Binary trees¶
This implements a binary tree in Cython.
AUTHORS:
Tom Boothby (2007-02-15). Initial version free for any use (public domain).
- class sage.misc.binary_tree.BinaryTree[source]¶
Bases:
object
A simple binary tree with integer keys.
- contains(key)[source]¶
Return whether a node with the given key exists in the tree.
EXAMPLES:
sage: from sage.misc.binary_tree import BinaryTree sage: t = BinaryTree() sage: t.contains(1) False sage: t.insert(1, 1) sage: t.contains(1) True
>>> from sage.all import * >>> from sage.misc.binary_tree import BinaryTree >>> t = BinaryTree() >>> t.contains(Integer(1)) False >>> t.insert(Integer(1), Integer(1)) >>> t.contains(Integer(1)) True
- delete(key)[source]¶
Remove a the node corresponding to key, and return the value associated with it.
EXAMPLES:
sage: from sage.misc.binary_tree import BinaryTree sage: t = BinaryTree() sage: t.insert(3,3) sage: t.insert(1,1) sage: t.insert(2,2) sage: t.insert(0,0) sage: t.insert(5,5) sage: t.insert(6,6) sage: t.insert(4,4) sage: t.delete(0) 0 sage: t.delete(3) 3 sage: t.delete(5) 5 sage: t.delete(2) 2 sage: t.delete(6) 6 sage: t.delete(1) 1 sage: t.delete(0) sage: t.get_max() 4 sage: t.get_min() 4
>>> from sage.all import * >>> from sage.misc.binary_tree import BinaryTree >>> t = BinaryTree() >>> t.insert(Integer(3),Integer(3)) >>> t.insert(Integer(1),Integer(1)) >>> t.insert(Integer(2),Integer(2)) >>> t.insert(Integer(0),Integer(0)) >>> t.insert(Integer(5),Integer(5)) >>> t.insert(Integer(6),Integer(6)) >>> t.insert(Integer(4),Integer(4)) >>> t.delete(Integer(0)) 0 >>> t.delete(Integer(3)) 3 >>> t.delete(Integer(5)) 5 >>> t.delete(Integer(2)) 2 >>> t.delete(Integer(6)) 6 >>> t.delete(Integer(1)) 1 >>> t.delete(Integer(0)) >>> t.get_max() 4 >>> t.get_min() 4
- get(key)[source]¶
Return the value associated with the key given.
EXAMPLES:
sage: from sage.misc.binary_tree import BinaryTree sage: t = BinaryTree() sage: t.insert(0, Matrix([[0,0], [1,1]])) # needs sage.modules sage: t.insert(0, 1) sage: t.get(0) # needs sage.modules [0 0] [1 1]
>>> from sage.all import * >>> from sage.misc.binary_tree import BinaryTree >>> t = BinaryTree() >>> t.insert(Integer(0), Matrix([[Integer(0),Integer(0)], [Integer(1),Integer(1)]])) # needs sage.modules >>> t.insert(Integer(0), Integer(1)) >>> t.get(Integer(0)) # needs sage.modules [0 0] [1 1]
- insert(key, value=None)[source]¶
Insert a key-value pair into the BinaryTree.
Duplicate keys are ignored.
The first parameter, key, should be an int, or coercible (one-to-one) into an int.
EXAMPLES:
sage: from sage.misc.binary_tree import BinaryTree sage: t = BinaryTree() sage: t.insert(1) sage: t.insert(0) sage: t.insert(2) sage: t.insert(0,1) sage: t.get(0) 0
>>> from sage.all import * >>> from sage.misc.binary_tree import BinaryTree >>> t = BinaryTree() >>> t.insert(Integer(1)) >>> t.insert(Integer(0)) >>> t.insert(Integer(2)) >>> t.insert(Integer(0),Integer(1)) >>> t.get(Integer(0)) 0
- is_empty()[source]¶
Return whether the tree has no nodes.
EXAMPLES:
sage: from sage.misc.binary_tree import BinaryTree sage: t = BinaryTree() sage: t.is_empty() True sage: t.insert(0,0) sage: t.is_empty() False
>>> from sage.all import * >>> from sage.misc.binary_tree import BinaryTree >>> t = BinaryTree() >>> t.is_empty() True >>> t.insert(Integer(0),Integer(0)) >>> t.is_empty() False
- keys(order='inorder')[source]¶
Return the keys sorted according to “order” parameter.
The order can be one of “inorder”, “preorder”, or “postorder”
- pop_max()[source]¶
Return the value of the node with the maximal key value, and remove that node from the tree.
EXAMPLES:
sage: from sage.misc.binary_tree import BinaryTree sage: t = BinaryTree() sage: t.insert(4,'e') sage: t.insert(2,'c') sage: t.insert(0,'a') sage: t.insert(1,'b') sage: t.insert(3,'d') sage: t.insert(5,'f') sage: while not t.is_empty(): ....: print(t.pop_max()) f e d c b a
>>> from sage.all import * >>> from sage.misc.binary_tree import BinaryTree >>> t = BinaryTree() >>> t.insert(Integer(4),'e') >>> t.insert(Integer(2),'c') >>> t.insert(Integer(0),'a') >>> t.insert(Integer(1),'b') >>> t.insert(Integer(3),'d') >>> t.insert(Integer(5),'f') >>> while not t.is_empty(): ... print(t.pop_max()) f e d c b a
- pop_min()[source]¶
Return the value of the node with the minimal key value, and remove that node from the tree.
EXAMPLES:
sage: from sage.misc.binary_tree import BinaryTree sage: t = BinaryTree() sage: t.insert(4,'e') sage: t.insert(2,'c') sage: t.insert(0,'a') sage: t.insert(1,'b') sage: t.insert(3,'d') sage: t.insert(5,'f') sage: while not t.is_empty(): ....: print(t.pop_min()) a b c d e f
>>> from sage.all import * >>> from sage.misc.binary_tree import BinaryTree >>> t = BinaryTree() >>> t.insert(Integer(4),'e') >>> t.insert(Integer(2),'c') >>> t.insert(Integer(0),'a') >>> t.insert(Integer(1),'b') >>> t.insert(Integer(3),'d') >>> t.insert(Integer(5),'f') >>> while not t.is_empty(): ... print(t.pop_min()) a b c d e f
- class sage.misc.binary_tree.Test¶
Bases:
object
- binary_tree(values=100, cycles=100000)[source]¶
Perform a sequence of random operations, given random inputs to stress test the binary tree structure.
This was useful during development to find memory leaks / segfaults. Cycles should be at least 100 times as large as values, or the delete, contains, and get methods won’t hit very often.
INPUT:
values
– number of possible values to usecycles
– number of operations to perform