
Sage教程
发行版本 10.8

Sage开发团队

2025年 12月 23日

Contents

1 介绍 3
1.1 安装 . 5
1.2 使用 Sage的方法 . 5
1.3 Sage的长期目标 . 5

2 导览 7
2.1 赋值、等式和算术 . 7
2.2 获取帮助 . 10
2.3 函数、缩进和计数 . 13
2.4 基本代数和微积分 . 18
2.5 绘图 . 27
2.6 常见函数问题 . 32
2.7 基本环 . 38
2.8 线性代数 . 41
2.9 多项式 . 47
2.10 父结构、转换与强制转换 . 54
2.11 有限群与阿贝尔群 . 62
2.12 数论 . 65
2.13 一些更高级的数学 . 69

3 交互式 Shell 83
3.1 Sage会话 . 83
3.2 记录输入和输出 . 86
3.3 粘贴忽略提示符 . 87
3.4 命令计时 . 87
3.5 其他 IPython技巧 . 90
3.6 错误与异常 . 91
3.7 反向搜索与 Tab补全 . 92
3.8 集成帮助系统 . 93
3.9 保存和加载单个对象 . 97
3.10 保存和加载完整会话 . 99

4 接口 103
4.1 GP/PARI . 103
4.2 GAP . 105
4.3 Singular . 106
4.4 Maxima . 108

i

5 Sage, LaTeX及其朋友们 111
5.1 基本使用 . 111
5.2 自定义 LaTeX生成 . 113
5.3 自定义 LaTeX处理 . 115
5.4 SageTeX . 118

6 编程 119
6.1 加载和附加 Sage文件 . 119
6.2 创建编译代码 . 120
6.3 独立 Python/Sage脚本 . 121
6.4 数据类型 . 121
6.5 列表、元组和序列 . 123
6.6 字典 . 127
6.7 集合 . 128
6.8 迭代器 . 129
6.9 循环、函数、控制语句和比较 . 130
6.10 性能分析 . 133

7 使用 SageTeX 137
7.1 示例 . 137
7.2 让 TeX识别 SageTeX . 138
7.3 SageTeX文档 . 140
7.4 SageTeX与 TeXLive . 140

8 后记 141
8.1 为什么选择 Python？ . 141
8.2 我想做出一些贡献，我应该怎么做？ . 143
8.3 如何引用 Sage？ . 143

9 附录 145
9.1 算术二元运算符的优先级 . 145

10 参考文献 147

11 索引与表格 149

Bibliography 151

索引 153

ii

Sage教程,发行版本 10.8

Sage是一个免费的开源数学软件，支持代数、几何、数论、密码学、数值计算及相关领域的研究和教学。Sage
的开发模式和技术特点极其强调开放性、社区性、合作性和协作性：我们是在造车，而不是在重新发明轮
子。Sage的总体目标是创建一个可行的、免费的、开源替代品，用来替代 Maple、Mathematica、Magma和
MATLAB。
本教程是让你在短时间内熟悉 Sage的最佳方式。你可以阅读 HTML或 PDF版本，也可以从 Sage notebook中
阅读（点击 Help，然后点击 Tutorial以交互方式在 Sage中完成教程）。
此作品采用 Creative Commons Attribution-Share Alike 3.0 License许可。

Contents 1

http://creativecommons.org/licenses/by-sa/3.0/

Sage教程,发行版本 10.8

2 Contents

CHAPTER1

介绍

完成本教程最多需要 3-4小时。你可以阅读本教程的 HTML或 PDF版本，或者在 Sage Notebook中点击 Help，
然后点击 Tutorial以交互方式在 Sage中完成教程。
虽然 Sage的大部分是使用 Python实现的，但阅读本教程并不需要 Python背景。可能你会在某个时点希望学
习 Python（一门非常有趣的语言！），有很多优秀的免费资源可以帮助你：Python初学者指南 [PyB]列出了许
多选择。如果你只是想快速试用 Sage，那么本教程是很好的起点。例如：

sage: 2 + 2

4

sage: factor(-2007)

-1 * 3^2 * 223

sage: A = matrix(4,4, range(16)); A

[0 1 2 3]

[4 5 6 7]

[8 9 10 11]

[12 13 14 15]

sage: factor(A.charpoly())

x^2 * (x^2 - 30*x - 80)

sage: m = matrix(ZZ,2, range(4))

sage: m[0,0] = m[0,0] - 3

sage: m

[-3 1]

[2 3]

sage: E = EllipticCurve([1,2,3,4,5]);

sage: E

Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5

over Rational Field

sage: E.anlist(10)

[0, 1, 1, 0, -1, -3, 0, -1, -3, -3, -3]

sage: E.rank()

(续下页)

3

Sage教程,发行版本 10.8

(接上页)
1

sage: k = 1/(sqrt(3)*I + 3/4 + sqrt(73)*5/9); k

36/(20*sqrt(73) + 36*I*sqrt(3) + 27)

sage: N(k)

0.165495678130644 - 0.0521492082074256*I

sage: N(k,30) # 30 "bits"

0.16549568 - 0.052149208*I

sage: latex(k)

\frac{36}{20 \, \sqrt{73} + 36 i \, \sqrt{3} + 27}

>>> from sage.all import *

>>> Integer(2) + Integer(2)

4

>>> factor(-Integer(2007))

-1 * 3^2 * 223

>>> A = matrix(Integer(4),Integer(4), range(Integer(16))); A

[0 1 2 3]

[4 5 6 7]

[8 9 10 11]

[12 13 14 15]

>>> factor(A.charpoly())

x^2 * (x^2 - 30*x - 80)

>>> m = matrix(ZZ,Integer(2), range(Integer(4)))

>>> m[Integer(0),Integer(0)] = m[Integer(0),Integer(0)] - Integer(3)

>>> m

[-3 1]

[2 3]

>>> E = EllipticCurve([Integer(1),Integer(2),Integer(3),Integer(4),Integer(5)]);

>>> E

Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5

over Rational Field

>>> E.anlist(Integer(10))

[0, 1, 1, 0, -1, -3, 0, -1, -3, -3, -3]

>>> E.rank()

1

>>> k = Integer(1)/(sqrt(Integer(3))*I + Integer(3)/Integer(4) + sqrt(Integer(73))*Integer(5)/

↪→Integer(9)); k

36/(20*sqrt(73) + 36*I*sqrt(3) + 27)

>>> N(k)

0.165495678130644 - 0.0521492082074256*I

>>> N(k,Integer(30)) # 30 "bits"

0.16549568 - 0.052149208*I

>>> latex(k)

\frac{36}{20 \, \sqrt{73} + 36 i \, \sqrt{3} + 27}

4 Chapter 1. 介绍

Sage教程,发行版本 10.8

1.1 安装
如果你的电脑没有安装 Sage，只是想尝试一些命令，可以在 http://sagecell.sagemath.org上在线使用。
请参阅 Sage主页 [SA]文档中的安装指南，了解如何在你的电脑上安装 Sage。以下是一些简要说明。

1. Sage下载文件附带所有所需组件。换句话说，虽然 Sage使用 Python、IPython、PARI、GAP、Singular、
Maxima、NTL、GMP等，你不需要单独安装它们，因为它们已经包含在 Sage发行版中。但是，要使用
某些 Sage功能，例如Macaulay或 KASH，你必须确保电脑已经安装了相关程序。

2. Sage的预编译二进制版本（可以在 Sage官网上找到）可能比源代码版本更容易和更快安装。只需解压
文件并运行 sage。

3. 如果你想使用 SageTeX包（允许你将 Sage计算结果嵌入到 LaTeX文件中），你需要让 TeX发行版识别
SageTeX。请参阅 Sage安装指南中的“让 TeX识别 SageTeX”章节（这个链接 ../installation/index.html
会为你打开安装指南）。其实非常简单；你只需要设置一个环境变量或复制一个文件到 TeX的搜索目录
中。

如 何 使 用 SageTeX 的 文 档 位 于 $SAGE_ROOT/venv/share/texmf/tex/latex/sagetex/， 其
中”$SAGE_ROOT”指的是 Sage的安装目录，例如 /opt/sage-9.6。

1.2 使用 Sage的方法
Sage可以通过多种方式使用：

• Notebook图形界面：运行 sage -n jupyter;请参阅 Jupyter在线文档,
• 交互式 Shell：请参阅交互式 Shell,
• 编写程序：在 Sage中编写解释和编译的程序（请参阅加载和附加 Sage文件和创建编译代码)
• 编写脚本：编写使用 Sage库的独立 Python脚本（请参阅独立 Python/Sage脚本).

1.3 Sage的长期目标
• 实用：Sage的目标受众包括学习数学的学生（从高中到研究生）、教师和研究数学家。旨在提供可以用
于探索和实验代数、几何、数论、微积分、数值计算等数学构造的软件。Sage能够帮助用户更方便地
进行数学对象的交互实验。

• 高效： Sage追求快速。它使用高度优化的成熟软件，如 GMP、PARI、GAP和 NTL，因此在某些操作
上非常快速。

• 免费开源：源代码必须免费提供且可读，用户可以了解系统的实际运作，并能够更容易地进行扩展。正
如数学家通过仔细阅读或浏览证明来深入理解定理一样，用户应该能够通过阅读带有文档的源代码来
理解计算过程。如果在发表的论文中使用 Sage进行计算，读者将始终可以免费访问 Sage及其所有源代
码，你甚至可以归档和重新分发你使用的 Sage版本。

• 易于编译： Sage应该易于从源代码编译，适用于 Linux、OS X和Windows用户，这使得用户修改系统
更加灵活。

• 协作：提供与大多数其他计算机代数系统的强大接口，包括 PARI、GAP、Singular、Maxima、KASH、
Magma、Maple和Mathematica。Sage旨在统一和扩展现有数学软件。

• 文档齐全：提供教程、编程指南、参考手册和操作指南，包含大量示例和背景数学讨论。
• 可扩展：能够定义新的数据类型或从内置类型派生，并能够使用多种编程语言编写的代码。
• 用户友好：功能易于理解，文档和源代码易于查看，并且提供高水平的用户支持。

1.1. 安装 5

http://sagecell.sagemath.org
http://doc.sagemath.org/html/en/
../installation/index.html
https://jupyter-notebook.readthedocs.io/en/latest/notebook.html

Sage教程,发行版本 10.8

6 Chapter 1. 介绍

CHAPTER2

导览

本节将带你了解 Sage中的一些功能。更多示例请参考“Sage构造”，该部分旨在回答“我如何构造...？”这样
的常见问题。此外，你还可以查阅《Sage参考手册》，其中包含数千个示例。请注意，你可以通过点击 Help

链接，在 Sage Notebook中交互式地进行此导览。
（如果你在 Sage Notebook中查看此教程，请按 shift-enter来运行输入单元格。在按下 shift-enter之前，你
甚至可以编辑输入。在某些Mac上，你可能需要按 shift-return而不是 shift-enter。）

2.1 赋值、等式和算术
Sage基本上使用 Python编程语言，因此大多数 Python入门书籍都能帮助你学习 Sage。
Sage使用 =进行赋值。使用 ==, <=, >=, <和 >进行比较：

sage: a = 5

sage: a

5

sage: 2 == 2

True

sage: 2 == 3

False

sage: 2 < 3

True

sage: a == 5

True

>>> from sage.all import *

>>> a = Integer(5)

>>> a

5

>>> Integer(2) == Integer(2)

True

>>> Integer(2) == Integer(3)

False

(续下页)

7

Sage教程,发行版本 10.8

(接上页)
>>> Integer(2) < Integer(3)

True

>>> a == Integer(5)

True

Sage提供所有基本的数学运算：

sage: 2**3 # ** means exponent

8

sage: 2^3 # ^ is a synonym for ** (unlike in Python)

8

sage: 10 % 3 # for integer arguments, % means mod, i.e., remainder

1

sage: 10/4

5/2

sage: 10//4 # for integer arguments, // returns the integer quotient

2

sage: 4 * (10 // 4) + 10 % 4 == 10

True

sage: 3^2*4 + 2%5

38

>>> from sage.all import *

>>> Integer(2)**Integer(3) # ** means exponent

8

>>> Integer(2)**Integer(3) # ^ is a synonym for ** (unlike in Python)

8

>>> Integer(10) % Integer(3) # for integer arguments, % means mod, i.e., remainder

1

>>> Integer(10)/Integer(4)

5/2

>>> Integer(10)//Integer(4) # for integer arguments, // returns the integer quotient

2

>>> Integer(4) * (Integer(10) // Integer(4)) + Integer(10) % Integer(4) == Integer(10)

True

>>> Integer(3)**Integer(2)*Integer(4) + Integer(2)%Integer(5)

38

像 3^2*4 + 2%5这样的表达式的计算取决于运算的顺序；算术二元运算符的优先级中的“运算符优先级表”
给出了明确的规定。

Sage还提供了许多常见数学函数；以下是一些例子：

sage: sqrt(3.4)

1.84390889145858

sage: sin(5.135)

-0.912021158525540

sage: sin(pi/3)

1/2*sqrt(3)

>>> from sage.all import *

>>> sqrt(RealNumber('3.4'))

1.84390889145858

>>> sin(RealNumber('5.135'))

-0.912021158525540

>>> sin(pi/Integer(3))

(续下页)

8 Chapter 2. 导览

Sage教程,发行版本 10.8

(接上页)
1/2*sqrt(3)

如最后一个例子所示，一些数学表达式返回“精确”值，而不是近似值。要获得数值近似，可以使用函数 N

或方法 n（二者都有一个更长的名称 numerical_approx，函数 N与 n相同）。这些函数接受可选参数 prec，
即请求的精度位数，以及 digits，即请求的十进制精度位数；默认精度为 53位。

sage: exp(2)

e^2

sage: n(exp(2))

7.38905609893065

sage: sqrt(pi).numerical_approx()

1.77245385090552

sage: sin(10).n(digits=5)

-0.54402

sage: N(sin(10),digits=10)

-0.5440211109

sage: numerical_approx(pi, prec=200)

3.1415926535897932384626433832795028841971693993751058209749

>>> from sage.all import *

>>> exp(Integer(2))

e^2

>>> n(exp(Integer(2)))

7.38905609893065

>>> sqrt(pi).numerical_approx()

1.77245385090552

>>> sin(Integer(10)).n(digits=Integer(5))

-0.54402

>>> N(sin(Integer(10)),digits=Integer(10))

-0.5440211109

>>> numerical_approx(pi, prec=Integer(200))

3.1415926535897932384626433832795028841971693993751058209749

Python是动态类型语言，所以每个变量引用的值都有一个类型与之关联，但在给定作用域内，一个给定变量
可以保存任意 Python类型的值：

sage: a = 5 # a is an integer

sage: type(a)

<class 'sage.rings.integer.Integer'>

sage: a = 5/3 # now a is a rational number

sage: type(a)

<class 'sage.rings.rational.Rational'>

sage: a = 'hello' # now a is a string

sage: type(a)

<... 'str'>

>>> from sage.all import *

>>> a = Integer(5) # a is an integer

>>> type(a)

<class 'sage.rings.integer.Integer'>

>>> a = Integer(5)/Integer(3) # now a is a rational number

>>> type(a)

<class 'sage.rings.rational.Rational'>

>>> a = 'hello' # now a is a string

>>> type(a)

<... 'str'>

2.1. 赋值、等式和算术 9

Sage教程,发行版本 10.8

C语言作为静态类型语言就非常不同；一个声明为 int类型的变量在其作用域内只能保存 int。

2.2 获取帮助
Sage有大量的内置文档，可以通过输入函数或常量的名称，然后加上问号来访问：

sage: tan?

Type: <class 'sage.calculus.calculus.Function_tan'>

Definition: tan([noargspec])

Docstring:

The tangent function

EXAMPLES:

sage: tan(pi)

0

sage: tan(3.1415)

-0.0000926535900581913

sage: tan(3.1415/4)

0.999953674278156

sage: tan(pi/4)

1

sage: tan(1/2)

tan(1/2)

sage: RR(tan(1/2))

0.546302489843790

sage: log2?

Type: <class 'sage.functions.constants.Log2'>

Definition: log2([noargspec])

Docstring:

The natural logarithm of the real number 2.

EXAMPLES:

sage: log2

log2

sage: float(log2)

0.69314718055994529

sage: RR(log2)

0.693147180559945

sage: R = RealField(200); R

Real Field with 200 bits of precision

sage: R(log2)

0.69314718055994530941723212145817656807550013436025525412068

sage: l = (1-log2)/(1+log2); l

(1 - log(2))/(log(2) + 1)

sage: R(l)

0.18123221829928249948761381864650311423330609774776013488056

sage: maxima(log2)

log(2)

sage: maxima(log2).float()

.6931471805599453

sage: gp(log2)

0.6931471805599453094172321215 # 32-bit

0.69314718055994530941723212145817656807 # 64-bit

sage: sudoku?

File: sage/local/lib/python2.5/site-packages/sage/games/sudoku.py

(续下页)

10 Chapter 2. 导览

Sage教程,发行版本 10.8

(接上页)
Type: <... 'function'>

Definition: sudoku(A)

Docstring:

Solve the 9x9 Sudoku puzzle defined by the matrix A.

EXAMPLE:

sage: A = matrix(ZZ,9,[5,0,0, 0,8,0, 0,4,9, 0,0,0, 5,0,0,

0,3,0, 0,6,7, 3,0,0, 0,0,1, 1,5,0, 0,0,0, 0,0,0, 0,0,0, 2,0,8, 0,0,0,

0,0,0, 0,0,0, 0,1,8, 7,0,0, 0,0,4, 1,5,0, 0,3,0, 0,0,2,

0,0,0, 4,9,0, 0,5,0, 0,0,3])

sage: A

[5 0 0 0 8 0 0 4 9]

[0 0 0 5 0 0 0 3 0]

[0 6 7 3 0 0 0 0 1]

[1 5 0 0 0 0 0 0 0]

[0 0 0 2 0 8 0 0 0]

[0 0 0 0 0 0 0 1 8]

[7 0 0 0 0 4 1 5 0]

[0 3 0 0 0 2 0 0 0]

[4 9 0 0 5 0 0 0 3]

sage: sudoku(A)

[5 1 3 6 8 7 2 4 9]

[8 4 9 5 2 1 6 3 7]

[2 6 7 3 4 9 5 8 1]

[1 5 8 4 6 3 9 7 2]

[9 7 4 2 1 8 3 6 5]

[3 2 6 7 9 5 4 1 8]

[7 8 2 9 3 4 1 5 6]

[6 3 5 1 7 2 8 9 4]

[4 9 1 8 5 6 7 2 3]

>>> from sage.all import *

>>> tan?

Type: <class 'sage.calculus.calculus.Function_tan'>

Definition: tan([noargspec])

Docstring:

The tangent function

EXAMPLES:

>>> tan(pi)

0

>>> tan(RealNumber('3.1415'))

-0.0000926535900581913

>>> tan(RealNumber('3.1415')/Integer(4))

0.999953674278156

>>> tan(pi/Integer(4))

1

>>> tan(Integer(1)/Integer(2))

tan(1/2)

>>> RR(tan(Integer(1)/Integer(2)))

0.546302489843790

>>> log2?

Type: <class 'sage.functions.constants.Log2'>

Definition: log2([noargspec])

(续下页)

2.2. 获取帮助 11

Sage教程,发行版本 10.8

(接上页)
Docstring:

The natural logarithm of the real number 2.

EXAMPLES:

>>> log2

log2

>>> float(log2)

0.69314718055994529

>>> RR(log2)

0.693147180559945

>>> R = RealField(Integer(200)); R

Real Field with 200 bits of precision

>>> R(log2)

0.69314718055994530941723212145817656807550013436025525412068

>>> l = (Integer(1)-log2)/(Integer(1)+log2); l

(1 - log(2))/(log(2) + 1)

>>> R(l)

0.18123221829928249948761381864650311423330609774776013488056

>>> maxima(log2)

log(2)

>>> maxima(log2).float()

.6931471805599453

>>> gp(log2)

0.6931471805599453094172321215 # 32-bit

0.69314718055994530941723212145817656807 # 64-bit

>>> sudoku?

File: sage/local/lib/python2.5/site-packages/sage/games/sudoku.py

Type: <... 'function'>

Definition: sudoku(A)

Docstring:

Solve the 9x9 Sudoku puzzle defined by the matrix A.

EXAMPLE:

>>> A = matrix(ZZ,Integer(9),[Integer(5),Integer(0),Integer(0), Integer(0),Integer(8),

↪→Integer(0), Integer(0),Integer(4),Integer(9), Integer(0),Integer(0),Integer(0), Integer(5),

↪→Integer(0),Integer(0),

0,3,0, 0,6,7, 3,0,0, 0,0,1, 1,5,0, 0,0,0, 0,0,0, 0,0,0, 2,0,8, 0,0,0,

0,0,0, 0,0,0, 0,1,8, 7,0,0, 0,0,4, 1,5,0, 0,3,0, 0,0,2,

0,0,0, 4,9,0, 0,5,0, 0,0,3])

>>> A

[5 0 0 0 8 0 0 4 9]

[0 0 0 5 0 0 0 3 0]

[0 6 7 3 0 0 0 0 1]

[1 5 0 0 0 0 0 0 0]

[0 0 0 2 0 8 0 0 0]

[0 0 0 0 0 0 0 1 8]

[7 0 0 0 0 4 1 5 0]

[0 3 0 0 0 2 0 0 0]

[4 9 0 0 5 0 0 0 3]

>>> sudoku(A)

[5 1 3 6 8 7 2 4 9]

[8 4 9 5 2 1 6 3 7]

[2 6 7 3 4 9 5 8 1]

[1 5 8 4 6 3 9 7 2]

[9 7 4 2 1 8 3 6 5]
(续下页)

12 Chapter 2. 导览

Sage教程,发行版本 10.8

(接上页)
[3 2 6 7 9 5 4 1 8]

[7 8 2 9 3 4 1 5 6]

[6 3 5 1 7 2 8 9 4]

[4 9 1 8 5 6 7 2 3]

Sage还提供了“Tab补全”功能：输入函数的前几个字母，然后按下 Tab键。例如，如果你输入 ta然后按下
Tab，Sage会显示 tachyon, tan, tanh, taylor。这是查找 Sage中函数和其他结构名称的好方法。

2.3 函数、缩进和计数
在 Sage中定义一个新函数，请使用 def命令，并在变量名列表后加上冒号。例如：

sage: def is_even(n):

....: return n%2 == 0

sage: is_even(2)

True

sage: is_even(3)

False

>>> from sage.all import *

>>> def is_even(n):

... return n%Integer(2) == Integer(0)

>>> is_even(Integer(2))

True

>>> is_even(Integer(3))

False

注意：根据你查看的教程版本，你可能会在本例的第二行看到三个点:。请勿输入它们，它们只是为了
强调代码的缩进。在这种情况下，请在块末尾按 [Return/Enter]以插入空行并结束函数定义。
你不需要指定输入参数的类型。你可以指定多个输入，每个输入都可以有一个可选的默认值。例如，如果未
指定 divisor，则下面的函数默认值为 divisor=2。

sage: def is_divisible_by(number, divisor=2):

....: return number%divisor == 0

sage: is_divisible_by(6,2)

True

sage: is_divisible_by(6)

True

sage: is_divisible_by(6, 5)

False

>>> from sage.all import *

>>> def is_divisible_by(number, divisor=Integer(2)):

... return number%divisor == Integer(0)

>>> is_divisible_by(Integer(6),Integer(2))

True

>>> is_divisible_by(Integer(6))

True

>>> is_divisible_by(Integer(6), Integer(5))

False

调用函数时，你还可以显式地指定一个或多个输入；如果你显式地指定输入，可以以任意顺序给出它们：

2.3. 函数、缩进和计数 13

Sage教程,发行版本 10.8

sage: is_divisible_by(6, divisor=5)

False

sage: is_divisible_by(divisor=2, number=6)

True

>>> from sage.all import *

>>> is_divisible_by(Integer(6), divisor=Integer(5))

False

>>> is_divisible_by(divisor=Integer(2), number=Integer(6))

True

在 Python中，代码块不是用大括号或其他语言中的开始和结束标记来表示的。相反，代码块由缩进来表示，
缩进必须完全匹配。例如，以下是一个语法错误，因为 return语句的缩进与上面的其他行不一致：

sage: def even(n):

....: v = []

....: for i in range(3,n):

....: if i % 2 == 0:

....: v.append(i)

....: return v

Syntax Error:

return v

>>> from sage.all import *

>>> def even(n):

... v = []

... for i in range(Integer(3),n):

... if i % Integer(2) == Integer(0):

... v.append(i)

... return v

Syntax Error:

return v

如果你修复了缩进，函数就可以正常工作：

sage: def even(n):

....: v = []

....: for i in range(3,n):

....: if i % 2 == 0:

....: v.append(i)

....: return v

sage: even(10)

[4, 6, 8]

>>> from sage.all import *

>>> def even(n):

... v = []

... for i in range(Integer(3),n):

... if i % Integer(2) == Integer(0):

... v.append(i)

... return v

>>> even(Integer(10))

[4, 6, 8]

行末不需要分号；在大多数情况下，行以换行符结束。但是，你可以在一行上放置多个语句，用分号间隔：

14 Chapter 2. 导览

Sage教程,发行版本 10.8

sage: a = 5; b = a + 3; c = b^2; c

64

>>> from sage.all import *

>>> a = Integer(5); b = a + Integer(3); c = b**Integer(2); c

64

如果你希望一行代码跨越多行，可以使用反斜杠：

sage: 2 + \

....: 3

5

>>> from sage.all import *

>>> Integer(2) + Integer(3)

5

在 Sage中，你可以通过遍历整数区间来计数。例如，下面代码的第一行与 C++或 Java中的 for(i=0; i<3;

i++)完全一样：

sage: for i in range(3):

....: print(i)

0

1

2

>>> from sage.all import *

>>> for i in range(Integer(3)):

... print(i)

0

1

2

下面代码的第一行与 for(i=2;i<5;i++)等价。

sage: for i in range(2,5):

....: print(i)

2

3

4

>>> from sage.all import *

>>> for i in range(Integer(2),Integer(5)):

... print(i)

2

3

4

第三个参数控制步长，所以下面代码与 for(i=1;i<6;i+=2)等价。

sage: for i in range(1,6,2):

....: print(i)

1

3

5

2.3. 函数、缩进和计数 15

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> for i in range(Integer(1),Integer(6),Integer(2)):

... print(i)

1

3

5

通常你会希望创建一个漂亮的表格来显示你使用 Sage计算的数字。一个简单的方法是使用格式化字符串。下
面，我们创建三个宽度正好为 6的列，并制作一个平方和立方的表格。

sage: for i in range(5):

....: print('%6s %6s %6s' % (i, i^2, i^3))

0 0 0

1 1 1

2 4 8

3 9 27

4 16 64

>>> from sage.all import *

>>> for i in range(Integer(5)):

... print('%6s %6s %6s' % (i, i**Integer(2), i**Integer(3)))

0 0 0

1 1 1

2 4 8

3 9 27

4 16 64

Sage中最基本的数据结构是列表，顾名思义，就是一个任意对象的列表。例如，以下命令使用 range创建一
个列表:

sage: list(range(2,10))

[2, 3, 4, 5, 6, 7, 8, 9]

>>> from sage.all import *

>>> list(range(Integer(2),Integer(10)))

[2, 3, 4, 5, 6, 7, 8, 9]

下面是一个更复杂的列表：

sage: v = [1, "hello", 2/3, sin(x^3)]

sage: v

[1, 'hello', 2/3, sin(x^3)]

>>> from sage.all import *

>>> v = [Integer(1), "hello", Integer(2)/Integer(3), sin(x**Integer(3))]

>>> v

[1, 'hello', 2/3, sin(x^3)]

如如许多编程语言一样，列表的索引是从 0开始。

sage: v[0]

1

sage: v[3]

sin(x^3)

16 Chapter 2. 导览

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> v[Integer(0)]

1

>>> v[Integer(3)]

sin(x^3)

使用 len(v)获取 v的长度，使用 v.append(obj)将新对象追加到 v的末尾，使用 del v[i]删除 v的第 i
项：

sage: len(v)

4

sage: v.append(1.5)

sage: v

[1, 'hello', 2/3, sin(x^3), 1.50000000000000]

sage: del v[1]

sage: v

[1, 2/3, sin(x^3), 1.50000000000000]

>>> from sage.all import *

>>> len(v)

4

>>> v.append(RealNumber('1.5'))

>>> v

[1, 'hello', 2/3, sin(x^3), 1.50000000000000]

>>> del v[Integer(1)]

>>> v

[1, 2/3, sin(x^3), 1.50000000000000]

另一个重要的数据结构是字典（或关联数组）。字典的工作方式类似于列表，但它可以用几乎任何对象来索
引（索引必须是不可变的）：

sage: d = {'hi':-2, 3/8:pi, e:pi}

sage: d['hi']

-2

sage: d[e]

pi

>>> from sage.all import *

>>> d = {'hi':-Integer(2), Integer(3)/Integer(8):pi, e:pi}

>>> d['hi']

-2

>>> d[e]

pi

你还可以使用类定义新的数据类型。使用类封装数学对象是一种强大的技术，可以帮助简化和组织你的 Sage
程序。下面，我们定义一个表示不超过 n的正偶数列表的类；它从内置类型 list派生而来。

sage: class Evens(list):

....: def __init__(self, n):

....: self.n = n

....: list.__init__(self, range(2, n+1, 2))

....: def __repr__(self):

....: return "Even positive numbers up to n."

>>> from sage.all import *

>>> class Evens(list):

(续下页)

2.3. 函数、缩进和计数 17

Sage教程,发行版本 10.8

(接上页)
... def __init__(self, n):

... self.n = n

... list.__init__(self, range(Integer(2), n+Integer(1), Integer(2)))

... def __repr__(self):

... return "Even positive numbers up to n."

__init__方法在创建对象时调用以初始化对象；__repr__方法打印对象。我们在 __init__方法的第二行
调用列表构造函数。下面我们创建 Evens类的对象：

sage: e = Evens(10)

sage: e

Even positive numbers up to n.

>>> from sage.all import *

>>> e = Evens(Integer(10))

>>> e

Even positive numbers up to n.

注意，e使用我们定义的 __repr__方法打印。要查看底层数字列表，请使用 list函数：

sage: list(e)

[2, 4, 6, 8, 10]

>>> from sage.all import *

>>> list(e)

[2, 4, 6, 8, 10]

我们还可以访问属性 n或像列表一样操作 e。

sage: e.n

10

sage: e[2]

6

>>> from sage.all import *

>>> e.n

10

>>> e[Integer(2)]

6

2.4 基本代数和微积分
Sage能够进行多种与基本代数和微积分相关的计算，例如求解方程、微分、积分和拉普拉斯变换。更多示例，
请参阅 Sage Constructions。
在所有这些示例中，函数中的变量都需要使用 var(...)定义。例如：

sage: u = var('u')

sage: diff(sin(u), u)

cos(u)

>>> from sage.all import *

>>> u = var('u')

(续下页)

18 Chapter 2. 导览

http://doc.sagemath.org/html/en/constructions/

Sage教程,发行版本 10.8

(接上页)
>>> diff(sin(u), u)

cos(u)

如果遇到 NameError错误，请检查是否拼写错误，或者是否忘记使用 var(...)定义变量。

2.4.1 求解方程
精确求解方程

solve函数用于求解方程。使用时，首先定义变量；然后将方程（或方程组）和需要求解的变量作为 solve

的参数：

sage: x = var('x')

sage: solve(x^2 + 3*x + 2, x)

[x == -2, x == -1]

>>> from sage.all import *

>>> x = var('x')

>>> solve(x**Integer(2) + Integer(3)*x + Integer(2), x)

[x == -2, x == -1]

你可以求解一元方程，其他变量作为参数：

sage: x, b, c = var('x b c')

sage: solve([x^2 + b*x + c == 0],x)

[x == -1/2*b - 1/2*sqrt(b^2 - 4*c), x == -1/2*b + 1/2*sqrt(b^2 - 4*c)]

>>> from sage.all import *

>>> x, b, c = var('x b c')

>>> solve([x**Integer(2) + b*x + c == Integer(0)],x)

[x == -1/2*b - 1/2*sqrt(b^2 - 4*c), x == -1/2*b + 1/2*sqrt(b^2 - 4*c)]

你也可以求解多元方程：

sage: x, y = var('x, y')

sage: solve([x+y==6, x-y==4], x, y)

[[x == 5, y == 1]]

>>> from sage.all import *

>>> x, y = var('x, y')

>>> solve([x+y==Integer(6), x-y==Integer(4)], x, y)

[[x == 5, y == 1]]

以下是由 Jason Grout提供的使用 Sage求解非线性方程组的示例：首先，我们符号化地求解该方程组：

sage: var('x y p q')

(x, y, p, q)

sage: eq1 = p+q==9

sage: eq2 = q*y+p*x==-6

sage: eq3 = q*y^2+p*x^2==24

sage: solve([eq1,eq2,eq3,p==1],p,q,x,y)

[[p == 1, q == 8, x == -4/3*sqrt(10) - 2/3, y == 1/6*sqrt(10) - 2/3], [p == 1, q == 8, x == 4/

↪→3*sqrt(10) - 2/3, y == -1/6*sqrt(10) - 2/3]]

2.4. 基本代数和微积分 19

https://docs.python.org/library/exceptions.html#NameError

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> var('x y p q')

(x, y, p, q)

>>> eq1 = p+q==Integer(9)

>>> eq2 = q*y+p*x==-Integer(6)

>>> eq3 = q*y**Integer(2)+p*x**Integer(2)==Integer(24)

>>> solve([eq1,eq2,eq3,p==Integer(1)],p,q,x,y)

[[p == 1, q == 8, x == -4/3*sqrt(10) - 2/3, y == 1/6*sqrt(10) - 2/3], [p == 1, q == 8, x == 4/

↪→3*sqrt(10) - 2/3, y == -1/6*sqrt(10) - 2/3]]

对于解的数值近似，可以使用：

sage: solns = solve([eq1,eq2,eq3,p==1],p,q,x,y, solution_dict=True)

sage: [[s[p].n(30), s[q].n(30), s[x].n(30), s[y].n(30)] for s in solns]

[[1.0000000, 8.0000000, -4.8830369, -0.13962039],

[1.0000000, 8.0000000, 3.5497035, -1.1937129]]

>>> from sage.all import *

>>> solns = solve([eq1,eq2,eq3,p==Integer(1)],p,q,x,y, solution_dict=True)

>>> [[s[p].n(Integer(30)), s[q].n(Integer(30)), s[x].n(Integer(30)), s[y].n(Integer(30))] for s␣

↪→in solns]

[[1.0000000, 8.0000000, -4.8830369, -0.13962039],

[1.0000000, 8.0000000, 3.5497035, -1.1937129]]

（函数 n用于打印数值近似，参数是精度的位数。）

数值求解方程

很多时候，solve无法找到指定方程或方程组的精确解。此时可以使用 find_root找到数值解。例如，solve
对以下方程没有返回任何有意义的结果:

sage: theta = var('theta')

sage: solve(cos(theta)==sin(theta), theta)

[sin(theta) == cos(theta)]

>>> from sage.all import *

>>> theta = var('theta')

>>> solve(cos(theta)==sin(theta), theta)

[sin(theta) == cos(theta)]

另一方面，可以使用 find_root在区间 0 < ϕ < π/2内找到上述方程的解:

sage: phi = var('phi')

sage: find_root(cos(phi)==sin(phi),0,pi/2)

0.785398163397448...

>>> from sage.all import *

>>> phi = var('phi')

>>> find_root(cos(phi)==sin(phi),Integer(0),pi/Integer(2))

0.785398163397448...

20 Chapter 2. 导览

Sage教程,发行版本 10.8

2.4.2 微分、积分及其他
Sage可以对许多函数进行微分和积分。例如，对 sin(u)相对于 u进行微分，可以这样做：

sage: u = var('u')

sage: diff(sin(u), u)

cos(u)

>>> from sage.all import *

>>> u = var('u')

>>> diff(sin(u), u)

cos(u)

计算 sin(x2)的四阶导数：

sage: diff(sin(x^2), x, 4)

16*x^4*sin(x^2) - 48*x^2*cos(x^2) - 12*sin(x^2)

>>> from sage.all import *

>>> diff(sin(x**Integer(2)), x, Integer(4))

16*x^4*sin(x^2) - 48*x^2*cos(x^2) - 12*sin(x^2)

分别计算 x2 + 17y2 相对于 x和 y的偏导数：

sage: x, y = var('x,y')

sage: f = x^2 + 17*y^2

sage: f.diff(x)

2*x

sage: f.diff(y)

34*y

>>> from sage.all import *

>>> x, y = var('x,y')

>>> f = x**Integer(2) + Integer(17)*y**Integer(2)

>>> f.diff(x)

2*x

>>> f.diff(y)

34*y

接下来讨论积分，包括不定积分和定积分。计算
∫
x sin(x2) dx和

∫ 1

0
x

x2+1 dx

sage: integral(x*sin(x^2), x)

-1/2*cos(x^2)

sage: integral(x/(x^2+1), x, 0, 1)

1/2*log(2)

>>> from sage.all import *

>>> integral(x*sin(x**Integer(2)), x)

-1/2*cos(x^2)

>>> integral(x/(x**Integer(2)+Integer(1)), x, Integer(0), Integer(1))

1/2*log(2)

计算 1
x2−1 的部分分式分解：

sage: f = 1/((1+x)*(x-1))

sage: f.partial_fraction(x)

-1/2/(x + 1) + 1/2/(x - 1)

2.4. 基本代数和微积分 21

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> f = Integer(1)/((Integer(1)+x)*(x-Integer(1)))

>>> f.partial_fraction(x)

-1/2/(x + 1) + 1/2/(x - 1)

2.4.3 求解微分方程
你可以用 Sage来研究常微分方程。求解方程 x′ + x− 1 = 0：

sage: t = var('t') # define a variable t

sage: x = function('x')(t) # define x to be a function of that variable

sage: DE = diff(x, t) + x - 1

sage: desolve(DE, [x,t])

(_C + e^t)*e^(-t)

>>> from sage.all import *

>>> t = var('t') # define a variable t

>>> x = function('x')(t) # define x to be a function of that variable

>>> DE = diff(x, t) + x - Integer(1)

>>> desolve(DE, [x,t])

(_C + e^t)*e^(-t)

这里使用 Sage与Maxima [Max]的接口，因此其输出可能与其他 Sage输出有所不同。上面示例中，输出表示
该微分方程的一般解是 x(t) = e−t(et + c)。

你还可以计算拉普拉斯变换；计算 t2et − sin(t)的拉普拉斯变换如下：

sage: s = var("s")

sage: t = var("t")

sage: f = t^2*exp(t) - sin(t)

sage: f.laplace(t,s)

-1/(s^2 + 1) + 2/(s - 1)^3

>>> from sage.all import *

>>> s = var("s")

>>> t = var("t")

>>> f = t**Integer(2)*exp(t) - sin(t)

>>> f.laplace(t,s)

-1/(s^2 + 1) + 2/(s - 1)^3

这里是一个更复杂的示例。左侧连接到墙上的耦合弹簧的平衡位移

|------\/\/\/\/\---|mass1|----\/\/\/\/\/----|mass2|

spring1 spring2

由二阶微分方程组建模

m1x
′′
1 + (k1 + k2)x1 − k2x2 = 0

m2x
′′
2 + k2(x2 − x1) = 0,

其中mi 是物体 i的质量，xi 是质量 i的平衡位移，ki 是弹簧 i的弹簧常数。

示例：使用 Sage 求解上述问题，其中 m1 = 2, m2 = 1, k1 = 4, k2 = 2, x1(0) = 3, x′
1(0) = 0, x2(0) = 3,

x′
2(0) = 0.
解：对第一个方程进行拉普拉斯变换（符号 x = x1, y = x2）：

22 Chapter 2. 导览

Sage教程,发行版本 10.8

sage: t,s = SR.var('t,s')

sage: x = function('x')

sage: y = function('y')

sage: f = 2*x(t).diff(t,2) + 6*x(t) - 2*y(t)

sage: f.laplace(t,s)

2*s^2*laplace(x(t), t, s) - 2*s*x(0) + 6*laplace(x(t), t, s) - 2*laplace(y(t), t, s) -␣

↪→2*D[0](x)(0)

>>> from sage.all import *

>>> t,s = SR.var('t,s')

>>> x = function('x')

>>> y = function('y')

>>> f = Integer(2)*x(t).diff(t,Integer(2)) + Integer(6)*x(t) - Integer(2)*y(t)

>>> f.laplace(t,s)

2*s^2*laplace(x(t), t, s) - 2*s*x(0) + 6*laplace(x(t), t, s) - 2*laplace(y(t), t, s) -␣

↪→2*D[0](x)(0)

输出虽然难以阅读，但其表示

−2x′(0) + 2s2 ·X(s)− 2sx(0)− 2Y (s) + 6X(s) = 0

（其中小写函数如 x(t)的拉普拉斯变换是大写函数 X(s)）。对第二个方程进行拉普拉斯变换：

sage: de2 = maxima("diff(y(t),t, 2) + 2*y(t) - 2*x(t)")

sage: lde2 = de2.laplace("t","s"); lde2.sage()

s^2*laplace(y(t), t, s) - s*y(0) - 2*laplace(x(t), t, s) + 2*laplace(y(t), t, s) - D[0](y)(0)

>>> from sage.all import *

>>> de2 = maxima("diff(y(t),t, 2) + 2*y(t) - 2*x(t)")

>>> lde2 = de2.laplace("t","s"); lde2.sage()

s^2*laplace(y(t), t, s) - s*y(0) - 2*laplace(x(t), t, s) + 2*laplace(y(t), t, s) - D[0](y)(0)

这表示

−Y ′(0) + s2Y (s) + 2Y (s)− 2X(s)− sy(0) = 0.

代入初始条件 x(0), x′(0), y(0),和 y′(0)，并求解所得的两个方程：

sage: var('s X Y')

(s, X, Y)

sage: eqns = [(2*s^2+6)*X-2*Y == 6*s, -2*X +(s^2+2)*Y == 3*s]

sage: solve(eqns, X,Y)

[[X == 3*(s^3 + 3*s)/(s^4 + 5*s^2 + 4),

Y == 3*(s^3 + 5*s)/(s^4 + 5*s^2 + 4)]]

>>> from sage.all import *

>>> var('s X Y')

(s, X, Y)

>>> eqns = [(Integer(2)*s**Integer(2)+Integer(6))*X-Integer(2)*Y == Integer(6)*s, -Integer(2)*X␣

↪→+(s**Integer(2)+Integer(2))*Y == Integer(3)*s]

>>> solve(eqns, X,Y)

[[X == 3*(s^3 + 3*s)/(s^4 + 5*s^2 + 4),

Y == 3*(s^3 + 5*s)/(s^4 + 5*s^2 + 4)]]

此时进行逆拉普拉斯变换即可得到答案：

2.4. 基本代数和微积分 23

Sage教程,发行版本 10.8

sage: var('s t')

(s, t)

sage: inverse_laplace((3*s^3 + 9*s)/(s^4 + 5*s^2 + 4),s,t)

cos(2*t) + 2*cos(t)

sage: inverse_laplace((3*s^3 + 15*s)/(s^4 + 5*s^2 + 4),s,t)

-cos(2*t) + 4*cos(t)

>>> from sage.all import *

>>> var('s t')

(s, t)

>>> inverse_laplace((Integer(3)*s**Integer(3) + Integer(9)*s)/(s**Integer(4) +␣

↪→Integer(5)*s**Integer(2) + Integer(4)),s,t)

cos(2*t) + 2*cos(t)

>>> inverse_laplace((Integer(3)*s**Integer(3) + Integer(15)*s)/(s**Integer(4) +␣

↪→Integer(5)*s**Integer(2) + Integer(4)),s,t)

-cos(2*t) + 4*cos(t)

因此，解为

x1(t) = cos(2t) + 2 cos(t), x2(t) = 4 cos(t)− cos(2t).

可以使用参数方式绘制函数图像

sage: t = var('t')

sage: P = parametric_plot((cos(2*t) + 2*cos(t), 4*cos(t) - cos(2*t)),

....: (t, 0, 2*pi), rgbcolor=hue(0.9))

sage: show(P)

>>> from sage.all import *

>>> t = var('t')

>>> P = parametric_plot((cos(Integer(2)*t) + Integer(2)*cos(t), Integer(4)*cos(t) -␣

↪→cos(Integer(2)*t)),

... (t, Integer(0), Integer(2)*pi), rgbcolor=hue(RealNumber('0.9')))

>>> show(P)

也可以分开绘制两个函数的图像

sage: t = var('t')

sage: p1 = plot(cos(2*t) + 2*cos(t), (t,0, 2*pi), rgbcolor=hue(0.3))

sage: p2 = plot(4*cos(t) - cos(2*t), (t,0, 2*pi), rgbcolor=hue(0.6))

sage: show(p1 + p2)

>>> from sage.all import *

>>> t = var('t')

>>> p1 = plot(cos(Integer(2)*t) + Integer(2)*cos(t), (t,Integer(0), Integer(2)*pi),␣

↪→rgbcolor=hue(RealNumber('0.3')))

>>> p2 = plot(Integer(4)*cos(t) - cos(Integer(2)*t), (t,Integer(0), Integer(2)*pi),␣

↪→rgbcolor=hue(RealNumber('0.6')))

>>> show(p1 + p2)

有关绘图的更多信息，请参见绘图。有关微分方程的更多信息，请参见 [NagleEtAl2004]的第 5.5节。

24 Chapter 2. 导览

Sage教程,发行版本 10.8

2.4.4 欧拉法求解微分方程组
在下一个示例中，我们将演示欧拉法求解一阶和二阶常微分方程。首先回顾一下一阶方程的基本思想。给定
初值问题的形式为

y′ = f(x, y), y(a) = c,

我们要找到解在 x = b处的近似值，其中 b > a。

回顾导数的定义

y′(x) ≈ y(x+ h)− y(x)

h
,

其中 h > 0是一个给定且极小的数。结合微分方程可以得到 f(x, y(x)) ≈ y(x+h)−y(x)
h 。现在求解 y(x+ h):

y(x+ h) ≈ y(x) + h · f(x, y(x)).

如果我们把 h · f(x, y(x))称为“校正项”（因为没有更好的名称）,把 y(x)称为“y的旧值”，把 y(x+ h)称
为“y的新值”，那么这个近似可以重新表示为

ynew ≈ yold + h · f(x, yold).

如果我们将从 a到 b的区间分成 n步，使得 h = b−a
n ，那么我们可以在表中记录此方法的信息。

x y h · f(x, y)

a c h · f(a, c)
a+ h c+ h · f(a, c) ...
a+ 2h ...
...
b = a+ nh ???

我们的目标是逐行填满表中的所有空白，直到到达??? 条目，这就是欧拉法对 y(b)的近似值。

求解微分方程组的思想与之类似。

示例：数值近似 z(t)在 t = 1处的值，使用欧拉法的 4个步骤，其中 z′′ + tz′ + z = 0, z(0) = 1, z′(0) = 0。

我们必须将二阶常微分方程简化为两个一阶常微分方程组（使用 x = z, y = z′）并应用欧拉法：

sage: t,x,y = PolynomialRing(RealField(10),3,"txy").gens()

sage: f = y; g = -x - y * t

sage: eulers_method_2x2(f,g, 0, 1, 0, 1/4, 1)

t x h*f(t,x,y) y h*g(t,x,y)

0 1 0.00 0 -0.25

1/4 1.0 -0.062 -0.25 -0.23

1/2 0.94 -0.12 -0.48 -0.17

3/4 0.82 -0.16 -0.66 -0.081

1 0.65 -0.18 -0.74 0.022

>>> from sage.all import *

>>> t,x,y = PolynomialRing(RealField(Integer(10)),Integer(3),"txy").gens()

>>> f = y; g = -x - y * t

>>> eulers_method_2x2(f,g, Integer(0), Integer(1), Integer(0), Integer(1)/Integer(4),␣

↪→Integer(1))

t x h*f(t,x,y) y h*g(t,x,y)

(续下页)

2.4. 基本代数和微积分 25

Sage教程,发行版本 10.8

(接上页)
0 1 0.00 0 -0.25

1/4 1.0 -0.062 -0.25 -0.23

1/2 0.94 -0.12 -0.48 -0.17

3/4 0.82 -0.16 -0.66 -0.081

1 0.65 -0.18 -0.74 0.022

因此，z(1) ≈ 0.65.
我们还可以绘制点 (x, y)以获得曲线的近似图。函数 eulers_method_2x2_plot将执行此操作；为了使用
它，我们需要定义函数 f 和 g，它们接受一个带有三个坐标的参数：(t, x,‘y‘)。

sage: f = lambda z: z[2] # f(t,x,y) = y

sage: g = lambda z: -sin(z[1]) # g(t,x,y) = -sin(x)

sage: P = eulers_method_2x2_plot(f,g, 0.0, 0.75, 0.0, 0.1, 1.0)

>>> from sage.all import *

>>> f = lambda z: z[Integer(2)] # f(t,x,y) = y

>>> g = lambda z: -sin(z[Integer(1)]) # g(t,x,y) = -sin(x)

>>> P = eulers_method_2x2_plot(f,g, RealNumber('0.0'), RealNumber('0.75'), RealNumber('0.0'),␣

↪→RealNumber('0.1'), RealNumber('1.0'))

此时，P存储了两个图：P[0], x相对于 t的图,以及 P[1], y相对于 t的图。我们可以通过如下代码绘制这两
个图：

sage: show(P[0] + P[1])

>>> from sage.all import *

>>> show(P[Integer(0)] + P[Integer(1)])

（有关绘图的更多信息，请参见绘图。）

2.4.5 特殊函数
Sage利用 PARI [GAP]和Maxima [Max] ,实现了多种正交多项式和特殊函数。这些函数在 Sage参考手册的相
应部分（“正交多项式”和“特殊函数”）中有详细文档。

sage: x = polygen(QQ, 'x')

sage: chebyshev_U(2,x)

4*x^2 - 1

sage: bessel_I(1,1).n(250)

0.56515910399248502720769602760986330732889962162109200948029448947925564096

sage: bessel_I(1,1).n()

0.565159103992485

sage: bessel_I(2,1.1).n()

0.167089499251049

>>> from sage.all import *

>>> x = polygen(QQ, 'x')

>>> chebyshev_U(Integer(2),x)

4*x^2 - 1

>>> bessel_I(Integer(1),Integer(1)).n(Integer(250))

0.56515910399248502720769602760986330732889962162109200948029448947925564096

>>> bessel_I(Integer(1),Integer(1)).n()

0.565159103992485

>>> bessel_I(Integer(2),RealNumber('1.1')).n()

0.167089499251049

26 Chapter 2. 导览

Sage教程,发行版本 10.8

此时，Sage仅将这些函数包装用于数值使用。对于符号使用，请直接使用Maxima接口，如以下示例：

sage: maxima.eval("f:bessel_y(v, w)")

'bessel_y(v,w)'

sage: maxima.eval("diff(f,w)")

'(bessel_y(v-1,w)-bessel_y(v+1,w))/2'

>>> from sage.all import *

>>> maxima.eval("f:bessel_y(v, w)")

'bessel_y(v,w)'

>>> maxima.eval("diff(f,w)")

'(bessel_y(v-1,w)-bessel_y(v+1,w))/2'

2.4.6 向量微积分
参见 Vector Calculus Tutorial.

2.5 绘图
Sage可以生成二维和三维图形。

2.5.1 二维图形
在二维中，Sage可以绘制圆、线和多边形；在直角坐标系中绘制函数图形；还可以绘制极坐标图、轮廓图
和矢量场图。本文档展示了若干这些图形的例子。有关使用 Sage 绘图的更多例子，请参见求解微分方程
和Maxima，以及 Sage Constructions文档。
该命令生成一个位于原点的半径为 1的黄色圆：

sage: circle((0,0), 1, rgbcolor=(1,1,0))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> circle((Integer(0),Integer(0)), Integer(1), rgbcolor=(Integer(1),Integer(1),Integer(0)))

Graphics object consisting of 1 graphics primitive

你还可以生成一个填充的圆：

sage: circle((0,0), 1, rgbcolor=(1,1,0), fill=True)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> circle((Integer(0),Integer(0)), Integer(1), rgbcolor=(Integer(1),Integer(1),Integer(0)),␣

↪→fill=True)

Graphics object consisting of 1 graphics primitive

你还可以通过将圆赋值给变量来创建圆；这样做不会将圆绘制出来：

sage: c = circle((0,0), 1, rgbcolor=(1,1,0))

>>> from sage.all import *

>>> c = circle((Integer(0),Integer(0)), Integer(1), rgbcolor=(Integer(1),Integer(1),Integer(0)))

要想绘制它，可以使用 c.show()或 show(c)，如下所示：

2.5. 绘图 27

http://doc.sagemath.org/html/en/thematic_tutorials/vector_calculus.html
http://doc.sagemath.org/html/en/constructions/

Sage教程,发行版本 10.8

sage: c.show()

>>> from sage.all import *

>>> c.show()

或者，使用 c.save('filename.png')将绘图保存到给定文件。

现在，这些“圆”看起来更像椭圆，因为坐标轴的比例不同。你可以这样修复这个问题：

sage: c.show(aspect_ratio=1)

>>> from sage.all import *

>>> c.show(aspect_ratio=Integer(1))

命令 show(c, aspect_ratio=1) 可以完成同样的事情，或者你可以使用 c.save('filename.png',

aspect_ratio=1)保存图片。

绘制基本函数很容易：

sage: plot(cos, (-5,5))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> plot(cos, (-Integer(5),Integer(5)))

Graphics object consisting of 1 graphics primitive

一旦你指定了变量名称，你还可以创建参数化图形：

sage: x = var('x')

sage: parametric_plot((cos(x),sin(x)^3),(x,0,2*pi),rgbcolor=hue(0.6))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> x = var('x')

>>> parametric_plot((cos(x),sin(x)**Integer(3)),(x,Integer(0),Integer(2)*pi),

↪→rgbcolor=hue(RealNumber('0.6')))

Graphics object consisting of 1 graphics primitive

一定要注意，只有当原点在图形的视图范围内时，图形的轴才会相交，并且对于非常大的数值可能会使用科
学计数法：

sage: plot(x^2,(x,300,500))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> plot(x**Integer(2),(x,Integer(300),Integer(500)))

Graphics object consisting of 1 graphics primitive

你可以通过将多个图形相加来将他们组合在一起：

sage: x = var('x')

sage: p1 = parametric_plot((cos(x),sin(x)),(x,0,2*pi),rgbcolor=hue(0.2))

sage: p2 = parametric_plot((cos(x),sin(x)^2),(x,0,2*pi),rgbcolor=hue(0.4))

sage: p3 = parametric_plot((cos(x),sin(x)^3),(x,0,2*pi),rgbcolor=hue(0.6))

sage: show(p1+p2+p3, axes=false)

28 Chapter 2. 导览

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> x = var('x')

>>> p1 = parametric_plot((cos(x),sin(x)),(x,Integer(0),Integer(2)*pi),rgbcolor=hue(RealNumber(

↪→'0.2')))

>>> p2 = parametric_plot((cos(x),sin(x)**Integer(2)),(x,Integer(0),Integer(2)*pi),

↪→rgbcolor=hue(RealNumber('0.4')))

>>> p3 = parametric_plot((cos(x),sin(x)**Integer(3)),(x,Integer(0),Integer(2)*pi),

↪→rgbcolor=hue(RealNumber('0.6')))

>>> show(p1+p2+p3, axes=false)

生成填充形状的一个好方法是生成点列表（示例中的 L），然后使用 polygon命令绘制由这些点构成边界的
形状。例如，下面是一个绿色的三角形：

sage: L = [[-1+cos(pi*i/100)*(1+cos(pi*i/100)),

....: 2*sin(pi*i/100)*(1-cos(pi*i/100))] for i in range(200)]

sage: p = polygon(L, rgbcolor=(1/8,3/4,1/2))

sage: p

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> L = [[-Integer(1)+cos(pi*i/Integer(100))*(Integer(1)+cos(pi*i/Integer(100))),

... Integer(2)*sin(pi*i/Integer(100))*(Integer(1)-cos(pi*i/Integer(100)))] for i in␣

↪→range(Integer(200))]

>>> p = polygon(L, rgbcolor=(Integer(1)/Integer(8),Integer(3)/Integer(4),Integer(1)/Integer(2)))

>>> p

Graphics object consisting of 1 graphics primitive

输入 show(p, axes=false)来查看没有任何坐标轴的图形。

你可以向图形中添加文本：

sage: L = [[6*cos(pi*i/100)+5*cos((6/2)*pi*i/100),

....: 6*sin(pi*i/100)-5*sin((6/2)*pi*i/100)] for i in range(200)]

sage: p = polygon(L, rgbcolor=(1/8,1/4,1/2))

sage: t = text("hypotrochoid", (5,4), rgbcolor=(1,0,0))

sage: show(p+t)

>>> from sage.all import *

>>> L = [[Integer(6)*cos(pi*i/Integer(100))+Integer(5)*cos((Integer(6)/Integer(2))*pi*i/

↪→Integer(100)),

... Integer(6)*sin(pi*i/Integer(100))-Integer(5)*sin((Integer(6)/Integer(2))*pi*i/

↪→Integer(100))] for i in range(Integer(200))]

>>> p = polygon(L, rgbcolor=(Integer(1)/Integer(8),Integer(1)/Integer(4),Integer(1)/Integer(2)))

>>> t = text("hypotrochoid", (Integer(5),Integer(4)), rgbcolor=(Integer(1),Integer(0),

↪→Integer(0)))

>>> show(p+t)

微积分老师经常在黑板上绘制以下图形：arcsin的多个周期：即 y = sin(x)对于 x在 −2π和 2π区间的图像，
围绕 45度线翻转。以下 Sage命令构造此图形：

sage: v = [(sin(x),x) for x in srange(-2*float(pi),2*float(pi),0.1)]

sage: line(v)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> v = [(sin(x),x) for x in srange(-Integer(2)*float(pi),Integer(2)*float(pi),RealNumber('0.1

(续下页)

2.5. 绘图 29

Sage教程,发行版本 10.8

(接上页)
↪→'))]

>>> line(v)

Graphics object consisting of 1 graphics primitive

由于正切函数的值域比正弦函数大得多，如果你使用相同技巧绘制反正切的图像，你应该更改 x轴的最大和
最小坐标：

sage: v = [(tan(x),x) for x in srange(-2*float(pi),2*float(pi),0.01)]

sage: show(line(v), xmin=-20, xmax=20)

>>> from sage.all import *

>>> v = [(tan(x),x) for x in srange(-Integer(2)*float(pi),Integer(2)*float(pi),RealNumber('0.01

↪→'))]

>>> show(line(v), xmin=-Integer(20), xmax=Integer(20))

Sage还能计算极坐标图、轮廓图和矢量场图（针对特殊类型的函数）。这里是一个轮廓图的例子：

sage: f = lambda x,y: cos(x*y)

sage: contour_plot(f, (-4, 4), (-4, 4))

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> f = lambda x,y: cos(x*y)

>>> contour_plot(f, (-Integer(4), Integer(4)), (-Integer(4), Integer(4)))

Graphics object consisting of 1 graphics primitive

2.5.2 三维图形
Sage还可以用于创建三维图形。在 notebook和 REPL中，这些图形将默认使用开源软件包 [ThreeJS]显示，该
软件包支持使用鼠标交互式旋转和缩放图形。

使用 plot3d绘制形如 f(x, y) = z的函数图像：

sage: x, y = var('x,y')

sage: plot3d(x^2 + y^2, (x,-2,2), (y,-2,2))

Graphics3d Object

>>> from sage.all import *

>>> x, y = var('x,y')

>>> plot3d(x**Integer(2) + y**Integer(2), (x,-Integer(2),Integer(2)), (y,-Integer(2),

↪→Integer(2)))

Graphics3d Object

或者，你可以使用 parametric_plot3d绘制参数曲面，其中每个 x, y, z 由一个或两个变量（通常是 u和 v）
的函数确定。前面的图形可以参数化地表达如下：

sage: u, v = var('u, v')

sage: f_x(u, v) = u

sage: f_y(u, v) = v

sage: f_z(u, v) = u^2 + v^2

sage: parametric_plot3d([f_x, f_y, f_z], (u, -2, 2), (v, -2, 2))

Graphics3d Object

30 Chapter 2. 导览

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> u, v = var('u, v')

>>> __tmp__=var("u,v"); f_x = symbolic_expression(u).function(u,v)

>>> __tmp__=var("u,v"); f_y = symbolic_expression(v).function(u,v)

>>> __tmp__=var("u,v"); f_z = symbolic_expression(u**Integer(2) + v**Integer(2)).function(u,v)

>>> parametric_plot3d([f_x, f_y, f_z], (u, -Integer(2), Integer(2)), (v, -Integer(2),␣

↪→Integer(2)))

Graphics3d Object

在 Sage中绘制 3D曲面的第三种方法是 implicitplot3d‘，它绘制形如 f(x, y, z) = 0的函数的轮廓（这定义了
一组点）。我们使用经典公式绘制一个球体：

sage: x, y, z = var('x, y, z')

sage: implicit_plot3d(x^2 + y^2 + z^2 - 4, (x,-2, 2), (y,-2, 2), (z,-2, 2))

Graphics3d Object

>>> from sage.all import *

>>> x, y, z = var('x, y, z')

>>> implicit_plot3d(x**Integer(2) + y**Integer(2) + z**Integer(2) - Integer(4), (x,-Integer(2),␣

↪→Integer(2)), (y,-Integer(2), Integer(2)), (z,-Integer(2), Integer(2)))

Graphics3d Object

下面是更多的例子：

Yellow Whitney’s umbrella:

sage: u, v = var('u,v')

sage: fx = u*v

sage: fy = u

sage: fz = v^2

sage: parametric_plot3d([fx, fy, fz], (u, -1, 1), (v, -1, 1),

....: frame=False, color="yellow")

Graphics3d Object

>>> from sage.all import *

>>> u, v = var('u,v')

>>> fx = u*v

>>> fy = u

>>> fz = v**Integer(2)

>>> parametric_plot3d([fx, fy, fz], (u, -Integer(1), Integer(1)), (v, -Integer(1), Integer(1)),

... frame=False, color="yellow")

Graphics3d Object

Cross cap:

sage: u, v = var('u,v')

sage: fx = (1+cos(v))*cos(u)

sage: fy = (1+cos(v))*sin(u)

sage: fz = -tanh((2/3)*(u-pi))*sin(v)

sage: parametric_plot3d([fx, fy, fz], (u, 0, 2*pi), (v, 0, 2*pi),

....: frame=False, color="red")

Graphics3d Object

>>> from sage.all import *

>>> u, v = var('u,v')

>>> fx = (Integer(1)+cos(v))*cos(u)

(续下页)

2.5. 绘图 31

http://en.wikipedia.org/wiki/Whitney_umbrella
http://en.wikipedia.org/wiki/Cross-cap

Sage教程,发行版本 10.8

(接上页)
>>> fy = (Integer(1)+cos(v))*sin(u)

>>> fz = -tanh((Integer(2)/Integer(3))*(u-pi))*sin(v)

>>> parametric_plot3d([fx, fy, fz], (u, Integer(0), Integer(2)*pi), (v, Integer(0),␣

↪→Integer(2)*pi),

... frame=False, color="red")

Graphics3d Object

挠环面：

sage: u, v = var('u,v')

sage: fx = (3+sin(v)+cos(u))*cos(2*v)

sage: fy = (3+sin(v)+cos(u))*sin(2*v)

sage: fz = sin(u)+2*cos(v)

sage: parametric_plot3d([fx, fy, fz], (u, 0, 2*pi), (v, 0, 2*pi),

....: frame=False, color="red")

Graphics3d Object

>>> from sage.all import *

>>> u, v = var('u,v')

>>> fx = (Integer(3)+sin(v)+cos(u))*cos(Integer(2)*v)

>>> fy = (Integer(3)+sin(v)+cos(u))*sin(Integer(2)*v)

>>> fz = sin(u)+Integer(2)*cos(v)

>>> parametric_plot3d([fx, fy, fz], (u, Integer(0), Integer(2)*pi), (v, Integer(0),␣

↪→Integer(2)*pi),

... frame=False, color="red")

Graphics3d Object

双纽线：

sage: x, y, z = var('x,y,z')

sage: f(x, y, z) = 4*x^2 * (x^2 + y^2 + z^2 + z) + y^2 * (y^2 + z^2 - 1)

sage: implicit_plot3d(f, (x, -0.5, 0.5), (y, -1, 1), (z, -1, 1))

Graphics3d Object

>>> from sage.all import *

>>> x, y, z = var('x,y,z')

>>> __tmp__=var("x,y,z"); f = symbolic_expression(Integer(4)*x**Integer(2) * (x**Integer(2) +␣

↪→y**Integer(2) + z**Integer(2) + z) + y**Integer(2) * (y**Integer(2) + z**Integer(2) -␣

↪→Integer(1))).function(x,y,z)

>>> implicit_plot3d(f, (x, -RealNumber('0.5'), RealNumber('0.5')), (y, -Integer(1), Integer(1)),

↪→ (z, -Integer(1), Integer(1)))

Graphics3d Object

2.6 常见函数问题
定义函数的某些方面（例如，用于微分或绘图）可能会令人困惑。我们尝试在本节中解答一些相关问题。

以下是几种可以被称为“函数”的定义方法：

1. 定义一个 Python函数，如函数、缩进和计数中所述。这些函数可以被绘制，但不能被微分或积分。

sage: def f(z): return z^2

sage: type(f)

<... 'function'>

sage: f(3)

(续下页)

32 Chapter 2. 导览

Sage教程,发行版本 10.8

(接上页)
9

sage: plot(f, 0, 2)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> def f(z): return z**Integer(2)

>>> type(f)

<... 'function'>

>>> f(Integer(3))

9

>>> plot(f, Integer(0), Integer(2))

Graphics object consisting of 1 graphics primitive

请注意最后一行的语法。使用 plot(f(z), 0, 2)会报 NameError。因为 z是 f定义中的一个虚拟变量，在
该定义之外未定义。为了能够在 plot命令中使用 f(z)，需要将 z（或其他所需内容）定义为变量。我们可以
使用下面的语法，或者采用我们给出的第二种方法。

sage: var('z') # define z to be a variable

z

sage: f(z)

z^2

sage: plot(f(z), 0, 2)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> var('z') # define z to be a variable

z

>>> f(z)

z^2

>>> plot(f(z), Integer(0), Integer(2))

Graphics object consisting of 1 graphics primitive

此时，f(z)是一个符号表达式，即我们接下来要介绍的方法。

2. 定义一个“可调用的符号表达式”。这些表达式可以被绘制、微分和积分。

sage: g(x) = x^2

sage: g # g sends x to x^2

x |--> x^2

sage: g(3)

9

sage: Dg = g.derivative(); Dg

x |--> 2*x

sage: Dg(3)

6

sage: type(g)

<class 'sage.symbolic.expression.Expression'>

sage: plot(g, 0, 2)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> __tmp__=var("x"); g = symbolic_expression(x**Integer(2)).function(x)

>>> g # g sends x to x^2

x |--> x^2

>>> g(Integer(3))

9

(续下页)

2.6. 常见函数问题 33

https://docs.python.org/library/exceptions.html#NameError

Sage教程,发行版本 10.8

(接上页)
>>> Dg = g.derivative(); Dg

x |--> 2*x

>>> Dg(Integer(3))

6

>>> type(g)

<class 'sage.symbolic.expression.Expression'>

>>> plot(g, Integer(0), Integer(2))

Graphics object consisting of 1 graphics primitive

注意，虽然 g是一个可调用的符号表达式，但 g(x)是一个相关但不同类型的对象，尽管存在一些问题，但
它也可以被绘制、微分等：请参见下文中的第 5点。

sage: g(x)

x^2

sage: type(g(x))

<class 'sage.symbolic.expression.Expression'>

sage: g(x).derivative()

2*x

sage: plot(g(x), 0, 2)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> g(x)

x^2

>>> type(g(x))

<class 'sage.symbolic.expression.Expression'>

>>> g(x).derivative()

2*x

>>> plot(g(x), Integer(0), Integer(2))

Graphics object consisting of 1 graphics primitive

3. 使用预定义的 Sage ’微积分函数’。这些函数可以被绘制，并且稍加辅助可以进行微分和积分。

sage: type(sin)

<class 'sage.functions.trig.Function_sin'>

sage: plot(sin, 0, 2)

Graphics object consisting of 1 graphics primitive

sage: type(sin(x))

<class 'sage.symbolic.expression.Expression'>

sage: plot(sin(x), 0, 2)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> type(sin)

<class 'sage.functions.trig.Function_sin'>

>>> plot(sin, Integer(0), Integer(2))

Graphics object consisting of 1 graphics primitive

>>> type(sin(x))

<class 'sage.symbolic.expression.Expression'>

>>> plot(sin(x), Integer(0), Integer(2))

Graphics object consisting of 1 graphics primitive

单独使用 sin不能被微分，至少不能得到 cos.

sage: f = sin

sage: f.derivative()

(续下页)

34 Chapter 2. 导览

Sage教程,发行版本 10.8

(接上页)
Traceback (most recent call last):

...

AttributeError: ...

>>> from sage.all import *

>>> f = sin

>>> f.derivative()

Traceback (most recent call last):

...

AttributeError: ...

用 f = sin(x)替换 sin就可以了，但更好的方法可能是使用 f(x) = sin(x)来定义一个可调用的符号表
达式。

sage: S(x) = sin(x)

sage: S.derivative()

x |--> cos(x)

>>> from sage.all import *

>>> __tmp__=var("x"); S = symbolic_expression(sin(x)).function(x)

>>> S.derivative()

x |--> cos(x)

以下是一些常见问题及其解释：

4. 非预期执行

sage: def h(x):

....: if x<2:

....: return 0

....: else:

....: return x-2

>>> from sage.all import *

>>> def h(x):

... if x<Integer(2):

... return Integer(0)

... else:

... return x-Integer(2)

问题：plot(h(x), 0, 4)绘制的是直线 y = x−2，而不是由 h定义的分段函数。原因是，在命令 plot(h(x),

0, 4)中，首先执行 h(x)，这意味着将符号变量 x插入函数 h中。因此，不等式 x < 2首先执行得到 False，
因此 h(x)会执行 x - 2。可以通过以下方法看到这个过程

sage: bool(x < 2)

False

sage: h(x)

x - 2

>>> from sage.all import *

>>> bool(x < Integer(2))

False

>>> h(x)

x - 2

2.6. 常见函数问题 35

Sage教程,发行版本 10.8

注意，这里有两个不同的 x：用于定义函数 h的 Python变量（在其定义中是局部的）和 Sage启动时可用的
符号变量 x。

解决方案：不要使用 plot(h(x), 0, 4)；而是使用

sage: plot(h, 0, 4)

Graphics object consisting of 1 graphics primitive

>>> from sage.all import *

>>> plot(h, Integer(0), Integer(4))

Graphics object consisting of 1 graphics primitive

5. 意外产生常数而非函数。

sage: f = x

sage: g = f.derivative()

sage: g

1

>>> from sage.all import *

>>> f = x

>>> g = f.derivative()

>>> g

1

问题：以 g(3)为例，会返回一个错误，提示”ValueError: the number of arguments must be less than or equal to
0.”。

sage: type(f)

<class 'sage.symbolic.expression.Expression'>

sage: type(g)

<class 'sage.symbolic.expression.Expression'>

>>> from sage.all import *

>>> type(f)

<class 'sage.symbolic.expression.Expression'>

>>> type(g)

<class 'sage.symbolic.expression.Expression'>

g不是函数，而是一个常数，所以它没有关联的变量，不能将任何内容插入其中。

解决方案：有几种选择。

• 将 f定义为符号表达式。

sage: f(x) = x # instead of 'f = x'

sage: g = f.derivative()

sage: g

x |--> 1

sage: g(3)

1

sage: type(g)

<class 'sage.symbolic.expression.Expression'>

>>> from sage.all import *

>>> __tmp__=var("x"); f = symbolic_expression(x).function(x)# instead of 'f = x'

>>> g = f.derivative()

(续下页)

36 Chapter 2. 导览

Sage教程,发行版本 10.8

(接上页)
>>> g

x |--> 1

>>> g(Integer(3))

1

>>> type(g)

<class 'sage.symbolic.expression.Expression'>

• 或者保留 f的原始定义，将 g定义为符号表达式。

sage: f = x

sage: g(x) = f.derivative() # instead of 'g = f.derivative()'

sage: g

x |--> 1

sage: g(3)

1

sage: type(g)

<class 'sage.symbolic.expression.Expression'>

>>> from sage.all import *

>>> f = x

>>> __tmp__=var("x"); g = symbolic_expression(f.derivative()).function(x)# instead of 'g = f.

↪→derivative()'

>>> g

x |--> 1

>>> g(Integer(3))

1

>>> type(g)

<class 'sage.symbolic.expression.Expression'>

• 抑或保留 f和 g的原始定义，指定要替换的变量。

sage: f = x

sage: g = f.derivative()

sage: g

1

sage: g(x=3) # instead of 'g(3)'

1

>>> from sage.all import *

>>> f = x

>>> g = f.derivative()

>>> g

1

>>> g(x=Integer(3)) # instead of 'g(3)'

1

最后，还有另一种方法可以区分 f = x和 f(x) = x的导数

sage: f(x) = x

sage: g = f.derivative()

sage: g.variables() # the variables present in g

()

sage: g.arguments() # the arguments which can be plugged into g

(x,)

sage: f = x

sage: h = f.derivative()

(续下页)

2.6. 常见函数问题 37

Sage教程,发行版本 10.8

(接上页)
sage: h.variables()

()

sage: h.arguments()

()

>>> from sage.all import *

>>> __tmp__=var("x"); f = symbolic_expression(x).function(x)

>>> g = f.derivative()

>>> g.variables() # the variables present in g

()

>>> g.arguments() # the arguments which can be plugged into g

(x,)

>>> f = x

>>> h = f.derivative()

>>> h.variables()

()

>>> h.arguments()

()

正如上面例子试图说明的那样，h不接受任何参数，这就是为什么 h(3)会返回错误。

2.7 基本环
在定义矩阵、向量或多项式时，指定它们所定义的“环”非常有用，有时甚至是必须的。环是一种数学结构，
具有良好的加法和乘法概念；如果你以前从未听说过它们，你可能只需要了解以下四种常用的环：

• 整数 {...,−1, 0, 1, 2, ...}，在 Sage中称为 ZZ。

• 有理数 --即分数或整数的比率 --在 Sage中称为 QQ。

• 实数，在 Sage中称为 RR。

• 复数，在 Sage中称为 CC。

了解这些区别是必要的，因为同一个多项式可能会根据它所定义的环而有所不同。例如，多项式 x2 − 2有两
个根，±

√
2。这些根不是有理数，所以如果你处理的是具有有理系数的多项式，那么这个多项式无法因式

分解。但使用实系数，它便可以因式分解。因此，你可能需要指定环以确保获得预期的信息。以下两个命令
分别定义了具有有理系数和实系数的多项式集。集合被命名为”ratpoly”和”realpoly”，但这里并不重要；然而，
请注意字符串”.<t>”和”.<z>”分别命名了两种情况下使用的变量。:

sage: ratpoly.<t> = PolynomialRing(QQ)

sage: realpoly.<z> = PolynomialRing(RR)

>>> from sage.all import *

>>> ratpoly = PolynomialRing(QQ, names=('t',)); (t,) = ratpoly._first_ngens(1)

>>> realpoly = PolynomialRing(RR, names=('z',)); (z,) = realpoly._first_ngens(1)

现在我们来演示 x2 − 2的因式分解:

sage: factor(t^2-2)

t^2 - 2

sage: factor(z^2-2)

(z - 1.41421356237310) * (z + 1.41421356237310)

38 Chapter 2. 导览

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> factor(t**Integer(2)-Integer(2))

t^2 - 2

>>> factor(z**Integer(2)-Integer(2))

(z - 1.41421356237310) * (z + 1.41421356237310)

类似的情况也适用于矩阵：矩阵的行简化形式可能取决于它所定义的环，以及它的特征值和特征向量。有关
构造多项式的更多信息，请参见多项式，有关矩阵的更多信息，请参见线性代数。

符号 I表示 −1的平方根；i是 I的同义词。显然，它不是一个有理数:

sage: i # square root of -1

I

sage: i in QQ

False

>>> from sage.all import *

>>> i # square root of -1

I

>>> i in QQ

False

注意：如果变量 i已被赋予其他值，例如，如果它被用作循环变量，则上述代码可能无法按预期工作。如果
是这种情况，请输入:

sage: reset('i')

>>> from sage.all import *

>>> reset('i')

以获得 i的原始复数值。

定义复数时有一个需要注意的地方：如上所述，符号 i表示 −1的平方根，但是它是 −1的 *形式 *平方根，
是一个代数数。调用 CC(i)或 CC.0或 CC.gen(0)返回 −1的 *复数 *平方根。通过所谓的强制转换，可以
进行涉及不同类型数字的算术运算，请参见父结构、转换与强制转换。

sage: i = CC(i) # floating point complex number

sage: i == CC.0

True

sage: a, b = 4/3, 2/3

sage: z = a + b*i

sage: z

1.33333333333333 + 0.666666666666667*I

sage: z.imag() # imaginary part

0.666666666666667

sage: z.real() == a # automatic coercion before comparison

True

sage: a + b

2

sage: 2*b == a

True

sage: parent(2/3)

Rational Field

sage: parent(4/2)

Rational Field

sage: 2/3 + 0.1 # automatic coercion before addition

0.766666666666667

(续下页)

2.7. 基本环 39

Sage教程,发行版本 10.8

(接上页)
sage: 0.1 + 2/3 # coercion rules are symmetric in Sage

0.766666666666667

>>> from sage.all import *

>>> i = CC(i) # floating point complex number

>>> i == CC.gen(0)

True

>>> a, b = Integer(4)/Integer(3), Integer(2)/Integer(3)

>>> z = a + b*i

>>> z

1.33333333333333 + 0.666666666666667*I

>>> z.imag() # imaginary part

0.666666666666667

>>> z.real() == a # automatic coercion before comparison

True

>>> a + b

2

>>> Integer(2)*b == a

True

>>> parent(Integer(2)/Integer(3))

Rational Field

>>> parent(Integer(4)/Integer(2))

Rational Field

>>> Integer(2)/Integer(3) + RealNumber('0.1') # automatic coercion before addition

0.766666666666667

>>> RealNumber('0.1') + Integer(2)/Integer(3) # coercion rules are symmetric in Sage

0.766666666666667

以下是 Sage中一些基本环的更多示例。如上所述，有理数环可以使用 QQ或 RationalField()来引用（域
是满足乘法交换律的环，且每个非零元素在该环中都有一个倒数，因此有理数构成一个域，但整数不构成）:

sage: RationalField()

Rational Field

sage: QQ

Rational Field

sage: 1/2 in QQ

True

>>> from sage.all import *

>>> RationalField()

Rational Field

>>> QQ

Rational Field

>>> Integer(1)/Integer(2) in QQ

True

十进制数 1.2被认为是 QQ‘中的数：也可以“强制转换”成有理数的十进制数被认为是有理数（参见父结
构、转换与强制转换）。数字 π和

√
2不是有理数:

sage: 1.2 in QQ

True

sage: pi in QQ

False

sage: pi in RR

True

sage: sqrt(2) in QQ

(续下页)

40 Chapter 2. 导览

Sage教程,发行版本 10.8

(接上页)
False

sage: sqrt(2) in CC

True

>>> from sage.all import *

>>> RealNumber('1.2') in QQ

True

>>> pi in QQ

False

>>> pi in RR

True

>>> sqrt(Integer(2)) in QQ

False

>>> sqrt(Integer(2)) in CC

True

为了在高等数学中使用，Sage还具备其他环，例如有限域，p-adic整数，代数数环，多项式环和矩阵环。以
下是其中一些的构造:

sage: GF(3)

Finite Field of size 3

sage: GF(27, 'a') # need to name the generator if not a prime field

Finite Field in a of size 3^3

sage: Zp(5)

5-adic Ring with capped relative precision 20

sage: sqrt(3) in QQbar # algebraic closure of QQ

True

>>> from sage.all import *

>>> GF(Integer(3))

Finite Field of size 3

>>> GF(Integer(27), 'a') # need to name the generator if not a prime field

Finite Field in a of size 3^3

>>> Zp(Integer(5))

5-adic Ring with capped relative precision 20

>>> sqrt(Integer(3)) in QQbar # algebraic closure of QQ

True

2.8 线性代数
Sage提供了线性代数中的标准构造，例如矩阵的特征多项式、阶梯形、迹、分解等。
创建矩阵和进行矩阵乘法非常简单自然：

sage: A = Matrix([[1,2,3],[3,2,1],[1,1,1]])

sage: w = vector([1,1,-4])

sage: w*A

(0, 0, 0)

sage: A*w

(-9, 1, -2)

sage: kernel(A)

Free module of degree 3 and rank 1 over Integer Ring

Echelon basis matrix:

[1 1 -4]

2.8. 线性代数 41

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> A = Matrix([[Integer(1),Integer(2),Integer(3)],[Integer(3),Integer(2),Integer(1)],

↪→[Integer(1),Integer(1),Integer(1)]])

>>> w = vector([Integer(1),Integer(1),-Integer(4)])

>>> w*A

(0, 0, 0)

>>> A*w

(-9, 1, -2)

>>> kernel(A)

Free module of degree 3 and rank 1 over Integer Ring

Echelon basis matrix:

[1 1 -4]

请注意，在 Sage中，矩阵 A的核是“左核”，即满足 wA = 0的向量空间 w。

求解矩阵方程非常简单，使用 solve_right方法即可。运行 A.solve_right(Y)将返回一个矩阵（或向量）
X，使得 AX = Y：

sage: Y = vector([0, -4, -1])

sage: X = A.solve_right(Y)

sage: X

(-2, 1, 0)

sage: A * X # checking our answer...

(0, -4, -1)

>>> from sage.all import *

>>> Y = vector([Integer(0), -Integer(4), -Integer(1)])

>>> X = A.solve_right(Y)

>>> X

(-2, 1, 0)

>>> A * X # checking our answer...

(0, -4, -1)

倘若无解，Sage会返回错误：

sage: A.solve_right(w)

Traceback (most recent call last):

...

ValueError: matrix equation has no solutions

>>> from sage.all import *

>>> A.solve_right(w)

Traceback (most recent call last):

...

ValueError: matrix equation has no solutions

同理，可以使用 A.solve_left(Y)来求解方程:XA = Y 中的 X。

Sage还可以计算特征值和特征向量:

sage: A = matrix([[0, 4], [-1, 0]])

sage: A.eigenvalues ()

[-2*I, 2*I]

sage: B = matrix([[1, 3], [3, 1]])

sage: B.eigenvectors_left()

[(4, [(1, 1)], 1), (-2, [(1, -1)], 1)]

42 Chapter 2. 导览

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> A = matrix([[Integer(0), Integer(4)], [-Integer(1), Integer(0)]])

>>> A.eigenvalues ()

[-2*I, 2*I]

>>> B = matrix([[Integer(1), Integer(3)], [Integer(3), Integer(1)]])

>>> B.eigenvectors_left()

[(4, [(1, 1)], 1), (-2, [(1, -1)], 1)]

（eigenvectors_left的输出格式是一个包含三元组（特征值、特征向量、重数）的列表。）特征值和特征
向量可以通过Maxima在有理数域 QQ或实数域 RR上计算（见下文的Maxima）。

如基本环所述，矩阵定义的环会影响其某些性质。在下面的示例中，matrix命令的第一个参数告诉 Sage将
矩阵视为整数矩阵（ZZ）、有理数矩阵（QQ）或实数矩阵（RR）

sage: AZ = matrix(ZZ, [[2,0], [0,1]])

sage: AQ = matrix(QQ, [[2,0], [0,1]])

sage: AR = matrix(RR, [[2,0], [0,1]])

sage: AZ.echelon_form()

[2 0]

[0 1]

sage: AQ.echelon_form()

[1 0]

[0 1]

sage: AR.echelon_form()

[1.00000000000000 0.000000000000000]

[0.000000000000000 1.00000000000000]

>>> from sage.all import *

>>> AZ = matrix(ZZ, [[Integer(2),Integer(0)], [Integer(0),Integer(1)]])

>>> AQ = matrix(QQ, [[Integer(2),Integer(0)], [Integer(0),Integer(1)]])

>>> AR = matrix(RR, [[Integer(2),Integer(0)], [Integer(0),Integer(1)]])

>>> AZ.echelon_form()

[2 0]

[0 1]

>>> AQ.echelon_form()

[1 0]

[0 1]

>>> AR.echelon_form()

[1.00000000000000 0.000000000000000]

[0.000000000000000 1.00000000000000]

如果要计算浮点实数或复数矩阵的特征值和特征向量，矩阵应分别定义在 RDF（实双精度域）或 CDF（复双
精度域）上。如果没有指定环并且使用浮点实数或复数，则默认情况下矩阵定义在 RR或 CC域上，这些域不
支持所有情况的这些计算:

sage: ARDF = matrix(RDF, [[1.2, 2], [2, 3]])

sage: ARDF.eigenvalues() # rel tol 8e-16

[-0.09317121994613098, 4.293171219946131]

sage: ACDF = matrix(CDF, [[1.2, I], [2, 3]])

sage: ACDF.eigenvectors_right() # rel tol 3e-15

[(0.8818456983293743 - 0.8209140653434135*I, [(0.7505608183809549, -0.616145932704589 + 0.

↪→2387941530333261*I)], 1),

(3.3181543016706256 + 0.8209140653434133*I, [(0.14559469829270957 + 0.3756690858502104*I, 0.

↪→9152458258662108)], 1)]

>>> from sage.all import *

>>> ARDF = matrix(RDF, [[RealNumber('1.2'), Integer(2)], [Integer(2), Integer(3)]])
(续下页)

2.8. 线性代数 43

Sage教程,发行版本 10.8

(接上页)
>>> ARDF.eigenvalues() # rel tol 8e-16

[-0.09317121994613098, 4.293171219946131]

>>> ACDF = matrix(CDF, [[RealNumber('1.2'), I], [Integer(2), Integer(3)]])

>>> ACDF.eigenvectors_right() # rel tol 3e-15

[(0.8818456983293743 - 0.8209140653434135*I, [(0.7505608183809549, -0.616145932704589 + 0.

↪→2387941530333261*I)], 1),

(3.3181543016706256 + 0.8209140653434133*I, [(0.14559469829270957 + 0.3756690858502104*I, 0.

↪→9152458258662108)], 1)]

2.8.1 矩阵空间
我们创建了一个定义在有理数域 Q上的 3× 3矩阵空间Mat3×3(Q):

sage: M = MatrixSpace(QQ,3)

sage: M

Full MatrixSpace of 3 by 3 dense matrices over Rational Field

>>> from sage.all import *

>>> M = MatrixSpace(QQ,Integer(3))

>>> M

Full MatrixSpace of 3 by 3 dense matrices over Rational Field

（要创建一个 3 × 4 矩阵空间，可以使用 MatrixSpace(QQ,3,4)。如果省略列数，则默认为行数，因此
MatrixSpace(QQ,3)与 MatrixSpace(QQ,3,3)意义相同。）矩阵空间有其规范基：

sage: B = M.basis()

sage: len(B)

9

sage: B[0,1]

[0 1 0]

[0 0 0]

[0 0 0]

>>> from sage.all import *

>>> B = M.basis()

>>> len(B)

9

>>> B[Integer(0),Integer(1)]

[0 1 0]

[0 0 0]

[0 0 0]

我们创建一个矩阵作为 M的元素。

sage: A = M(range(9)); A

[0 1 2]

[3 4 5]

[6 7 8]

>>> from sage.all import *

>>> A = M(range(Integer(9))); A

[0 1 2]

[3 4 5]

[6 7 8]

44 Chapter 2. 导览

Sage教程,发行版本 10.8

接下来我们计算其简化行阶梯形和核。

sage: A.echelon_form()

[1 0 -1]

[0 1 2]

[0 0 0]

sage: A.kernel()

Vector space of degree 3 and dimension 1 over Rational Field

Basis matrix:

[1 -2 1]

>>> from sage.all import *

>>> A.echelon_form()

[1 0 -1]

[0 1 2]

[0 0 0]

>>> A.kernel()

Vector space of degree 3 and dimension 1 over Rational Field

Basis matrix:

[1 -2 1]

接着我们来演示在有限域上定义的矩阵的计算：

sage: M = MatrixSpace(GF(2),4,8)

sage: A = M([1,1,0,0, 1,1,1,1, 0,1,0,0, 1,0,1,1,

....: 0,0,1,0, 1,1,0,1, 0,0,1,1, 1,1,1,0])

sage: A

[1 1 0 0 1 1 1 1]

[0 1 0 0 1 0 1 1]

[0 0 1 0 1 1 0 1]

[0 0 1 1 1 1 1 0]

sage: rows = A.rows()

sage: A.columns()

[(1, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (0, 0, 0, 1),

(1, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)]

sage: rows

[(1, 1, 0, 0, 1, 1, 1, 1), (0, 1, 0, 0, 1, 0, 1, 1),

(0, 0, 1, 0, 1, 1, 0, 1), (0, 0, 1, 1, 1, 1, 1, 0)]

>>> from sage.all import *

>>> M = MatrixSpace(GF(Integer(2)),Integer(4),Integer(8))

>>> A = M([Integer(1),Integer(1),Integer(0),Integer(0), Integer(1),Integer(1),Integer(1),

↪→Integer(1), Integer(0),Integer(1),Integer(0),Integer(0), Integer(1),Integer(0),Integer(1),

↪→Integer(1),

... Integer(0),Integer(0),Integer(1),Integer(0), Integer(1),Integer(1),Integer(0),

↪→Integer(1), Integer(0),Integer(0),Integer(1),Integer(1), Integer(1),Integer(1),Integer(1),

↪→Integer(0)])

>>> A

[1 1 0 0 1 1 1 1]

[0 1 0 0 1 0 1 1]

[0 0 1 0 1 1 0 1]

[0 0 1 1 1 1 1 0]

>>> rows = A.rows()

>>> A.columns()

[(1, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (0, 0, 0, 1),

(1, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)]

>>> rows

(续下页)

2.8. 线性代数 45

Sage教程,发行版本 10.8

(接上页)
[(1, 1, 0, 0, 1, 1, 1, 1), (0, 1, 0, 0, 1, 0, 1, 1),

(0, 0, 1, 0, 1, 1, 0, 1), (0, 0, 1, 1, 1, 1, 1, 0)]

我们创建一个在有限域 F2 上由上述行生成的子空间。

sage: V = VectorSpace(GF(2),8)

sage: S = V.subspace(rows)

sage: S

Vector space of degree 8 and dimension 4 over Finite Field of size 2

Basis matrix:

[1 0 0 0 0 1 0 0]

[0 1 0 0 1 0 1 1]

[0 0 1 0 1 1 0 1]

[0 0 0 1 0 0 1 1]

sage: A.echelon_form()

[1 0 0 0 0 1 0 0]

[0 1 0 0 1 0 1 1]

[0 0 1 0 1 1 0 1]

[0 0 0 1 0 0 1 1]

>>> from sage.all import *

>>> V = VectorSpace(GF(Integer(2)),Integer(8))

>>> S = V.subspace(rows)

>>> S

Vector space of degree 8 and dimension 4 over Finite Field of size 2

Basis matrix:

[1 0 0 0 0 1 0 0]

[0 1 0 0 1 0 1 1]

[0 0 1 0 1 1 0 1]

[0 0 0 1 0 0 1 1]

>>> A.echelon_form()

[1 0 0 0 0 1 0 0]

[0 1 0 0 1 0 1 1]

[0 0 1 0 1 1 0 1]

[0 0 0 1 0 0 1 1]

Sage使用的 S 的基是通过生成矩阵的简化行阶梯形的非零行获得的。

2.8.2 稀疏线性代数
Sage支持在主理想域 (PIDs)上的稀疏线性代数。

sage: M = MatrixSpace(QQ, 100, sparse=True)

sage: A = M.random_element(density = 0.05)

sage: E = A.echelon_form()

>>> from sage.all import *

>>> M = MatrixSpace(QQ, Integer(100), sparse=True)

>>> A = M.random_element(density = RealNumber('0.05'))

>>> E = A.echelon_form()

Sage中的多模算法适用于方阵（但不适用于非方阵）：

sage: M = MatrixSpace(QQ, 50, 100, sparse=True)

sage: A = M.random_element(density = 0.05)

(续下页)

46 Chapter 2. 导览

Sage教程,发行版本 10.8

(接上页)
sage: E = A.echelon_form()

sage: M = MatrixSpace(GF(2), 20, 40, sparse=True)

sage: A = M.random_element()

sage: E = A.echelon_form()

>>> from sage.all import *

>>> M = MatrixSpace(QQ, Integer(50), Integer(100), sparse=True)

>>> A = M.random_element(density = RealNumber('0.05'))

>>> E = A.echelon_form()

>>> M = MatrixSpace(GF(Integer(2)), Integer(20), Integer(40), sparse=True)

>>> A = M.random_element()

>>> E = A.echelon_form()

请注意，Python是区分大小写的：

sage: M = MatrixSpace(QQ, 10,10, Sparse=True)

Traceback (most recent call last):

...

TypeError: ...__init__() got an unexpected keyword argument 'Sparse'...

>>> from sage.all import *

>>> M = MatrixSpace(QQ, Integer(10),Integer(10), Sparse=True)

Traceback (most recent call last):

...

TypeError: ...__init__() got an unexpected keyword argument 'Sparse'...

2.9 多项式
在本节中，我们将介绍如何在 Sage中创建和使用多项式。

2.9.1 一元多项式
创建多项式环有三种方法。

sage: R = PolynomialRing(QQ, 't')

sage: R

Univariate Polynomial Ring in t over Rational Field

>>> from sage.all import *

>>> R = PolynomialRing(QQ, 't')

>>> R

Univariate Polynomial Ring in t over Rational Field

这会创建一个多项式环，并告诉 Sage在显示时使用字符串’t’作为不定元。然而，这并没有定义符号 t，因此
你不能用它来输入属于 R的多项式（例如 t2 + 1）。

另一种方法是

sage: S = QQ['t']

sage: S == R

True

2.9. 多项式 47

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> S = QQ['t']

>>> S == R

True

这样做对于 t也存在同样的问题。

第三种非常方便的方法是

sage: R.<t> = PolynomialRing(QQ)

>>> from sage.all import *

>>> R = PolynomialRing(QQ, names=('t',)); (t,) = R._first_ngens(1)

或

sage: R.<t> = QQ['t']

>>> from sage.all import *

>>> R = QQ['t']; (t,) = R._first_ngens(1)

甚至

sage: R.<t> = QQ[]

>>> from sage.all import *

>>> R = QQ['t']; (t,) = R._first_ngens(1)

这样做还有一个额外的好处，即它定义了变量 t作为多项式环的不定元，因此你可以轻松地构造 R的元素，
如下所示。（请注意，第三种方法与 Magma中的构造符号非常相似，并且可以像在 Magma中一样用于广泛
的对象。）

sage: poly = (t+1) * (t+2); poly

t^2 + 3*t + 2

sage: poly in R

True

>>> from sage.all import *

>>> poly = (t+Integer(1)) * (t+Integer(2)); poly

t^2 + 3*t + 2

>>> poly in R

True

无论你使用哪种方法定义多项式环，你都可以通过 0th 生成器恢复不定元：

sage: R = PolynomialRing(QQ, 't')

sage: t = R.0

sage: t in R

True

>>> from sage.all import *

>>> R = PolynomialRing(QQ, 't')

>>> t = R.gen(0)

>>> t in R

True

48 Chapter 2. 导览

Sage教程,发行版本 10.8

请注意，类似的构造方法适用于复数：复数可以被视为由符号 i在实数上生成的，因此我们有以下内容：

sage: CC

Complex Field with 53 bits of precision

sage: CC.0 # 0th generator of CC

1.00000000000000*I

>>> from sage.all import *

>>> CC

Complex Field with 53 bits of precision

>>> CC.gen(0) # 0th generator of CC

1.00000000000000*I

对于多项式环，你可以在创建环时同时获得环及其生成器，或者仅获得生成器，如下所示：

sage: R, t = QQ['t'].objgen()

sage: t = QQ['t'].gen()

sage: R, t = objgen(QQ['t'])

sage: t = gen(QQ['t'])

>>> from sage.all import *

>>> R, t = QQ['t'].objgen()

>>> t = QQ['t'].gen()

>>> R, t = objgen(QQ['t'])

>>> t = gen(QQ['t'])

最后我们在 Q[t]中进行一些算术运算。

sage: R, t = QQ['t'].objgen()

sage: f = 2*t^7 + 3*t^2 - 15/19

sage: f^2

4*t^14 + 12*t^9 - 60/19*t^7 + 9*t^4 - 90/19*t^2 + 225/361

sage: cyclo = R.cyclotomic_polynomial(7); cyclo

t^6 + t^5 + t^4 + t^3 + t^2 + t + 1

sage: g = 7 * cyclo * t^5 * (t^5 + 10*t + 2)

sage: g

7*t^16 + 7*t^15 + 7*t^14 + 7*t^13 + 77*t^12 + 91*t^11 + 91*t^10 + 84*t^9

+ 84*t^8 + 84*t^7 + 84*t^6 + 14*t^5

sage: F = factor(g); F

(7) * t^5 * (t^5 + 10*t + 2) * (t^6 + t^5 + t^4 + t^3 + t^2 + t + 1)

sage: F.unit()

7

sage: list(F)

[(t, 5), (t^5 + 10*t + 2, 1), (t^6 + t^5 + t^4 + t^3 + t^2 + t + 1, 1)]

>>> from sage.all import *

>>> R, t = QQ['t'].objgen()

>>> f = Integer(2)*t**Integer(7) + Integer(3)*t**Integer(2) - Integer(15)/Integer(19)

>>> f**Integer(2)

4*t^14 + 12*t^9 - 60/19*t^7 + 9*t^4 - 90/19*t^2 + 225/361

>>> cyclo = R.cyclotomic_polynomial(Integer(7)); cyclo

t^6 + t^5 + t^4 + t^3 + t^2 + t + 1

>>> g = Integer(7) * cyclo * t**Integer(5) * (t**Integer(5) + Integer(10)*t + Integer(2))

>>> g

7*t^16 + 7*t^15 + 7*t^14 + 7*t^13 + 77*t^12 + 91*t^11 + 91*t^10 + 84*t^9

+ 84*t^8 + 84*t^7 + 84*t^6 + 14*t^5

>>> F = factor(g); F

(续下页)

2.9. 多项式 49

Sage教程,发行版本 10.8

(接上页)
(7) * t^5 * (t^5 + 10*t + 2) * (t^6 + t^5 + t^4 + t^3 + t^2 + t + 1)

>>> F.unit()

7

>>> list(F)

[(t, 5), (t^5 + 10*t + 2, 1), (t^6 + t^5 + t^4 + t^3 + t^2 + t + 1, 1)]

注意，因式分解正确考虑并记录了单位部分。

如果你在某个研究项目中大量使用某个函数，例如 R.cyclotomic_polynomial，除了引用 Sage 之外，
你还应该尝试找出 Sage 的哪个组件在实际计算分圆多项式并引用它。在这种情况下，如果你输入 R.

cyclotomic_polynomial??查看源代码，你很快会看到一行 f = pari.polcyclo(n)，这意味着 PARI被
用于计算分圆多项式。你的作品中也需要引用 PARI。
除以两个多项式会构造分数域的元素（Sage会自动创建）。

sage: x = QQ['x'].0

sage: f = x^3 + 1; g = x^2 - 17

sage: h = f/g; h

(x^3 + 1)/(x^2 - 17)

sage: h.parent()

Fraction Field of Univariate Polynomial Ring in x over Rational Field

>>> from sage.all import *

>>> x = QQ['x'].gen(0)

>>> f = x**Integer(3) + Integer(1); g = x**Integer(2) - Integer(17)

>>> h = f/g; h

(x^3 + 1)/(x^2 - 17)

>>> h.parent()

Fraction Field of Univariate Polynomial Ring in x over Rational Field

使用 Laurent级数，可以在 QQ[x]的分数域中计算级数展开：

sage: R.<x> = LaurentSeriesRing(QQ); R

Laurent Series Ring in x over Rational Field

sage: 1/(1-x) + O(x^10)

1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + O(x^10)

>>> from sage.all import *

>>> R = LaurentSeriesRing(QQ, names=('x',)); (x,) = R._first_ngens(1); R

Laurent Series Ring in x over Rational Field

>>> Integer(1)/(Integer(1)-x) + O(x**Integer(10))

1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + O(x^10)

如果我们给变量不同的命名，我们会得到不同的一元多项式环。

sage: R.<x> = PolynomialRing(QQ)

sage: S.<y> = PolynomialRing(QQ)

sage: x == y

False

sage: R == S

False

sage: R(y)

x

sage: R(y^2 - 17)

x^2 - 17

50 Chapter 2. 导览

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)

>>> S = PolynomialRing(QQ, names=('y',)); (y,) = S._first_ngens(1)

>>> x == y

False

>>> R == S

False

>>> R(y)

x

>>> R(y**Integer(2) - Integer(17))

x^2 - 17

环由变量决定。请注意，使用名为 x的变量创建另一个环不会返回不同的环。

sage: R = PolynomialRing(QQ, "x")

sage: T = PolynomialRing(QQ, "x")

sage: R == T

True

sage: R is T

True

sage: R.0 == T.0

True

>>> from sage.all import *

>>> R = PolynomialRing(QQ, "x")

>>> T = PolynomialRing(QQ, "x")

>>> R == T

True

>>> R is T

True

>>> R.gen(0) == T.gen(0)

True

Sage还支持任意基环上的幂级数和 Laurent级数环。在下面的示例中，我们创建了 F7[[T]]的一个元素，并通
过相除创建 F7((T))的一个元素。

sage: R.<T> = PowerSeriesRing(GF(7)); R

Power Series Ring in T over Finite Field of size 7

sage: f = T + 3*T^2 + T^3 + O(T^4)

sage: f^3

T^3 + 2*T^4 + 2*T^5 + O(T^6)

sage: 1/f

T^-1 + 4 + T + O(T^2)

sage: parent(1/f)

Laurent Series Ring in T over Finite Field of size 7

>>> from sage.all import *

>>> R = PowerSeriesRing(GF(Integer(7)), names=('T',)); (T,) = R._first_ngens(1); R

Power Series Ring in T over Finite Field of size 7

>>> f = T + Integer(3)*T**Integer(2) + T**Integer(3) + O(T**Integer(4))

>>> f**Integer(3)

T^3 + 2*T^4 + 2*T^5 + O(T^6)

>>> Integer(1)/f

T^-1 + 4 + T + O(T^2)

>>> parent(Integer(1)/f)

Laurent Series Ring in T over Finite Field of size 7

2.9. 多项式 51

Sage教程,发行版本 10.8

你也可以使用双括号简写来创建幂级数环：

sage: GF(7)[['T']]

Power Series Ring in T over Finite Field of size 7

>>> from sage.all import *

>>> GF(Integer(7))[['T']]

Power Series Ring in T over Finite Field of size 7

2.9.2 多元多项式
要处理多个变量的多项式，我们首先声明多项式环和变量。

sage: R = PolynomialRing(GF(5),3,"z") # here, 3 = number of variables

sage: R

Multivariate Polynomial Ring in z0, z1, z2 over Finite Field of size 5

>>> from sage.all import *

>>> R = PolynomialRing(GF(Integer(5)),Integer(3),"z") # here, 3 = number of variables

>>> R

Multivariate Polynomial Ring in z0, z1, z2 over Finite Field of size 5

与定义一元多项式环一样，有多种方法：

sage: GF(5)['z0, z1, z2']

Multivariate Polynomial Ring in z0, z1, z2 over Finite Field of size 5

sage: R.<z0,z1,z2> = GF(5)[]; R

Multivariate Polynomial Ring in z0, z1, z2 over Finite Field of size 5

>>> from sage.all import *

>>> GF(Integer(5))['z0, z1, z2']

Multivariate Polynomial Ring in z0, z1, z2 over Finite Field of size 5

>>> R = GF(Integer(5))['z0, z1, z2']; (z0, z1, z2,) = R._first_ngens(3); R

Multivariate Polynomial Ring in z0, z1, z2 over Finite Field of size 5

此外，如果你想让变量名为单个字母，你可以使用以下简写：

sage: PolynomialRing(GF(5), 3, 'xyz')

Multivariate Polynomial Ring in x, y, z over Finite Field of size 5

>>> from sage.all import *

>>> PolynomialRing(GF(Integer(5)), Integer(3), 'xyz')

Multivariate Polynomial Ring in x, y, z over Finite Field of size 5

接下来让我们进行一些算术运算。

sage: z = GF(5)['z0, z1, z2'].gens()

sage: z

(z0, z1, z2)

sage: (z[0]+z[1]+z[2])^2

z0^2 + 2*z0*z1 + z1^2 + 2*z0*z2 + 2*z1*z2 + z2^2

>>> from sage.all import *

>>> z = GF(Integer(5))['z0, z1, z2'].gens()

>>> z

(续下页)

52 Chapter 2. 导览

Sage教程,发行版本 10.8

(接上页)
(z0, z1, z2)

>>> (z[Integer(0)]+z[Integer(1)]+z[Integer(2)])**Integer(2)

z0^2 + 2*z0*z1 + z1^2 + 2*z0*z2 + 2*z1*z2 + z2^2

你还可以使用更多数学符号来构造多项式环。

sage: R = GF(5)['x,y,z']

sage: x,y,z = R.gens()

sage: QQ['x']

Univariate Polynomial Ring in x over Rational Field

sage: QQ['x,y'].gens()

(x, y)

sage: QQ['x'].objgens()

(Univariate Polynomial Ring in x over Rational Field, (x,))

>>> from sage.all import *

>>> R = GF(Integer(5))['x,y,z']

>>> x,y,z = R.gens()

>>> QQ['x']

Univariate Polynomial Ring in x over Rational Field

>>> QQ['x,y'].gens()

(x, y)

>>> QQ['x'].objgens()

(Univariate Polynomial Ring in x over Rational Field, (x,))

多元多项式在 Sage中使用 Python字典和多项式的“分配表示”实现。Sage使用了一些 Singular [Si]，例如，
用于计算理想的最大公约数和 Gröbner基。

sage: R, (x, y) = PolynomialRing(RationalField(), 2, 'xy').objgens()

sage: f = (x^3 + 2*y^2*x)^2

sage: g = x^2*y^2

sage: f.gcd(g)

x^2

>>> from sage.all import *

>>> R, (x, y) = PolynomialRing(RationalField(), Integer(2), 'xy').objgens()

>>> f = (x**Integer(3) + Integer(2)*y**Integer(2)*x)**Integer(2)

>>> g = x**Integer(2)*y**Integer(2)

>>> f.gcd(g)

x^2

接下来我们通过简单地将 (f,g)乘以 R来创建由 f 和 g 生成的理想 (f, g)，（也可以写做 ideal([f,g])或
ideal(f,g)）。

sage: I = (f, g)*R; I

Ideal (x^6 + 4*x^4*y^2 + 4*x^2*y^4, x^2*y^2) of Multivariate Polynomial

Ring in x, y over Rational Field

sage: B = I.groebner_basis(); B

[x^6, x^2*y^2]

sage: x^2 in I

False

>>> from sage.all import *

>>> I = (f, g)*R; I

Ideal (x^6 + 4*x^4*y^2 + 4*x^2*y^4, x^2*y^2) of Multivariate Polynomial

(续下页)

2.9. 多项式 53

Sage教程,发行版本 10.8

(接上页)
Ring in x, y over Rational Field

>>> B = I.groebner_basis(); B

[x^6, x^2*y^2]

>>> x**Integer(2) in I

False

顺便说一句，上面的 Gröbner基不是一个列表，而是一个不可变序列。这意味着它有全集，父结构，并且不
可更改（这是好的，因为更改基会破坏使用 Gröbner基的其他例程）。

sage: B.universe()

Multivariate Polynomial Ring in x, y over Rational Field

sage: B[1] = x

Traceback (most recent call last):

...

ValueError: object is immutable; please change a copy instead.

>>> from sage.all import *

>>> B.universe()

Multivariate Polynomial Ring in x, y over Rational Field

>>> B[Integer(1)] = x

Traceback (most recent call last):

...

ValueError: object is immutable; please change a copy instead.

Sage中有一些（没有我们想要的那么多）交换代数可用，通过 Singular实现。例如，我们可以计算 I 的初等
分解和相关素数：

sage: I.primary_decomposition()

[Ideal (x^2) of Multivariate Polynomial Ring in x, y over Rational Field,

Ideal (y^2, x^6) of Multivariate Polynomial Ring in x, y over Rational Field]

sage: I.associated_primes()

[Ideal (x) of Multivariate Polynomial Ring in x, y over Rational Field,

Ideal (y, x) of Multivariate Polynomial Ring in x, y over Rational Field]

>>> from sage.all import *

>>> I.primary_decomposition()

[Ideal (x^2) of Multivariate Polynomial Ring in x, y over Rational Field,

Ideal (y^2, x^6) of Multivariate Polynomial Ring in x, y over Rational Field]

>>> I.associated_primes()

[Ideal (x) of Multivariate Polynomial Ring in x, y over Rational Field,

Ideal (y, x) of Multivariate Polynomial Ring in x, y over Rational Field]

2.10 父结构、转换与强制转换
这一节可能比前一节更技术化，但为了有效且高效地使用 Sage中的环和其他代数结构，理解父结构和强制
转换的意义非常重要。

请注意，我们在这里只解释概念，不展示具体实现。面向实现的教程可以参见 Sage thematic tutorial。

2.10.1 元素
如果想在 Python中实现一个环，第一步是创建一个类来表示该环的元素 X，并为其提供必要的双下划线方
法，例如 __add__, __sub__, __mul__，同时确保环公理成立。

54 Chapter 2. 导览

http://doc.sagemath.org/html/en/thematic_tutorials/coercion_and_categories.html

Sage教程,发行版本 10.8

由于 Python是一种强类型（但动态类型）语言，可能会想到为每个环实现一个 Python类。毕竟，Python有
整数类型 <int>和实数类型 <float>等等。但这种方法很快就会失败：环的数量是无限的，无法实现无限
多个类。

相反，可以创建一个类层次结构来实现常见的代数结构元素，例如群、环、斜域、交换环、域、代数等等。

但这意味着不同环的元素可以具有相同的类型。

sage: P.<x,y> = GF(3)[]

sage: Q.<a,b> = GF(4,'z')[]

sage: type(x)==type(a)

True

>>> from sage.all import *

>>> P = GF(Integer(3))['x, y']; (x, y,) = P._first_ngens(2)

>>> Q = GF(Integer(4),'z')['a, b']; (a, b,) = Q._first_ngens(2)

>>> type(x)==type(a)

True

另一方面，也可以有不同的 Python类来实现相同的数学结构（例如稠密矩阵与稀疏矩阵）

sage: P.<a> = PolynomialRing(ZZ)

sage: Q. = PolynomialRing(ZZ, sparse=True)

sage: R.<c> = PolynomialRing(ZZ, implementation='NTL')

sage: type(a); type(b); type(c)

<class 'sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint'>

<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain_with_category.

↪→element_class'>

<class 'sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl'>

>>> from sage.all import *

>>> P = PolynomialRing(ZZ, names=('a',)); (a,) = P._first_ngens(1)

>>> Q = PolynomialRing(ZZ, sparse=True, names=('b',)); (b,) = Q._first_ngens(1)

>>> R = PolynomialRing(ZZ, implementation='NTL', names=('c',)); (c,) = R._first_ngens(1)

>>> type(a); type(b); type(c)

<class 'sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint'>

<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain_with_category.

↪→element_class'>

<class 'sage.rings.polynomial.polynomial_integer_dense_ntl.Polynomial_integer_dense_ntl'>

这带来了两个问题：一方面，如果两个元素是相同类的实例，可以预期它们的 __add__方法能够相加；但如
果这些元素属于非常不同的环，则不希望如此。另一方面，如果两个元素属于同一环的不同实现，想要相加，
但如果它们属于不同的 Python类，这并不容易实现。
解决这些问题的方法称为“强制转换”，将在下面解释。

然而，每个元素都必须知道它属于哪个父结构。这可以通过 parent()方法获得：

sage: a.parent(); b.parent(); c.parent()

Univariate Polynomial Ring in a over Integer Ring

Sparse Univariate Polynomial Ring in b over Integer Ring

Univariate Polynomial Ring in c over Integer Ring (using NTL)

>>> from sage.all import *

>>> a.parent(); b.parent(); c.parent()

Univariate Polynomial Ring in a over Integer Ring

Sparse Univariate Polynomial Ring in b over Integer Ring

Univariate Polynomial Ring in c over Integer Ring (using NTL)

2.10. 父结构、转换与强制转换 55

Sage教程,发行版本 10.8

2.10.2 父结构与范畴
与代数结构元素的 Python类层次结构类似，Sage也提供包含这些元素的代数结构的类。在 Sage中包含元素
的结构称为“父结构”，并且有一个基类。大致上与数学概念的层次结构一致，有一系列类，例如集合、环、
域等等：

sage: isinstance(QQ,Field)

True

sage: isinstance(QQ, Ring)

True

sage: isinstance(ZZ,Field)

False

sage: isinstance(ZZ, Ring)

True

>>> from sage.all import *

>>> isinstance(QQ,Field)

True

>>> isinstance(QQ, Ring)

True

>>> isinstance(ZZ,Field)

False

>>> isinstance(ZZ, Ring)

True

在代数中，共享相同代数结构的对象被归类到所谓的“范畴”中。因此，Sage中类层次结构与范畴层次结构
之间有一个粗略的类比。然而，不应过分强调 Python类与范畴的类比。毕竟，数学范畴也在 Sage中实现：

sage: Rings()

Category of rings

sage: ZZ.category()

Join of Category of Dedekind domains

and Category of euclidean domains

and Category of noetherian rings

and Category of infinite enumerated sets

and Category of metric spaces

sage: ZZ.category().is_subcategory(Rings())

True

sage: ZZ in Rings()

True

sage: ZZ in Fields()

False

sage: QQ in Fields()

True

>>> from sage.all import *

>>> Rings()

Category of rings

>>> ZZ.category()

Join of Category of Dedekind domains

and Category of euclidean domains

and Category of noetherian rings

and Category of infinite enumerated sets

and Category of metric spaces

>>> ZZ.category().is_subcategory(Rings())

True

>>> ZZ in Rings()

(续下页)

56 Chapter 2. 导览

Sage教程,发行版本 10.8

(接上页)
True

>>> ZZ in Fields()

False

>>> QQ in Fields()

True

虽然 Sage的类层次结构集中在实现细节上，但 Sage的范畴框架更集中在数学结构上。可以在范畴中实现不
依赖具体实现的通用方法和测试。

Sage中的父结构应该是唯一的 Python对象。例如，一旦创建了一个具有特定基环和特定生成器列表的多项
式环，结果将被缓存：

sage: RR['x','y'] is RR['x','y']

True

>>> from sage.all import *

>>> RR['x','y'] is RR['x','y']

True

2.10.3 类型与父结构
类型 RingElement 并不完全对应于数学概念中的环元素。例如，虽然方阵属于一个环，但它们不是
RingElement的实例：

sage: M = Matrix(ZZ,2,2); M

[0 0]

[0 0]

sage: isinstance(M, RingElement)

False

>>> from sage.all import *

>>> M = Matrix(ZZ,Integer(2),Integer(2)); M

[0 0]

[0 0]

>>> isinstance(M, RingElement)

False

虽然在 Sage中父结构是唯一的，但在一个父结构中的相等元素不一定是相同的。这与 Python对某些（虽然
不是全部）整数的行为形成对比：

sage: int(1) is int(1) # Python int

True

sage: int(-15) is int(-15)

False

sage: 1 is 1 # Sage Integer

False

>>> from sage.all import *

>>> int(Integer(1)) is int(Integer(1)) # Python int

True

>>> int(-Integer(15)) is int(-Integer(15))

False

>>> Integer(1) is Integer(1) # Sage Integer

False

2.10. 父结构、转换与强制转换 57

Sage教程,发行版本 10.8

不同环的元素通常不是通过它们的类型区分，而是通过它们的父结构区分：

sage: a = GF(2)(1)

sage: b = GF(5)(1)

sage: type(a) is type(b)

True

sage: parent(a)

Finite Field of size 2

sage: parent(b)

Finite Field of size 5

>>> from sage.all import *

>>> a = GF(Integer(2))(Integer(1))

>>> b = GF(Integer(5))(Integer(1))

>>> type(a) is type(b)

True

>>> parent(a)

Finite Field of size 2

>>> parent(b)

Finite Field of size 5

因此，从代数的角度来看，元素的父结构比它的类型更重要。

2.10.4 转换与强制转换
在某些情况下，可以将一个父结构的元素转换为另一个父结构的元素。这样的转换可以是显式的也可以是隐
式的（被称为强制转换）。

读者可能知道例如 C语言中的类型转换和类型强制转换的概念。Sage中也有转换和强制转换的概念。但
Sage中的概念集中在父结构上，而不是类型上。所以请不要将 C语言中的类型转换与 Sage中的转换混淆！
我们在这里给出一个相当简短的说明。详细描述和实现信息，请参阅参考手册中的强制转换章节以及 thematic
tutorial.
关于在不同环的元素上进行算术运算的可能性，有两种极端观点：

• 不同的环是不同的世界，对不同环的元素进行加法或乘法没有任何意义；即使 1 + 1/2也没有意义，
因为第一个加数是整数，第二个是有理数。

或者

• 如果一个环 R1的元素 r1可以以某种方式在另一个环 R2中解释，那么所有涉及 r1和任意 R2元素的
算术运算都是允许的。乘法单位存在于所有域和许多环，它们应该都是相等的。

Sage选择了一种折衷方案。如果 P1和 P2是父结构，p1是 P1的元素，那么用户可以显式请求将 p1在 P2中
解释。这在所有情况下可能没有意义，或者对于 P1的所有元素都没有定义，用户需要确保其合理性。我们
称之为转换：

sage: a = GF(2)(1)

sage: b = GF(5)(1)

sage: GF(5)(a) == b

True

sage: GF(2)(b) == a

True

>>> from sage.all import *

>>> a = GF(Integer(2))(Integer(1))

>>> b = GF(Integer(5))(Integer(1))

>>> GF(Integer(5))(a) == b

(续下页)

58 Chapter 2. 导览

http://doc.sagemath.org/html/en/thematic_tutorials/coercion_and_categories.html
http://doc.sagemath.org/html/en/thematic_tutorials/coercion_and_categories.html

Sage教程,发行版本 10.8

(接上页)
True

>>> GF(Integer(2))(b) == a

True

然而，只有当这种转换可以彻底和一致地完成时，才会发生隐式（或自动）转换。数学的严谨性在这一点上
至关重要。

这种隐式转换称为强制转换。如果定义了强制转换，那么它必须与转换一致。定义强制转换需要满足两个条
件：

1. 从 P1到 P2的强制转换必须由结构保持映射给出（例如环同态）。仅仅一些 P1的元素可以映射到 P2是
不够的，映射必须尊重 P1的代数结构。

2. 这些强制转换映射的选择必须一致：如果 P3是第三个父结构，那么从 P1到 P2的选定强制转换与从
P2到 P3的强制转换的组合必须与从 P1到 P3的选定强制转换一致。特别是，如果存在从 P1到 P2和
从 P2到 P1的强制转换，则组合必须是 P1的恒等映射。

因此，尽管可以将 GF(2)的每个元素转换为 GF(5)，但不能强制转换，因为 GF(2)和 GF(5)之间没有环同
态。

一致性方面更难解释。我们用多元多项式环来说明。在应用中，保留名称的强制转换最有意义。因此，我们
有：

sage: R1.<x,y> = ZZ[]

sage: R2 = ZZ['y','x']

sage: R2.has_coerce_map_from(R1)

True

sage: R2(x)

x

sage: R2(y)

y

sage: R2.coerce(y)

y

>>> from sage.all import *

>>> R1 = ZZ['x, y']; (x, y,) = R1._first_ngens(2)

>>> R2 = ZZ['y','x']

>>> R2.has_coerce_map_from(R1)

True

>>> R2(x)

x

>>> R2(y)

y

>>> R2.coerce(y)

y

如果没有保留名称的环同态，则不定义强制转换。然而，转换可能仍然是可能的，即通过根据生成器列表中
的位置映射环生成器：

sage: R3 = ZZ['z','x']

sage: R3.has_coerce_map_from(R1)

False

sage: R3(x)

z

sage: R3(y)

x

sage: R3.coerce(y)

(续下页)

2.10. 父结构、转换与强制转换 59

Sage教程,发行版本 10.8

(接上页)
Traceback (most recent call last):

...

TypeError: no canonical coercion

from Multivariate Polynomial Ring in x, y over Integer Ring

to Multivariate Polynomial Ring in z, x over Integer Ring

>>> from sage.all import *

>>> R3 = ZZ['z','x']

>>> R3.has_coerce_map_from(R1)

False

>>> R3(x)

z

>>> R3(y)

x

>>> R3.coerce(y)

Traceback (most recent call last):

...

TypeError: no canonical coercion

from Multivariate Polynomial Ring in x, y over Integer Ring

to Multivariate Polynomial Ring in z, x over Integer Ring

但这种保留位置的转换不符合强制转换：通过组合从 ZZ['x','y']到 ZZ['y','x']的保留名称映射与从
ZZ['y','x']到 ZZ['a','b']的保留位置映射，将得到一个既不保留名称也不保留位置的映射，违反了一
致性。

如果存在强制转换，它将用于比较不同环的元素或进行算术运算。这通常很方便，但用户应该意识将 ==关
系扩展到不同父结构的边界可能很容易导致过度使用。例如，虽然 ==应该是同一环元素上的等价关系，但
如果涉及不同环，则不一定如此。例如，ZZ和有限域中的 1被认为是相等的，因为从整数到任何有限域都
有一个规范的强制转换。然而，通常两个不同的有限域之间没有强制转换。因此我们有：

sage: GF(5)(1) == 1

True

sage: 1 == GF(2)(1)

True

sage: GF(5)(1) == GF(2)(1)

False

sage: GF(5)(1) != GF(2)(1)

True

>>> from sage.all import *

>>> GF(Integer(5))(Integer(1)) == Integer(1)

True

>>> Integer(1) == GF(Integer(2))(Integer(1))

True

>>> GF(Integer(5))(Integer(1)) == GF(Integer(2))(Integer(1))

False

>>> GF(Integer(5))(Integer(1)) != GF(Integer(2))(Integer(1))

True

同理，我们有：

sage: R3(R1.1) == R3.1

True

sage: R1.1 == R3.1

False

(续下页)

60 Chapter 2. 导览

Sage教程,发行版本 10.8

(接上页)
sage: R1.1 != R3.1

True

>>> from sage.all import *

>>> R3(R1.gen(1)) == R3.gen(1)

True

>>> R1.gen(1) == R3.gen(1)

False

>>> R1.gen(1) != R3.gen(1)

True

一致性条件的另一个结果是强制转换只能从精确环（例如有理数 QQ）到不精确环（例如具有固定精度的实
数 RR），而不能反过来。原因是从 QQ到 RR的强制转换与从 RR到 QQ的转换的组合应该是 QQ上的恒等映射。
但这是不可能的，因为在 RR中一些不同的有理数可能被视为相等，如下例所示：

sage: RR(1/10^200+1/10^100) == RR(1/10^100)

True

sage: 1/10^200+1/10^100 == 1/10^100

False

>>> from sage.all import *

>>> RR(Integer(1)/Integer(10)**Integer(200)+Integer(1)/Integer(10)**Integer(100)) ==␣

↪→RR(Integer(1)/Integer(10)**Integer(100))

True

>>> Integer(1)/Integer(10)**Integer(200)+Integer(1)/Integer(10)**Integer(100) == Integer(1)/

↪→Integer(10)**Integer(100)

False

当比较两个父结构 P1和 P2的元素时，可能没有两个环之间的强制转换，但有一个规范的父结构 P3可选，
使得 P1和 P2都强制转换到 P3。在这种情况下，也会发生强制转换。一个典型用例是有理数和具有整数系
数的多项式之和，产生具有有理系数的多项式：

sage: P1.<x> = ZZ[]

sage: p = 2*x+3

sage: q = 1/2

sage: parent(p)

Univariate Polynomial Ring in x over Integer Ring

sage: parent(p+q)

Univariate Polynomial Ring in x over Rational Field

>>> from sage.all import *

>>> P1 = ZZ['x']; (x,) = P1._first_ngens(1)

>>> p = Integer(2)*x+Integer(3)

>>> q = Integer(1)/Integer(2)

>>> parent(p)

Univariate Polynomial Ring in x over Integer Ring

>>> parent(p+q)

Univariate Polynomial Ring in x over Rational Field

注意，原则上结果在 ZZ['x']的分数域中也有意义。然而，Sage会尝试选择一个规范的共同父结构，使得
看起来最自然（在我们的例子中是 QQ['x']）。如果几个潜在的共同父结构看起来同样自然，为了获得可靠
的结果，Sage不会随机选择其中一个。该选择所基于的机制在 thematic tutorial中进行了解释。
以下示例不会发生强制转换到共同父结构：

2.10. 父结构、转换与强制转换 61

http://doc.sagemath.org/html/en/thematic_tutorials/coercion_and_categories.html

Sage教程,发行版本 10.8

sage: R.<x> = QQ[]

sage: S.<y> = QQ[]

sage: x+y

Traceback (most recent call last):

...

TypeError: unsupported operand parent(s) for +: 'Univariate Polynomial Ring in x over Rational␣

↪→Field' and 'Univariate Polynomial Ring in y over Rational Field'

>>> from sage.all import *

>>> R = QQ['x']; (x,) = R._first_ngens(1)

>>> S = QQ['y']; (y,) = S._first_ngens(1)

>>> x+y

Traceback (most recent call last):

...

TypeError: unsupported operand parent(s) for +: 'Univariate Polynomial Ring in x over Rational␣

↪→Field' and 'Univariate Polynomial Ring in y over Rational Field'

原因是 Sage不会选择潜在候选结构 QQ['x']['y'], QQ['y']['x'], QQ['x','y']或 QQ['y','x']之一，因
为所有这四个成对不同的结构看起来都是自然的共同父结构，并且没有明显的规范选择。

2.11 有限群与阿贝尔群
Sage支持置换群、有限经典群（例如 SU(n, q)）、有限矩阵群（使用自定义生成器）和阿贝尔群（包括无限
群）的计算。这些功能大部分是通过 GAP接口实现的。
例如，要创建一个置换群，可以提供一个生成器列表，如下例所示：

sage: G = PermutationGroup(['(1,2,3)(4,5)', '(3,4)'])

sage: G

Permutation Group with generators [(3,4), (1,2,3)(4,5)]

sage: G.order()

120

sage: G.is_abelian()

False

sage: G.derived_series() # random-ish output

[Permutation Group with generators [(1,2,3)(4,5), (3,4)],

Permutation Group with generators [(1,5)(3,4), (1,5)(2,4), (1,3,5)]]

sage: G.center()

Subgroup generated by [()] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)])

sage: G.random_element() # random output

(1,5,3)(2,4)

sage: print(latex(G))

\langle (3,4), (1,2,3)(4,5) \rangle

>>> from sage.all import *

>>> G = PermutationGroup(['(1,2,3)(4,5)', '(3,4)'])

>>> G

Permutation Group with generators [(3,4), (1,2,3)(4,5)]

>>> G.order()

120

>>> G.is_abelian()

False

>>> G.derived_series() # random-ish output

[Permutation Group with generators [(1,2,3)(4,5), (3,4)],

Permutation Group with generators [(1,5)(3,4), (1,5)(2,4), (1,3,5)]]

(续下页)

62 Chapter 2. 导览

Sage教程,发行版本 10.8

(接上页)
>>> G.center()

Subgroup generated by [()] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)])

>>> G.random_element() # random output

(1,5,3)(2,4)

>>> print(latex(G))

\langle (3,4), (1,2,3)(4,5) \rangle

在 Sage中，你还可以获得特征表（LaTeX格式）：

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]])

sage: latex(G.character_table()) # random

\left(\begin{array}{rrrr}

1 & 1 & 1 & 1 \\

1 & -\zeta_{3} - 1 & \zeta_{3} & 1 \\

1 & \zeta_{3} & -\zeta_{3} - 1 & 1 \\

3 & 0 & 0 & -1

\end{array}\right)

>>> from sage.all import *

>>> G = PermutationGroup([[(Integer(1),Integer(2)),(Integer(3),Integer(4))], [(Integer(1),

↪→Integer(2),Integer(3))]])

>>> latex(G.character_table()) # random

\left(\begin{array}{rrrr}

1 & 1 & 1 & 1 \\

1 & -\zeta_{3} - 1 & \zeta_{3} & 1 \\

1 & \zeta_{3} & -\zeta_{3} - 1 & 1 \\

3 & 0 & 0 & -1

\end{array}\right)

此外，Sage还支持有限域上的经典群和矩阵群：

sage: MS = MatrixSpace(GF(7), 2)

sage: gens = [MS([[1,0],[-1,1]]),MS([[1,1],[0,1]])]

sage: G = MatrixGroup(gens)

sage: G.conjugacy_classes_representatives()

(

[1 0] [0 6] [0 4] [6 0] [0 6] [0 4] [0 6] [0 6] [0 6] [4 0]

[0 1], [1 5], [5 5], [0 6], [1 2], [5 2], [1 0], [1 4], [1 3], [0 2],

[5 0]

[0 3]

)

sage: G = Sp(4,GF(7))

sage: G

Symplectic Group of degree 4 over Finite Field of size 7

sage: G.random_element() # random output

[5 5 5 1]

[0 2 6 3]

[5 0 1 0]

[4 6 3 4]

sage: G.order()

276595200

>>> from sage.all import *

>>> MS = MatrixSpace(GF(Integer(7)), Integer(2))

>>> gens = [MS([[Integer(1),Integer(0)],[-Integer(1),Integer(1)]]),MS([[Integer(1),Integer(1)],

(续下页)

2.11. 有限群与阿贝尔群 63

Sage教程,发行版本 10.8

(接上页)
↪→[Integer(0),Integer(1)]])]

>>> G = MatrixGroup(gens)

>>> G.conjugacy_classes_representatives()

(

[1 0] [0 6] [0 4] [6 0] [0 6] [0 4] [0 6] [0 6] [0 6] [4 0]

[0 1], [1 5], [5 5], [0 6], [1 2], [5 2], [1 0], [1 4], [1 3], [0 2],

<BLANKLINE>

[5 0]

[0 3]

)

>>> G = Sp(Integer(4),GF(Integer(7)))

>>> G

Symplectic Group of degree 4 over Finite Field of size 7

>>> G.random_element() # random output

[5 5 5 1]

[0 2 6 3]

[5 0 1 0]

[4 6 3 4]

>>> G.order()

276595200

你还可以计算阿贝尔群（包括有限群和无限群）：

sage: F = AbelianGroup(5, [5,5,7,8,9], names='abcde')

sage: (a, b, c, d, e) = F.gens()

sage: d * b**2 * c**3

b^2*c^3*d

sage: F = AbelianGroup(3,[2]*3); F

Multiplicative Abelian group isomorphic to C2 x C2 x C2

sage: H = AbelianGroup([2,3], names="xy"); H

Multiplicative Abelian group isomorphic to C2 x C3

sage: AbelianGroup(5)

Multiplicative Abelian group isomorphic to Z x Z x Z x Z x Z

sage: AbelianGroup(5).order()

+Infinity

>>> from sage.all import *

>>> F = AbelianGroup(Integer(5), [Integer(5),Integer(5),Integer(7),Integer(8),Integer(9)],␣

↪→names='abcde')

>>> (a, b, c, d, e) = F.gens()

>>> d * b**Integer(2) * c**Integer(3)

b^2*c^3*d

>>> F = AbelianGroup(Integer(3),[Integer(2)]*Integer(3)); F

Multiplicative Abelian group isomorphic to C2 x C2 x C2

>>> H = AbelianGroup([Integer(2),Integer(3)], names="xy"); H

Multiplicative Abelian group isomorphic to C2 x C3

>>> AbelianGroup(Integer(5))

Multiplicative Abelian group isomorphic to Z x Z x Z x Z x Z

>>> AbelianGroup(Integer(5)).order()

+Infinity

64 Chapter 2. 导览

Sage教程,发行版本 10.8

2.12 数论
Sage具有丰富的数论功能。例如，我们可以在 Z/NZ中进行算术运算：

sage: R = IntegerModRing(97)

sage: a = R(2) / R(3)

sage: a

33

sage: a.rational_reconstruction()

2/3

sage: b = R(47)

sage: b^20052005

50

sage: b.modulus()

97

sage: b.is_square()

True

>>> from sage.all import *

>>> R = IntegerModRing(Integer(97))

>>> a = R(Integer(2)) / R(Integer(3))

>>> a

33

>>> a.rational_reconstruction()

2/3

>>> b = R(Integer(47))

>>> b**Integer(20052005)

50

>>> b.modulus()

97

>>> b.is_square()

True

Sage包含标准的数论函数，例如：

sage: gcd(515,2005)

5

sage: factor(2005)

5 * 401

sage: c = factorial(25); c

15511210043330985984000000

sage: [valuation(c,p) for p in prime_range(2,23)]

[22, 10, 6, 3, 2, 1, 1, 1]

sage: next_prime(2005)

2011

sage: previous_prime(2005)

2003

sage: divisors(28); sum(divisors(28)); 2*28

[1, 2, 4, 7, 14, 28]

56

56

>>> from sage.all import *

>>> gcd(Integer(515),Integer(2005))

5

>>> factor(Integer(2005))

5 * 401

(续下页)

2.12. 数论 65

Sage教程,发行版本 10.8

(接上页)
>>> c = factorial(Integer(25)); c

15511210043330985984000000

>>> [valuation(c,p) for p in prime_range(Integer(2),Integer(23))]

[22, 10, 6, 3, 2, 1, 1, 1]

>>> next_prime(Integer(2005))

2011

>>> previous_prime(Integer(2005))

2003

>>> divisors(Integer(28)); sum(divisors(Integer(28))); Integer(2)*Integer(28)

[1, 2, 4, 7, 14, 28]

56

56

完美！

Sage的 sigma(n,k)函数累加 n的除数的 k次幂：

sage: sigma(28,0); sigma(28,1); sigma(28,2)

6

56

1050

>>> from sage.all import *

>>> sigma(Integer(28),Integer(0)); sigma(Integer(28),Integer(1)); sigma(Integer(28),Integer(2))

6

56

1050

下面展示扩展的欧几里得算法、欧拉 ϕ函数和中国剩余定理：

sage: d,u,v = xgcd(12,15)

sage: d == u*12 + v*15

True

sage: n = 2005

sage: inverse_mod(3,n)

1337

sage: 3 * 1337

4011

sage: prime_divisors(n)

[5, 401]

sage: phi = n*prod([1 - 1/p for p in prime_divisors(n)]); phi

1600

sage: euler_phi(n)

1600

sage: prime_to_m_part(n, 5)

401

>>> from sage.all import *

>>> d,u,v = xgcd(Integer(12),Integer(15))

>>> d == u*Integer(12) + v*Integer(15)

True

>>> n = Integer(2005)

>>> inverse_mod(Integer(3),n)

1337

>>> Integer(3) * Integer(1337)

4011

(续下页)

66 Chapter 2. 导览

Sage教程,发行版本 10.8

(接上页)
>>> prime_divisors(n)

[5, 401]

>>> phi = n*prod([Integer(1) - Integer(1)/p for p in prime_divisors(n)]); phi

1600

>>> euler_phi(n)

1600

>>> prime_to_m_part(n, Integer(5))

401

接下来验证有关 3n+ 1问题的一些内容：

sage: n = 2005

sage: for i in range(1000):

....: n = 3*odd_part(n) + 1

....: if odd_part(n)==1:

....: print(i)

....: break

38

>>> from sage.all import *

>>> n = Integer(2005)

>>> for i in range(Integer(1000)):

... n = Integer(3)*odd_part(n) + Integer(1)

... if odd_part(n)==Integer(1):

... print(i)

... break

38

最后，展示中国剩余定理：

sage: x = crt(2, 1, 3, 5); x

11

sage: x % 3 # x mod 3 = 2

2

sage: x % 5 # x mod 5 = 1

1

sage: [binomial(13,m) for m in range(14)]

[1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1]

sage: [binomial(13,m)%2 for m in range(14)]

[1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]

sage: [kronecker(m,13) for m in range(1,13)]

[1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1]

sage: n = 10000; sum([moebius(m) for m in range(1,n)])

-23

sage: Partitions(4).list()

[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]

>>> from sage.all import *

>>> x = crt(Integer(2), Integer(1), Integer(3), Integer(5)); x

11

>>> x % Integer(3) # x mod 3 = 2

2

>>> x % Integer(5) # x mod 5 = 1

1

>>> [binomial(Integer(13),m) for m in range(Integer(14))]

[1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1]

(续下页)

2.12. 数论 67

Sage教程,发行版本 10.8

(接上页)
>>> [binomial(Integer(13),m)%Integer(2) for m in range(Integer(14))]

[1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]

>>> [kronecker(m,Integer(13)) for m in range(Integer(1),Integer(13))]

[1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1]

>>> n = Integer(10000); sum([moebius(m) for m in range(Integer(1),n)])

-23

>>> Partitions(Integer(4)).list()

[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]

2.12.1 p-进数
Sage中实现了 p-进数域。注意，一旦创建了 p-进数域，就不能改变其精度。

sage: K = Qp(11); K

11-adic Field with capped relative precision 20

sage: a = K(211/17); a

4 + 4*11 + 11^2 + 7*11^3 + 9*11^5 + 5*11^6 + 4*11^7 + 8*11^8 + 7*11^9

+ 9*11^10 + 3*11^11 + 10*11^12 + 11^13 + 5*11^14 + 6*11^15 + 2*11^16

+ 3*11^17 + 11^18 + 7*11^19 + O(11^20)

sage: b = K(3211/11^2); b

10*11^-2 + 5*11^-1 + 4 + 2*11 + O(11^18)

>>> from sage.all import *

>>> K = Qp(Integer(11)); K

11-adic Field with capped relative precision 20

>>> a = K(Integer(211)/Integer(17)); a

4 + 4*11 + 11^2 + 7*11^3 + 9*11^5 + 5*11^6 + 4*11^7 + 8*11^8 + 7*11^9

+ 9*11^10 + 3*11^11 + 10*11^12 + 11^13 + 5*11^14 + 6*11^15 + 2*11^16

+ 3*11^17 + 11^18 + 7*11^19 + O(11^20)

>>> b = K(Integer(3211)/Integer(11)**Integer(2)); b

10*11^-2 + 5*11^-1 + 4 + 2*11 + O(11^18)

在 p-进数域和数域中实现整数环已经做了大量工作。感兴趣的读者可以阅读 Introduction to the p-adics，并向
sage-support Google讨论组的专家咨询更多详细信息。
在 NumberField类中已经实现了许多相关方法。

sage: R.<x> = PolynomialRing(QQ)

sage: K = NumberField(x^3 + x^2 - 2*x + 8, 'a')

sage: K.integral_basis()

[1, 1/2*a^2 + 1/2*a, a^2]

>>> from sage.all import *

>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)

>>> K = NumberField(x**Integer(3) + x**Integer(2) - Integer(2)*x + Integer(8), 'a')

>>> K.integral_basis()

[1, 1/2*a^2 + 1/2*a, a^2]

sage: K.galois_group()

Galois group 3T2 (S3) with order 6 of x^3 + x^2 - 2*x + 8

>>> from sage.all import *

>>> K.galois_group()

Galois group 3T2 (S3) with order 6 of x^3 + x^2 - 2*x + 8

68 Chapter 2. 导览

../../../html/en/reference/padics/sage/rings/padics/tutorial.html#sage-rings-padics-tutorial

Sage教程,发行版本 10.8

sage: K.polynomial_quotient_ring()

Univariate Quotient Polynomial Ring in a over Rational Field with modulus

x^3 + x^2 - 2*x + 8

sage: K.units()

(-3*a^2 - 13*a - 13,)

sage: K.discriminant()

-503

sage: K.class_group()

Class group of order 1 of Number Field in a with

defining polynomial x^3 + x^2 - 2*x + 8

sage: K.class_number()

1

>>> from sage.all import *

>>> K.polynomial_quotient_ring()

Univariate Quotient Polynomial Ring in a over Rational Field with modulus

x^3 + x^2 - 2*x + 8

>>> K.units()

(-3*a^2 - 13*a - 13,)

>>> K.discriminant()

-503

>>> K.class_group()

Class group of order 1 of Number Field in a with

defining polynomial x^3 + x^2 - 2*x + 8

>>> K.class_number()

1

2.13 一些更高级的数学
2.13.1 代数几何
在 Sage中可以定义任意代数簇，但有时复杂的功能仅限于在 Q或有限域上的环。例如，我们可以计算两个
仿射平面曲线的并集，然后将曲线恢复成该并集的不可约分量。

sage: x, y = AffineSpace(2, QQ, 'xy').gens()

sage: C2 = Curve(x^2 + y^2 - 1)

sage: C3 = Curve(x^3 + y^3 - 1)

sage: D = C2 + C3

sage: D

Affine Plane Curve over Rational Field defined by

x^5 + x^3*y^2 + x^2*y^3 + y^5 - x^3 - y^3 - x^2 - y^2 + 1

sage: D.irreducible_components()

[Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:

x^2 + y^2 - 1,

Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:

x^3 + y^3 - 1]

>>> from sage.all import *

>>> x, y = AffineSpace(Integer(2), QQ, 'xy').gens()

>>> C2 = Curve(x**Integer(2) + y**Integer(2) - Integer(1))

>>> C3 = Curve(x**Integer(3) + y**Integer(3) - Integer(1))

>>> D = C2 + C3

>>> D

Affine Plane Curve over Rational Field defined by

x^5 + x^3*y^2 + x^2*y^3 + y^5 - x^3 - y^3 - x^2 - y^2 + 1

(续下页)

2.13. 一些更高级的数学 69

Sage教程,发行版本 10.8

(接上页)
>>> D.irreducible_components()

[Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:

x^2 + y^2 - 1,

Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:

x^3 + y^3 - 1]

我们还可以通过相交这两条曲线并计算其不可约分量来找到它们的所有交点。

sage: V = C2.intersection(C3)

sage: V.irreducible_components()

[Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:

y - 1,

x,

Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:

y,

x - 1,

Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:

x + y + 2,

2*y^2 + 4*y + 3]

>>> from sage.all import *

>>> V = C2.intersection(C3)

>>> V.irreducible_components()

[Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:

y - 1,

x,

Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:

y,

x - 1,

Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:

x + y + 2,

2*y^2 + 4*y + 3]

例如，(1, 0)和 (0, 1)都在两条曲线上（显而易见），还有一些（二次）点，它们的 y坐标满足 2y2+4y+3 = 0。

Sage可以计算三维射影空间中扭曲三次曲线的环理想：

sage: R.<a,b,c,d> = PolynomialRing(QQ, 4)

sage: I = ideal(b^2-a*c, c^2-b*d, a*d-b*c)

sage: F = I.groebner_fan(); F

Groebner fan of the ideal:

Ideal (b^2 - a*c, c^2 - b*d, -b*c + a*d) of Multivariate Polynomial Ring

in a, b, c, d over Rational Field

sage: F.reduced_groebner_bases ()

[[-c^2 + b*d, -b*c + a*d, -b^2 + a*c],

[-b*c + a*d, -c^2 + b*d, b^2 - a*c],

[-c^3 + a*d^2, -c^2 + b*d, b*c - a*d, b^2 - a*c],

[-c^2 + b*d, b^2 - a*c, b*c - a*d, c^3 - a*d^2],

[-b*c + a*d, -b^2 + a*c, c^2 - b*d],

[-b^3 + a^2*d, -b^2 + a*c, c^2 - b*d, b*c - a*d],

[-b^2 + a*c, c^2 - b*d, b*c - a*d, b^3 - a^2*d],

[c^2 - b*d, b*c - a*d, b^2 - a*c]]

sage: F.polyhedralfan()

Polyhedral fan in 4 dimensions of dimension 4

70 Chapter 2. 导览

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> R = PolynomialRing(QQ, Integer(4), names=('a', 'b', 'c', 'd',)); (a, b, c, d,) = R._first_

↪→ngens(4)

>>> I = ideal(b**Integer(2)-a*c, c**Integer(2)-b*d, a*d-b*c)

>>> F = I.groebner_fan(); F

Groebner fan of the ideal:

Ideal (b^2 - a*c, c^2 - b*d, -b*c + a*d) of Multivariate Polynomial Ring

in a, b, c, d over Rational Field

>>> F.reduced_groebner_bases ()

[[-c^2 + b*d, -b*c + a*d, -b^2 + a*c],

[-b*c + a*d, -c^2 + b*d, b^2 - a*c],

[-c^3 + a*d^2, -c^2 + b*d, b*c - a*d, b^2 - a*c],

[-c^2 + b*d, b^2 - a*c, b*c - a*d, c^3 - a*d^2],

[-b*c + a*d, -b^2 + a*c, c^2 - b*d],

[-b^3 + a^2*d, -b^2 + a*c, c^2 - b*d, b*c - a*d],

[-b^2 + a*c, c^2 - b*d, b*c - a*d, b^3 - a^2*d],

[c^2 - b*d, b*c - a*d, b^2 - a*c]]

>>> F.polyhedralfan()

Polyhedral fan in 4 dimensions of dimension 4

2.13.2 椭圆曲线
Sage的椭圆曲线功能包括 PARI的大部分椭圆曲线功能、访问 Cremona在线表中的数据（需要可选数据库
包）、mwrank功能（即计算全Mordell-Weil群的 2次下降）、SEA算法、计算所有同源、许多关于 Q上曲线
的新代码，以及 Denis Simon的一些代数下降软件。
创建椭圆曲线的命令 EllipticCurve有多种形式：

• EllipticCurve([a1, a2, a3, a4, a6]): 返回如下椭圆曲线

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

其中 ai 被转换为 a1 的父结构。如果所有 ai 的父结构都是 Z，它们将被转换为 Q。
• EllipticCurve([a4, a6]): 与上面相同，但 a1 = a2 = a3 = 0。

• EllipticCurve(label): 返回来自 Cremona数据库的椭圆曲线，使用给定的（新的！）Cremona标签。标签是
一个字符串，例如 "11a"或 "37b2"。字母必须是小写（以区分旧标签）。

• EllipticCurve(j): 返回具有 j-不变量 j 的椭圆曲线。

• EllipticCurve(R, [a1, a2, a3, a4, a6]): 创建定义在环 R上的椭圆曲线，给定的 ai 同上。

我们将展示每一个构造函数：

sage: EllipticCurve([0,0,1,-1,0])

Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

sage: EllipticCurve([GF(5)(0),0,1,-1,0])

Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5

sage: EllipticCurve([1,2])

Elliptic Curve defined by y^2 = x^3 + x + 2 over Rational Field

sage: EllipticCurve('37a')

Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

sage: EllipticCurve_from_j(1)

Elliptic Curve defined by y^2 + x*y = x^3 + 36*x + 3455 over Rational Field

(续下页)

2.13. 一些更高级的数学 71

Sage教程,发行版本 10.8

(接上页)

sage: EllipticCurve(GF(5), [0,0,1,-1,0])

Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5

>>> from sage.all import *

>>> EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(1),Integer(0)])

Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

>>> EllipticCurve([GF(Integer(5))(Integer(0)),Integer(0),Integer(1),-Integer(1),Integer(0)])

Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5

>>> EllipticCurve([Integer(1),Integer(2)])

Elliptic Curve defined by y^2 = x^3 + x + 2 over Rational Field

>>> EllipticCurve('37a')

Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

>>> EllipticCurve_from_j(Integer(1))

Elliptic Curve defined by y^2 + x*y = x^3 + 36*x + 3455 over Rational Field

>>> EllipticCurve(GF(Integer(5)), [Integer(0),Integer(0),Integer(1),-Integer(1),Integer(0)])

Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5

点 (0, 0)是椭圆曲线 E 上的一点，定义为 y2 + y = x3 − x。要在 Sage中创建该点，输入 E([0,0])。Sage可
以在此椭圆曲线上添加点（椭圆曲线支持一个加法群结构，其中无穷远点为零元素，曲线上三个共线点之和
为零）：

sage: E = EllipticCurve([0,0,1,-1,0])

sage: E

Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

sage: P = E([0,0])

sage: P + P

(1 : 0 : 1)

sage: 10*P

(161/16 : -2065/64 : 1)

sage: 20*P

(683916417/264517696 : -18784454671297/4302115807744 : 1)

sage: E.conductor()

37

>>> from sage.all import *

>>> E = EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(1),Integer(0)])

>>> E

Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

>>> P = E([Integer(0),Integer(0)])

>>> P + P

(1 : 0 : 1)

>>> Integer(10)*P

(161/16 : -2065/64 : 1)

>>> Integer(20)*P

(683916417/264517696 : -18784454671297/4302115807744 : 1)

>>> E.conductor()

37

复数域上的椭圆曲线由 j-不变量参数化。Sage计算 j-不变量如下：

72 Chapter 2. 导览

Sage教程,发行版本 10.8

sage: E = EllipticCurve([0,0,0,-4,2]); E

Elliptic Curve defined by y^2 = x^3 - 4*x + 2 over Rational Field

sage: E.conductor()

2368

sage: E.j_invariant()

110592/37

>>> from sage.all import *

>>> E = EllipticCurve([Integer(0),Integer(0),Integer(0),-Integer(4),Integer(2)]); E

Elliptic Curve defined by y^2 = x^3 - 4*x + 2 over Rational Field

>>> E.conductor()

2368

>>> E.j_invariant()

110592/37

如果我们创建一个具有与 E相同 j-不变量的曲线，它不一定与 E同构。在以下示例中，这些曲线不相同，因
为它们的导数不同。

sage: F = EllipticCurve_from_j(110592/37)

sage: F.conductor()

37

>>> from sage.all import *

>>> F = EllipticCurve_from_j(Integer(110592)/Integer(37))

>>> F.conductor()

37

然而，通过对 F 进行 2次扭转可以得到一个与其同构的曲线。

sage: G = F.quadratic_twist(2); G

Elliptic Curve defined by y^2 = x^3 - 4*x + 2 over Rational Field

sage: G.conductor()

2368

sage: G.j_invariant()

110592/37

>>> from sage.all import *

>>> G = F.quadratic_twist(Integer(2)); G

Elliptic Curve defined by y^2 = x^3 - 4*x + 2 over Rational Field

>>> G.conductor()

2368

>>> G.j_invariant()

110592/37

我们可以计算椭圆曲线的 L-级数或模形式
∑∞

n=0 anq
n 的系数 an。此计算使用 PARI C库：

sage: E = EllipticCurve([0,0,1,-1,0])

sage: E.anlist(30)

[0, 1, -2, -3, 2, -2, 6, -1, 0, 6, 4, -5, -6, -2, 2, 6, -4, 0, -12, 0, -4,

3, 10, 2, 0, -1, 4, -9, -2, 6, -12]

sage: v = E.anlist(10000)

>>> from sage.all import *

>>> E = EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(1),Integer(0)])

>>> E.anlist(Integer(30))

[0, 1, -2, -3, 2, -2, 6, -1, 0, 6, 4, -5, -6, -2, 2, 6, -4, 0, -12, 0, -4,

(续下页)

2.13. 一些更高级的数学 73

Sage教程,发行版本 10.8

(接上页)
3, 10, 2, 0, -1, 4, -9, -2, 6, -12]

>>> v = E.anlist(Integer(10000))

对于 n ≤ 105，计算所有 an 仅需几秒：

sage: %time v = E.anlist(100000)

CPU times: user 0.98 s, sys: 0.06 s, total: 1.04 s

Wall time: 1.06

>>> from sage.all import *

>>> %time v = E.anlist(Integer(100000))

CPU times: user 0.98 s, sys: 0.06 s, total: 1.04 s

Wall time: 1.06

椭圆曲线可以使用它们的 Cremona标签构造。这会预加载椭圆曲线的秩、Tamagawa数、调节器等信息。

sage: E = EllipticCurve("37b2")

sage: E

Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational

Field

sage: E = EllipticCurve("389a")

sage: E

Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

sage: E.rank()

2

sage: E = EllipticCurve("5077a")

sage: E.rank()

3

>>> from sage.all import *

>>> E = EllipticCurve("37b2")

>>> E

Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational

Field

>>> E = EllipticCurve("389a")

>>> E

Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

>>> E.rank()

2

>>> E = EllipticCurve("5077a")

>>> E.rank()

3

我们也可以直接访问 Cremona数据库。

sage: db = sage.databases.cremona.CremonaDatabase()

sage: db.curves(37)

{'a1': [[0, 0, 1, -1, 0], 1, 1], 'b1': [[0, 1, 1, -23, -50], 0, 3]}

sage: db.allcurves(37)

{'a1': [[0, 0, 1, -1, 0], 1, 1],

'b1': [[0, 1, 1, -23, -50], 0, 3],

'b2': [[0, 1, 1, -1873, -31833], 0, 1],

'b3': [[0, 1, 1, -3, 1], 0, 3]}

74 Chapter 2. 导览

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> db = sage.databases.cremona.CremonaDatabase()

>>> db.curves(Integer(37))

{'a1': [[0, 0, 1, -1, 0], 1, 1], 'b1': [[0, 1, 1, -23, -50], 0, 3]}

>>> db.allcurves(Integer(37))

{'a1': [[0, 0, 1, -1, 0], 1, 1],

'b1': [[0, 1, 1, -23, -50], 0, 3],

'b2': [[0, 1, 1, -1873, -31833], 0, 1],

'b3': [[0, 1, 1, -3, 1], 0, 3]}

从数据库返回的对象不是 EllipticCurve类型。它们是数据库中的元素，只有几个字段而已。Cremona数据
库有一个小型版本，默认随 Sage一起分发，包含有关导子 (conductor) ≤ 10000的椭圆曲线的有限信息。还有
一个大型可选版本，包含有关所有导子不超过 120000的曲线的大量数据（截至 2005年 10月）。Sage还有一
个巨大的（2GB）可选数据库包，包含 Stein-Watkins数据库中数亿条椭圆曲线数据。

2.13.3 狄利克雷特征
Dirichlet特征是同态 (Z/NZ)∗ → R∗ 的扩展，对于某个环 R，可以通过将满足 gcd(N, x) > 1的整数 x映射
到 0从而得到一个 Z → R的映射。

sage: G = DirichletGroup(12)

sage: G.list()

[Dirichlet character modulo 12 of conductor 1 mapping 7 |--> 1, 5 |--> 1,

Dirichlet character modulo 12 of conductor 4 mapping 7 |--> -1, 5 |--> 1,

Dirichlet character modulo 12 of conductor 3 mapping 7 |--> 1, 5 |--> -1,

Dirichlet character modulo 12 of conductor 12 mapping 7 |--> -1, 5 |--> -1]

sage: G.gens()

(Dirichlet character modulo 12 of conductor 4 mapping 7 |--> -1, 5 |--> 1,

Dirichlet character modulo 12 of conductor 3 mapping 7 |--> 1, 5 |--> -1)

sage: len(G)

4

>>> from sage.all import *

>>> G = DirichletGroup(Integer(12))

>>> G.list()

[Dirichlet character modulo 12 of conductor 1 mapping 7 |--> 1, 5 |--> 1,

Dirichlet character modulo 12 of conductor 4 mapping 7 |--> -1, 5 |--> 1,

Dirichlet character modulo 12 of conductor 3 mapping 7 |--> 1, 5 |--> -1,

Dirichlet character modulo 12 of conductor 12 mapping 7 |--> -1, 5 |--> -1]

>>> G.gens()

(Dirichlet character modulo 12 of conductor 4 mapping 7 |--> -1, 5 |--> 1,

Dirichlet character modulo 12 of conductor 3 mapping 7 |--> 1, 5 |--> -1)

>>> len(G)

4

创建该群之后，我们继续创建一个元素并进行计算。

sage: G = DirichletGroup(21)

sage: chi = G.1; chi

Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> zeta6

sage: chi.values()

[0, 1, zeta6 - 1, 0, -zeta6, -zeta6 + 1, 0, 0, 1, 0, zeta6, -zeta6, 0, -1,

0, 0, zeta6 - 1, zeta6, 0, -zeta6 + 1, -1]

sage: chi.conductor()

7

sage: chi.modulus()

(续下页)

2.13. 一些更高级的数学 75

Sage教程,发行版本 10.8

(接上页)
21

sage: chi.order()

6

sage: chi(19)

-zeta6 + 1

sage: chi(40)

-zeta6 + 1

>>> from sage.all import *

>>> G = DirichletGroup(Integer(21))

>>> chi = G.gen(1); chi

Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> zeta6

>>> chi.values()

[0, 1, zeta6 - 1, 0, -zeta6, -zeta6 + 1, 0, 0, 1, 0, zeta6, -zeta6, 0, -1,

0, 0, zeta6 - 1, zeta6, 0, -zeta6 + 1, -1]

>>> chi.conductor()

7

>>> chi.modulus()

21

>>> chi.order()

6

>>> chi(Integer(19))

-zeta6 + 1

>>> chi(Integer(40))

-zeta6 + 1

还可以计算伽罗瓦群 Gal(Q(ζN)/Q)对这些特征的作用，以及对应于模数分解的直积分解。

sage: chi.galois_orbit()

[Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> -zeta6 + 1,

Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> zeta6]

sage: go = G.galois_orbits()

sage: [len(orbit) for orbit in go]

[1, 2, 2, 1, 1, 2, 2, 1]

sage: G.decomposition()

[Group of Dirichlet characters modulo 3 with values in Cyclotomic Field of order 6 and degree 2,

Group of Dirichlet characters modulo 7 with values in Cyclotomic Field of order 6 and degree 2]

>>> from sage.all import *

>>> chi.galois_orbit()

[Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> -zeta6 + 1,

Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> zeta6]

>>> go = G.galois_orbits()

>>> [len(orbit) for orbit in go]

[1, 2, 2, 1, 1, 2, 2, 1]

>>> G.decomposition()

[Group of Dirichlet characters modulo 3 with values in Cyclotomic Field of order 6 and degree 2,

Group of Dirichlet characters modulo 7 with values in Cyclotomic Field of order 6 and degree 2]

接下来，我们构造模 20的狄利克雷特征群，但其值在 Q(i)中：

76 Chapter 2. 导览

Sage教程,发行版本 10.8

sage: K.<i> = NumberField(x^2+1)

sage: G = DirichletGroup(20,K)

sage: G

Group of Dirichlet characters modulo 20 with values in Number Field in i with defining␣

↪→polynomial x^2 + 1

>>> from sage.all import *

>>> K = NumberField(x**Integer(2)+Integer(1), names=('i',)); (i,) = K._first_ngens(1)

>>> G = DirichletGroup(Integer(20),K)

>>> G

Group of Dirichlet characters modulo 20 with values in Number Field in i with defining␣

↪→polynomial x^2 + 1

接下来我们计算 G的几个不变量：

sage: G.gens()

(Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1,

Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> i)

sage: G.unit_gens()

(11, 17)

sage: G.zeta()

i

sage: G.zeta_order()

4

>>> from sage.all import *

>>> G.gens()

(Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1,

Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> i)

>>> G.unit_gens()

(11, 17)

>>> G.zeta()

i

>>> G.zeta_order()

4

下面这个例子中，我们创建了一个值在数域中的狄利克雷特征。通过 DirichletGroup的第三个参数明确指
定了选择的单位根。

sage: x = polygen(QQ, 'x')

sage: K = NumberField(x^4 + 1, 'a'); a = K.0

sage: b = K.gen(); a == b

True

sage: K

Number Field in a with defining polynomial x^4 + 1

sage: G = DirichletGroup(5, K, a); G

Group of Dirichlet characters modulo 5 with values in the group of order 8 generated by a in␣

↪→Number Field in a with defining polynomial x^4 + 1

sage: chi = G.0; chi

Dirichlet character modulo 5 of conductor 5 mapping 2 |--> a^2

sage: [(chi^i)(2) for i in range(4)]

[1, a^2, -1, -a^2]

2.13. 一些更高级的数学 77

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> x = polygen(QQ, 'x')

>>> K = NumberField(x**Integer(4) + Integer(1), 'a'); a = K.gen(0)

>>> b = K.gen(); a == b

True

>>> K

Number Field in a with defining polynomial x^4 + 1

>>> G = DirichletGroup(Integer(5), K, a); G

Group of Dirichlet characters modulo 5 with values in the group of order 8 generated by a in␣

↪→Number Field in a with defining polynomial x^4 + 1

>>> chi = G.gen(0); chi

Dirichlet character modulo 5 of conductor 5 mapping 2 |--> a^2

>>> [(chi**i)(Integer(2)) for i in range(Integer(4))]

[1, a^2, -1, -a^2]

这里 NumberField(x^4 + 1, 'a')告诉 Sage在打印 K时使用符号”a”（一个定义多项式 x4+1的数域）。此
时名称”a”尚未声明。一旦执行 a = K.0（或等价的 a = K.gen()），符号”a”就代表生成多项式 x4 + 1的一
个根。

2.13.4 模形式
Sage可以进行一些与模形式相关的计算，包括计算维度、模符号空间、Hecke算子和分解。
有几个函数可以用来计算模形式空间的维度。例如，

sage: from sage.modular.dims import dimension_cusp_forms

sage: dimension_cusp_forms(Gamma0(11),2)

1

sage: dimension_cusp_forms(Gamma0(1),12)

1

sage: dimension_cusp_forms(Gamma1(389),2)

6112

>>> from sage.all import *

>>> from sage.modular.dims import dimension_cusp_forms

>>> dimension_cusp_forms(Gamma0(Integer(11)),Integer(2))

1

>>> dimension_cusp_forms(Gamma0(Integer(1)),Integer(12))

1

>>> dimension_cusp_forms(Gamma1(Integer(389)),Integer(2))

6112

接下来我们展示如何在权重 12和级别 1的模符号空间上计算 Hecke算子。

sage: M = ModularSymbols(1,12)

sage: M.basis()

([X^8*Y^2,(0,0)], [X^9*Y,(0,0)], [X^10,(0,0)])

sage: t2 = M.T(2)

sage: t2

Hecke operator T_2 on Modular Symbols space of dimension 3 for Gamma_0(1)

of weight 12 with sign 0 over Rational Field

sage: t2.matrix()

[-24 0 0]

[0 -24 0]

[4860 0 2049]

sage: f = t2.charpoly('x'); f

x^3 - 2001*x^2 - 97776*x - 1180224

(续下页)

78 Chapter 2. 导览

Sage教程,发行版本 10.8

(接上页)
sage: factor(f)

(x - 2049) * (x + 24)^2

sage: M.T(11).charpoly('x').factor()

(x - 285311670612) * (x - 534612)^2

>>> from sage.all import *

>>> M = ModularSymbols(Integer(1),Integer(12))

>>> M.basis()

([X^8*Y^2,(0,0)], [X^9*Y,(0,0)], [X^10,(0,0)])

>>> t2 = M.T(Integer(2))

>>> t2

Hecke operator T_2 on Modular Symbols space of dimension 3 for Gamma_0(1)

of weight 12 with sign 0 over Rational Field

>>> t2.matrix()

[-24 0 0]

[0 -24 0]

[4860 0 2049]

>>> f = t2.charpoly('x'); f

x^3 - 2001*x^2 - 97776*x - 1180224

>>> factor(f)

(x - 2049) * (x + 24)^2

>>> M.T(Integer(11)).charpoly('x').factor()

(x - 285311670612) * (x - 534612)^2

我们还可以创建 Γ0(N)和 Γ1(N)的模符号空间。

sage: ModularSymbols(11,2)

Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign

0 over Rational Field

sage: ModularSymbols(Gamma1(11),2)

Modular Symbols space of dimension 11 for Gamma_1(11) of weight 2 with

sign 0 over Rational Field

>>> from sage.all import *

>>> ModularSymbols(Integer(11),Integer(2))

Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign

0 over Rational Field

>>> ModularSymbols(Gamma1(Integer(11)),Integer(2))

Modular Symbols space of dimension 11 for Gamma_1(11) of weight 2 with

sign 0 over Rational Field

让我们计算一些特征多项式和 q展开式。

sage: M = ModularSymbols(Gamma1(11),2)

sage: M.T(2).charpoly('x')

x^11 - 8*x^10 + 20*x^9 + 10*x^8 - 145*x^7 + 229*x^6 + 58*x^5 - 360*x^4

+ 70*x^3 - 515*x^2 + 1804*x - 1452

sage: M.T(2).charpoly('x').factor()

(x - 3) * (x + 2)^2 * (x^4 - 7*x^3 + 19*x^2 - 23*x + 11)

* (x^4 - 2*x^3 + 4*x^2 + 2*x + 11)

sage: S = M.cuspidal_submodule()

sage: S.T(2).matrix()

[-2 0]

[0 -2]

sage: S.q_expansion_basis(10)

[q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10)]

2.13. 一些更高级的数学 79

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> M = ModularSymbols(Gamma1(Integer(11)),Integer(2))

>>> M.T(Integer(2)).charpoly('x')

x^11 - 8*x^10 + 20*x^9 + 10*x^8 - 145*x^7 + 229*x^6 + 58*x^5 - 360*x^4

+ 70*x^3 - 515*x^2 + 1804*x - 1452

>>> M.T(Integer(2)).charpoly('x').factor()

(x - 3) * (x + 2)^2 * (x^4 - 7*x^3 + 19*x^2 - 23*x + 11)

* (x^4 - 2*x^3 + 4*x^2 + 2*x + 11)

>>> S = M.cuspidal_submodule()

>>> S.T(Integer(2)).matrix()

[-2 0]

[0 -2]

>>> S.q_expansion_basis(Integer(10))

[q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10)]

我们甚至可以计算带有特征的模符号空间。

sage: G = DirichletGroup(13)

sage: e = G.0^2

sage: M = ModularSymbols(e,2); M

Modular Symbols space of dimension 4 and level 13, weight 2, character

[zeta6], sign 0, over Cyclotomic Field of order 6 and degree 2

sage: M.T(2).charpoly('x').factor()

(x - zeta6 - 2) * (x - 2*zeta6 - 1) * (x + zeta6 + 1)^2

sage: S = M.cuspidal_submodule(); S

Modular Symbols subspace of dimension 2 of Modular Symbols space of

dimension 4 and level 13, weight 2, character [zeta6], sign 0, over

Cyclotomic Field of order 6 and degree 2

sage: S.T(2).charpoly('x').factor()

(x + zeta6 + 1)^2

sage: S.q_expansion_basis(10)

[q + (-zeta6 - 1)*q^2 + (2*zeta6 - 2)*q^3 + zeta6*q^4 + (-2*zeta6 + 1)*q^5 + (-2*zeta6 + 4)*q^6␣

↪→+ (2*zeta6 - 1)*q^8 - zeta6*q^9 + O(q^10)]

>>> from sage.all import *

>>> G = DirichletGroup(Integer(13))

>>> e = G.gen(0)**Integer(2)

>>> M = ModularSymbols(e,Integer(2)); M

Modular Symbols space of dimension 4 and level 13, weight 2, character

[zeta6], sign 0, over Cyclotomic Field of order 6 and degree 2

>>> M.T(Integer(2)).charpoly('x').factor()

(x - zeta6 - 2) * (x - 2*zeta6 - 1) * (x + zeta6 + 1)^2

>>> S = M.cuspidal_submodule(); S

Modular Symbols subspace of dimension 2 of Modular Symbols space of

dimension 4 and level 13, weight 2, character [zeta6], sign 0, over

Cyclotomic Field of order 6 and degree 2

>>> S.T(Integer(2)).charpoly('x').factor()

(x + zeta6 + 1)^2

>>> S.q_expansion_basis(Integer(10))

[q + (-zeta6 - 1)*q^2 + (2*zeta6 - 2)*q^3 + zeta6*q^4 + (-2*zeta6 + 1)*q^5 + (-2*zeta6 + 4)*q^6␣

↪→+ (2*zeta6 - 1)*q^8 - zeta6*q^9 + O(q^10)]

以下是 Sage如何计算 Hecke算子在模形式空间上的作用的另一个例子。

sage: T = ModularForms(Gamma0(11),2)

sage: T

Modular Forms space of dimension 2 for Congruence Subgroup Gamma0(11) of

(续下页)

80 Chapter 2. 导览

Sage教程,发行版本 10.8

(接上页)
weight 2 over Rational Field

sage: T.degree()

2

sage: T.level()

11

sage: T.group()

Congruence Subgroup Gamma0(11)

sage: T.dimension()

2

sage: T.cuspidal_subspace()

Cuspidal subspace of dimension 1 of Modular Forms space of dimension 2 for

Congruence Subgroup Gamma0(11) of weight 2 over Rational Field

sage: T.eisenstein_subspace()

Eisenstein subspace of dimension 1 of Modular Forms space of dimension 2

for Congruence Subgroup Gamma0(11) of weight 2 over Rational Field

sage: M = ModularSymbols(11); M

Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign

0 over Rational Field

sage: M.weight()

2

sage: M.basis()

((1,0), (1,8), (1,9))

sage: M.sign()

0

>>> from sage.all import *

>>> T = ModularForms(Gamma0(Integer(11)),Integer(2))

>>> T

Modular Forms space of dimension 2 for Congruence Subgroup Gamma0(11) of

weight 2 over Rational Field

>>> T.degree()

2

>>> T.level()

11

>>> T.group()

Congruence Subgroup Gamma0(11)

>>> T.dimension()

2

>>> T.cuspidal_subspace()

Cuspidal subspace of dimension 1 of Modular Forms space of dimension 2 for

Congruence Subgroup Gamma0(11) of weight 2 over Rational Field

>>> T.eisenstein_subspace()

Eisenstein subspace of dimension 1 of Modular Forms space of dimension 2

for Congruence Subgroup Gamma0(11) of weight 2 over Rational Field

>>> M = ModularSymbols(Integer(11)); M

Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign

0 over Rational Field

>>> M.weight()

2

>>> M.basis()

((1,0), (1,8), (1,9))

>>> M.sign()

0

设 Tp 表示通常的 Hecke算子 (p是质数)。Hecke算子 T2, T3, T5 如何在模符号空间上作用？

2.13. 一些更高级的数学 81

Sage教程,发行版本 10.8

sage: M.T(2).matrix()

[3 0 -1]

[0 -2 0]

[0 0 -2]

sage: M.T(3).matrix()

[4 0 -1]

[0 -1 0]

[0 0 -1]

sage: M.T(5).matrix()

[6 0 -1]

[0 1 0]

[0 0 1]

>>> from sage.all import *

>>> M.T(Integer(2)).matrix()

[3 0 -1]

[0 -2 0]

[0 0 -2]

>>> M.T(Integer(3)).matrix()

[4 0 -1]

[0 -1 0]

[0 0 -1]

>>> M.T(Integer(5)).matrix()

[6 0 -1]

[0 1 0]

[0 0 1]

82 Chapter 2. 导览

CHAPTER3

交互式 Shell

在本教程的大部分内容中，我们假定你使用 sage 命令启动 Sage 解释器。这将启动一个定制版的 IPython
Shell，并导入许多函数和类，使它们可以直接从命令提示符使用。可以通过编辑 $SAGE_ROOT/ipythonrc文
件进行进一步的自定义。启动 Sage后，会输出以下类似内容：

┌──┐

│ SageMath version 9.7, Release Date: 2022-01-10 │

│ Using Python 3.10.4. Type "help()" for help. │

└──┘

sage:

要退出 Sage只需按 Ctrl-D或输入 quit或 exit。

sage: quit

Exiting Sage (CPU time 0m0.00s, Wall time 0m0.89s)

>>> from sage.all import *

>>> quit

Exiting Sage (CPU time 0m0.00s, Wall time 0m0.89s)

Wall time指的是墙上的挂钟走过的时间。因为 CPU时间不会跟踪子进程（如 GAP或 Singular）消耗的时间。
（请避免在终端中使用 kill -9杀死 Sage进程，因为 Sage可能无法终止子进程，例如Maple进程，或清理
$HOME/.sage/tmp中的临时文件。）

3.1 Sage会话
会话是从 Sage启动到退出期间的输入输出序列。Sage通过 IPython记录所有 Sage输入。实际上，如果你使
用的是交互式 Shell（而不是 notebook界面），你可以随时输入 %history（或 %hist）来列出迄今为止输入
的所有命令行。在 Sage提示符下输入 ?可以了解有关 IPython的更多信息，例如，“IPython提供带编号的提
示符...并缓存输入和输出。所有输入都会保存，并且可以作为变量检索（除了常用的箭头键召回外）。以下
全局变量始终存在（所以不要覆盖它们！）”：

83

Sage教程,发行版本 10.8

_: 上一次输入 (交互式 SHell 和 notebook 均适用)

__: 上两次输入 (仅交互式 Shell 适用)

_oh : 所有输入的列表 (仅交互式 Shell 适用)

例如：

sage: factor(100)

_1 = 2^2 * 5^2

sage: kronecker_symbol(3,5)

_2 = -1

sage: %hist # This only works from the interactive shell, not the notebook.

1: factor(100)

2: kronecker_symbol(3,5)

3: %hist

sage: _oh

_4 = {1: 2^2 * 5^2, 2: -1}

sage: _i1

_5 = 'factor(ZZ(100))\n'

sage: eval(_i1)

_6 = 2^2 * 5^2

sage: %hist

1: factor(100)

2: kronecker_symbol(3,5)

3: %hist

4: _oh

5: _i1

6: eval(_i1)

7: %hist

>>> from sage.all import *

>>> factor(Integer(100))

_1 = 2^2 * 5^2

>>> kronecker_symbol(Integer(3),Integer(5))

_2 = -1

>>> %hist # This only works from the interactive shell, not the notebook.

1: factor(100)

2: kronecker_symbol(3,5)

3: %hist

>>> _oh

_4 = {1: 2^2 * 5^2, 2: -1}

>>> _i1

_5 = 'factor(ZZ(100))\n'

>>> eval(_i1)

_6 = 2^2 * 5^2

>>> %hist

1: factor(100)

2: kronecker_symbol(3,5)

3: %hist

4: _oh

5: _i1

6: eval(_i1)

7: %hist

我们在本教程和其他 Sage文档中均省略了输出编号。
你还可以在会话中将输入列表储存在宏中。

84 Chapter 3. 交互式 Shell

Sage教程,发行版本 10.8

sage: E = EllipticCurve([1,2,3,4,5])

sage: M = ModularSymbols(37)

sage: %hist

1: E = EllipticCurve([1,2,3,4,5])

2: M = ModularSymbols(37)

3: %hist

sage: %macro em 1-2

Macro `em` created. To execute, type its name (without quotes).

>>> from sage.all import *

>>> E = EllipticCurve([Integer(1),Integer(2),Integer(3),Integer(4),Integer(5)])

>>> M = ModularSymbols(Integer(37))

>>> %hist

1: E = EllipticCurve([1,2,3,4,5])

2: M = ModularSymbols(37)

3: %hist

>>> %macro em Integer(1)-Integer(2)

Macro `em` created. To execute, type its name (without quotes).

sage: E

Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over

Rational Field

sage: E = 5

sage: M = None

sage: em

Executing Macro...

sage: E

Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over

Rational Field

>>> from sage.all import *

>>> E

Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over

Rational Field

>>> E = Integer(5)

>>> M = None

>>> em

Executing Macro...

>>> E

Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over

Rational Field

在使用交互式 Shell时，任何 UNIX Shell命令都可以通过在 Sage前面加上感叹号 !来执行。例如：

sage: !ls

auto example.sage glossary.tex t tmp tut.log tut.tex

>>> from sage.all import *

>>> !ls

auto example.sage glossary.tex t tmp tut.log tut.tex

返回当前目录的列表。

PATH变量将 Sage的 bin目录放在最前端，因此如果运行 gp, gap, singular, maxima等等，你会得到随 Sage
附带的版本。

3.1. Sage会话 85

Sage教程,发行版本 10.8

sage: !gp

Reading GPRC: /etc/gprc ...Done.

GP/PARI CALCULATOR Version 2.2.11 (alpha)

i686 running linux (ix86/GMP-4.1.4 kernel) 32-bit version

...

sage: !singular

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 3-0-1

0<

by: G.-M. Greuel, G. Pfister, H. Schoenemann \ October 2005

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

>>> from sage.all import *

>>> !gp

Reading GPRC: /etc/gprc ...Done.

GP/PARI CALCULATOR Version 2.2.11 (alpha)

i686 running linux (ix86/GMP-4.1.4 kernel) 32-bit version

...

>>> !singular

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 3-0-1

0<

by: G.-M. Greuel, G. Pfister, H. Schoenemann \ October 2005

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

3.2 记录输入和输出
记录 Sage会话不同于保存会话（参见保存和加载完整会话）。要记录输入（和可选输出），请使用 logstart

命令。输入 logstart?了解更多详情。你可以使用这个命令记录你输入的所有内容、所有输出，甚至可以
在未来的会话中重现输入（通过重新加载日志文件）。

$ sage

┌──┐

│ SageMath version 9.7, Release Date: 2022-01-10 │

│ Using Python 3.10.4. Type "help()" for help. │

└──┘

sage: logstart setup

Activating auto-logging. Current session state plus future input saved.

Filename : setup

Mode : backup

Output logging : False

Timestamping : False

State : active

sage: E = EllipticCurve([1,2,3,4,5]).minimal_model()

sage: F = QQ^3

sage: x,y = QQ['x,y'].gens()

sage: G = E.gens()

sage:

Exiting Sage (CPU time 0m0.61s, Wall time 0m50.39s).

was@form:~$ sage

┌──┐

│ SageMath version 9.7, Release Date: 2022-01-10 │

(续下页)

86 Chapter 3. 交互式 Shell

Sage教程,发行版本 10.8

(接上页)
│ Using Python 3.10.4. Type "help()" for help. │

└──┘

sage: load("setup")

Loading log file <setup> one line at a time...

Finished replaying log file <setup>

sage: E

Elliptic Curve defined by y^2 + x*y = x^3 - x^2 + 4*x + 3 over Rational

Field

sage: x*y

x*y

sage: G

[(2 : 3 : 1)]

如果你在 Linux KDE终端 konsole中使用 Sage，那么可以按照以下步骤保存会话：在 konsole中启动 Sage
后，选择“设置”，然后“历史记录...”，然后“设置为无限制”。当你准备保存会话时，选择“编辑”，然后
“保存历史记录为...”，并输入一个名称将会话的文本保存到你的计算机。保存这个文件后，你可以将其加载
到编辑器（例如 xemacs）并打印出来。

3.3 粘贴忽略提示符
假设你正在阅读 Sage或 Python计算的会话，并希望将它们复制到 Sage中。但是有 >>>或 sage: 提示符很
烦人。实际上，你可以将包含提示符的示例复制并粘贴到 Sage中。换句话说，默认情况下，Sage解析器在
传递给 Python之前会删除任何前导 >>>或 sage: 提示符。例如：

sage: 2^10

1024

sage: sage: sage: 2^10

1024

sage: >>> 2^10

1024

>>> from sage.all import *

>>> Integer(2)**Integer(10)

1024

>>> sage: sage: Integer(2)**Integer(10)

1024

>>> >>> Integer(2)**Integer(10)

1024

3.4 命令计时
如果你在输入的开头放置 %time命令，那么命令执行的时间将显示在输出后。例如，我们可以比较几种幂运
算的运行时间。这些计时在你电脑上可能会有很大不同，甚至在不同版本的 Sage之间也会有所不同。首先
是原生 Python：

sage: %time a = int(1938)^int(99484)

CPU times: user 0.66 s, sys: 0.00 s, total: 0.66 s

Wall time: 0.66

>>> from sage.all import *

>>> %time a = int(Integer(1938))**int(Integer(99484))

(续下页)

3.3. 粘贴忽略提示符 87

Sage教程,发行版本 10.8

(接上页)
CPU times: user 0.66 s, sys: 0.00 s, total: 0.66 s

Wall time: 0.66

这意味着总共耗时 0.66秒，”Wall time”即墙上挂钟的时间为 0.66秒。如果你的计算机负载较重，wall time可
能比 CPU时间长很多。
还可以使用 timeit函数来尝试在大量迭代命令下获取时间。这提供了稍微不同的信息，并且需要输入命令
字符串来计时。

sage: timeit("int(1938)^int(99484)")

5 loops, best of 3: 44.8 ms per loop

>>> from sage.all import *

>>> timeit("int(1938)^int(99484)")

5 loops, best of 3: 44.8 ms per loop

接下来我们使用原生 Sage Integer类型，它是用 Cython调用 GMP库实现的：

sage: %time a = 1938^99484

CPU times: user 0.04 s, sys: 0.00 s, total: 0.04 s

Wall time: 0.04

>>> from sage.all import *

>>> %time a = Integer(1938)**Integer(99484)

CPU times: user 0.04 s, sys: 0.00 s, total: 0.04 s

Wall time: 0.04

使用 PARI的 C语言接口：

sage: %time a = pari(1938)^pari(99484)

CPU times: user 0.05 s, sys: 0.00 s, total: 0.05 s

Wall time: 0.05

>>> from sage.all import *

>>> %time a = pari(Integer(1938))**pari(Integer(99484))

CPU times: user 0.05 s, sys: 0.00 s, total: 0.05 s

Wall time: 0.05

GMP表现稍好（预料之中，因为为 Sage构建的 PARI版本使用 GMP进行整数运算）。
还可以使用 cputime命令计时一组命令块，如下所示：

sage: t = cputime()

sage: a = int(1938)^int(99484)

sage: b = 1938^99484

sage: c = pari(1938)^pari(99484)

sage: cputime(t) # somewhat random output

0.64

>>> from sage.all import *

>>> t = cputime()

>>> a = int(Integer(1938))**int(Integer(99484))

>>> b = Integer(1938)**Integer(99484)

>>> c = pari(Integer(1938))**pari(Integer(99484))

>>> cputime(t) # somewhat random output

0.64

88 Chapter 3. 交互式 Shell

Sage教程,发行版本 10.8

sage: cputime?

...

Return the time in CPU second since Sage started, or with optional

argument t, return the time since time t.

INPUT:

t -- (optional) float, time in CPU seconds

OUTPUT:

float -- time in CPU seconds

>>> from sage.all import *

>>> cputime?

...

Return the time in CPU second since Sage started, or with optional

argument t, return the time since time t.

INPUT:

t -- (optional) float, time in CPU seconds

OUTPUT:

float -- time in CPU seconds

walltime命令的行为与 cputime命令类似，只是它计算的是挂钟时间。

我们也可以用 Sage包含的计算机代数系统计算上面的幂。以下每种情况下，我们执行一个简单命令以启动
该程序的服务器。最相关的时间是挂钟时间。然而，如果挂钟时间和 CPU时间之间存在显著差异，则可能
表明存在值得优化的性能问题。

sage: time 1938^99484;

CPU times: user 0.01 s, sys: 0.00 s, total: 0.01 s

Wall time: 0.01

sage: gp(0)

0

sage: time g = gp('1938^99484')

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s

Wall time: 0.04

sage: maxima(0)

0

sage: time g = maxima('1938^99484')

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s

Wall time: 0.30

sage: kash(0)

0

sage: time g = kash('1938^99484')

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s

Wall time: 0.04

sage: mathematica(0)

0

sage: time g = mathematica('1938^99484')

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s

Wall time: 0.03

sage: maple(0)

0

sage: time g = maple('1938^99484')

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s

Wall time: 0.11

sage: libgap(0)

0

sage: time g = libgap.eval('1938^99484;')

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s

(续下页)

3.4. 命令计时 89

Sage教程,发行版本 10.8

(接上页)
Wall time: 1.02

>>> from sage.all import *

>>> time Integer(1938)**Integer(99484);

CPU times: user 0.01 s, sys: 0.00 s, total: 0.01 s

Wall time: 0.01

>>> gp(Integer(0))

0

>>> time g = gp('1938^99484')

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s

Wall time: 0.04

>>> maxima(Integer(0))

0

>>> time g = maxima('1938^99484')

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s

Wall time: 0.30

>>> kash(Integer(0))

0

>>> time g = kash('1938^99484')

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s

Wall time: 0.04

>>> mathematica(Integer(0))

0

>>> time g = mathematica('1938^99484')

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s

Wall time: 0.03

>>> maple(Integer(0))

0

>>> time g = maple('1938^99484')

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s

Wall time: 0.11

>>> libgap(Integer(0))

0

>>> time g = libgap.eval('1938^99484;')

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s

Wall time: 1.02

注意，在这项测试中 GAP和Maxima最慢（运行在 sage.math.washington.edu机器上）。由于 pexpect接
口的开销，将它们与最快的 Sage相比可能不太公平。

3.5 其他 IPython技巧
如上文所述，Sage使用 IPython作为前端，因此你可以使用任何 IPython的命令和功能。你可以阅读完整的
IPython文档。下面是一些有趣的技巧 --在 IPython中，这些被称为”Magic命令”：

• 如果你想输入一些复杂代码，可以使用 %edit（或 %ed或 ed）打开一个编辑器。在启动 Sage之前，
请确保 EDITOR 环境变量设置为你喜欢的编辑器（通过在适当位置如 .profile 文件中放置 export

EDITOR=/usr/bin/emacs或 export EDITOR=/usr/bin/vim等）。在 Sage提示符下执行 %edit会打
开指定的编辑器。然后在编辑器中你可以定义一个函数：

def some_function(n):

return n**2 + 3*n + 2

保存并退出编辑器。在剩下的 Sage会话期间，你可以使用 some_function。如果你想修改它，可以在
Sage提示符下输入 %edit some_function。

90 Chapter 3. 交互式 Shell

http://ipython.scipy.org/moin/Documentation
http://ipython.scipy.org/moin/Documentation

Sage教程,发行版本 10.8

• 如果你有一个计算，并且想修改其输出以便用于其他用途，可执行计算并输入 %rep：这会将上一个命
令的输出放置到 Sage提示符，供你编辑。:

sage: f(x) = cos(x)

sage: f(x).derivative(x)

-sin(x)

>>> from sage.all import *

>>> __tmp__=var("x"); f = symbolic_expression(cos(x)).function(x)

>>> f(x).derivative(x)

-sin(x)

此时如果你在 Sage提示符下输入 %rep,你会得到一个新的 Sage提示符，后面跟着 -sin(x),光标在行
尾。

要了解更多信息，请输入 %quickref以获得 IPython快速参考指南。截止本文撰写时间（2011年 4月），Sage
使用的 IPython版本为 0.9.1，Magic命令文档可以在线访问。各种较为高级的Magic命令系统的内容记载在
这里。

3.6 错误与异常
出现问题时，通常会看到 Python“异常”。Python甚至会尝试给出引发异常的原因。通常可以看到异常的名
称，例如：NameError或 ValueError（详细异常列表请参见 Python库参考 [PyLR]）。例如：

sage: 3_2

--

File "<console>", line 1

ZZ(3)_2

^

SyntaxError: invalid ...

sage: EllipticCurve([0,infinity])

--

Traceback (most recent call last):

...

TypeError: Unable to coerce Infinity (<class 'sage...Infinity'>) to Rational

>>> from sage.all import *

>>> Integer(3_2)

--

File "<console>", line 1

ZZ(3)_2

^

SyntaxError: invalid ...

>>> EllipticCurve([Integer(0),infinity])

--

Traceback (most recent call last):

...

TypeError: Unable to coerce Infinity (<class 'sage...Infinity'>) to Rational

有时交互式调试器对理解问题很有用。可以使用 %pdb切换它（默认是关闭的）。如果打开调试器，出现异常
时会出现提示符 ipdb>。在调试器中，可以打印任意局部变量的状态，并在执行栈中上下移动。例如：

sage: %pdb

Automatic pdb calling has been turned ON

(续下页)

3.6. 错误与异常 91

http://ipython.org/ipython-doc/dev/interactive/tutorial.html#magic-functions
http://ipython.org/ipython-doc/stable/interactive/reference.html#magic-command-system
https://docs.python.org/library/exceptions.html#NameError
https://docs.python.org/library/exceptions.html#ValueError

Sage教程,发行版本 10.8

(接上页)
sage: EllipticCurve([1,infinity])

<class 'exceptions.TypeError'> Traceback (most recent call last)

...

ipdb>

>>> from sage.all import *

>>> %pdb

Automatic pdb calling has been turned ON

>>> EllipticCurve([Integer(1),infinity])

<class 'exceptions.TypeError'> Traceback (most recent call last)

...

ipdb>

在 ipdb>提示符下输入 ?以获取调试器命令列表：

ipdb> ?

Documented commands (type help <topic>):

==

EOF break commands debug h l pdef quit tbreak

a bt condition disable help list pdoc r u

alias c cont down ignore n pinfo return unalias

args cl continue enable j next pp s up

b clear d exit jump p q step w

whatis where

Miscellaneous help topics:

==========================

exec pdb

Undocumented commands:

======================

retval rv

输入 Ctrl-D或 quit返回 Sage。

3.7 反向搜索与 Tab补全
反向搜索：输入命令的开头，然后按 Ctrl-p（或直接按上箭头键）查看以前输入的以该命令开头的命令行。
即使你完全退出 Sage并稍后重新启动，这些功能仍然可以使用。也可以使用 Ctrl-r通过历史记录进行反向
搜索。所有这些功能均使用 readline软件包，可在大多数 Linux版本中使用。
为了演示 Tab补全，首先创建三维向量空间 V = Q3 如下：

sage: V = VectorSpace(QQ,3)

sage: V

Vector space of dimension 3 over Rational Field

>>> from sage.all import *

>>> V = VectorSpace(QQ,Integer(3))

(续下页)

92 Chapter 3. 交互式 Shell

Sage教程,发行版本 10.8

(接上页)
>>> V

Vector space of dimension 3 over Rational Field

也可以使用如下更简洁的表示法：

sage: V = QQ^3

>>> from sage.all import *

>>> V = QQ**Integer(3)

然后可以很容易地使用 Tab补全列出 V 的所有成员函数。只需输入 V.,然后按键盘上的 Tab键:

sage: V.[tab key]

V._VectorSpace_generic__base_field

...

V.ambient_space

V.base_field

V.base_ring

V.basis

V.coordinates

...

V.zero_vector

>>> from sage.all import *

>>> V.[tab key]

V._VectorSpace_generic__base_field

...

V.ambient_space

V.base_field

V.base_ring

V.basis

V.coordinates

...

V.zero_vector

如果输入函数的前几个字母，然后按 Tab键，只会显示以这些字母开头的函数。

sage: V.i[tab key]

V.is_ambient V.is_dense V.is_full V.is_sparse

>>> from sage.all import *

>>> V.i[tab key]

V.is_ambient V.is_dense V.is_full V.is_sparse

如果想知道某函数的作用，例如 coordinates函数，输入 V.coordinates?来获取帮助或 V.coordinates??

查看源码，如下一节所述。

3.8 集成帮助系统
Sage拥有集成帮助系统。输入函数名后跟? 可以查看该函数的文档。

sage: V = QQ^3

sage: V.coordinates?

Type: instancemethod

(续下页)

3.8. 集成帮助系统 93

Sage教程,发行版本 10.8

(接上页)
Base Class: <class 'instancemethod'>

String Form: <bound method FreeModule_ambient_field.coordinates of Vector

space of dimension 3 over Rational Field>

Namespace: Interactive

File: /home/was/s/local/lib/python2.4/site-packages/sage/modules/f

ree_module.py

Definition: V.coordinates(self, v)

Docstring:

Write v in terms of the basis for self.

Returns a list c such that if B is the basis for self, then

sum c_i B_i = v.

If v is not in self, raises an ArithmeticError exception.

EXAMPLES:

sage: M = FreeModule(IntegerRing(), 2); M0,M1=M.gens()

sage: W = M.submodule([M0 + M1, M0 - 2*M1])

sage: W.coordinates(2*M0-M1)

[2, -1]

>>> from sage.all import *

>>> V = QQ**Integer(3)

>>> V.coordinates?

Type: instancemethod

Base Class: <class 'instancemethod'>

String Form: <bound method FreeModule_ambient_field.coordinates of Vector

space of dimension 3 over Rational Field>

Namespace: Interactive

File: /home/was/s/local/lib/python2.4/site-packages/sage/modules/f

ree_module.py

Definition: V.coordinates(self, v)

Docstring:

Write v in terms of the basis for self.

Returns a list c such that if B is the basis for self, then

sum c_i B_i = v.

If v is not in self, raises an ArithmeticError exception.

EXAMPLES:

>>> M = FreeModule(IntegerRing(), Integer(2)); M0,M1=M.gens()

>>> W = M.submodule([M0 + M1, M0 - Integer(2)*M1])

>>> W.coordinates(Integer(2)*M0-M1)

[2, -1]

如上所示，输出告诉你对象的类型，定义它的文件，以及有用的函数描述及示例，可以将这些示例粘贴到当
前会话中。几乎所有这些示例都会定期自动测试，以确保它们正常工作并完全按照描述运行。

另一个非常符合 Sage开源精神的功能是，如果 f是一个 Python函数，那么输入 f??会显示定义 f的源代码。
例如：

sage: V = QQ^3

sage: V.coordinates??

(续下页)

94 Chapter 3. 交互式 Shell

Sage教程,发行版本 10.8

(接上页)
Type: instancemethod

...

Source:

def coordinates(self, v):

"""

Write v in terms of the basis for self.

...

"""

return self.coordinate_vector(v).list()

>>> from sage.all import *

>>> V = QQ**Integer(3)

>>> V.coordinates??

Type: instancemethod

...

Source:

def coordinates(self, v):

"""

Write v in terms of the basis for self.

...

"""

return self.coordinate_vector(v).list()

这告诉我们 coordinates 函数所做的就是调用 coordinate_vector 函数并将结果转换为列表。
coordinate_vector函数做什么？

sage: V = QQ^3

sage: V.coordinate_vector??

...

def coordinate_vector(self, v):

...

return self.ambient_vector_space()(v)

>>> from sage.all import *

>>> V = QQ**Integer(3)

>>> V.coordinate_vector??

...

def coordinate_vector(self, v):

...

return self.ambient_vector_space()(v)

coordinate_vector函数将其输入强制转化环绕空间，其效果是以 V 的形式计算 v的系数向量。空间 V 已
经是环绕空间，因为它就是 Q3。子空间也有 coordinate_vector函数，它是不同的。我们创建一个子空间
并看到：

sage: V = QQ^3; W = V.span_of_basis([V.0, V.1])

sage: W.coordinate_vector??

...

def coordinate_vector(self, v):

"""

...

"""

First find the coordinates of v wrt echelon basis.

w = self.echelon_coordinate_vector(v)

Next use transformation matrix from echelon basis to

user basis.
(续下页)

3.8. 集成帮助系统 95

Sage教程,发行版本 10.8

(接上页)
T = self.echelon_to_user_matrix()

return T.linear_combination_of_rows(w)

>>> from sage.all import *

>>> V = QQ**Integer(3); W = V.span_of_basis([V.gen(0), V.gen(1)])

>>> W.coordinate_vector??

...

def coordinate_vector(self, v):

"""

...

"""

First find the coordinates of v wrt echelon basis.

w = self.echelon_coordinate_vector(v)

Next use transformation matrix from echelon basis to

user basis.

T = self.echelon_to_user_matrix()

return T.linear_combination_of_rows(w)

（如果你认为实现效率低下，请注册以帮助优化线性代数。）

你也可以输入 help(command_name)或 help(class)来获取给定类的帮助文档（类似 manpage）。

sage: help(VectorSpace)

Help on function VectorSpace in module sage.modules.free_module:

VectorSpace(K, dimension_or_basis_keys=None, sparse=False, inner_product_matrix=None, *,

with_basis='standard', dimension=None, basis_keys=None, **args)

EXAMPLES:

The base can be complicated, as long as it is a field.

::

sage: V = VectorSpace(FractionField(PolynomialRing(ZZ,'x')),3)

sage: V

Vector space of dimension 3 over Fraction Field of Univariate Polynomial Ring in x

over Integer Ring

sage: V.basis()

[

(1, 0, 0),

(0, 1, 0),

--More--

>>> from sage.all import *

>>> help(VectorSpace)

Help on function VectorSpace in module sage.modules.free_module:

VectorSpace(K, dimension_or_basis_keys=None, sparse=False, inner_product_matrix=None, *,

with_basis='standard', dimension=None, basis_keys=None, **args)

EXAMPLES:

The base can be complicated, as long as it is a field.

::

>>> V = VectorSpace(FractionField(PolynomialRing(ZZ,'x')),Integer(3))

(续下页)

96 Chapter 3. 交互式 Shell

Sage教程,发行版本 10.8

(接上页)
>>> V

Vector space of dimension 3 over Fraction Field of Univariate Polynomial Ring in x

over Integer Ring

>>> V.basis()

[

(1, 0, 0),

(0, 1, 0),

--More--

当你输入 q 退出帮助系统时，你的会话内容将保持不变。帮助列表不会使你的会话变得杂乱，而
function_name? 的输出有时会造成这种情况。输入 help(module_name) 特别有用。例如，向量空间在
sage.modules.free_module中定义，输入 help(sage.modules.free_module)即可获得有关整个模块的
文档。使用帮助查看文档时，可以通过输入 /进行搜索，也可以通过输入 ?反向搜索。

3.9 保存和加载单个对象
假设你计算出一个矩阵或更复杂的模符号空间，并希望将其保存以供日后使用。你要怎么办呢？计算机代数
系统采用多种方法来保存单个对象。

1. 保存游戏：仅支持保存和加载完整会话（如 GAP、Magma）。
2. 统一输入输出：使每个对象都以可读的方式打印（GP/PARI）。
3. Eval: 轻松在解释器中计算任意代码（如 Singular、PARI）。

由于 Sage使用 Python，因此采用不同的方法，即每个对象都可以序列化，转化为一个可以从中恢复该对象的
字符串。这与 PARI的统一输入输出方法精神相似，只不过对象打印到屏幕的方式不会过于复杂。此外，保
存和加载在大多数情况下是完全自动的，不需要额外编程；这是 Python的设计特性。
几乎所有 Sage 对象 x 都可以以压缩形式保存到磁盘，使用 save(x, filename) （或在许多情况下 x.

save(filename)）。要加载对象，使用 load(filename)。

sage: A = MatrixSpace(QQ,3)(range(9))^2

sage: A

[15 18 21]

[42 54 66]

[69 90 111]

sage: save(A, 'A')

>>> from sage.all import *

>>> A = MatrixSpace(QQ,Integer(3))(range(Integer(9)))**Integer(2)

>>> A

[15 18 21]

[42 54 66]

[69 90 111]

>>> save(A, 'A')

现在你应该退出 Sage并重新启动。然后便可以恢复 A：

sage: A = load('A')

sage: A

[15 18 21]

[42 54 66]

[69 90 111]

3.9. 保存和加载单个对象 97

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> A = load('A')

>>> A

[15 18 21]

[42 54 66]

[69 90 111]

可以使用同样的方法处理更复杂的对象，如椭圆曲线。缓存对象的所有数据都与对象一同保存。例如：

sage: E = EllipticCurve('11a')

sage: v = E.anlist(100000) # takes a while

sage: save(E, 'E')

sage: quit

>>> from sage.all import *

>>> E = EllipticCurve('11a')

>>> v = E.anlist(Integer(100000)) # takes a while

>>> save(E, 'E')

>>> quit

E的存储版占 153K字节，因为它储存了前 100000个 an.

~/tmp$ ls -l E.sobj

-rw-r--r-- 1 was was 153500 2006-01-28 19:23 E.sobj

~/tmp$ sage [...]

sage: E = load('E')

sage: v = E.anlist(100000) # instant!

（在 Python中，保存和加载使用 cPickle模块实现。具体来说，Sage对象 x可以通过 cPickle.dumps(x,

2)保存。注意 2！）

Sage无法保存和加载某些其它计算机代数系统（例如 GAP、Singular、Maxima）创建的单个对象。它们重新
加载时状态显示为“无效 (invalid)”。在 GAP中，虽然许多对象的打印方式可以重新构建，但很多对象却不
行，因此特意不允许从其打印表示进行重建。

sage: a = libgap(2)

sage: a.save('a')

sage: load('a')

Traceback (most recent call last):

...

ValueError: The session in which this object was defined is no longer

running.

>>> from sage.all import *

>>> a = libgap(Integer(2))

>>> a.save('a')

>>> load('a')

Traceback (most recent call last):

...

ValueError: The session in which this object was defined is no longer

running.

GP/PARI对象可以保存和加载，因为它们的打印表示足以重构它们。

sage: a = gp(2)

sage: a.save('a')

(续下页)

98 Chapter 3. 交互式 Shell

Sage教程,发行版本 10.8

(接上页)
sage: load('a')

2

>>> from sage.all import *

>>> a = gp(Integer(2))

>>> a.save('a')

>>> load('a')

2

保存的对象稍后可以在不同架构或操作系统的计算机上重新加载，例如，你可以在 32位 OS X上保存一个大
矩阵，然后在 64位 Linux上重新加载它，计算阶梯形式，然后再保存回去。此外，在许多情况下，即使在不
同版本的 Sage中也能加载对象，只要该对象的代码没有太大差异。对象的所有属性，以及定义对象的类（但
不包括源代码）都会被保存。如果该类在新版本的 Sage中不再存在，那么该对象就无法在新版本中重新加
载。但你可以在老版本中加载它，获取其对象字典（使用 x.__dict__），保存该字典，并将其加载到新版本
中。

3.9.1 保存为文本
你还可以将对象的 ASCII文本表示保存到纯文本文件中，只需以写入模式打开文件并写入对象的字符串表示
即可（你也可以通过这种方式写入许多对象）。写完对象后，关闭文件。

sage: R.<x,y> = PolynomialRing(QQ,2)

sage: f = (x+y)^7

sage: o = open('file.txt','w')

sage: o.write(str(f))

sage: o.close()

>>> from sage.all import *

>>> R = PolynomialRing(QQ,Integer(2), names=('x', 'y',)); (x, y,) = R._first_ngens(2)

>>> f = (x+y)**Integer(7)

>>> o = open('file.txt','w')

>>> o.write(str(f))

>>> o.close()

3.10 保存和加载完整会话
Sage对于保存和加载完整会话有非常灵活的支持。
save_session(sessionname)命令将所有在当前会话中定义的变量保存为给定 sessionname的字典。（在
少数情况下，如果某个变量不支持保存，则不会保存到字典。）生成的文件为 .sobj文件，可以像保存的其
它对象一样加载。加载会话保存的对象时，会得到一个字典，字典的键为变量名，值为对象。

可以使用 load_session(sessionname)命令将 sessionname中定义的变量加载到当前会话。注意，这不
会清除当前会话中已经定义的变量；而是合并两个会话。

首先启动 Sage并定义一些变量。

sage: E = EllipticCurve('11a')

sage: M = ModularSymbols(37)

sage: a = 389

sage: t = M.T(2003).matrix(); t.charpoly().factor()

_4 = (x - 2004) * (x - 12)^2 * (x + 54)^2

3.10. 保存和加载完整会话 99

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> E = EllipticCurve('11a')

>>> M = ModularSymbols(Integer(37))

>>> a = Integer(389)

>>> t = M.T(Integer(2003)).matrix(); t.charpoly().factor()

_4 = (x - 2004) * (x - 12)^2 * (x + 54)^2

接下来保存会话，将上面定义的每个变量保存至文件。然后查看文件，大小约为 3K。

sage: save_session('misc')

Saving a

Saving M

Saving t

Saving E

sage: quit

was@form:~/tmp$ ls -l misc.sobj

-rw-r--r-- 1 was was 2979 2006-01-28 19:47 misc.sobj

>>> from sage.all import *

>>> save_session('misc')

Saving a

Saving M

Saving t

Saving E

>>> quit

was@form:~/tmp$ ls -l misc.sobj

-rw-r--r-- 1 was was 2979 2006-01-28 19:47 misc.sobj

最后重新启动 Sage，定义一个额外的变量，并加载保存的会话。

sage: b = 19

sage: load_session('misc')

Loading a

Loading M

Loading E

Loading t

>>> from sage.all import *

>>> b = Integer(19)

>>> load_session('misc')

Loading a

Loading M

Loading E

Loading t

每个保存的变量再次可用。此外，变量 b没有被覆盖。

sage: M

Full Modular Symbols space for Gamma_0(37) of weight 2 with sign 0

and dimension 5 over Rational Field

sage: E

Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational

Field

sage: b

19

sage: a

389

100 Chapter 3. 交互式 Shell

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> M

Full Modular Symbols space for Gamma_0(37) of weight 2 with sign 0

and dimension 5 over Rational Field

>>> E

Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational

Field

>>> b

19

>>> a

389

3.10. 保存和加载完整会话 101

Sage教程,发行版本 10.8

102 Chapter 3. 交互式 Shell

CHAPTER4

接口

Sage的一个核心功能是它支持在通用接口和简洁的编程语言下，使用来自多个不同计算机代数系统的对象进
行计算。

接口的 console和 interact方法的作用非常不同。例如，以 GAP为例：
1. gap.console(): 这会打开 GAP控制台 -将控制权转移给 GAP。在这里，Sage只是充当一个方便的程
序启动器，类似于 Linux的 bash shell。

2. gap.interact(): 这是与正在运行的 GAP实例交互的便捷方式，该实例可能“装满了”Sage对象。你
可以将 Sage对象导入到这个 GAP会话中（甚至可以从交互界面中导入）等等。

4.1 GP/PARI
PARI是一款小巧紧凑、非常成熟、高度优化的 C程序，其主要关注点是数论。Sage中有两个截然不同的接
口可供使用：

• gp -- PARI解释器
• pari -- PARI C库

例如，以下是同一任务的两种实现方法。它们看起来一样，但输出结果实际上是不同的，并且后台发生的事
情也截然不同。

sage: gp('znprimroot(10007)')

Mod(5, 10007)

sage: pari('znprimroot(10007)')

Mod(5, 10007)

>>> from sage.all import *

>>> gp('znprimroot(10007)')

Mod(5, 10007)

>>> pari('znprimroot(10007)')

Mod(5, 10007)

103

Sage教程,发行版本 10.8

在第一种情况下，会启动一个单独的 GP解释器副本作为服务器，并将字符串 'znprimroot(10007)'发送
给它，经 GP计算后，结果被赋予 GP中的一个变量（该变量占用子 GP进程内存中的空间，不会被释放）。
然后显示该变量的值。在第二种情况下，没有启动单独的程序，并且字符串 'znprimroot(10007)'被某个
PARI C库函数计算。结果存储在 Python的堆内存中，当该变量不再被引用时，该内存将被释放。对象具有
不同的类型：

sage: type(gp('znprimroot(10007)'))

<class 'sage.interfaces.gp.GpElement'>

sage: type(pari('znprimroot(10007)'))

<class 'cypari2.gen.Gen'>

>>> from sage.all import *

>>> type(gp('znprimroot(10007)'))

<class 'sage.interfaces.gp.GpElement'>

>>> type(pari('znprimroot(10007)'))

<class 'cypari2.gen.Gen'>

那么应该使用哪一种呢？这取决于你的需求。GP接口可以完成在通常的 GP/PARI命令行程序中你可以做的
任何任务，尤其是你可以加载复杂的 PARI程序并运行它们。而使用 PARI接口（通过 C库）限制要多得多。
首先，所有的成员函数尚未完全实现。其次，许多代码，例如涉及数值积分的代码，通过 PARI接口无法工
作。话虽如此，PARI接口显著比 GP接口更快、更稳健。
（如果 GP接口在计算给定输入时内存耗尽，它会静默地自动将堆栈大小加倍并重试该输入。因此，如果你
没有正确预估所需的内存，你的计算也不会崩溃。这是通常的 GP解释器似乎不提供的一个不错的技巧。对
于 PARI C库接口，它会立即将每个创建的对象从 PARI堆栈中复制出来，因此堆栈不会增长。然而，每个对
象的大小不得超过 100MB，否则在创建对象时堆栈将溢出。这个额外的复制会导致一定的性能损耗。）
总的来说，Sage使用 PARI C库提供了与 GP/PARI解释器类似的功能，不同之处在于具有不同的复杂内存管
理和 Python编程语言。
首先，我们从 Python列表创建一个 PARI列表。

sage: v = pari([1,2,3,4,5])

sage: v

[1, 2, 3, 4, 5]

sage: type(v)

<class 'cypari2.gen.Gen'>

>>> from sage.all import *

>>> v = pari([Integer(1),Integer(2),Integer(3),Integer(4),Integer(5)])

>>> v

[1, 2, 3, 4, 5]

>>> type(v)

<class 'cypari2.gen.Gen'>

每个 PARI对象的类型都是 Gen。底层对象的 PARI类型可以使用 type成员函数来获取。

sage: v.type()

't_VEC'

>>> from sage.all import *

>>> v.type()

't_VEC'

在 PARI中，要创建一个椭圆曲线，我们输入 ellinit([1,2,3,4,5])。与 Sage类似，除了 ellinit是一个
可以在任何 PARI对象上调用的方法，例如我们的 t_VEC v。

104 Chapter 4. 接口

Sage教程,发行版本 10.8

sage: e = v.ellinit()

sage: e.type()

't_VEC'

sage: pari(e)[:13]

[1, 2, 3, 4, 5, 9, 11, 29, 35, -183, -3429, -10351, 6128487/10351]

>>> from sage.all import *

>>> e = v.ellinit()

>>> e.type()

't_VEC'

>>> pari(e)[:Integer(13)]

[1, 2, 3, 4, 5, 9, 11, 29, 35, -183, -3429, -10351, 6128487/10351]

现在我们有了一个椭圆曲线对象，我们可以计算关于它的一些信息。

sage: e.elltors()

[1, [], []]

sage: e.ellglobalred()

[10351, [1, -1, 0, -1], 1, [11, 1; 941, 1], [[1, 5, 0, 1], [1, 5, 0, 1]]]

sage: f = e.ellchangecurve([1,-1,0,-1])

sage: f[:5]

[1, -1, 0, 4, 3]

>>> from sage.all import *

>>> e.elltors()

[1, [], []]

>>> e.ellglobalred()

[10351, [1, -1, 0, -1], 1, [11, 1; 941, 1], [[1, 5, 0, 1], [1, 5, 0, 1]]]

>>> f = e.ellchangecurve([Integer(1),-Integer(1),Integer(0),-Integer(1)])

>>> f[:Integer(5)]

[1, -1, 0, 4, 3]

4.2 GAP
Sage附带用于计算离散数学，尤其是群论的 GAP。
以下是 GAP的 IdGroup函数的例子。

sage: G = gap('Group((1,2,3)(4,5), (3,4))')

sage: G

Group([(1,2,3)(4,5), (3,4)])

sage: G.Center()

Group(())

sage: G.IdGroup()

[120, 34]

sage: G.Order()

120

>>> from sage.all import *

>>> G = gap('Group((1,2,3)(4,5), (3,4))')

>>> G

Group([(1,2,3)(4,5), (3,4)])

>>> G.Center()

Group(())

>>> G.IdGroup()

(续下页)

4.2. GAP 105

Sage教程,发行版本 10.8

(接上页)
[120, 34]

>>> G.Order()

120

我们可以在 Sage中执行相同的计算，而无需显式调用 GAP接口，如下所示：

sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])

sage: G.center()

Subgroup generated by [()] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)])

sage: G.group_id()

[120, 34]

sage: n = G.order(); n

120

>>> from sage.all import *

>>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))],

↪→[(Integer(3),Integer(4))]])

>>> G.center()

Subgroup generated by [()] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)])

>>> G.group_id()

[120, 34]

>>> n = G.order(); n

120

对于某些 GAP功能，你需要安装可选的 Sage软件包。可以通过如下命令完成:

sage -i gap_packages

4.3 Singular
Singular提供了一个庞大且成熟的库，用于处理 Gröbner基、多元多项式最大公因数、平面曲线上的 Riemann-
Roch 空间基，以及因式分解等。我们将使用 Sage 接口来展示多元多项式的因式分解（请勿输入:）
:

sage: R1 = singular.ring(0, '(x,y)', 'dp')

sage: R1

polynomial ring, over a field, global ordering

// coefficients: QQ...

// number of vars : 2

// block 1 : ordering dp

// : names x y

// block 2 : ordering C

sage: f = singular('9*y^8 - 9*x^2*y^7 - 18*x^3*y^6 - 18*x^5*y^6 +'

....: '9*x^6*y^4 + 18*x^7*y^5 + 36*x^8*y^4 + 9*x^10*y^4 - 18*x^11*y^2 -'

....: '9*x^12*y^3 - 18*x^13*y^2 + 9*x^16')

>>> from sage.all import *

>>> R1 = singular.ring(Integer(0), '(x,y)', 'dp')

>>> R1

polynomial ring, over a field, global ordering

// coefficients: QQ...

// number of vars : 2

// block 1 : ordering dp

// : names x y

(续下页)

106 Chapter 4. 接口

Sage教程,发行版本 10.8

(接上页)
// block 2 : ordering C

>>> f = singular('9*y^8 - 9*x^2*y^7 - 18*x^3*y^6 - 18*x^5*y^6 +'

... '9*x^6*y^4 + 18*x^7*y^5 + 36*x^8*y^4 + 9*x^10*y^4 - 18*x^11*y^2 -'

... '9*x^12*y^3 - 18*x^13*y^2 + 9*x^16')

现在我们已经定义了 f，我们输出它并进行因式分解。

sage: f

9*x^16-18*x^13*y^2-9*x^12*y^3+9*x^10*y^4-18*x^11*y^2+36*x^8*y^4+18*x^7*y^5-18*x^5*y^6+9*x^6*y^4-

↪→18*x^3*y^6-9*x^2*y^7+9*y^8

sage: f.parent()

Singular

sage: F = f.factorize(); F

[1]:

_[1]=9

_[2]=x^6-2*x^3*y^2-x^2*y^3+y^4

_[3]=-x^5+y^2

[2]:

1,1,2

sage: F[1][2]

x^6-2*x^3*y^2-x^2*y^3+y^4

>>> from sage.all import *

>>> f

9*x^16-18*x^13*y^2-9*x^12*y^3+9*x^10*y^4-18*x^11*y^2+36*x^8*y^4+18*x^7*y^5-18*x^5*y^6+9*x^6*y^4-

↪→18*x^3*y^6-9*x^2*y^7+9*y^8

>>> f.parent()

Singular

>>> F = f.factorize(); F

[1]:

_[1]=9

_[2]=x^6-2*x^3*y^2-x^2*y^3+y^4

_[3]=-x^5+y^2

[2]:

1,1,2

>>> F[Integer(1)][Integer(2)]

x^6-2*x^3*y^2-x^2*y^3+y^4

与GAP 中的 GAP示例一样，我们可以计算上述因式分解而无需显式调用 Singular接口（然而，Sage实际上
在后台使用 Singular接口来进行实际计算）。请勿输入:：

sage: x, y = QQ['x, y'].gens()

sage: f = (9*y^8 - 9*x^2*y^7 - 18*x^3*y^6 - 18*x^5*y^6 + 9*x^6*y^4

....: + 18*x^7*y^5 + 36*x^8*y^4 + 9*x^10*y^4 - 18*x^11*y^2 - 9*x^12*y^3

....: - 18*x^13*y^2 + 9*x^16)

sage: factor(f)

(9) * (-x^5 + y^2)^2 * (x^6 - 2*x^3*y^2 - x^2*y^3 + y^4)

>>> from sage.all import *

>>> x, y = QQ['x, y'].gens()

>>> f = (Integer(9)*y**Integer(8) - Integer(9)*x**Integer(2)*y**Integer(7) -␣

↪→Integer(18)*x**Integer(3)*y**Integer(6) - Integer(18)*x**Integer(5)*y**Integer(6) +␣

↪→Integer(9)*x**Integer(6)*y**Integer(4)

... + Integer(18)*x**Integer(7)*y**Integer(5) + Integer(36)*x**Integer(8)*y**Integer(4) +␣

↪→Integer(9)*x**Integer(10)*y**Integer(4) - Integer(18)*x**Integer(11)*y**Integer(2) -␣

↪→Integer(9)*x**Integer(12)*y**Integer(3)

(续下页)

4.3. Singular 107

Sage教程,发行版本 10.8

(接上页)
... - Integer(18)*x**Integer(13)*y**Integer(2) + Integer(9)*x**Integer(16))

>>> factor(f)

(9) * (-x^5 + y^2)^2 * (x^6 - 2*x^3*y^2 - x^2*y^3 + y^4)

4.4 Maxima
Maxima包括在 Sage中，采用 Lisp实现。gnuplot包（Maxima默认用于绘图）作为 Sage的可选包分发。除其他
功能外，Maxima还可以进行符号操作。Maxima可以符号化积分和微分函数，求解一阶常微分方程（ODE），
大部分线性二阶常微分方程，并且已经实现了对任意阶线性常微分方程的拉普拉斯变换方法。Maxima还了
解各种特殊函数，拥有通过 gnuplot进行绘图的能力，并且具有求解和操作矩阵（如行化简、特征值和特征
向量），以及多项方程的方法。

我们通过构造一个矩阵来说明 Sage/Maxima接口。对于 i, j = 1, . . . , 4，该矩阵的 i, j 项为 i/j。

sage: f = maxima.eval('ij_entry[i,j] := i/j')

sage: A = maxima('genmatrix(ij_entry,4,4)'); A

matrix([1,1/2,1/3,1/4],[2,1,2/3,1/2],[3,3/2,1,3/4],[4,2,4/3,1])

sage: A.determinant()

0

sage: A.echelon()

matrix([1,1/2,1/3,1/4],[0,0,0,0],[0,0,0,0],[0,0,0,0])

sage: A.eigenvalues()

[[0,4],[3,1]]

sage: A.eigenvectors().sage()

[[[0, 4], [3, 1]], [[[1, 0, 0, -4], [0, 1, 0, -2], [0, 0, 1, -4/3]], [[1, 2, 3, 4]]]]

>>> from sage.all import *

>>> f = maxima.eval('ij_entry[i,j] := i/j')

>>> A = maxima('genmatrix(ij_entry,4,4)'); A

matrix([1,1/2,1/3,1/4],[2,1,2/3,1/2],[3,3/2,1,3/4],[4,2,4/3,1])

>>> A.determinant()

0

>>> A.echelon()

matrix([1,1/2,1/3,1/4],[0,0,0,0],[0,0,0,0],[0,0,0,0])

>>> A.eigenvalues()

[[0,4],[3,1]]

>>> A.eigenvectors().sage()

[[[0, 4], [3, 1]], [[[1, 0, 0, -4], [0, 1, 0, -2], [0, 0, 1, -4/3]], [[1, 2, 3, 4]]]]

下面是另一个例子:

sage: A = maxima("matrix ([1, 0, 0], [1, -1, 0], [1, 3, -2])")

sage: eigA = A.eigenvectors()

sage: V = VectorSpace(QQ,3)

sage: eigA

[[[-2,-1,1],[1,1,1]],[[[0,0,1]],[[0,1,3]],[[1,1/2,5/6]]]]

sage: v1 = V(sage_eval(repr(eigA[1][0][0]))); lambda1 = eigA[0][0][0]

sage: v2 = V(sage_eval(repr(eigA[1][1][0]))); lambda2 = eigA[0][0][1]

sage: v3 = V(sage_eval(repr(eigA[1][2][0]))); lambda3 = eigA[0][0][2]

sage: M = MatrixSpace(QQ,3,3)

sage: AA = M([[1,0,0],[1, - 1,0],[1,3, - 2]])

sage: b1 = v1.base_ring()

sage: AA*v1 == b1(lambda1)*v1

(续下页)

108 Chapter 4. 接口

Sage教程,发行版本 10.8

(接上页)
True

sage: b2 = v2.base_ring()

sage: AA*v2 == b2(lambda2)*v2

True

sage: b3 = v3.base_ring()

sage: AA*v3 == b3(lambda3)*v3

True

>>> from sage.all import *

>>> A = maxima("matrix ([1, 0, 0], [1, -1, 0], [1, 3, -2])")

>>> eigA = A.eigenvectors()

>>> V = VectorSpace(QQ,Integer(3))

>>> eigA

[[[-2,-1,1],[1,1,1]],[[[0,0,1]],[[0,1,3]],[[1,1/2,5/6]]]]

>>> v1 = V(sage_eval(repr(eigA[Integer(1)][Integer(0)][Integer(0)]))); lambda1 =␣

↪→eigA[Integer(0)][Integer(0)][Integer(0)]

>>> v2 = V(sage_eval(repr(eigA[Integer(1)][Integer(1)][Integer(0)]))); lambda2 =␣

↪→eigA[Integer(0)][Integer(0)][Integer(1)]

>>> v3 = V(sage_eval(repr(eigA[Integer(1)][Integer(2)][Integer(0)]))); lambda3 =␣

↪→eigA[Integer(0)][Integer(0)][Integer(2)]

>>> M = MatrixSpace(QQ,Integer(3),Integer(3))

>>> AA = M([[Integer(1),Integer(0),Integer(0)],[Integer(1), - Integer(1),Integer(0)],

↪→[Integer(1),Integer(3), - Integer(2)]])

>>> b1 = v1.base_ring()

>>> AA*v1 == b1(lambda1)*v1

True

>>> b2 = v2.base_ring()

>>> AA*v2 == b2(lambda2)*v2

True

>>> b3 = v3.base_ring()

>>> AA*v3 == b3(lambda3)*v3

True

最后，我们给出一个使用 Sage进行 openmath绘图的例子。其中许多内容都是根据Maxima参考手册改编而
来。

绘制多个函数的二维图像（请勿输入:）:

sage: maxima.plot2d('[cos(7*x),cos(23*x)^4,sin(13*x)^3]','[x,0,1]', # not tested

....: '[plot_format,openmath]')

>>> from sage.all import *

>>> maxima.plot2d('[cos(7*x),cos(23*x)^4,sin(13*x)^3]','[x,0,1]', # not tested

... '[plot_format,openmath]')

可以用鼠标移动的“动态”三维图（请勿输入:）:

sage: maxima.plot3d ("2^(-u^2 + v^2)", "[u, -3, 3]", "[v, -2, 2]", # not tested

....: '[plot_format, openmath]')

sage: maxima.plot3d("atan(-x^2 + y^3/4)", "[x, -4, 4]", "[y, -4, 4]", # not tested

....: "[grid, 50, 50]",'[plot_format, openmath]')

>>> from sage.all import *

>>> maxima.plot3d ("2^(-u^2 + v^2)", "[u, -3, 3]", "[v, -2, 2]", # not tested

... '[plot_format, openmath]')

(续下页)

4.4. Maxima 109

Sage教程,发行版本 10.8

(接上页)
>>> maxima.plot3d("atan(-x^2 + y^3/4)", "[x, -4, 4]", "[y, -4, 4]", # not tested

... "[grid, 50, 50]",'[plot_format, openmath]')

接下来的绘图是著名的莫比乌斯带（请勿输入:）:

sage: maxima.plot3d("[cos(x)*(3 + y*cos(x/2)), sin(x)*(3 + y*cos(x/2)), y*sin(x/2)]", # not␣

↪→tested

....: "[x, -4, 4]", "[y, -4, 4]", '[plot_format, openmath]')

>>> from sage.all import *

>>> maxima.plot3d("[cos(x)*(3 + y*cos(x/2)), sin(x)*(3 + y*cos(x/2)), y*sin(x/2)]", # not␣

↪→tested

... "[x, -4, 4]", "[y, -4, 4]", '[plot_format, openmath]')

接下来的绘图是著名克莱因瓶（请勿输入:）:

sage: maxima("expr_1: 5*cos(x)*(cos(x/2)*cos(y) + sin(x/2)*sin(2*y)+ 3.0) - 10.0")

5*cos(x)*(sin(x/2)*sin(2*y)+cos(x/2)*cos(y)+3.0)-10.0

sage: maxima("expr_2: -5*sin(x)*(cos(x/2)*cos(y) + sin(x/2)*sin(2*y)+ 3.0)").sage()

-5*(cos(1/2*x)*cos(y) + sin(1/2*x)*sin(2*y) + 3.0)*sin(x)

sage: maxima("expr_3: 5*(-sin(x/2)*cos(y) + cos(x/2)*sin(2*y))")

5*(cos(x/2)*sin(2*y)-sin(x/2)*cos(y))

sage: maxima.plot3d ("[expr_1, expr_2, expr_3]", "[x, -%pi, %pi]", # not tested

....: "[y, -%pi, %pi]", "['grid, 40, 40]", '[plot_format, openmath]')

>>> from sage.all import *

>>> maxima("expr_1: 5*cos(x)*(cos(x/2)*cos(y) + sin(x/2)*sin(2*y)+ 3.0) - 10.0")

5*cos(x)*(sin(x/2)*sin(2*y)+cos(x/2)*cos(y)+3.0)-10.0

>>> maxima("expr_2: -5*sin(x)*(cos(x/2)*cos(y) + sin(x/2)*sin(2*y)+ 3.0)").sage()

-5*(cos(1/2*x)*cos(y) + sin(1/2*x)*sin(2*y) + 3.0)*sin(x)

>>> maxima("expr_3: 5*(-sin(x/2)*cos(y) + cos(x/2)*sin(2*y))")

5*(cos(x/2)*sin(2*y)-sin(x/2)*cos(y))

>>> maxima.plot3d ("[expr_1, expr_2, expr_3]", "[x, -%pi, %pi]", # not tested

... "[y, -%pi, %pi]", "['grid, 40, 40]", '[plot_format, openmath]')

110 Chapter 4. 接口

CHAPTER5

Sage, LaTeX及其朋友们

Sage与 TeX的 LaTeX方言之间存在着密切的协同关系。本节旨在介绍各种交互方式，从最基本的开始，然
后介绍一些不常见的用法。

5.1 基本使用
Sage中的每个“对象”都必须有 LaTeX表示。你可以通过执行 latex(foo)来获取这种表示，其中 foo是
Sage中的某个对象。输出是一个字符串，当在 TeX的数学模式中使用时（例如，包围在一对单美元符号之
间），该字符串应该能够准确地呈现 foo。以下是一些示例。

sage: var('z')

z

sage: latex(z^12)

z^{12}

sage: latex(sqrt(z^2 + 1/2))

\sqrt{z^{2} + \frac{1}{2}}

sage: latex('a string')

\text{\texttt{a{ }string}}

sage: latex(QQ)

\Bold{Q}

sage: latex(ZZ['x'])

\Bold{Z}[x]

sage: latex(matrix(QQ, 2, 3, [[2,4,6],[-1,-1,-1]]))

\left(\begin{array}{rrr}

2 & 4 & 6 \\

-1 & -1 & -1

\end{array}\right)

>>> from sage.all import *

>>> var('z')

z

>>> latex(z**Integer(12))

z^{12}

(续下页)

111

Sage教程,发行版本 10.8

(接上页)
>>> latex(sqrt(z**Integer(2) + Integer(1)/Integer(2)))

\sqrt{z^{2} + \frac{1}{2}}

>>> latex('a string')

\text{\texttt{a{ }string}}

>>> latex(QQ)

\Bold{Q}

>>> latex(ZZ['x'])

\Bold{Z}[x]

>>> latex(matrix(QQ, Integer(2), Integer(3), [[Integer(2),Integer(4),Integer(6)],[-Integer(1),-

↪→Integer(1),-Integer(1)]]))

\left(\begin{array}{rrr}

2 & 4 & 6 \\

-1 & -1 & -1

\end{array}\right)

通过这种方式，Sage可以有效地用于构建 LaTeX文档的各个部分：在 Sage中创建或计算一个对象 foo，对
该对象执行 latex(foo)，然后将 LaTeX字符串剪切并粘贴到你的文档中。
命令 view(foo)会显示对象 foo的渲染后的 LaTeX表示。在后台，该命令会运行 latex(foo)并将 LaTeX
字符串合并到一个简单的 LaTeX文档中，用系统范围内的 TeX安装处理该文档，然后调用合适的查看器来
显示输出。

在 Jupyter Notebook中，你可以自动看到输入命令输出的渲染 LaTeX表示。你可以通过执行 %display latex

来启动自动渲染（并通过执行 %display plain停止）。

Jupyter Notebook使用 MathJax在网页浏览器中清晰地渲染数学内容。MathJax是一个开源的 JavaScript数学
显示引擎，可以在所有现代浏览器中使用。它能够渲染大部分 LaTex，但并不支持完整的 LaTeX，是 LaTex
的子集。它不支持复杂表格、分段或文档管理，因为它主要用于准确渲染 LaTeX数学片段。
在 Jupyter Notebook中自动 LaTeX渲染（启用 %display latex）是通过 sage.misc.html.MathJax类内部
实现的。该类的对象将 Sage对象通过 latex()转换为MathJax需要的 HTML形式，然后将其包装在 HTML
中。

sage: from sage.misc.html import MathJax

sage: mj = MathJax()

sage: var('z')

z

sage: mj(z^12)

<html>\[z^{12}\]</html>

sage: mj(sqrt(z^2 + 1/2))

<html>\[\sqrt{z^{2} + \frac{1}{2}}\]</html>

sage: mj('a string')

<html>\[\verb|a|\verb| |\verb|string|\]</html>

sage: mj(QQ)

<html>\[\newcommand{\Bold}[1]{\mathbf{#1}}\Bold{Q}\]</html>

sage: mj(ZZ['x'])

<html>\[\newcommand{\Bold}[1]{\mathbf{#1}}\Bold{Z}[x]\]</html>

sage: mj(matrix(QQ, 2, 3, [[2,4,6],[-1,-1,-1]]))

<html>\[\left(\begin{array}{rrr}

2 & 4 & 6 \\

-1 & -1 & -1

\end{array}\right)\]</html>

>>> from sage.all import *

>>> from sage.misc.html import MathJax

>>> mj = MathJax()

>>> var('z')

(续下页)

112 Chapter 5. Sage, LaTeX及其朋友们

http://www.mathjax.org
../../../html/en/reference/misc/sage/misc/html.html#sage.misc.html.MathJax

Sage教程,发行版本 10.8

(接上页)
z

>>> mj(z**Integer(12))

<html>\[z^{12}\]</html>

>>> mj(sqrt(z**Integer(2) + Integer(1)/Integer(2)))

<html>\[\sqrt{z^{2} + \frac{1}{2}}\]</html>

>>> mj('a string')

<html>\[\verb|a|\verb| |\verb|string|\]</html>

>>> mj(QQ)

<html>\[\newcommand{\Bold}[1]{\mathbf{#1}}\Bold{Q}\]</html>

>>> mj(ZZ['x'])

<html>\[\newcommand{\Bold}[1]{\mathbf{#1}}\Bold{Z}[x]\]</html>

>>> mj(matrix(QQ, Integer(2), Integer(3), [[Integer(2),Integer(4),Integer(6)],[-Integer(1),-

↪→Integer(1),-Integer(1)]]))

<html>\[\left(\begin{array}{rrr}

2 & 4 & 6 \\

-1 & -1 & -1

\end{array}\right)\]</html>

如果你需要了解 Sage对象的 LaTeX渲染，那么了解这一点很有用。

5.2 自定义 LaTeX生成
有几种方法可以自定义由 latex()命令生成的实际 LaTeX代码。预定义对象 latex包含多个方法，可以通
过输入 latex.（注意这里有一个点）后按 Tab键来列出这些方法。

latex.matrix_delimiters方法是一个很好的例子。它可以用来更改矩阵周围的符号 --大括号、方括号、
花括号、竖线。不强制执行任何样式，你可以随意混合搭配。注意，LaTeX所需的反斜杠在 Python字符串中
需要额外加一个斜杠以便正确转义。

sage: A = matrix(ZZ, 2, 2, range(4))

sage: latex(A)

\left(\begin{array}{rr}

0 & 1 \\

2 & 3

\end{array}\right)

sage: latex.matrix_delimiters(left='[', right=']')

sage: latex(A)

\left[\begin{array}{rr}

0 & 1 \\

2 & 3

\end{array}\right]

sage: latex.matrix_delimiters(left='\\{', right='\\}')

sage: latex(A)

\left\{\begin{array}{rr}

0 & 1 \\

2 & 3

\end{array}\right\}

>>> from sage.all import *

>>> A = matrix(ZZ, Integer(2), Integer(2), range(Integer(4)))

>>> latex(A)

\left(\begin{array}{rr}

0 & 1 \\

2 & 3

\end{array}\right)

(续下页)

5.2. 自定义 LaTeX生成 113

Sage教程,发行版本 10.8

(接上页)
>>> latex.matrix_delimiters(left='[', right=']')

>>> latex(A)

\left[\begin{array}{rr}

0 & 1 \\

2 & 3

\end{array}\right]

>>> latex.matrix_delimiters(left='\\{', right='\\}')

>>> latex(A)

\left\{\begin{array}{rr}

0 & 1 \\

2 & 3

\end{array}\right\}

latex.vector_delimiters方法的工作原理与之类似。

常见环和域（整数、有理数、实数等）的排版方式可以通过 latex.blackboard_bold方法来控制。这些集
合默认以粗体排版，但有时可以选择以双重划线格式书写，如某些书面作品所做的那样。这可以通过重新定
义 Sage内置的 \Bold{}宏来实现。

sage: latex(QQ)

\Bold{Q}

sage: from sage.misc.html import MathJax

sage: mj = MathJax()

sage: mj(QQ)

<html>\[\newcommand{\Bold}[1]{\mathbf{#1}}\Bold{Q}\]</html>

sage: latex.blackboard_bold(True)

sage: mj(QQ)

<html>\[\newcommand{\Bold}[1]{\mathbb{#1}}\Bold{Q}\]</html>

sage: latex.blackboard_bold(False)

>>> from sage.all import *

>>> latex(QQ)

\Bold{Q}

>>> from sage.misc.html import MathJax

>>> mj = MathJax()

>>> mj(QQ)

<html>\[\newcommand{\Bold}[1]{\mathbf{#1}}\Bold{Q}\]</html>

>>> latex.blackboard_bold(True)

>>> mj(QQ)

<html>\[\newcommand{\Bold}[1]{\mathbb{#1}}\Bold{Q}\]</html>

>>> latex.blackboard_bold(False)

可以通过加入新的宏来利用 LaTeX的可扩展性。可以添加单个宏，以便在MathJax解释 LaTeX片段时使用。

sage: latex.add_macro(r"\newcommand{\sqrt}[1]{(#1)^\frac{1}{2}}")

sage: latex.extra_macros()

'\\newcommand{\\sqrt}[1]{(#1)^\\frac{1}{2}}'

sage: var('x y')

(x, y)

sage: latex(sqrt(x+y))

\sqrt{x + y}

sage: from sage.misc.html import MathJax

sage: mj = MathJax()

sage: mj(sqrt(x + y))

<html>\[\newcommand{\sqrt}[1]{(#1)^\frac{1}{2}}\sqrt{x + y}\]</html>

sage: latex.extra_macros('')

114 Chapter 5. Sage, LaTeX及其朋友们

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> latex.add_macro(r"\newcommand{\sqrt}[1]{(#1)^\frac{1}{2}}")

>>> latex.extra_macros()

'\\newcommand{\\sqrt}[1]{(#1)^\\frac{1}{2}}'

>>> var('x y')

(x, y)

>>> latex(sqrt(x+y))

\sqrt{x + y}

>>> from sage.misc.html import MathJax

>>> mj = MathJax()

>>> mj(sqrt(x + y))

<html>\[\newcommand{\sqrt}[1]{(#1)^\frac{1}{2}}\sqrt{x + y}\]</html>

>>> latex.extra_macros('')

5.3 自定义 LaTeX处理
系统范围内的 TeX被调用来处理完整的 LaTeX文档，例如，当你 view(foo)时，其中 foo是一个复杂的
Sage对象，太复杂以至于 MathJax无法处理。命令 latex_extra_preamble用于构建完整 LaTeX文档的导
言部分，下面将展示如何完成这项工作。如往常一样，请注意 Python字符串中需要双反斜杠。

sage: latex.extra_macros('')

sage: latex.extra_preamble('')

sage: from sage.misc.latex import latex_extra_preamble

sage: print(latex_extra_preamble())

\newcommand{\ZZ}{\Bold{Z}}

...

\newcommand{\Bold}[1]{\mathbf{#1}}

sage: latex.add_macro("\\newcommand{\\foo}{bar}")

sage: print(latex_extra_preamble())

\newcommand{\ZZ}{\Bold{Z}}

...

\newcommand{\Bold}[1]{\mathbf{#1}}

\newcommand{\foo}{bar}

>>> from sage.all import *

>>> latex.extra_macros('')

>>> latex.extra_preamble('')

>>> from sage.misc.latex import latex_extra_preamble

>>> print(latex_extra_preamble())

\newcommand{\ZZ}{\Bold{Z}}

...

\newcommand{\Bold}[1]{\mathbf{#1}}

>>> latex.add_macro("\\newcommand{\\foo}{bar}")

>>> print(latex_extra_preamble())

\newcommand{\ZZ}{\Bold{Z}}

...

\newcommand{\Bold}[1]{\mathbf{#1}}

\newcommand{\foo}{bar}

同样，对于更大或更复杂的 LaTeX 表达式，可以将包（或其他任意内容）添加到 LaTeX 文件的
导言部分。任意内容都可以通过 latex.add_to_preamble 命令加入导言部分，专用命令 latex.

add_package_to_preamble_if_available 会首先检查某个包是否实际存在，然后尝试将其添加到导言
部分。

这里我们将几何包添加到导言部分并用它来设置 TeX将在页面上使用的区域尺寸（有效地设置边距）。如往
常一样，请注意 Python字符串中需要双反斜杠。

5.3. 自定义 LaTeX处理 115

Sage教程,发行版本 10.8

sage: from sage.misc.latex import latex_extra_preamble

sage: latex.extra_macros('')

sage: latex.extra_preamble('')

sage: latex.add_to_preamble('\\usepackage{geometry}')

sage: latex.add_to_preamble('\\geometry{letterpaper,total={8in,10in}}')

sage: latex.extra_preamble()

'\\usepackage{geometry}\\geometry{letterpaper,total={8in,10in}}'

sage: print(latex_extra_preamble())

\usepackage{geometry}\geometry{letterpaper,total={8in,10in}}

\newcommand{\ZZ}{\Bold{Z}}

...

\newcommand{\Bold}[1]{\mathbf{#1}}

>>> from sage.all import *

>>> from sage.misc.latex import latex_extra_preamble

>>> latex.extra_macros('')

>>> latex.extra_preamble('')

>>> latex.add_to_preamble('\\usepackage{geometry}')

>>> latex.add_to_preamble('\\geometry{letterpaper,total={8in,10in}}')

>>> latex.extra_preamble()

'\\usepackage{geometry}\\geometry{letterpaper,total={8in,10in}}'

>>> print(latex_extra_preamble())

\usepackage{geometry}\geometry{letterpaper,total={8in,10in}}

\newcommand{\ZZ}{\Bold{Z}}

...

\newcommand{\Bold}[1]{\mathbf{#1}}

可以通过检查其存在性来添加特定包，以下示例展示了这种情况。作为示例，我们将尝试向导言部分添加一
个可能不存在的包。

sage: latex.extra_preamble('')

sage: latex.extra_preamble()

''

sage: latex.add_to_preamble('\\usepackage{foo-bar-unchecked}')

sage: latex.extra_preamble()

'\\usepackage{foo-bar-unchecked}'

sage: latex.add_package_to_preamble_if_available('foo-bar-checked')

sage: latex.extra_preamble()

'\\usepackage{foo-bar-unchecked}'

>>> from sage.all import *

>>> latex.extra_preamble('')

>>> latex.extra_preamble()

''

>>> latex.add_to_preamble('\\usepackage{foo-bar-unchecked}')

>>> latex.extra_preamble()

'\\usepackage{foo-bar-unchecked}'

>>> latex.add_package_to_preamble_if_available('foo-bar-checked')

>>> latex.extra_preamble()

'\\usepackage{foo-bar-unchecked}'

使用哪种 TeX方言，以及输出和相关查看器的性质，也可以定制。

备注

Sage 几乎包括了构建和使用 Sage 所需的一切，但一个重要的例外是 TeX 本身。因此，在以下情况下，

116 Chapter 5. Sage, LaTeX及其朋友们

Sage教程,发行版本 10.8

你需要安装完整的 TeX系统以及一些相关的转换工具。许多版本的 Linux都有基于 TeXLive的软件包，
macOS有MacTeX，Windows有MiKTeX。

可以使用 latex.engine()命令控制是否使用系统范围内的 latex, pdflatex或 xelatex可执行文件。当
调用 view()并且引擎设置为 latex时，会生成一个 dvi文件，Sage会使用 dvi查看器（如 xdvi）来显示结
果。相比之下，当引擎设置为 pdflatex时，调用 view()会生成 PDF文件，并且 Sage会调用系统的 PDF文
件查看工具（如 acrobat, okular, evince等）。
对于使用这些工具的练习，有一些预先打包好的示例。要使用这些示例，需要导入 sage.misc.latex.

latex_examples对象，这是 sage.misc.latex.LatexExamples类的一个实例，如下所示。目前该类有交
换图、组合图、扭结理论和 pstricks的示例，分别使用以下包：xy，tkz-graph，xypic，pstricks。导入后，对
latex_examples使用 tab补全查看内置示例。调用每个示例会返回一些关于如何正确呈现该示例的说明。
要实际查看示例，需要使用 view(foo)（导言部分、引擎等均设置正确）。

sage: from sage.misc.latex import latex_examples

sage: foo = latex_examples.diagram()

sage: foo

LaTeX example for testing display of a commutative diagram produced

by xypic.

To use, try to view this object -- it will not work. Now try

'latex.add_to_preamble("\\usepackage[matrix,arrow,curve,cmtip]{xy}")',

and try viewing again. You should get a picture (a part of the diagram arising

from a filtered chain complex).

>>> from sage.all import *

>>> from sage.misc.latex import latex_examples

>>> foo = latex_examples.diagram()

>>> foo

LaTeX example for testing display of a commutative diagram produced

by xypic.

<BLANKLINE>

To use, try to view this object -- it will not work. Now try

'latex.add_to_preamble("\\usepackage[matrix,arrow,curve,cmtip]{xy}")',

and try viewing again. You should get a picture (a part of the diagram arising

from a filtered chain complex).

为了展示如何处理复杂的 LaTeX表达式，让我们看一下使用 tkz-graph LaTeX包的组合图示例。

备注

tkz-graph LaTeX包建立在 pgf库的 tikz前端之上。渲染组合图需要 pgf库以及文件 tkz-graph.sty

和 tkz-berge.sty。它们很可能已经是系统范围内 TeX安装的一部分。即使不是，也应当很容易找到安
装指南。

首先，我们通过将相关包添加到 LaTeX文档的导言部分来确保它们被包含在内。

sage: latex.extra_preamble('\\usepackage{tikz}\n\\usepackage{tkz-graph}\n'

....: '\\usepackage{tkz-berge}\n\\usetikzlibrary{arrows,shapes}')

>>> from sage.all import *

>>> latex.extra_preamble('\\usepackage{tikz}\n\\usepackage{tkz-graph}\n'

... '\\usepackage{tkz-berge}\n\\usetikzlibrary{arrows,shapes}')

5.3. 自定义 LaTeX处理 117

../../../html/en/reference/misc/sage/misc/latex.html#sage.misc.latex.LatexExamples

Sage教程,发行版本 10.8

当使用 dvi文件作为中间格式时，图形无法正确生成，因此最好将 LaTeX引擎设置为 pdflatex可执行文件。

sage: latex.engine('pdflatex')

>>> from sage.all import *

>>> latex.engine('pdflatex')

此时，像 view(graphs.CompleteGraph(4))这样的命令应该生成一个带有完整图K4 适当图像的 PDF。
实际上，可以省略前面的步骤，因为导言部分会自动正确设置，并且 pdflatex是 Sage的默认 LaTeX引擎。
重新启动 Sage后再次尝试该命令。
注意，通过 tkz-graph有多种选项可以影响 LaTeX中图形的呈现方式，这超出了本节的范围。请参阅参考
手册 LaTeX options for graphs章节获取指令和详细信息。

5.4 SageTeX
SageTeX是一个可以进一步集成 TeX和 Sage的程序。它是一组 TeX宏，允许 LaTeX文档包含指令，让 Sage
计算各种对象并使用 latex()格式化对象。更多信息请参见使用 SageTeX。

118 Chapter 5. Sage, LaTeX及其朋友们

../../../html/en/reference/graphs/sage/graphs/graph_latex.html#sage-graphs-graph-latex

CHAPTER6

编程

6.1 加载和附加 Sage文件
接下来我们说明如何将写在单独文件中的程序加载到 Sage中。创建一个名为 example.sage的文件，并写
入以下内容：

print("Hello World")

print(2^3)

你可以使用 load命令读取并执行 example.sage文件。

sage: load("example.sage")

Hello World

8

>>> from sage.all import *

>>> load("example.sage")

Hello World

8

你也可以使用 attach命令将 Sage文件附加到运行的会话中：

sage: attach("example.sage")

Hello World

8

>>> from sage.all import *

>>> attach("example.sage")

Hello World

8

现在如果你修改 example.sage文件并在 Sage中输入一个空行（即按下回车键），那么 example.sage的内
容将会自动重新加载到 Sage中。

119

Sage教程,发行版本 10.8

特别是，attach命令会在文件更改时自动重新加载文件，这在调试代码时非常方便，而 load命令仅加载文
件一次。

当 Sage加载 example.sage时，它会将其转换为 Python，然后由 Python解释器执行。此转换非常简单；它
主要是将整型字面量包装在 Integer()中，将浮点型字面量包装在 RealNumber()中，将 ^替换为 **，并
将例如 R.2替换为 R.gen(2)。转换后的 example.sage版本包含在与 example.sage相同的目录中，名为
example.sage.py。该文件包含以下代码：

print("Hello World")

print(Integer(2)**Integer(3))

整型字面量被包装，^被替换为 **。（在 Python中，^表示“异或”，而 **表示“幂运算”。）

（这种预解析由 sage/misc/interpreter.py模块实现。）

只要有换行符来创建新块（在文件中则无需如此），你就可以将多行缩进代码粘贴到 Sage中。然而，更好的
方式是将这些代码保存到文件中，并如上所述使用 attach命令来加载。

6.2 创建编译代码
速度在数学计算中至关重要，因为更快的计算可以大大提高效率。尽管 Python是一种非常方便的高级语言，
但如果使用静态类型的编译型语言实现某些计算，其速度可以比用 Python 实现快几个数量级。如果 Sage
完全用 Python编写，那么在某些方面速度会过于缓慢。为了应对这种情况，Sage支持一种编译“版本”的
Python，称为 Cython ([Cyt]和 [Pyr])。Cython类似于 Python和 C语言。大多数 Python结构，包括列表推导
式、条件表达式、类似 +=这样的代码都支持；你还可以导入其他 Python模块中编写的代码。此外，你还可
以声明任意的 C变量，并直接调用任意的 C库函数。生成的代码会转换为 C，并使用 C编译器进行编译。
为了创建你自己的编译 Sage代码，请将文件命名为 .spyx扩展名（而非 .sage）。如果使用命令行界面，你
可以像处理解释代码一样附加和加载编译代码（目前，Notebook界面不支持附加和加载 Cython代码）。实
际编译是在“后台”完成的，你无需进行任何显式操作。编译后的共享对象库存储在 $HOME/.sage/temp/

hostname/pid/spyx中。这些文件将在退出 Sage时删除。
Sage预解析不适用于 spyx文件，例如，1/3在 spyx文件中结果为 0，而不是有理数 1/3。如果 foo是 Sage库
中的一个函数，要想在 spyx文件中使用它，请导入 sage.all并使用 sage.all.foo。

import sage.all

def foo(n):

return sage.all.factorial(n)

6.2.1 访问单独文件中的 C函数
访问定义在单独 *.c 文件中的 C 函数也很容易。以下是一个示例。在同一目录下创建文件 test.c 和
test.spyx，内容如下：

纯 C代码：test.c

int add_one(int n) {

return n + 1;

}

Cython代码：test.spyx:

cdef extern from "test.c":

int add_one(int n)

def test(n):

return add_one(n)

120 Chapter 6. 编程

Sage教程,发行版本 10.8

然后进行以下操作：

sage: attach("test.spyx")

Compiling (...)/test.spyx...

sage: test(10)

11

>>> from sage.all import *

>>> attach("test.spyx")

Compiling (...)/test.spyx...

>>> test(Integer(10))

11

如果需要额外的库 foo来编译从 Cython文件生成的 C代码，在 Cython源代码中添加 clib foo。类似地，可
以使用声明 cfile bar将额外的 C文件 bar包含在编译中。

6.3 独立 Python/Sage脚本
以下独立 Sage脚本可以分解整数、多项式等：

#!/usr/bin/env sage

import sys

if len(sys.argv) != 2:

print("Usage: %s <n>" % sys.argv[0])

print("Outputs the prime factorization of n.")

sys.exit(1)

print(factor(sage_eval(sys.argv[1])))

为了使用此脚本，SAGE_ROOT必须包含在 PATH中。如果将上述脚本命名为 factor，则以下是使用示例：

$./factor 2006

2 * 17 * 59

6.4 数据类型
在 Sage 中，每个对象都有一个明确的类型。Python 有各种基本内置类型，而 Sage 库还增加了更多类型。
Python内置类型包括字符串、列表、元组、整型和浮点型等，如下所示：

sage: s = "sage"; type(s)

<... 'str'>

sage: s = 'sage'; type(s) # you can use either single or double quotes

<... 'str'>

sage: s = [1,2,3,4]; type(s)

<... 'list'>

sage: s = (1,2,3,4); type(s)

<... 'tuple'>

sage: s = int(2006); type(s)

<... 'int'>

sage: s = float(2006); type(s)

<... 'float'>

6.3. 独立 Python/Sage脚本 121

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> s = "sage"; type(s)

<... 'str'>

>>> s = 'sage'; type(s) # you can use either single or double quotes

<... 'str'>

>>> s = [Integer(1),Integer(2),Integer(3),Integer(4)]; type(s)

<... 'list'>

>>> s = (Integer(1),Integer(2),Integer(3),Integer(4)); type(s)

<... 'tuple'>

>>> s = int(Integer(2006)); type(s)

<... 'int'>

>>> s = float(Integer(2006)); type(s)

<... 'float'>

除此之外，Sage还添加了许多其他类型。例如，向量空间：

sage: V = VectorSpace(QQ, 1000000); V

Vector space of dimension 1000000 over Rational Field

sage: type(V)

<class 'sage.modules.free_module.FreeModule_ambient_field_with_category'>

>>> from sage.all import *

>>> V = VectorSpace(QQ, Integer(1000000)); V

Vector space of dimension 1000000 over Rational Field

>>> type(V)

<class 'sage.modules.free_module.FreeModule_ambient_field_with_category'>

只有某些函数可以在 V上调用。在其他数学软件系统中，这些函数可以使用“函数”符号 foo(V,...)来
调用。在 Sage中，某些函数附加到 V类型（或类），并使用与 Java或 C++类似的面向对象语法调用，例如
V.foo(...)。这种方式有助于保持全局命名空间的整洁，并允许名称相同但行为不同的函数存在，而无需通
过参数类型检查（或 case语句）来决定调用哪个函数。此外，如果你重复使用函数名，该函数仍然可用（例
如，如果你调用某个函数 zeta，那么要计算 Riemann-Zeta函数在 0.5处的值，可以输入 s=.5; s.zeta()）。

sage: zeta = -1

sage: s=.5; s.zeta()

-1.46035450880959

>>> from sage.all import *

>>> zeta = -Integer(1)

>>> s=RealNumber('.5'); s.zeta()

-1.46035450880959

在某些非常常见的情况下，为了方便起见，同时避免使用面向对象符号可能导致数学表达式看起来令人困惑，
Sage也支持常规的函数符号。这里有一些例子。

sage: n = 2; n.sqrt()

sqrt(2)

sage: sqrt(2)

sqrt(2)

sage: V = VectorSpace(QQ,2)

sage: V.basis()

[(1, 0), (0, 1)]

sage: basis(V)

[(1, 0), (0, 1)]

sage: M = MatrixSpace(GF(7), 2); M

Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 7

(续下页)

122 Chapter 6. 编程

Sage教程,发行版本 10.8

(接上页)
sage: A = M([1,2,3,4]); A

[1 2]

[3 4]

sage: A.charpoly('x')

x^2 + 2*x + 5

sage: charpoly(A, 'x')

x^2 + 2*x + 5

>>> from sage.all import *

>>> n = Integer(2); n.sqrt()

sqrt(2)

>>> sqrt(Integer(2))

sqrt(2)

>>> V = VectorSpace(QQ,Integer(2))

>>> V.basis()

[(1, 0), (0, 1)]

>>> basis(V)

[(1, 0), (0, 1)]

>>> M = MatrixSpace(GF(Integer(7)), Integer(2)); M

Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 7

>>> A = M([Integer(1),Integer(2),Integer(3),Integer(4)]); A

[1 2]

[3 4]

>>> A.charpoly('x')

x^2 + 2*x + 5

>>> charpoly(A, 'x')

x^2 + 2*x + 5

要列出 A的所有成员函数，请使用 tab补全功能。只需输入 A.，然后在键盘上按 [tab]键即可，如反向搜
索与 Tab补全中所述。

6.5 列表、元组和序列
列表数据类型具有存储任意类型元素的功能。和 C、C++等语言类似（但与大多数标准的计算机代数系统不
同），列表元素的索引是从 0开始的：

sage: v = [2, 3, 5, 'x', SymmetricGroup(3)]; v

[2, 3, 5, 'x', Symmetric group of order 3! as a permutation group]

sage: type(v)

<... 'list'>

sage: v[0]

2

sage: v[2]

5

>>> from sage.all import *

>>> v = [Integer(2), Integer(3), Integer(5), 'x', SymmetricGroup(Integer(3))]; v

[2, 3, 5, 'x', Symmetric group of order 3! as a permutation group]

>>> type(v)

<... 'list'>

>>> v[Integer(0)]

2

>>> v[Integer(2)]

5

6.5. 列表、元组和序列 123

Sage教程,发行版本 10.8

（在列表中进行索引时，不一定需要使用 Python 的整型作为索引！）Sage 整数（或有理数，或任何具有
__index__方法的对象）都可以正常使用。

sage: v = [1,2,3]

sage: v[2]

3

sage: n = 2 # Sage Integer

sage: v[n] # Perfectly OK!

3

sage: v[int(n)] # Also OK.

3

>>> from sage.all import *

>>> v = [Integer(1),Integer(2),Integer(3)]

>>> v[Integer(2)]

3

>>> n = Integer(2) # Sage Integer

>>> v[n] # Perfectly OK!

3

>>> v[int(n)] # Also OK.

3

range函数创建一个包含 Python整型（而不是 Sage整数）元素的列表：

sage: list(range(1, 15))

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

>>> from sage.all import *

>>> list(range(Integer(1), Integer(15)))

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

该函数在使用列表推导式构造列表时非常有用：

sage: L = [factor(n) for n in range(1, 15)]

sage: L

[1, 2, 3, 2^2, 5, 2 * 3, 7, 2^3, 3^2, 2 * 5, 11, 2^2 * 3, 13, 2 * 7]

sage: L[12]

13

sage: type(L[12])

<class 'sage.structure.factorization_integer.IntegerFactorization'>

sage: [factor(n) for n in range(1, 15) if is_odd(n)]

[1, 3, 5, 7, 3^2, 11, 13]

>>> from sage.all import *

>>> L = [factor(n) for n in range(Integer(1), Integer(15))]

>>> L

[1, 2, 3, 2^2, 5, 2 * 3, 7, 2^3, 3^2, 2 * 5, 11, 2^2 * 3, 13, 2 * 7]

>>> L[Integer(12)]

13

>>> type(L[Integer(12)])

<class 'sage.structure.factorization_integer.IntegerFactorization'>

>>> [factor(n) for n in range(Integer(1), Integer(15)) if is_odd(n)]

[1, 3, 5, 7, 3^2, 11, 13]

有关如何使用列表推导式创建列表的更多内容，请参考 [PyT]。
列表切片是一个非常好的功能。如果 L是一个列表，那么 L[m:n]返回从第m个元素开始到第 (n− 1)个元
素结束的子列表，如下所示：

124 Chapter 6. 编程

Sage教程,发行版本 10.8

sage: L = [factor(n) for n in range(1, 20)]

sage: L[4:9]

[5, 2 * 3, 7, 2^3, 3^2]

sage: L[:4]

[1, 2, 3, 2^2]

sage: L[14:4]

[]

sage: L[14:]

[3 * 5, 2^4, 17, 2 * 3^2, 19]

>>> from sage.all import *

>>> L = [factor(n) for n in range(Integer(1), Integer(20))]

>>> L[Integer(4):Integer(9)]

[5, 2 * 3, 7, 2^3, 3^2]

>>> L[:Integer(4)]

[1, 2, 3, 2^2]

>>> L[Integer(14):Integer(4)]

[]

>>> L[Integer(14):]

[3 * 5, 2^4, 17, 2 * 3^2, 19]

元组与列表类似，只不过它是不可变的，一旦创建便不能更改。

sage: v = (1,2,3,4); v

(1, 2, 3, 4)

sage: type(v)

<... 'tuple'>

sage: v[1] = 5

Traceback (most recent call last):

...

TypeError: 'tuple' object does not support item assignment

>>> from sage.all import *

>>> v = (Integer(1),Integer(2),Integer(3),Integer(4)); v

(1, 2, 3, 4)

>>> type(v)

<... 'tuple'>

>>> v[Integer(1)] = Integer(5)

Traceback (most recent call last):

...

TypeError: 'tuple' object does not support item assignment

序列是第三种面向列表的 Sage类型。与列表和元组不同，序列不是 Python内置类型。默认情况下，序列是
可变的，但可以使用 Sequence类方法 set_immutable将其设置为不可变，如以下例子所示。序列的所有元
素都属于同一个父对象，称为序列的领域 (universe)。

sage: v = Sequence([1,2,3,4/5])

sage: v

[1, 2, 3, 4/5]

sage: type(v)

<class 'sage.structure.sequence.Sequence_generic'>

sage: type(v[1])

<class 'sage.rings.rational.Rational'>

sage: v.universe()

Rational Field

sage: v.is_immutable()

(续下页)

6.5. 列表、元组和序列 125

Sage教程,发行版本 10.8

(接上页)
False

sage: v.set_immutable()

sage: v[0] = 3

Traceback (most recent call last):

...

ValueError: object is immutable; please change a copy instead.

>>> from sage.all import *

>>> v = Sequence([Integer(1),Integer(2),Integer(3),Integer(4)/Integer(5)])

>>> v

[1, 2, 3, 4/5]

>>> type(v)

<class 'sage.structure.sequence.Sequence_generic'>

>>> type(v[Integer(1)])

<class 'sage.rings.rational.Rational'>

>>> v.universe()

Rational Field

>>> v.is_immutable()

False

>>> v.set_immutable()

>>> v[Integer(0)] = Integer(3)

Traceback (most recent call last):

...

ValueError: object is immutable; please change a copy instead.

序列派生自列表，可以在任何需要列表的地方使用：

sage: v = Sequence([1,2,3,4/5])

sage: isinstance(v, list)

True

sage: list(v)

[1, 2, 3, 4/5]

sage: type(list(v))

<... 'list'>

>>> from sage.all import *

>>> v = Sequence([Integer(1),Integer(2),Integer(3),Integer(4)/Integer(5)])

>>> isinstance(v, list)

True

>>> list(v)

[1, 2, 3, 4/5]

>>> type(list(v))

<... 'list'>

另一个例子是，向量空间的基是不可变序列，因为不能改变它们至关重要。

sage: V = QQ^3; B = V.basis(); B

[(1, 0, 0), (0, 1, 0), (0, 0, 1)]

sage: type(B)

<class 'sage.structure.sequence.Sequence_generic'>

sage: B[0] = B[1]

Traceback (most recent call last):

...

ValueError: object is immutable; please change a copy instead.

sage: B.universe()

Vector space of dimension 3 over Rational Field

126 Chapter 6. 编程

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> V = QQ**Integer(3); B = V.basis(); B

[(1, 0, 0), (0, 1, 0), (0, 0, 1)]

>>> type(B)

<class 'sage.structure.sequence.Sequence_generic'>

>>> B[Integer(0)] = B[Integer(1)]

Traceback (most recent call last):

...

ValueError: object is immutable; please change a copy instead.

>>> B.universe()

Vector space of dimension 3 over Rational Field

6.6 字典
字典（有时也被称为关联数组）是从“可哈希”对象（例如字符串、数字和元组等；详情请参见 Python文档
http://docs.python.org/3/tutorial/datastructures.html和 https://docs.python.org/3/library/stdtypes.html#typesmapping）
到任意对象的映射。

sage: d = {1:5, 'sage':17, ZZ:GF(7)}

sage: type(d)

<... 'dict'>

sage: list(d.keys())

[1, 'sage', Integer Ring]

sage: d['sage']

17

sage: d[ZZ]

Finite Field of size 7

sage: d[1]

5

>>> from sage.all import *

>>> d = {Integer(1):Integer(5), 'sage':Integer(17), ZZ:GF(Integer(7))}

>>> type(d)

<... 'dict'>

>>> list(d.keys())

[1, 'sage', Integer Ring]

>>> d['sage']

17

>>> d[ZZ]

Finite Field of size 7

>>> d[Integer(1)]

5

第三个键说明字典的索引可以很复杂，例如整数环。

你可以将上述字典转换为具有相同数据的列表：

sage: list(d.items())

[(1, 5), ('sage', 17), (Integer Ring, Finite Field of size 7)]

>>> from sage.all import *

>>> list(d.items())

[(1, 5), ('sage', 17), (Integer Ring, Finite Field of size 7)]

一种常见用法是遍历字典中的键值对：

6.6. 字典 127

http://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/library/stdtypes.html#typesmapping

Sage教程,发行版本 10.8

sage: d = {2:4, 3:9, 4:16}

sage: [a*b for a, b in d.items()]

[8, 27, 64]

>>> from sage.all import *

>>> d = {Integer(2):Integer(4), Integer(3):Integer(9), Integer(4):Integer(16)}

>>> [a*b for a, b in d.items()]

[8, 27, 64]

正如最后的输出所示，字典是无序的。

6.7 集合
Python有内建的集合类型。它提供的主要功能是快速查找元素是否在集合中，以及标准集合论运算。

sage: X = set([1,19,'a']); Y = set([1,1,1, 2/3])

sage: X # random sort order

{1, 19, 'a'}

sage: X == set(['a', 1, 1, 19])

True

sage: Y

{2/3, 1}

sage: 'a' in X

True

sage: 'a' in Y

False

sage: X.intersection(Y)

{1}

>>> from sage.all import *

>>> X = set([Integer(1),Integer(19),'a']); Y = set([Integer(1),Integer(1),Integer(1),␣

↪→Integer(2)/Integer(3)])

>>> X # random sort order

{1, 19, 'a'}

>>> X == set(['a', Integer(1), Integer(1), Integer(19)])

True

>>> Y

{2/3, 1}

>>> 'a' in X

True

>>> 'a' in Y

False

>>> X.intersection(Y)

{1}

Sage也有自己的集合类型（在某些情况下使用 Python内建集合类型实现），但具有一些与 Sage相关的额外
功能。使用 Set(...)来创建 Sage集合。例如：

sage: X = Set([1,19,'a']); Y = Set([1,1,1, 2/3])

sage: X # random sort order

{'a', 1, 19}

sage: X == Set(['a', 1, 1, 19])

True

sage: Y

{1, 2/3}

(续下页)

128 Chapter 6. 编程

Sage教程,发行版本 10.8

(接上页)
sage: X.intersection(Y)

{1}

sage: print(latex(Y))

\left\{1, \frac{2}{3}\right\}

sage: Set(ZZ)

Set of elements of Integer Ring

>>> from sage.all import *

>>> X = Set([Integer(1),Integer(19),'a']); Y = Set([Integer(1),Integer(1),Integer(1),␣

↪→Integer(2)/Integer(3)])

>>> X # random sort order

{'a', 1, 19}

>>> X == Set(['a', Integer(1), Integer(1), Integer(19)])

True

>>> Y

{1, 2/3}

>>> X.intersection(Y)

{1}

>>> print(latex(Y))

\left\{1, \frac{2}{3}\right\}

>>> Set(ZZ)

Set of elements of Integer Ring

6.8 迭代器
迭代器是 Python最近添加的功能，在数学应用中特别有用。这里有几个例子；详情请参见 [PyT]。我们创建
一个非负整数平方的迭代器，上限为 10000000。

sage: v = (n^2 for n in range(10000000))

sage: next(v)

0

sage: next(v)

1

sage: next(v)

4

>>> from sage.all import *

>>> v = (n**Integer(2) for n in range(Integer(10000000)))

>>> next(v)

0

>>> next(v)

1

>>> next(v)

4

我们创建一个 4p+ 1形式的素数迭代器，其中 p也是素数，并查看前几个值。

sage: w = (4*p + 1 for p in Primes() if is_prime(4*p+1))

sage: w # in the next line, 0xb0853d6c is a random 0x number

<generator object at 0xb0853d6c>

sage: next(w)

13

sage: next(w)

29

(续下页)

6.8. 迭代器 129

Sage教程,发行版本 10.8

(接上页)
sage: next(w)

53

>>> from sage.all import *

>>> w = (Integer(4)*p + Integer(1) for p in Primes() if is_prime(Integer(4)*p+Integer(1)))

>>> w # in the next line, 0xb0853d6c is a random 0x number

<generator object at 0xb0853d6c>

>>> next(w)

13

>>> next(w)

29

>>> next(w)

53

某些环，例如有限域和整数环有与之关联的迭代器：

sage: [x for x in GF(7)]

[0, 1, 2, 3, 4, 5, 6]

sage: W = ((x,y) for x in ZZ for y in ZZ)

sage: next(W)

(0, 0)

sage: next(W)

(0, 1)

sage: next(W)

(0, -1)

>>> from sage.all import *

>>> [x for x in GF(Integer(7))]

[0, 1, 2, 3, 4, 5, 6]

>>> W = ((x,y) for x in ZZ for y in ZZ)

>>> next(W)

(0, 0)

>>> next(W)

(0, 1)

>>> next(W)

(0, -1)

6.9 循环、函数、控制语句和比较
我们已经看过了一些常见的 for循环用法示例。在 Python中，for循环具有缩进结构，例如：

>>> for i in range(5):

... print(i)

...

0

1

2

3

4

请注意 for语句末尾的冒号（不像 GAP或 Maple中有”do”或”od”），以及循环体（即 print(i)）前的缩进。
这个缩进非常重要。在 Sage中，当你在”:”后按下 enter时，会自动添加缩进，如下所示。

130 Chapter 6. 编程

Sage教程,发行版本 10.8

sage: for i in range(5):

....: print(i) # now hit enter twice

....:

0

1

2

3

4

>>> from sage.all import *

>>> for i in range(Integer(5)):

... print(i) # now hit enter twice

....:

0

1

2

3

4

符号 =用于赋值。符号 ==用于检查相等：

sage: for i in range(15):

....: if gcd(i,15) == 1:

....: print(i)

....:

1

2

4

7

8

11

13

14

>>> from sage.all import *

>>> for i in range(Integer(15)):

... if gcd(i,Integer(15)) == Integer(1):

... print(i)

....:

1

2

4

7

8

11

13

14

请牢记缩进如何决定 if, for和 while语句的块结构：

sage: def legendre(a,p):

....: is_sqr_modp=-1

....: for i in range(p):

....: if a % p == i^2 % p:

....: is_sqr_modp=1

....: return is_sqr_modp

(续下页)

6.9. 循环、函数、控制语句和比较 131

Sage教程,发行版本 10.8

(接上页)
sage: legendre(2,7)

1

sage: legendre(3,7)

-1

>>> from sage.all import *

>>> def legendre(a,p):

... is_sqr_modp=-Integer(1)

... for i in range(p):

... if a % p == i**Integer(2) % p:

... is_sqr_modp=Integer(1)

... return is_sqr_modp

>>> legendre(Integer(2),Integer(7))

1

>>> legendre(Integer(3),Integer(7))

-1

当然，这不是勒让德符号 (Legendre symbol)的高效实现！它只是为了说明 Python/Sage编程的各个方面。Sage
附带的函数 {kronecker}，可以通过调用 PARI的 C库高效地计算勒让德符号。
最后，我们注意到数字之间的比较，如 ==, !=, <=, >=, >, <，会自动将两个数字转换为相同类型（如果可能的
话）：

sage: 2 < 3.1; 3.1 <= 1

True

False

sage: 2/3 < 3/2; 3/2 < 3/1

True

True

>>> from sage.all import *

>>> Integer(2) < RealNumber('3.1'); RealNumber('3.1') <= Integer(1)

True

False

>>> Integer(2)/Integer(3) < Integer(3)/Integer(2); Integer(3)/Integer(2) < Integer(3)/

↪→Integer(1)

True

True

使用 bool来判断符号不等式：

sage: x < x + 1

x < x + 1

sage: bool(x < x + 1)

True

>>> from sage.all import *

>>> x < x + Integer(1)

x < x + 1

>>> bool(x < x + Integer(1))

True

在比较不同类型的对象时，在大多数情况下，Sage会尝试找到两者的共同复结构（参见父结构、转换与强制
转换了解更多细节）。如果成功，比较将在强制转换的对象之间进行；如果不成功，则认为对象不相等。要
测试两个变量是否引用同一个对象，请使用 is。在下面这个示例中我们将看到，Python整型 1是唯一的，而

132 Chapter 6. 编程

Sage教程,发行版本 10.8

Sage整型 1则不是：

sage: 1 is 2/2

False

sage: 1 is 1

False

sage: 1 == 2/2

True

>>> from sage.all import *

>>> Integer(1) is Integer(2)/Integer(2)

False

>>> Integer(1) is Integer(1)

False

>>> Integer(1) == Integer(2)/Integer(2)

True

在以下两行代码中，第一个等式为 False，因为没有从 Q → F5的标准同态，因此无法将 F5中的 1与 1 ∈ Q
进行比较。相反，由于存在从 Z → F5的标准映射，因此第二个比较为 True。需要注意的是，顺序不影响结
果。

sage: GF(5)(1) == QQ(1); QQ(1) == GF(5)(1)

False

False

sage: GF(5)(1) == ZZ(1); ZZ(1) == GF(5)(1)

True

True

sage: ZZ(1) == QQ(1)

True

>>> from sage.all import *

>>> GF(Integer(5))(Integer(1)) == QQ(Integer(1)); QQ(Integer(1)) == GF(Integer(5))(Integer(1))

False

False

>>> GF(Integer(5))(Integer(1)) == ZZ(Integer(1)); ZZ(Integer(1)) == GF(Integer(5))(Integer(1))

True

True

>>> ZZ(Integer(1)) == QQ(Integer(1))

True

警告: Sage中的比较比Magma更严格，Magma会声明 1 ∈ F5 等于 1 ∈ Q。

sage: magma('GF(5)!1 eq Rationals()!1') # optional - magma

true

>>> from sage.all import *

>>> magma('GF(5)!1 eq Rationals()!1') # optional - magma

true

6.10 性能分析
“过早优化乃万恶之源。”- Donald Knuth

节作者：Martin Albrecht <malb@informatik.uni-bremen.de>

有时检查代码中的瓶颈有助于了解哪些部分占用最多的计算时间；这可以很好地了解哪些部分需要优化。
Python（以及 Sage）提供了几种性能分析工具和方法，这个过程称为性能分析。

6.10. 性能分析 133

mailto:malb@informatik.uni-bremen.de

Sage教程,发行版本 10.8

最简单的方式是使用交互式 shell中的 prun命令。它会返回一个总结，描述哪些函数花了多少计算时间。例
如，要分析有限域上的矩阵乘法（版本 1.0当前很慢！），可以这样做：

sage: k,a = GF(2**8, 'a').objgen()

sage: A = Matrix(k,10,10,[k.random_element() for _ in range(10*10)])

>>> from sage.all import *

>>> k,a = GF(Integer(2)**Integer(8), 'a').objgen()

>>> A = Matrix(k,Integer(10),Integer(10),[k.random_element() for _ in␣

↪→range(Integer(10)*Integer(10))])

sage: %prun B = A*A

32893 function calls in 1.100 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)

12127 0.160 0.000 0.160 0.000 :0(isinstance)

2000 0.150 0.000 0.280 0.000 matrix.py:2235(__getitem__)

1000 0.120 0.000 0.370 0.000 finite_field_element.py:392(__mul__)

1903 0.120 0.000 0.200 0.000 finite_field_element.py:47(__init__)

1900 0.090 0.000 0.220 0.000 finite_field_element.py:376(__compat)

900 0.080 0.000 0.260 0.000 finite_field_element.py:380(__add__)

1 0.070 0.070 1.100 1.100 matrix.py:864(__mul__)

2105 0.070 0.000 0.070 0.000 matrix.py:282(ncols)

...

>>> from sage.all import *

>>> %prun B = A*A

32893 function calls in 1.100 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)

12127 0.160 0.000 0.160 0.000 :0(isinstance)

2000 0.150 0.000 0.280 0.000 matrix.py:2235(__getitem__)

1000 0.120 0.000 0.370 0.000 finite_field_element.py:392(__mul__)

1903 0.120 0.000 0.200 0.000 finite_field_element.py:47(__init__)

1900 0.090 0.000 0.220 0.000 finite_field_element.py:376(__compat)

900 0.080 0.000 0.260 0.000 finite_field_element.py:380(__add__)

1 0.070 0.070 1.100 1.100 matrix.py:864(__mul__)

2105 0.070 0.000 0.070 0.000 matrix.py:282(ncols)

...

这里 ncalls 是调用次数，tottime 是给定函数花费的总时间（不包括调用子函数的时间），percall 是
tottime除以 ncalls的商。cumtime是该函数及所有子函数花费的总时间（即，从调用到退出），percall

是 cumtime除以原始调用次数的商，filename:lineno(function)提供了每个函数的相关数据。性能分析
中的经验法则是：列表越靠前的函数，其代价越高，因而更需要进行优化。

与以往一样，prun?命令提供了使用性能分析器和理解输出详细信息的帮助。

性能分析数据还可以保存到一个对象中，以便进行更详细的检查：

sage: %prun -r A*A

sage: stats = _

sage: stats?

134 Chapter 6. 编程

Sage教程,发行版本 10.8

>>> from sage.all import *

>>> %prun -r A*A

>>> stats = _

>>> stats?

注意：输入 stats = prun -r A*A会显示语法错误消息，因为 prun是 IPython shell命令而不是常规函数。
为了更好地以图形化方式呈现分析数据，你可以使用 hotshot 分析器，hotshot2cachetree 脚本，以及
kcachegrind程序（仅限 Unix）。以下是使用 hotshot分析器的示例：

sage: k,a = GF(2**8, 'a').objgen()

sage: A = Matrix(k,10,10,[k.random_element() for _ in range(10*10)])

sage: import hotshot

sage: filename = "pythongrind.prof"

sage: prof = hotshot.Profile(filename, lineevents=1)

>>> from sage.all import *

>>> k,a = GF(Integer(2)**Integer(8), 'a').objgen()

>>> A = Matrix(k,Integer(10),Integer(10),[k.random_element() for _ in␣

↪→range(Integer(10)*Integer(10))])

>>> import hotshot

>>> filename = "pythongrind.prof"

>>> prof = hotshot.Profile(filename, lineevents=Integer(1))

sage: prof.run("A*A")

<hotshot.Profile instance at 0x414c11ec>

sage: prof.close()

>>> from sage.all import *

>>> prof.run("A*A")

<hotshot.Profile instance at 0x414c11ec>

>>> prof.close()

这会在当前工作目录中生成一个 pythongrind.prof文件。现在可以将其转换为 cachegrind格式进行可视化
展示。

在系统终端中，输入

$ hotshot2calltree -o cachegrind.out.42 pythongrind.prof

现在，输出文件 cachegrind.out.42可以用 kcachegrind查看。请注意，需要遵守命名约定 cachegrind.

out.XX。

6.10. 性能分析 135

Sage教程,发行版本 10.8

136 Chapter 6. 编程

CHAPTER7

使用 SageTeX

SageTeX包允许你将 Sage计算结果嵌入到 LaTeX文档中。要使用它，需要先“安装”它（请参阅让 TeX识
别 SageTeX）。

7.1 示例
以下是一个非常简短的 SageTeX使用示例。完整文档可以在 SAGE_ROOT/venv/share/doc/sagetex中找到，
其中 SAGE_ROOT是 Sage安装目录。该目录包含文档和示例文件。请参阅 SAGE_ROOT/venv/share/texmf/

tex/latex/sagetex以获取一些可能有用的 Python脚本。
想要了解 SageTeX的工作原理，请按照 SageTeX的安装说明（在让 TeX识别 SageTeX中）操作，并将以下文
本复制到一个名为 st_example.tex的文件中：

警告

如果你在“实时”帮助中查看此内容，下面的文本会有几个未知控制序列的错误。请使用静态版查看正
确的文本。

\documentclass{article}

\usepackage{sagetex}

\begin{document}

Using Sage\TeX, one can use Sage to compute things and put them into

your \LaTeX{} document. For example, there are

$\sage{number_of_partitions(1269)}$ integer partitions of 1269.

You don't need to compute the number yourself, or even cut and paste

it from somewhere.

Here's some Sage code:

\begin{sageblock}

(续下页)

137

Sage教程,发行版本 10.8

(接上页)
f(x) = exp(x) * sin(2*x)

\end{sageblock}

The second derivative of f is

\[

\frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}} \sage{f(x)} =

\sage{diff(f, x, 2)(x)}.

\]

Here's a plot of f from -1 to 1:

\sageplot{plot(f, -1, 1)}

\end{document}

像往常一样在 st_example.tex上运行 LaTeX。请注意 LaTeX会有一些警告，其中包括：

Package sagetex Warning: Graphics file

sage-plots-for-st_example.tex/plot-0.eps on page 1 does not exist. Plot

command is on input line 25.

Package sagetex Warning: There were undefined Sage formulas and/or

plots. Run Sage on st_example.sagetex.sage, and then run LaTeX on

st_example.tex again.

请注意，除了 LaTeX产生的常规文件集合外，还有一个名为 st_example.sagetex.sage的文件。这是在
st_example.tex上运行 LaTeX时生成的 Sage脚本。警告信息告诉你在 st_example.sagetex.sage上运
行 Sage，请听从建议并进行操作。它会告诉你再次在 st_example.tex上运行 LaTeX，但在此之前，请注意
新文件 st_example.sagetex.sout已被创建。该文件包含 Sage计算结果，可供 LaTeX插入到你的文本中。
还创建了一个包含 EPS文件的新目录。再次运行 LaTeX，你会看到 Sage计算和绘图的所有内容已包含在你
的文档中。

上面使用的各种宏应该很容易理解。sageblock环境按原样排版你的代码，并在运行 Sage时执行代码。当
你执行 \sage{foo}时，插入到文档中的结果就是在 Sage内部运行 latex(foo)得到的结果。绘图命令稍微
复杂一些，但在最简单形式下，\sageplot{foo}插入的是由 foo.save('filename.eps')得到的图像。

一般来说，操作步骤是：

• 在.tex文件上运行 LaTeX；
• 在生成的.sage文件上运行 Sage；
• 再次运行 LaTeX。

如果文档中没有更改任何 Sage命令，则可以省略运行 Sage。
SageTeX还有很多内容，由于 Sage和 LaTeX都是复杂且强大的工具，建议阅读 SageTeX的文档 SAGE_ROOT/

venv/share/doc/sagetex。

7.2 让 TeX识别 SageTeX
Sage基本上是自包含的，但某些部分需要进行一些干预才能正常工作。SageTeX就是其中之一。
SageTeX包允许在 LaTeX文档中嵌入来自 Sage的计算和绘图。Sage中默认安装了 SageTeX，但要在 LaTeX
文档中使用 SageTeX，你需要先让 TeX识别它。

138 Chapter 7. 使用 SageTeX

Sage教程,发行版本 10.8

关键在于 TeX需要能够找到 sagetex.sty，该文件位于 SAGE_ROOT/venv/share/texmf/tex/latex/sagetex/，
其中 SAGE_ROOT是你构建或安装 Sage的目录。如果 TeX能找到 sagetex.sty，那么 SageTeX就可以工作。
有几种方法可以实现这一点。

• 第一种方法，也是最简单的方法是将 sagetex.sty复制到与 LaTeX文档相同的目录中。在排版文档
时，总会搜索当前目录，因此这种方法始终有效。

但这种方法有两个小问题：首先，会在计算机上产生很多不必要的 sagetex.sty拷贝。其次，更严重
的问题是，如果升级 Sage并获得新版本的 SageTeX，Python代码和 SageTeX的 LaTeX代码可能不再匹
配，从而导致错误。

• 第二种方法是使用 TEXMFLOCAL环境变量。如果你使用的是 bash shell，可以这样做：

$ export TEXMFLOCAL=SAGE_ROOT/venv/share/texmf

$ mktexlsr # update kpathsea ls-R databases

其中 SAGE_ROOT是 Sage安装位置。之后，TeX和相关程序将找到 SageTeX样式文件。如果你想使这个
更改持续生效，可以将上述第一行添加到 .bashrc文件中。如果你使用的是不同的 shell，可能需要调
整以上命令从而让环境变量可被识别；请查阅所用 shell的文档以了解如何操作。
如果你移动了 Sage的安装目录或在新目录中安装了新版本，需要用新的 SAGE_ROOT更新上述命令。

• 让 TeX识别 sagetex.sty的第三种（也是最佳的）方法，是将该文件复制到主目录中的一个方便的位
置。大多数 TeX发行版会自动搜索主目录中的 texmf目录以寻找包。要确切了解这个目录的位置，请
在命令行种执行以下操作：

$ kpsewhich -var-value=TEXMFHOME

这将打印出一个目录，例如 /home/drake/texmf或 /Users/drake/Library/texmf。使用如下命令
将 SAGE_ROOT/venv/share/texmf/中的 tex/目录复制到主目录的 texmf目录：

$ cp -R SAGE_ROOT/venv/share/texmf/tex TEXMFHOME

其中 SAGE_ROOT仍然是 Sage的安装位置，TEXMFHOME是 kpsewhich命令的结果。

如果你升级了 Sage并发现 SageTeX无法工作，可以简单地重复上述步骤以确保 SageTeX的 Sage部分
和 TeX部分再次同步。

• 对于多用户系统上的安装，只需适当修改上述指令，将 sagetex.sty复制到系统范围的 TeX目录中。
最好的选择可能是使用以下结果，而不是 TEXMFHOME目录：

$ kpsewhich -var-value=TEXMFLOCAL

这很可能会产生类似于 /usr/local/share/texmf 的结果。按照上述方式将 tex 目录复制到
TEXMFLOCAL目录中。现在需要通过运行以下命令更新 TeX的包数据库：

$ texhash TEXMFLOCAL

以 root身份，适当替换 TEXMFLOCAL。现在系统中所有用户都可以访问 LaTeX包，如果他们也能运行
Sage，他们就可以使用 SageTeX。

警告

确保 LaTeX在排版文档时使用的 sagetex.sty文件与 SageTeX使用的版本匹配，这一点至关重要。如果
你升级了 Sage，应该删除所有旧版本的 sagetex.sty。

由于此问题，我们建议将 SageTeX文件复制到主目录的 texmf目录中（上述第 3种方法）。这样，升级
Sage时，仅需做一件事（复制目录）即可确保 SageTeX正常工作。

7.2. 让 TeX识别 SageTeX 139

Sage教程,发行版本 10.8

7.3 SageTeX文档
虽然这不严格属于安装的一部分，但值得在此提及的是，SageTeX的文档维护在 SAGE_ROOT/venv/share/

doc/sagetex/sagetex.pdf。同一目录中还有一个示例文件 --请参见 example.tex和 example.pdf，这是
使用 LaTeX和 Sage对该文件进行排版的预生成结果。你也可以从 SageTeX页面获取这些文件。

7.4 SageTeX与 TeXLive
一个潜在的令人困惑的问题是流行的 TeX发行版 TeXLive包含 SageTeX。虽然看起来很方便，但对于 SageTeX
而言，确保 Sage部分和 LaTeX部分同步是非常重要的 --在这种情况下，这就成为了一个问题，因为由操作
系统发行版或软件包管理器提供的 TeXLive可能与官方 TeXLive分发版本不同步，而后者也可能与当前的
SageTeX版本不同步。
因此，强烈建议你始终按照上面的说明，从 Sage安装 SageTeX的 LaTeX部分。上述说明将确保 SageTeX的
两个部分兼容并正常工作。

140 Chapter 7. 使用 SageTeX

https://github.com/sagemath/sagetex
http://www.tug.org/texlive/

CHAPTER8

后记

8.1 为什么选择 Python？
8.1.1 Python的优势
尽管必须快速执行的代码是用编译型语言实现的，但 Sage的主要实现语言是 Python（见 [Py]）。Python具有
以下几点优势：

• 对象保存在 Python中得到了很好的支持。Python广泛支持将（几乎）任意对象保存到磁盘文件或数据
库中。

• 源代码中对函数和包的文档支持非常好，包括自动提取文档和自动测试所有示例。这些示例会定期自
动测试，并保证如预期工作。

• 内存管理：Python现有的内存管理器和垃圾收集器设计精巧且强大，可以正确处理循环引用，并允许
文件中的局部变量。

• Python拥有许多对 Sage用户非常有用的包：数值分析和线性代数，2D和 3D可视化，网络（用于分布
式计算和服务，例如通过 twisted），数据库支持等。

• 可移植性：Python在大多数平台上，只需几分钟即可轻松从源代码编译 Python。
• 异常处理：Python拥有复杂且精巧的异常处理系统，即使代码出现错误，程序也能优雅地恢复。
• 调试器：Python包含调试器，因此当代码由于某种原因失败时，用户可以访问详尽的堆栈跟踪，检查
所有相关变量的状态，并上下移动堆栈。

• 性能分析器：Python拥有性能分析器，它会运行代码并创建一份详细报告，说明每个函数被调用的次
数和时间。

• 一门语言：不同于Magma、Maple、Mathematica、Matlab、GP/PARI、GAP、Macaulay 2、Simath等那样
为数学编写一门新语言，我们使用 Python语言，它是一种流行的计算机语言，由数百名经验丰富的软
件工程师积极开发和优化。Python是一个重要的开源成功案例，拥有成熟的开发流程（见 [PyDev]）。

141

Sage教程,发行版本 10.8

8.1.2 预解析器：Sage与 Python之间的区别
Python的一些数学方面可能会令人困惑，因此 Sage在多个方面的行为与 Python不同。

• 指数运算符的表示法：** vs ^。在 Python中，^表示“异或”，而不是指数运算。因此在 Python中我们
有：

>>> 2^8

10

>>> 3^2

1

>>> 3**2

9

^的这种用法可能略显奇怪，并且对于纯数学研究来说效率不高，因为“异或”函数很少使用。为了方
便起见，Sage在将所有命令行传递给 Python之前都会进行预解析，将不在字符串中的 ^替换为 **:

sage: 2^8

256

sage: 3^2

9

sage: "3^2"

'3^2'

>>> from sage.all import *

>>> Integer(2)**Integer(8)

256

>>> Integer(3)**Integer(2)

9

>>> "3^2"

'3^2'

Sage中的按位异或运算符是 ^^。这也适用于就地运算符对于就地运算符 ^^=：

sage: 3^^2

1

sage: a = 2

sage: a ^^= 8

sage: a

10

>>> from sage.all import *

>>> Integer(3)^Integer(2)

1

>>> a = Integer(2)

>>> a ^= Integer(8)

>>> a

10

• 整数除法：Python表达式 2/3并不像数学家们所预期的那样：2/3返回浮点数 0.6666...。请注意 //

是欧几里得除法，2//3返回 0。

我们在 Sage解释器中通过将整型字面量包装在 Integer()中，并使除法作为有理数的构造函数来处
理这个问题。例如：

sage: 2/3

2/3

sage: (2/3).parent()

(续下页)

142 Chapter 8. 后记

Sage教程,发行版本 10.8

(接上页)
Rational Field

sage: 2//3

0

>>> from sage.all import *

>>> Integer(2)/Integer(3)

2/3

>>> (Integer(2)/Integer(3)).parent()

Rational Field

>>> Integer(2)//Integer(3)

0

• 长整数：Python原生支持除 C int类型外的任意精度整数。这些原生整数的性能显著低于 GMP所提供
的。Sage使用 GMP C库来实现任意精度整数。

与某些人为了内部项目修改 Python解释器不同，我们完全按照原样使用 Python语言，并为 IPython编写预解
析器，使 IPython的命令行行为符合数学家的预期。这意味着任何现有的 Python代码都可以在 Sage中使用。
然而，仍需遵守标准的 Python规则，以便编写能够导入 Sage的包。
（例如，要安装在互联网上找到的 Python库，请按照说明进行操作，但使用 sage -python而不是 python。
通常这意味着输入 sage -python setup.py install。）

8.2 我想做出一些贡献，我应该怎么做？
如果你想为 Sage做出贡献，我们会非常感谢你的帮助！贡献可以从实质性代码贡献到向 Sage添加文档或报
告错误。

浏览 Sage网页以获取开发者信息。你还可以找到一份按优先级和类别排序的 Sage相关项目列表。Sage开发
者指南也有一些有用的信息，你还可以查看 sage-devel Google讨论组。

8.3 如何引用 Sage？
如果你在论文中使用了 Sage，当引用使用 Sage的计算时，包含以下内容：如果你使用 Sage撰写论文，请将
以下内容添加到参考文献中来引用使用 Sage完成的计算

[Sage] SageMath, the Sage Mathematics Software System (Version 8.7),

The Sage Developers, 2019, https://www.sagemath.org.

（将 8.7替换为你使用的 Sage版本）。此外，请尝试追踪在计算中使用了哪些 Sage组件，例如 PARI?, GAP?,
Singular?, Maxima? 并引用这些系统。如果你不确定计算使用了哪个软件，可以随时在 sage-devel Google讨
论组上提问。有关这一点的进一步讨论，请参阅一元多项式。

如果你恰好刚刚读完这篇教程，并且知道花了多长时间，请在 sage-devel Google讨论组上告诉我们。
祝使用 Sage愉快！

8.2. 我想做出一些贡献，我应该怎么做？ 143

http://doc.sagemath.org/html/en/developer/
http://doc.sagemath.org/html/en/developer/

Sage教程,发行版本 10.8

144 Chapter 8. 后记

CHAPTER9

附录

9.1 算术二元运算符的优先级
3^2*4 + 2%5的结果是什么？这里的结果 (38)取决于下面的“运算符优先级表”。下面的表格基于 G. Rossum
和 F. Drake编写的 Python语言参考手册 §5.14中的表格。这里列出的操作按优先级从低到高排列。

运算符 描述

or 布尔或
and 布尔与
not 布尔非
in, not in 成员判断
is, is not 同一性测试
>, <=, >, >=, ==, != 比较
+, - 加法，减法
*, /, % 乘法，除法，取余
**, ^ 幂

因此，为了计算 3^2*4 + 2%5，Sage将计算过程括号化为: ((3^2)*4) + (2%5)。从而，首先计算 3^2，结
果为 9，然后分别计算 (3^2)*4和 2%5，最后将结果相加。

145

Sage教程,发行版本 10.8

146 Chapter 9. 附录

CHAPTER10

参考文献

147

Sage教程,发行版本 10.8

148 Chapter 10. 参考文献

CHAPTER11

索引与表格

• genindex
• search

149

Sage教程,发行版本 10.8

150 Chapter 11. 索引与表格

Bibliography

[Cyt] Cython, http://www.cython.org
[GAP] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4; 2005, https://www.

gap-system.org
[GAPkg] GAP Packages, https://www.gap-system.org/Packages/packages.html
[GP] PARI/GP, https://pari.math.u-bordeaux.fr/
[Mag] Magma, http://magma.maths.usyd.edu.au/magma/
[Max] Maxima, http://maxima.sf.net/
[NagleEtAl2004] Nagle, Saff, and Snider. Fundamentals of Differential Equations. 6th edition, Addison-Wesley, 2004.
[Py] Python编程语言, http://www.python.org/
[PyB] Python初学者手册, https://wiki.python.org/moin/BeginnersGuide
[PyDev] Python开发者手册, https://docs.python.org/devguide/
[PyLR] Python标准库, https://docs.python.org/3/library/index.html
[Pyr] Pyrex, http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/
[PyT] Python教程, https://docs.python.org/3/tutorial/
[SA] Sage官网, https://www.sagemath.org/
[Si] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3.0. A Computer Algebra System for Polynomial

Computations. Center for Computer Algebra, University of Kaiserslautern (2005). https://www.singular.
uni-kl.de

[SJ] William Stein, David Joyner, Sage: System for Algebra and Geometry Experimentation, Comm. Computer
Algebra {39} (2005) 61-64.

[ThreeJS] three.js, http://threejs.org

151

http://www.cython.org
https://www.gap-system.org
https://www.gap-system.org
https://www.gap-system.org/Packages/packages.html
https://pari.math.u-bordeaux.fr/
http://magma.maths.usyd.edu.au/magma/
http://maxima.sf.net/
http://www.python.org/
https://wiki.python.org/moin/BeginnersGuide
https://docs.python.org/devguide/
https://docs.python.org/3/library/index.html
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/
https://docs.python.org/3/tutorial/
https://www.sagemath.org/
https://www.singular.uni-kl.de
https://www.singular.uni-kl.de
http://threejs.org

Sage教程,发行版本 10.8

152 Bibliography

索引

非字母
环境变量

EDITOR, 90

E
EDITOR, 90

153

	介绍
	安装
	使用 Sage 的方法
	Sage 的长期目标

	导览
	赋值、等式和算术
	获取帮助
	函数、缩进和计数
	基本代数和微积分
	求解方程
	精确求解方程
	数值求解方程

	微分、积分及其他
	求解微分方程
	欧拉法求解微分方程组
	特殊函数
	向量微积分

	绘图
	二维图形
	三维图形

	常见函数问题
	基本环
	线性代数
	矩阵空间
	稀疏线性代数

	多项式
	一元多项式
	多元多项式

	父结构、转换与强制转换
	元素
	父结构与范畴
	类型与父结构
	转换与强制转换

	有限群与阿贝尔群
	数论
	p-进数

	一些更高级的数学
	代数几何
	椭圆曲线
	狄利克雷特征
	模形式

	交互式 Shell
	Sage 会话
	记录输入和输出
	粘贴忽略提示符
	命令计时
	其他 IPython 技巧
	错误与异常
	反向搜索与 Tab 补全
	集成帮助系统
	保存和加载单个对象
	保存为文本

	保存和加载完整会话

	接口
	GP/PARI
	GAP
	Singular
	Maxima

	Sage, LaTeX 及其朋友们
	基本使用
	自定义 LaTeX 生成
	自定义 LaTeX 处理
	SageTeX

	编程
	加载和附加 Sage 文件
	创建编译代码
	访问单独文件中的 C 函数

	独立 Python/Sage 脚本
	数据类型
	列表、元组和序列
	字典
	集合
	迭代器
	循环、函数、控制语句和比较
	性能分析

	使用 SageTeX
	示例
	让 TeX 识别 SageTeX
	SageTeX 文档
	SageTeX 与 TeXLive

	后记
	为什么选择 Python？
	Python 的优势
	预解析器：Sage 与 Python 之间的区别

	我想做出一些贡献，我应该怎么做？
	如何引用 Sage？

	附录
	算术二元运算符的优先级

	参考文献
	索引与表格
	Bibliography
	索引

