Examples of graded connected Hopf algebras with basis¶
- sage.categories.examples.graded_connected_hopf_algebras_with_basis.Example[source]¶
alias of
GradedConnectedCombinatorialHopfAlgebraWithPrimitiveGenerator
- class sage.categories.examples.graded_connected_hopf_algebras_with_basis.GradedConnectedCombinatorialHopfAlgebraWithPrimitiveGenerator(base_ring)[source]¶
Bases:
CombinatorialFreeModule
This class illustrates an implementation of a graded Hopf algebra with basis that has one primitive generator of degree 1 and basis elements indexed by nonnegative integers.
This Hopf algebra example differs from what topologists refer to as a graded Hopf algebra because the twist operation in the tensor rule satisfies
\[(\mu \otimes \mu) \circ (id \otimes \tau \otimes id) \circ (\Delta \otimes \Delta) = \Delta \circ \mu\]where \(\tau(x\otimes y) = y\otimes x\).
- coproduct_on_basis(i)[source]¶
The coproduct of a basis element.
\[\Delta(P_i) = \sum_{j=0}^i P_{i-j} \otimes P_j\]INPUT:
i
– nonnegative integer
OUTPUT: an element of the tensor square of
self
- degree_on_basis(i)[source]¶
The degree of a nonnegative integer is itself.
INPUT:
i
– nonnegative integer
OUTPUT: nonnegative integer
- one_basis()[source]¶
Return 0, which index the unit of the Hopf algebra.
OUTPUT: the nonnegative integer 0
EXAMPLES:
sage: H = GradedHopfAlgebrasWithBasis(QQ).Connected().example() sage: H.one_basis() 0 sage: H.one() P0
>>> from sage.all import * >>> H = GradedHopfAlgebrasWithBasis(QQ).Connected().example() >>> H.one_basis() 0 >>> H.one() P0