \((a, b)\) is an oriented edge if \(b\) is the parent of \(a\).

EXAMPLES:

```python
sage: d = DisjointSet(range(5))
sage: d.union(2,3)
sage: d.union(4,1)
sage: d.union(3,4)
sage: d
{{0}, {1, 2, 3, 4}}
sage: g = d.to_digraph(); g
Looped digraph on 5 vertices
sage: g.edges()
[(0, 0, None), (1, 2, None), (2, 2, None), (3, 2, None), (4, 2, None)]
```

The result depends on the ordering of the union:

```python
sage: d = DisjointSet(range(5))
sage: d.union(1,2)
sage: d.union(1,3)
sage: d.union(1,4)
sage: d
{{0}, {1, 2, 3, 4}}
sage: d.to_digraph().edges()
[(0, 0, None), (1, 1, None), (2, 1, None), (3, 1, None), (4, 1, None)]
```

union(e, f)

Combine the set of \(e\) and the set of \(f\) into one.

All elements in those two sets will share the same representative that can be gotten using find.

INPUT:

- \(e\) - element in self
- \(f\) - element in self

EXAMPLES:

```python
sage: e = DisjointSet('abcde')
sage: e
{{'a'}, {'b'}, {'c'}, {'d'}, {'e'}}
sage: e.union('a','b')
sage: e
{{'a', 'b'}, {'c'}, {'d'}, {'e'}}
sage: e.union('c','e')
sage: e
{{'a', 'b', 'c', 'e'}, {'d'}}
sage: e.union('b','e')
sage: e
{{'a', 'b', 'c', 'e'}, {'d'}}
```

class sage.sets.disjoint_set.DisjointSet_of_integers

Bases: `sage.sets.disjoint_set.DisjointSet_class`

Disjoint set of integers from 0 to \(n-1\).

EXAMPLES:
```python
sage: d = DisjointSet(5)
sage: d
{{0}, {1}, {2}, {3}, {4}}
sage: d.union(2,4)
sage: d.union(0,2)
sage: d
{{0, 2, 4}, {1}, {3}}
sage: d.find(2)
2
```

### element_to_root_dict()

Return the dictionary where the keys are the elements of `self` and the values are their representative inside a list.

**EXAMPLES:**

```python
sage: d = DisjointSet(5)
sage: d.union(2,3)
sage: d.union(4,1)
sage: e = d.element_to_root_dict(); e
{0: 0, 1: 4, 2: 2, 3: 2, 4: 4}
sage: WordMorphism(e)
WordMorphism: 0->0, 1->4, 2->2, 3->2, 4->4
```

### find()

Return the representative of the set that `i` currently belongs to.

**INPUT:**

- `i` – element in `self`

**EXAMPLES:**

```python
sage: e = DisjointSet(5)
sage: e.union(4,2)
sage: e
{{0}, {1}, {2, 4}, {3}}
sage: e.find(2)
4
sage: e.find(4)
4
sage: e.union(1,3)
sage: e
{{0}, {1, 3}, {2, 4}}
sage: e.find(1)
1
sage: e.find(3)
1
sage: e.union(3,2)
sage: e
{{0}, {1, 2, 3, 4}}
sage: [e.find(i) for i in range(5)]
[0, 1, 1, 1, 1]
sage: e.find(5)
Traceback (most recent call last):
```

(continues on next page)
... ValueErrors: i(=5) must be between 0 and 4

root_to_elements_dict()
Return the dictionary where the keys are the roots of self and the values are the elements in the same set as the root.

EXAMPLES:

```python
sage: d = DisjointSet(5)
sage: sorted(d.root_to_elements_dict().items())
[(0, [0]), (1, [1]), (2, [2]), (3, [3]), (4, [4])]
sage: d.union(2,3)
sage: sorted(d.root_to_elements_dict().items())
[(0, [0]), (1, [1]), (2, [2, 3]), (4, [4])]
sage: d.union(3,0)
sage: sorted(d.root_to_elements_dict().items())
[(1, [1]), (2, [0, 2, 3]), (4, [4])]
sage: d
{{0, 2, 3}, {1}, {4}}
```

to_digraph()
Return the current digraph of self where (a, b) is an oriented edge if b is the parent of a.

EXAMPLES:

```python
sage: d = DisjointSet(5)
sage: d.union(2,3)
sage: d.union(4,1)
sage: d.union(3,4)
sage: d
{{0}, {1, 2, 3, 4}}
sage: g = d.to_digraph(); g
Looped digraph on 5 vertices
sage: g.edges()
[(0, 0, None), (1, 1, None), (2, 1, None), (3, 1, None), (4, 1, None)]
```

The result depends on the ordering of the union:

```python
sage: d = DisjointSet(5)
sage: d.union(1,2)
sage: d.union(1,3)
sage: d.union(1,4)
sage: d
{{0}, {1, 2, 3, 4}}
sage: g.edges()
[(0, 0, None), (1, 1, None), (2, 1, None), (3, 1, None), (4, 1, None)]
```

union(i, j)
Combine the set of i and the set of j into one.
All elements in those two sets will share the same representative that can be gotten using find.

INPUT:

- i - element in self
• \( j \) - element in self

EXAMPLES:

```python
d = DisjointSet(5)
sage: d
{{0}, {1}, {2}, {3}, {4}}
sage: d.union(0,1)
sage: d
{{0, 1}, {2}, {3}, {4}}
sage: d.union(2,4)
sage: d
{{0, 1}, {2, 4}, {3}}
sage: d.union(1,4)
sage: d
{{0, 1, 2, 4}, {3}}
sage: d.union(1,5)
Traceback (most recent call last):
...
ValueError: j(=5) must be between 0 and 4
```

1.5 Disjoint union of enumerated sets

AUTHORS:
• Florent Hivert (2009-07/09): initial implementation.
• Florent Hivert (2010-03): classcall related stuff.
• Florent Hivert (2010-12): fixed facade element construction.

class sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets(family,
facade=True,
keepkey=False,
category=None)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

A class for disjoint unions of enumerated sets.

INPUT:
• family – a list (or iterable or family) of enumerated sets
• keepkey – a boolean
• facade – a boolean

This models the enumerated set obtained by concatenating together the specified ordered sets. The latter are supposed to be pairwise disjoint; otherwise, a multiset is created.

The argument family can be a list, a tuple, a dictionary, or a family. If it is not a family it is first converted into a family (see sage.sets.family.Family()

Experimental options:

By default, there is no way to tell from which set of the union an element is generated. The option keepkey=True keeps track of those by returning pairs (key, el) where key is the index of the set to which el belongs. When this option is specified, the enumerated sets need not be disjoint anymore.
With the option facade=False the elements are wrapped in an object whose parent is the disjoint union itself. The wrapped object can then be recovered using the value attribute.

The two options can be combined.

The names of those options is imperfect, and subject to change in future versions. Feedback welcome.

EXAMPLES:

The input can be a list or a tuple of FiniteEnumeratedSets:

```
sage: U1 = DisjointUnionEnumeratedSets((
 FiniteEnumeratedSet([1,2,3]),
 FiniteEnumeratedSet([4,5,6])))
sage: U1
Disjoint union of Family ({1, 2, 3}, {4, 5, 6})
sage: U1.list()
[1, 2, 3, 4, 5, 6]
sage: U1.cardinality()
6
```

The input can also be a dictionary:

```
sage: U2 = DisjointUnionEnumeratedSets({1: FiniteEnumeratedSet([1,2,3]),
 2: FiniteEnumeratedSet([4,5,6])})
sage: U2
Disjoint union of Finite family {1: {1, 2, 3}, 2: {4, 5, 6}}
sage: U2.list()
[1, 2, 3, 4, 5, 6]
sage: U2.cardinality()
6
```

However in that case the enumeration order is not specified.

In general the input can be any family:

```
sage: U3 = DisjointUnionEnumeratedSets(
 Family([2,3,4], Permutations, lazy=\texttt{True}))
sage: U3
Disjoint union of Lazy family (<class 'sage.combinat.permutation.Permutations'>(i))\rightarrow\{i in [2, 3, 4]\}
sage: U3.cardinality()
32
sage: it = iter(U3)
sage: [next(it), next(it), next(it), next(it), next(it), next(it)]
[[1, 2], [2, 1], [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1]]
sage: U3.unrank(18)
[2, 4, 1, 3]
```

This allows for infinite unions:

```
sage: U4 = DisjointUnionEnumeratedSets(
 Family(NonNegativeIntegers(), Permutations))
sage: U4
Disjoint union of Lazy family (<class 'sage.combinat.permutation.Permutations'>(i))\rightarrow\{i in Non negative integers\}
sage: U4.cardinality()
(continues on next page)
```


<table>
<thead>
<tr>
<th>+Infinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>sage: it = iter(U4)</td>
</tr>
<tr>
<td>sage: [next(it), next(it), next(it), next(it), next(it), next(it)]</td>
</tr>
<tr>
<td>[[]], [1], [1, 2], [2, 1], [1, 2, 3], [1, 3, 2]</td>
</tr>
<tr>
<td>sage: U4.unrank(18)</td>
</tr>
<tr>
<td>[2, 3, 1, 4]</td>
</tr>
</tbody>
</table>

**Warning:** Beware that some of the operations assume in that case that infinitely many of the enumerated sets are non empty.

### Experimental options

We demonstrate the `keepkey` option:

```python
sage: Ukeep = DisjointUnionEnumeratedSets(....: Family(list(range(4)), Permutations), keepkey=True) sage: it = iter(Ukeep) sage: [next(it) for i in range(6)] [[0, []], (1, [1]), (2, [1, 2]), (2, [2, 1]), (3, [1, 2, 3]), (3, [1, 3, 2])] sage: type(next(it)[1]) <class 'sage.combinat.permutation.StandardPermutations_n_with_category.element_class'>
```

We now demonstrate the `facade` option:

```python
sage: UNofacade = DisjointUnionEnumeratedSets(....: Family(list(range(4)), Permutations), facade=False) sage: it = iter(UNofacade) sage: [next(it) for i in range(6)] [[]], [1], [1, 2], [2, 1], [1, 2, 3], [1, 3, 2] sage: el = next(it); el [2, 1, 3] sage: type(el) <... 'sage.structure.element_wrapper.ElementWrapper'> sage: el.parent() == UNofacade True sage: elv = el.value; elv [2, 1, 3] sage: type(elv) <class 'sage.combinat.permutation.StandardPermutations_n_with_category.element_class'>
```

The elements `el` of the disjoint union are simple wrapped elements. So to access the methods, you need to do `el.value`:

```python
sage: el[0] Traceback (most recent call last): ... TypeError: 'sage.structure.element_wrapper.ElementWrapper' object is not subscriptable
```
Possible extensions: the current enumeration order is not suitable for unions of infinite enumerated sets (except possibly for the last one). One could add options to specify alternative enumeration orders (anti-diagonal, round robin, ...) to handle this case.

**Inheriting from DisjointUnionEnumeratedSets**

There are two different use cases for inheriting from `DisjointUnionEnumeratedSets`: writing a parent which happens to be a disjoint union of some known parents, or writing generic disjoint unions for some particular classes of `sage.categories.enumerated_sets.EnumeratedSets`.

- In the first use case, the input of the `__init__` method is most likely different from that of `DisjointUnionEnumeratedSets`. Then, one simply writes the `__init__` method as usual:

```python
sage: class MyUnion(DisjointUnionEnumeratedSets):
 : def __init__(self):
 : DisjointUnionEnumeratedSets.__init__(self,
 : Family([1,2], Permutations))

sage: pp = MyUnion()
sage: pp.list()
[[1], [1, 2], [2, 1]]
```

In case the `__init__()` method takes optional arguments, or does some normalization on them, a specific method `__classcall_private__` is required (see the documentation of `UniqueRepresentation`).

- In the second use case, the input of the `__init__` method is the same as that of `DisjointUnionEnumeratedSets`: one therefore wants to inherit the `__classcall_private__()` method as well, which can be achieved as follows:

```python
sage: class UnionOfSpecialSets(DisjointUnionEnumeratedSets):
 : __classcall_private__ = staticmethod(DisjointUnionEnumeratedSets.__classcall_private__)

sage: psp = UnionOfSpecialSets(Family([1,2], Permutations))
sage: psp.list()
[[1], [1, 2], [2, 1]]
```

**Element**

**an_element()**

Return an element of this disjoint union, as per `Sets.ParentMethods.an_element()`.

**cardinality()**

Returns the cardinality of this disjoint union.
For finite disjoint unions, the cardinality is computed by summing the cardinalities of the enumerated sets:

\begin{verbatim}
sage: U = DisjointUnionEnumeratedSets(Family([0,1,2,3], Permutations))
sage: U.cardinality()
10
\end{verbatim}

For infinite disjoint unions, this makes the assumption that the result is infinite:

\begin{verbatim}
sage: U = DisjointUnionEnumeratedSets(
    ....:     Family(NonNegativeIntegers(), Permutations))
sage: U.cardinality()
+Infinity
\end{verbatim}

\textbf{Warning:} As pointed out in the main documentation, it is possible to construct examples where this is incorrect:

\begin{verbatim}
sage: U = DisjointUnionEnumeratedSets(
    ....:     Family(NonNegativeIntegers(), \texttt{lambda } x: []))
sage: U.cardinality()
+Infinity
\end{verbatim}

### 1.6 Enumerated set from iterator

**EXAMPLES:**

We build a set from the iterator \texttt{graphs} that returns a canonical representative for each isomorphism class of graphs:

\begin{verbatim}
sage: from sage.sets.set_from_iterator import EnumeratedSetFromIterator
sage: E = EnumeratedSetFromIterator(
    ....:     graphs,
    ....:     name = "Graphs",
    ....:     category = InfiniteEnumeratedSets(),
    ....:     cache = True)
sage: E
Graphs
sage: E.unrank(0)
Graph on 0 vertices
sage: E.unrank(4)
Graph on 3 vertices
sage: E.cardinality()
+Infinity
sage: E.category()
Category of facade infinite enumerated sets
\end{verbatim}

The module also provides decorator for functions and methods:

\begin{verbatim}
sage: from sage.sets.set_from_iterator import set_from_function
sage: @set_from_function
    ....:     def f(n): return xsrange(n)
sage: f(3)
\{0, 1, 2\}
\end{verbatim}
sage: f(5)
{0, 1, 2, 3, 4}
sage: f(100)
{0, 1, 2, 3, 4, ...}

sage: from sage.sets.set_from_iterator import set_from_method
sage: class A:
    ....:     @set_from_method
    ....:     def f(self, n):
    ....:         return xsrange(n)
sage: a = A()
sage: a.f(3)
{0, 1, 2}
sage: f(100)
{0, 1, 2, 3, 4, ...}

class sage.sets.set_from_iterator.Decorator
    Bases: object

    Abstract class that manage documentation and sources of the wrapped object.

    The method needs to be stored in the attribute self.f

class sage.sets.set_from_iterator.DummyExampleForPicklingTest
    Bases: object

    Class example to test pickling with the decorator set_from_method.

    Warning: This class is intended to be used in doctest only.

    EXAMPLES:

    sage: from sage.sets.set_from_iterator import DummyExampleForPicklingTest
    sage: DummyExampleForPicklingTest().f()
    {10, 11, 12, 13, 14, ...}

    f()
    Returns the set between self.start and self.stop.

    EXAMPLES:

    sage: from sage.sets.set_from_iterator import DummyExampleForPicklingTest
    sage: d = DummyExampleForPicklingTest()
    sage: d.f()
    {10, 11, 12, 13, 14, ...}
    sage: d.start = 4
    sage: d.stop = 200
    sage: d.f()
    {4, 5, 6, 7, 8, ...}

class sage.sets.set_from_iterator.EnumeratedSetFromIterator
    Bases: sage.structure.parent.Parent

    1.6. Enumerated set from iterator 35
A class for enumerated set built from an iterator.

INPUT:

- \( f \) – a function that returns an iterable from which the set is built from
- \( \text{args} \) – tuple – arguments to be sent to the function \( f \)
- \( \text{kwds} \) – dictionary – keywords to be sent to the function \( f \)
- \( \text{name} \) – an optional name for the set
- \( \text{category} \) – (default: None) an optional category for that enumerated set. If you know that your iterator will stop after a finite number of steps you should set it as FiniteEnumeratedSets, conversely if you know that your iterator will run over and over you should set it as InfiniteEnumeratedSets.
- \( \text{cache} \) – boolean (default: False) – Whether or not use a cache mechanism for the iterator. If True, then the function \( f \) is called only once.

EXAMPLES:

```python
code
sage: from sage.sets.set_from_iterator import EnumeratedSetFromIterator
g1
sage: E = EnumeratedSetFromIterator(graphs, args=(7,))
g1
sage: E
{Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, ...
g1
sage: E.category()
Category of facade enumerated sets
g1
```

The same example with a cache and a custom name:

```python
code
sage: E = EnumeratedSetFromIterator(
 graphs,
 args = (8,),
 category = FiniteEnumeratedSets(),
 name = "Graphs with 8 vertices",
 cache = True)
g1
g1
sage: E
Graphs with 8 vertices
sage: E.unrank(3)
Graph on 8 vertices
sage: E.category()
Category of facade finite enumerated sets
```

Note: In order to make the TestSuite works, the elements of the set should have parents.

clear_cache()

Clear the cache.

EXAMPLES:

```python
code
sage: from itertools import count
sage: from sage.sets.set_from_iterator import EnumeratedSetFromIterator
g1
g1
sage: E = EnumeratedSetFromIterator(count, args=(1,), cache=True)
g1
g1
g1
sage: e1 = E._cache
g1
g1
sage: e1
lazy list [1, 2, 3, ...]
```

(continues on next page)
sage: E.clear_cache()
sage: E._cache
lazy list [1, 2, 3, ...]
sage: el is E._cache
False

is_parent_of(x)
Test whether x is in self.
If the set is infinite, only the answer True should be expected in finite time.

EXAMPLES:

sage: from sage.sets.set_from_iterator import EnumeratedSetFromIterator
sage: P = Partitions(12,min_part=2,max_part=5)
\[
\text{sage: } \text{E = EnumeratedSetFromIterator(P.__iter__)}
\]
\[
\text{sage: } \text{P([5,5,2]) in E}
\]
True

unrank(i)
Returns the element at position i.

EXAMPLES:

sage: from sage.sets.set_from_iterator import EnumeratedSetFromIterator
sage: E = EnumeratedSetFromIterator(graphs, args=(8,), cache=True)
\[
\text{sage: } \text{F = EnumeratedSetFromIterator(graphs, args=(8,), cache=False)}
\]
\[
\text{sage: } \text{E.unrank(2)}
\]
Graph on 8 vertices
\[
\text{sage: } \text{E.unrank(2) == F.unrank(2)}
\]
True

class sage.sets.set_from_iterator.EnumeratedSetFromIterator_function_decorator(f=None, name=None, **options)

Bases: sage.sets.set_from_iterator.Decorator

Decorator for EnumeratedSetFromIterator.
Name could be string or a function (args,kwds) -> string.

Warning: If you are going to use this with the decorator cached_function, you must place the cached_function first. See the example below.

EXAMPLES:

sage: from sage.sets.set_from_iterator import set_from_function
\[
\text{sage: } \text{@set_from_function}
\]
\[
\text{.....: def f(n):}
\]
\[
\text{.....: for i in range(n):
\text{.....: yield i**2 + i + 1}
\text{.....:}
\text{sage: } \text{f(3)}
\]
\{1, 3, 7\}
sage: f(100)
{1, 3, 7, 13, 21, ...}

To avoid ambiguity, it is always better to use it with a call which provides optional global initialization for the call to `EnumeratedSetFromIterator`:

```
sage: @set_from_function(category=InfiniteEnumeratedSets())
....: def Fibonacci():
....: a = 1; b = 2
....: while True:
....: yield a
....: a, b = b, a + b
sage: F = Fibonacci()
sage: F
{1, 2, 3, 5, 8, ...}
sage: F.cardinality()
+Infinity
```

A simple example with many options:

```
sage: @set_from_function(name = "From %(m)d to %(n)d",
category = FiniteEnumeratedSets())
....: def f(m, n):
....: return xsrange(m,n+1)
sage: E = f(3,10); E
From 3 to 10
sage: E.list()
[3, 4, 5, 6, 7, 8, 9, 10]
sage: E = f(1,100); E
From 1 to 100
sage: E.cardinality()
100
sage: f(n=100,m=1) == E
True
```

An example which mixes together `set_from_function` and `cached_method`:

```
sage: @cached_function
....: @set_from_function(name = "Graphs on %(n)d vertices",
category = FiniteEnumeratedSets(),
cache = True)
....: def Graphs(n):
....: return graphs(n)
sage: Graphs(10)
Graphs on 10 vertices
sage: Graphs(10).unrank(0)
Graph on 10 vertices
sage: Graphs(10) is Graphs(10)
True
```

The `cached_function` must go first:
class sage.sets.set_from_iterator.EnumeratedSetFromIterator_method_caller(inst, f=None, name=None, **options)

Bases: sage.sets.set_from_iterator.Decorator

Caller for decorated method in class.

INPUT:

- inst – an instance of a class
- f – a method of a class of inst (and not of the instance itself)
- name – optional – either a string (which may contains substitution rules from argument or a function args,kwds -> string.
- options – any option accepted by EnumeratedSetFromIterator

class sage.sets.set_from_iterator.EnumeratedSetFromIterator_method_decorator(f=None, **options)

Bases: object

Decorator for enumerated set built from a method.

INPUT:

- f – Optional function from which are built the enumerated sets at each call
- name – Optional string (which may contains substitution rules from argument) or a function (args,kwds) -> string.
- any option accepted by EnumeratedSetFromIterator.

EXAMPLES:

sage: from sage.sets.set_from_iterator import set_from_method
sage: class A():
  ....:  def n(self): return 12
  ....:  @set_from_method
  ....:  def f(self): return xsrange(self.n())
    sage: a = A()
    sage: print(a.f.__class__)
<class 'sage.sets.set_from_iterator.EnumeratedSetFromIterator_method_caller'>
    sage: a.f()
{0, 1, 2, 3, 4, ...}
    sage: A.f(a)
{0, 1, 2, 3, 4, ...}
A more complicated example with a parametrized name:

```python
sage: class B:
 : @set_from_method
 : name = "Graphs(%(n)d)",
 : category = FiniteEnumeratedSets()
 : def graphs(self, n):
 return graphs(n)

sage: b = B()
sage: G3 = b.graphs(3)
sage: G3
graphs(3)
sage: G3.cardinality()
4
sage: G3.category()
Category of facade finite enumerated sets
sage: B.graphs(b,3)
Graphs(3)
```

And a last example with a name parametrized by a function:

```python
sage: class D:
 : def __init__(self, name):
 self.name = str(name)
 : def __str__(self):
 return self.name
 : @set_from_method
 : name = lambda self,n: str(self)*n,
 : category = FiniteEnumeratedSets()
 : def subset(self, n):
 return xsrange(n)

sage: d = D('a')
sage: E = d.subset(3); E
aaa
sage: E.list()
[0, 1, 2]
sage: F = d.subset(n=10); F
aaaaaaa
sage: F.list()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

**Todo:** It is not yet possible to use `set_from_method` in conjunction with `cached_method`.

```python
sage.sets.set_from_iterator.set_from_function
alias of sage.sets.set_from_iterator.EnumeratedSetFromIterator_function_decorator

sage.sets.set_from_iterator.set_from_method
alias of sage.sets.set_from_iterator.EnumeratedSetFromIterator_method_decorator
```
### 1.7 Finite Enumerated Sets

**class** `sage.sets.finiteEnumeratedSet.FiniteEnumeratedSet(elements)`

Bases: `sage.structure.unique_representation.UniqueRepresentation`, `sage.structure.parent.Parent`

A class for finite enumerated set.

Returns the finite enumerated set with elements in `elements` where `element` is any (finite) iterable object.

The main purpose is to provide a variant of `list` or `tuple`, which is a parent with an interface consistent with `EnumeratedSets` and has unique representation. The list of the elements is expanded in memory.

**EXAMPLES:**

```
sage: S = FiniteEnumeratedSet([1, 2, 3])
sage: S
{1, 2, 3}
sage: S.list()
[1, 2, 3]
sage: S.cardinality()
3
sage: S.random_element() # random
1
sage: S.first()
1
sage: S.category()
Category of facade finite enumerated sets
sage: TestSuite(S).run()
```

Note that being an enumerated set, the result depends on the order:

```
sage: S1 = FiniteEnumeratedSet((1, 2, 3))
sage: S1
{1, 2, 3}
sage: S1.list()
[1, 2, 3]
sage: S1 == S
True
sage: S2 = FiniteEnumeratedSet((2, 1, 3))
sage: S2 == S
False
```

As an abuse, repeated entries in `elements` are allowed to model multisets:

```
sage: S1 = FiniteEnumeratedSet((1, 2, 1, 2, 2, 3))
sage: S1
{1, 2, 1, 2, 2, 3}
```

Finally, the elements are not aware of their parent:

```
sage: S.first().parent()
Integer Ring
```

```
an_element()
cardinality()
```
first()
Return the first element of the enumeration or raise an EmptySetError if the set is empty.

EXAMPLES:

```
sage: S = FiniteEnumeratedSet('abc')
sage: S.first()
sage: 'a'
```

index(x)
Returns the index of x in this finite enumerated set.

EXAMPLES:

```
sage: S = FiniteEnumeratedSet(['a','b','c'])
sage: S.index('b')
sage: 1
```

is_parent_of(x)

last()
Returns the last element of the iteration or raise an EmptySetError if the set is empty.

EXAMPLES:

```
sage: S = FiniteEnumeratedSet([0,'a',1.23,'d'])
sage: S.last()
sage: 'd'
```

list()

random_element()
Return a random element.

EXAMPLES:

```
sage: S = FiniteEnumeratedSet('abc')
sage: S.random_element() # random
sage: 'b'
```

rank(x)
Returns the index of x in this finite enumerated set.

EXAMPLES:

```
sage: S = FiniteEnumeratedSet(['a','b','c'])
sage: S.index('b')
sage: 1
```

unrank(i)
Return the element at position i.

EXAMPLES:

```
sage: S = FiniteEnumeratedSet([1,'a','-51'])
sage: S[0], S[1], S[2]
sage: (1, 'a', -51)
sage: S[3]
```

(continues on next page)
1.8 Recursively enumerated set

A set $S$ is called recursively enumerable if there is an algorithm that enumerates the members of $S$. We consider here the recursively enumerated sets that are described by some seeds and a successor function successors. The successor function may have some structure (symmetric, graded, forest) or not. The elements of a set having a symmetric, graded or forest structure can be enumerated uniquely without keeping all of them in memory. Many kinds of iterators are provided in this module: depth first search, breadth first search or elements of given depth.

See Wikipedia article Recursively_enumerable_set.

See documentation of `RecursivelyEnumeratedSet()` below for the description of the inputs.

AUTHORS:

• Sébastien Labbé, April 2014, at Sage Days 57, Cernay-la-ville

EXAMPLES:

1.8.1 No hypothesis on the structure

What we mean by “no hypothesis” is that the set is not known to be a forest, symmetric, or graded. However, it may have other structure, like not containing an oriented cycle, that does not help with the enumeration.

In this example, the seed is 0 and the successor function is either $+2$ or $+3$. This is the set of non negative linear combinations of 2 and 3:

```
sage: succ = lambda a:[a+2,a+3]
sage: C = RecursivelyEnumeratedSet([0], succ)
sage: C
A recursively enumerated set (breadth first search)
```

Breadth first search:

```
sage: it = C.breadth_first_search_iterator()
sage: [next(it) for _ in range(10)]
[0, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

Depth first search:

```
sage: it = C.depth_first_search_iterator()
sage: [next(it) for _ in range(10)]
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
```
1.8.2 Symmetric structure

The origin \((0, 0)\) as seed and the upper, lower, left and right lattice point as successor function. This function is symmetric since \(p\) is a successor of \(q\) if and only if \(q\) is a successor or \(p\):

```python
sage: succ = lambda a: [(a[0]-1,a[1]), (a[0],a[1]-1), (a[0]+1,a[1]), (a[0],a[1]+1)]
sage: seeds = [(0,0)]
sage: C = RecursivelyEnumeratedSet(seeds, succ, structure='symmetric', enumeration='depth')
sage: C
A recursively enumerated set with a symmetric structure (depth first search)
```

In this case, depth first search is the default enumeration for iteration:

```python
sage: it_depth = iter(C)
sage: [next(it_depth) for _ in range(10)]
[(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9)]
```

Breadth first search:

```python
sage: it_breadth = C.breadth_first_search_iterator()
sage: [next(it_breadth) for _ in range(13)]
[(0, 0), (-1, 0), (0, -1), (1, 0), (0, 1), (-2, 0), (-1, -1), (-1, 1), (0, -2), (1, -1), (2, 0), (1, 1), (0, 2)]
```

Levels (elements of given depth):

```python
sage: sorted(C.graded_component(0))
[(0, 0)]
sage: sorted(C.graded_component(1))
[(-1, 0), (0, -1), (0, 1), (1, 0)]
sage: sorted(C.graded_component(2))
[(-2, 0), (-1, -1), (-1, 1), (0, -2), (1, -1), (2, 0), (1, 1), (0, 2)]
```

1.8.3 Graded structure

Identity permutation as seed and \(\text{permutohedron\_succ}\) as successor function:

```python
sage: succ = attrcall("permutohedron_succ")
sage: seed = [Permutation([1..5])]
sage: R = RecursivelyEnumeratedSet(seed, succ, structure='graded')
sage: R
A recursively enumerated set with a graded structure (breadth first search)
```

Depth first search iterator:

```python
sage: it_depth = R.depth_first_search_iterator()
sage: [next(it_depth) for _ in range(5)]
[[1, 2, 3, 4, 5], [1, 2, 3, 5, 4], [1, 2, 5, 3, 4], [1, 2, 5, 4, 3], [1, 5, 2, 4, 3]]
```
Breadth first search iterator:

```python
sage: it_breadth = R.breadth_first_search_iterator()
sage: [next(it_breadth) for _ in range(5)]
[[1, 2, 3, 4, 5],
 [2, 1, 3, 4, 5],
 [1, 3, 2, 4, 5],
 [1, 2, 4, 3, 5],
 [1, 2, 3, 5, 4]]
```

Elements of given depth iterator:

```python
sage: sorted(R.elements_of_depth_iterator(9))
[[4, 5, 3, 2, 1], [5, 3, 4, 2, 1], [5, 4, 2, 3, 1], [5, 4, 3, 1, 2]]
sage: list(R.elements_of_depth_iterator(10))
[[5, 4, 3, 2, 1]]
```

Graded components (set of elements of the same depth):

```python
sage: sorted(R.graded_component(0))
[[1, 2, 3, 4, 5]]
sage: sorted(R.graded_component(1))
[[1, 2, 3, 5, 4], [1, 2, 4, 3, 5], [1, 3, 2, 4, 5], [2, 1, 3, 4, 5]]
sage: sorted(R.graded_component(9))
[[4, 5, 3, 2, 1], [5, 3, 4, 2, 1], [5, 4, 2, 3, 1], [5, 4, 3, 1, 2]]
sage: sorted(R.graded_component(10))
[[5, 4, 3, 2, 1]]
```

1.8.4 Forest structure

The set of words over the alphabet \(\{a, b\}\) can be generated from the empty word by appending letter \(a\) or \(b\) as a successor function. This set has a forest structure:

```python
sage: seeds = ['']
sage: succ = lambda w: [w+'a', w+'b']
sage: C = RecursivelyEnumeratedSet(seeds, succ, structure='forest')
sage: C
An enumerated set with a forest structure
```

Depth first search iterator:

```python
sage: it = C.depth_first_search_iterator()
sage: [next(it) for _ in range(6)]
['', 'a', 'aa', 'aaa', 'aaaa', 'aaaaa']
```

Breadth first search iterator:

```python
sage: it = C.breadth_first_search_iterator()
sage: [next(it) for _ in range(6)]
['', 'a', 'b', 'aa', 'ab', 'ba']
```
1.8.5 Example: Forest structure

This example was provided by Florent Hivert.

How to define a set using those classes?

Only two things are necessary to define a set using a `RecursivelyEnumeratedSet` object (the other classes being very similar):

For the previous example, the two necessary pieces of information are:

- the initial element ""
- the function:
  
  ```
 lambda x: [x + letter for letter in ['a', 'b', 'c']]
  ```

This would actually describe an infinite set, as such rules describes “all words” on 3 letters. Hence, it is a good idea to replace the function by:

```
lambda x: [x + letter for letter in ['a', 'b', 'c']] if len(x) < 2 else []
```

or even:

```python
sage: def children(x):
....: if len(x) < 2:
....: for letter in ['a', 'b', 'c']:
....: yield x+letter
```  

We can then create the `RecursivelyEnumeratedSet` object with either:

```python
sage: S = RecursivelyEnumeratedSet([''], lambda x: [x+letter for letter in ['a', 'b', 'c']] if len(x) < 2 else [],
....: structure='forest', enumeration='depth',
....: category=FiniteEnumeratedSets())
```

```python
sage: S.list()
['', 'a', 'aa', 'ab', 'ac', 'b', 'ba', 'bb', 'bc', 'c', 'ca', 'cb', 'cc']
```

or:

```python
sage: S = RecursivelyEnumeratedSet([''], children,
....: structure='forest', enumeration='depth',
....: category=FiniteEnumeratedSets())
```

```python
sage: S.list()
['', 'a', 'aa', 'ab', 'ac', 'b', 'ba', 'bb', 'bc', 'c', 'ca', 'cb', 'cc']
```
1.8.6 Example: Forest structure 2

This example was provided by Florent Hivert.

Here is a little more involved example. We want to iterate through all permutations of a given set \( S \). One solution is to take elements of \( S \) one by one and insert them at every positions. So a node of the generating tree contains two pieces of information:

- the list \( \text{lst} \) of already inserted element;
- the set \( \text{st} \) of the yet to be inserted element.

We want to generate a permutation only if \( \text{st} \) is empty (leaves on the tree). Also suppose for the sake of the example, that instead of list we want to generate tuples. This selection of some nodes and final mapping of a function to the element is done by the \texttt{post_process} = \( f \) argument. The convention is that the generated elements are the \( s := f(n) \), except when \( s \) not \texttt{None} when no element is generated at all. Here is the code:

```python
sage: def children(node):
 ...: (lst, st) = node
 ...: if st:
 ...: el = st.pop()
 ...: for i in range(0, len(lst)+1):
 ...: yield (lst[0:i]+[el]+lst[i:], st)

sage: list(children(([1,2], {3,7,9})))
[[[9, 1, 2], {3, 7}], [[1, 9, 2], {3, 7}], [[1, 2, 9], {3, 7}])

sage: def post_process(node):
 ...: (l, s) = node
 ...: return tuple(l) if not s else None

sage: S = RecursivelyEnumeratedSet(
 ...: [([], {1,3,6,8})],
 ...: children, post_process=post_process,
 ...: structure='forest', enumeration='depth',
 ...: category=FiniteEnumeratedSets())

sage: S.list()
[(6, 3, 1, 8), (3, 6, 1, 8), (3, 1, 6, 8), (3, 1, 8, 6), (6, 1, 3, 8),
 (1, 6, 3, 8), (1, 3, 6, 8), (1, 3, 8, 6), (6, 1, 8, 3), (1, 6, 8, 3),
 (1, 8, 6, 3), (1, 8, 3, 6), (6, 3, 8, 1), (3, 6, 8, 1), (3, 8, 6, 1),
 (3, 8, 1, 6), (6, 8, 3, 1), (8, 6, 3, 1), (8, 3, 6, 1), (8, 3, 1, 6),
 (6, 8, 1, 3), (8, 6, 1, 3), (8, 1, 6, 3), (8, 1, 3, 6)]

sage: S.cardinality()
24
```

```python
sage.sets.recursivelyEnumeratedSet.RecursivelyEnumeratedSet

Return a recursively enumerated set.

A set \(S \) is called recursively enumerable if there is an algorithm that enumerates the members of \(S \). We consider here the recursively enumerated set that are described by some seeds and a successor function \(\text{successors} \).

Let \(U \) be a set and \(\text{successors} : U \to 2^U \) be a successor function associating to each element of \(U \) a subset of \(U \). Let \(\text{seeds} \) be a subset of \(U \). Let \(S \subseteq U \) be the set of elements of \(U \) that can be reached from a seed by applying recursively the \(\text{successors} \) function. This class provides different kinds of iterators (breadth first, depth first, elements of given depth, etc.) for the elements of \(S \).

See Wikipedia article Recursively_enumerable_set.

1.8. Recursively enumerated set 47
INPUT:

- **seeds** – list (or iterable) of hashable objects
- **successors** – function (or callable) returning a list (or iterable) of hashable objects
- **structure** – string (optional, default: None), structure of the set, possible values are:
 - None – nothing is known about the structure of the set.
 - 'forest' – if the successors function generates a forest, that is, each element can be reached uniquely from a seed.
 - 'graded' – if the successors function is graded, that is, all paths from a seed to a given element have equal length.
 - 'symmetric' – if the relation is symmetric, that is, y in successors(x) if and only if x in successors(y)
- **enumeration** – 'depth', 'breadth', 'naive' or None (optional, default: None). The default enumeration for the __iter__ function.
- **max_depth** – integer (optional, default: float("inf")), limit the search to a certain depth, currently works only for breadth first search
- **post_process** – (optional, default: None), for forest only
- **facade** – (optional, default: None)
- **category** – (optional, default: None)

EXAMPLES:

A recursive set with no other information:

```python
sage: f = lambda a: [a+3, a+5]
sage: C = RecursivelyEnumeratedSet([0], f)
sage: C
A recursively enumerated set (breadth first search)
sage: it = iter(C)
sage: [next(it) for _ in range(10)]
[0, 3, 5, 6, 8, 10, 9, 11, 13, 15]
```

A recursive set with a forest structure:

```python
sage: f = lambda a: [2*a, 2*a+1]
sage: C = RecursivelyEnumeratedSet([1], f, structure='forest')
sage: C
An enumerated set with a forest structure
sage: it = C.depth_first_search_iterator()
sage: [next(it) for _ in range(7)]
[1, 2, 4, 8, 16, 32, 64]
sage: it = C.breadth_first_search_iterator()
sage: [next(it) for _ in range(7)]
[1, 2, 3, 4, 5, 6, 7]
```

A recursive set given by a symmetric relation:

```python
sage: f = lambda a: [a-1, a+1]
sage: C = RecursivelyEnumeratedSet([10, 15], f, structure='symmetric')
sage: C
```

(continues on next page)
A recursively enumerated set with a symmetric structure (breadth first search)

```python
sage: it = iter(C)
sage: [next(it) for _ in range(7)]
[10, 15, 9, 11, 14, 16, 8]
```

A recursive set given by a graded relation:

```python
sage: f = lambda a: [a+1, a+I]
sage: C = RecursivelyEnumeratedSet([0], f, structure='graded')
sage: C
A recursively enumerated set with a graded structure (breadth first search)

sage: it = iter(C)
sage: [next(it) for _ in range(7)]
[0, 1, I, 2, I + 1, 2*I, 3]
```

Warning: If you do not set the good structure, you might obtain bad results, like elements generated twice:

```python
sage: f = lambda a: [a-1,a+1]
sage: C = RecursivelyEnumeratedSet([0], f, structure='graded')
sage: it = iter(C)
sage: [next(it) for _ in range(7)]
[0, -1, 1, -2, 0, 2, -3]
```

class sage.sets.recursively Enumerated_set.RecursivelyEnumeratedSet_forest(roots=None, children=None, post_process=None, algorithm='depth', facade=None, category=None)

Bases: sage.structure.parent.Paren

The enumerated set of the nodes of the forest having the given roots, and where children(x) returns the children of the node x of the forest.

See also sage.combinat.backtrack.GenericBacktracker, RecursivelyEnumeratedSet_graded, and RecursivelyEnumeratedSet_symmetric.

INPUT:

- roots – a list (or iterable)
- children – a function returning a list (or iterable, or iterator)
- post_process – a function defined over the nodes of the forest (default: no post processing)
- algorithm – 'depth' or 'breadth' (default: 'depth')
- category – a category (default: EnumeratedSets)

The option post_process allows for customizing the nodes that are actually produced. Furthermore, if f(x) returns None, then x won’t be output at all.

EXAMPLES:

We construct the set of all binary sequences of length at most three, and list them:
RecursivelyEnumeratedSet_forest needs to be explicitly told that the set is finite for the following to work:

```python
sage: S.category()
Category of finite enumerated sets
sage: S.cardinality()
15
```

We proceed with the set of all lists of letters in 0,1,2 without repetitions, ordered by increasing length (i.e. using a breadth first search through the tree):

```python
sage: from sage.sets.recursively_enumerated_set import RecursivelyEnumeratedSet_
˓→forest
sage: tb = RecursivelyEnumeratedSet_forest( [[]],
.....:   lambda l: [l+[i] for i in range(3) if i not in l],
.....:   algorithm = 'breadth',
.....:   category=FiniteEnumeratedSets())
sage: tb[0]
[]
sage: tb.cardinality()
16
sage: list(tb)
[[],
 [0], [1], [2],
 [0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1],
 [0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]
```

For infinite sets, this option should be set carefully to ensure that all elements are actually generated. The following example builds the set of all ordered pairs (i, j) of nonnegative integers such that j ≤ 1:

```python
sage: from sage.sets.recursively_enumerated_set import RecursivelyEnumeratedSet_
˓→forest
sage: I = RecursivelyEnumeratedSet_forest((0,0),
.....:   lambda l: [(l[0]+1, l[1]), (l[0], 1)]
.....:   if l[1] == 0 else [(l[0], l[1]+1)])
```

With a depth first search, only the elements of the form (i, 0) are generated:

```python
sage: depth_search = I.depth_first_search_iterator()
sage: [next(depth_search) for i in range(7)]
[(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0)]
```

Using instead breadth first search gives the usual anti-diagonal iterator:
Deriving subclasses

The class of a parent A may derive from `RecursivelyEnumeratedSet_forest` so that A can benefit from enumeration tools. As a running example, we consider the problem of enumerating integers whose binary expansion have at most three nonzero digits. For example, $3 = 2^1 + 2^0$ has two nonzero digits. $15 = 2^3 + 2^2 + 2^1 + 2^0$ has four nonzero digits. In fact, 15 is the smallest integer which is not in the enumerated set.

To achieve this, we use `RecursivelyEnumeratedSet_forest` to enumerate binary tuples with at most three nonzero digits, apply a post processing to recover the corresponding integers, and discard tuples finishing by zero.

A first approach is to pass the `roots` and `children` functions as arguments to `RecursivelyEnumeratedSet_forest.__init__()`:

```python
sage: from sage.sets.recursively_enumerated_set import RecursivelyEnumeratedSet_forest
sage: class A(UniqueRepresentation, RecursivelyEnumeratedSet_forest):
    ....: def __init__(self):
    ....:     RecursivelyEnumeratedSet_forest.__init__(self, [()],
    ....:         lambda x : [x+(0,), x+(1,)] if sum(x) < 3 else [],
    ....:         lambda x : sum(x[i]*2^i for i in range(len(x))) if sum(x) != 0
    ....:         and x[-1] != 0 else None,
    ....:         algorithm = 'breadth',
    ....:         category=InfiniteEnumeratedSets())
```

```text
An enumerated set with a forest structure
sage: MyForest = A(); MyForest
An enumerated set with a forest structure
```

```text
sage: MyForest.category()
Category of infinite enumerated sets
sage: p = iter(MyForest)
```

```text
sage: [next(p) for i in range(30)]
[1, 2, 3, 4, 6, 5, 7, 8, 12, 10, 14, 9, 13, 11, 16, 24, 20, 28, 18, 26, 22, 17, 25, 21, 19, 32, 48, 40, 56, 36]
```

An alternative approach is to implement `roots` and `children` as methods of the subclass (in fact they could also be attributes of A). Namely, A.roots() must return an iterable containing the enumeration generators, and A.children(x) must return an iterable over the children of x. Optionally, A can have a method or attribute such that A.post_process(x) returns the desired output for the node x of the tree:

```python
sage: from sage.sets.recursively_enumerated_set import RecursivelyEnumeratedSet_forest
sage: class A(UniqueRepresentation, RecursivelyEnumeratedSet_forest):
    ....: def __init__(self):
    ....:     RecursivelyEnumeratedSet_forest.__init__(self, algorithm = 'breadth',
    ....:         category=InfiniteEnumeratedSets())
    ....: def roots(self):
```

(continues on next page)
.. code::

 def children(self, x):
 if sum(x) < 3:
 return [x+(0,), x+(1,)]
 else:
 return []

 def post_process(self, x):
 if sum(x) == 0 or x[-1] == 0:
 return None
 else:
 return sum(x[i]*2^i for i in range(len(x)))

Warning: A `RecursivelyEnumeratedSet_forest` instance is picklable if and only if the input functions are themselves picklable. This excludes anonymous or interactively defined functions:

\[
\text{sage: def children(x): return [x+1]}
\]

\[
\text{sage: S = RecursivelyEnumeratedSet_forest([1], children, category=InfiniteEnumeratedSets())}
\]

\[
\text{sage: dumps(S)}
\]

Traceback (most recent call last):
 ...
PicklingError: Can't pickle <...function...>: attribute lookup ... failed

Let us now fake `children` being defined in a Python module:

\[
\text{sage: import __main__}
\]

\[
\text{sage: __main__.children = children}
\]

\[
\text{sage: S = RecursivelyEnumeratedSet_forest([1], children, category=InfiniteEnumeratedSets())}
\]

\[
\text{sage: loads(dumps(S))}
\]

An enumerated set with a forest structure

\[
\text{breadth_first_search_iterator()}
\]

Return a breadth first search iterator over the elements of self

EXAMPLES:

\[
\text{sage: from sage.sets.recursively_enumerated_set import RecursivelyEnumeratedSet_}
\]

\[
\text{-forest}
\]

\[
\text{sage: f = RecursivelyEnumeratedSet_forest([[[]]], lambda 1: [l+[0], l+[1]] if len(l) < 3 else [])}
\]

\[
\text{sage: list(f.breadth_first_search_iterator())}
\]

\[
[[], [0], [1], [0, 0], [0, 1], [1, 0], [1, 1], [0, 0, 0], [0, 0, 1], [0, 1, 0],
 [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]]
\]
sage: S = RecursivelyEnumeratedSet_forest([[0,0]],
.....: lambda x : [(x[0], x[1]+1)] if x[1] != 0 else [(x[0]+1,0), (x[0],1)],
.....: post_process = lambda x: x if ((is_prime(x[0]) and is_prime(x[1])) and
˓→((x[0] - x[1]) == 2)) else None)
sage: p = S.breadth_first_search_iterator()
sage: [next(p), next(p), next(p), next(p), next(p), next(p), next(p)]
[(5, 3), (7, 5), (13, 11), (19, 17), (31, 29), (43, 41), (61, 59)]

children(x)
Return the children of the element x
The result can be a list, an iterable, an iterator, or even a generator.

EXAMPLES:

sage: from sage.sets.recursively EnumeratedSet_forest import RecursivelyEnumeratedSet_forest
sage: I = RecursivelyEnumeratedSet_forest([[0,0]], lambda l: [l+[0], l+[1]] if len(l) < 3 else [])
sage: [i for i in I.children((0,0))]
[(1, 0), (0, 1)]
sage: [i for i in I.children((1,0))]
[(2, 0), (1, 1)]
sage: [i for i in I.children((1,1))]
[(1, 2)]
sage: [i for i in I.children((4,1))]
[(4, 2)]
sage: [i for i in I.children((4,0))]
[(5, 0), (4, 1)]

depth_first_search_iterator()
Return a depth first search iterator over the elements of self

EXAMPLES:

sage: from sage.sets.recursively EnumeratedSet_forest import RecursivelyEnumeratedSet_forest
sage: f = RecursivelyEnumeratedSet_forest([], lambda l: [l+[0], l+[1]] if len(l) < 3 else [])
sage: list(f.depth_first_search_iterator())
[[], [0], [0, 0], [0, 0, 0], [0, 0, 1], [0, 1], [0, 1, 0], [0, 1, 1], [1, [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]]

elements_of_depth_iterator(depth=0)
Return an iterator over the elements of self of given depth. An element of depth n can be obtained applying n times the children function from a root.

EXAMPLES:

sage: from sage.sets.recursively EnumeratedSet_forest import RecursivelyEnumeratedSet_forest
sage: S = RecursivelyEnumeratedSet_forest([[0,0]],
.....: lambda x : [(x[0], x[1]+1)] if x[1] != 0 else [(x[0]+1,0), (x[0],1)],
.....: post_process = lambda x: x if ((is_prime(x[0]) and is_prime(x[1])) and
˓→((x[0] - x[1]) == 2)) else None)

1.8. Recursively enumerated set
and ((x[0] - x[1]) == 2)) else None
sage: p = S.elements_of_depth_iterator(8)
sage: next(p)
(5, 3)

..... lambda x: x^2 if x.is_prime() else None
sage: S = RecursivelyEnumeratedSet_forest(NN, lambda x : [], lambda x: x^2 if x.is_prime() else None)
sage: p = S.elements_of_depth_iterator(0)
sage: [next(p), next(p), next(p), next(p), next(p)]
[4, 9, 25, 49, 121]

map_reduce(map_function=None, reduce_function=None, reduce_init=None)
Apply a Map/Reduce algorithm on self

INPUT:

- map_function – a function from the element of self to some set with a reduce operation (e.g.: a monoid). The default value is the constant function 1.
- reduce_function – the reduce function (e.g.: the addition of a monoid). The default value is +.
- reduce_init – the initialisation of the reduction (e.g.: the neutral element of the monoid). The default value is 0.

Note: the effect of the default values is to compute the cardinality of self.

EXAMPLES:

sage: seeds = \[(i,i, i) for i in range(1,10)\]
sage: def succ(t):
..... list, sum, last = t
..... return [list + [i], sum + i, i) for i in range(1, last)]
sage: F = RecursivelyEnumeratedSet(seeds, succ,
..... structure='forest', enumeration='depth')
sage: def map_function(t):
..... li, sum, _ = t
..... return y ^ sum
sage: reduce_function = lambda x,y: x + y
sage: F.map_reduce(map_function, reduce_function, 0)
y^45 + y^44 + y^43 + 2*y^42 + 2*y^41 + 3*y^40 + 4*y^39 + 5*y^38 + 6*y^37 + 8*y^36 + 9*y^35 + 10*y^34 + 12*y^33 + 13*y^32 + 15*y^31 + 17*y^30 + 18*y^29 + 19*y^28 + 21*y^27 + 21*y^26 + 22*y^25 + 23*y^24 + 23*y^23 + 23*y^22 + 23*y^21 + 22*y^20 + 21*y^19 + 21*y^18 + 19*y^17 + 18*y^16 + 17*y^15 + 15*y^14 + 13*y^13 + 12*y^12 + 10*y^11 + 9*y^10 + 8*y^9 + 6*y^8 + 5*y^7 + 4*y^6 + 3*y^5 + 2*y^4 + 2*y^3 + y^2 + y

Here is an example with the default values:

sage: F.map_reduce()
See also:

sage.parallel.map_reduce

roots()

Return an iterable over the roots of self.

EXAMPLES:

```python
sage: from sage.sets.recursivelyEnumeratedSet import RecursivelyEnumeratedSet...
sage: I = RecursivelyEnumeratedSet_forest(
    [(0,0)],
    lambda l: [(l[0]+1, l[1]),
    if l[1] == 0 else [(l[0], 1+l[1])])
sage: [i for i in I.roots()]
[(0, 0)]
sage: I = RecursivelyEnumeratedSet_forest((0,0),(1,1),
    lambda l: [(l[0]+1, l[1]),
    if l[1] == 0 else [(l[0], 1+l[1])])
sage: [i for i in I.roots()]
[(0, 0), (1, 1)]
```

class sage.sets.recursivelyEnumeratedSet.RecursivelyEnumeratedSet_generic

Bases: sage.structure.parent.Parent

A generic recursively enumerated set.

For more information, see RecursivelyEnumeratedSet().

EXAMPLES:

```python
sage: f = lambda a: [a+1]

Different structure for the sets:

```python
sage: RecursivelyEnumeratedSet([0], f, structure=None)
A recursively enumerated set (breadth first search)
sage: RecursivelyEnumeratedSet([0], f, structure='graded')
A recursively enumerated set with a graded structure (breadth first search)
sage: RecursivelyEnumeratedSet([0], f, structure='symmetric')
A recursively enumerated set with a symmetric structure (breadth first search)
sage: RecursivelyEnumeratedSet([0], f, structure='forest')
An enumerated set with a forest structure
```

Different default enumeration algorithms:

```python
sage: RecursivelyEnumeratedSet([0], f, enumeration='breadth')
A recursively enumerated set (breadth first search)
sage: RecursivelyEnumeratedSet([0], f, enumeration='naive')
A recursively enumerated set (naive search)
sage: RecursivelyEnumeratedSet([0], f, enumeration='depth')
A recursively enumerated set (depth first search)
```

**breadth_first_search_iterator**(max_depth=None)

Iterate on the elements of self (breadth first).

This code remembers every element generated.

The elements are guaranteed to be enumerated in the order in which they are first visited (left-to-right traversal).
INPUT:

- `max_depth` – (default: `self._max_depth`) specifies the maximal depth to which elements are computed.

EXAMPLES:

```python
sage: f = lambda a: [a+3, a+5]
sage: C = RecursivelyEnumeratedSet([0], f)
sage: it = C.breadth_first_search_iterator()
sage: [next(it) for _ in range(10)]
[0, 3, 5, 6, 8, 10, 9, 11, 13, 15]
```

**depth_first_search_iterator()**

Iterate on the elements of `self` (depth first).

This code remembers every elements generated.

The elements are traversed right-to-left, so the last element returned by the successor function is visited first.

See Wikipedia article Depth-first_search.

EXAMPLES:

```python
sage: f = lambda a: [a+3, a+5]
sage: C = RecursivelyEnumeratedSet([0], f)
sage: it = C.depth_first_search_iterator()
sage: [next(it) for _ in range(10)]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
```

**elements_of_depth_iterator(depth)**

Iterate over the elements of `self` of given depth.

An element of depth `n` can be obtained applying `n` times the successor function to a seed.

INPUT:

- `depth` – integer

OUTPUT:

An iterator.

EXAMPLES:

```python
sage: f = lambda a: [a-1, a+1]
sage: S = RecursivelyEnumeratedSet([5, 10], f, structure='symmetric')
sage: it = S.elements_of_depth_iterator(2)
sage: sorted(it)
[3, 7, 8, 12]
```

**graded_component(depth)**

Return the graded component of given depth.

This method caches each lower graded component.

A graded component is a set of elements of the same depth where the depth of an element is its minimal distance to a root.

It is currently implemented only for graded or symmetric structure.

INPUT:
• depth – integer

OUTPUT:
A set.

EXAMPLES:

```
sage: f = lambda a: [a+3, a+5]
sage: C = RecursivelyEnumeratedSet([0], f)
sage: C.graded_component(0)
Traceback (most recent call last):
...
NotImplementedError: graded_component_iterator method currently implemented only for graded or symmetric structure
```

g**r**ade**d** 
c**om**ponent_itera**t**or()
Iterate over the graded components of self.

A graded component is a set of elements of the same depth.

It is currently implemented only for graded or symmetric structure.

OUTPUT:
An iterator of sets.

EXAMPLES:

```
sage: f = lambda a: [a+3, a+5]
sage: C = RecursivelyEnumeratedSet([0], f)
sage: it = C.graded_component_iterator() # todo: not implemented
```

naive_search_iterator()
Iterate on the elements of self (in no particular order).

This code remembers every elements generated.

seeds()
Return an iterable over the seeds of self.

EXAMPLES:

```
sage: R = RecursivelyEnumeratedSet([1], lambda x: [x+1, x-1])
sage: R.seeds()
[1]
```

successors
to_d**i**g**ra**ph**(max_depth=None, loops=True, multiedges=True)
Return the directed graph of the recursively enumerated set.

INPUT:

• max_depth – (default: self._max_depth) specifies the maximal depth for which outgoing edges of elements are computed

• loops – (default: True) option for the digraph

• multiedges – (default: True) option of the digraph

OUTPUT:
A directed graph
**Warning:** If the set is infinite, this will loop forever unless `max_depth` is finite.

**EXAMPLES:**

```python
sage: child = lambda i: [(i+3) % 10, (i+8) % 10]
sage: R = RecursivelyEnumeratedSet([0], child)
sage: R.to_digraph()
Looped multi-digraph on 10 vertices
```

Digraph of an recursively enumerated set with a symmetric structure of infinite cardinality using `max_depth` argument:

```python
sage: succ = lambda a: [(a[0]-1,a[1]), (a[0],a[1]-1), (a[0]+1,a[1]), (a[0],
˓→a[1]+1)]
sage: seeds = [(0,0)]
sage: C = RecursivelyEnumeratedSet(seeds, succ, structure='symmetric')
sage: C.to_digraph(max_depth=3)
Looped multi-digraph on 41 vertices
```

The `max_depth` argument can be given at the creation of the set:

```python
sage: C = RecursivelyEnumeratedSet(seeds, succ, structure='symmetric', max_˓→depth=2)
sage: C.to_digraph()
Looped multi-digraph on 25 vertices
```

Digraph of an recursively enumerated set with a graded structure:

```python
sage: f = lambda a: [a+1, a+I]
sage: C = RecursivelyEnumeratedSet([0], f, structure='graded')
sage: C.to_digraph(max_depth=4)
Looped multi-digraph on 21 vertices
```

**class** `sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_graded`

**Bases:** `sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_generic`

Generic tool for constructing ideals of a graded relation.

**INPUT:**

- `seeds` – list (or iterable) of hashable objects
- `successors` – function (or callable) returning a list (or iterable)
- `enumeration` – 'depth', 'breadth' or None (default: None)
- `max_depth` – integer (default: float("inf"))

**EXAMPLES:**

```python
sage: f = lambda a: [(a[0]+1,a[1]), (a[0],a[1]+1)]
sage: C = RecursivelyEnumeratedSet([(0,0)], f, structure='graded', max_depth=3)
sage: C
A recursively enumerated set with a graded structure (breadth first search) with max_depth=3
sage: list(C)
(continues on next page)
```
[(0, 0),
 (1, 0), (0, 1),
 (2, 0), (1, 1), (0, 2),
 (3, 0), (2, 1), (1, 2), (0, 3)]

background.

breadth_first_search_iterator(*max_depth=None*)
Iterate on the elements of *self* (breadth first).

This iterator makes use of the graded structure by remembering only the elements of the current depth.

The elements are guaranteed to be enumerated in the order in which they are first visited (left-to-right traversal).

**INPUT:**

- *max_depth* – (default: *self*._max_depth) specifies the maximal depth to which elements are computed

**EXAMPLES:**

```python
sage: f = lambda a: [(a[0]+1,a[1]), (a[0],a[1]+1)]
sage: C = RecursivelyEnumeratedSet([(0,0)], f, structure='graded')
sage: list(C.breadth_first_search_iterator(max_depth=3))
[(0, 0),
 (1, 0), (0, 1),
 (2, 0), (1, 1), (0, 2),
 (3, 0), (2, 1), (1, 2), (0, 3)]
```

graded_component(*depth*)
Return the graded component of given depth.

This method caches each lower graded component. See *graded_component_iterator()* to generate each graded component without caching the previous ones.

A graded component is a set of elements of the same depth where the depth of an element is its minimal distance to a root.

**INPUT:**

- *depth* – integer

**OUTPUT:**

A set.

**EXAMPLES:**

```python
sage: f = lambda a: [a+1, a+I]
sage: C = RecursivelyEnumeratedSet([0], f, structure='graded')
sage: for i in range(5): sorted(C.graded_component(i))
[0]
[I, 1]
[2*I, I + 1, 2]
[3*I, 2*I + 1, I + 2, 3]
[4*I, 3*I + 1, 2*I + 2, I + 3, 4]
```

graded_component_iterator()
Iterate over the graded components of *self*.

A graded component is a set of elements of the same depth.

1.8. Recursively enumerated set 59
The algorithm remembers only the current graded component generated since the structure is graded.

OUTPUT:

An iterator of sets.

EXAMPLES:

```
sage: f = lambda a: [(a[0]+1,a[1]), (a[0],a[1]+1)]
sage: C = RecursivelyEnumeratedSet([1,0], f, structure='graded', max_depth=3)
sage: it = C.graded_component_iterator()
sage: for _ in range(4): sorted(next(it))
[(0, 0)]
[(0, 1), (1, 0)]
[(0, 2), (1, 1), (2, 0)]
[(0, 3), (1, 2), (2, 1), (3, 0)]
```

```
class sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_symmetric
Bases: sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_generic

Generic tool for constructing ideals of a symmetric relation.

INPUT:

- seeds – list (or iterable) of hashable objects
- successors – function (or callable) returning a list (or iterable)
- enumeration – 'depth', 'breadth' or None (default: None)
- max_depth – integer (default: float("inf"))

EXAMPLES:

```
sage: f = lambda a: [a-1,a+1]
sage: C = RecursivelyEnumeratedSet([0], f, structure='symmetric')
sage: C
A recursively enumerated set with a symmetric structure (breadth first search)
sage: it = iter(C)
sage: [next(it) for _ in range(7)]
[0, -1, 1, -2, 2, -3, 3]
```

```
breadth_first_search_iterator(max_depth=None)

Iterate on the elements of self (breadth first).

This iterator makes use of the graded structure by remembering only the last two graded components since the structure is symmetric.

The elements are guaranteed to be enumerated in the order in which they are first visited (left-to-right traversal).

INPUT:

- max_depth – (default: self._max_depth) specifies the maximal depth to which elements are computed

EXAMPLES:

```
sage: f = lambda a: [(a[0]-1,a[1]), (a[0],a[1]-1), (a[0]+1,a[1]), (a[0],a[1]+1)]
sage: C = RecursivelyEnumeratedSet([0], f, structure='symmetric')
sage: s = list(C.breadth_first_search_iterator(max_depth=2)); s
```
[(0, 0),
(-1, 0), (0, -1), (1, 0), (0, 1),
(-2, 0), (-1, -1), (-1, 1), (0, -2), (1, -1), (2, 0), (1, 1), (0, 2)]

This iterator is used by default for symmetric structure:

```sage```
```python
it = iter(C)
sage: s == [next(it) for _ in range(13)]
True
```
```sage```

**graded_component(depth)**

Return the graded component of given depth.

This method caches each lower graded component. See `graded_component_iterator()` to generate each graded component without caching the previous ones.

A graded component is a set of elements of the same depth where the depth of an element is its minimal distance to a root.

**INPUT:**

- depth – integer

**OUTPUT:**

A set.

**EXAMPLES:**

```sage```
```python
f = lambda a: [a-1, a+1]
C = RecursivelyEnumeratedSet([10, 15], f, structure='symmetric')
sage: for i in range(5): sorted(C.graded_component(i))
[10, 15]
[9, 11, 14, 16]
[8, 12, 13, 17]
[7, 18]
[6, 19]
```
```sage```

**graded_component_iterator()**

Iterate over the graded components of self.

A graded component is a set of elements of the same depth.

The enumeration remembers only the last two graded components generated since the structure is symmetric.

**OUTPUT:**

An iterator of sets.

**EXAMPLES:**

```sage```
```python
f = lambda a: [a-1, a+1]
S = RecursivelyEnumeratedSet([10], f, structure='symmetric')
sage: it = S.graded_component_iterator()
sage: [sorted(next(it)) for _ in range(5)]
[[10], [9, 11], [8, 12], [7, 13], [6, 14]]
```
```sage```
sage: \( f = \lambda a: [a-1, a+1] \)

sage: S = RecursivelyEnumeratedSet([5, 10], f, structure='symmetric')

sage: it = S.graded_component_iterator()

sage: [sorted(next(it)) for _ in range(5)]

[[5, 10], [4, 6, 9, 11], [3, 7, 8, 12], [2, 13], [1, 14]]

Gaussian integers:

sage: \( f = \lambda a: [a+1, a+I] \)

sage: S = RecursivelyEnumeratedSet([0], f, structure='symmetric')

sage: it = S.graded_component_iterator()

sage: [sorted(next(it)) for _ in range(7)]

[[0],
 [I, 1],
 [2*I, I + 1, 2],
 [3*I, 2*I + 1, I + 2, 3],
 [4*I, 3*I + 1, 2*I + 2, I + 3, 4],
 [5*I, 4*I + 1, 3*I + 2, 2*I + 3, I + 4, 5],
 [6*I, 5*I + 1, 4*I + 2, 3*I + 3, 2*I + 4, I + 5, 6]]

sage.sets.recursively_enumerated_set.search_forest_iterator(roots, children, algorithm='depth')

Return an iterator on the nodes of the forest having the given roots, and where children(\( x \)) returns the children of the node \( x \) of the forest. Note that every node of the tree is returned, not simply the leaves.

INPUT:

- roots – a list (or iterable)
- children – a function returning a list (or iterable)
- algorithm – 'depth' or 'breadth' (default: 'depth')

EXAMPLES:

We construct the prefix tree of binary sequences of length at most three, and enumerate its nodes:

sage: from sage.sets.recursively_enumerated_set import search_forest_iterator

sage: list(search_forest_iterator([[]], lambda l: [l+[0], l+[1]])

[[], [0], [0, 0], [0, 0, 0], [0, 0, 1], [0, 1], [0, 1, 0],
 [0, 1, 1], [1], [1, 0], [1, 0, 0], [1, 0, 1], [1, 1], [1, 1, 0], [1, 1, 1]]

By default, the nodes are iterated through by depth first search. We can instead use a breadth first search (increasing depth):

sage: list(search_forest_iterator([[]], lambda l: [l+[0], l+[1]]

[[],
 [0], [1],
 [0, 0], [0, 1], [1, 0], [1, 1],
 [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1],
 [1, 0, 0], [1, 0, 1], [1, 1], [1, 1, 0], [1, 1, 1]]

This allows for iterating through trees of infinite depth:
Here is an iterator through the prefix tree of sequences of letters in 0, 1, 2 without repetitions, sorted by length; the leaves are therefore permutations:

```
sage: list(search_forest_iterator([[]], lambda l: [l + [i] for i in range(3) if i not in l], algorithm='breadth'))
[[], [0], [1], [2], [0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1], [0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]
```

### 1.9 Subsets of a Universe Defined by Predicates

**class** `sage.sets.condition_set.ConditionSet(universe, names, category, *predicates)`


Set of elements of a universe that satisfy given predicates

**INPUT:**

- `universe` – a set
- `*predicates` – callables
- `*vars` or `names` – (default: inferred from `predicates` if any predicate is an element of a `CallableSymbolicExpressionRing_class`) variables or names of variables
- `category` – (default: inferred from `universe`) a category

**EXAMPLES:**

```
sage: Evens = ConditionSet(ZZ, is_even); Evens
{ x ∈ Integer Ring : <function is_even at 0x...>()(x) }
sage: 2 in Evens
True
sage: 3 in Evens
False
sage: 2.0 in Evens
True

sage: Odds = ConditionSet(ZZ, is_odd); Odds
{ x ∈ Integer Ring : <function is_odd at 0x...>()(x) }
sage: EvensAndOdds = Evens | Odds; EvensAndOdds
```

(continues on next page)
Set-theoretic union of
\{ x \in \text{Integer Ring} : \text{<function is\_even at 0x...>}(x) \} and
\{ x \in \text{Integer Ring} : \text{<function is\_odd at 0x...>}(x) \}
sage: 5 in EvensAndOdds
True
sage: 7/2 in EvensAndOdds
False

sage: var('y')
y
sage: SmallOdds = ConditionSet(ZZ, is_odd, abs(y) <= 11, vars=[y]); SmallOdds
\{ y \in \text{Integer Ring} : \text{abs}(y) <= 11, \text{<function is\_odd at 0x...>}(y) \}
sage: P = polytopes.cube(); P
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices
sage: P.rename("P")
sage: P_inter_B = ConditionSet(P, lambda x: x.norm() < 1.2); P_inter_B
\{ x \in P : \text{<function <lambda> at 0x...>}(x) \}
sage: vector([1, 0, 0]) in P_inter_B
True
sage: vector([1, 1, 1]) in P_inter_B
False

Iterating over subsets determined by predicates:

sage: Odds = ConditionSet(ZZ, is_odd); Odds
\{ x \in \text{Integer Ring} : \text{<function is\_odd at 0x...>}(x) \}
sage: list(Odds.iterator_range(stop=6))
[1, -1, 3, -3, 5, -5]
sage: R = IntegerModRing(8)
sage: R_primes = ConditionSet(R, is_prime); R_primes
\{ x \in \text{Ring of integers modulo 8} : \text{<function is\_prime at 0x...>}(x) \}
sage: R_primes.is_finite()
True
sage: list(R_primes)
[2, 6]

Using ConditionSet without predicates provides a way of attaching variable names to a set:

sage: Z3 = ConditionSet(ZZ^3, vars=['x', 'y', 'z']); Z3
\{ (x, y, z) \in \text{Ambient free module of rank 3 over the principal ideal domain Integer\_Ring} \}
Sets, Release 9.6

(continued from previous page)

```python
sage: Z3.variable_names()
('x', 'y', 'z')
sage: Z3.arguments()
(x, y, z)
```

```python
sage: Q4.<a, b, c, d> = ConditionSet(QQ^4); Q4
{ (a, b, c, d) ∈ Vector space of dimension 4 over Rational Field }
sage: Q4.variable_names()
('a', 'b', 'c', 'd')
sage: Q4.arguments()
(a, b, c, d)
```

ambient()
Return the universe of self.

EXAMPLES:

```python
sage: Evens = ConditionSet(ZZ, is_even); Evens
{ x ∈ Integer Ring : <function is_even at 0x...>(x) }
sage: Evens.ambient()
Integer Ring
```

arguments()
Return the variables of self as elements of the symbolic ring.

EXAMPLES:

```python
sage: Odds = ConditionSet(ZZ, is_odd); Odds
{ x ∈ Integer Ring : <function is_odd at 0x...>(x) }
sage: args = Odds.arguments(); args
(x,)
sage: args[0].parent()
Symbolic Ring
```

intersection(X)
Return the intersection of self and X.

EXAMPLES:

```python
sage: in_small_oblong(x, y) = x^2 + 3 * y^2 <= 42
sage: SmallOblongUniverse = ConditionSet(QQ^2, in_small_oblong)
sage: SmallOblongUniverse
{ (x, y) ∈ Vector space of dimension 2 over Rational Field : x^2 + 3*y^2 <= 42 }
sage: parity_check(x, y) = abs(sin(pi/2*(x + y))) < 1/1000
sage: EvenUniverse = ConditionSet(ZZ^2, parity_check); EvenUniverse
{ (x, y) ∈ Ambient free module of rank 2 over the principal ideal domain Integer Ring : abs(sin(1/2*pi*x + 1/2*pi*y)) < (1/1000) }
sage: SmallOblongUniverse & EvenUniverse
{ (x, y) ∈ Free module of degree 2 and rank 2 over Integer Ring
Echelon basis matrix:
[1 0]
[0 1] : x^2 + 3*y^2 <= 42, abs(sin(1/2*pi*x + 1/2*pi*y)) < (1/1000) }
```

Combining two ConditionSet`s with different formal variables works correctly. The formal variables of the intersection are taken from `self`:

1.9. Subsets of a Universe Defined by Predicates 65
1.10 Maps between finite sets

This module implements parents modeling the set of all maps between two finite sets. At the user level, any such parent should be constructed using the factory class `FiniteSetMaps` which properly selects which of its subclasses to use.

AUTHORS:
- Florent Hivert

```python
class sage.sets.finite_set_maps.FiniteSetEndoMaps_N(n, action, category=None):
 Bases: sage.sets.finite_set_maps.FiniteSetMaps_MN
 The sets of all maps from \{1, 2, \ldots , n\} to itself
 Users should use the factory class `FiniteSetMaps` to create instances of this class.
 INPUT:
 • n – an integer.
 • category – the category in which the sets of maps is constructed. It must be a sub-category of `Monoids()` . Finite() and `EnumeratedSets().Finite()` which is the default value.

 Element
 alias of `sage.sets.finite_set_map_cy.FiniteSetEndoMap_N`

 an_element()
 Returns a map in self
 EXAMPLES:

 sage: N = FiniteSetMaps(4)
 sage: N.an_element()
 [3, 2, 1, 0]

 one()
 EXAMPLES:

 sage: M = FiniteSetMaps(4)
 sage: M.one()
 [0, 1, 2, 3]

class sage.sets.finite_set_maps.FiniteSetEndoMaps_Set(domain, action, category=None):
 Bases: sage.sets.finite_set_maps.FiniteSetMaps_Set, sage.sets.finite_set_maps.FiniteSetEndoMaps_N
 The sets of all maps from a set to itself
 Users should use the factory class `FiniteSetMaps` to create instances of this class.
 INPUT:
```
• **domain** – an object in the category `FiniteSets()`.

• **category** – the category in which the sets of maps is constructed. It must be a sub-category of `Monoids()`, `Finite()` and `EnumeratedSets().Finite()` which is the default value.

**Element**

alias of `sage.sets.finite_set_map_cy.FiniteSetEndoMap_Set`

class `sage.sets.finite_set_maps.FiniteSetMaps`

Bases: `sage.structure.unique_representation.UniqueRepresentation`, `sage.structure.parent.Parent`

Maps between finite sets

Constructs the set of all maps between two sets. The sets can be given using any of the three following ways:

1. an object in the category `Sets()`.
2. a finite iterable. In this case, an object of the class `FiniteEnumeratedSet` is constructed from the iterable.
3. an integer $n$ designing the set $\{0, 1, \ldots, n - 1\}$. In this case an object of the class `IntegerRange` is constructed.

**INPUT:**

• **domain** – a set, finite iterable, or integer.

• **codomain** – a set, finite iterable, integer, or `None` (default). In this last case, the maps are endo-maps of the domain.

• **action** – "left" (default) or "right". The side where the maps act on the domain. This is used in particular to define the meaning of the product (composition) of two maps.

• **category** – the category in which the sets of maps is constructed. By default, this is `FiniteMonoids()` if the domain and codomain coincide, and `FiniteEnumeratedSets()` otherwise.

**OUTPUT:**

an instance of a subclass of `FiniteSetMaps` modeling the set of all maps between `domain` and `codomain`.

**EXAMPLES:**

We construct the set $\mathcal{M}$ of all maps from $\{a, b\}$ to $\{3, 4, 5\}$:

```python
sage: M = FiniteSetMaps(["a", "b"], [3, 4, 5]); M
Maps from {'a', 'b'} to {3, 4, 5}
sage: M.cardinality()
9
sage: M.domain()
{'a', 'b'}
sage: M.codomain()
{3, 4, 5}
sage: for f in M: print(f)
map: a -> 3, b -> 3
map: a -> 3, b -> 4
map: a -> 3, b -> 5
map: a -> 4, b -> 3
map: a -> 4, b -> 4
map: a -> 4, b -> 5
map: a -> 5, b -> 3
```

(continues on next page)
Elements can be constructed from functions and dictionaries:

```
sage: M(lambda c: ord(c)-94)
map: a -> 3, b -> 4

sage: M.from_dict({'a':3, 'b':5})
map: a -> 3, b -> 5
```

If the domain is equal to the codomain, then maps can be composed:

```
sage: M = FiniteSetMaps([1, 2, 3])
sage: f = M.from_dict({1:2, 2:1, 3:3}); f
map: 1 -> 2, 2 -> 1, 3 -> 3
sage: g = M.from_dict({1:2, 2:3, 3:1}); g
map: 1 -> 2, 2 -> 3, 3 -> 1
sage: f * g
map: 1 -> 1, 2 -> 3, 3 -> 2
```

This makes $M$ into a monoid:

```
sage: M.category()
Category of finite enumerated monoids
sage: M.one()
map: 1 -> 1, 2 -> 2, 3 -> 3
```

By default, composition is from right to left, which corresponds to an action on the left. If one specifies action to right, then the composition is from left to right:

```
sage: M = FiniteSetMaps([1, 2, 3], action = 'right')
sage: f = M.from_dict({1:2, 2:1, 3:3})
sage: g = M.from_dict({1:2, 2:3, 3:1})
sage: f * g
map: 1 -> 3, 2 -> 2, 3 -> 1
```

If the domains and codomains are both of the form $\{0, \ldots\}$, then one can use the shortcut:

```
sage: M = FiniteSetMaps(2,3); M
Maps from $\{0, 1\}$ to $\{0, 1, 2\}$
sage: M.cardinality()
9
```

For a compact notation, the elements are then printed as lists $[f(i), i = 0, \ldots]$:

```
sage: list(M)
[[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]]
```

The cardinality of self

**EXAMPLES:**
sage: FiniteSetMaps(4, 3).cardinality()
81

class sage.sets.finite_set_maps.FiniteSetMaps_MN(m, n, category=None)
   Bases: sage.sets.finite_set_maps.FiniteSetMaps
   The set of all maps from \{1, 2, \ldots, m\} to \{1, 2, \ldots, n\}.
   Users should use the factory class FiniteSetMaps to create instances of this class.
   INPUT:
   • m, n – integers
   • category – the category in which the sets of maps is constructed. It must be a sub-category of
     EnumeratedSets().Finite() which is the default value.

   Element
   alias of sage.sets.finite_set_map_cy.FiniteSetMap_MN

   an_element()
   Returns a map in self
   EXAMPLES:

   sage: M = FiniteSetMaps(4, 2)
sage: M.an_element()
[0, 0, 0, 0]
sage: M = FiniteSetMaps(0, 0)
sage: M.an_element()[]

   An exception EmptySetError is raised if this set is empty, that is if the codomain is empty and the domain
   is not.
   sage: M = FiniteSetMaps(4, 0) sage: M.cardinality() 0 sage: M.an_element() Traceback (most
recent call last): ... EmptySetError

codomain()
   The codomain of self
   EXAMPLES:

   sage: FiniteSetMaps(3,2).codomain()
{0, 1}

domain()
   The domain of self
   EXAMPLES:

   sage: FiniteSetMaps(3,2).domain()
{0, 1, 2}

class sage.sets.finite_set_maps.FiniteSetMaps_Set(domain, codomain, category=None)
   Bases: sage.sets.finite_set_maps.FiniteSetMaps_MN
   The sets of all maps between two sets
   Users should use the factory class FiniteSetMaps to create instances of this class.
INPUT:

- **domain** – an object in the category `FiniteSets()`.
- **codomain** – an object in the category `FiniteSets()`.
- **category** – the category in which the sets of maps is constructed. It must be a sub-category of `EnumeratedSets().Finite()` which is the default value.

**Element**

alias of `sage.sets.finite_set_map_cy.FiniteSetMap_Set`

codomain()

The codomain of self

EXAMPLES:

```
sage: FiniteSetMaps(["a", "b"], [3, 4, 5]).codomain()
{3, 4, 5}
```

domain()

The domain of self

EXAMPLES:

```
sage: FiniteSetMaps(["a", "b"], [3, 4, 5]).domain()
{"a", "b"}
```

from_dict(d)

Create a map from a dictionary

EXAMPLES:

```
sage: M = FiniteSetMaps(["a", "b"], [3, 4, 5])
sage: M.from_dict({'a': 4, 'b': 3})
map: a -> 4, b -> 3
```

### 1.11 Data structures for maps between finite sets

This module implements several fast Cython data structures for maps between two finite set. Those classes are not intended to be used directly. Instead, such a map should be constructed via its parent, using the class `FiniteSetMaps`.

EXAMPLES:

To create a map between two sets, one first creates the set of such maps:

```
sage: M = FiniteSetMaps(["a", "b"], [3, 4, 5])
```

The map can then be constructed either from a function:

```
sage: f1 = M(lambda c: ord(c)-94); f1
map: a -> 3, b -> 4
```

or from a dictionary:

```
sage: f2 = M.from_dict({'a':3, 'b':4}); f2
map: a -> 3, b -> 4
```
The two created maps are equal:

```
sage: f1 == f2
True
```

Internally, maps are represented as the list of the ranks of the images \( f(x) \) in the co-domain, in the order of the domain:

```
sage: list(f2)
[0, 1]
```

A third fast way to create a map is to use such a list. It should be kept for internal use:

```
sage: f3 = M._from_list_([0, 1]); f3
map: a -> 3, b -> 4
sage: f1 == f3
True
```

AUTHORS:

- Florent Hivert

```python
class sage.sets.finite_set_map_cy.FiniteSetEndoMap_N
 Bases: sage.sets.finite_set_map_cy.FiniteSetMap_MN
 Maps from \(\text{range}(n) \) to itself.
 See also:
 FiniteSetMap_MN for assumptions on the parent

class sage.sets.finite_set_map_cy.FiniteSetEndoMap_Set
 Bases: sage.sets.finite_set_map_cy.FiniteSetMap_Set
 Maps from a set to itself
 See also:
 FiniteSetMap_Set for assumptions on the parent

class sage.sets.finite_set_map_cy.FiniteSetMap_MN
 Bases: sage.structure.list_clone.ClonableIntArray
 Data structure for maps from \(\text{range}(m) \) to \(\text{range}(n) \).
 We assume that the parent given as argument is such that:
 \(m \) is stored in \(\text{self}.parent()._m \)
 \(n \) is stored in \(\text{self}.parent()._n \)
 the domain is in \(\text{self}.parent().domain() \)
 the codomain is in \(\text{self}.parent().domain() \)
 check()
 Performs checks on \(\text{self} \)
 Check that \(\text{self} \) is a proper function and then calls \(\text{parent}.check_element(\text{self}) \) where \(\text{parent} \) is the parent of \(\text{self} \).
 codomain()
 Returns the codomain of \(\text{self} \)
```

EXAMPLES:
Sets, Release 9.6

```python
sage: FiniteSetMaps(4, 3)([1, 0, 2, 1]).codomain()
{0, 1, 2}
```

domain()

Returns the domain of self

EXAMPLES:

```python
sage: FiniteSetMaps(4, 3)([1, 0, 2, 1]).domain()
{0, 1, 2, 3}
```

fibers()

Returns the fibers of self

OUTPUT:

a dictionary `d` such that `d[y]` is the set of all `x` in domain such that `f(x) = y`

EXAMPLES:

```python
sage: FiniteSetMaps(4, 3)([1, 0, 2, 1]).fibers()
{0: {1}, 1: {0, 3}, 2: {2}}
sage: F = FiniteSetMaps(["a", "b", "c"])
sage: F.from_dict({'a': 'b', 'b': 'a', 'c': 'b'}).fibers() == {'a': {'b'}, 'b': ...
˓→{'a', 'c'}}
True
```

getimage(i)

Returns the image of `i` by self

INPUT:

- `i` – any object.

**Note:** if you need speed, please use instead `_getimage()`

EXAMPLES:

```python
sage: fs = FiniteSetMaps(4, 3)([1, 0, 2, 1])
sage: fs.getimage(0), fs.getimage(1), fs.getimage(2), fs.getimage(3)
(1, 0, 2, 1)
```

image_set()

Returns the image set of self

EXAMPLES:

```python
sage: FiniteSetMaps(4, 3)([1, 0, 2, 1]).image_set()
{0, 1, 2}
sage: FiniteSetMaps(4, 3)([1, 0, 0, 1]).image_set()
{0, 1}
```

items()

The items of self

Return the list of the ordered pairs `(x, self(x))`

EXAMPLES:
```python
sage: FiniteSetMaps(4, 3)([1, 0, 2, 1]).items()
[(0, 1), (1, 0), (2, 2), (3, 1)]
```

**setimage(i, j)**

Set the image of `i` as `j` in `self`

**Warning:** `self` must be mutable; otherwise an exception is raised.

**INPUT:**
- `i, j` – two object's

**OUTPUT:** None

**Note:** if you need speed, please use instead `_setimage()`

**EXAMPLES:**
```
sage: fs = FiniteSetMaps(4, 3)([1, 0, 2, 1])
sage: fs2 = copy(fs)
sage: fs2.setimage(2, 1)
sage: fs2
[1, 0, 1, 1]
sage: with fs.clone() as fs3:
....: fs3.setimage(0, 2)
....: fs3.setimage(1, 2)
sage: fs3
[2, 2, 2, 1]
```

class `sage.sets.finite_set_map_cy.FiniteSetMap_Set`

Bases: `sage.sets.finite_set_map_cy.FiniteSetMap_MN`

Data structure for maps

We assume that the parent given as argument is such that:
- the domain is in `parent.domain()`
- the codomain is in `parent.codomain()`
- `parent._m` contains the cardinality of the domain
- `parent._n` contains the cardinality of the codomain
- `parent._unrank_domain` and `parent._rank_domain` is a pair of reciprocal rank and unrank functions between the domain and `range(parent._m)`.
- `parent._unrank_codomain` and `parent._rank_codomain` is a pair of reciprocal rank and unrank functions between the codomain and `range(parent._n)`.

**classmethod from_dict(t, parent, d)**

Creates a `FiniteSetMap` from a dictionary

**Warning:** no check is performed!
**classmethod from_list**(t, parent, lst)

Creates a FiniteSetMap from a list

**Warning:** no check is performed!

**getimage**(i)

Returns the image of i by self

**INPUT:**

• i – an int

**EXAMPLES:**

```python
sage: F = FiniteSetMaps(['a', 'b', 'c', 'd'], ['u', 'v', 'w'])
sage: fs = F._from_list_([1, 0, 2, 1])
sage: list(map(fs.getimage, ['a', 'b', 'c', 'd']))
['v', 'u', 'w', 'v']
```

**image_set()**

Returns the image set of self

**EXAMPLES:**

```python
sage: F = FiniteSetMaps(['a', 'b', 'c'])
sage: sorted(F.from_dict({'a': 'b', 'b': 'a', 'c': 'b'}).image_set())
['a', 'b']
sage: F = FiniteSetMaps(['a', 'b', 'c'])
sage: F(lambda x: 'c').image_set()
{'c'}
```

**items()**

The items of self

Return the list of the couple (x, self(x))

**EXAMPLES:**

```python
sage: F = FiniteSetMaps(['a', 'b', 'c'])
sage: F.from_dict({'a': 'b', 'b': 'a', 'c': 'b'}).items()
[('a', 'b'), ('b', 'a'), ('c', 'b')]
```

**setimage**(i, j)

Set the image of i as j in self

**Warning:** self must be mutable otherwise an exception is raised.

**INPUT:**

• i, j – two object's

**OUTPUT:** None

**EXAMPLES:**
sage: F = FiniteSetMaps(["a", "b", "c", "d"], ["u", "v", "w"])
sage: fs = F(lambda x: "v")
sage: fs2 = copy(fs)
sage: fs2.setimage("a", "w")
sage: fs2
map: a -> w, b -> v, c -> v, d -> v
sage: with fs.clone() as fs3:
    ... fs3.setimage("a", "u")
    ... fs3.setimage("c", "w")
sage: fs3
map: a -> u, b -> v, c -> w, d -> v

sage.sets.finite_set_map_cy.FiniteSetMap_Set_from_dict(t, parent, d)
Creates a FiniteSetMap from a dictionary

Warning: no check is performed!

sage.sets.finite_set_map_cy.FiniteSetMap_Set_from_list(t, parent, lst)
Creates a FiniteSetMap from a list

Warning: no check is performed!

sage.sets.finite_set_map_cy.fibers(f, domain)
Returns the fibers of the function \( f \) on the finite set \( \text{domain} \)

INPUT:
- \( f \) – a function or callable
- \( \text{domain} \) – a finite iterable

OUTPUT:
- a dictionary \( d \) such that \( d[y] \) is the set of all \( x \) in \( \text{domain} \) such that \( f(x) = y \)

EXAMPLES:

```python
sage: from sage.sets.finite_set_map_cy import fibers, fibers_args
sage: fibers(lambda x: 1, [])
{}
sage: fibers(lambda x: x^2, [-1, 2, -3, 1, 3, 4])
{1: {1, -1}, 4: {2}, 9: {3, -3}, 16: {4}}
sage: fibers(lambda x: 1, [-1, 2, -3, 1, 3, 4])
{1: {1, 2, 3, 4, -3, -1}}
sage: fibers(lambda x: 1, [1,1,1])
{1: {1}}
```

See also:
- \( \text{fibers} \) if one needs to pass extra arguments to \( f \).

sage.sets.finite_set_map_cy.fibers_args(f, domain, *args, **opts)
Returns the fibers of the function \( f \) on the finite set \( \text{domain} \)

It is the same as \( \text{fibers} \) except that one can pass extra argument for \( f \) (with a small overhead)
EXAMPLES:

```
sage: from sage.sets.finite_set_map_cy import fibers_args
sage: fibers_args(operator.pow, [-1, 2, -3, 1, 3, 4], 2)
{1: {1, -1}, 4: {2}, 9: {3, -3}, 16: {4}}
```

### 1.12 Totally Ordered Finite Sets

AUTHORS:

- Stepan Starosta (2012): Initial version

```python
class sage.sets.totally_ordered_finite_set.TotallyOrderedFiniteSet(elements, facade=True)
 Bases: sage.sets.finite_enumerated_set.FiniteEnumeratedSet

 Totally ordered finite set.
 This is a finite enumerated set assuming that the elements are ordered based upon their rank (i.e. their position
 in the set).

 INPUT:

 - `elements` – A list of elements in the set
 - `facade` – (default: `True` if `True`, a facade is used; it should be set to `False` if the elements do not inherit
 from `Element` or if you want a funny order. See examples for more details.

 See also:

 FiniteEnumeratedSet
```

EXAMPLES:

```
sage: S = TotallyOrderedFiniteSet([1,2,3])
sage: S
{1, 2, 3}
sage: S.cardinality()
3
```

By default, totally ordered finite set behaves as a facade:

```
sage: S(1).parent()
Integer Ring
```

It makes comparison fails when it is not the standard order:

```
sage: T1 = TotallyOrderedFiniteSet([3,2,5,1])
sage: T1(3) < T1(1)
False
sage: T2 = TotallyOrderedFiniteSet([3, var('x')])
sage: T2(3) < T2(var('x'))
3 < x
```

To make the above example work, you should set the argument facade to `False` in the constructor. In that case, the elements of the set have a dedicated class:
\sage: A = TotallyOrderedFiniteSet([3, 2, 0, 'a', 7, (0, 0), 1], facade=False)
\sage: A
{3, 2, 0, 'a', 7, (0, 0), 1}
\sage: x = A.an_element()
\sage: x
3
\sage: x.parent()
{3, 2, 0, 'a', 7, (0, 0), 1}
\sage: A(3) < A(2)
True
\sage: A('a') < A(7)
True
\sage: A(3) > A(2)
False
\sage: A(1) < A(3)
False
\sage: A(3) == A(3)
True

But then, the equality comparison is always False with elements outside of the set:

\sage: A(1) == 1
False
\sage: 1 == A(1)
False
\sage: 'a' == A('a')
False
\sage: A('a') == 'a'
False

Since \texttt{trac ticket #16280}, totally ordered sets support elements that do not inherit from \texttt{sage.structure.element.Element}, whether they are facade or not:

\sage: S = TotallyOrderedFiniteSet(['a', 'b'])
\sage: S('a')
'a'
\sage: S = TotallyOrderedFiniteSet(['a', 'b'], facade=False)
\sage: S('a')
'a'

Multiple elements are automatically deleted:

\sage: TotallyOrderedFiniteSet([1, 1, 2, 1, 2, 2, 5, 4])
{1, 2, 5, 4}

\textbf{Element}
alias of \texttt{ TotallyOrderedFiniteSetElement}

\textbf{le}(x, y)
Return True if $x \leq y$ for the order of self.

\textbf{EXAMPLES:}

\sage: T = TotallyOrderedFiniteSet([1, 3, 2], facade=False)
\sage: T1, T3, T2 = T.list()

(continues on next page)
```python
sage: T.le(T1,T3)
True
sage: T.le(T3,T2)
True
```

```python
class sage.sets.totally_ordered_finite_set.TotallyOrderedFiniteSetElement

Bases: sage.structure.element.Element

Element of a finite totally ordered set.

EXAMPLES:

```python
sage: S = TotallyOrderedFiniteSet([2,7], facade=False)
sage: x = S(2)
sage: print(x)
2
sage: x.parent()
{2, 7}
```

1.13 Set of all objects of a given Python class

```python
sage.sets.pythonclass.Set_PythonType

Return the (unique) Parent that represents the set of Python objects of a specified type.

EXAMPLES:

```python
sage: from sage.sets.pythonclass import Set_PythonType
sage: Set_PythonType(list)
Set of Python objects of class 'list'
sage: Set_PythonType(list) is Set_PythonType(list)
True
sage: S = Set_PythonType(tuple)
sage: S([1,2,3])
(1, 2, 3)
```

S is a parent which models the set of all lists:

```python
sage: S.category()
Category of sets
```

```python
class sage.sets.pythonclass.Set_PythonType_class

Bases: sage.structure.parent.Set_generic

The set of Python objects of a given class.

The elements of this set are not instances of Element; they are instances of the given class.

INPUT:

- typ – a Python (new-style) class

EXAMPLES:
```
```python
sage: from sage.sets.pythonclass import Set_PythonType
sage: S = Set_PythonType(int); S
Set of Python objects of class 'int'
sage: int('1') in S
True
sage: Integer('1') in S
False
sage: Set_PythonType(2)
Traceback (most recent call last):
 ...TypeError: must be initialized with a class, not 2
```

**cardinality()**

EXAMPLES:

```python
sage: from sage.sets.pythonclass import Set_PythonType
sage: S = Set_PythonType(bool)
sage: S.cardinality()
2
sage: S = Set_PythonType(int)
sage: S.cardinality()
+Infinity
```

**object()**

EXAMPLES:

```python
sage: from sage.sets.pythonclass import Set_PythonType
sage: Set_PythonType(tuple).object()
<... 'tuple'>
```
2.1 Integer Range

AUTHORS:
- Florent Hivert (2010-03): Added a class factory + cardinality method.
- Vincent Delecroix (2012-02): add methods rank/unrank, make it compliant with Python int.

```python
class sage.sets.integer_range.IntegerRange
 Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
 parent.Parent

 The class of Integer ranges
 Returns an enumerated set containing an arithmetic progression of integers.

 INPUT:
 • begin – an integer, Infinity or -Infinity
 • end – an integer, Infinity or -Infinity
 • step – a non zero integer (default to 1)
 • middle_point – an integer inside the set (default to None)

 OUTPUT:
 A parent in the category FiniteEnumeratedSets() or InfiniteEnumeratedSets() depending on the arguments defining self.

 IntegerRange(i, j) returns the set of \{i, i + 1, i + 2, \ldots, j - 1\}. start (!) defaults to 0. When step is given, it specifies the increment. The default increment is 1. IntegerRange allows begin and end to be infinite.

 IntegerRange is designed to have similar interface Python range. However, whereas range accept and returns Python int, IntegerRange deals with Integer.

 If middle_point is given, then the elements are generated starting from it, in a alternating way: \{m, m+1, m-2, m+2, m-2 \ldots\}.

 EXAMPLES:
    ```
    sage: list(IntegerRange(5))
    [0, 1, 2, 3, 4]
    sage: list(IntegerRange(2, 5))
    [2, 3, 4]
    ```
 (continues on next page)
```python
sage: I = IntegerRange(2,100,5); I
{2, 7, ..., 97}
sage: list(I)
[2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77, 82, 87, 92, 97]
sage: I.category()
Category of facade finite enumerated sets
sage: I[1].parent()
Integer Ring
```

When begin and end are both finite, `IntegerRange(begin, end, step)` is the set whose list of elements is equivalent to the python construction `range(begin, end, step):

```python
sage: list(IntegerRange(4,105,3)) == list(range(4,105,3))
True
sage: list(IntegerRange(-54,13,12)) == list(range(-54,13,12))
True
```

Except for the type of the numbers:

```python
sage: type(IntegerRange(-54,13,12)[0]), type(list(range(-54,13,12))[-1])
(<... 'sage.rings.integer.Integer'>, <... 'int'>)
```

When begin is finite and end is +Infinity, self is the infinite arithmetic progression starting from the begin by step step:

```python
sage: I = IntegerRange(54,Infinity,3); I
{54, 57, ...}
sage: I.category()
Category of facade infinite enumerated sets
sage: p = iter(I)
sage: (next(p), next(p), next(p), next(p), next(p), next(p))
(54, 57, 60, 63, 66, 69)
sage: I = IntegerRange(54,-Infinity,-3); I
{54, 51, ...}
sage: I.category()
Category of facade infinite enumerated sets
sage: p = iter(I)
sage: (next(p), next(p), next(p), next(p), next(p), next(p))
(54, 51, 48, 45, 42, 39)
```

When begin and end are both infinite, you will have to specify the extra argument `middle_point`. self is then defined by a point and a progression/regression setting by `step`. The enumeration is done this way: (let us call `m` the `middle_point`) \{m, m + step, m − step, m + 2step, m − 2step, m + 3step, ... \}:

```python
sage: I = IntegerRange(-Infinity,Infinity,37,-12); I
Integer progression containing -12 with increment 37 and bounded with -Infinity and +Infinity
sage: I.category()
Category of facade infinite enumerated sets
sage: -12 in I
True
sage: -15 in I
```

(continues on next page)
False

```
sage: p = iter(I)
sage: (next(p), next(p), next(p), next(p), next(p), next(p), next(p), next(p))
(-12, 25, -49, 62, -86, 99, -123, 136)
```

It is also possible to use the argument `middle_point` for other cases, finite or infinite. The set will be the same as if you didn't give this extra argument but the enumeration will begin with this `middle_point`:

```
sage: I = IntegerRange(123,-12,-14); I
{123, 109, ..., -3}
sage: list(I)
[123, 109, 95, 81, 67, 53, 39, 25, 11, -3]
sage: J = IntegerRange(123,-12,-14,25); J
Integer progression containing 25 with increment -14 and bounded with 123 and -12
sage: list(J)
[25, 11, 39, -3, 53, 67, 81, 95, 109, 123]
```

Remember that, like for range, if you define a non empty set, `begin` is supposed to be included and `end` is supposed to be excluded. In the same way, when you define a set with a `middle_point`, the `begin` bound will be supposed to be included and the `end` bound supposed to be excluded:

```
sage: I = IntegerRange(-100,100,10,0)
sage: J = list(range(-100,100,10))
sage: 100 in I
False
sage: 100 in J
False
sage: -100 in I
True
sage: -100 in J
True
sage: list(I)
[0, 10, -10, 20, -20, 30, -30, 40, -40, 50, -50, 60, -60, 70, -70, 80, -80, 90, -90, -100]
```

Note: The input is normalized so that:

```
sage: IntegerRange(1, 6, 2) is IntegerRange(1, 7, 2)
True
sage: IntegerRange(1, 8, 3) is IntegerRange(1, 10, 3)
True
```

element_class

alias of `sage.rings.integer.Integer`

class `sage.sets.integer_range.IntegerRangeEmpty(elements)`

Bases: `sage.sets.integer_range.IntegerRange`, `sage.sets.finiteEnumeratedSet.FiniteEnumeratedSet`

A singleton class for empty integer ranges

See `IntegerRange` for more details.
class sage.sets.integer_range.IntegerRangeFinite(begin, end, step=1)

Bases: sage.sets.integer_range.IntegerRange

The class of finite enumerated sets of integers defined by finite arithmetic progressions

See IntegerRange for more details.

cardinality()

Return the cardinality of self

EXAMPLES:

```
sage: IntegerRange(123,12,-4).cardinality()
28
sage: IntegerRange(-57,12,8).cardinality()
9
sage: IntegerRange(123,12,4).cardinality()
0
```

rank(x)

EXAMPLES:

```
sage: I = IntegerRange(-57,36,8)
sage: I.rank(23)
10
sage: I.unrank(10)
23
sage: I.rank(22)
Traceback (most recent call last):
... IndexError: 22 not in self
sage: I.rank(87)
Traceback (most recent call last):
... IndexError: 87 not in self
```

unrank(i)

Return the i-th element of this integer range.

EXAMPLES:

```
sage: I = IntegerRange(1,13,5)
sage: I[0], I[1], I[2]
(1, 6, 11)
sage: I[3]
Traceback (most recent call last):
... IndexError: out of range
sage: I[-1]
11
sage: I[-4]
Traceback (most recent call last):
... IndexError: out of range
sage: I = IntegerRange(13,1,-1)
```
sage: l = I.list()
sage: [I[i] for i in range(I.cardinality())] == l
True
sage: l.reverse()
sage: [I[i] for i in range(-1,-I.cardinality()-1,-1)] == l
True

```
class sage.sets.integer_range.IntegerRangeFromMiddle
Bases: sage.sets.integer_range.IntegerRange

The class of finite or infinite enumerated sets defined with an inside point, a progression and two limits.
See IntegerRange for more details.

next(elt)
Return the next element of elt in self.

EXAMPLES:
```
sage: from sage.sets.integer_range import IntegerRangeFromMiddle
sage: I = IntegerRangeFromMiddle(-100,100,10,0)
sage: (I.next(0), I.next(10), I.next(-10), I.next(20), I.next(-100))
(10, -10, 20, -20, None)
sage: I = IntegerRangeFromMiddle(-Infinity,Infinity,10,0)
sage: (I.next(0), I.next(10), I.next(-10), I.next(20), I.next(-100))
(10, -10, 20, -20, 110)
sage: I.next(1)
Traceback (most recent call last):
... LookupError: 1 not in Integer progression containing 0 with increment 10 and
˓→bounded with -Infinity and +Infinity
```

```
class sage.sets.integer_range.IntegerRangeInfinite
Bases: sage.sets.integer_range.IntegerRange

The class of infinite enumerated sets of integers defined by infinite arithmetic progressions.
See IntegerRange for more details.

rank(x)
EXAMPLES:
```
sage: I = IntegerRange(-57,Infinity,8)
sage: I.rank(23)
10
sage: I.unrank(10)
23
sage: I.rank(22)
Traceback (most recent call last):
... IndexError: 22 not in self
```

unrank(i)
Returns the i-th element of self.

EXAMPLES:
```
2.2 Positive Integers

```python
sage: PP = PositiveIntegers()
sage: PP
Positive integers
sage: PP.cardinality()
+Infinity
sage: TestSuite(PP).run()
sage: PP.list()
Traceback (most recent call last):
... NotImplementedError: cannot list an infinite set
sage: it = iter(PP)
sage: (next(it), next(it), next(it), next(it), next(it))
(1, 2, 3, 4, 5)
sage: PP.first()
1
```

**an_element()**

Returns an element of self.

**EXAMPLES:**

```python
sage: PositiveIntegers().an_element()
42
```

2.3 Non Negative Integers

```python
class sage.sets.non_negative_integers.NonNegativeIntegers(category=None)
 Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

 The enumerated set of non negative integers.

 This class implements the set of non negative integers, as an enumerated set (see InfiniteEnumeratedSets).

 EXAMPLES:
```
sage: NN = NonNegativeIntegers()
sage: NN
Non negative integers
sage: NN.cardinality()
+Infinity
sage: TestSuite(NN).run()

Traceback (most recent call last):
... Not Implemented Error: cannot list an infinite set
sage: NN.element_class
<...
'sage.rings.integer.Integer'>
sage: it = iter(NN)
sage: [next(it), next(it), next(it), next(it), next(it)]
[0, 1, 2, 3, 4]
sage: NN.first()
0

Currently, this is just a “facade” parent; namely its elements are plain Sage Integers with Integer Ring as parent:

sage: x = NN(15); type(x)
<...
'sage.rings.integer.Integer'>
sage: x.parent()
Integer Ring
sage: x+3
18

In a later version, there will be an option to specify whether the elements should have Integer Ring or Non negative integers as parent:

sage: NN = NonNegativeIntegers(facade = False) # todo: not implemented
sage: x = NN(5) # todo: not implemented
sage: x.parent() # todo: not implemented
Non negative integers

This runs generic sanity checks on NN:

sage: TestSuite(NN).run()

TODO: do not use NN any more in the doctests for NonNegativeIntegers.

Element

alias of sage.rings.integer.Integer

an_element()

EXAMPLES:

sage: NonNegativeIntegers().an_element()
42

from_integer

alias of sage.rings.integer.Integer

next(o)

EXAMPLES:
### 2.4 The set of prime numbers

**AUTHORS:**
- William Stein (2005): original version

**class** `sage.sets.primes.Primes(proof)`

Bases: `sage.structure.parent.Set_generic`, `sage.structure.unique_representation.UniqueRepresentation`

The set of prime numbers.

**EXAMPLES:**

```python
sage: P = Primes(); P
Set of all prime numbers: 2, 3, 5, 7, ...
sage: P.cardinality()
+Infinity
sage: R = Primes()
sage: P == R
True
sage: 5 in P
True
sage: 100 in P
False
```

We show various operations on the set of prime numbers:

```python
sage: len(P)
Traceback (most recent call last):
 ... NotImplementedError: infinite set
```

**first()**

Return the first prime number.
EXAMPLES:

```python
sage: P = Primes()
sage: P.first()
2
```

`next(pr)`
Return the next prime number.

EXAMPLES:

```python
sage: P = Primes()
sage: P.next(5)
7
```

`unrank(n)`
Return the n-th prime number.

EXAMPLES:

```python
sage: P = Primes()
sage: P.unrank(0)
2
sage: P.unrank(5)
13
sage: P.unrank(42)
191
```

### 2.5 Subsets of the Real Line

This module contains subsets of the real line that can be constructed as the union of a finite set of open and closed intervals.

EXAMPLES:

```python
sage: RealSet(0,1)
(0, 1)
sage: RealSet((0,1), [2,3])
(0, 1) ∪ [2, 3]
sage: RealSet(-oo, oo)
(-∞, +∞)
```

Brackets must be balanced in Python, so the naive notation for half-open intervals does not work:

```python
sage: RealSet([0,1])
Traceback (most recent call last):
... SyntaxError: ...
```

Instead, you can use the following construction functions:

```python
sage: RealSet.open_closed(0,1)
(0, 1]
sage: RealSet.closed_open(0,1)
```

(continues on next page)
Relations containing symbols and numeric values or constants:

```
sage: RealSet(x != 0)
(-oo, 0) ∪ (0, +oo)
sage: RealSet(x == pi)
{pi}
sage: RealSet(x < 1/2)
(-oo, 1/2)
sage: RealSet(1/2 < x)
(1/2, +oo)
sage: RealSet(1.5 <= x)
[1.50000000000000, +oo)
```

Note that multiple arguments are combined as union:

```
sage: RealSet(x >= 0, x < 1)
(-oo, +oo)
sage: RealSet(x >= 0, x > 1)
[0, +oo)
sage: RealSet(x >= 0, x > -1)
(-1, +oo)
```

AUTHORS:

- Laurent Claessens (2010-12-10): Interval and ContinuousSet, posted to sage-devel at http://www.mail-archive.com/sage-support@googlegroups.com/msg21326.html.
- Ares Ribo (2011-10-24): Extended the previous work defining the class RealSet.
- Jordi Saludes (2011-12-10): Documentation and file reorganization.
- Volker Braun (2013-06-22): Rewrite

```
class sage.sets.real_set.InternalRealInterval(lower, lower_closed, upper, upper_closed, check=True)
 Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent
 A real interval.

 You are not supposed to create RealInterval objects yourself. Always use RealSet instead.

 INPUT:

 - lower – real or minus infinity; the lower bound of the interval.
 - lower_closed – boolean; whether the interval is closed at the lower bound
```
• upper – real or (plus) infinity; the upper bound of the interval
• upper_closed – boolean; whether the interval is closed at the upper bound
• check – boolean; whether to check the other arguments for validity

boundary_points()
Generate the boundary points of self

EXAMPLES:

```
sage: list(RealSet.open_closed(-oo, 1)[0].boundary_points())
[1]
sage: list(RealSet.open(1, 2)[0].boundary_points())
[1, 2]
```

closure()
Return the closure

OUTPUT:
The closure as a new RealInterval

EXAMPLES:

```
sage: RealSet.open(0,1)[0].closure()
[0, 1]
sage: RealSet.open(-oo,1)[0].closure()
(-oo, 1]
sage: RealSet.open(0, oo)[0].closure()
[0, +oo)
```

contains(x)
Return whether x is contained in the interval

INPUT:
• x – a real number.

OUTPUT:
Boolean.

EXAMPLES:

```
sage: i = RealSet.open_closed(0,2)[0]; i
(0, 2]
sage: i.contains(0)
False
sage: i.contains(1)
True
sage: i.contains(2)
True
```

convex_hull(other)
Return the convex hull of the two intervals

OUTPUT:
The convex hull as a new RealInterval.

EXAMPLES:
Sets, Release 9.6

```
sage: I1 = RealSet.open(0, 1)[0]; I1
(0, 1)
sage: I2 = RealSet.closed(1, 2)[0]; I2
[1, 2]
sage: I1.convex_hull(I2)
(0, 2]
sage: I2.convex_hull(I1)
(0, 2]
sage: I1.convex_hull(I2.interior())
(0, 2]
sage: I1.closure().convex_hull(I2.interior())
[0, 2)
sage: I1.closure().convex_hull(I2)
[0, 2]
sage: I3 = RealSet.closed(1/2, 3/2)[0]; I3
[1/2, 3/2]
sage: I1.convex_hull(I3)
(0, 3/2]
```

**element_class**

alias of `sage.rings.real_lazy.LazyFieldElement`

**interior()**

Return the interior

OUTPUT:

The interior as a new `RealInterval`

EXAMPLES:

```
sage: RealSet.closed(0, 1)[0].interior()
(0, 1)
sage: RealSet.open_closed(-oo, 1)[0].interior()
(-oo, 1)
sage: RealSet.closed_open(0, oo)[0].interior()
(0, +oo)
```

**intersection(other)**

Return the intersection of the two intervals

INPUT:

• other – a `RealInterval`

OUTPUT:

The intersection as a new `RealInterval`

EXAMPLES:

```
sage: I1 = RealSet.open(0, 2)[0]; I1
(0, 2)
sage: I2 = RealSet.closed(1, 3)[0]; I2
[1, 3]
sage: I1.intersection(I2)
[1, 2]
```
### is_connected(other)

Test whether two intervals are connected

**OUTPUT:**

Boolean. Whether the set-theoretic union of the two intervals has a single connected component.

**EXAMPLES:**

```python
sage: I1 = RealSet.open(0, 1)[0]; I1
(0, 1)
sage: I2 = RealSet.closed(1, 2)[0]; I2
[1, 2]
sage: I1.is_connected(I2)
True
sage: I1.is_connected(I2.interior())
False
sage: I1.closure().is_connected(I2.interior())
True
sage: I2.is_connected(I1)
True
sage: I2.interior().is_connected(I1)
False
sage: I2.closure().is_connected(I1.interior())
True
sage: I3 = RealSet.closed(1/2, 3/2)[0]; I3
[1/2, 3/2]
sage: I1.is_connected(I3)
True
sage: I3.is_connected(I1)
True
```

### is_empty()

Return whether the interval is empty

The normalized form of RealSet has all intervals non-empty, so this method usually returns False.

**OUTPUT:**

Boolean.

**EXAMPLES:**
sage: I = RealSet(0, 1)[0]
sage: I.is_empty()
False

**is_point()**

Return whether the interval consists of a single point

**OUTPUT:**

Boolean.

**EXAMPLES:**

sage: I = RealSet(0, 1)[0]
sage: I.is_point()
False

**lower()**

Return the lower bound

**OUTPUT:**

The lower bound as it was originally specified.

**EXAMPLES:**

sage: I = RealSet(0, 1)[0]
sage: I.lower()
0
sage: I.upper()
1

**lower_closed()**

Return whether the interval is open at the lower bound

**OUTPUT:**

Boolean.

**EXAMPLES:**

sage: I = RealSet.open_closed(0, 1)[0]; I (0, 1]
sage: I.lower_closed()
False
sage: I.lower_open()
True
sage: I.upper_closed()
True
sage: I.upper_open()
False

**lower_open()**

Return whether the interval is closed at the upper bound

**OUTPUT:**

Boolean.

**EXAMPLES:**
\begin{verbatim}
sage: I = RealSet.open_closed(0, 1)[0]; I (0, 1]
sage: I.lower_closed() False
sage: I.lower_open() True
sage: I.upper_closed() True
sage: I.upper_open() False
\end{verbatim}

\textbf{upper()}

Return the upper bound

\textbf{OUTPUT:}

The upper bound as it was originally specified.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: I = RealSet(0, 1)[0]
sage: I.lower() 0
sage: I.upper() 1
\end{verbatim}

\textbf{upper_closed()}

Return whether the interval is closed at the lower bound

\textbf{OUTPUT:}

Boolean.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: I = RealSet.open_closed(0, 1)[0]; I (0, 1]
sage: I.lower_closed() False
sage: I.lower_open() True
sage: I.upper_closed() True
sage: I.upper_open() False
\end{verbatim}

\textbf{upper_open()}

Return whether the interval is closed at the upper bound

\textbf{OUTPUT:}

Boolean.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: I = RealSet.open_closed(0, 1)[0]; I (0, 1]
sage: I.lower_closed() False
\end{verbatim}
class sage.sets.real_set.RealSet(*intervals)
    Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
    set.Set_add_sub_operators

    A subset of the real line, a finite union of intervals

    INPUT:

    * *args* – arguments defining a real set. Possibilities are either:
      - two extended real numbers *a*, *b*, to construct the open interval \((a, b)\), or
      - a list/tuple/iterable of (not necessarily disjoint) intervals or real sets, whose union is taken. The individual intervals can be specified by either
        * a tuple \((a, b)\) of two extended real numbers (constructing an open interval),
        * a list \([a, b]\) of two real numbers (constructing a closed interval),
        * an InternalRealInterval.
        * an OpenInterval.
    * *structure* – (default: None) if None, construct the real set as an instance of RealSet; if "differentiable", construct it as a subset of an instance of RealLine, representing the differentiable manifold \(\mathbb{R}\).
    * *ambient* – (default: None) an instance of RealLine; construct a subset of it. Using this keyword implies structure='differentiable'.
    * *names* or *coordinate* – coordinate symbol for the canonical chart; see RealLine. Using these keywords implies structure='differentiable'.
    * *name*, *latex_name*, *start_index* – see RealLine.

    There are also specialized constructors for various types of intervals:

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>RealSet.open()</td>
<td>((a, b))</td>
</tr>
<tr>
<td>RealSet.closed()</td>
<td>([a, b])</td>
</tr>
<tr>
<td>RealSet.point()</td>
<td>({a})</td>
</tr>
<tr>
<td>RealSet.open_closed()</td>
<td>((a, b])</td>
</tr>
<tr>
<td>RealSet.closed_open()</td>
<td>([a, b)]</td>
</tr>
<tr>
<td>RealSet.unbounded_below_closed()</td>
<td>((-\infty, b])</td>
</tr>
<tr>
<td>RealSet.unbounded_below_open()</td>
<td>((-\infty, b))</td>
</tr>
<tr>
<td>RealSet.unbounded_above_closed()</td>
<td>([a, +\infty))</td>
</tr>
<tr>
<td>RealSet.unbounded_above_open()</td>
<td>((a, +\infty))</td>
</tr>
<tr>
<td>RealSet.real_line()</td>
<td>((-\infty, +\infty))</td>
</tr>
<tr>
<td>RealSet.interval()</td>
<td>any</td>
</tr>
</tbody>
</table>
EXAMPLES:

```python
sage: RealSet(0,1) # open set from two numbers
(0, 1)
sage: i = RealSet(0,1)[0]
sage: RealSet(i) # interval
(0, 1)
sage: RealSet(i, (3,4)) # tuple of two numbers = open set
(0, 1) ∪ (3, 4)
sage: RealSet(i, [3,4]) # list of two numbers = closed set
(0, 1) ∪ [3, 4]
```

Initialization from manifold objects:

```python
sage: R = manifolds.RealLine(); R
Real number line ℝ
sage: RealSet(R)
(-oo, +oo)
sage: I02 = manifolds.OpenInterval(0, 2); I
I
sage: RealSet(I02)
(0, 2)
sage: I01_of_R = manifolds.OpenInterval(0, 1, ambient_interval=R); I01_of_R
Real interval (0, 1)
sage: RealSet(I01_of_R)
(0, 1)
sage: RealSet(I01_of_R.closure())
[0, 1]
sage: I01_of_I02 = manifolds.OpenInterval(0, 1, ambient_interval=I02); I01_of_I02
Real interval (0, 1)
sage: RealSet(I01_of_I02)
(0, 1)
sage: RealSet(I01_of_I02.closure())
(0, 1]
```

Real sets belong to a subcategory of topological spaces:

```python
sage: RealSet().category()
Join of
 Category of finite sets and
 Category of subobjects of sets and
 Category of connected topological spaces
sage: RealSet.point(1).category()
Join of
 Category of finite sets and
 Category of subobjects of sets and
 Category of connected topological spaces
sage: RealSet([1, 2]).category()
Join of
 Category of infinite sets and
 Category of compact topological spaces and
 Category of subobjects of sets and
 Category of connected topological spaces
sage: RealSet((1, 2), (3, 4)).category()
```

(continues on next page)
Constructing real sets as manifolds or manifold subsets by passing `structure='differentiable'`: 

```python
sage: RealSet(-oo, oo, structure='differentiable')
Real number line \(\mathbb{R} \)
```

```python
sage: RealSet([0, 1], structure='differentiable')
Subset [0, 1] of the Real number line \(\mathbb{R} \)
```

```python
sage: _.category()
Category of subobjects of sets
```

```python
sage: RealSet.open_closed(0, 5, structure='differentiable')
Subset (0, 5] of the Real number line \(\mathbb{R} \)
```

This is implied when a coordinate name is given using the keywords `coordinate` or `names`:

```python
sage: RealSet(0, 1, coordinate='\lambda')
Open subset (0, 1) of the Real number line \(\mathbb{R} \)
```

```python
sage: _.category()
Join of

- Category of smooth manifolds over Real Field with 53 bits of precision and
- Category of connected manifolds over Real Field with 53 bits of precision and
- Category of subobjects of sets
```

It is also implied by assigning a coordinate name using generator notation:

```python
sage: R_xi.<\xi> = RealSet.real_line(); R_xi
Real number line \(\mathbb{R} \)
```

```python
sage: R_xi.canonical_chart()
Chart \((\mathbb{R}, (\xi,))\)
```

With the keyword `ambient`, we can construct a subset of a previously constructed manifold:

```python
sage: P_xi = RealSet(0, oo, ambient=R_xi); P_xi
Open subset (0, +oo) of the Real number line \(\mathbb{R} \)
```

```python
sage: P_xi.default_chart()
Chart \(((0, +oo), (\xi,))\)
```

```python
sage: B_xi = RealSet(0, 1, ambient=P_xi); B_xi
Open subset (0, 1) of the Real number line \(\mathbb{R} \)
```

```python
sage: B_xi.default_chart()
Chart \(((0, 1), (\xi,))\)
```

```python
sage: R_xi.subset_family()
Set \{(0, +oo), (0, 1), \mathbb{R}\} of open subsets of the Real number line \(\mathbb{R} \)
```

```python
sage: F = RealSet.point(0).union(RealSet.point(1)).union(RealSet.point(2)); F
{0} \cup \{1\} \cup \{2\}
```

```python
sage: F_tau = RealSet(F, names="\tau"); F_tau
Subset {0} \cup \{1\} \cup \{2\} of the Real number line \(\mathbb{R} \)
```
sage: F_tau.manifold().canonical_chart()
Chart (R, (τ,))

ambient()
Return the ambient space (the real line).

EXAMPLES:

sage: s = RealSet(RealSet.open_closed(0,1), RealSet.closed_open(2,3))
sage: s.ambient()
(-oo, +oo)

static are_pairwise_disjoint(*real_set_collection)
Test whether sets are pairwise disjoint

INPUT:

* real_set_collection – a list/tuple/iterable of RealSet.

OUTPUT:

Boolean.

EXAMPLES:

sage: s1 = RealSet((0, 1), (2, 3))
sage: s2 = RealSet((1, 2))
sage: s3 = RealSet.point(3)
sage: RealSet.are_pairwise_disjoint(s1, s2, s3)
True
sage: RealSet.are_pairwise_disjoint(s1, s2, s3, [10,10])
True
sage: RealSet.are_pairwise_disjoint(s1, s2, s3, [-1, 1/2])
False

boundary()
Return the topological boundary of self.

EXAMPLES:

sage: RealSet(-oo, oo).boundary()
{}
sage: RealSet.point(2).boundary()
{2}
sage: RealSet([1, 2], (3, 4)).boundary()
{1} ∪ {2} ∪ {3} ∪ {4}
sage: RealSet((1, 2), (2, 3)).boundary()
{1} ∪ {2} ∪ {3}

cardinality()
Return the cardinality of the subset of the real line.

OUTPUT:

Integer or infinity. The size of a discrete set is the number of points; the size of a real interval is Infinity.

EXAMPLES:
```
sage: RealSet([0, 0], [1, 1], [3, 3]).cardinality()
3
sage: RealSet(0,3).cardinality()
+Infinity
```

**static closed**(lower, upper, **kwds)

Construct a closed interval

**INPUT:**
- lower, upper – two real numbers or infinity. They will be sorted if necessary.
- **kwds – see RealSet.

**OUTPUT:**
A new RealSet.

**EXAMPLES:**
```
sage: RealSet.closed(1, 0)
[0, 1]
```

**static closed_open**(lower, upper, **kwds)

Construct an half-open interval

**INPUT:**
- lower, upper – two real numbers or infinity. They will be sorted if necessary.
- **kwds – see RealSet.

**OUTPUT:**
A new RealSet that is closed at the lower bound and open an the upper bound.

**EXAMPLES:**
```
sage: RealSet.closed_open(1, 0)
[0, 1)
```

closure()

Return the topological closure of self.

**EXAMPLES:**
```
sage: RealSet(-oo, oo).closure()
(-oo, +oo)
sage: RealSet((1, 2), (2, 3)).closure()
[1, 3]
```

complement()

Return the complement

**OUTPUT:**
The set-theoretic complement as a new RealSet.

**EXAMPLES:**
contains(x)
Return whether \( x \) is contained in the set

**INPUT:**
- \( x \) – a real number.

**OUTPUT:**
Boolean.

**EXAMPLES:**

```python
sage: s = RealSet(0,2) + RealSet.unbounded_above_closed(10); s
(0, 2) \cup [10, +oo)
sage: s.contains(1)
True
sage: s.contains(0)
False
sage: 10 in s # syntactic sugar
True
```

difference(*other)
Return self with other subtracted

**INPUT:**
- \( \text{other} \) – a \textit{RealSet} or data that defines one.

**OUTPUT:**
The set-theoretic difference of \textit{self} with \textit{other} removed as a new \textit{RealSet}.

**EXAMPLES:**

```python
sage: s1 = RealSet(0,2) + RealSet.unbounded_above_closed(10); s1
(0, 2) \cup [10, +oo)
sage: s1.difference(s2)
(0, 1) \cup [10, +oo)
sage: s1 - s2 # syntactic sugar
(0, 1) \cup [10, +oo)
sage: s2.difference(s1)
(-10, 1) \cup [3, +oo)
```

(continues on next page)
sage: s2 - s1  # syntactic sugar
(-oo, -10] ∪ [2, 3)
sage: s1.difference(1,11)
(0, 1] ∪ [11, +oo)

**get_interval(i)**

Return the i-th connected component.

Note that the intervals representing the real set are always normalized, see `normalize()`.

**INPUT:**

- i – integer.

**OUTPUT:**

The i-th connected component as a `RealInterval`.

**EXAMPLES:**

```python
sage: s = RealSet(RealSet.open_closed(0,1), RealSet.closed_open(2,3))
sage: s.get_interval(0)
(0, 1]
sage: s[0] # shorthand
(0, 1]
sage: s.get_interval(1)
[2, 3)
sage: s[0] == s.get_interval(0)
True
```

**inf()**

Return the infimum

**OUTPUT:**

A real number or infinity.

**EXAMPLES:**

```python
sage: s1 = RealSet(0,2) + RealSet.unbounded_above_closed(10); s1
(0, 2) ∪ [10, +oo)
sage: s1.inf()
0
```

**interior()**

Return the topological interior of `self`.

**EXAMPLES:**

```python
sage: s2 = RealSet(1,3) + RealSet.unbounded_below_closed(-10); s2
(-oo, -10] ∪ (1, 3)
sage: s2.inf()
-Infinity
```

(continues on next page)
intersection(*other)
Return the intersection of the two sets

**INPUT:**
- other – a *RealSet* or data that defines one.

**OUTPUT:**
The set-theoretic intersection as a new *RealSet*.

**EXAMPLES:**

```python
sage: s1 = RealSet(0, 2) + RealSet.unbounded_above_closed(10); s1
(0, 2) ∪ [10, +oo)
sage: s2 = RealSet(1, 3) + RealSet.unbounded_below_closed(-10); s2
(-oo, -10] ∪ (1, 3)
sage: s1.intersection(s2)
(1, 2)
sage: s1 & s2 # syntactic sugar
(1, 2)
sage: s1 = RealSet((0, 1), (2, 3)); s1
(0, 1) ∪ (2, 3)
sage: s2 = RealSet([0, 1], [2, 3]); s2
[0, 1] ∪ [2, 3]
sage: s3 = RealSet([1, 2]); s3
[1, 2]
sage: s1.intersection(s2)
(0, 1) ∪ (2, 3)
sage: s1.intersection(s3)
{}
sage: s2.intersection(s3)
{1} ∪ {2}
```
is_closed()
Return whether self is a closed set.

EXAMPLES:

```
sage: RealSet().is_closed()
True
sage: RealSet.point(1).is_closed()
True
sage: RealSet([1, 2]).is_closed()
True
sage: RealSet([1, 2], (3, 4)).is_closed()
False
```

is_disjoint(*other)
Test whether the two sets are disjoint

INPUT:
- other – a RealSet or data defining one.

OUTPUT:
Boolean.

EXAMPLES:

```
sage: s1 = RealSet((0, 1), (2, 3)); s1
(0, 1) ∪ (2, 3)
sage: s2 = RealSet([1, 2]); s2
[1, 2]
sage: s1.is_disjoint(s2)
True
sage: s1.is_disjoint([1, 2])
True
```

is_disjoint_from(*args, **kwds)
Deprecated: Use is_disjoint() instead. See trac ticket #31927 for details.

is_empty()
Return whether the set is empty

EXAMPLES:

```
sage: RealSet(0, 1).is_empty()
False
sage: RealSet(0, 0).is_empty()
True
```

is_included_in(*args, **kwds)
Deprecated: Use is_subset() instead. See trac ticket #31927 for details.

is_open()
Return whether self is an open set.

EXAMPLES:

```
sage: RealSet().is_open()
True
```
sage: RealSet.point(1).is_open()
False
sage: RealSet((1, 2)).is_open()
True
sage: RealSet([1, 2], (3, 4)).is_open()
False

**is_subset(**other**)

Return whether self is a subset of other.

**INPUT:**
- *other* – a RealSet or something that defines one.

**OUTPUT:**
Boolean.

**EXAMPLES:**

```
sage: I = RealSet((1,2))
sage: J = RealSet((1,3))
sage: K = RealSet((2,3))
sage: I.is_subset(J)
True
sage: J.is_subset(K)
False
```

**is_universe()**

Return whether the set is the ambient space (the real line).

**EXAMPLES:**

```
sage: RealSet().ambient().is_universe()
True
```

**lift(x)**

Lift x to the ambient space for self.

This version of the method just returns x.

**EXAMPLES:**

```
sage: s = RealSet(0, 2); s
(0, 2)
sage: s.lift(1)
1
```

**n_components()**

Return the number of connected components

See also **get_interval()**

**EXAMPLES:**

```
sage: s = RealSet(RealSet.open_closed(0,1), RealSet.closed_open(2,3))
sage: s.n_components()
2
```
static normalize(intervals)
Bring a collection of intervals into canonical form

INPUT:
- intervals – a list/tuple/iterable of intervals.

OUTPUT:
A tuple of intervals such that
- they are sorted in ascending order (by lower bound)
- there is a gap between each interval
- all intervals are non-empty

EXAMPLES:
```
sage: i1 = RealSet((0, 1))[0]
sage: i2 = RealSet([1, 2])[0]
sage: i3 = RealSet((2, 3))[0]
sage: RealSet.normalize([i1, i2, i3])
((0, 3),)
sage: RealSet((0, 1), [1, 2], (2, 3))
(0, 3)
sage: RealSet((0, 1), (1, 2), (2, 3))
(0, 1) ∪ (1, 2) ∪ (2, 3)
sage: RealSet([0, 1], [2, 3])
[0, 1] ∪ [2, 3]
sage: RealSet((0, 2), (1, 3))
(0, 3)
sage: RealSet(0,0)
{
```

static open(lower, upper, **kwds)
Construct an open interval

INPUT:
- lower, upper – two real numbers or infinity. They will be sorted if necessary.
- **kwds – see RealSet.

OUTPUT:
A new RealSet.

EXAMPLES:
```
sage: RealSet.open(1, 0)
(0, 1)
```

static open_closed(lower, upper, **kwds)
Construct a half-open interval

INPUT:
- lower, upper – two real numbers or infinity. They will be sorted if necessary.
- **kwds – see RealSet.
OUTPUT:
A new RealSet that is open at the lower bound and closed at the upper bound.

EXAMPLES:

```
sage: RealSet.open_closed(1, 0)
(0, 1]
```

**static point** $(p, **kwds)$
Construct an interval containing a single point

INPUT:
- $p$ – a real number.
- $**kwds$ – see RealSet.

OUTPUT:
A new RealSet.

EXAMPLES:

```
sage: RealSet.open(1, 0)
(0, 1)
```

**static real_line** $(**kwds)$
Construct the real line

INPUT:
- $**kwds$ – see RealSet.

EXAMPLES:

```
sage: RealSet.real_line()
(-oo, +oo)
```

**retract**(x)
Retract $x$ to self.
It raises an error if $x$ does not lie in the set self.

EXAMPLES:

```
sage: s = RealSet(0, 2); s
(0, 2)
sage: s.retract(1)
1
sage: s.retract(2)
Traceback (most recent call last):
...
ValueError: 2 is not an element of (0, 2)
```

**sup**( )
Return the supremum

OUTPUT:
A real number or infinity.

EXAMPLES:


```python
sage: s1 = RealSet(0,2) + RealSet.unbounded_above_closed(10); s1
(0, 2) ∪ [10, +oo)
sage: s1.sup()
+Infinity
sage: s2 = RealSet(1,3) + RealSet.unbounded_below_closed(-10); s2
(-oo, -10] ∪ (1, 3)
sage: s2.sup()
3
```

**symmetric_difference(**other**)**

Returns the symmetric difference of self and other.

**INPUT:**

- other – a `RealSet` or data that defines one.

**OUTPUT:**

The set-theoretic symmetric difference of self and other as a new `RealSet`.

**EXAMPLES:**

```python
sage: s1 = RealSet(0,2); s1
(0, 2)
sage: s2 = RealSet.unbounded_above_open(1); s2
(1, +oo)
sage: s1.symmetric_difference(s2)
(0, 1] ∪ [2, +oo)
```

**static unbounded_above_closed**(bound, **kwds)**

Construct a semi-infinite interval

**INPUT:**

- bound – a real number.
- **kwds – see RealSet.**

**OUTPUT:**

A new `RealSet` from the bound (including) to plus infinity.

**EXAMPLES:**

```python
sage: RealSet.unbounded_above_closed(1)
[1, +oo)
```

**static unbounded_above_open**(bound, **kwds)**

Construct a semi-infinite interval

**INPUT:**

- bound – a real number.
- **kwds – see RealSet.**

**OUTPUT:**

A new `RealSet` from the bound (excluding) to plus infinity.

**EXAMPLES:**
```python
sage: RealSet.unbounded_above_open(1)
(1, +\infty)
```

**static unbounded_below_closed**(bound, **kwds)

Construct a semi-infinite interval

**INPUT:**

- bound – a real number.

**OUTPUT:**

A new `RealSet` from minus infinity to the bound (including).

- **kwds** – see `RealSet`.

**EXAMPLES:**

```python
sage: RealSet.unbounded_below_closed(1)
(-\infty, 1]
```

**static unbounded_below_open**(bound, **kwds)

Construct a semi-infinite interval

**INPUT:**

- bound – a real number.

**OUTPUT:**

A new `RealSet` from minus infinity to the bound (excluding).

- **kwds** – see `RealSet`.

**EXAMPLES:**

```python
sage: RealSet.unbounded_below_open(1)
(-\infty, 1)
```

**union**(other)

Return the union of the two sets

**INPUT:**

- other – a `RealSet` or data that defines one.

**OUTPUT:**

The set-theoretic union as a new `RealSet`.

**EXAMPLES:**

```python
sage: s1 = RealSet(0,2)
sage: s2 = RealSet(1,3)
sage: s1.union(s2)
(0, 3)
sage: s1.union(1,3)
(0, 3)
sage: s1 | s2 # syntactic sugar
(0, 3)
sage: s1 + s2 # syntactic sugar
(0, 3)
```
CHAPTER
THREE

INDICES AND TABLES

• Index
• Module Index
• Search Page
S

sage.sets.cartesian_product, 1
sage.sets.condition_set, 63
sage.sets.disjoint_set, 23
sage.sets.disjoint_union Enumerated Sets, 30
sage.sets.family, 3
sage.sets.finite enumerated_set, 41
sage.sets.finite_set_map cy, 70
sage.sets.finite_set_maps, 66
sage.sets.integer range, 81
sage.sets.non_negative_integers, 86
sage.sets.positive_integers, 86
sage.sets.primes, 88
sage.sets.pythonclass, 78
sage.sets.real_set, 89
sage.sets.recursively enumerated_set, 43
sage.sets.set, 12
sage.sets.set from iterator, 34
sage.sets.totally ordered finite_set, 76
Symbols

_.cartesian_product_of_elements()  
(sage.sets.cartesian_product.CartesianProduct)

A

AbstractFamily (class in sage.sets.family, 3)
ambient()  
(sage.sets.condition_set.ConditionSet)
ambient()  
(sage.sets.real_set.RealSet)
an_element()  
(sage.sets.cartesian_product.CartesianProduct)
an_element()  
(sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets)
an_element()  
(sage.sets.finite_enumerated_set.FiniteEnumeratedSet)
an_element()  
(sage.sets.finite_set_maps.FiniteSetEndoMaps_N)
an_element()  
(sage.sets.finite_set_maps.FiniteSetMaps_MN)
an_element()  
(sage.sets.non_negative_integers.NonNegativeIntegers)
an_element()  
(sage.sets.positive_integers.PositiveIntegers)
are_pairwise_disjoint()  
(sage.sets.real_set.RealSet)
arbitrary()  
(sage.sets.condition_set.ConditionSet)
arguments()  
(sage.sets.condition_set.ConditionSet)

B

boundary()  
(sage.sets.real_set.RealSet)
boundary_points()  
(sage.sets.real_set.InternalRealInterval)
breadth_first_search_iterator()  
(sage.sets.recursivelyEnumerated_set.RecursivelyEnumeratedSet)
breadth_first_search_iterator()  
(sage.sets.recursivelyEnumerated_set.RecursivelyEnumeratedSet_forest)
breadth_first_search_iterator()  
(sage.sets.recursivelyEnumerated_set.RecursivelyEnumeratedSet_generic)
breadth_first_search_iterator()  
(sage.sets.recursivelyEnumerated_set.RecursivelyEnumeratedSet_graded)

C

cardinality()  
(sage.sets.disjoint_set.Disjoint_set_class)
cardinality()  
(sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets)
cardinality()  
(sage.sets.family.FiniteFamily)
cardinality()  
(sage.sets.family.TrivialFamily)
cardinality()  
(sage.sets.finite_enumerated_set.FiniteEnumeratedSet)
cardinality()  
(sage.sets.finite_set_maps.FiniteSetMaps)
cardinality()  
(sage.sets.integer_range.IntegerRangeFinite)
cardinality()  
(sage.sets.pythonclass.Set_PythonType_class)
cardinality()  
(sage.sets.set.Set_object)
cardinality()  
(sage.sets.set.Set_object_enumerated)
cardinality()  
(sage.sets.set.Set_object_union)
cartesian_factors()  
(sage.sets.cartesian_product.CartesianProduct)
cartesian_factors()  
(sage.sets.cartesian_product.CartesianProduct.Element)
cartesian_projection()  
(sage.sets.cartesian_product.CartesianProduct.Element)
Sets, Release 9.6

CartesianProduct (class in sage.sets.cartesian_product), 1
CartesianProduct.Element (class in sage.sets.cartesian_product), 2
check() (sage.setsfinite_set_map_cy.FiniteSetMap_MN method), 71
children() (sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet method), 53
clear_cache() (sage.sets_from_iterator.EnumeratedSet method), 36
closed() (sage.sets_real_set.RealSet static method), 100
closed_open() (sage.sets_real_set.RealSet static method), 100
closure() (sage.sets_real_set.InternalRealInterval static method), 91
closure() (sage.sets_real_set.RealSet method), 100
codomain() (sage.sets_finite_set_map_cy.FiniteSetMap_MN method), 71
codomain() (sage.sets_finite_set_maps.FiniteSetMaps_MN method), 69
codomain() (sage.sets_finite_set_maps.FiniteSetMaps_Set method), 70
complement() (sage.sets_real_set.RealSet method), 100
ConditionSet (class in sage.sets.condition_set), 63
closure() (sage.sets.cartesian_product.CartesianProduct method), 3
contains() (sage.sets_real_set.InternalRealInterval method), 91
contains() (sage.sets_real_set.RealSet method), 101
convex_hull() (sage.sets_real_set.InternalRealInterval method), 91

D
Decorator (class in sage.sets_from_iterator), 35
depth_first_search_iterator() (sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet method), 53
depth_first_search_iterator() (sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet method), 56
difference() (sage.sets_real_set.RealSet method), 101
difference() (sage.sets_set_root_set_object_enumerated method), 14
difference() (sage.sets_set_set_base_method), 18
DisjointSet() (in module sage.sets.disjoint_set), 24
DisjointSet_class (class in sage.sets.disjoint_set), 24
DisjointSet_of_hashables (class in sage.sets.disjoint_set), 25
DisjointSet_of_integers (class in sage.sets.disjoint_set), 27
DisjointUnionEnumeratedSets (class in sage.sets.disjoint_union_enumerated_sets), 30
domain() (sage.sets_finite_set_map_cy.FiniteSetMap_MN method), 72
domain() (sage.sets_finite_sets.FiniteSetMaps_MN method), 69
domain() (sage.sets_finite_sets.FiniteSetMaps_Set method), 70
DummyExampleForPicklingTest (class in sage.sets_from_iterator), 35

F
f() (sage.sets_from_iterator.DummyExampleForPicklingTest method), 35
Family() (in module sage.sets.family), 5
intersection() (sage.sets.set.Set_object_enumerated method), 19
interval() (sage.sets.real_set.RealSet static method), 103
inverse_family() (sage.sets.family.AbstractFamily method), 4
is_closed() (sage.sets.real_set.RealSet method), 103
is_connected() (sage.sets.real_set.InternalRealInterval method), 93
is_disjoint() (sage.sets.real_set.RealSet method), 104
is_disjoint_from() (sage.sets.real_set.RealSet method), 104
is_empty() (sage.sets.real_set.InternalRealInterval method), 93
is_empty() (sage.sets.real_set.RealSet method), 104
is_empty() (sage.sets.set.Set_object method), 16
is_finite() (sage.sets.set.Set_object method), 16
is_finite() (sage.sets.set.Set_object_difference method), 18
is_finite() (sage.sets.set.Set_object_intersection method), 21
is_finite() (sage.sets.set.Set_object_symmetric_difference method), 22
is_included_in() (sage.sets.real_set.RealSet method), 104
is_open() (sage.sets.real_set.RealSet method), 104
is_parent_of() (sage.sets.finite_enumerated_set.FiniteEnumeratedSet method), 42
is_parent_of() (sage.sets.set_from_iterator.EnumeratedSetFromIterator method), 37
is_point() (sage.sets.real_set.InternalRealInterval method), 94
is_subset() (sage.sets.real_set.RealSet method), 105
is_universe() (sage.sets.real_set.RealSet method), 105
issubset() (sage.sets.set.Set_object_enumerated method), 19
items() (sage.sets.finite_set_map_cy.FiniteSetMap_MN method), 72
items() (sage.sets.finite_set_map_cy.FiniteSetMap_Set method), 74

K
keys() (sage.sets.family.FiniteFamily method), 10
keys() (sage.sets.family.LazyFamily method), 11
keys() (sage.sets.family.TrivialFamily method), 12

L
last() (sage.sets.finite_enumerated_set.FiniteEnumeratedSet method), 42
LazyFamily (class in sage.sets.family), 11
le() (sage.sets totalement_orden_finite_set.TotallyOrderedFiniteSet method), 77
lift() (sage.sets.real_set.RealSet method), 105
list() (sage.sets.set_from_iterator.EnumeratedSetFromIterator method), 34
list() (sage.sets.family.FiniteFamily method), 4
list() (sage.sets.family.LazyFamily method), 11
list() (sage.sets.family.TrivialFamily method), 12
map() (sage.sets.family.AbstractFamily method), 4
map_reduce() (sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet method), 54
module
sage.sets.cartesian_product, 1
sage.sets.condition_set, 63
sage.sets.disjoint_set, 23
sage.sets.disjoint_union_enumerated_sets, 30
sage.sets.family, 3
sage.sets.finite_enumerated_set, 41
sage.sets.finite_set_map_cy, 70
sage.sets.finite_set_maps, 66
sage.sets.integer_range, 81
sage.sets.non_negative_integers, 86
sage.sets.positive_integers, 86
sage.sets.primes, 88
sage.sets.pythonclass, 78
sage.sets.real_set, 89
sage.sets.recursively_enumerated_set, 43
sage.sets.set, 12
sage.sets.set_from_iterator, 34
sage.sets.totally_orden_finite_set, 76

N
n_components() (sage.sets.real_set.RealSet method), 105
naive_search_iterator() (sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet method), 57
next() (sage.sets.integer_range.IntegerRangeFromMiddle method), 85
next() (sage.sets.non_negative_integers.NonNegativeIntegers method), 87
next() (sage.sets.primes.Primes method), 89
NonNegativeIntegers (class in sage.sets.set), 86

118 Index
Index
Sets, Release 9.6

Set_object_binary (class in sage.sets.set), 17
Set_object_difference (class in sage.sets.set), 17
Set_object_enumerated (class in sage.sets.set), 18
Set_object_intersection (class in sage.sets.set), 21
Set_object_symmetric_difference (class in sage.sets.set), 22
Set_object_union (class in sage.sets.set), 22
Set_PythonType() (in module sage.sets.pythonclass), 78
Set_PythonType_class (class in sage.sets.pythonclass), 78
setimage() (sage.sets.finite_set_map_cy.FiniteSetMap_MN method), 73
setimage() (sage.sets.finite_set_map_cy.FiniteSetMap_Set method), 74
some_elements() (sage.sets.non_negative_integers.NonNegativeIntegers method), 88
subsets() (sage.sets.set.Set_object method), 17
subsets_lattice() (sage.sets.set.Set_object method), 17
successors (sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_generic attribute), 57
sup() (sage.sets.real_set.RealSet method), 107
symmetric_difference() (sage.sets.real_set.RealSet method), 108
symmetric_difference() (sage.sets.set.Set_base method), 15
symmetric_difference() (sage.sets.set.Set_object_enumerated method), 20

T
to_digraph() (sage.sets.disjoint_set.DisjointSet_of_hashables method), 26
to_digraph() (sage.sets.disjoint_set.DisjointSet_of_integers method), 29
to_digraph() (sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_generic method), 57
TotallyOrderedFiniteSet (class in sage.sets.totally_ordered_finite_set), 76
TotallyOrderedFiniteSetElement (class in sage.sets.totally_ordered_finite_set), 78
TrivialFamily (class in sage.sets.family), 11

U
unbounded_above_closed() (sage.sets.real_set.RealSet static method), 108
unbounded_above_open() (sage.sets.real_set.RealSet static method), 108
unbounded_below_closed() (sage.sets.real_set.RealSet static method), 109
unbounded_below_open() (sage.sets.real_set.RealSet static method), 109
union() (sage.sets.disjoint_set.DisjointSet_of_hashables method), 27
union() (sage.sets.disjoint_set.DisjointSet_of_integers method), 29
union() (sage.sets.real_set.RealSet method), 109
union() (sage.sets.set.Set_base method), 15
union() (sage.sets.set.Set_object_enumerated method), 21
unrank() (sage.sets.finiteEnumeratedSet.FiniteEnumeratedSet method), 42
unrank() (sage.sets.integer_range.IntegerRangeFinite method), 84
unrank() (sage.sets.integer_range.IntegerRangeInfinite method), 85
unrank() (sage.sets.non_negative_integers.NonNegativeIntegers method), 88
unrank() (sage.sets.set_from_iterator.EnumeratedSetFromIterator method), 39
unrank() (sage.sets.primes.Primes method), 89
unrank() (sage.sets.set_from_iterator.EnumeratedSetFromIterator method), 39
upper() (sage.sets.real_set.InternalRealInterval method), 95
upper() (sage.sets.real_set.RealSet method), 109
upper_closed() (sage.sets.real_set.InternalRealInterval method), 95
upper_open() (sage.sets.real_set.InternalRealInterval method), 95

V
values() (sage.sets.family.FiniteFamily method), 10

W
wrapped_class (sage.sets.cartesian_product.CartesianProduct.Element attribute), 2

Z
zip() (sage.sets.family.AbstractFamily method), 4

Index