Discrete Valuations and Discrete Pseudo-Valuations

Release 10.2

The Sage Development Team

CONTENTS

1 High-Level Interface 1
2 Low-Level Interface 3
3 Mac Lane Approximants 5
4 References 7
5 More Details 9
6 Indices and Tables 105
Python Module Index 107
Index 109

HIGH-LEVEL INTERFACE

Valuations can be defined conveniently on some Sage rings such as p-adic rings and function fields.

1.1 p -adic valuations

Valuations on number fields can be easily specified if they uniquely extend the valuation of a rational prime:

```
sage: v = QQ.valuation(2)
sage: v(1024)
10
```

They are normalized such that the rational prime has valuation 1:

```
sage: K.<a> = NumberField(x^2 + x + 1)
sage: v = K.valuation(2)
sage: v(1024)
10
```

If there are multiple valuations over a prime, they can be obtained by extending a valuation from a smaller ring:

```
sage: K.<a> = NumberField(x^2 + x + 1)
sage: K.valuation(7)
Traceback (most recent call last):
ValueError: The valuation Gauss valuation induced by 7-adic valuation does not
\hookrightarrowapproximate a unique extension of 7-adic valuation with respect to x^2 + x + 1
sage: w,ww = QQ.valuation(7).extensions(K)
sage: w(a + 3), ww(a + 3)
(1, 0)
sage: w(a + 5), ww (a + 5)
(0, 1)
```


1.2 Valuations on Function Fields

Similarly, valuations can be defined on function fields:

```
sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(x)
sage: v(1/x)
-1
sage: v = K.valuation(1/x)
sage: v(1/x)
1
```

On extensions of function fields, valuations can be created by providing a prime on the underlying rational function field when the extension is unique:

```
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = L.valuation(x)
sage: v(x)
1
```

Valuations can also be extended from smaller function fields:

```
sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(x - 4)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v.extensions(L)
[[ (x - 4)-adic valuation, v(y + 2) = 1 ]-adic valuation,
[ (x - 4)-adic valuation, v(y - 2) = 1 ]-adic valuation]
```


LOW-LEVEL INTERFACE

2.1 Mac Lane valuations

Internally, all the above is backed by the algorithms described in [Mac1936I] and [Mac1936II]. Let us consider the extensions of K.valuation ($\mathrm{x}-4$) to the field L above to outline how this works internally.

First, the valuation on K is induced by a valuation on $\mathbf{Q}[x]$. To construct this valuation, we start from the trivial valuation on
Q and consider its induced Gauss valuation on
$Q[x]$, i.e., the valuation that assigns to a polynomial the minimum of the coefficient valuations:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))
```

The Gauss valuation can be augmented by specifying that $x-4$ has valuation 1 :

```
sage: v = v.augmentation(x - 4, 1); v
[ Gauss valuation induced by Trivial valuation on Rational Field, v(x - 4) = 1 ]
```

This valuation then extends uniquely to the fraction field:

```
sage: K.<x> = FunctionField(QQ)
sage: v = v.extension(K); v
(x - 4)-adic valuation
```

Over the function field we repeat the above process, i.e., we define the Gauss valuation induced by it and augment it to approximate an extension to L :

```
sage: R.<y> = K[]
sage: w = GaussValuation(R, v)
sage: w = w.augmentation(y - 2, 1); w
[ Gauss valuation induced by (x - 4)-adic valuation, v(y - 2) = 1 ]
sage: L.<y> = K.extension(y^2 - x)
sage: ww = w.extension(L); ww
[ (x - 4)-adic valuation, v(y - 2) = 1 ]-adic valuation
```


2.2 Limit valuations

In the previous example the final valuation ww is not merely given by evaluating w on the ring $K[y]$:

```
sage: ww (y^2 - x)
+Infinity
sage: y = R.gen()
sage: w(y^2 - x)
1
```

Instead ww is given by a limit, i.e., an infinite sequence of augmentations of valuations:

```
sage: ww._base_valuation
[ Gauss valuation induced by (x - 4)-adic valuation, v(y - 2) = 1 , ... ]
```

The terms of this infinite sequence are computed on demand:

```
sage: ww._base_valuation._approximation
[ Gauss valuation induced by (x - 4)-adic valuation, v(y - 2) = 1 ]
sage: ww(y - 1/4*x - 1)
2
sage: ww._base_valuation._approximation
[ Gauss valuation induced by (x - 4)-adic valuation, v(y + 1/64*x^2 - 3/8*x - 3/4) = 3 ]
```


2.3 Non-classical valuations

Using the low-level interface we are not limited to classical valuations on function fields that correspond to points on the corresponding projective curves. Instead we can start with a non-trivial valuation on the field of constants:

```
sage: v = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: w = GaussValuation(R, v) # v is not trivial
sage: K.<x> = FunctionField(QQ)
sage: w = w.extension(K)
sage: w.residue_field()
Rational function field in x over Finite Field of size 2
```


MAC LANE APPROXIMANTS

The main tool underlying this package is an algorithm by Mac Lane to compute, starting from a Gauss valuation on a polynomial ring and a monic squarefree polynomial G, approximations to the limit valuation which send G to infinity:

```
sage: v = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: f = x^5 + 3**^4 + 5* (^^3 + 8**^2 + 6*x + 12
sage: v.mac_lane_approximants(f) # random output (order may vary)
[[ Gauss valuation induced by 2-adic valuation, v(x^2 + x + 1) = 3 ],
    [ Gauss valuation induced by 2-adic valuation, v(x) = 1/2 ],
    [ Gauss valuation induced by 2-adic valuation, v(x) = 1 ]]
```

From these approximants one can already see the residual degrees and ramification indices of the corresponding extensions. The approximants can be pushed to arbitrary precision, corresponding to a factorization of f :

```
sage: v.mac_lane_approximants(f, required_precision=10) # random output
[[ Gauss valuation induced by 2-adic valuation, v(x^2 + 193*x + 13/21) = 10 ],
    [ Gauss valuation induced by 2-adic valuation, v(x + 86) = 10 ],
    [ Gauss valuation induced by 2-adic valuation, v(x) = 1/2, v( }\mp@subsup{\textrm{x}}{}{\wedge}2+36/11*x+2/17)=11\mp@code{*
    ๑]]
```


REFERENCES

The theory was originally described in [Mac1936I] and [Mac1936II]. A summary and some algorithmic details can also be found in Chapter 4 of [Rüt2014].

MORE DETAILS

5.1 Value groups of discrete valuations

This file defines additive sub(semi-)groups of \mathbf{Q} and related structures.

AUTHORS:

- Julian Rüth (2013-09-06): initial version

EXAMPLES:

```
sage: v = ZZ.valuation(2)
sage: v.value_group()
Additive Abelian Group generated by 1
sage: v.value_semigroup()
Additive Abelian Semigroup generated by 1
```

class sage.rings.valuation.value_group.DiscreteValuationCodomain
Bases: UniqueRepresentation, Parent
The codomain of discrete valuations, the rational numbers extended by $\pm \infty$.
EXAMPLES:
sage: from sage.rings.valuation.value_group import DiscreteValuationCodomain
sage: C = DiscreteValuationCodomain(); C
Codomain of Discrete Valuations
class sage.rings.valuation.value_group.DiscreteValueGroup(generator)
Bases: UniqueRepresentation, Parent
The value group of a discrete valuation, an additive subgroup of \mathbf{Q} generated by generator.
INPUT:

- generator - a rational number

Note: We do not rely on the functionality provided by additive abelian groups in Sage since these require the underlying set to be the integers. Therefore, we roll our own Z-module here. We could have used AdditiveAbelianGroupWrapper here, but it seems to be somewhat outdated. In particular, generic group functionality should now come from the category and not from the super-class. A facade of Q appeared to be the better approach.

EXAMPLES:

```
sage: from sage.rings.valuation.value_group import DiscreteValueGroup
sage: D1 = DiscreteValueGroup(0); D1
Trivial Additive Abelian Group
sage: D2 = DiscreteValueGroup(4/3); D2
Additive Abelian Group generated by 4/3
sage: D3 = DiscreteValueGroup(-1/3); D3
Additive Abelian Group generated by 1/3
```


denominator ()

Return the denominator of a generator of this group.
EXAMPLES:

```
sage: from sage.rings.valuation.value_group import DiscreteValueGroup
sage: DiscreteValueGroup(3/8).denominator()
8
```

gen()

Return a generator of this group.
EXAMPLES:

```
sage: from sage.rings.valuation.value_group import DiscreteValueGroup
sage: DiscreteValueGroup(-3/8).gen()
3/8
```

index (other)
Return the index of other in this group.

INPUT:

- other - a subgroup of this group

EXAMPLES:

```
sage: from sage.rings.valuation.value_group import DiscreteValueGroup
sage: DiscreteValueGroup(3/8).index(DiscreteValueGroup(3))
8
sage: DiscreteValueGroup(3).index(DiscreteValueGroup(3/8))
Traceback (most recent call last):
...
ValueError: other must be a subgroup of this group
sage: DiscreteValueGroup(3).index(DiscreteValueGroup(0))
Traceback (most recent call last):
...
ValueError: other must have finite index in this group
sage: DiscreteValueGroup(0).index(DiscreteValueGroup(0))
1
sage: DiscreteValueGroup(0).index(DiscreteValueGroup(3))
Traceback (most recent call last):
ValueError: other must be a subgroup of this group
```


is_trivial()

Return whether this is the trivial additive abelian group.

EXAMPLES:

```
sage: from sage.rings.valuation.value_group import DiscreteValueGroup
```

sage: DiscreteValueGroup(-3/8).is_trivial()
False
sage: DiscreteValueGroup(0).is_trivial()
True

numerator ()

Return the numerator of a generator of this group.
EXAMPLES:
sage: from sage.rings.valuation.value_group import DiscreteValueGroup sage: DiscreteValueGroup (3/8).numerator()
3
some_elements()
Return some typical elements in this group.
EXAMPLES:

```
sage: from sage.rings.valuation.value_group import DiscreteValueGroup
sage: DiscreteValueGroup(-3/8).some_elements()
[3/8, -3/8, 0, 42, 3/2, -3/2, 9/8, -9/8]
```

class sage.rings.valuation.value_group.DiscreteValueSemigroup(generators)
Bases: UniqueRepresentation, Parent
The value semigroup of a discrete valuation, an additive subsemigroup of \mathbf{Q} generated by generators.
INPUT:

- generators - rational numbers

EXAMPLES:

```
sage: from sage.rings.valuation.value_group import DiscreteValueSemigroup
sage: D1 = DiscreteValueSemigroup(0); D1
Trivial Additive Abelian Semigroup
sage: D2 = DiscreteValueSemigroup(4/3); D2
Additive Abelian Semigroup generated by 4/3
sage: D3 = DiscreteValueSemigroup([-1/3, 1/2]); D3
Additive Abelian Semigroup generated by -1/3, 1/2
```

gens()

Return the generators of this semigroup.
EXAMPLES:

```
sage: from sage.rings.valuation.value_group import DiscreteValueSemigroup
sage: DiscreteValueSemigroup(-3/8).gens()
(-3/8,)
```


is_group()

Return whether this semigroup is a group.
EXAMPLES:

```
sage: from sage.rings.valuation.value_group import DiscreteValueSemigroup
sage: DiscreteValueSemigroup(1).is_group()
False
sage: D = DiscreteValueSemigroup([-1, 1])
sage: D.is_group()
True
```

Invoking this method also changes the category of this semigroup if it is a group:

```
sage: D in AdditiveMagmas().AdditiveAssociative().AdditiveUnital().
\rightarrow \text { AdditiveInverse()}
True
```

is_trivial()

Return whether this is the trivial additive abelian semigroup.
EXAMPLES:

```
sage: from sage.rings.valuation.value_group import DiscreteValueSemigroup
sage: DiscreteValueSemigroup(-3/8).is_trivial()
False
sage: DiscreteValueSemigroup([]).is_trivial()
True
```

some_elements()

Return some typical elements in this semigroup.
EXAMPLES:

```
sage: from sage.rings.valuation.value_group import DiscreteValueSemigroup
sage: list(DiscreteValueSemigroup([-3/8,1/2]).some_elements()) #
->needs sage.numerical.mip
[0, -3/8, 1/2, ...]
```


5.2 Discrete valuations

This file defines abstract base classes for discrete (pseudo-)valuations.

AUTHORS:

- Julian Rüth (2013-03-16): initial version

EXAMPLES:

Discrete valuations can be created on a variety of rings:

```
sage: ZZ.valuation(2)
2-adic valuation
sage: GaussianIntegers().valuation(3) #ь
\hookrightarrowneeds sage.rings.number_field
3-adic valuation
sage: QQ.valuation(5)
5-adic valuation
```

```
sage: Zp(7).valuation()
7-adic valuation
```

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
sage: K.valuation(x)
(x)-adic valuation
sage: K.valuation(x^2 + 1)
(x^2 + 1)-adic valuation
sage: K.valuation(1/x)
Valuation at the infinite place
```

```
sage: R.<x> = QQ[]
sage: v = QQ.valuation(2)
sage: w = GaussValuation(R, v)
sage: w.augmentation(x, 3)
[ Gauss valuation induced by 2-adic valuation, v(x) = 3 ]
```

We can also define discrete pseudo-valuations, i.e., discrete valuations that send more than just zero to infinity:

```
sage: w.augmentation(x, infinity)
[ Gauss valuation induced by 2-adic valuation, v(x) = +Infinity ]
```

```
class sage.rings.valuation.valuation.DiscretePseudoValuation(parent)
```


Bases: Morphism

Abstract base class for discrete pseudo-valuations, i.e., discrete valuations which might send more that just zero to infinity.

INPUT:

- domain - an integral domain

EXAMPLES:

```
sage: v = ZZ.valuation(2); v # indirect doctest
2-adic valuation
```


is_equivalent (f, g)

Return whether f and g are equivalent.
EXAMPLES:

```
sage: v = QQ.valuation(2)
sage: v.is_equivalent(2, 1)
False
sage: v.is_equivalent(2, -2)
True
sage: v.is_equivalent(2, 0)
False
sage: v.is_equivalent(0, 0)
True
```

```
class sage.rings.valuation.valuation.DiscreteValuation(parent)
```

Bases: DiscretePseudoValuation
Abstract base class for discrete valuations.

EXAMPLES:

```
sage: v = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, v)
sage: w = v.augmentation(x, 1337); w # indirect doctest
[ Gauss valuation induced by 2-adic valuation, v(x) = 1337 ]
```


is_discrete_valuation()

Return whether this valuation is a discrete valuation.
EXAMPLES:

```
sage: v = valuations.TrivialValuation(ZZ)
sage: v.is_discrete_valuation()
True
```

mac_lane_approximant (G, valuation, approximants=None)
Return the approximant from mac_lane_approximants() for G which is approximated by or approximates valuation.

INPUT:

- G - a monic squarefree integral polynomial in a univariate polynomial ring over the domain of this valuation
- valuation - a valuation on the parent of G
- approximants - the output of mac_lane_approximants(). If not given, it is computed.

EXAMPLES:

```
sage: v = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: G = x^2 + 1
```

We can select an approximant by approximating it:

```
sage: w = GaussValuation(R, v).augmentation(x + 1, 1/2)
sage: v.mac_lane_approximant(G, w) #
\rightarrow \text { needs sage.geometry.polyhedron sage.rings.padics}
[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2 ]
```

As long as this is the only matching approximant, the approximation can be very coarse:

```
sage: w = GaussValuation(R, v)
sage: v.mac_lane_approximant(G, w) #U
\rightarrow \text { needs sage.geometry.polyhedron sage.rings.padics}
[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2 ]
```

Or it can be very specific:

```
sage: w = GaussValuation(R, v).augmentation(x + 1, 1/2).augmentation(G,
\hookrightarrowinfinity)
sage: v.mac_lane_approximant(G, w) #_
\mapsto \text { needs sage.geometry.polyhedron sage.rings.padics}
[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2 ]
```

But it must be an approximation of an approximant:

```
sage: w = GaussValuation(R, v).augmentation(x, 1/2)
sage: v.mac_lane_approximant(G, w)
Traceback (most recent call last):
ValueError: The valuation
[ Gauss valuation induced by 2-adic valuation, v(x) = 1/2 ] is
not an approximant for a valuation which extends 2-adic valuation
with respect to x^2 + 1 since the valuation of x^2 + 1
does not increase in every step
```

The valuation must single out one approximant:

```
sage: G = x^2 - 1
sage: w = GaussValuation(R, v)
sage: v.mac_lane_approximant(G, w) #_
\rightarrow \text { needs sage.geometry.polyhedron sage.rings.padics}
Traceback (most recent call last):
...
ValueError: The valuation Gauss valuation induced by 2-adic valuation
does not approximate a unique extension of 2-adic valuation
with respect to x^2 - 1
sage: w = GaussValuation(R, v).augmentation(x + 1, 1)
sage: v.mac_lane_approximant(G, w) #
\rightarrow \text { needs sage.geometry.polyhedron sage.rings.padics}
Traceback (most recent call last):
ValueError: The valuation
[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1 ] does not
approximate a unique extension of 2-adic valuation with respect to x^2 - 1
sage: w = GaussValuation(R, v).augmentation(x + 1, 2)
sage: v.mac_lane_approximant(G, w) #
\rightarrow \text { needs sage.geometry.polyhedron sage.rings.padics}
[ Gauss valuation induced by 2-adic valuation, v(x + 1) = +Infinity ]
sage: w = GaussValuation(R, v).augmentation(x + 3, 2)
sage: v.mac_lane_approximant(G, w) #
\rightarrow \text { needs sage.geometry.polyhedron sage.rings.padics}
[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1 ]
```

mac_lane_approximants(G, assume_squarefree=False, require_final_EF=True, required_precision=-1, require_incomparability=False, require_maximal_degree=False, algorithm='serial')
Return approximants on $K[x]$ for the extensions of this valuation to $L=K[x] /(G)$.

If G is an irreducible polynomial, then this corresponds to extensions of this valuation to the completion of L.

INPUT:

- G - a monic squarefree integral polynomial in a univariate polynomial ring over the domain of this valuation
- assume_squarefree - a boolean (default: False), whether to assume that G is squarefree. If True, the squafreeness of G is not verified though it is necessary when require_final_EF is set for the algorithm to terminate.
- require_final_EF - a boolean (default: True); whether to require the returned key polynomials to be in one-to-one correspondance to the extensions of this valuation to L and require them to have the ramification index and residue degree of the valuations they correspond to.
- required_precision - a number or infinity (default: -1); whether to require the last key polynomial of the returned valuations to have at least that valuation.
- require_incomparability - a boolean (default: False); whether to require the returned valuations to be incomparable (with respect to the partial order on valuations defined by comparing them pointwise.)
- require_maximal_degree - a boolean (default: False); whether to require the last key polynomial of the returned valuation to have maximal degree. This is most relevant when using this algorithm to compute approximate factorizations of G , when set to True, the last key polynomial has the same degree as the corresponding factor.
- algorithm - one of "serial" or "parallel" (default: "serial"); whether or not to parallelize the algorithm

EXAMPLES:

```
sage: v = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: v.mac_lane_approximants(x^2 + 1) #_
\mp@code{needs sage.geometry.polyhedron}
[[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2 ]]
sage: v.mac_lane_approximants(x^2 + 1, required_precision=infinity) #
\rightarrow \text { needs sage.geometry.polyhedron}
[[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2,
    v(x^2 + 1) = +Infinity ]]
sage: v.mac_lane_approximants(x^2 + x + 1)
[[ Gauss valuation induced by 2-adic valuation, v(x^2 + x + 1) = +Infinity ]]
```

Note that G does not need to be irreducible. Here, we detect a factor $x+1$ and an approximate factor $x+1$ (which is an approximation to $x-1$):

```
sage: v.mac_lane_approximants(x^2 - 1)
    #\smile
\rightarrow n e e d s ~ s a g e . g e o m e t r y . p o l y h e d r o n ~ s a g e . r i n g s . p a d i c s
[[ Gauss valuation induced by 2-adic valuation, v(x + 1) = +Infinity ],
[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1 ]]
```

However, it needs to be squarefree:

```
sage: v.mac_lane_approximants(x^2)
Traceback (most recent call last):
ValueError: G must be squarefree
```


montes_factorization(G, assume_squarefree=False, required_precision=None)

Factor G over the completion of the domain of this valuation.

INPUT:

- G - a monic polynomial over the domain of this valuation
- assume_squarefree - a boolean (default: False), whether to assume G to be squarefree
- required_precision - a number or infinity (default: infinity); if infinity, the returned polynomials are actual factors of G, otherwise they are only factors with precision at least required_precision.

ALGORITHM:

We compute mac_lane_approximants() with required_precision. The key polynomials approximate factors of G. This can be very slow unless required_precision is set to zero. Single factor lifting could improve this significantly.

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: k = Qp(5,4)
sage: v = k.valuation()
sage: R.<x> = k[]
sage: G = x^2 + 1
sage: v.montes_factorization(G) #
~needs sage.geometry.polyhedron
((1 + 0(5^4))*x + 2 + 5 + 2*5^2 + 5^3 + 0(5^4))
* ((1 + 0(5^4))*x + 3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4))
```

The computation might not terminate over incomplete fields (in particular because the factors can not be represented there):

```
sage: R.<x> = QQ[]
sage: v = QQ.valuation(2)
sage: v.montes_factorization(x^6 - 1) #_
needs sage.geometry.polyhedron sage.rings.padics
(x-1)* (x+1)* (x^2 - x + 1) * ( }\mp@subsup{x}{}{\wedge}2+x+1
sage: v.montes_factorization(x^7 - 1) # not tested #_
needs sage.rings.padics
sage: v.montes_factorization(x^7 - 1, required_precision=5) #s
\rightarrow \text { needs sage.geometry.polyhedron sage.rings.padics}
(x-1)* (x^3-5* (x^2 - 6*x - 1) * ( }\mp@subsup{x}{}{\wedge}3+6*\mp@subsup{x}{}{\wedge}2+5*x-1
```


REFERENCES:

The underlying algorithm is described in [Mac1936II] and thoroughly analyzed in [GMN2008].

class sage.rings.valuation.valuation.InfiniteDiscretePseudoValuation(parent)

Bases: DiscretePseudoValuation
Abstract base class for infinite discrete pseudo-valuations, i.e., discrete pseudo-valuations which are not discrete valuations.

EXAMPLES:

```
sage: v = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, v)
sage: w = v.augmentation(x, infinity); w # indirect doctest
[ Gauss valuation induced by 2-adic valuation, v(x) = +Infinity ]
```


is_discrete_valuation()

Return whether this valuation is a discrete valuation.
EXAMPLES:

```
sage: v = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, v)
sage: v.is_discrete_valuation()
True
sage: w = v.augmentation(x, infinity)
sage: w.is_discrete_valuation()
False
```

class sage.rings.valuation.valuation.MacLaneApproximantNode(valuation, parent, ef, principal_part_bound, coefficients, valuations)
Bases: object
A node in the tree computed by DiscreteValuation.mac_lane_approximants()
Leaves in the computation of the tree of approximants mac_lane_approximants(). Each vertex consists of a tuple ($v, e f, p, c o e f f s, v a l s$) where v is an approximant, i.e., a valuation, ef is a boolean, p is the parent of this vertex, and coeffs and vals are cached values. (Only v and ef are relevant, everything else are caches/debug info.) The boolean ef denotes whether v already has the final ramification index E and residue degree F of this approximant. An edge $\mathrm{V}-\mathrm{P}$ represents the relation $\mathrm{P} . \mathrm{v} \leq \mathrm{V} . \mathrm{v}$ (pointwise on the polynomial ring $\mathrm{K}[\mathrm{x}]$) between the valuations.

class sage.rings.valuation.valuation.NegativeInfiniteDiscretePseudoValuation(parent)

Bases: InfiniteDiscretePseudoValuation

Abstract base class for pseudo-valuations which attain the value ∞ and $-\infty$, i.e., whose domain contains an element of valuation ∞ and its inverse.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ)).augmentation(x,七
Ginfinity)
sage: K.<x> = FunctionField(QQ)
sage: w = K.valuation(v)
```


is_negative_pseudo_valuation()

Return whether this valuation attains the value $-\infty$.
EXAMPLES:

```
sage: R.<x> = QQ[]
sage: u = GaussValuation(R, valuations.TrivialValuation(QQ))
sage: v = u.augmentation(x, infinity)
```

```
sage: v.is_negative_pseudo_valuation()
False
sage: K.<x> = FunctionField(QQ)
sage: w = K.valuation(v)
sage: w.is_negative_pseudo_valuation()
True
```


5.3 Spaces of valuations

This module provides spaces of exponential pseudo-valuations on integral domains. It currently only provides support for such valuations if they are discrete, i.e., their image is a discrete additive subgroup of the rational numbers extended by ∞.

AUTHORS:

- Julian Rüth (2016-10-14): initial version

EXAMPLES:

```
sage: QQ.valuation(2).parent()
Discrete pseudo-valuations on Rational Field
```

Note: Note that many tests not only in this module do not create instances of valuations directly since this gives the wrong inheritance structure on the resulting objects:

```
sage: from sage.rings.valuation.valuation_space import DiscretePseudoValuationSpace
sage: from sage.rings.valuation.trivial_valuation import TrivialDiscretePseudoValuation
sage: H = DiscretePseudoValuationSpace(QQ)
sage: v = TrivialDiscretePseudoValuation(H)
sage: v._test_category()
Traceback (most recent call last):
AssertionError: False is not true
```

Instead, the valuations need to be created through the __make_element_class__ of the containing space:

```
sage: from sage.rings.valuation.trivial_valuation import TrivialDiscretePseudoValuation
sage: v = H.__make_element_class__(TrivialDiscretePseudoValuation) (H)
sage: v._test_category()
```

The factories such as TrivialPseudoValuation provide the right inheritance structure:

```
sage: v = valuations.TrivialPseudoValuation(QQ)
sage: v._test_category()
```

class sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace(domain)
Bases: UniqueRepresentation, Homset
The space of discrete pseudo-valuations on domain.
EXAMPLES:

```
sage: from sage.rings.valuation.valuation_space import DiscretePseudoValuationSpace
sage: H = DiscretePseudoValuationSpace(QQ)
sage: QQ.valuation(2) in H
True
```

Note: We do not distinguish between the space of discrete valuations and the space of discrete pseudo-valuations. This is entirely for practical reasons: We would like to model the fact that every discrete valuation is also a discrete pseudo-valuation. At first, it seems to be sufficient to make sure that the in operator works which can essentially be achieved by overriding _element_constructor_ of the space of discrete pseudo-valuations to accept discrete valuations by just returning them. Currently, however, if one does not change the parent of an element in _element_constructor_ to self, then one cannot register that conversion as a coercion. Consequently, the operators <= and >= cannot be made to work between discrete valuations and discrete pseudovaluations on the same domain (because the implementation only calls _richcmp if both operands have the same parent.) Of course, we could override __ge__ and __le__ but then we would likely run into other surprises. So in the end, we went for a single homspace for all discrete valuations (pseudo or not) as this makes the implementation much easier.

Todo: The comparison problem might be fixed by github issue \#22029 or similar.

class ElementMethods

Bases: object
Provides methods for discrete pseudo-valuations that are added automatically to valuations in this space.

EXAMPLES:

Here is an example of a method that is automagically added to a discrete valuation:

```
sage: from sage.rings.valuation.valuation_space import,
    DiscretePseudoValuationSpace
sage: H = DiscretePseudoValuationSpace(QQ)
sage: QQ.valuation(2).is_discrete_pseudo_valuation() # indirect doctest
True
```

The methods will be provided even if the concrete type is not created with __make_element_class__:

```
sage: from sage.rings.valuation.valuation import DiscretePseudoValuation
sage: m = DiscretePseudoValuation(H)
sage: m.parent() is H
True
sage: m.is_discrete_pseudo_valuation()
True
```

However, the category framework advises you to use inheritance:

```
sage: m._test_category()
Traceback (most recent call last):
AssertionError: False is not true
```

Using __make_element_class__, makes your concrete valuation inherit from this class:

```
sage: m = H.__make_element_class__(DiscretePseudoValuation)(H)
sage: m._test_category()
```

change_domain (ring)
Return this valuation over ring.
Unlike extension() or restriction(), this might not be completely sane mathematically. It is essentially a conversion of this valuation into another space of valuations.

EXAMPLES:

```
sage: v = QQ.valuation(3)
sage: v.change_domain(ZZ)
3-adic valuation
```

element_with_valuation (s)

Return an element in the domain of this valuation with valuation s.
EXAMPLES:

```
sage: v = ZZ.valuation(2)
sage: v.element_with_valuation(10)
1024
```

extension (ring)
Return the unique extension of this valuation to ring.
EXAMPLES

```
sage: v = ZZ.valuation(2)
sage: w = v.extension(QQ)
sage: w.domain()
Rational Field
```

extensions (ring)
Return the extensions of this valuation to ring.
EXAMPLES:

```
sage: v = ZZ.valuation(2)
sage: v.extensions(QQ)
[2-adic valuation]
```

inverse(x, precision)
Return an approximate inverse of x .
The element returned is such that the product differs from 1 by an element of valuation at least precision.

INPUT:

- x - an element in the domain of this valuation
- precision - a rational or infinity

EXAMPLES:

```
sage: v = ZZ.valuation(2)
sage: x = 3
sage: y = v.inverse(3, 2); y
3
sage: x*y - 1
8
```

This might not be possible for elements of positive valuation:

```
sage: v.inverse(2, 2)
Traceback (most recent call last):
ValueError: element has no approximate inverse in this ring
```

Of course this always works over fields:

```
sage: v = QQ.valuation(2)
sage: v.inverse(2, 2)
1/2
```


is_discrete_pseudo_valuation()

Return whether this valuation is a discrete pseudo-valuation.
EXAMPLES:

```
sage: QQ.valuation(2).is_discrete_pseudo_valuation()
True
```


is_discrete_valuation()

Return whether this valuation is a discrete valuation, i.e., whether it is a discrete pseudo valuation that only sends zero to ∞.
EXAMPLES:

```
sage: QQ.valuation(2).is_discrete_valuation()
True
```


is_negative_pseudo_valuation()

Return whether this valuation is a discrete pseudo-valuation that does attain $-\infty$, i.e., it is non-trivial and its domain contains an element with valuation ∞ that has an inverse.

EXAMPLES:

```
sage: QQ.valuation(2).is_negative_pseudo_valuation()
```

False

is_trivial()

Return whether this valuation is trivial, i.e., whether it is constant ∞ or constant zero for everything but the zero element.

Subclasses need to override this method if they do not implement uniformizer().
EXAMPLES:

```
sage: QQ.valuation(7).is_trivial()
False
```

$\operatorname{lift}(X)$
Return a lift of X in the domain which reduces down to X again via reduce().
EXAMPLES:

```
sage: v = QQ.valuation(2)
sage: v.lift(v.residue_ring().one())
1
```

lower_bound (x)
Return a lower bound of this valuation at x .
Use this method to get an approximation of the valuation of x when speed is more important than accuracy.

EXAMPLES:

```
sage: v = ZZ.valuation(2)
sage: v.lower_bound(2^10)
10
```

reduce (x)
Return the image of x in the residue_ring() of this valuation.
EXAMPLES:

```
sage: v = QQ.valuation(2)
sage: v.reduce(2)
0
sage: v.reduce(1)
1
sage: v.reduce(1/3)
1
sage: v.reduce(1/2)
Traceback (most recent call last):
ValueError: reduction is only defined for elements of non-negative valuation
```

residue_field()
Return the residue field of this valuation, i.e., the field of fractions of the residue_ring(), the elements of non-negative valuation modulo the elements of positive valuation.

EXAMPLES:

```
sage: QQ.valuation(2).residue_field()
Finite Field of size 2
sage: valuations.TrivialValuation(QQ).residue_field()
Rational Field
sage: valuations.TrivialValuation(ZZ).residue_field()
Rational Field
sage: GaussValuation(ZZ['x'], ZZ.valuation(2)).residue_field()
Rational function field in x over Finite Field of size 2
```

residue_ring()

Return the residue ring of this valuation, i.e., the elements of non-negative valuation modulo the elements of positive valuation. EXAMPLES:

```
sage: QQ.valuation(2).residue_ring()
Finite Field of size 2
sage: valuations.TrivialValuation(QQ).residue_ring()
Rational Field
```

Note that a residue ring always exists, even when a residue field may not:

```
sage: valuations.TrivialPseudoValuation(QQ).residue_ring()
Quotient of Rational Field by the ideal (1)
sage: valuations.TrivialValuation(ZZ).residue_ring()
Integer Ring
sage: GaussValuation(ZZ['x'], ZZ.valuation(2)).residue_ring()
Univariate Polynomial Ring in x over Finite Field of size 2...
```

restriction(ring)
Return the restriction of this valuation to ring.
EXAMPLES:

```
sage: v = QQ.valuation(2)
sage: w = v.restriction(ZZ)
sage: w.domain()
Integer Ring
```

scale(scalar)
Return this valuation scaled by scalar.

INPUT:

- scalar - a non-negative rational number or infinity

EXAMPLES:

```
sage: v = ZZ.valuation(3)
sage: w = v.scale(3)
sage: w(3)
3
```

Scaling can also be done through multiplication with a scalar:

```
sage: w/3 == v
True
```

Multiplication by zero produces the trivial discrete valuation:

```
sage: w = 0%v
sage: w(3)
0
sage: w(0)
+Infinity
```

Multiplication by infinity produces the trivial discrete pseudo-valuation:

```
sage: w = infinity*v
sage: w(3)
+Infinity
```

(continued from previous page)

```
sage: w(0)
```

+Infinity
separating_element (others)
Return an element in the domain of this valuation which has positive valuation with respect to this valuation but negative valuation with respect to the valuations in others.

EXAMPLES:

```
sage: v2 = QQ.valuation(2)
sage: v3 = QQ.valuation(3)
sage: v5 = QQ.valuation(5)
sage: v2.separating_element([v3,v5])
4/15
```

shift (x, s)
Shift x in its expansion with respect to uniformizer() by s "digits".
For non-negative s , this just returns x multiplied by a power of the uniformizer π.
For negative s, it does the same but when not over a field, it drops coefficients in the π-adic expansion which have negative valuation.

EXAMPLES:

```
sage: v = ZZ.valuation(2)
sage: v.shift(1, 10)
1024
sage: v.shift(11, -1)
5
```

For some rings, there is no clear π-adic expansion. In this case, this method performs negative shifts by iterated division by the uniformizer and substraction of a lift of the reduction:

```
sage: R.<x> = ZZ[]
sage: v = ZZ.valuation(2)
sage: w = GaussValuation(R, v)
sage: w.shift(x, 1)
2*x
sage: w.shift(2*x, -1)
x
sage: w.shift(x + 2*x^2, -1)
x^2
```

simplify (x, error=None, force=False)
Return a simplified version of x .
Produce an element which differs from x by an element of valuation strictly greater than the valuation of x (or strictly greater than error if set.)

If force is not set, then expensive simplifications may be avoided.
EXAMPLES:

```
sage: v = ZZ.valuation(2)
sage: v.simplify(6, force=True)
2
sage: v.simplify(6, error=0, force=True)
0
```


uniformizer ()

Return an element in the domain which has positive valuation and generates the value group of this valuation.

EXAMPLES:

```
sage: QQ.valuation(11).uniformizer()
11
```

Trivial valuations have no uniformizer:

```
sage: from sage.rings.valuation.valuation_space import
๑DiscretePseudoValuationSpace
sage: v = DiscretePseudoValuationSpace(QQ).an_element()
sage: v.is_trivial()
True
sage: v.uniformizer()
Traceback (most recent call last):
ValueError: Trivial valuations do not define a uniformizing element
```

upper_bound (x)
Return an upper bound of this valuation at x .
Use this method to get an approximation of the valuation of x when speed is more important than accuracy.

EXAMPLES:

```
sage: v = ZZ.valuation(2)
sage: v.upper_bound(2^10)
10
```

value_group ()
Return the value group of this discrete pseudo-valuation, the discrete additive subgroup of the rational numbers which is generated by the valuation of the uniformizer().
EXAMPLES:

```
sage: QQ.valuation(2).value_group()
Additive Abelian Group generated by 1
```

A pseudo-valuation that is ∞ everywhere, does not have a value group:

```
sage: from sage.rings.valuation.valuation_space import
๑DiscretePseudoValuationSpace
sage: v = DiscretePseudoValuationSpace(QQ).an_element()
sage: v.value_group()
Traceback (most recent call last):
```

...
ValueError: The trivial pseudo-valuation that is infinity everywhere does
\leftrightarrow not have a value group.
value_semigroup()
Return the value semigroup of this discrete pseudo-valuation, the additive subsemigroup of the rational numbers which is generated by the valuations of the elements in the domain.

EXAMPLES:

Most commonly, in particular over fields, the semigroup is the group generated by the valuation of the uniformizer:

```
sage: G = QQ.valuation(2).value_semigroup(); G
Additive Abelian Semigroup generated by -1, 1
sage: G in AdditiveMagmas().AdditiveAssociative().AdditiveUnital().
    \hookrightarrow \text { AdditiveInverse()}
True
```

If the domain is a discrete valuation ring, then the semigroup consists of the positive elements of the value_group ():

```
sage: Zp(2).valuation().value_semigroup()
Additive Abelian Semigroup generated by 1
```

The semigroup can have a more complicated structure when the uniformizer is not in the domain:

```
sage: v = ZZ.valuation(2)
sage: R.<x> = ZZ[]
sage: w = GaussValuation(R, v)
sage: u = w.augmentation(x, 5/3)
sage: u.value_semigroup()
Additive Abelian Semigroup generated by 1, 5/3
```


class sage.rings.valuation.valuation_space.ScaleAction

Bases: Action
Action of integers, rationals and the infinity ring on valuations by scaling it.
EXAMPLES:

```
sage: v = QQ.valuation(5)
sage: from operator import mul
sage: v.parent().get_action(ZZ, mul, self_on_left=False)
Left action by Integer Ring on Discrete pseudo-valuations on Rational Field
```


5.4 Trivial valuations

AUTHORS:

- Julian Rüth (2016-10-14): initial version

EXAMPLES:

```
sage: v = valuations.TrivialValuation(QQ); v
Trivial valuation on Rational Field
sage: v(1)
0
```

class sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation(parent)
Bases: TrivialDiscretePseudoValuation_base, InfiniteDiscretePseudoValuation
The trivial pseudo-valuation that is ∞ everywhere.
EXAMPLES:

```
sage: v = valuations.TrivialPseudoValuation(QQ); v
```

Trivial pseudo-valuation on Rational Field
$\operatorname{lift}(X)$
Return a lift of X to the domain of this valuation.
EXAMPLES:
sage: v = valuations.TrivialPseudoValuation(QQ)
sage: v.lift(v.residue_ring().zero())
0
reduce (x)
Reduce x modulo the positive elements of this valuation.
EXAMPLES:

```
sage: v = valuations.TrivialPseudoValuation(QQ)
```

sage: v.reduce(1)
0
residue_ring()
Return the residue ring of this valuation.
EXAMPLES:
sage: valuations.TrivialPseudoValuation(QQ).residue_ring()
Quotient of Rational Field by the ideal (1)
value_group()
Return the value group of this valuation.
EXAMPLES:
A trivial discrete pseudo-valuation has no value group:

```
sage: v = valuations.TrivialPseudoValuation(QQ)
sage: v.value_group()
Traceback (most recent call last):
ValueError: The trivial pseudo-valuation that is infinity everywhere does not
\leftrightarrow \text { have a value group.}
```

class sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation_base(parent)
Bases: DiscretePseudoValuation
Base class for code shared by trivial valuations.
EXAMPLES:

```
sage: v = valuations.TrivialPseudoValuation(ZZ); v
```

Trivial pseudo-valuation on Integer Ring

is_negative_pseudo_valuation()

Return whether this valuation attains the value $-\infty$.
EXAMPLES:
sage: v = valuations.TrivialPseudoValuation(QQ)
sage: v.is_negative_pseudo_valuation()
False
is_trivial()
Return whether this valuation is trivial.
EXAMPLES:

```
sage: v = valuations.TrivialPseudoValuation(QQ)
sage: v.is_trivial()
True
```

uniformizer()

Return a uniformizing element for this valuation.
EXAMPLES:

```
sage: v = valuations.TrivialPseudoValuation(ZZ)
```

sage: v.uniformizer()
Traceback (most recent call last):
...
ValueError: Trivial valuations do not define a uniformizing element

```
class sage.rings.valuation.trivial_valuation.TrivialDiscreteValuation(parent)
```

Bases: TrivialDiscretePseudoValuation_base, DiscreteValuation
The trivial valuation that is zero on non-zero elements.
EXAMPLES:

```
sage: v = valuations.TrivialValuation(QQ); v
```

Trivial valuation on Rational Field
extensions(ring)
Return the unique extension of this valuation to ring.
EXAMPLES:

```
sage: v = valuations.TrivialValuation(ZZ)
```

sage: v.extensions(QQ)
[Trivial valuation on Rational Field]
$\operatorname{lift}(X)$
Return a lift of X to the domain of this valuation.
EXAMPLES:

```
sage: v = valuations.TrivialValuation(QQ)
sage: v.lift(v.residue_ring().zero())
0
```

reduce (x)
Reduce x modulo the positive elements of this valuation.
EXAMPLES:

```
sage: v = valuations.TrivialValuation(QQ)
sage: v.reduce(1)
1
```

residue_ring()

Return the residue ring of this valuation.
EXAMPLES:

```
sage: valuations.TrivialValuation(QQ).residue_ring()
Rational Field
```


value_group()

Return the value group of this valuation.
EXAMPLES:
A trivial discrete valuation has a trivial value group:

```
sage: v = valuations.TrivialValuation(QQ)
sage: v.value_group()
Trivial Additive Abelian Group
```

class sage.rings.valuation.trivial_valuation.TrivialValuationFactory (clazz, parent, *args, **kwargs)
Bases: UniqueFactory
Create a trivial valuation on domain.
EXAMPLES:

```
sage: v = valuations.TrivialValuation(QQ); v
Trivial valuation on Rational Field
sage: v(1)
0
```


create_key(domain)

Create a key that identifies this valuation.
EXAMPLES:
sage: valuations.TrivialValuation(QQ) is valuations.TrivialValuation(QQ) \#」 \rightarrow indirect doctest
True
create_object(version, key, **extra_args)
Create a trivial valuation from key.
EXAMPLES:

```
sage: valuations.TrivialValuation(QQ) # indirect doctest
Trivial valuation on Rational Field
```


5.5 Gauss valuations on polynomial rings

This file implements Gauss valuations for polynomial rings, i.e. discrete valuations which assign to a polynomial the minimal valuation of its coefficients.

AUTHORS:

- Julian Rüth (2013-04-15): initial version

EXAMPLES:

A Gauss valuation maps a polynomial to the minimal valuation of any of its coefficients:

```
sage: R.<x> = QQ[]
sage: vQ = QQ.valuation(2)
sage: v = GaussValuation(R, v0); v
Gauss valuation induced by 2-adic valuation
sage: v(2*x + 2)
1
```

Gauss valuations can also be defined iteratively based on valuations over polynomial rings:

```
sage: v = v.augmentation(x, 1/4); v
[ Gauss valuation induced by 2-adic valuation, v(x) = 1/4 ]
sage: v = v.augmentation(x^4+2*x^3+2*x^2+2*x+2, 4/3); v
[ Gauss valuation induced by 2-adic valuation, v(x) = 1/4, v(x^4 + 2*x^3 + 2* (x^2 + 2*x +ь
\leftrightarrows2) = 4/3 ]
sage: S.<T> = R[]
sage: w = GaussValuation(S, v); w
Gauss valuation induced by [ Gauss valuation induced by 2-adic valuation, v(x) = 1/4,
Gv(x^4 + 2*x^3 + 2**^2 + 2*x + 2) = 4/3 ]
sage: w(2*T + 1)
0
```

class sage.rings.valuation.gauss_valuation.GaussValuationFactory
Bases: UniqueFactory
Create a Gauss valuation on domain.

INPUT:

- domain - a univariate polynomial ring
- v - a valuation on the base ring of domain, the underlying valuation on the constants of the polynomial ring (if unspecified take the natural valuation on the valued ring domain.)

EXAMPLES:

The Gauss valuation is the minimum of the valuation of the coefficients:

```
sage: v = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: w = GaussValuation(R, v)
sage: w(2)
1
sage: w(x)
0
sage: w(x + 2)
0
```

create_key (domain, $v=$ None)
Normalize and check the parameters to create a Gauss valuation.

```
create_object(version, key, **extra_args)
```

Create a Gauss valuation from normalized parameters.
class sage.rings.valuation.gauss_valuation.GaussValuation_generic (parent, v)
Bases: NonFinalInductiveValuation
A Gauss valuation on a polynomial ring domain.

INPUT:

- domain - a univariate polynomial ring over a valued ring R
- v - a discrete valuation on R

EXAMPLES:

```
sage: R = Zp (3,5)
sage: S.<x> = R[]
    #■
needs sage.libs.ntl
sage: v0 = R.valuation()
sage: v = GaussValuation(S, vQ); v #u
\leftrightarrowneeds sage.libs.ntl
Gauss valuation induced by 3-adic valuation
sage: S.<x> = QQ[]
sage: v = GaussValuation(S, QQ.valuation(5)); v
Gauss valuation induced by 5-adic valuation
```


E()

Return the ramification index of this valuation over its underlying Gauss valuation, i.e., 1 .
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.E()
1
```

F()
Return the degree of the residue field extension of this valuation over the Gauss valuation, i.e., 1 .
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.F()
1
```


augmentation_chain()

Return a list with the chain of augmentations down to the underlying Gauss valuation.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.augmentation_chain()
[Gauss valuation induced by 2-adic valuation]
```

change_domain (ring)
Return this valuation as a valuation over ring.
EXAMPLES:

```
sage: v = ZZ.valuation(2)
sage: R.<x> = ZZ[]
sage: w = GaussValuation(R, v)
sage: w.change_domain(QQ['x'])
Gauss valuation induced by 2-adic valuation
```

element_with_valuation (s)

Return a polynomial of minimal degree with valuation s.
EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: v.element_with_valuation(-2)
1/4
```

equivalence_unit (s, reciprocal=False)

Return an equivalence unit of valuation s.

INPUT:

- s-an element of the value_group ()
- reciprocal - a boolean (default: False); whether or not to return the equivalence unit as the equivalence_reciprocal () of the equivalence unit of valuation -s
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: S.<x> = Qp(3,5)[]
sage: v = GaussValuation(S)
sage: v.equivalence_unit(2)
3^2 + 0(3^7)
sage: v.equivalence_unit(-2)
3^-2 + 0(3^3)
```


extensions(ring)

Return the extensions of this valuation to ring.
EXAMPLES:

```
sage: v = ZZ.valuation(2)
sage: R.<x> = ZZ[]
sage: w = GaussValuation(R, v)
sage: w.extensions(GaussianIntegers()['x']) #
\eeds sage.rings.number_field
[Gauss valuation induced by 2-adic valuation]
```


is_gauss_valuation()

Return whether this valuation is a Gauss valuation.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.is_gauss_valuation()
True
```


is_trivial()

Return whether this is a trivial valuation (sending everything but zero to zero.)
EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))
sage: v.is_trivial()
True
```


lift (F)

Return a lift of F.
INPUT:

- F - a polynomial over the residue_ring() of this valuation

OUTPUT:
a (possibly non-monic) polynomial in the domain of this valuation which reduces to F
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: S.<x> = Qp(3,5)[]
sage: v = GaussValuation(S)
sage: f = x^2 + 2*x + 16
sage: F = v.reduce(f); F
x^2 + 2*x + 1
sage: g = v.lift(F); g
(1 + O(3^5))**^2 + (2 + O(3^5))*x + 1 + O(3^5)
sage: v.is_equivalent(f,g)
True
sage: g.parent() is v.domain()
True
```


See also:

reduce ()
lift_to_key (F)
Lift the irreducible polynomial F from the residue_ring() to a key polynomial over this valuation.
INPUT:

- F - an irreducible non-constant monic polynomial in residue_ring() of this valuation

OUTPUT:

A polynomial f in the domain of this valuation which is a key polynomial for this valuation and which, for a suitable equivalence unit R, satisfies that the reduction of $R f$ is F
EXAMPLES:

```
sage: R.<u> = QQ
sage: S.<x> = R[]
sage: v = GaussValuation(S, QQ.valuation(2))
sage: y = v.residue_ring().gen()
sage: f = v.lift_to_key(y^2 + y + 1); f
x^2 + x + 1
```


lower_bound (f)

Return an lower bound of this valuation at f .
Use this method to get an approximation of the valuation of f when speed is more important than accuracy.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.lower_bound(1024*x + 2)
1
sage: v(1024*x + 2)
1
```

monic_integral_model(G)
Return a monic integral irreducible polynomial which defines the same extension of the base ring of the domain as the irreducible polynomial G together with maps between the old and the new polynomial.

EXAMPLES:

```
sage: R.<x> = Qp(2, 5)[]
    #_
๑needs sage.libs.ntl
sage: v = GaussValuation(R) #s
\hookrightarrowneeds sage.libs.ntl
sage: v.monic_integral_model(5*x^2 + 1/2*x + 1/4) ##
\hookrightarrowneeds sage.libs.ntl
(Ring endomorphism of Univariate Polynomial Ring in x over 2-adic Field with
capped relative precision 5
    Defn: (1 + 0(2^5))*x |--> (2^-1 + 0(2^4))*x,
    Ring endomorphism of Univariate Polynomial Ring in x over 2-adic Field with}
capped relative precision 5
    Defn: (1 + 0(2^5))*x |--> (2 + 0(2^6))*x,
```


reduce $(f$, check=True, degree_bound=None, coefficients=None, valuations=None)
Return the reduction of f modulo this valuation.

INPUT:

- f - an integral element of the domain of this valuation
- check - whether or not to check whether f has non-negative valuation (default: True)
- degree_bound - an a-priori known bound on the degree of the result which can speed up the computation (default: not set)
- coefficients - the coefficients of f as produced by coefficients() or None (default: None); ignored
- valuations - the valuations of coefficients or None (default: None); ignored

OUTPUT:
A polynomial in the residue_ring() of this valuation.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: S.<x> = Qp(2,5)[]
sage: v = GaussValuation(S)
sage: f = x^2 + 2*x + 16
sage: v.reduce(f)
x^2
sage: v.reduce(f).parent() is v.residue_ring()
True
```

The reduction is only defined for integral elements:

```
sage: f = x^2/2
needs sage.libs.ntl
sage: v.reduce(f) #
\rightarrow \text { needs sage.libs.ntl}
```

```
Traceback (most recent call last):
```

ValueError: reduction not defined for non-integral elements and (2^-1 + O (2^
$\rightarrow 4))^{*} x^{\wedge}$ is not integral over Gauss valuation induced by 2 -adic valuation

See also:

```
lift()
```

residue_ring()

Return the residue ring of this valuation, i.e., the elements of valuation zero module the elements of positive valuation.

EXAMPLES

```
sage: S.<x> = Qp(2,5)[]
#\smile
->needs sage.libs.ntl
sage: v = GaussValuation(S) #
`needs sage.libs.ntl
sage: v.residue_ring() #u
\hookrightarrowneeds sage.libs.ntl
Univariate Polynomial Ring in x over Finite Field of size 2 (using ...)
```

restriction (ring)

Return the restriction of this valuation to ring.
EXAMPLES:

```
sage: v = ZZ.valuation(2)
sage: R.<x> = ZZ[]
sage: w = GaussValuation(R, v)
sage: w.restriction(ZZ)
2-adic valuation
```


scale(scalar)

Return this valuation scaled by scalar.
EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: 3*v # indirect doctest
Gauss valuation induced by 3 * 2-adic valuation
```

simplify (f, error=None, force=False, size_heuristic_bound=32, effective_degree=None, phiadic=True)
Return a simplified version of f.
Produce an element which differs from f by an element of valuation strictly greater than the valuation of f (or strictly greater than error if set.)

INPUT:

- f - an element in the domain of this valuation
- error - a rational, infinity, or None (default: None), the error allowed to introduce through the simplification
- force - whether or not to simplify f even if there is heuristically no change in the coefficient size of f expected (default: False)
- effective_degree - when set, assume that coefficients beyond effective_degree can be safely dropped (default: None)
- size_heuristic_bound - when force is not set, the expected factor by which the coefficients need to shrink to perform an actual simplification (default: 32)
- phiadic - whether to simplify in the x-adic expansion; the parameter is ignored as no other simplification is implemented

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: f = x^10/2 + 1
sage: v.simplify(f)
(2^-1 + 0(2^4))*\mp@subsup{x}{}{\wedge}10+1+0(2^5)
```


uniformizer()

Return a uniformizer of this valuation, i.e., a uniformizer of the valuation of the base ring.
EXAMPLES:

```
sage: S.<x> = QQ[]
sage: v = GaussValuation(S, QQ.valuation(5))
sage: v.uniformizer()
5
sage: v.uniformizer().parent() is S
True
```

upper_bound (f)
Return an upper bound of this valuation at f.
Use this method to get an approximation of the valuation of f when speed is more important than accuracy.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.upper_bound(1024*x + 1)
10
sage: v(1024*x + 1)
0
```

valuations $(f$, coefficients=None, call_error=False)
Return the valuations of the $f_{i} \phi^{i}$ in the expansion $f=\sum f_{i} \phi^{i}$.

INPUT:

- f - a polynomial in the domain of this valuation
- coefficients - the coefficients of f as produced by coefficients() or None (default: None); this can be used to speed up the computation when the expansion of f is already known from a previous computation.
- call_error - whether or not to speed up the computation by assuming that the result is only used to compute the valuation of f (default: False)

OUTPUT:
A list, each entry a rational numbers or infinity, the valuations of $f_{0}, f_{1} \phi, \ldots$
EXAMPLES:

```
sage: R = ZZ
sage: S.<x> = R[]
sage: v = GaussValuation(S, R.valuation(2))
sage: f = x^2 + 2*x + 16
sage: list(v.valuations(f))
[4, 1, 0]
```

```
value_group()
```

Return the value group of this valuation.
EXAMPLES:

```
sage: S.<x> = QQ[]
sage: v = GaussValuation(S, QQ.valuation(5))
sage: v.value_group()
Additive Abelian Group generated by 1
```


value_semigroup()

Return the value semigroup of this valuation.
EXAMPLES:

```
sage: S.<x> = QQ[]
sage: v = GaussValuation(S, QQ.valuation(5))
sage: v.value_semigroup()
Additive Abelian Semigroup generated by -1, 1
```


5.6 Valuations on polynomial rings based on ϕ-adic expansions

This file implements a base class for discrete valuations on polynomial rings, defined by a ϕ-adic expansion.
AUTHORS:

- Julian Rüth (2013-04-15): initial version

EXAMPLES:

The Gauss valuation is a simple example of a valuation that relies on ϕ-adic expansions:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
```

In this case, $\phi=x$, so the expansion simply lists the coefficients of the polynomial:

```
sage: f = x^2 + 2*x + 2
sage: list(v.coefficients(f))
[2, 2, 1]
```

Often only the first few coefficients are necessary in computations, so for performance reasons, coefficients are computed lazily:

```
sage: v.coefficients(f)
<generator object ...coefficients at 0x...>
```

Another example of a DevelopingValuation is an augmented valuation:

```
sage: w = v.augmentation( }\mp@subsup{\textrm{x}}{}{\wedge}2+\textrm{x}+1,3
```

Here, the expansion lists the remainders of repeated division by $x^{2}+x+1$:

```
sage: list(w.coefficients(f))
[x + 1, 1]
```

class sage.rings.valuation.developing_valuation.DevelopingValuation(parent, phi)
Bases: DiscretePseudoValuation
Abstract base class for a discrete valuation of polynomials defined over the polynomial ring domain by the ϕ-adic development.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(7))
```


coefficients (f)

Return the ϕ-adic expansion of f.
INPUT:

- f - a monic polynomial in the domain of this valuation

OUTPUT:
An iterator $f_{0}, f_{1}, \ldots, f_{n}$ of polynomials in the domain of this valuation such that $f=\sum_{i} f_{i} \phi^{i}$
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R = Qp (2,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: f = x^2 + 2*x + 3
sage: list(v.coefficients(f)) # note that these constants are in the
\leftrightarrow \text { polynomial ring}
[1 + 2 + O(2^5), 2 + O(2^6), 1 + O(2^5)]
sage: v = v.augmentation( x^2 + x + 1, 1)
sage: list(v.coefficients(f))
[(1 + 0(2^5))*x + 2 + 0(2^5), 1 + 0(2^5)]
```

```
effective_degree(f,valuations=None)
```

Return the effective degree of f with respect to this valuation.
The effective degree of f is the largest i such that the valuation of f and the valuation of $f_{i} \phi^{i}$ in the development $f=\sum_{j} f_{j} \phi^{j}$ coincide (see [Mac 1936II] p.497.)

INPUT:

- f - a non-zero polynomial in the domain of this valuation

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R = Zp (2,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.effective_degree(x)
1
sage: v.effective_degree(2*x + 1)
0
```

newton_polygon $(f$, valuations $=$ None $)$
Return the Newton polygon of the ϕ-adic development of f.

INPUT:

- f - a polynomial in the domain of this valuation

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R = Qp(2,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: f = x^2 + 2*x + 3
sage: v.newton_polygon(f) #
\rightarrow \text { needs sage.geometry.polyhedron}
Finite Newton polygon with 2 vertices: (0, 0), (2, 0)
sage: v = v.augmentation( x^2 + x + 1, 1)
sage: v.newton_polygon(f) #七
๑needs sage.geometry.polyhedron
Finite Newton polygon with 2 vertices: (0, 0), (1, 1)
sage: v.newton_polygon( f * v.phi()^3 ) #
\rightarrow \text { needs sage.geometry.polyhedron}
Finite Newton polygon with 2 vertices: (3, 3), (4, 4)
```

phi ()
Return the polynomial ϕ, the key polynomial of this valuation.
EXAMPLES:

```
sage: R = Zp (2,5)
sage: S.<x> = R[] #
\rightarrow n e e d s ~ s a g e . l i b s . n t l ~
sage: v = GaussValuation(S) #
\bulletneeds sage.libs.ntl
sage: v.phi()
```

```
`needs sage.libs.ntl
(1 + 0(2^5))*x
```


valuations (f)

Return the valuations of the $f_{i} \phi^{i}$ in the expansion $f=\sum f_{i} \phi^{i}$.
INPUT:

- f - a polynomial in the domain of this valuation

OUTPUT:
A list, each entry a rational numbers or infinity, the valuations of $f_{0}, f_{1} \phi, \ldots$
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R = Qp(2,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S, R.valuation())
sage: f = x^2 + 2*x + 16
sage: list(v.valuations(f))
[4, 1, 0]
```


5.7 Inductive valuations on polynomial rings

This module provides functionality for inductive valuations, i.e., finite chains of augmented valuations on top of a Gauss valuation.

AUTHORS:

- Julian Rüth (2016-11-01): initial version

EXAMPLES:

A Gauss valuation is an example of an inductive valuation:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
```

Generally, an inductive valuation is an augmentation of an inductive valuation, i.e., a valuation that was created from a Gauss valuation in a finite number of augmentation steps:

```
sage: W = v.augmentation(x, 1)
sage: w = w.augmentation( }\mp@subsup{\textrm{x}}{}{\wedge}2+2*x+4,3
```


REFERENCES:

Inductive valuations are originally discussed in [Mac1936I] and [Mac1936II]. An introduction is also given in Chapter 4 of [Rüt2014].
class sage.rings.valuation.inductive_valuation.FinalInductiveValuation(parent, phi)
Bases: InductiveValuation
Abstract base class for an inductive valuation which cannot be augmented further.
class sage.rings.valuation.inductive_valuation.FiniteInductiveValuation(parent, phi)
Bases: InductiveValuation, DiscreteValuation
Abstract base class for iterated augmented valuations on top of a Gauss valuation which is a discrete valuation, i.e., the last key polynomial has finite valuation.

EXAMPLES:

```
sage: R.<x> = QQ[]
```

sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))

extensions (other)

Return the extensions of this valuation to other.
EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(ZZ))
sage: K.<x> = FunctionField(QQ)
sage: v.extensions(K)
[Trivial valuation on Rational Field]
```

class sage.rings.valuation.inductive_valuation.InductiveValuation(parent, phi)
Bases: DevelopingValuation
Abstract base class for iterated augmented valuations on top of Gauss valuation.
EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(5))
```

E()
Return the ramification index of this valuation over its underlying Gauss valuation.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.E()
1
```

F()
Return the residual degree of this valuation over its Gauss extension.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.F()
1
```

augmentation_chain()
Return a list with the chain of augmentations down to the underlying Gauss valuation.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.augmentation_chain()
[Gauss valuation induced by 2-adic valuation]
```


element_with_valuation(s)

Return a polynomial of minimal degree with valuation s.
EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: v.element_with_valuation(-2)
1/4
```

Depending on the base ring, an element of valuation s might not exist:

```
sage: R.<x> = ZZ[]
sage: v = GaussValuation(R, ZZ.valuation(2))
sage: v.element_with_valuation(-2)
Traceback (most recent call last):
ValueError: s must be in the value semigroup of this valuation
but -2 is not in Additive Abelian Semigroup generated by 1
```

equivalence_reciprocal (f, coefficients=None, valuations $=$ None, check=True)
Return an equivalence reciprocal of f .
An equivalence reciprocal of f is a polynomial h such that $f \cdot h$ is equivalent to 1 modulo this valuation (see [Mac1936II] p.497.)

INPUT:

- f-a polynomial in the domain of this valuation which is an equivalence_unit()
- coefficients - the coefficients of f in the phi ()-adic expansion if known (default: None)
- valuations - the valuations of coefficients if known (default: None)
- check - whether or not to check the validity of f (default: True)

Warning: This method may not work over p-adic rings due to problems with the xgcd implementation there.

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R = Zp (3,5)
sage: S.<x> = R[]
```

```
sage: v = GaussValuation(S)
sage: f = 3*x + 2
sage: h = v.equivalence_reciprocal(f); h
2 + O(3^5)
sage: v.is_equivalent(f*h, 1)
True
```

In an extended valuation over an extension field:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v = v.augmentation(x^2 + x + u, 1)
sage: f = 2*x + u
sage: h = v.equivalence_reciprocal(f); h
(u + 1) + 0(2^5)
sage: v.is_equivalent(f*h, 1)
True
```

Extending the valuation once more:

```
sage: # needs sage.libs.ntl
sage: v = v.augmentation((x^2 + x + u)^2 + 2*** (x^2 + x + u) + 4*x, 3)
sage: h = v.equivalence_reciprocal(f); h
(u + 1) + O(2^5)
sage: v.is_equivalent(f*h, 1)
True
```

equivalence_unit (s, reciprocal=False)

Return an equivalence unit of valuation s.

INPUT:

- s-an element of the value_group ()
- reciprocal - a boolean (default: False); whether or not to return the equivalence unit as the equivalence_reciprocal () of the equivalence unit of valuation -s.

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: S.<x> = Qp(3,5)[]
sage: v = GaussValuation(S)
sage: v.equivalence_unit(2)
3^2 + 0(3^7)
sage: v.equivalence_unit(-2)
3^-2 + 0(3^3)
```

Note that this might fail for negative s if the domain is not defined over a field:

```
sage: v = ZZ.valuation(2)
sage: R.<x> = ZZ[]
sage: w = GaussValuation(R, v)
```

```
sage: w.equivalence_unit(1)
2
sage: w.equivalence_unit(-1)
Traceback (most recent call last):
*
ValueError: s must be in the value semigroup of this valuation
but -1 is not in Additive Abelian Semigroup generated by 1
```


is_equivalence_unit (f, valuations=None)

Return whether the polynomial f is an equivalence unit, i.e., an element of effective_degree() zero (see [Mac 1936II] p.497.)
INPUT:

- f - a polynomial in the domain of this valuation

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R = Zp(2,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.is_equivalence_unit(x)
False
sage: v.is_equivalence_unit(S.zero())
False
sage: v.is_equivalence_unit(2*x + 1)
True
```


is_gauss_valuation()

Return whether this valuation is a Gauss valuation over the domain.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.is_gauss_valuation()
True
```

monic_integral_model(G)

Return a monic integral irreducible polynomial which defines the same extension of the base ring of the domain as the irreducible polynomial G together with maps between the old and the new polynomial.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: v.monic_integral_model(5*x^2 + 1/2*x + 1/4)
(Ring endomorphism of Univariate Polynomial Ring in x over Rational Field
    Defn: x |--> 1/2*x,
Ring endomorphism of Univariate Polynomial Ring in x over Rational Field
    Defn: x |--> 2*x,
x^2 + 1/5*x + 1/5)
```

mu()
Return the valuation of phi ().
EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: v.mu()
0
```

class sage.rings.valuation.inductive_valuation.InfiniteInductiveValuation(parent, base_valuation)
Bases: FinalInductiveValuation, InfiniteDiscretePseudoValuation
Abstract base class for an inductive valuation which is not discrete, i.e., which assigns infinite valuation to its last key polynomial.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, infinity)
```


change_domain (ring)

Return this valuation over ring.
EXAMPLES:
We can turn an infinite valuation into a valuation on the quotient:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, infinity)
sage: w.change_domain(R.quo(x^2 + x + 1))
2-adic valuation
```

class sage.rings.valuation.inductive_valuation.NonFinalInductiveValuation(parent, phi)
Bases: FiniteInductiveValuation, DiscreteValuation
Abstract base class for iterated augmented valuations on top of Gauss valuation which can be extended further through augmentation().

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v = v.augmentation(x^2 + x + u, 1)
```

augmentation (phi, mu, check=True)
Return the inductive valuation which extends this valuation by mapping phi to mu.

INPUT:

- phi - a polynomial in the domain of this valuation; this must be a key polynomial, see is_key() for properties of key polynomials.
- mu - a rational number or infinity, the valuation of phi in the extended valuation
- check - a boolean (default: True), whether or not to check the correctness of the parameters EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v = v.augmentation(x^2 + x + u, 1)
sage: v = v.augmentation(( }\mp@subsup{x}{}{\wedge}2+x+u)^2+2*\mp@subsup{x}{}{*}(\mp@subsup{x}{}{\wedge}2+x+u)+4*x,3
sage: v
[ Gauss valuation induced by 2-adic valuation,
    v((1 + O(2^5))*x^2 + (1 + O(2^5))*x + u + O(2^5)) = 1,
    v((1 + 0(2^5))**^4
        + (2^2 + 0(2^6))*x^3
    + (1 + (u + 1)*2 + 0(2^5))*x^2
    + ((u + 1)*2^2 + O(2^6))*x
    +(u+1) + (u + 1)*2 + (u + 1)*2^2 + (u + 1)*2^3 + (u + 1)*2^4 + 0(2^5)) = = 
\hookrightarrow ]
```


See also:

augmented_valuation
equivalence_decomposition $(f$, assume_not_equivalence_unit=False, coefficients=None, valuations=None, compute_unit=True, degree_bound=None)
Return an equivalence decomposition of \mathbf{f}, i.e., a polynomial $g(x)=e(x) \prod_{i} \phi_{i}(x)$ with $e(x)$ an equivalence unit and the ϕ_{i} key polynomials such that f is_equivalent() to g.

INPUT:

- f - a non-zero polynomial in the domain of this valuation
- assume_not_equivalence_unit - whether or not to assume that f is not an equivalence unit (default: False)
- coefficients - the coefficients of f in the phi ()-adic expansion if known (default: None)
- valuations - the valuations of coefficients if known (default: None)
- compute_unit - whether or not to compute the unit part of the decomposition (default: True)
- degree_bound - a bound on the degree of the _equivalence_reduction() of f (default: None)

ALGORITHM:

We use the algorithm described in Theorem 4.4 of [Mac1936II]. After removing all factors ϕ from a polynomial f, there is an equivalence unit R such that $R f$ has valuation zero. Now $R f$ can be factored as $\prod_{i} \alpha_{i}$ over the residue_field(). Lifting all α_{i} to key polynomials ϕ_{i} gives $R f=\prod_{i} R_{i} f_{i}$ for suitable equivalence units R_{i} (see lift_to_key()). Taking R^{\prime} an equivalence_reciprocal() of R, we have f equivalent to $\left(R^{\prime} \prod_{i} R_{i}\right) \prod_{i} \phi_{i}$.

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4,10)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.equivalence_decomposition(S.zero())
Traceback (most recent call last):
```

```
...
ValueError: equivalence decomposition of zero is not defined
sage: v.equivalence_decomposition(S.one())
1 + O(2^10)
sage: v.equivalence_decomposition(x^2+2)
((1 + 0(2^10))*x)^2
sage: v.equivalence_decomposition(x^2+1)
((1 + 0(2^10))*x + 1 + O(2^10))^2
```

A polynomial that is an equivalence unit, is returned as the unit part of a Factorization, leading to a unit non-minimal degree:

```
sage: w = v.augmentation(x, 1) #_
↔needs sage.libs.ntl
sage: F = w.equivalence_decomposition(x^2+1); F #_
@needs sage.libs.ntl
(1+0(2^10))*x^2 + 1 + O(2^10)
sage: F.unit()
    ##
\rightarrow \text { needs sage.libs.ntl}
(1 + O(2^10))**^2 + 1 + O(2^10)
```

However, if the polynomial has a non-unit factor, then the unit might be replaced by a factor of lower degree:

```
sage: f = x * (x^2 + 1) # %
๑needs sage.libs.ntl
sage: F = w.equivalence_decomposition(f); F ##
\hookrightarrowneeds sage.libs.ntl
(1 + 0(2^10))*x
sage: F.unit() #u
๑needs sage.libs.ntl
1+O(2^10)
```

Examples over an iterated unramified extension:

```
sage: # needs sage.libs.ntl
sage: v = v.augmentation( }\mp@subsup{\textrm{x}}{}{\wedge}2+\textrm{x}+\textrm{u},1
```



```
sage: v.equivalence_decomposition(x)
(1 + 0(2^10))*x
sage: F = v.equivalence_decomposition( v.phi() )
sage: len(F)
1
```



```
\hookrightarrow(8+4*u)*x + 1023 + 3*u) )
sage: len(F)
2
```

is_equivalence_irreducible(f, coefficients=None, valuations=None)
Return whether the polynomial f is equivalence-irreducible, i.e., whether its equivalence_decomposition() is trivial.

ALGORITHM:

We use the same algorithm as in equivalence_decomposition() we just do not lift the result to key
polynomials.
INPUT:

- f - a non-constant polynomial in the domain of this valuation

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.is_equivalence_irreducible(x)
True
sage: v.is_equivalence_irreducible(x^2)
False
sage: v.is_equivalence_irreducible(x^2 + 2)
False
```

is_key (phi, explain=False, assume_equivalence_irreducible=False)
Return whether phi is a key polynomial for this valuation, i.e., whether it is monic, whether it is_equivalence_irreducible(), and whether it is is_minimal ().

INPUT:

- phi - a polynomial in the domain of this valuation
- explain - a boolean (default: False), if True, return a string explaining why phi is not a key polynomial
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.is_key(x)
True
sage: v.is_key(2*x, explain=True)
(False, 'phi must be monic')
sage: v.is_key(x^2, explain=True)
(False, 'phi must be equivalence irreducible')
sage: w = v.augmentation(x, 1)
sage: w.is_key(x + 1, explain = True)
(False, 'phi must be minimal')
```


is_minimal (f, assume_equivalence_irreducible=False)

Return whether the polynomial f is minimal with respect to this valuation.
A polynomial f is minimal with respect to v if it is not a constant and any non-zero polynomial h which is v-divisible by f has at least the degree of f.

A polynomial h is v-divisible by f if there is a polynomial c such that $f c$ is_equivalent () to h.

ALGORITHM:

Based on Theorem 9.4 of [Mac1936II].
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.is_minimal(x + 1)
True
sage: w = v.augmentation(x, 1)
sage: w.is_minimal(x + 1)
False
```


lift_to_key (F)

Lift the irreducible polynomial F from the residue_ring() to a key polynomial over this valuation.

INPUT:

- F - an irreducible non-constant monic polynomial in residue_ring() of this valuation

OUTPUT:

A polynomial f in the domain of this valuation which is a key polynomial for this valuation and which is such that an augmentation() with this polynomial adjoins a root of F to the resulting residue_ring().

More specifically, if F is not the generator of the residue ring, then multiplying f with the equivalence_reciprocal () of the equivalence_unit () of the valuation of f, produces a unit which reduces to F .

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4,10)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: y = v.residue_ring().gen()
sage: u0 = v.residue_ring().base_ring().gen()
sage: f = v.lift_to_key(y^2 + y + u0); f
(1 + O(2^10))*x^2 + (1 + O(2^10))*x + u + O(2^10)
```

mac_lane_step(G, principal_part_bound=None, assume_squarefree=False, assume_equivalence_irreducible=False, report_degree_bounds_and_caches=False, coefficients=None, valuations=None, check=True, allow_equivalent_key=True)
Perform an approximation step towards the squarefree monic non-constant integral polynomial G which is not an equivalence unit.

This performs the individual steps that are used in mac_lane_approximants().
INPUT:

- G - a squarefree monic non-constant integral polynomial G which is not an equivalence unit
- principal_part_bound - an integer or None (default: None), a bound on the length of the principal part, i.e., the section of negative slope, of the Newton polygon of G
- assume_squarefree - whether or not to assume that G is squarefree (default: False)
- assume_equivalence_irreducible - whether or not to assume that G is equivalence irreducible (default: False)
- report_degree_bounds_and_caches - whether or not to include internal state with the returned value (used by mac_lane_approximants () to speed up sequential calls)
- coefficients - the coefficients of G in the phi ()-adic expansion if known (default: None)
- valuations - the valuations of coefficients if known (default: None)
- check - whether to check that G is a squarefree monic non-constant integral polynomial and not an equivalence unit (default: True)
- allow_equivalent_key - whether to return valuations which end in essentially the same key polynomial as this valuation but have a higher valuation assigned to that key polynomial (default: True)

EXAMPLES:

We can use this method to perform the individual steps of mac_lane_approximants():

```
sage: R.<x> = QQ[]
sage: v = QQ.valuation(2)
sage: f = x^36 + 1160/81*x^31 + 9920/27*x^30 + 1040/81*x^26 + 52480/81*x^25 +
\hookrightarrow220160/81*x^24 - 5120/81*x^21 - 143360/81*x^20 - 573440/81*x^19 + 12451840/
\leftrightarrows81*\mp@subsup{x}{}{\wedge}18 - 266240/567*x^16 - 20316160/567*x^15 - 198737920/189*x^14 -七
->1129840640/81*x^13 - 1907359744/27*x^12 + 8192/81*x^11 + 655360/81*x^10 +
->5242880/21*x^9 + 2118123520/567*x^8 + 15460204544/567*x^7 + 6509559808/81*x^64
๑- 16777216/567*x^2 - 268435456/567*x - 1073741824/567
sage: v.mac_lane_approximants(f)
\rightarrow \text { needs sage.geometry.polyhedron}
[[ Gauss valuation induced by 2-adic valuation, v(x + 2056) = 23/2 ],
    [ Gauss valuation induced by 2-adic valuation, v(x) = 11/9 ],
    [ Gauss valuation induced by 2-adic valuation, v}(\textrm{x})=2/5, v(\mp@subsup{x}{}{\wedge}5+4)=7/2 ]
    [ Gauss valuation induced by 2-adic valuation, v(x) = 3/5, v(x^10 + 8* x^5 + +
๑64) = 7 ],
[ Gauss valuation induced by 2-adic valuation, v(x) = 3/5, v(x^5 + 8) = 5 ]]
```

Starting from the Gauss valuation, a MacLane step branches off with some linear key polynomials in the above example:

```
sage: v0 = GaussValuation(R, v)
sage: V1 = sorted(v0.mac_lane_step(f)); V1
    #u
๑needs sage.geometry.polyhedron
[[ Gauss valuation induced by 2-adic valuation, v(x) = 2/5 ],
    [ Gauss valuation induced by 2-adic valuation, v(x) = 3/5 ],
    [ Gauss valuation induced by 2-adic valuation, v(x) = 11/9 ],
    [ Gauss valuation induced by 2-adic valuation, v(x) = 3 ]]
```

The computation of MacLane approximants would now perform a MacLane step on each of these branches, note however, that a direct call to this method might produce some unexpected results:

```
sage: V1[1].mac_lane_step(f)
    #
\rightarrow \text { needs sage.geometry.polyhedron}
[[ Gauss valuation induced by 2-adic valuation, v(x) = 3/5, v(x^5 + 8) = 5 ],
    [ Gauss valuation induced by 2-adic valuation, v(x) = 3/5, v( (x^10 + 8* x^5 +
๑64) = 7 ],
[ Gauss valuation induced by 2-adic valuation, v(x) = 3 ],
[ Gauss valuation induced by 2-adic valuation, v(x) = 11/9 ]]
```

Note how this detected the two augmentations of V1[1] but also two other valuations that we had seen in the previous step and that are greater than $\mathrm{V} 1[1]$. To ignore such trivial augmentations, we can set allow_equivalent_key:

```
sage: V1[1].mac_lane_step(f, allow_equivalent_key=False) #_
needs sage.geometry.polyhedron
[[ Gauss valuation induced by 2-adic valuation, v(x) = 3/5, v(x^5 + 8) = 5 ],
    [ Gauss valuation induced by 2-adic valuation, v(x) = 3/5, v(x^10 + 8* x^5 +
๑64) = 7 ]]
```


minimal_representative (f)

Return a minimal representative for f, i.e., a pair e, a such that f is_equivalent() to $e a, e$ is an equivalence unit, and a is_minimal() and monic.

INPUT:

- f - a non-zero polynomial which is not an equivalence unit

OUTPUT:
A factorization which has e as its unit and a as its unique factor.

ALGORITHM:

We use the algorithm described in the proof of Lemma 4.1 of [Mac1936II]. In the expansion $f=$ $\sum_{i} f_{i} \phi^{i}$ take $e=f_{i}$ for the largest i with $f_{i} \phi^{i}$ minimal (see effective_degree()). Let h be the equivalence_reciprocal () of e and take a given by the terms of minimal valuation in the expansion of $e f$.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4,10)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.minimal_representative(x + 2)
(1 + 0(2^10))*x
sage: # needs sage.libs.ntl
sage: v = v.augmentation(x, 1)
sage: v.minimal_representative(x + 2)
(1 + 0(2^10))*x + 2 + 0(2^11)
sage: f = x^3 + 6*x + 4
sage: F = v.minimal_representative(f); F
(2 + 2^2 + O(2^11)) * ((1 + O(2^10))*x + 2 + O(2^11))
sage: v.is_minimal(F[0][0])
True
sage: v.is_equivalent(F.prod(), f)
True
```


5.8 Augmented valuations on polynomial rings

Implements augmentations of (inductive) valuations.

AUTHORS:

- Julian Rüth (2013-04-15): initial version

EXAMPLES:

Starting from a Gauss valuation, we can create augmented valuations on polynomial rings:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x, 1); w
[ Gauss valuation induced by 2-adic valuation, v(x) = 1 ]
sage: w(x)
1
```

This also works for polynomial rings over base rings which are not fields. However, much of the functionality is only available over fields:

```
sage: R.<x> = ZZ[]
sage: v = GaussValuation(R, ZZ.valuation(2))
sage: w = v.augmentation(x, 1); w
[ Gauss valuation induced by 2-adic valuation, v(x) = 1 ]
sage: w(x)
1
```


REFERENCES:

Augmentations are described originally in [Mac1936I] and [Mac1936II]. An overview can also be found in Chapter 4 of [Rüt2014].

class sage.rings.valuation.augmented_valuation.AugmentedValuationFactory

Bases: UniqueFactory

Factory for augmented valuations.

EXAMPLES:

This factory is not meant to be called directly. Instead, augmentation() of a valuation should be called:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x, 1) # indirect doctest
```

Note that trivial parts of the augmented valuation might be dropped, so you should not rely on _base_valuation to be the valuation you started with:

```
sage: ww = w.augmentation(x, 2)
sage: ww._base_valuation is v
True
```

create_key(base_valuation, phi, \quad ти, check=True)

Create a key which uniquely identifies the valuation over base_valuation which sends phi to mu.

Note: The uniqueness that this factory provides is not why we chose to use a factory. However, it makes pickling and equality checks much easier. At the same time, going through a factory makes it easier to enforce that all instances correctly inherit methods from the parent Hom space.
create_object (version, key)
Create the augmented valuation represented by key.
class sage.rings.valuation.augmented_valuation.AugmentedValuation_base (parent, v, phi,mu)
Bases: InductiveValuation
An augmented valuation is a discrete valuation on a polynomial ring. It extends another discrete valuation v by setting the valuation of a polynomial f to the minimum of $v\left(f_{i}\right) i \mu$ when writing $f=\sum_{i} f_{i} \phi^{i}$.
INPUT:

- v - a InductiveValuation on a polynomial ring
- phi - a key polynomial over v
- mu - a rational number such that mu > v (phi) or infinity

EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: K.<u> = CyclotomicField(5)
sage: R.<x> = K[]
sage: v = GaussValuation(R, K.valuation(2))
sage: w = v.augmentation(x, 1/2); w # indirect doctest
[ Gauss valuation induced by 2-adic valuation, v(x) = 1/2 ]
sage: ww = w.augmentation(x^4 + 2*x^2 + 4*u, 3); ww
[ Gauss valuation induced by 2-adic valuation, v(x) = 1/2, v(x^4 + 2*x^2 + 4*u) = 3」
๑]
```

E()
Return the ramification index of this valuation over its underlying Gauss valuation.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1)
sage: w.E()
1
sage: w = v.augmentation(x, 1/2)
sage: w.E()
2
```

F()
Return the degree of the residue field extension of this valuation over the underlying Gauss valuation.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
```

```
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1)
sage: w.F()
2
sage: w = v.augmentation(x, 1/2)
sage: w.F()
1
```

augmentation_chain()
Return a list with the chain of augmentations down to the underlying Gauss valuation.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x, 1)
sage: w.augmentation_chain()
[[ Gauss valuation induced by 2-adic valuation, v(x) = 1 ],
Gauss valuation induced by 2-adic valuation]
```

For performance reasons, (and to simplify the underlying implementation,) trivial augmentations might get dropped. You should not rely on augmentation_chain() to contain all the steps that you specified to create the current valuation:

```
sage: ww = w.augmentation(x, 2)
sage: ww.augmentation_chain()
[[ Gauss valuation induced by 2-adic valuation, v(x) = 2 ],
    Gauss valuation induced by 2-adic valuation]
```

change_domain (ring)

Return this valuation over ring.

EXAMPLES:

We can change the domain of an augmented valuation even if there is no coercion between rings:

```
sage: # needs sage.rings.number_field
sage: R.<x> = GaussianIntegers()[]
sage: v = GaussValuation(R, GaussianIntegers().valuation(2))
sage: v = v.augmentation(x, 1)
sage: v.change_domain(QQ['x'])
[ Gauss valuation induced by 2-adic valuation, v(x) = 1 ]
```


element_with_valuation (s)

Create an element of minimal degree and of valuation s.
INPUT:

- s - a rational number in the value group of this valuation

OUTPUT:
An element in the domain of this valuation
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: w.element_with_valuation(0)
1 + 0(2^5)
sage: w.element_with_valuation(1/2)
(1 + O(2^5))*x^2 + (1 + O(2^5))*x + u + O(2^5)
sage: w.element_with_valuation(1)
2 + 0(2^6)
sage: c = w.element_with_valuation(-1/2); c
(2^-1 + 0(2^4))*x^2 + (2^-1 + 0(2^4))*x + u*2^-1 + 0(2^4)
sage: w(c)
-1/2
sage: w.element_with_valuation(1/3)
Traceback (most recent call last):
ValueError: s must be in the value group of the valuation
but 1/3 is not in Additive Abelian Group generated by 1/2.
```


equivalence_unit (s, reciprocal=False)

Return an equivalence unit of minimal degree and valuation s.

INPUT:

- s - a rational number
- reciprocal - a boolean (default: False); whether or not to return the equivalence unit as the equivalence_reciprocal () of the equivalence unit of valuation -s.

OUTPUT:

A polynomial in the domain of this valuation which is_equivalence_unit () for this valuation.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1)
sage: w.equivalence_unit(0)
1 + 0(2^5)
sage: w.equivalence_unit(-4)
2^-4 + O(2)
```

Since an equivalence unit is of effective degree zero, ϕ must not divide it. Therefore, its valuation is in the value group of the base valuation:

```
sage: w = v.augmentation(x, 1/2)
๑needs sage.libs.ntl
sage: w.equivalence_unit(3/2) #s
๑needs sage.libs.ntl
Traceback (most recent call last):
```

...
(continued from previous page)

```
ValueError: 3/2 is not in the value semigroup of 2-adic valuation
sage: w.equivalence_unit(1)
#ப
\rightarrow \text { needs sage.libs.ntl}
2 + 0(2^6)
```

An equivalence unit might not be integral, even if $s>=0$:

```
sage: w = v.augmentation(x, 3/4)
#u
\rightarrow \text { needs sage.libs.ntl}
sage: ww = w.augmentation(x^4 + 8, 5) #
๑needs sage.libs.ntl
sage: ww.equivalence_unit(1/2) #乙
\rightarrow \text { needs sage.libs.ntl}
(2^-1 + 0(2^4))*x^2
```

extensions (ring)

Return the extensions of this valuation to ring.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)
sage: w.extensions(GaussianIntegers().fraction_field()['x']) #
๑needs sage.rings.number_field
[[ Gauss valuation induced by 2-adic valuation, v(x^2 + x + 1) = 1 ]]
```


is_gauss_valuation()

Return whether this valuation is a Gauss valuation.
EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)
sage: w.is_gauss_valuation()
False
```


is_negative_pseudo_valuation()

Return whether this valuation attains $-\infty$.

EXAMPLES:

No element in the domain of an augmented valuation can have valuation $-\infty$, so this method always returns False:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))
sage: w = v.augmentation(x, infinity)
sage: w.is_negative_pseudo_valuation()
False
```


is_trivial()

Return whether this valuation is trivial, i.e., zero outside of zero.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)
sage: w.is_trivial()
False
```

monic_integral_model(G)
Return a monic integral irreducible polynomial which defines the same extension of the base ring of the domain as the irreducible polynomial G together with maps between the old and the new polynomial.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)
sage: w.monic_integral_model(5*x^2 + 1/2*x + 1/4)
(Ring endomorphism of Univariate Polynomial Ring in x over Rational Field
    Defn: x |--> 1/2*x,
Ring endomorphism of Univariate Polynomial Ring in x over Rational Field
    Defn: x |--> 2*x,
x^2 + 1/5*x + 1/5)
```

psi()

Return the minimal polynomial of the residue field extension of this valuation.

OUTPUT:

A polynomial in the residue ring of the base valuation

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: w.psi()
x^2 + x + u\ell
sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3)
sage: ww.psi()
x + 1
```


restriction(ring)

Return the restriction of this valuation to ring.
EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: K = GaussianIntegers().fraction_field()
sage: R.<x> = K[]
sage: v = GaussValuation(R, K.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)
```

sage: w.restriction(QQ['x']) \#七
(continued from previous page)

```
\mapstoeeds sage.lins.singular
[ Gauss valuation induced by 2-adic valuation, v(x^2 + x + 1) = 1 ]
```

scale (scalar)
Return this valuation scaled by scalar.
EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)
sage: 3*w # indirect doctest
[ Gauss valuation induced by 3 * 2-adic valuation, v(x^2 + x + 1) = 3 ]
```


uniformizer()

Return a uniformizing element for this valuation.
EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)
sage: w.uniformizer()
2
```

class sage.rings.valuation.augmented_valuation.FinalAugmentedValuation(parent, $v, p h i, m u)$
Bases: AugmentedValuation_base, FinalInductiveValuation
An augmented valuation which can not be augmented anymore, either because it augments a trivial valuation or because it is infinite.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))
sage: w = v.augmentation(x, 1)
```


$\operatorname{lift}(F)$

Return a polynomial which reduces to F .
INPUT:

- F - an element of the residue_ring()

ALGORITHM:

We simply undo the steps performed in reduce ().

OUTPUT:

A polynomial in the domain of the valuation with reduction F
EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))
```

```
sage: w = v.augmentation(x, 1)
sage: w.lift(1/2)
1/2
sage: w = v.augmentation(x^2 + x + 1, infinity)
sage: w.lift(w.residue_ring().gen()) #七
\leftrightarrow \text { needs sage.rings.number_field}
x
```

A case with non-trivial base valuation:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 10)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, infinity)
sage: w.lift(w.residue_ring().gen()) #
\bulleteeds sage.rings.number_field
(1 + 0(2^10))*x
```

reduce $(f$, check $=$ True, degree_bound=None, coefficients=None, valuations=None)
Reduce f module this valuation.

INPUT:

- f - an element in the domain of this valuation
- check - whether or not to check whether f has non-negative valuation (default: True)
- degree_bound - an a-priori known bound on the degree of the result which can speed up the computation (default: not set)
- coefficients - the coefficients of f as produced by coefficients() or None (default: None); this can be used to speed up the computation when the expansion of f is already known from a previous computation.
- valuations - the valuations of coefficients or None (default: None); ignored

OUTPUT:

an element of the residue_ring () of this valuation, the reduction modulo the ideal of elements of positive valuation

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))
sage: w = v.augmentation(x, 1)
sage: w.reduce(x^2 + x + 1)
1
sage: w = v.augmentation(x^2 + x + 1, infinity)
sage: w.reduce(x) #
\needs sage.rings.number_field
u1
```

residue_ring()
Return the residue ring of this valuation, i.e., the elements of non-negative valuation modulo the elements of positive valuation.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))
sage: w = v.augmentation(x, 1)
sage: w.residue_ring()
Rational Field
sage: w = v.augmentation(x^2 + x + 1, infinity)
sage: w.residue_ring() #
๑needs sage.rings.number_field
Number Field in u1 with defining polynomial x^2 + x + 1
```

An example with a non-trivial base valuation:

```
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, infinity)
sage: w.residue_ring() #
\rightarrow \text { needs sage.rings.finite_rings}
Finite Field in u1 of size 2^2
```

Since trivial extensions of finite fields are not implemented, the resulting ring might be identical to the residue ring of the underlying valuation:

```
sage: w = v.augmentation(x, infinity)
sage: w.residue_ring()
Finite Field of size 2
```

class sage.rings.valuation.augmented_valuation.FinalFiniteAugmentedValuation(parent, v, phi, ти)

Bases: FiniteAugmentedValuation, FinalAugmentedValuation
An augmented valuation which is discrete, i.e., which assigns a finite valuation to its last key polynomial, but which can not be further augmented.
EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))
sage: w = v.augmentation(x, 1)
```

class sage.rings.valuation.augmented_valuation. FiniteAugmentedValuation(parent, $v, p h i, m u$)
Bases: AugmentedValuation_base, FiniteInductiveValuation
A finite augmented valuation, i.e., an augmented valuation which is discrete, or equivalently an augmented valuation which assigns to its last key polynomial a finite valuation.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
```

```
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1/2)
```

lower_bound (f)
Return a lower bound of this valuation at f.
Use this method to get an approximation of the valuation of f when speed is more important than accuracy.

ALGORITHM:

The main cost of evaluation is the computation of the coefficients() of the phi ()-adic expansion of f (which often leads to coefficient bloat.) So unless phi () is trivial, we fall back to valuation which this valuation augments since it is guaranteed to be smaller everywhere.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: w.lower_bound(x^2 + x + u)
0
```

simplify $(f$, error=None, force $=$ False, effective_degree $=$ None, size_heuristic_bound=32, phiadic=False)
Return a simplified version of f.
Produce an element which differs from f by an element of valuation strictly greater than the valuation of f (or strictly greater than error if set.)

INPUT:

- f - an element in the domain of this valuation
- error - a rational, infinity, or None (default: None), the error allowed to introduce through the simplification
- force - whether or not to simplify f even if there is heuristically no change in the coefficient size of f expected (default: False)
- effective_degree - when set, assume that coefficients beyond effective_degree in the phi ()adic development can be safely dropped (default: None)
- size_heuristic_bound - when force is not set, the expected factor by which the coefficients need to shrink to perform an actual simplification (default: 32)
- phiadic - whether to simplify the coefficients in the ϕ-adic expansion recursively. This often times leads to huge coefficients in the x-adic expansion (default: False, i.e., use an x-adic expansion.)

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: w.simplify(x^10/2 + 1, force=True)
(u + 1)*2^-1 + O(2^4)
```

Check that github issue \#25607 has been resolved, i.e., the coefficients in the following example are small:

```
sage: # needs sage.libs.ntl sage.rings.number_field
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^3 + 6)
sage: R.<x> = K[]
sage: v = GaussValuation(R, K.valuation(2))
sage: v = v.augmentation(x, 3/2)
sage: v = v.augmentation( }\mp@subsup{\textrm{x}}{}{\wedge}2+8,13/4
sage: v = v.augmentation(x^4 + 16* x^2 + 32*x + 64, 20/3)
sage: F.<x> = FunctionField(K)
sage: S.<y> = F[]
sage: v = F.valuation(v)
sage: G = y^2 - 2*x^5 + 8*x^3 + 80*x^2 + 128*x + 192
sage: v.mac_lane_approximants(G)
[[ Gauss valuation induced by
    Valuation on rational function field induced by
    [ Gauss valuation induced by 2-adic valuation, v(x) = 3/2,
        v( }\mp@subsup{\textrm{x}}{}{\wedge}2+8)=13/4,v(\mp@subsup{x}{}{\wedge}4+16*\mp@subsup{x}{}{\wedge}2+32*x + 64) = 20/3 ]
    v(y+4*x + 8) = 31/8 ]]
```

upper_bound (f)
Return an upper bound of this valuation at f.
Use this method to get an approximation of the valuation of f when speed is more important than accuracy.

ALGORITHM:

Any entry of valuations() serves as an upper bound. However, computation of the phi ()-adic expansion of f is quite costly. Therefore, we produce an upper bound on the last entry of valuations (), namely the valuation of the leading coefficient of f plus the valuation of the appropriate power of phi ().
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: w.upper_bound(x^2 + x + u)
1/2
```


valuations $(f$, coefficients $=$ None, call_error $=$ False $)$

Return the valuations of the $f_{i} \phi^{i}$ in the expansion $f=\sum_{i} f_{i} \phi^{i}$.
INPUT:

- f - a polynomial in the domain of this valuation
- coefficients - the coefficients of f as produced by coefficients () or None (default: None); this can be used to speed up the computation when the expansion of f is already known from a previous computation.
- call_error - whether or not to speed up the computation by assuming that the result is only used to compute the valuation of f (default: False)

OUTPUT:

An iterator over rational numbers (or infinity) $\left[v\left(f_{0}\right), v\left(f_{1} \phi\right), \ldots\right]$

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: list(w.valuations( x^2 + 1 ))
[0, 1/2]
sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3)
sage: list(ww.valuations( ((x^2 + x + u)^2 + 2)^3 ))
[+Infinity, +Infinity, +Infinity, 5]
```

value_group ()
Return the value group of this valuation.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: w.value_group()
Additive Abelian Group generated by 1/2
sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3)
sage: ww.value_group()
Additive Abelian Group generated by 1/6
```

value_semigroup()
Return the value semigroup of this valuation.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Zq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: w.value_semigroup()
Additive Abelian Semigroup generated by 1/2
sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3)
sage: ww.value_semigroup()
Additive Abelian Semigroup generated by 1/2, 5/3
```

class sage.rings.valuation.augmented_valuation.InfiniteAugmentedValuation(parent, v, phi, mu)
Bases: FinalAugmentedValuation, InfiniteInductiveValuation
An augmented valuation which is infinite, i.e., which assigns valuation infinity to its last key polynomial (and which can therefore not be augmented further.)
EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x, infinity)
```

lower_bound (f)
Return a lower bound of this valuation at f .
Use this method to get an approximation of the valuation of f when speed is more important than accuracy.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, infinity)
sage: w.lower_bound(x^2 + x + u)
+Infinity
```

simplify $(f$, error $=$ None, force $=$ False, effective_degree $=$ None $)$
Return a simplified version of f.
Produce an element which differs from f by an element of valuation strictly greater than the valuation of f (or strictly greater than error if set.)
INPUT:

- $f-$ an element in the domain of this valuation
- error - a rational, infinity, or None (default: None), the error allowed to introduce through the simplification
- force - whether or not to simplify f even if there is heuristically no change in the coefficient size of f expected (default: False)
- effective_degree - ignored; for compatibility with other simplify methods

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, infinity)
sage: w.simplify(x^10/2 + 1, force=True)
(u + 1)*2^-1 + O(2^4)
```

upper_bound (f)
Return an upper bound of this valuation at f.
Use this method to get an approximation of the valuation of f when speed is more important than accuracy.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, infinity)
sage: w.upper_bound(x^2 + x + u)
+Infinity
```

valuations $(f$, coefficients $=$ None, call_error=False)
Return the valuations of the $f_{i} \phi^{i}$ in the expansion $f=\sum_{i} f_{i} \phi^{i}$.
INPUT:

- f - a polynomial in the domain of this valuation
- coefficients - the coefficients of f as produced by coefficients() or None (default: None); this can be used to speed up the computation when the expansion of f is already known from a previous computation.
- call_error - whether or not to speed up the computation by assuming that the result is only used to compute the valuation of f (default: False)

OUTPUT:
An iterator over rational numbers (or infinity) $\left[v\left(f_{0}\right), v\left(f_{1} \phi\right), \ldots\right]$
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x, infinity)
sage: list(w.valuations(x^2 + 1))
[0, +Infinity, +Infinity]
```


value_group()

Return the value group of this valuation.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x, infinity)
sage: w.value_group()
Additive Abelian Group generated by 1
```

value_semigroup()

Return the value semigroup of this valuation.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Zq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x, infinity)
sage: w.value_semigroup()
Additive Abelian Semigroup generated by 1
```

class sage.rings.valuation.augmented_valuation. NonFinalAugmentedValuation(parent, v, phi, mu)
Bases: AugmentedValuation_base, NonFinalInductiveValuation
An augmented valuation which can be augmented further.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)
```

$\operatorname{lift}(F$, report_coefficients=False)
Return a polynomial which reduces to F .
INPUT:

- F - an element of the residue_ring()
- report_coefficients - whether to return the coefficients of the phi ()-adic expansion or the actual polynomial (default: False, i.e., return the polynomial)

OUTPUT:

A polynomial in the domain of the valuation with reduction F , monic if F is monic.

ALGORITHM:

Since this is the inverse of reduce (), we only have to go backwards through the algorithm described there.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 10)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: y = w.residue_ring().gen()
sage: u1 = w.residue_ring().base().gen()
sage: w.lift(1)
1 + O(2^10)
sage: w.lift(0)
O
sage: w.lift(u1)
(1 + 0(2^10))*x
sage: w.reduce(w.lift(y)) == y
True
sage: w.reduce(w.lift(y + u1 + 1)) == y + u1 + 1
True
sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3)
sage: y = ww.residue_ring().gen()
sage: u2 = ww.residue_ring().base().gen()
sage: ww.reduce(ww.lift(y)) == y
True
sage: ww.reduce(ww.lift(1)) == 1
True
sage: ww.reduce(ww.lift(y + 1)) == y + 1
True
```

A more complicated example:

```
sage: # needs sage.libs.ntl
sage: v = GaussValuation(S)
```

(continued from previous page)

```
sage: w = v.augmentation(x^2 + x + u, 1)
sage: ww = w.augmentation((x^2 + x + u)^2 + 2*** (x^2 + x + u) + 4*x, 3)
sage: u = ww.residue_ring().base().gen()
sage: F = ww.residue_ring()(u); F
u2
sage: f = ww.lift(F); f
(2^-1 + 0(2^9))*x^2 + (2^-1 + O(2^9))*x + u*2^-1 + 0(2^9)
sage: F == ww.reduce(f)
True
```

lift_to_key (F, check=True)
Lift the irreducible polynomial F to a key polynomial.
INPUT:

- F - an irreducible non-constant polynomial in the residue_ring() of this valuation
- check - whether or not to check correctness of F (default: True)

OUTPUT:

A polynomial f in the domain of this valuation which is a key polynomial for this valuation and which, for a suitable equivalence unit R, satisfies that the reduction of $R f$ is F

ALGORITHM:

We follow the algorithm described in Theorem 13.1 [Mac1936I] which, after a lift () of F, essentially shifts the valuations of all terms in the ϕ-adic expansion up and then kills the leading coefficient.
EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 10)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: y = w.residue_ring().gen()
sage: f = w.lift_to_key(y + 1); f
(1 + 0(2^10))* *^4 + (2 + O(2^11))* *^3 + (1 + u*2 + O(2^10))* *^2 + (u*2 + O(2^
\mapsto11))*x + (u + 1) + u*2 + O(2^10)
sage: w.is_key(f)
True
```

A more complicated example:

```
sage: # needs sage.libs.ntl
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1)
sage: ww = w.augmentation((x^2 + x + u)^2 + 2***(x^2 + x + u) + 4*x, 3)
sage: u = ww.residue_ring().base().gen()
sage: y = ww.residue_ring().gen()
sage: f = ww.lift_to_key(y^3+y+u)
sage: f.degree()
12
sage: ww.is_key(f)
True
```

reduce $(f$, check=True, degree_bound=None, coefficients=None, valuations=None)
Reduce f module this valuation.

INPUT:

- f - an element in the domain of this valuation
- check - whether or not to check whether f has non-negative valuation (default: True)
- degree_bound - an a-priori known bound on the degree of the result which can speed up the computation (default: not set)
- coefficients - the coefficients of f as produced by coefficients () or None (default: None); this can be used to speed up the computation when the expansion of f is already known from a previous computation.
- valuations - the valuations of coefficients or None (default: None)

OUTPUT:

an element of the residue_ring() of this valuation, the reduction modulo the ideal of elements of positive valuation

ALGORITHM:

We follow the algorithm given in the proof of Theorem 12.1 of [Mac1936I]: If f has positive valuation, the reduction is simply zero. Otherwise, let $f=\sum f_{i} \phi^{i}$ be the expansion of f, as computed by coefficients (). Since the valuation is zero, the exponents i must all be multiples of τ, the index the value group of the base valuation in the value group of this valuation. Hence, there is an equivalence_unit () Q with the same valuation as ϕ^{τ}. Let Q^{\prime} be its equivalence_reciprocal (). Now, rewrite each term $f_{i} \phi^{i \tau}=\left(f_{i} Q^{i}\right)\left(\phi^{\tau} Q^{-1}\right)^{i}$; it turns out that the second factor in this expression is a lift of the generator of the residue_field(). The reduction of the first factor can be computed recursively.

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R.<u> = Qq(4, 10)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.reduce(x)
x
sage: v.reduce(S(u))
u0
sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: w.reduce(S.one())
1
sage: w.reduce(S(2))
O
sage: w.reduce(S(u))
u0
sage: w.reduce(x) # this gives the generator of the residue field extension of
\hookrightarrowW over v
u1
sage: f = (x^2 + x + u)^2 / 2
sage: w.reduce(f)
x
sage: w.reduce(f + x + 1)
x + u1 + 1
sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3)
```

(continued from previous page)

```
sage: g = ((x^2 + x + u)^2 + 2)^3 / 2^5
sage: ww.reduce(g)
x
sage: ww.reduce(f)
1
sage: ww.is_equivalent(f, 1)
True
sage: ww.reduce(f * g)
X
sage: ww.reduce(f + g)
x + 1
```

residue_ring()
Return the residue ring of this valuation, i.e., the elements of non-negative valuation modulo the elements of positive valuation.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)
sage: w.residue_ring() #
`needs sage.rings.finite_rings
Univariate Polynomial Ring in x over Finite Field in u1 of size 2^2
```

Since trivial valuations of finite fields are not implemented, the resulting ring might be identical to the residue ring of the underlying valuation:

```
sage: w = v.augmentation(x, 1)
sage: w.residue_ring()
Univariate Polynomial Ring in x over Finite Field of size 2 (using ...)
```

class sage.rings.valuation. augmented_valuation. NonFinalFiniteAugmentedValuation(parent, v, phi, mu)
Bases: FiniteAugmentedValuation, NonFinalAugmentedValuation
An augmented valuation which is discrete, i.e., which assigns a finite valuation to its last key polynomial, and which can be augmented further.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x, 1)
```


5.9 Valuations which are defined as limits of valuations.

The discrete valuation of a complete field extends uniquely to a finite field extension. This is not the case anymore for fields which are not complete with respect to their discrete valuation. In this case, the extensions essentially correspond to the factors of the defining polynomial of the extension over the completion. However, these factors only exist over the completion and this makes it difficult to write down such valuations with a representation of finite length.

More specifically, let v be a discrete valuation on K and let $L=K[x] /(G)$ a finite extension thereof. An extension of v to L can be represented as a discrete pseudo-valuation w^{\prime} on $K[x]$ which sends G to infinity. However, such w^{\prime} might not be described by an augmented valuation over a Gauss valuation anymore. Instead, we may need to write is as a limit of augmented valuations.

The classes in this module provide the means of writing down such limits and resulting valuations on quotients.

AUTHORS:

- Julian Rüth (2016-10-19): initial version

EXAMPLES:

In this function field, the unique place of K which corresponds to the zero point has two extensions to L . The valuations corresponding to these extensions can only be approximated:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = K.valuation(1)
sage: w = v.extensions(L); w
[[ (x - 1)-adic valuation, v(y + 1) = 1 ]-adic valuation,
[ (x - 1)-adic valuation, v(y - 1) = 1 ]-adic valuation]
```

The same phenomenon can be observed for valuations on number fields:

```
sage: # needs sage.rings.number_field
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = QQ.valuation(5)
sage: w = v.extensions(L); w
[[ 5-adic valuation, v(t + 2) = 1 ]-adic valuation,
    [ 5-adic valuation, v(t + 3) = 1 ]-adic valuation]
```

Note: We often rely on approximations of valuations even if we could represent the valuation without using a limit. This is done to improve performance as many computations already can be done correctly with an approximation:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = K.valuation(1/x)
sage: w = v.extension(L); w
Valuation at the infinite place
sage: w._base_valuation._base_valuation._improve_approximation()
sage: w._base_valuation._base_valuation._approximation
```

[Gauss valuation induced by Valuation at the infinite place, $\mathrm{v}(\mathrm{y})=1 / 2, \mathrm{v}\left(\mathrm{y}^{\wedge} 2-1 / \mathrm{x}\right)=+$ Infinity $]$

REFERENCES:

Limits of inductive valuations are discussed in [Mac1936I] and [Mac1936II]. An overview can also be found in Section 4.6 of [Rüt2014].

class sage.rings.valuation.limit_valuation.LimitValuationFactory

Bases: UniqueFactory

Return a limit valuation which sends the polynomial G to infinity and is greater than or equal than base_valuation.

INPUT:

- base_valuation - a discrete (pseudo-)valuation on a polynomial ring which is a discrete valuation on the coefficient ring which can be uniquely augmented (possibly only in the limit) to a pseudo-valuation that sends G to infinity.
- G - a squarefree polynomial in the domain of base_valuation.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = valuations.LimitValuation(v, x)
sage: w(x)
+Infinity
```

create_key (base_valuation, G)

Create a key from the parameters of this valuation.
EXAMPLES:
Note that this does not normalize base_valuation in any way. It is easily possible to create the same limit in two different ways:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = valuations.LimitValuation(v, x) # indirect doctest
sage: v = v.augmentation(x, infinity)
sage: u = valuations.LimitValuation(v, x)
sage: u == w
False
```

The point here is that this is not meant to be invoked from user code. But mostly from other factories which have made sure that the parameters are normalized already.

```
create_object(version, key)
```

Create an object from key.
EXAMPLES:

```
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = valuations.LimitValuation(v, x^2 + 1) # indirect doctest
```

```
class sage.rings.valuation.limit_valuation.LimitValuation_generic(parent, approximation)
```

Bases: DiscretePseudoValuation
Base class for limit valuations.
A limit valuation is realized as an approximation of a valuation and means to improve that approximation when necessary.

EXAMPLES:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = K.valuation(0)
sage: w = v.extension(L)
sage: w._base_valuation
[ Gauss valuation induced by (x)-adic valuation, v(y) = 1/2 , ... ]
```

The currently used approximation can be found in the _approximation field:

```
sage: w._base_valuation._approximation #u
\needs sage.rings.function_field
[ Gauss valuation induced by (x)-adic valuation, v(y) = 1/2 ]
```

reduce $(f$, check $=$ True $)$
Return the reduction of f as an element of the residue_ring().
INPUT:

- $\mathrm{f}-$ an element in the domain of this valuation of non-negative valuation
- check - whether or not to check that f has non-negative valuation (default: True)

EXAMPLES:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - (x - 1))
sage: v = K.valuation(0)
sage: w = v.extension(L)
sage: w.reduce(y) # indirect doctest
u1
```

class sage.rings.valuation.limit_valuation.MacLaneLimitValuation(parent, approximation, G)
Bases: LimitValuation_generic, InfiniteDiscretePseudoValuation
A limit valuation that is a pseudo-valuation on polynomial ring $K[x]$ which sends a square-free polynomial G to infinity.

This uses the MacLane algorithm to compute the next element in the limit.
It starts from a first valuation approximation which has a unique augmentation that sends G to infinity and whose uniformizer must be a uniformizer of the limit and whose residue field must contain the residue field of the limit.

EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: R.<x> = QQ[]
sage: K.<i> = QQ.extension(x^2 + 1)
sage: v = K.valuation(2)
sage: u = v._base_valuation; u
[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2 , ... ]
```


element_with_valuation (s)

Return an element with valuation s .

extensions (ring)

Return the extensions of this valuation to ring.
EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: v = GaussianIntegers().valuation(2)
sage: u = v._base_valuation
sage: u.extensions(QQ['x'])
[[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2 , ... ]]
```


is_negative_pseudo_valuation()

Return whether this valuation attains $-\infty$.
EXAMPLES:
For a Mac Lane limit valuation, this is never the case, so this method always returns False:

```
sage: # needs sage.rings.number_field
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = QQ.valuation(2)
sage: u = v.extension(L)
sage: u.is_negative_pseudo_valuation()
False
```


$\operatorname{lift}(F)$

Return a lift of F from the residue_ring() to the domain of this valuation.

EXAMPLES:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^4 - x^2 - 2*x - 1)
sage: v = K.valuation(1)
sage: w = v.extensions(L)[1]; w
[ (x - 1)-adic valuation, v(y^2 - 2) = 1 ]-adic valuation
sage: s = w.reduce(y); s
u1
sage: w.lift(s) # indirect doctest
y
```

lower_bound (f)
Return a lower bound of this valuation at x .
Use this method to get an approximation of the valuation of x when speed is more important than accuracy.
EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = QQ.valuation(2)
sage: u = v.extension(L)
sage: u.lower_bound(1024*t + 1024)
10
sage: u(1024*t + 1024)
21/2
```


residue_ring()

Return the residue ring of this valuation, which is always a field.
EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = QQ.valuation(2)
sage: w = v.extension(L)
sage: w.residue_ring()
Finite Field of size 2
```


restriction(ring)

Return the restriction of this valuation to ring.

EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = QQ.valuation(2)
sage: w = v.extension(L)
sage: w._base_valuation.restriction(K)
2-adic valuation
```

simplify $(f$, error $=$ None, force $=$ False $)$

Return a simplified version of f.
Produce an element which differs from f by an element of valuation strictly greater than the valuation of f (or strictly greater than error if set.)
EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: K = QQ
```

```
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = QQ.valuation(2)
sage: u = v.extension(L)
sage: u.simplify(t + 1024, force=True)
t
```

uniformizer()

Return a uniformizing element for this valuation.
EXAMPLES:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = K.valuation(0)
sage: w = v.extension(L)
sage: w.uniformizer() # indirect doctest
y
```

upper_bound (f)
Return an upper bound of this valuation at x .
Use this method to get an approximation of the valuation of x when speed is more important than accuracy.
EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = QQ.valuation(2)
sage: u = v.extension(L)
sage: u.upper_bound(1024*t + 1024)
21/2
sage: u(1024*t + 1024)
21/2
```

value_semigroup()

Return the value semigroup of this valuation.

5.10 Valuations which are implemented through a map to another valuation

EXAMPLES:

Extensions of valuations over finite field extensions $L=K[x] /(G)$ are realized through an infinite valuation on $K[x]$ which maps G to infinity:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
```

```
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = K.valuation(0) #u
๑needs sage.rings.function_field
sage: w = v.extension(L); w #
\hookrightarroweeds sage.rings.function_field
(x)-adic valuation
sage: w._base_valuation #_
๑needs sage.rings.function_field
[ Gauss valuation induced by (x)-adic valuation, v(y) = 1/2 , ... ]
```


AUTHORS:

- Julian Rüth (2016-11-10): initial version
class sage.rings.valuation.mapped_valuation.FiniteExtensionFromInfiniteValuation(parent,
base_valuation)
Bases: MappedValuation_base, DiscreteValuation
A valuation on a quotient of the form $L=K[x] /(G)$ with an irreducible G which is internally backed by a pseudo-valuations on $K[x]$ which sends G to infinity.

INPUT:

- parent - the containing valuation space (usually the space of discrete valuations on L)
- base_valuation - an infinite valuation on $K[x]$ which takes G to infinity

EXAMPLES:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L. <y> = K.extension(y^2 - x)
sage: v = K.valuation(0)
sage: w = v.extension(L); w
(x)-adic valuation
```


lower_bound (x)

Return an lower bound of this valuation at x .
Use this method to get an approximation of the valuation of x when speed is more important than accuracy.
EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = valuations.pAdicValuation(QQ, 5)
sage: u,uu = v.extensions(L)
sage: u.lower_bound(t + 2)
0
sage: u(t + 2)
1
```

restriction (ring)
Return the restriction of this valuation to ring.
EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = valuations.pAdicValuation(QQ, 2)
sage: w = v.extension(L)
sage: w.restriction(K) is v
True
```

simplify (x, error=None, force=False)

Return a simplified version of x .
Produce an element which differs from x by an element of valuation strictly greater than the valuation of x (or strictly greater than error if set.)

EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = valuations.pAdicValuation(QQ, 5)
sage: u,uu = v.extensions(L)
sage: f = 125*t + 1
sage: u.simplify(f, error=u(f), force=True)
1
```

upper_bound (x)
Return an upper bound of this valuation at x .
Use this method to get an approximation of the valuation of x when speed is more important than accuracy.
EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = valuations.pAdicValuation(QQ, 5)
sage: u,uu = v.extensions(L)
sage: u.upper_bound(t + 2) >= 1
True
sage: u(t + 2)
1
```

class sage.rings.valuation.mapped_valuation.FiniteExtensionFromLimitValuation(parent, approximant, G, approximants)
Bases: FiniteExtensionFromInfiniteValuation

An extension of a valuation on a finite field extensions $L=K[x] /(G)$ which is induced by an infinite limit valuation on $K[x]$.
EXAMPLES:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = K.valuation(1)
sage: w = v.extensions(L); w
[[ (x - 1)-adic valuation, v(y + 1) = 1 ]-adic valuation,
[ (x - 1)-adic valuation, v(y - 1) = 1 ]-adic valuation]
```

class sage.rings.valuation.mapped_valuation.MappedValuation_base(parent, base_valuation)
Bases: DiscretePseudoValuation
A valuation which is implemented through another proxy "base" valuation.

EXAMPLES:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L. <y> = K.extension(y^2 - x)
sage: v = K.valuation(0)
sage: w = v.extension(L); w
(x)-adic valuation
```


element_with_valuation (s)

Return an element with valuation s .
EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = valuations.pAdicValuation(QQ, 5)
sage: u,uu = v.extensions(L)
sage: u.element_with_valuation(1)
5
```

lift (F)
Lift F from the residue_field() of this valuation into its domain.
EXAMPLES:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = K.valuation(2)
sage: w = v.extension(L)
sage: w.lift(w.residue_field().gen())
y
```

reduce (f)
Return the reduction of f in the residue_field() of this valuation.
EXAMPLES:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - (x - 2))
sage: v = K.valuation(0)
sage: w = v.extension(L)
sage: w.reduce(y)
u1
```

residue_ring()
Return the residue ring of this valuation.
EXAMPLES:

```
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1) #
๑needs sage.rings.number_field
sage: v = valuations.pAdicValuation(QQ, 2)
sage: v.extension(L).residue_ring() #
\mapstoeeds sage.rings.number_field
Finite Field of size 2
```

simplify (x, error $=$ None, force $=$ False)

Return a simplified version of x .
Produce an element which differs from x by an element of valuation strictly greater than the valuation of x (or strictly greater than error if set.)

If force is not set, then expensive simplifications may be avoided.
EXAMPLES:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = K.valuation(0)
sage: w = v.extensions(L) [0]
```

As _relative_size() misses the bloated term $x^{\wedge} 32$, the following term does not get simplified:

```
sage: w.simplify(y + x^32)
##
\rightarrow \text { needs sage.rings.function_field}
y + x^32
```

In this case the simplification can be forced but this should not happen as a default as the recursive simplification can be quite costly:

```
sage: w.simplify(y + x^32, force=True)
\leftrightarrow n e e d s ~ s a g e . r i n g s . f u n c t i o n \_ f i e l d ~
y
```

uniformizer()
Return a uniformizing element of this valuation.
EXAMPLES:

```
sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1) ##
\hookrightarrowneeds sage.rings.number_field
sage: v = valuations.pAdicValuation(QQ, 2)
sage: v.extension(L).uniformizer() #
\hookrightarrowneeds sage.rings.number_field
t + 1
```


5.11 Valuations which are scaled versions of another valuation

EXAMPLES:

```
sage: 3*ZZ.valuation(3)
```

3 * 3-adic valuation

AUTHORS:

- Julian Rüth (2016-11-10): initial version
class sage.rings.valuation.scaled_valuation.ScaledValuationFactory
Bases: UniqueFactory
Return a valuation which scales the valuation base by the factor s .

EXAMPLES:

```
sage: 3*ZZ.valuation(2) # indirect doctest
```

3 * 2-adic valuation
create_key (base, s)

Create a key which uniquely identifies a valuation.
create_object (version, key)
Create a valuation from key.
class sage.rings.valuation.scaled_valuation.ScaledValuation_generic (parent, base_valuation, s)
Bases: DiscreteValuation
A valuation which scales another base_valuation by a finite positive factor s.
EXAMPLES:

```
sage: v = 3*ZZ.valuation(3); v
3 * 3-adic valuation
```

extensions (ring)

Return the extensions of this valuation to ring.
EXAMPLES:

```
sage: v = 3*ZZ.valuation(5)
sage: v.extensions(GaussianIntegers().fraction_field()) #
๑needs sage.rings.number_field
[3 * [ 5-adic valuation, v(x + 2) = 1 ]-adic valuation,
3 * [ 5-adic valuation, v(x + 3) = 1 ]-adic valuation]
```

lift (F)
Lift F from the residue_field() of this valuation into its domain.
EXAMPLES:

```
sage: v = 3*ZZ.valuation(2)
sage: v.lift(1)
1
```

reduce (f)
Return the reduction of f in the residue_field() of this valuation.
EXAMPLES:

```
sage: v = 3*ZZ.valuation(2)
sage: v.reduce(1)
1
```

residue_ring()
Return the residue field of this valuation.
EXAMPLES:

```
sage: v = 3*ZZ.valuation(2)
sage: v.residue_ring()
Finite Field of size 2
```

restriction (ring)
Return the restriction of this valuation to ring.
EXAMPLES:

```
sage: v = 3*QQ.valuation(5)
sage: v.restriction(ZZ)
3 * 5-adic valuation
```

uniformizer()

Return a uniformizing element of this valuation.
EXAMPLES:

```
sage: v = 3*ZZ.valuation(2)
sage: v.uniformizer()
2
```

value_semigroup()
Return the value semigroup of this valuation.
EXAMPLES:

```
sage: v2 = QQ.valuation(2)
sage: (2*v2).value_semigroup()
Additive Abelian Semigroup generated by -2, 2
```


5.12 Discrete valuations on function fields

AUTHORS:

- Julian Rüth (2016-10-16): initial version

EXAMPLES:

We can create classical valuations that correspond to finite and infinite places on a rational function field:

```
sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(1); v
(x - 1)-adic valuation
sage: v = K.valuation(x^2 + 1); v
(x^2 + 1)-adic valuation
sage: v = K.valuation(1/x); v
Valuation at the infinite place
```

Note that we can also specify valuations which do not correspond to a place of the function field:

```
sage: R.<x> = QQ[]
sage: w = valuations.GaussValuation(R, QQ.valuation(2))
sage: v = K.valuation(w); v
2-adic valuation
```

Valuations on a rational function field can then be extended to finite extensions:

```
sage: v = K.valuation(x - 1); v
(x - 1)-adic valuation
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x) #
\rightarrow \text { needs sage.rings.function_field}
sage: w = v.extensions(L); w #ь
\needs sage.rings.function_field
[[ (x - 1)-adic valuation, v(y + 1) = 1 ]-adic valuation,
[ (x - 1)-adic valuation, v(y - 1) = 1 ]-adic valuation]
```


REFERENCES:

An overview of some computational tools relating to valuations on function fields can be found in Section 4.6 of [Rüt2014]. Most of this was originally developed for number fields in [Mac1936I] and [Mac1936II].
class sage.rings.function_field.valuation.ClassicalFunctionFieldValuation_base(parent)
Bases: DiscreteFunctionFieldValuation_base
Base class for discrete valuations on rational function fields that come from points on the projective line.
class sage.rings.function_field.valuation.DiscreteFunctionFieldValuation_base(parent)
Bases: DiscreteValuation
Base class for discrete valuations on function fields.

extensions (L)

Return the extensions of this valuation to L .
EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(x)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x) #
\rightarrow \text { needs sage.rings.function_field}
sage: v.extensions(L) #u
\leftrightarrow \text { needs sage.rings.function_field}
[(x)-adic valuation]
```

class sage.rings.function_field.valuation.FiniteRationalFunctionFieldValuation(parent, base_valuation)
Bases: InducedRationalFunctionFieldValuation_base, ClassicalFunctionFieldValuation_base, RationalFunctionFieldValuation_base

Valuation of a finite place of a function field.
EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(x + 1); v # indirect doctest
(x + 1)-adic valuation
```

A finite place with residual degree:

```
sage: w = K.valuation(x^2 + 1); w
(x^2 + 1)-adic valuation
```

A finite place with ramification:

```
sage: K.<t> = FunctionField(GF(3))
sage: L.<x> = FunctionField(K)
sage: u = L.valuation(x^3 - t); u
(x^3 + 2*t)-adic valuation
```

A finite place with residual degree and ramification:

```
sage: q = L.valuation(x^6 - t); q
( ( }\mp@subsup{\wedge}{}{\wedge}6+2*t)-adic valuatio
```

class sage.rings.function_field.valuation.FunctionFieldExtensionMappedValuation(parent,
base_valuation, to_base_valuation_domain, from_base_valuation_domain)

Bases: FunctionFieldMappedValuationRelative_base
A valuation on a finite extensions of function fields $L=K[y] /(G)$ where K is another function field which redirects to another base_valuation on an isomorphism function field $M=K[y] /(H)$.

The isomorphisms must be trivial on K.
EXAMPLES:

```
sage: K.<x> = FunctionField(GF(2))
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 + y + x^3) #_
\hookrightarrowneeds sage.rings.function_field
sage: v = K.valuation(1/x)
sage: w = v.extension(L) #_
\hookrightarroweeds sage.rings.function_field
sage: w(x) #s
๑needs sage.rings.function_field
-1
sage: w(y) #s
\hookrightarrowneeds sage.rings.function_field
-3/2
sage: w.uniformizer() #_
\needs sage.rings.function_field
1/x^2*y
```

restriction (ring)

Return the restriction of this valuation to ring.
EXAMPLES:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(2))
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 + y + x^3)
sage: v = K.valuation(1/x)
sage: w = v.extension(L)
sage: w.restriction(K) is v
True
```

class sage.rings.function_field.valuation. FunctionFieldFromLimitValuation(parent, approximant, G, approximants)
Bases: FiniteExtensionFromLimitValuation, DiscreteFunctionFieldValuation_base
A valuation on a finite extensions of function fields $L=K[y] /(G)$ where K is another function field.
EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L. <y> = K.extension(y^2 - (x^2 + x + 1)) #b
\rightarrow n e e d s ~ s a g e . r i n g s . f u n c t i o n \_ f i e l d ~
sage: v = K.valuation(x - 1) # indirect doctest #s
needs sage.rings.function_field
sage: w = v.extension(L); w #s
\hookrightarrowneeds sage.rings.function_field
(x - 1)-adic valuation
```


scale(scalar)

Return this valuation scaled by scalar.

EXAMPLES:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L. <y> = K.extension(y^2 - (x^2 + x + 1))
sage: v = K.valuation(x - 1) # indirect doctest
sage: w = v.extension(L)
sage: 3*W
3 * (x - 1)-adic valuation
```

class sage.rings.function_field.valuation.FunctionFieldMappedValuationRelative_base(parent, base_valuation, to_base_valuation_doma from_base_valuation_do
Bases: FunctionFieldMappedValuation_base
A valuation on a function field which relies on a base_valuation on an isomorphic function field and which is such that the map from and to the other function field is the identity on the constant field.

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(2))
sage: v = K.valuation(1/x); v
Valuation at the infinite place
```

restriction (ring)

Return the restriction of this valuation to ring.
EXAMPLES:

```
sage: K.<x> = FunctionField(GF(2))
sage: K.valuation(1/x).restriction(GF (2))
Trivial valuation on Finite Field of size 2
```

class sage.rings.function_field.valuation.FunctionFieldMappedValuation_base(parent, base_valuation, to_base_valuation_domain, from_base_valuation_domain)
Bases: FunctionFieldValuation_base, MappedValuation_base
A valuation on a function field which relies on a base_valuation on an isomorphic function field.
EXAMPLES:

```
sage: K.<x> = FunctionField(GF(2))
sage: v = K.valuation(1/x); v
Valuation at the infinite place
```


is_discrete_valuation()

Return whether this is a discrete valuation.
EXAMPLES:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
```

```
sage: L.<y> = K.extension(y^2 - x^4 - 1)
sage: v = K.valuation(1/x)
sage: w0,w1 = v.extensions(L)
sage: w0.is_discrete_valuation()
True
```


scale(scalar)

Return this valuation scaled by scalar.

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(2))
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 + y + x^3) #_
\leftrightarrow n e e d s ~ s a g e . r i n g s . f u n c t i o n \_ f i e l d
sage: v = K.valuation(1/x)
sage: w = v.extension(L) #_
\hookrightarrowneeds sage.rings.function_field
sage: 3*w #u
\hookrightarrowneeds sage.rings.function_field
3 * (x)-adic valuation (in Rational function field in x over Finite Field of
\hookrightarrowsize 2 after x |--> 1/x)
```

class sage.rings.function_field.valuation.FunctionFieldValuationFactory
Bases: UniqueFactory
Create a valuation on domain corresponding to prime.
INPUT:

- domain - a function field
- prime - a place of the function field, a valuation on a subring, or a valuation on another function field together with information for isomorphisms to and from that function field

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(1); v # indirect doctest
(x - 1)-adic valuation
sage: v(x)
0
sage: v(x - 1)
1
```

See sage.rings.function_field.function_field.FunctionField.valuation() for further examples.

```
create_key_and_extra_args(domain,prime)
```

Create a unique key which identifies the valuation given by prime on domain.

```
create_key_and_extra_args_from_place(domain, generator)
```

Create a unique key which identifies the valuation at the place specified by generator.

```
create_key_and_extra_args_from_valuation(domain, valuation)
```

Create a unique key which identifies the valuation which extends valuation.
create_key_and_extra_args_from_valuation_on_isomorphic_field(domain, valuation, to_valuation_domain, from_valuation_domain)
Create a unique key which identifies the valuation which is valuation after mapping through to_valuation_domain.
create_object(version, key, **extra_args)
Create the valuation specified by key.
EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: R.<x> = QQ[]
sage: w = valuations.GaussValuation(R, QQ.valuation(2))
sage: v = K.valuation(w); v # indirect doctest
2-adic valuation
```

class sage.rings.function_field.valuation.FunctionFieldValuation_base(parent)
Bases: DiscretePseudoValuation
Abstract base class for any discrete (pseudo-)valuation on a function field.
class sage.rings.function_field.valuation.InducedRationalFunctionFieldValuation_base(parent, base_valuation)

Bases: FunctionFieldValuation_base
Base class for function field valuation induced by a valuation on the underlying polynomial ring.

```
extensions(L)
```

Return all extensions of this valuation to L which has a larger constant field than the domain of this valuation.
EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(x^2 + 1)
sage: L.<x> = FunctionField(GaussianIntegers().fraction_field())
sage: v.extensions(L) # indirect doctest
[(x - I)-adic valuation, (x + I)-adic valuation]
```


$\operatorname{lift}(F)$

Return a lift of F to the domain of this valuation such that reduce() returns the original element.
EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(x)
sage: v.lift(0)
O
sage: v.lift(1)
1
```

reduce (f)

Return the reduction of f in residue_ring().
EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(x^2 + 1)
sage: v.reduce(x) #
\hookrightarrowneeds sage.rings.number_field
u1
```

residue_ring()
Return the residue field of this valuation.
EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: K.valuation(x).residue_ring()
Rational Field
```

restriction (ring)

Return the restriction of this valuation to ring.
EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: K.valuation(x).restriction(QQ)
Trivial valuation on Rational Field
```

simplify $(f$, error $=$ None, force $=$ False $)$
Return a simplified version of f.
Produce an element which differs from f by an element of valuation strictly greater than the valuation of f (or strictly greater than error if set.)

If force is not set, then expensive simplifications may be avoided.
EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(2)
sage: f = (x + 1)/(x - 1)
```

As the coefficients of this fraction are small, we do not simplify as this could be very costly in some cases:

```
sage: v.simplify(f)
(x + 1)/(x - 1)
```

However, simplification can be forced:

```
sage: v.simplify(f, force=True)
3
```

uniformizer ()

Return a uniformizing element for this valuation.

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: K.valuation(x).uniformizer()
x
```


value_group()

Return the value group of this valuation.
EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: K.valuation(x).value_group()
Additive Abelian Group generated by 1
```

class sage.rings.function_field.valuation.InfiniteRationalFunctionFieldValuation(parent)
Bases: FunctionFieldMappedValuationRelative_base, RationalFunctionFieldValuation_base, ClassicalFunctionFieldValuation_base

Valuation of the infinite place of a function field.
EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(1/x) # indirect doctest
```

class sage.rings.function_field.valuation.NonClassicalRationalFunctionFieldValuation(parent, base_valuation)

Bases: InducedRationalFunctionFieldValuation_base, RationalFunctionFieldValuation_base
Valuation induced by a valuation on the underlying polynomial ring which is non-classical.
EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: v = GaussValuation(QQ['x'], QQ.valuation(2))
sage: w = K.valuation(v); w # indirect doctest
2-adic valuation
```

```
residue_ring()
```

Return the residue field of this valuation.
EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: v = valuations.GaussValuation(QQ['x'], QQ.valuation(2))
sage: w = K.valuation(v)
sage: w.residue_ring()
Rational function field in x over Finite Field of size 2
sage: R.<x> = QQ[]
sage: vv = v.augmentation(x, 1)
sage: w = K.valuation(vv)
sage: w.residue_ring()
Rational function field in x over Finite Field of size 2
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 + 2*x) #
\bulletneeds sage.rings.function_field
sage: w.extension(L).residue_ring() #
\mapstoeeds sage.rings.function_field
Function field in u2 defined by u2^2 + x
```

class sage.rings.function_field.valuation.RationalFunctionFieldMappedValuation(parent, base_valuation, to_base_valuation_doain, from_base_valuation_domain)
Bases: FunctionFieldMappedValuationRelative_base, RationalFunctionFieldValuation_base
Valuation on a rational function field that is implemented after a map to an isomorphic rational function field.
EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: R.<x> = QQ[]
sage: w = GaussValuation(R, QQ.valuation(2)).augmentation(x, 1)
sage: w = K.valuation(w)
sage: v = K.valuation((w, K.hom([~K.gen()]), K.hom([~K.gen()]))); v
Valuation on rational function field induced by
[ Gauss valuation induced by 2-adic valuation, v(x) = 1 ]
(in Rational function field in x over Rational Field after x |--> 1/x)
```

class sage.rings.function_field.valuation.RationalFunctionFieldValuation_base(parent)
Bases: FunctionFieldValuation_base
Base class for valuations on rational function fields.

```
element_with_valuation(s)
```

Return an element with valuation s .
EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 + 6)
sage: v = K.valuation(2)
sage: R.<x> = K[]
sage: w = GaussValuation(R, v).augmentation(x, 1/123)
sage: K.<x> = FunctionField(K)
sage: w = w.extension(K)
sage: w.element_with_valuation(122/123)
2/x
sage: w.element_with_valuation(1)
2
```


5.13 -adic Valuations on Number Fields and Their Subrings and Completions

EXAMPLES:

```
sage: ZZ.valuation(2)
2-adic valuation
sage: QQ.valuation(3)
3-adic valuation
sage: CyclotomicField(5).valuation(5)
\rightarrow \text { needs sage.rings.number_field}
```

```
5-adic valuation
sage: GaussianIntegers().valuation(7)
\needs sage.rings.number_field
7-adic valuation
sage: Zp(11).valuation()
11-adic valuation
```

\#」

These valuations can then, e.g., be used to compute approximate factorizations in the completion of a ring:

```
sage: v = ZZ.valuation(2)
sage: R.<x> = ZZ[]
sage: f = x^5 + x^4 + x^3 + x^2 + x - 1
sage: v.montes_factorization(f, required_precision=20) #ь
๑needs sage.geometry.polyhedron
(x + 676027) * (x^4 + 372550*x^3 + 464863* *^2 + 385052*x + 297869)
```


AUTHORS:

- Julian Rüth (2013-03-16): initial version

REFERENCES:

The theory used here was originally developed in [Mac1936I] and [Mac1936II]. An overview can also be found in Chapter 4 of [Rüt2014].
class sage.rings.padics.padic_valuation.PadicValuationFactory
Bases: UniqueFactory
Create a prime-adic valuation on R .
INPUT:

- R - a subring of a number field or a subring of a local field in characteristic zero
- prime - a prime that does not split, a discrete (pseudo-)valuation, a fractional ideal, or None (default: None)

EXAMPLES:

For integers and rational numbers, prime is just a prime of the integers:

```
sage: valuations.pAdicValuation(ZZ, 3)
3-adic valuation
sage: valuations.pAdicValuation(QQ, 3)
3-adic valuation
```

prime may be None for local rings:

```
sage: valuations.pAdicValuation(Qp(2))
2-adic valuation
sage: valuations.pAdicValuation(Zp(2))
2-adic valuation
```

But it must be specified in all other cases:

```
sage: valuations.pAdicValuation(ZZ)
Traceback (most recent call last):
ValueError: prime must be specified for this ring
```

It can sometimes be beneficial to define a number field extension as a quotient of a polynomial ring (since number field extensions always compute an absolute polynomial defining the extension which can be very costly):

```
sage: # needs sage.rings.number_field
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^2 + 1)
sage: R.<x> = K[]
sage: L.<b> = R.quo(x^2 + a)
sage: valuations.pAdicValuation(L, 2)
2-adic valuation
```


See also:

NumberField_generic.valuation(), Order.valuation(), pAdicGeneric.valuation(), RationalField.valuation(), IntegerRing_class.valuation().
create_key_and_extra_args (R, prime=None, approximants=None)
Create a unique key identifying the valuation of R with respect to prime.
EXAMPLES:
sage: QQ.valuation(2) \# indirect doctest
2-adic valuation
create_key_and_extra_args_for_number_field (R, prime, approximants)
Create a unique key identifying the valuation of R with respect to prime.
EXAMPLES:

```
sage: GaussianIntegers().valuation(2) # indirect doctest
                                    #ப
๑needs sage.rings.number_field
2-adic valuation
```

create_key_and_extra_args_for_number_field_from_ideal (R, I, prime)
Create a unique key identifying the valuation of R with respect to I.

Note: prime, the original parameter that was passed to create_key_and_extra_args(), is only used to provide more meaningful error messages

EXAMPLES:

```
sage: # needs sage.rings.number_field
sage: GaussianIntegers().valuation(GaussianIntegers().number_field().fractional_
->ideal(2)) # indirect doctest
2-adic valuation
```

create_key_and_extra_args_for_number_field_from_valuation(R, v, prime, approximants)
Create a unique key identifying the valuation of R with respect to v.

Note: prime, the original parameter that was passed to create_key_and_extra_args(), is only used to provide more meaningful error messages

EXAMPLES:

```
sage: GaussianIntegers().valuation(ZZ.valuation(2)) # indirect doctest #s
\hookrightarrowneeds sage.rings.number_field
2-adic valuation
```

create_key_for_integers $(R$, prime $)$

Create a unique key identifying the valuation of R with respect to prime.
EXAMPLES:

```
sage: QQ.valuation(2) # indirect doctest
```

2-adic valuation
create_key_for_local_ring (R, prime)

Create a unique key identifying the valuation of R with respect to prime.
EXAMPLES:

```
sage: Qp(2).valuation() # indirect doctest
2-adic valuation
```

create_object(version, key, **extra_args)

Create a p-adic valuation from key.
EXAMPLES:

```
sage: ZZ.valuation(5) # indirect doctest
5-adic valuation
```

class sage.rings.padics.padic_valuation.pAdicFromLimitValuation(parent, approximant, G, approximants)
Bases: FiniteExtensionFromLimitValuation, pAdicValuation_base
A p-adic valuation on a number field or a subring thereof, i.e., a valuation that extends the p-adic valuation on the integers.

EXAMPLES:

```
sage: v = GaussianIntegers().valuation(3); v
#し
\leftrightarrow \text { needs sage.rings.number_field}
3-adic valuation
```


extensions (ring)

Return the extensions of this valuation to ring.
EXAMPLES:

```
sage: v = GaussianIntegers().valuation(3) #s
\hookrightarrowneeds sage.rings.number_field
sage: v.extensions(v.domain().fraction_field())
(continued from previous page)
```

๑needs sage.rings.number_field
[3-adic valuation]

```
class sage.rings.padics.padic_valuation.pAdicValuation_base(parent, \(p\) )
Bases: DiscreteValuation
Abstract base class for \(p\)-adic valuations.
INPUT:
- ring - an integral domain
- p - a rational prime over which this valuation lies, not necessarily a uniformizer for the valuation

EXAMPLES:
```

sage: ZZ.valuation(3)
3-adic valuation
sage: QQ.valuation(5)
5-adic valuation
For `p`-adic rings, ``p`` has to match the `p` of the ring. ::
sage: v = valuations.pAdicValuation(Zp(3), 2); v
Traceback (most recent call last):
ValueError: prime must be an element of positive valuation

```
change_domain (ring)
Change the domain of this valuation to ring if possible.
EXAMPLES:
```

sage: v = ZZ.valuation(2)
sage: v.change_domain(QQ).domain()
Rational Field

```
extensions (ring)

Return the extensions of this valuation to ring.
EXAMPLES:
```

sage: v = ZZ.valuation(2)
sage: v.extensions(GaussianIntegers()) \#
\leftrightarrow n e e d s ~ s a g e . r i n g s . n u m b e r _ f i e l d
[2-adic valuation]

```
is_totally_ramified ( \(G\), include_steps=False, assume_squarefree=False)
Return whether G defines a single totally ramified extension of the completion of the domain of this valuation.

INPUT:
- G - a monic squarefree polynomial over the domain of this valuation
- include_steps - a boolean (default: False); where to include the valuations produced during the process of checking whether \(G\) is totally ramified in the return value
- assume_squarefree - a boolean (default: False); whether to assume that G is square-free over the completion of the domain of this valuation. Setting this to True can significantly improve the performance.

\section*{ALGORITHM:}

This is a simplified version of sage.rings.valuation.valuation.DiscreteValuation. mac_lane_approximants().

EXAMPLES:
```

sage: \# needs sage.libs.ntl
sage: k = Qp(5,4)
sage: v = k.valuation()
sage: R.<x> = k[]
sage: G = x^2 + 1
sage: v.is_totally_ramified(G)
๑needs sage.geometry.polyhedron
False
sage: G = x + 1
sage: v.is_totally_ramified(G)
True
sage: G = x^2 + 2
sage: v.is_totally_ramified(G)
False
sage: G = x^2 + 5
sage: v.is_totally_ramified(G) \#_
\rightarrow needs sage.geometry.polyhedron
True
sage: v.is_totally_ramified(G, include_steps=True) \#u
\rightarrow needs sage.geometry.polyhedron
(True, [Gauss valuation induced by 5-adic valuation, [Gauss valuation induced}
->by 5-adic valuation, v((1 + O(5^4))*x) = 1/2]])

```

We consider an extension as totally ramified if its ramification index matches the degree. Hence, a trivial extension is totally ramified:
```

sage: R.<x> = QQ[]
sage: v = QQ.valuation(2)
sage: v.is_totally_ramified(x)
True

```
is_unramified ( \(G\), include_steps=False, assume_squarefree=False)
Return whether \(G\) defines a single unramified extension of the completion of the domain of this valuation.

\section*{INPUT:}
- G - a monic squarefree polynomial over the domain of this valuation
- include_steps - a boolean (default: False); whether to include the approximate valuations that were used to determine the result in the return value.
- assume_squarefree - a boolean (default: False); whether to assume that G is square-free over the completion of the domain of this valuation. Setting this to True can significantly improve the performance.

\section*{EXAMPLES:}

We consider an extension as unramified if its ramification index is 1 . Hence, a trivial extension is unramified:
```

sage: R.<x> = QQ[]
sage: v = QQ.valuation(2)
sage: v.is_unramified(x)
True

```

If G remains irreducible in reduction, then it defines an unramified extension:
```

sage: v.is_unramified(x^2 + x + 1)
True

```

However, even if \(G\) factors, it might define an unramified extension:
```

sage: v.is_unramified(x^2 + 2*x + 4)
\#!
๑needs sage.geometry.polyhedron
True

```
\(\operatorname{lift}(x)\)
Lift x from the residue field to the domain of this valuation.
INPUT:
- x - an element of the residue_field()

EXAMPLES:
```

sage: v = ZZ.valuation(3)
sage: xbar = v.reduce(4)
sage: v.lift(xbar)
1

```
p()
Return the \(p\) of this \(p\)-adic valuation.
EXAMPLES:
```

sage: GaussianIntegers().valuation(2).p()
\#ப
\needs sage.rings.number_field
2

```
reduce \((x)\)

Reduce x modulo the ideal of elements of positive valuation.
INPUT:
- x - an element in the domain of this valuation

OUTPUT:
An element of the residue_field().
EXAMPLES:
```

sage: v = ZZ.valuation(3)
sage: v.reduce(4)
1

```

\section*{restriction(ring)}

Return the restriction of this valuation to ring.
EXAMPLES:
```

sage: v = GaussianIntegers().valuation(2) \#
\hookrightarrowneeds sage.rings.number_field
sage: v.restriction(ZZ) \#_
\hookrightarrowneeds sage.rings.number_field
2-adic valuation

```
value_semigroup()

Return the value semigroup of this valuation.
EXAMPLES:
```

sage: v = GaussianIntegers().valuation(2) \#s
\hookrightarrowneeds sage.rings.number_field
sage: v.value_semigroup() \#s
๑needs sage.rings.number_field
Additive Abelian Semigroup generated by 1/2

```
class sage.rings.padics.padic_valuation.pAdicValuation_int(parent, p)

Bases: pAdicValuation_base
A \(p\)-adic valuation on the integers or the rationals.

\section*{EXAMPLES:}
```

sage: v = ZZ.valuation(3); v
3-adic valuation

```
inverse( \(x\), precision)
Return an approximate inverse of x .
The element returned is such that the product differs from 1 by an element of valuation at least precision.
INPUT:
- x - an element in the domain of this valuation
- precision - a rational or infinity

EXAMPLES:
```

sage: v = ZZ.valuation(2)
sage: x = 3
sage: y = v.inverse(3, 2); y
3
sage: x*y - 1
8

```

This might not be possible for elements of positive valuation:
```

sage: v.inverse(2, 2)
Traceback (most recent call last):
ValueError: element has no approximate inverse in this ring

```

Unless the precision is very small:
```

sage: v.inverse(2, 0)

```
1
residue_ring()
Return the residue field of this valuation.
EXAMPLES:
```

sage: v = ZZ.valuation(3)
sage: v.residue_ring()
Finite Field of size 3

```
simplify ( \(x\), error=None, force=False, size_heuristic_bound=32)
Return a simplified version of \(\mathbf{x}\).
Produce an element which differs from x by an element of valuation strictly greater than the valuation of x (or strictly greater than error if set.)

\section*{INPUT:}
- x - an element in the domain of this valuation
- error - a rational, infinity, or None (default: None), the error allowed to introduce through the simplification
- force - ignored
- size_heuristic_bound - when force is not set, the expected factor by which the x need to shrink to perform an actual simplification (default: 32)

\section*{EXAMPLES:}
```

sage: v = ZZ.valuation(2)
sage: v.simplify(6, force=True)
2
sage: v.simplify(6, error=0, force=True)
0

```

In this example, the usual rational reconstruction misses a good answer for some moduli (because the absolute value of the numerator is not bounded by the square root of the modulus):
```

sage: v = QQ.valuation(2)
sage: v.simplify(110406, error=16, force=True)
562/19
sage: Qp(2, 16)(110406).rational_reconstruction()
Traceback (most recent call last):
...
ArithmeticError: rational reconstruction of 55203 (mod 65536) does not exist
uniformizer()

```

Return a uniformizer of this \(p\)-adic valuation, i.e., \(p\) as an element of the domain.
EXAMPLES:
```

sage: v = ZZ.valuation(3)
sage: v.uniformizer()
3

```
```

class sage.rings.padics.padic_valuation.pAdicValuation_padic(parent)

```

Bases: pAdicValuation_base
The \(p\)-adic valuation of a complete \(p\)-adic ring.
INPUT:
- R - a \(p\)-adic ring

EXAMPLES:
```

sage: v = Qp(2).valuation(); v \# indirect doctest

```
2-adic valuation
element_with_valuation \((v)\)

Return an element of valuation v .
INPUT:
- v - an element of the pAdicValuation_base.value_semigroup() of this valuation

\section*{EXAMPLES:}
```

sage: R = Zp(3)
sage: v = R.valuation()
sage: v.element_with_valuation(3)
3^3 + O(3^23)
sage: \# needs sage.libs.ntl
sage: K = Qp(3)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 + 3*y + 3)
sage: L.valuation().element_with_valuation(3/2)
y^3 + O(y^43)

```

\section*{\(\operatorname{lift}(x)\)}

Lift x from the residue_field() to the domain of this valuation.
INPUT:
- x - an element of the residue field of this valuation

EXAMPLES:
```

sage: R = Zp(3)
sage: v = R.valuation()
sage: xbar = v.reduce(R(4))
sage: v.lift(xbar)
1+0(3^20)

```
reduce \((x)\)

Reduce x modulo the ideal of elements of positive valuation.
INPUT:
- x - an element of the domain of this valuation

OUTPUT:
An element of the residue_field().

EXAMPLES:
```

sage: R = Zp(3)
sage: Zp(3).valuation().reduce(R(4))
1

```
residue_ring()
Return the residue field of this valuation.
EXAMPLES:
```

sage: Qq(9, names='a').valuation().residue_ring() \#_
\rightarrow needs sage.libs.ntl
Finite Field in a0 of size 3^2

```
\(\operatorname{shift}(x, s)\)

Shift x in its expansion with respect to uniformizer() by s "digits".
For non-negative \(\mathbf{s}\), this just returns x multiplied by a power of the uniformizer \(\pi\).
For negative s , it does the same but when not over a field, it drops coefficients in the \(\pi\)-adic expansion which have negative valuation.

EXAMPLES:
```

sage: R = ZpCA(2)
sage: v = R.valuation()
sage: v.shift(R.one(), 1)
2 + O(2^20)
sage: v.shift(R.one(), -1)
O(2^19)
sage: \# needs sage.libs.ntl sage.rings.padics
sage: S.<y> = R[]
sage: S.<y> = R.extension(y^3 - 2)
sage: v = S.valuation()
sage: v.shift(1, 5)
y^5 + 0(y^60)

```
simplify ( \(x\), error \(=\) None, force \(=\) False )

Return a simplified version of \(\mathbf{x}\).
Produce an element which differs from \(x\) by an element of valuation strictly greater than the valuation of \(x\) (or strictly greater than error if set.)

\section*{INPUT:}
- x - an element in the domain of this valuation
- error - a rational, infinity, or None (default: None), the error allowed to introduce through the simplification
- force - ignored

EXAMPLES:
```

sage: R = Zp(2)
sage: v = R.valuation()

```
(continued from previous page)
```

sage: v.simplify(6)
2 + O(2^21)
sage: v.simplify(6, error=0)
O

```
uniformizer()
Return a uniformizer of this valuation.
EXAMPLES:
```

sage: v = Zp(3).valuation()
sage: v.uniformizer()
3 + O(3^21)

```

\section*{INDICES AND TABLES}
- Index
- Module Index
- Search Page
```

r
sage.rings.function_field.valuation, }8
sage.rings.padics.padic_valuation, }9
sage.rings.valuation.augmented_valuation, 54
sage.rings.valuation.developing_valuation, }3
sage.rings.valuation.gauss_valuation, 31
sage.rings.valuation.inductive_valuation, 42
sage.rings.valuation.limit_valuation, }7
sage.rings.valuation.mapped_valuation, 77
sage.rings.valuation.scaled_valuation, }8
sage.rings.valuation.trivial_valuation, 28
sage.rings.valuation.valuation,12
sage.rings.valuation.valuation_space,19
sage.rings.valuation.value_group, }

```
```

create_key_and_extra_args()

```
augmentation() (sage.rings.valuation.inductive_valuation.NonFinalfikge_cingevglutftign_field.valuation.FunctionFieldValuationFacto method), 47
augmentation_chain() create_key_and_extra_args()
(sage.rings.valuation.augmented_valuation.AugmentedValuaftine.riase.padics.padic_valuation.PadicValuationFactory method), 56
augmentation_chain()
create_key_and_extra_args_for_number_field() (sage.rings.valuation.gauss_valuation.GaussValuation_genessage.rings.padics.padic_valuation.PadicValuationFactory method), 33 method), 94
augmentation_chain() create_key_and_extra_args_for_number_field_from_ideal() (sage.rings.valuation.inductive_valuation.InductiveValuationsage.rings.padics.padic_valuation.PadicValuationFactory method), 43
AugmentedValuation_base (class in sage.rings.valuation.augmented_valuation), 55
AugmentedValuationFactory (class in sage.rings.valuation.augmented_valuation), 54
create_key_and_extra_args_for_number_field_from_valuation (sage.rings.padics.padic_valuation.PadicValuationFactory method), 94
create_key_and_extra_args_from_place()
(sage.rings.function_field.valuation.FunctionFieldValuationFacto method), 88

\section*{C}
change_domain() (sage.rings.padics.padic_valuation.pAdicraatuation_base and_extra_args_from_valuation() method), 96
(sage.rings.function_field.valuation.FunctionFieldValuationFacto method) 88
change_domain() (sage.rings.valuation.augmented_valuation.Augmented mafuation_base method), 56
tion.Augmente_and_extrà_args_from_valuation_on_isomorphic_fic (sage.rings.function_field.valuation.FunctionFieldValuationFacto
change_domain() (sage.rings.valuation.gauss_valuation.GaussValuattothogeneric method), 33
method),
change_domain() (sage.rings.valuation.inductive_valuation.Infinite key_fortiv integers ()
method), 47 (sage.rings.padics.padic_valuation.PadicValuationFactory
change_domain() (sage.rings.valuation.valuation_space.DiscretePseudothod), 95 . method), 21
ClassicalFunctionFieldValuation_base (class in sage.rings.function_field.valuation), 84
create_key_for_local_ring ()
(sage.rings.padics.padic_valuation.PadicValuationFactory method), 95
create object() (sage.rings.function_field.valuation.FunctionFieldValuc method), 40
method \(), 40\)
create_key() (sage.rings.valuation.augmented_valuation.Areate object () (sage.ring
method), 54
method), 54
 method), 32

Create_object () (sage.rings.valuation.gauss_valuation.GaussValuationt
create_key() (sage.rings.valuation.limit_valuation.LimitValuationFactory \begin{tabular}{l} 
method), 32 \\
\hline
\end{tabular}
method), 73 create_object () (sage.rings.valuation.limit_valuation.LimitValuationFa
create_key () (sage.rings.valuation.scaled_valuation.Scaledvaluationtactoryy \(\begin{gathered}\text { method }, 73\end{gathered}\) method), 82
create object () (sage.rings.valuation.scaled_valuation.ScaledValuation
 method), 30

\section*{Discrete Valuations and Discrete Pseudo-Valuations, Release 10.2}

method), 31
(sage.rings.valuation.mapped_valuation.MappedValuation_base method), 80
D
element_with_valuation()
denominator () (sage.rings.valuation.value_group.DiscreteValue_Gro(fqgge.rings.valuation.valuation_space.DiscretePseudoValuationS method), 10
DevelopingValuation (class in sage.rings.valuation.developing_valuation), 40
DiscreteFunctionFieldValuation_base (class in sage.rings.function_field.valuation), 84
DiscretePseudoValuation (class in sage.rings.valuation.valuation), 13
DiscretePseudoValuationSpace (class in sage.rings.valuation.valuation_space), 19
DiscretePseudoValuationSpace.ElementMethods (class in sage.rings.valuation.valuation_space), 20
DiscreteValuation (class
equivalence_decomposition()
(sage.rings.valuation.inductive_valuation.NonFinalInductiveValuc method), 48
equivalence_reciprocal()
(sage.rings.valuation.inductive_valuation.InductiveValuation method), 44
equivalence_unit() (sage.rings.valuation.augmented_valuation.Augmer method), 57
equivalence_unit () (sage.rings.valuation.gauss_valuation.GaussValuat method), 33
equivalence_unit() (sage.rings.valuation.inductive_valuation.Inductive method), 45
extension() (sage.rings.valuation.valuation_space.DiscretePseudoValuat sage.rings.valuation.valuation), 13
DiscreteValuationCodomain (class method), 21 sage.rings.valuation.value_group), 9
DiscreteValueGroup (class
extensions() (sage.rings.function_field.valuation.DiscreteFunctionField
in sage.rings.valuation.value_group), 9
DiscreteValueSemigroup (class sage.rings.valuation.value_group), 11
in
extensions() (sage.rings.function_field.valuation.InducedRationalFuncti method), 89
extensions() (sage.rings.padics.padic_valuation.pAdicFromLimitValuati method), 95

\section*{E}
extensions() (sage.rings.padics.padic_valuation.pAdicValuation_base
E() (sage.rings.valuation.augmented_valuation.AugmentedValuation bethod), 96 method), 55
extensīons () (sage.rings.valuation.augmented_valuation.AugmentedValu
E() (sage.rings.valuation.gauss_valuation.GaussValuation_generic method), 58 method), 32
extensions() (sage.rings.valuation.gauss_valuation.GaussValuation_gen
E() (sage.rings.valuation.inductive_valuation.InductiveValu method), 43
extensions() (sage.rings.valuation.inductive_valuation.FiniteInductiveVa
effective_degree() (sage.rings.valuation.developing_valuation.Devethopdng thaluation method), 40
element_with_valuation() method), 75
(sage.rings.function_field.valuation.RationalFunctiontensiadivas )(Sage.rings.valuation.scaled_valuation.ScaledValuation_ge method), 92
extensions() (sage.rings.valuation.trivial_valuation.TrivialDiscreteValua
element_with_valuation() (sage.rings.padics.padic_valuation.pAdicValuation_padic method), 29 method), 101
element_with_valuation()
extensions() (sage.rings.valuation.valuation_space.DiscretePseudoValuc
(sage.rings.valuation.augmented_valuation.AugmqntedValuation_base method), 56
element_with_valuation() F() (sage.rings.valuation.augmented_valuation.AugmentedValuation_base (sage.rings.valuation.gauss_valuation.GaussValuation_genelpiethod), 55 method), 33 F()(sage.rings.valuation.gauss_valuation.GaussValuation_generic
element_with_valuation() method), 33
 method), 44 method), 43
element_with_valuation() FinalAugmentedValuation (class in (sage.rings.valuation.limit_valuation.MacLaneLimitValuatifłge.rings.valuation.augmented_valuation), 60 method), 75 FinalFiniteAugmentedValuation (class in sage.rings.valuation.augmented_valuation), 62

\section*{Discrete Valuations and Discrete Pseudo-Valuations, Release 10.2}
```

FinalInductiveValuation (class
sage.rings.valuation.inductive_valuation),
42
FiniteAugmentedValuation (class in
sage.rings.valuation.augmented_valuation), }6
FiniteExtensionFromInfiniteValuation (class in
sage.rings.valuation.mapped_valuation),78
FiniteExtensionFromLimitValuation (class in
sage.rings.valuation.mapped_valuation), 79
FiniteInductiveValuation (class
sage.rings.valuation.inductive_valuation),
42
FiniteRationalFunctionFieldValuation (class in
sage.rings.function_field.valuation), 85
FunctionFieldExtensionMappedValuation (class in
sage.rings.function_field.valuation), }8
FunctionFieldFromLimitValuation (class in
sage.rings.function_field.valuation), 86
FunctionFieldMappedValuation_base (class in
sage.rings.function_field.valuation), 87
FunctionFieldMappedValuationRelative_base
(class in sage.rings.function_field.valuation),
87
FunctionFieldValuation_base (class
sage.rings.function_field.valuation), }8
FunctionFieldValuationFactory (class
sage.rings.function_field.valuation), }8

```

\section*{G}
```

GaussValuation_generic (class in
sage.rings.valuation.gauss_valuation), 32
GaussValuationFactory (class
sage.rings.valuation.gauss_valuation), 31
gen() (sage.rings.valuation.value_group.DiscreteValueGroup
method),10

```

```

 in
 method),58
 is_gauss_valuation()
(sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 34

```

```

 method),11
 (sage.rings.valuation.inductive_valuation.InductiveValuation
 method),46
 |
is_group() (sage.rings.valuation.value_group.DiscreteValueSemigroup
index() (sage.rings.valuation.value_group.DiscreteValueGroup_method), 11 (sey() (sage.rings.valuation.inductive_valuation.NonFinalInductiveValv
method),10
InducedRationalFunctionFieldValuation_base
(class in sage.rings.function_field.valuation),
89
InductiveValuation (class in
sage.rings.valuation.inductive_valuation),
4 3
InfiniteAugmentedValuation (class in
sage.rings.valuation.augmented_valuation), }6
InfiniteDiscretePseudoValuation (class in
sage.rings.valuation.valuation),17
InfiniteInductiveValuation (class
sage.rings.valuation.inductive_valuation),
4 7
in InfiniteRationalFunctionFieldValuation (class in sage.rings.function_field.valuation), 91
inverse() (sage.rings.padics.padic_valuation.pAdicValuation_int
m method),99
inverse() (sage.rings.valuation.valuation_space.DiscretePseudoValuatior
method), 21
is_discrete_pseudo_valuation()
(sage.rings.valuation.valuation_space.DiscretePseudoValuationS
method), }2
is_discrete_valuation()
(sage.rings.function_field.valuation.FunctionFieldMappedValuati
method), }8
is_discrete_valuation()
(sage.rings.valuation.valuation.DiscreteValuation
method),14
is_discrete_valuation()
(sage.rings.valuation.valuation.InfiniteDiscretePseudoValuation
method),18
is_discrete_valuation()
(sage.rings.valuation.valuation_space.DiscretePseudoValuationS
method), }2
is_equivalence_irreducible()
(sage.rings.valuation.inductive_valuation.NonFinalInductiveValu
method),49
is_equivalence_unit()
(sage.rings.valuation.inductive_valuation.InductiveValuation
method),46
is_equivalent() (sage.rings.valuation.valuation.DiscretePseudoValuatio
method),13
is_gauss_valuation()
(sage.rings.valuation.augmented_valuation.AugmentedValuation_
is_key() (sage.rings.valuation.inductive_valuation.NonFinalInductiveValv
method), 50
is_minimal() (sage.rings.valuation.inductive_valuation.NonFinalInductiv
method),50
is_negative_pseudo_valuation()
(sage.rings.valuation.augmented_valuation.AugmentedValuation_
method),58
is_negative_pseudo_valuation()
(sage.rings.valuation.limit_valuation.MacLaneLimitValuation
method), }7
is_negative_pseudo_valuation()
(sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValu
method), 29
is_negative_pseudo_valuation()

```
Index

\section*{Discrete Valuations and Discrete Pseudo-Valuations, Release 10.2}
```

 (sage.rings.valuation.valuation.NegativeInfiniteDiranaictRkaludataiubmatgeneric (class in
 method),18 sage.rings.valuation.limit_valuation), }7
 is_negative_pseudo_valuation() LimitValuationFactory (class in
(sage.rings.valuation.valuation_space.DiscretePseudoValuasiggeSpinge_Eduduatmowlkithöddwaluation), }7
method),22 lower_bound() (sage.rings.valuation.augmented_valuation.Finite_Augmen
is_totally_ramified()
method), }6
(sage.rings.padics.padic_valuation.pAdicValuatiowowmese_bound() (sage.rings.valuation.augmented_valuation.InfiniteAugme
method),96 method),65

```

```

 method),58 method), }3
 is_trivial() (sage.rings.valuation.gauss_valuation.Gausłbwlematbougd`ŋr(sage.rings.valuation.limit_valuation.MacLaneLimitValua
method),34 method), }7

```

```

 method),29
 method), }7
    ```

```

 method),22 method), 23
 is_trivial() (sage.rings.valuation.value_group.DiscreteValueGroup
method),10
M
is_trivial() (sage.rings.valuation.value_group.DiscreteV㑑\&eS_lemigraquproximant ()
method),12 (sage.rings.valuation.valuation.DiscreteValuation
is_unramified() (sage.rings.padics.padic_valuation.pAdicValuatiohtq{\&\&),14
method), 97 mac_lane_approximants()
L
(sage.rings.valuation.valuation.DiscreteValuation
method), }1

```

```

 method), 89 method), 51
 lift() (sage.rings.padics.padic_valuation.pAdicValuation_MarsieaneApproximantNode (class in
method),98 sage.rings.valuation.valuation),18
lift() (sage.rings.padics.padic_valuation.pAdicValuation MardianeLimitValuation (class in
method),101 sage.rings.valuation.limit_valuation), }7
lift() (sage.rings.valuation.augmented_valuation.FinalAu\&zpp\&elV\bdhwatï̈an_base (class in
method),60 sage.rings.valuation.mapped_valuation),
lift() (sage.rings.valuation.augmented_valuation.NonFinalAugmenRedValuation
method),68 minimal_representative()
lift() (sage.rings.valuation.gauss_valuation.GaussValuation_generi(sage.rings.valuation.inductive_valuation.NonFinalInductiveValu
method),34 method),53
lift() (sage.rings.valuation.limit_valuation.MacLaneLimitlledud\&ion
method),75 sage.rings.function_field.valuation, }8
lift()(sage.rings.valuation.mapped_valuation.MappedValuati\otimesageaspings.padics.padic_valuation, }9
method), 80 sage.rings.valuation.augmented_valuation,
lift()(sage.rings.valuation.scaled_valuation.ScaledValuation_geneбॉit
method), 83 sage.rings.valuation.developing_valuation,
lift() (sage.rings.valuation.trivial_valuation.TrivialDiscretePseudo_Baluation
method), 28 sage.rings.valuation.gauss_valuation, 31
lift() (sage.rings.valuation.trivial_valuation.TrivialDiscreteValsagienrings.valuation.inductive_valuation,
method),30 42
lift() (sage.rings.valuation.valuation_space.DiscretePseudoVablageansimgs.ElehweattManhddmit_valuation, 72
method),22 sage.rings.valuation.mapped_valuation, 77
lift_to_key()(sage.rings.valuation.augmented_valuation.NorsägelAnigngentealVabtcaitom. scaled_valuation, }8
method),69 sage.rings.valuation.trivial_valuation,
lift_to_key()(sage.rings.valuation.gauss_valuation.GaussValuation_generic
method),35 sage.rings.valuation.valuation, 12

```

```

 method),51 sage.rings.valuation.value_group, }
    ```

\section*{Discrete Valuations and Discrete Pseudo-Valuations, Release 10.2}
monic_integral_model()
RationalFunctionFieldValuation_base (class in
(sage.rings.valuation.augmented_valuation.AugmentedValuatiger_rbugrefunction_field.valuation), 92
method), 59 reduce() (sage.rings.function_field.valuation.InducedRationalFunctionFie
monic_integral_model() method), 89
(sage.rings.valuation.gauss_valuation.GaussValuateduceérıf(isage.rings.padics.padic_valuation.pAdicValuation_base method), 35
monic_integral_model() method), 98
(sage.rings.valuation.inductive_valuation.InductiveValuationnethod), 101
method), 46
reduce() (sage.rings.valuation.augmented_valuation.FinalAugmentedValu
montes_factorization() method), 61
(sage.rings.valuation.valuation.DiscreteValuation reduce() (sage.rings.valuation.augmented_valuation.NonFinalAugmented method), 16 method), 69
mu() (sage.rings.valuation.inductive_valuation.InductiveValnadane() (sage.rings.valuation.gauss_valuation.GaussValuation_generic method), 46 method), 36

\section*{N}

NegativeInfiniteDiscretePseudoValuation (class in sage.rings.valuation.valuation), 18
reduce() (sage.rings.valuation.limit_valuation.LimitValuation_generic method), 74
reduce() (sage.rings.valuation.mapped_valuation.MappedValuation_base method), 80
 method), 41
NonClassicalRationalFunctionFieldValuation (class in sage.rings.function_field.valuation), 91
NonFinalAugmentedValuation (class in sage.rings.valuation.augmented_valuation), 67
NonFinalFiniteAugmentedValuation (class in sage.rings.valuation.augmented_valuation), 71
NonFinalInductiveValuation (class in sage.rings.valuation.inductive_valuation), 47
reduce() (sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoVal method), 28
reduce() (sage.rings.valuation.trivial_valuation.TrivialDiscreteValuation method), 30
reduce() (sage.rings.valuation.valuation_space.DiscretePseudoValuation method), 23
residue_field() (sage.rings.valuation.valuation_space.DiscretePseudoV method), 23
residue_ring() (sage.rings.function_field.valuation.InducedRationalFun method), 90
numerator () (sage.rings.valuation.value_group.DiscreteVatteçabtep_ring() (sage.rings.function_field.valuation.NonClassicalRation method), 11 method), 91

\section*{P}
residue_ring() (sage.rings.padics.padic_valuation.pAdicValuation_int method), 100
p() (sage.rings.padics.padic_valuation.pAdicValuation_basesesidue_ring() (sage.rings.padics.padic_valuation.pAdicValuation_padi method), 98
pAdicFromLimitValuation (class sage.rings.padics.padic_valuation), 95
pAdicValuation_base (class sage.rings.padics.padic_valuation), 96
pAdicValuation_int (class sage.rings.padics.padic_valuation), 99
pAdicValuation_padic (class sage.rings.padics.padic_valuation), 100
PadicValuationFactory (class sage.rings.padics.padic_valuation), 93
residue_ring() (sage.rings.valuation.augmented_valuation.FinalAugmer method), 61
residue_ring() (sage.rings.valuation.augmented_valuation.NonFinalAų method), 71
residue_ring() (sage.rings.valuation.gauss_valuation.GaussValuation_g method), 37
residue_ring() (sage.rings.valuation.limit_valuation.MacLaneLimitValu method), 76
residue_ring() (sage.rings.valuation.mapped_valuation.MappedValuatic method), 81
phi() (sage.rings.valuation.developing_valuation.Developinesiduetifing() (sage.rings.valuation.scaled_valuation.ScaledValuation_ method), 41 method), 83
psi() (sage.rings.valuation.augmented_valuation.Augmente̊siddufiefi_qgse) (sage.rings.valuation.trivial_valuation.TrivialDiscretePs method), 59

\section*{R}

RationalFunctionFieldMappedValuation (class in sage.rings.function_field.valuation), 91
method), 28
residue_ring() (sage.rings.valuation.trivial_valuation.TrivialDiscreteVa method), 30
residue_ring() (sage.rings.valuation.valuation_space.DiscretePseudoVa method), 23

\section*{Discrete Valuations and Discrete Pseudo-Valuations, Release 10.2}
 method), 86 method), 37
 method), 87 method), 24
restriction() (sage.rings.function_field.valuation.InducesldaatientattronctionFieldValuati申nldxwse in method), 90 sage.rings.valuation.valuation_space), 27
 method), 98 sage.rings.valuation.scaled_valuation), 82
restriction() (sage.rings.valuation.augmented_valuatiorßAargedVaddilatliuanbackomey (class in method), 59 sage.rings.valuation.scaled_valuation), 82
restriction() (sage.rings.valuation.gauss_valuation.Gausebahwartiong._hement () method), 37 (sage.rings.valuation.valuation_space.DiscretePseudoValuationS
restriction() (sage.rings.valuation.limit_valuation.MacLaneLimithkdthatalon 25 method), 76 shift() (sage.rings.padics.padic_valuation.pAdicValuation_padic
restriction() (sage.rings.valuation.mapped_valuation.FiniteExtensmethfobmulnginiteValuation method), 78 shift() (sage.rings.valuation.valuation_space.DiscretePseudoValuationS
restriction() (sage.rings.valuation.scaled_valuation.ScaledValuatimethgreb)eni method), 83 simplify() (sage.rings.function_field.valuation.InducedRationalFunction
restriction() (sage.rings.valuation.valuation_space.DiscretePseudn\&fdlowdtitionSpace.ElementMethods method), 24
simplify() (sage.rings.padics.padic_valuation.pAdicValuation_int method), 100

\section*{S}
sage.rings.function_field.valuation module, 84
sage.rings.padics.padic_valuation module, 92
sage.rings.valuation.augmented_valuation module, 54
sage.rings.valuation.developing_valuation module, 39
sage.rings.valuation.gauss_valuation module, 31
sage.rings.valuation.inductive_valuation module, 42
sage.rings.valuation.limit_valuation module, 72
sage.rings.valuation.mapped_valuation module, 77
sage.rings.valuation.scaled_valuation module, 82
simplify() (sage.rings.padics.padic_valuation.pAdicValuation_padic method), 102
simplify() (sage.rings.valuation.augmented_valuation.FiniteAugmented method), 63
simplify() (sage.rings.valuation.augmented_valuation.InfiniteAugmented method), 66
simplify() (sage.rings.valuation.gauss_valuation.GaussValuation_generi method), 37
simplify () (sage.rings.valuation.limit_valuation.MacLaneLimitValuation method), 76
simplify() (sage.rings.valuation.mapped_valuation.FiniteExtensionFrom method), 79
simplify() (sage.rings.valuation.mapped_valuation.MappedValuation_bc method), 81
simplify() (sage.rings.valuation.valuation_space.DiscretePseudoValuatic method), 25
some_elements() (sage.rings.valuation.value_group.DiscreteValueGroup method), 11
some_elements() (sage.rings.valuation.value_group.DiscreteValueSemigr method), 12
sage.rings.valuation.trivial_valuation module, 28
sage.rings.valuation.valuation module, 12
sage.rings.valuation.valuation_space module, 19
sage.rings.valuation.value_group module, 9

1
TrivialDiscretePseudoValuation (class in sage.rings.valuation.trivial_valuation), 28
TrivialDiscretePseudoValuation_base (class in sage.rings.valuation.trivial_valuation), 29
scale() (sage.rings.function_field.valuation.FunctionFieldFromLimiskkglauatinggs.valuation.trivial_valuation), 29 method), 86 TrivialValuationFactory (class in
scale() (sage.rings.function_field.valuation.FunctionFieldMappedVaslugrtivimglasaxeluation.trivial_valuation), 30 method), 88
scale() (sage.rings.valuation.augmented_valuation.AugmeduledValuation_base
method), 60
uniformizer() (sage.rings.function_field.valuation.InducedRationalFunc
method), 90
value_group() (sage.rings.valuation.valuation_space.DiscretePseudoVal
uniformizer() (sage.rings.padics.padic_valuation.pAdicValuation_intthod), 26
method), \(100 \quad\) value_semigroup() (sage.rings.padics.padic_valuation.pAdicValuation_
uniformizer() (sage.rings.padics.padic_valuation.pAdicValuation_predhod), 99
method), 103 value_semigroup() (sage.rings.valuation.augmented_valuation.FiniteAu
uniformizer () (sage.rings.valuation.augmented_valuation.Augmentrenllabdationn_base
method), 60 value_semigroup() (sage.rings.valuation.augmented_valuation.InfiniteA
uniformizer() (sage.rings.valuation.gauss_valuation.GaussValuationethank);i67
method), 38 value_semigroup() (sage.rings.valuation.gauss_valuation.GaussValuatic
uniformizer() (sage.rings.valuation.limit_valuation.MacLaneLimithedthratalon39
method), 77
value_semigroup() (sage.rings.valuation.limit_valuation.MacLaneLimit
uniformizer() (sage.rings.valuation.mapped_valuation.MappedValuatiloodhb,āe
method), 81 value_semigroup() (sage.rings.valuation.scaled_valuation.ScaledValuat
uniformizer() (sage.rings.valuation.scaled_valuation.ScaledValuatinethgren)erio method), 83 value_semigroup() (sage.rings.valuation.valuation_space.DiscretePseuo
uniformizer () (sage.rings.valuation.trivial_valuation.TrivialDiscrevelRARondho, Zaluation_base method), 29
uniformizer() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods method), 26
upper_bound() (sage.rings.valuation.augmented_valuation.FiniteAugmentedValuation method), 64
upper_bound() (sage.rings.valuation.augmented_valuation.InfiniteAugmentedValuation method), 66
upper_bound() (sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 38
upper_bound() (sage.rings.valuation.limit_valuation.MacLaneLimitValuation method), 77
upper_bound() (sage.rings.valuation.mapped_valuation.FiniteExtensionFromInfiniteValuation method), 79
upper_bound() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods method), 26

\section*{V}
valuations() (sage.rings.valuation.augmented_valuation.FiniteAugmentedValuation method), 64
valuations() (sage.rings.valuation.augmented_valuation.InfiniteAugmentedValuation method), 66
valuations() (sage.rings.valuation.developing_valuation.DevelopingValuation method), 42
valuations() (sage.rings.valuation.gauss_valuation.GaussValuation_generic method), 38
value_group () (sage.rings.function_field.valuation.InducedRationalFunctionFieldValuation_base method), 90
value_group() (sage.rings.valuation.augmented_valuation.FiniteAugmentedValuation method), 65
value_group () (sage.rings.valuation.augmented_valuation.InfiniteAugmentedValuation method), 67
value_group () (sage.rings.valuation.gauss_valuation.GaussValuation_generic method), 39
value_group() (sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation method), 28
value_group() (sage.rings.valuation.trivial_valuation.TrivialDiscreteValuation method), 30```

