Streams#
This module provides lazy implementations of basic operators on streams. The classes implemented in this module can be used to build up more complex streams for different kinds of series (Laurent, Dirichlet, etc.).
EXAMPLES:
Streams can be used as data structure for lazy Laurent series:
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
sage: f = L(lambda n: n, valuation=0)
sage: f
z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7)
sage: type(f._coeff_stream)
<class 'sage.data_structures.stream.Stream_function'>
>>> from sage.all import *
>>> L = LazyLaurentSeriesRing(ZZ, names=('z',)); (z,) = L._first_ngens(1)
>>> f = L(lambda n: n, valuation=Integer(0))
>>> f
z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7)
>>> type(f._coeff_stream)
<class 'sage.data_structures.stream.Stream_function'>
There are basic unary and binary operators available for streams. For example, we can add two streams:
sage: from sage.data_structures.stream import *
sage: f = Stream_function(lambda n: n, True, 0)
sage: [f[i] for i in range(10)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: g = Stream_function(lambda n: 1, True, 0)
sage: [g[i] for i in range(10)]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
sage: h = Stream_add(f, g, True)
sage: [h[i] for i in range(10)]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> from sage.all import *
>>> from sage.data_structures.stream import *
>>> f = Stream_function(lambda n: n, True, Integer(0))
>>> [f[i] for i in range(Integer(10))]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> g = Stream_function(lambda n: Integer(1), True, Integer(0))
>>> [g[i] for i in range(Integer(10))]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> h = Stream_add(f, g, True)
>>> [h[i] for i in range(Integer(10))]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
We can subtract one stream from another:
sage: h = Stream_sub(f, g, True)
sage: [h[i] for i in range(10)]
[-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]
>>> from sage.all import *
>>> h = Stream_sub(f, g, True)
>>> [h[i] for i in range(Integer(10))]
[-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]
There is a Cauchy product on streams:
sage: h = Stream_cauchy_mul(f, g, True)
sage: [h[i] for i in range(10)]
[0, 1, 3, 6, 10, 15, 21, 28, 36, 45]
>>> from sage.all import *
>>> h = Stream_cauchy_mul(f, g, True)
>>> [h[i] for i in range(Integer(10))]
[0, 1, 3, 6, 10, 15, 21, 28, 36, 45]
We can compute the inverse corresponding to the Cauchy product:
sage: ginv = Stream_cauchy_invert(g)
sage: h = Stream_cauchy_mul(f, ginv, True)
sage: [h[i] for i in range(10)]
[0, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> from sage.all import *
>>> ginv = Stream_cauchy_invert(g)
>>> h = Stream_cauchy_mul(f, ginv, True)
>>> [h[i] for i in range(Integer(10))]
[0, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Two streams can be composed:
sage: g = Stream_function(lambda n: n, True, 1)
sage: h = Stream_cauchy_compose(f, g, True)
sage: [h[i] for i in range(10)]
[0, 1, 4, 14, 46, 145, 444, 1331, 3926, 11434]
>>> from sage.all import *
>>> g = Stream_function(lambda n: n, True, Integer(1))
>>> h = Stream_cauchy_compose(f, g, True)
>>> [h[i] for i in range(Integer(10))]
[0, 1, 4, 14, 46, 145, 444, 1331, 3926, 11434]
There is a unary negation operator:
sage: h = Stream_neg(f, True)
sage: [h[i] for i in range(10)]
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> from sage.all import *
>>> h = Stream_neg(f, True)
>>> [h[i] for i in range(Integer(10))]
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
More generally, we can multiply by a scalar:
sage: h = Stream_lmul(f, 2, True)
sage: [h[i] for i in range(10)]
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
>>> from sage.all import *
>>> h = Stream_lmul(f, Integer(2), True)
>>> [h[i] for i in range(Integer(10))]
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
Finally, we can apply an arbitrary functions to the elements of a stream:
sage: h = Stream_map_coefficients(f, lambda n: n^2, True)
sage: [h[i] for i in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> from sage.all import *
>>> h = Stream_map_coefficients(f, lambda n: n**Integer(2), True)
>>> [h[i] for i in range(Integer(10))]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
AUTHORS:
Kwankyu Lee (2019-02-24): initial version
Tejasvi Chebrolu, Martin Rubey, Travis Scrimshaw (2021-08): refactored and expanded functionality
- class sage.data_structures.stream.Stream(true_order)[source]#
Bases:
object
Abstract base class for all streams.
INPUT:
true_order
– boolean; if the approximate order is the actual order
Note
An implementation of a stream class depending on other stream classes must not access coefficients or the approximate order of these, in order not to interfere with lazy definitions for
Stream_uninitialized
.If an approximate order or even the true order is known, it must be set after calling
super().__init__
.Otherwise, a lazy attribute
_approximate_order
has to be defined. Any initialization code depending on the approximate orders of input streams can be put into this definition.However, keep in mind that (trivially) this initialization code is not executed if
_approximate_order
is set to a value before it is accessed.- is_nonzero()[source]#
Return
True
if and only if this stream is known to be non-zero.The default implementation is
False
.EXAMPLES:
sage: from sage.data_structures.stream import Stream sage: CS = Stream(1) sage: CS.is_nonzero() False
>>> from sage.all import * >>> from sage.data_structures.stream import Stream >>> CS = Stream(Integer(1)) >>> CS.is_nonzero() False
- is_uninitialized()[source]#
Return
True
ifself
is an uninitialized stream.The default implementation is
False
.EXAMPLES:
sage: from sage.data_structures.stream import Stream_zero sage: zero = Stream_zero() sage: zero.is_uninitialized() False
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_zero >>> zero = Stream_zero() >>> zero.is_uninitialized() False
- class sage.data_structures.stream.Stream_add(left, right, is_sparse)[source]#
Bases:
Stream_binaryCommutative
Operator for addition of two coefficient streams.
INPUT:
left
–Stream
of coefficients on the left side of the operatorright
–Stream
of coefficients on the right side of the operator
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_add, Stream_function) sage: f = Stream_function(lambda n: n, True, 0) sage: g = Stream_function(lambda n: 1, True, 0) sage: h = Stream_add(f, g, True) sage: [h[i] for i in range(10)] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] sage: u = Stream_add(g, f, True) sage: [u[i] for i in range(10)] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_add, Stream_function) >>> f = Stream_function(lambda n: n, True, Integer(0)) >>> g = Stream_function(lambda n: Integer(1), True, Integer(0)) >>> h = Stream_add(f, g, True) >>> [h[i] for i in range(Integer(10))] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> u = Stream_add(g, f, True) >>> [u[i] for i in range(Integer(10))] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- get_coefficient(n)[source]#
Return the
n
-th coefficient ofself
.INPUT:
n
– integer; the degree for the coefficient
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_function, Stream_add) sage: f = Stream_function(lambda n: n, True, 0) sage: g = Stream_function(lambda n: n^2, True, 0) sage: h = Stream_add(f, g, True) sage: h.get_coefficient(5) 30 sage: [h.get_coefficient(i) for i in range(10)] [0, 2, 6, 12, 20, 30, 42, 56, 72, 90]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_function, Stream_add) >>> f = Stream_function(lambda n: n, True, Integer(0)) >>> g = Stream_function(lambda n: n**Integer(2), True, Integer(0)) >>> h = Stream_add(f, g, True) >>> h.get_coefficient(Integer(5)) 30 >>> [h.get_coefficient(i) for i in range(Integer(10))] [0, 2, 6, 12, 20, 30, 42, 56, 72, 90]
- class sage.data_structures.stream.Stream_binary(left, right, is_sparse)[source]#
Bases:
Stream_inexact
Base class for binary operators on coefficient streams.
INPUT:
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_function, Stream_add, Stream_sub) sage: f = Stream_function(lambda n: 2*n, True, 0) sage: g = Stream_function(lambda n: n, True, 1) sage: h = Stream_add(f, g, True) sage: [h[i] for i in range(10)] [0, 3, 6, 9, 12, 15, 18, 21, 24, 27] sage: h = Stream_sub(f, g, True) sage: [h[i] for i in range(10)] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_function, Stream_add, Stream_sub) >>> f = Stream_function(lambda n: Integer(2)*n, True, Integer(0)) >>> g = Stream_function(lambda n: n, True, Integer(1)) >>> h = Stream_add(f, g, True) >>> [h[i] for i in range(Integer(10))] [0, 3, 6, 9, 12, 15, 18, 21, 24, 27] >>> h = Stream_sub(f, g, True) >>> [h[i] for i in range(Integer(10))] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
- is_uninitialized()[source]#
Return
True
ifself
is an uninitialized stream.EXAMPLES:
sage: from sage.data_structures.stream import Stream_uninitialized, Stream_sub, Stream_function sage: C = Stream_uninitialized(0) sage: F = Stream_function(lambda n: n, True, 0) sage: B = Stream_sub(F, C, True) sage: B.is_uninitialized() True sage: Bp = Stream_sub(F, F, True) sage: Bp.is_uninitialized() False
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_uninitialized, Stream_sub, Stream_function >>> C = Stream_uninitialized(Integer(0)) >>> F = Stream_function(lambda n: n, True, Integer(0)) >>> B = Stream_sub(F, C, True) >>> B.is_uninitialized() True >>> Bp = Stream_sub(F, F, True) >>> Bp.is_uninitialized() False
- class sage.data_structures.stream.Stream_binaryCommutative(left, right, is_sparse)[source]#
Bases:
Stream_binary
Base class for commutative binary operators on coefficient streams.
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_function, Stream_add) sage: f = Stream_function(lambda n: 2*n, True, 0) sage: g = Stream_function(lambda n: n, True, 1) sage: h = Stream_add(f, g, True) sage: [h[i] for i in range(10)] [0, 3, 6, 9, 12, 15, 18, 21, 24, 27] sage: u = Stream_add(g, f, True) sage: [u[i] for i in range(10)] [0, 3, 6, 9, 12, 15, 18, 21, 24, 27] sage: h == u True
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_function, Stream_add) >>> f = Stream_function(lambda n: Integer(2)*n, True, Integer(0)) >>> g = Stream_function(lambda n: n, True, Integer(1)) >>> h = Stream_add(f, g, True) >>> [h[i] for i in range(Integer(10))] [0, 3, 6, 9, 12, 15, 18, 21, 24, 27] >>> u = Stream_add(g, f, True) >>> [u[i] for i in range(Integer(10))] [0, 3, 6, 9, 12, 15, 18, 21, 24, 27] >>> h == u True
- class sage.data_structures.stream.Stream_cauchy_compose(f, g, is_sparse)[source]#
Bases:
Stream_binary
Return
f
composed byg
.This is the composition \((f \circ g)(z) = f(g(z))\).
INPUT:
EXAMPLES:
sage: from sage.data_structures.stream import Stream_cauchy_compose, Stream_function sage: f = Stream_function(lambda n: n, True, 1) sage: g = Stream_function(lambda n: 1, True, 1) sage: h = Stream_cauchy_compose(f, g, True) sage: [h[i] for i in range(10)] [0, 1, 3, 8, 20, 48, 112, 256, 576, 1280] sage: u = Stream_cauchy_compose(g, f, True) sage: [u[i] for i in range(10)] [0, 1, 3, 8, 21, 55, 144, 377, 987, 2584]
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_cauchy_compose, Stream_function >>> f = Stream_function(lambda n: n, True, Integer(1)) >>> g = Stream_function(lambda n: Integer(1), True, Integer(1)) >>> h = Stream_cauchy_compose(f, g, True) >>> [h[i] for i in range(Integer(10))] [0, 1, 3, 8, 20, 48, 112, 256, 576, 1280] >>> u = Stream_cauchy_compose(g, f, True) >>> [u[i] for i in range(Integer(10))] [0, 1, 3, 8, 21, 55, 144, 377, 987, 2584]
- get_coefficient(n)[source]#
Return the
n
-th coefficient ofself
.INPUT:
n
– integer; the degree for the coefficient
EXAMPLES:
sage: from sage.data_structures.stream import Stream_function, Stream_cauchy_compose sage: f = Stream_function(lambda n: n, True, 1) sage: g = Stream_function(lambda n: n^2, True, 1) sage: h = Stream_cauchy_compose(f, g, True) sage: h[5] # indirect doctest 527 sage: [h[i] for i in range(10)] # indirect doctest [0, 1, 6, 28, 124, 527, 2172, 8755, 34704, 135772]
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_function, Stream_cauchy_compose >>> f = Stream_function(lambda n: n, True, Integer(1)) >>> g = Stream_function(lambda n: n**Integer(2), True, Integer(1)) >>> h = Stream_cauchy_compose(f, g, True) >>> h[Integer(5)] # indirect doctest 527 >>> [h[i] for i in range(Integer(10))] # indirect doctest [0, 1, 6, 28, 124, 527, 2172, 8755, 34704, 135772]
- class sage.data_structures.stream.Stream_cauchy_invert(series, approximate_order=None)[source]#
Bases:
Stream_unary
Operator for multiplicative inverse of the stream.
INPUT:
series
– aStream
approximate_order
–None
, or a lower bound on the order of the resulting stream
Instances of this class are always dense, because of mathematical necessities.
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_cauchy_invert, Stream_function) sage: f = Stream_function(lambda n: 1, True, 1) sage: g = Stream_cauchy_invert(f) sage: [g[i] for i in range(10)] [-1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_cauchy_invert, Stream_function) >>> f = Stream_function(lambda n: Integer(1), True, Integer(1)) >>> g = Stream_cauchy_invert(f) >>> [g[i] for i in range(Integer(10))] [-1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- is_nonzero()[source]#
Return
True
if and only if this stream is known to be non-zero.An assumption of this class is that it is non-zero.
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_cauchy_invert, Stream_function) sage: f = Stream_function(lambda n: n^2, False, 1) sage: g = Stream_cauchy_invert(f) sage: g.is_nonzero() True
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_cauchy_invert, Stream_function) >>> f = Stream_function(lambda n: n**Integer(2), False, Integer(1)) >>> g = Stream_cauchy_invert(f) >>> g.is_nonzero() True
- iterate_coefficients()[source]#
A generator for the coefficients of
self
.EXAMPLES:
sage: from sage.data_structures.stream import (Stream_cauchy_invert, Stream_function) sage: f = Stream_function(lambda n: n^2, False, 1) sage: g = Stream_cauchy_invert(f) sage: n = g.iterate_coefficients() sage: [next(n) for i in range(10)] [1, -4, 7, -8, 8, -8, 8, -8, 8, -8]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_cauchy_invert, Stream_function) >>> f = Stream_function(lambda n: n**Integer(2), False, Integer(1)) >>> g = Stream_cauchy_invert(f) >>> n = g.iterate_coefficients() >>> [next(n) for i in range(Integer(10))] [1, -4, 7, -8, 8, -8, 8, -8, 8, -8]
- class sage.data_structures.stream.Stream_cauchy_mul(left, right, is_sparse)[source]#
Bases:
Stream_binary
Operator for multiplication of two coefficient streams using the Cauchy product.
We are not assuming commutativity of the coefficient ring here, only that the coefficient ring commutes with the (implicit) variable.
INPUT:
left
–Stream
of coefficients on the left side of the operatorright
–Stream
of coefficients on the right side of the operator
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_cauchy_mul, Stream_function) sage: f = Stream_function(lambda n: n, True, 0) sage: g = Stream_function(lambda n: 1, True, 0) sage: h = Stream_cauchy_mul(f, g, True) sage: [h[i] for i in range(10)] [0, 1, 3, 6, 10, 15, 21, 28, 36, 45] sage: u = Stream_cauchy_mul(g, f, True) sage: [u[i] for i in range(10)] [0, 1, 3, 6, 10, 15, 21, 28, 36, 45]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_cauchy_mul, Stream_function) >>> f = Stream_function(lambda n: n, True, Integer(0)) >>> g = Stream_function(lambda n: Integer(1), True, Integer(0)) >>> h = Stream_cauchy_mul(f, g, True) >>> [h[i] for i in range(Integer(10))] [0, 1, 3, 6, 10, 15, 21, 28, 36, 45] >>> u = Stream_cauchy_mul(g, f, True) >>> [u[i] for i in range(Integer(10))] [0, 1, 3, 6, 10, 15, 21, 28, 36, 45]
- get_coefficient(n)[source]#
Return the
n
-th coefficient ofself
.INPUT:
n
– integer; the degree for the coefficient
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_function, Stream_cauchy_mul) sage: f = Stream_function(lambda n: n, True, 0) sage: g = Stream_function(lambda n: n^2, True, 0) sage: h = Stream_cauchy_mul(f, g, True) sage: h.get_coefficient(5) 50 sage: [h.get_coefficient(i) for i in range(10)] [0, 0, 1, 6, 20, 50, 105, 196, 336, 540]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_function, Stream_cauchy_mul) >>> f = Stream_function(lambda n: n, True, Integer(0)) >>> g = Stream_function(lambda n: n**Integer(2), True, Integer(0)) >>> h = Stream_cauchy_mul(f, g, True) >>> h.get_coefficient(Integer(5)) 50 >>> [h.get_coefficient(i) for i in range(Integer(10))] [0, 0, 1, 6, 20, 50, 105, 196, 336, 540]
- is_nonzero()[source]#
Return
True
if and only if this stream is known to be non-zero.EXAMPLES:
sage: from sage.data_structures.stream import (Stream_function, ....: Stream_cauchy_mul, Stream_cauchy_invert) sage: f = Stream_function(lambda n: n, True, 1) sage: g = Stream_cauchy_mul(f, f, True) sage: g.is_nonzero() False sage: fi = Stream_cauchy_invert(f) sage: h = Stream_cauchy_mul(fi, fi, True) sage: h.is_nonzero() True
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_function, ... Stream_cauchy_mul, Stream_cauchy_invert) >>> f = Stream_function(lambda n: n, True, Integer(1)) >>> g = Stream_cauchy_mul(f, f, True) >>> g.is_nonzero() False >>> fi = Stream_cauchy_invert(f) >>> h = Stream_cauchy_mul(fi, fi, True) >>> h.is_nonzero() True
- class sage.data_structures.stream.Stream_cauchy_mul_commutative(left, right, is_sparse)[source]#
Bases:
Stream_cauchy_mul
,Stream_binaryCommutative
Operator for multiplication of two coefficient streams using the Cauchy product for commutative multiplication of coefficients.
- class sage.data_structures.stream.Stream_derivative(series, shift, is_sparse)[source]#
Bases:
Stream_unary
Operator for taking derivatives of a non-exact stream.
INPUT:
series
– aStream
shift
– a positive integeris_sparse
– boolean
- is_nonzero()[source]#
Return
True
if and only if this stream is known to be non-zero.EXAMPLES:
sage: from sage.data_structures.stream import Stream_exact, Stream_derivative sage: f = Stream_exact([1,2]) sage: Stream_derivative(f, 1, True).is_nonzero() True sage: Stream_derivative(f, 2, True).is_nonzero() # it might be nice if this gave False True
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_exact, Stream_derivative >>> f = Stream_exact([Integer(1),Integer(2)]) >>> Stream_derivative(f, Integer(1), True).is_nonzero() True >>> Stream_derivative(f, Integer(2), True).is_nonzero() # it might be nice if this gave False True
- class sage.data_structures.stream.Stream_dirichlet_convolve(left, right, is_sparse)[source]#
Bases:
Stream_binary
Operator for the Dirichlet convolution of two streams.
INPUT:
left
–Stream
of coefficients on the left side of the operatorright
–Stream
of coefficients on the right side of the operator
The coefficient of \(n^{-s}\) in the convolution of \(l\) and \(r\) equals \(\sum_{k | n} l_k r_{n/k}\).
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_dirichlet_convolve, Stream_function, Stream_exact) sage: f = Stream_function(lambda n: n, True, 1) sage: g = Stream_exact([0], constant=1) sage: h = Stream_dirichlet_convolve(f, g, True) sage: [h[i] for i in range(1, 10)] [1, 3, 4, 7, 6, 12, 8, 15, 13] sage: [sigma(n) for n in range(1, 10)] [1, 3, 4, 7, 6, 12, 8, 15, 13] sage: u = Stream_dirichlet_convolve(g, f, True) sage: [u[i] for i in range(1, 10)] [1, 3, 4, 7, 6, 12, 8, 15, 13]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_dirichlet_convolve, Stream_function, Stream_exact) >>> f = Stream_function(lambda n: n, True, Integer(1)) >>> g = Stream_exact([Integer(0)], constant=Integer(1)) >>> h = Stream_dirichlet_convolve(f, g, True) >>> [h[i] for i in range(Integer(1), Integer(10))] [1, 3, 4, 7, 6, 12, 8, 15, 13] >>> [sigma(n) for n in range(Integer(1), Integer(10))] [1, 3, 4, 7, 6, 12, 8, 15, 13] >>> u = Stream_dirichlet_convolve(g, f, True) >>> [u[i] for i in range(Integer(1), Integer(10))] [1, 3, 4, 7, 6, 12, 8, 15, 13]
- get_coefficient(n)[source]#
Return the
n
-th coefficient ofself
.INPUT:
n
– integer; the degree for the coefficient
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_dirichlet_convolve, Stream_function, Stream_exact) sage: f = Stream_function(lambda n: n, True, 1) sage: g = Stream_exact([0], constant=1) sage: h = Stream_dirichlet_convolve(f, g, True) sage: h.get_coefficient(7) 8 sage: [h[i] for i in range(1, 10)] [1, 3, 4, 7, 6, 12, 8, 15, 13]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_dirichlet_convolve, Stream_function, Stream_exact) >>> f = Stream_function(lambda n: n, True, Integer(1)) >>> g = Stream_exact([Integer(0)], constant=Integer(1)) >>> h = Stream_dirichlet_convolve(f, g, True) >>> h.get_coefficient(Integer(7)) 8 >>> [h[i] for i in range(Integer(1), Integer(10))] [1, 3, 4, 7, 6, 12, 8, 15, 13]
- class sage.data_structures.stream.Stream_dirichlet_invert(series, is_sparse)[source]#
Bases:
Stream_unary
Operator for inverse with respect to Dirichlet convolution of the stream.
INPUT:
series
– aStream
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_dirichlet_invert, Stream_function) sage: f = Stream_function(lambda n: 1, True, 1) sage: g = Stream_dirichlet_invert(f, True) sage: [g[i] for i in range(10)] [0, 1, -1, -1, 0, -1, 1, -1, 0, 0] sage: [moebius(i) for i in range(10)] # needs sage.libs.pari [0, 1, -1, -1, 0, -1, 1, -1, 0, 0]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_dirichlet_invert, Stream_function) >>> f = Stream_function(lambda n: Integer(1), True, Integer(1)) >>> g = Stream_dirichlet_invert(f, True) >>> [g[i] for i in range(Integer(10))] [0, 1, -1, -1, 0, -1, 1, -1, 0, 0] >>> [moebius(i) for i in range(Integer(10))] # needs sage.libs.pari [0, 1, -1, -1, 0, -1, 1, -1, 0, 0]
- get_coefficient(n)[source]#
Return the
n
-th coefficient ofself
.INPUT:
n
– integer; the degree for the coefficient
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_exact, Stream_dirichlet_invert) sage: f = Stream_exact([0, 3], constant=2) sage: g = Stream_dirichlet_invert(f, True) sage: g.get_coefficient(6) 2/27 sage: [g[i] for i in range(8)] [0, 1/3, -2/9, -2/9, -2/27, -2/9, 2/27, -2/9]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_exact, Stream_dirichlet_invert) >>> f = Stream_exact([Integer(0), Integer(3)], constant=Integer(2)) >>> g = Stream_dirichlet_invert(f, True) >>> g.get_coefficient(Integer(6)) 2/27 >>> [g[i] for i in range(Integer(8))] [0, 1/3, -2/9, -2/9, -2/27, -2/9, 2/27, -2/9]
- class sage.data_structures.stream.Stream_exact(initial_coefficients, constant=None, degree=None, order=None)[source]#
Bases:
Stream
A stream of eventually constant coefficients.
INPUT:
initial_values
– a list of initial valuesis_sparse
– boolean; specifies whether the stream is sparseorder
– integer (default: 0); determining the degree of the first element ofinitial_values
degree
– integer (optional); determining the degree of the first element which is known to be equal toconstant
constant
– integer (default: 0); the coefficient of every index larger than or equal todegree
Warning
The convention for
order
is different to the one insage.rings.lazy_series_ring.LazySeriesRing
, where the input is shifted to have the prescribed order.- is_nonzero()[source]#
Return
True
if and only if this stream is known to be non-zero.An assumption of this class is that it is non-zero.
EXAMPLES:
sage: from sage.data_structures.stream import Stream_exact sage: s = Stream_exact([2], order=-1, degree=2, constant=1) sage: s.is_nonzero() True
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_exact >>> s = Stream_exact([Integer(2)], order=-Integer(1), degree=Integer(2), constant=Integer(1)) >>> s.is_nonzero() True
- order()[source]#
Return the order of
self
, which is the minimum indexn
such thatself[n]
is non-zero.EXAMPLES:
sage: from sage.data_structures.stream import Stream_exact sage: s = Stream_exact([1]) sage: s.order() 0
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_exact >>> s = Stream_exact([Integer(1)]) >>> s.order() 0
- class sage.data_structures.stream.Stream_function(function, is_sparse, approximate_order, true_order=False)[source]#
Bases:
Stream_inexact
Class that creates a stream from a function on the integers.
INPUT:
function
– a function that generates the coefficients of the streamis_sparse
– boolean; specifies whether the stream is sparseapproximate_order
– integer; a lower bound for the order of the stream
Note
We assume for equality that
function
is a function in the mathematical sense.EXAMPLES:
sage: from sage.data_structures.stream import Stream_function sage: f = Stream_function(lambda n: n^2, False, 1) sage: f[3] 9 sage: [f[i] for i in range(10)] [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] sage: f = Stream_function(lambda n: 1, False, 0) sage: n = f.iterate_coefficients() sage: [next(n) for _ in range(10)] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] sage: f = Stream_function(lambda n: n, True, 0) sage: f[4] 4
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_function >>> f = Stream_function(lambda n: n**Integer(2), False, Integer(1)) >>> f[Integer(3)] 9 >>> [f[i] for i in range(Integer(10))] [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] >>> f = Stream_function(lambda n: Integer(1), False, Integer(0)) >>> n = f.iterate_coefficients() >>> [next(n) for _ in range(Integer(10))] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] >>> f = Stream_function(lambda n: n, True, Integer(0)) >>> f[Integer(4)] 4
- class sage.data_structures.stream.Stream_inexact(is_sparse, true_order)[source]#
Bases:
Stream
An abstract base class for the stream when we do not know it is eventually constant.
In particular, a cache is provided.
INPUT:
is_sparse
– boolean; whether the implementation of the stream is sparsetrue_order
– boolean; if the approximate order is the actual order
If the cache is dense, it begins with the first non-zero term.
- is_nonzero()[source]#
Return
True
if and only if the cache contains a non-zero element.EXAMPLES:
sage: from sage.data_structures.stream import Stream_function sage: CS = Stream_function(lambda n: 1/n, False, 1) sage: CS.is_nonzero() False sage: CS[1] 1 sage: CS.is_nonzero() True
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_function >>> CS = Stream_function(lambda n: Integer(1)/n, False, Integer(1)) >>> CS.is_nonzero() False >>> CS[Integer(1)] 1 >>> CS.is_nonzero() True
- iterate_coefficients()[source]#
A generator for the coefficients of
self
.EXAMPLES:
sage: from sage.data_structures.stream import Stream_function, Stream_cauchy_compose sage: f = Stream_function(lambda n: 1, False, 1) sage: g = Stream_function(lambda n: n^3, False, 1) sage: h = Stream_cauchy_compose(f, g, True) sage: n = h.iterate_coefficients() sage: [next(n) for i in range(10)] [1, 9, 44, 207, 991, 4752, 22769, 109089, 522676, 2504295]
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_function, Stream_cauchy_compose >>> f = Stream_function(lambda n: Integer(1), False, Integer(1)) >>> g = Stream_function(lambda n: n**Integer(3), False, Integer(1)) >>> h = Stream_cauchy_compose(f, g, True) >>> n = h.iterate_coefficients() >>> [next(n) for i in range(Integer(10))] [1, 9, 44, 207, 991, 4752, 22769, 109089, 522676, 2504295]
- order()[source]#
Return the order of
self
, which is the minimum indexn
such thatself[n]
is non-zero.EXAMPLES:
sage: from sage.data_structures.stream import Stream_function sage: f = Stream_function(lambda n: n, True, 0) sage: f.order() 1
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_function >>> f = Stream_function(lambda n: n, True, Integer(0)) >>> f.order() 1
- class sage.data_structures.stream.Stream_infinite_operator(iterator)[source]#
Bases:
Stream
Stream defined by applying an operator an infinite number of times.
The
iterator
returns elements \(s_i\) to compute an infinite operator. The valuation of \(s_i\) is weakly increasing as we iterate over \(I\) and there are only finitely many terms with any fixed valuation. In particular, this assumes the result is nonzero.Warning
This does not check that the input is valid.
INPUT:
iterator
– the iterator for the factors
- is_nonzero()[source]#
Return
True
if and only if this stream is known to be nonzero.EXAMPLES:
sage: from sage.data_structures.stream import Stream_infinite_sum sage: L.<t> = LazyLaurentSeriesRing(QQ) sage: it = (t^n / (1 - t) for n in PositiveIntegers()) sage: f = Stream_infinite_sum(it) sage: f.is_nonzero() True
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_infinite_sum >>> L = LazyLaurentSeriesRing(QQ, names=('t',)); (t,) = L._first_ngens(1) >>> it = (t**n / (Integer(1) - t) for n in PositiveIntegers()) >>> f = Stream_infinite_sum(it) >>> f.is_nonzero() True
- order()[source]#
Return the order of
self
, which is the minimum indexn
such thatself[n]
is nonzero.EXAMPLES:
sage: from sage.data_structures.stream import Stream_infinite_sum sage: L.<t> = LazyLaurentSeriesRing(QQ) sage: it = (t^(5+n) / (1 - t) for n in PositiveIntegers()) sage: f = Stream_infinite_sum(it) sage: f.order() 6
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_infinite_sum >>> L = LazyLaurentSeriesRing(QQ, names=('t',)); (t,) = L._first_ngens(1) >>> it = (t**(Integer(5)+n) / (Integer(1) - t) for n in PositiveIntegers()) >>> f = Stream_infinite_sum(it) >>> f.order() 6
- class sage.data_structures.stream.Stream_infinite_product(iterator)[source]#
Bases:
Stream_infinite_operator
Stream defined by an infinite product.
The
iterator
returns elements \(p_i\) to compute the product \(\prod_{i \in I} (1 + p_i)\). SeeStream_infinite_operator
for restrictions on the \(p_i\).INPUT:
iterator
– the iterator for the factors
- apply_operator(next_obj)[source]#
Apply the operator to
next_obj
.EXAMPLES:
sage: from sage.data_structures.stream import Stream_infinite_product sage: L.<t> = LazyLaurentSeriesRing(QQ) sage: it = (t^n / (1 - t) for n in PositiveIntegers()) sage: f = Stream_infinite_product(it) sage: f._advance() sage: f._advance() # indirect doctest sage: f._cur 1 + t + 2*t^2 + 4*t^3 + 6*t^4 + 9*t^5 + 13*t^6 + O(t^7)
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_infinite_product >>> L = LazyLaurentSeriesRing(QQ, names=('t',)); (t,) = L._first_ngens(1) >>> it = (t**n / (Integer(1) - t) for n in PositiveIntegers()) >>> f = Stream_infinite_product(it) >>> f._advance() >>> f._advance() # indirect doctest >>> f._cur 1 + t + 2*t^2 + 4*t^3 + 6*t^4 + 9*t^5 + 13*t^6 + O(t^7)
- initial(obj)[source]#
Set the initial data.
EXAMPLES:
sage: from sage.data_structures.stream import Stream_infinite_product sage: L.<t> = LazyLaurentSeriesRing(QQ) sage: it = (t^n / (1 - t) for n in PositiveIntegers()) sage: f = Stream_infinite_product(it) sage: f._cur is None True sage: f._advance() # indirect doctest sage: f._cur 1 + t + 2*t^2 + 3*t^3 + 4*t^4 + 5*t^5 + 6*t^6 + O(t^7)
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_infinite_product >>> L = LazyLaurentSeriesRing(QQ, names=('t',)); (t,) = L._first_ngens(1) >>> it = (t**n / (Integer(1) - t) for n in PositiveIntegers()) >>> f = Stream_infinite_product(it) >>> f._cur is None True >>> f._advance() # indirect doctest >>> f._cur 1 + t + 2*t^2 + 3*t^3 + 4*t^4 + 5*t^5 + 6*t^6 + O(t^7)
- class sage.data_structures.stream.Stream_infinite_sum(iterator)[source]#
Bases:
Stream_infinite_operator
Stream defined by an infinite sum.
The
iterator
returns elements \(s_i\) to compute the product \(\sum_{i \in I} s_i\). SeeStream_infinite_operator
for restrictions on the \(s_i\).INPUT:
iterator
– the iterator for the factors
- apply_operator(next_obj)[source]#
Apply the operator to
next_obj
.EXAMPLES:
sage: from sage.data_structures.stream import Stream_infinite_sum sage: L.<t> = LazyLaurentSeriesRing(QQ) sage: it = (t^(n//2) / (1 - t) for n in PositiveIntegers()) sage: f = Stream_infinite_sum(it) sage: f._advance() sage: f._advance() # indirect doctest sage: f._cur 1 + 3*t + 4*t^2 + 4*t^3 + 4*t^4 + O(t^5)
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_infinite_sum >>> L = LazyLaurentSeriesRing(QQ, names=('t',)); (t,) = L._first_ngens(1) >>> it = (t**(n//Integer(2)) / (Integer(1) - t) for n in PositiveIntegers()) >>> f = Stream_infinite_sum(it) >>> f._advance() >>> f._advance() # indirect doctest >>> f._cur 1 + 3*t + 4*t^2 + 4*t^3 + 4*t^4 + O(t^5)
- initial(obj)[source]#
Set the initial data.
EXAMPLES:
sage: from sage.data_structures.stream import Stream_infinite_sum sage: L.<t> = LazyLaurentSeriesRing(QQ) sage: it = (t^n / (1 - t) for n in PositiveIntegers()) sage: f = Stream_infinite_sum(it) sage: f._cur is None True sage: f._advance() # indirect doctest sage: f._cur t + 2*t^2 + 2*t^3 + 2*t^4 + O(t^5)
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_infinite_sum >>> L = LazyLaurentSeriesRing(QQ, names=('t',)); (t,) = L._first_ngens(1) >>> it = (t**n / (Integer(1) - t) for n in PositiveIntegers()) >>> f = Stream_infinite_sum(it) >>> f._cur is None True >>> f._advance() # indirect doctest >>> f._cur t + 2*t^2 + 2*t^3 + 2*t^4 + O(t^5)
- class sage.data_structures.stream.Stream_integral(series, integration_constants, is_sparse)[source]#
Bases:
Stream_unary
Operator for taking integrals of a non-exact stream.
INPUT:
series
– aStream
integration_constants
– a list of integration constantsis_sparse
– boolean
- get_coefficient(n)[source]#
Return the
n
-th coefficient ofself
.EXAMPLES:
sage: from sage.data_structures.stream import Stream_function, Stream_integral sage: f = Stream_function(lambda n: n + 1, True, -3) sage: [f[i] for i in range(-3, 4)] [-2, -1, 0, 1, 2, 3, 4] sage: f2 = Stream_integral(f, [0], True) sage: [f2.get_coefficient(i) for i in range(-3, 5)] [0, 1, 1, 0, 1, 1, 1, 1] sage: f = Stream_function(lambda n: (n + 1)*(n+2), True, 2) sage: [f[i] for i in range(-1, 4)] [0, 0, 0, 12, 20] sage: f2 = Stream_integral(f, [-1, -1, -1], True) sage: [f2.get_coefficient(i) for i in range(-1, 7)] [0, -1, -1, -1/2, 0, 0, 1/5, 1/6]
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_function, Stream_integral >>> f = Stream_function(lambda n: n + Integer(1), True, -Integer(3)) >>> [f[i] for i in range(-Integer(3), Integer(4))] [-2, -1, 0, 1, 2, 3, 4] >>> f2 = Stream_integral(f, [Integer(0)], True) >>> [f2.get_coefficient(i) for i in range(-Integer(3), Integer(5))] [0, 1, 1, 0, 1, 1, 1, 1] >>> f = Stream_function(lambda n: (n + Integer(1))*(n+Integer(2)), True, Integer(2)) >>> [f[i] for i in range(-Integer(1), Integer(4))] [0, 0, 0, 12, 20] >>> f2 = Stream_integral(f, [-Integer(1), -Integer(1), -Integer(1)], True) >>> [f2.get_coefficient(i) for i in range(-Integer(1), Integer(7))] [0, -1, -1, -1/2, 0, 0, 1/5, 1/6]
- is_nonzero()[source]#
Return
True
if and only if this stream is known to be non-zero.EXAMPLES:
sage: from sage.data_structures.stream import Stream_function, Stream_integral sage: f = Stream_function(lambda n: 2*n, True, 1) sage: f[1] 2 sage: f.is_nonzero() True sage: Stream_integral(f, [0], True).is_nonzero() True sage: f = Stream_function(lambda n: 0, False, 1) sage: Stream_integral(f, [0, 0, 0], False).is_nonzero() False sage: Stream_integral(f, [0, 2], False).is_nonzero() True
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_function, Stream_integral >>> f = Stream_function(lambda n: Integer(2)*n, True, Integer(1)) >>> f[Integer(1)] 2 >>> f.is_nonzero() True >>> Stream_integral(f, [Integer(0)], True).is_nonzero() True >>> f = Stream_function(lambda n: Integer(0), False, Integer(1)) >>> Stream_integral(f, [Integer(0), Integer(0), Integer(0)], False).is_nonzero() False >>> Stream_integral(f, [Integer(0), Integer(2)], False).is_nonzero() True
- class sage.data_structures.stream.Stream_iterator(iter, approximate_order, true_order=False)[source]#
Bases:
Stream_inexact
Class that creates a stream from an iterator.
INPUT:
iter
– a function that generates the coefficients of the streamapproximate_order
– integer; a lower bound for the order of the stream
Instances of this class are always dense.
EXAMPLES:
sage: from sage.data_structures.stream import Stream_iterator sage: f = Stream_iterator(iter(NonNegativeIntegers()), 0) sage: [f[i] for i in range(10)] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] sage: f = Stream_iterator(iter(NonNegativeIntegers()), 1) sage: [f[i] for i in range(10)] [0, 0, 1, 2, 3, 4, 5, 6, 7, 8]
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_iterator >>> f = Stream_iterator(iter(NonNegativeIntegers()), Integer(0)) >>> [f[i] for i in range(Integer(10))] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> f = Stream_iterator(iter(NonNegativeIntegers()), Integer(1)) >>> [f[i] for i in range(Integer(10))] [0, 0, 1, 2, 3, 4, 5, 6, 7, 8]
- class sage.data_structures.stream.Stream_lmul(series, scalar, is_sparse)[source]#
Bases:
Stream_scalar
Operator for multiplying a coefficient stream with a scalar as
self * scalar
.INPUT:
series
– aStream
scalar
– a non-zero, non-one scalar
EXAMPLES:
sage: # needs sage.modules sage: from sage.data_structures.stream import (Stream_lmul, Stream_function) sage: W = algebras.DifferentialWeyl(QQ, names=('x',)) sage: x, dx = W.gens() sage: f = Stream_function(lambda n: x^n, True, 1) sage: g = Stream_lmul(f, dx, True) sage: [g[i] for i in range(5)] [0, x*dx, x^2*dx, x^3*dx, x^4*dx]
>>> from sage.all import * >>> # needs sage.modules >>> from sage.data_structures.stream import (Stream_lmul, Stream_function) >>> W = algebras.DifferentialWeyl(QQ, names=('x',)) >>> x, dx = W.gens() >>> f = Stream_function(lambda n: x**n, True, Integer(1)) >>> g = Stream_lmul(f, dx, True) >>> [g[i] for i in range(Integer(5))] [0, x*dx, x^2*dx, x^3*dx, x^4*dx]
- get_coefficient(n)[source]#
Return the
n
-th coefficient ofself
.INPUT:
n
– integer; the degree for the coefficient
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_lmul, Stream_function) sage: f = Stream_function(lambda n: n, True, 1) sage: g = Stream_lmul(f, 3, True) sage: g.get_coefficient(5) 15 sage: [g.get_coefficient(i) for i in range(10)] [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_lmul, Stream_function) >>> f = Stream_function(lambda n: n, True, Integer(1)) >>> g = Stream_lmul(f, Integer(3), True) >>> g.get_coefficient(Integer(5)) 15 >>> [g.get_coefficient(i) for i in range(Integer(10))] [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
- class sage.data_structures.stream.Stream_map_coefficients(series, function, is_sparse, approximate_order=None, true_order=False)[source]#
Bases:
Stream_unary
The stream with
function
applied to each non-zero coefficient ofseries
.INPUT:
series
– aStream
function
– a function that modifies the elements of the stream
Note
We assume for equality that
function
is a function in the mathematical sense.EXAMPLES:
sage: from sage.data_structures.stream import (Stream_map_coefficients, Stream_function) sage: f = Stream_function(lambda n: 1, True, 1) sage: g = Stream_map_coefficients(f, lambda n: -n, True) sage: [g[i] for i in range(10)] [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_map_coefficients, Stream_function) >>> f = Stream_function(lambda n: Integer(1), True, Integer(1)) >>> g = Stream_map_coefficients(f, lambda n: -n, True) >>> [g[i] for i in range(Integer(10))] [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]
- get_coefficient(n)[source]#
Return the
n
-th coefficient ofself
.INPUT:
n
– integer; the degree for the coefficient
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_map_coefficients, Stream_function) sage: f = Stream_function(lambda n: n, True, -1) sage: g = Stream_map_coefficients(f, lambda n: n^2 + 1, True) sage: g.get_coefficient(5) 26 sage: [g.get_coefficient(i) for i in range(-1, 10)] [2, 0, 2, 5, 10, 17, 26, 37, 50, 65, 82] sage: R.<x,y> = ZZ[] sage: f = Stream_function(lambda n: n, True, -1) sage: g = Stream_map_coefficients(f, lambda n: R(n).degree() + 1, True) sage: [g.get_coefficient(i) for i in range(-1, 3)] [1, 0, 1, 1]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_map_coefficients, Stream_function) >>> f = Stream_function(lambda n: n, True, -Integer(1)) >>> g = Stream_map_coefficients(f, lambda n: n**Integer(2) + Integer(1), True) >>> g.get_coefficient(Integer(5)) 26 >>> [g.get_coefficient(i) for i in range(-Integer(1), Integer(10))] [2, 0, 2, 5, 10, 17, 26, 37, 50, 65, 82] >>> R = ZZ['x, y']; (x, y,) = R._first_ngens(2) >>> f = Stream_function(lambda n: n, True, -Integer(1)) >>> g = Stream_map_coefficients(f, lambda n: R(n).degree() + Integer(1), True) >>> [g.get_coefficient(i) for i in range(-Integer(1), Integer(3))] [1, 0, 1, 1]
- class sage.data_structures.stream.Stream_neg(series, is_sparse)[source]#
Bases:
Stream_unary
Operator for negative of the stream.
INPUT:
series
– aStream
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_neg, Stream_function) sage: f = Stream_function(lambda n: 1, True, 1) sage: g = Stream_neg(f, True) sage: [g[i] for i in range(10)] [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_neg, Stream_function) >>> f = Stream_function(lambda n: Integer(1), True, Integer(1)) >>> g = Stream_neg(f, True) >>> [g[i] for i in range(Integer(10))] [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]
- get_coefficient(n)[source]#
Return the
n
-th coefficient ofself
.INPUT:
n
– integer; the degree for the coefficient
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_neg, Stream_function) sage: f = Stream_function(lambda n: n, True, 1) sage: g = Stream_neg(f, True) sage: g.get_coefficient(5) -5 sage: [g.get_coefficient(i) for i in range(10)] [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_neg, Stream_function) >>> f = Stream_function(lambda n: n, True, Integer(1)) >>> g = Stream_neg(f, True) >>> g.get_coefficient(Integer(5)) -5 >>> [g.get_coefficient(i) for i in range(Integer(10))] [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
- is_nonzero()[source]#
Return
True
if and only if this stream is known to be non-zero.EXAMPLES:
sage: from sage.data_structures.stream import (Stream_neg, Stream_function) sage: f = Stream_function(lambda n: n, True, 1) sage: g = Stream_neg(f, True) sage: g.is_nonzero() False sage: from sage.data_structures.stream import Stream_cauchy_invert sage: fi = Stream_cauchy_invert(f) sage: g = Stream_neg(fi, True) sage: g.is_nonzero() True
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_neg, Stream_function) >>> f = Stream_function(lambda n: n, True, Integer(1)) >>> g = Stream_neg(f, True) >>> g.is_nonzero() False >>> from sage.data_structures.stream import Stream_cauchy_invert >>> fi = Stream_cauchy_invert(f) >>> g = Stream_neg(fi, True) >>> g.is_nonzero() True
- class sage.data_structures.stream.Stream_plethysm(f, g, is_sparse, p, ring=None, include=None, exclude=None)[source]#
Bases:
Stream_binary
Return the plethysm of
f
composed byg
.This is the plethysm \(f \circ g = f(g)\) when \(g\) is an element of a ring of symmetric functions.
INPUT:
f
– aStream
g
– aStream
with positive order, unlessf
is ofStream_exact
.p
– the ring of powersum symmetric functions containingg
ring
(default:None
) – the ring the result should be in, by defaultp
include
– a list of variables to be treated as degree one elements instead of the default degree one elementsexclude
– a list of variables to be excluded from the default degree one elements
EXAMPLES:
sage: # needs sage.modules sage: from sage.data_structures.stream import Stream_function, Stream_plethysm sage: s = SymmetricFunctions(QQ).s() sage: p = SymmetricFunctions(QQ).p() sage: f = Stream_function(lambda n: s[n], True, 1) sage: g = Stream_function(lambda n: s[[1]*n], True, 1) sage: h = Stream_plethysm(f, g, True, p, s) sage: [h[i] for i in range(5)] [0, s[1], s[1, 1] + s[2], 2*s[1, 1, 1] + s[2, 1] + s[3], 3*s[1, 1, 1, 1] + 2*s[2, 1, 1] + s[2, 2] + s[3, 1] + s[4]] sage: u = Stream_plethysm(g, f, True, p, s) sage: [u[i] for i in range(5)] [0, s[1], s[1, 1] + s[2], s[1, 1, 1] + s[2, 1] + 2*s[3], s[1, 1, 1, 1] + s[2, 1, 1] + 3*s[3, 1] + 2*s[4]]
>>> from sage.all import * >>> # needs sage.modules >>> from sage.data_structures.stream import Stream_function, Stream_plethysm >>> s = SymmetricFunctions(QQ).s() >>> p = SymmetricFunctions(QQ).p() >>> f = Stream_function(lambda n: s[n], True, Integer(1)) >>> g = Stream_function(lambda n: s[[Integer(1)]*n], True, Integer(1)) >>> h = Stream_plethysm(f, g, True, p, s) >>> [h[i] for i in range(Integer(5))] [0, s[1], s[1, 1] + s[2], 2*s[1, 1, 1] + s[2, 1] + s[3], 3*s[1, 1, 1, 1] + 2*s[2, 1, 1] + s[2, 2] + s[3, 1] + s[4]] >>> u = Stream_plethysm(g, f, True, p, s) >>> [u[i] for i in range(Integer(5))] [0, s[1], s[1, 1] + s[2], s[1, 1, 1] + s[2, 1] + 2*s[3], s[1, 1, 1, 1] + s[2, 1, 1] + 3*s[3, 1] + 2*s[4]]
This class also handles the plethysm of an exact stream with a stream of order \(0\):
sage: # needs sage.modules sage: from sage.data_structures.stream import Stream_exact sage: f = Stream_exact([s[1]], order=1) sage: g = Stream_function(lambda n: s[n], True, 0) sage: r = Stream_plethysm(f, g, True, p, s) sage: [r[n] for n in range(3)] [s[], s[1], s[2]]
>>> from sage.all import * >>> # needs sage.modules >>> from sage.data_structures.stream import Stream_exact >>> f = Stream_exact([s[Integer(1)]], order=Integer(1)) >>> g = Stream_function(lambda n: s[n], True, Integer(0)) >>> r = Stream_plethysm(f, g, True, p, s) >>> [r[n] for n in range(Integer(3))] [s[], s[1], s[2]]
- compute_product(n, la)[source]#
Compute the product
p[la](self._right)
in degreen
.EXAMPLES:
sage: # needs sage.modules sage: from sage.data_structures.stream import Stream_plethysm, Stream_exact, Stream_function, Stream_zero sage: s = SymmetricFunctions(QQ).s() sage: p = SymmetricFunctions(QQ).p() sage: f = Stream_exact([1]) # irrelevant for this test sage: g = Stream_exact([s[2], s[3]], 0, 4, 2) sage: h = Stream_plethysm(f, g, True, p) sage: A = h.compute_product(7, Partition([2, 1])); A 1/12*p[2, 2, 1, 1, 1] + 1/4*p[2, 2, 2, 1] + 1/6*p[3, 2, 2] + 1/12*p[4, 1, 1, 1] + 1/4*p[4, 2, 1] + 1/6*p[4, 3] sage: A == p[2, 1](s[2] + s[3]).homogeneous_component(7) True sage: # needs sage.modules sage: p2 = tensor([p, p]) sage: f = Stream_exact([1]) # irrelevant for this test sage: g = Stream_function(lambda n: sum(tensor([p[k], p[n-k]]) ....: for k in range(n+1)), True, 1) sage: h = Stream_plethysm(f, g, True, p2) sage: A = h.compute_product(7, Partition([2, 1])) sage: B = p[2, 1](sum(g[n] for n in range(7))) sage: B = p2.element_class(p2, {m: c for m, c in B ....: if sum(mu.size() for mu in m) == 7}) sage: A == B True sage: # needs sage.modules sage: f = Stream_exact([1]) # irrelevant for this test sage: g = Stream_function(lambda n: s[n], True, 0) sage: h = Stream_plethysm(f, g, True, p) sage: B = p[2, 2, 1](sum(p(s[i]) for i in range(7))) sage: all(h.compute_product(k, Partition([2, 2, 1])) ....: == B.restrict_degree(k) for k in range(7)) True
>>> from sage.all import * >>> # needs sage.modules >>> from sage.data_structures.stream import Stream_plethysm, Stream_exact, Stream_function, Stream_zero >>> s = SymmetricFunctions(QQ).s() >>> p = SymmetricFunctions(QQ).p() >>> f = Stream_exact([Integer(1)]) # irrelevant for this test >>> g = Stream_exact([s[Integer(2)], s[Integer(3)]], Integer(0), Integer(4), Integer(2)) >>> h = Stream_plethysm(f, g, True, p) >>> A = h.compute_product(Integer(7), Partition([Integer(2), Integer(1)])); A 1/12*p[2, 2, 1, 1, 1] + 1/4*p[2, 2, 2, 1] + 1/6*p[3, 2, 2] + 1/12*p[4, 1, 1, 1] + 1/4*p[4, 2, 1] + 1/6*p[4, 3] >>> A == p[Integer(2), Integer(1)](s[Integer(2)] + s[Integer(3)]).homogeneous_component(Integer(7)) True >>> # needs sage.modules >>> p2 = tensor([p, p]) >>> f = Stream_exact([Integer(1)]) # irrelevant for this test >>> g = Stream_function(lambda n: sum(tensor([p[k], p[n-k]]) ... for k in range(n+Integer(1))), True, Integer(1)) >>> h = Stream_plethysm(f, g, True, p2) >>> A = h.compute_product(Integer(7), Partition([Integer(2), Integer(1)])) >>> B = p[Integer(2), Integer(1)](sum(g[n] for n in range(Integer(7)))) >>> B = p2.element_class(p2, {m: c for m, c in B ... if sum(mu.size() for mu in m) == Integer(7)}) >>> A == B True >>> # needs sage.modules >>> f = Stream_exact([Integer(1)]) # irrelevant for this test >>> g = Stream_function(lambda n: s[n], True, Integer(0)) >>> h = Stream_plethysm(f, g, True, p) >>> B = p[Integer(2), Integer(2), Integer(1)](sum(p(s[i]) for i in range(Integer(7)))) >>> all(h.compute_product(k, Partition([Integer(2), Integer(2), Integer(1)])) ... == B.restrict_degree(k) for k in range(Integer(7))) True
- get_coefficient(n)[source]#
Return the
n
-th coefficient ofself
.INPUT:
n
– integer; the degree for the coefficient
EXAMPLES:
sage: # needs sage.modules sage: from sage.data_structures.stream import Stream_function, Stream_plethysm sage: s = SymmetricFunctions(QQ).s() sage: p = SymmetricFunctions(QQ).p() sage: f = Stream_function(lambda n: s[n], True, 1) sage: g = Stream_function(lambda n: s[[1]*n], True, 1) sage: h = Stream_plethysm(f, g, True, p) sage: s(h.get_coefficient(5)) 4*s[1, 1, 1, 1, 1] + 4*s[2, 1, 1, 1] + 2*s[2, 2, 1] + 2*s[3, 1, 1] + s[3, 2] + s[4, 1] + s[5] sage: [s(h.get_coefficient(i)) for i in range(6)] [0, s[1], s[1, 1] + s[2], 2*s[1, 1, 1] + s[2, 1] + s[3], 3*s[1, 1, 1, 1] + 2*s[2, 1, 1] + s[2, 2] + s[3, 1] + s[4], 4*s[1, 1, 1, 1, 1] + 4*s[2, 1, 1, 1] + 2*s[2, 2, 1] + 2*s[3, 1, 1] + s[3, 2] + s[4, 1] + s[5]]
>>> from sage.all import * >>> # needs sage.modules >>> from sage.data_structures.stream import Stream_function, Stream_plethysm >>> s = SymmetricFunctions(QQ).s() >>> p = SymmetricFunctions(QQ).p() >>> f = Stream_function(lambda n: s[n], True, Integer(1)) >>> g = Stream_function(lambda n: s[[Integer(1)]*n], True, Integer(1)) >>> h = Stream_plethysm(f, g, True, p) >>> s(h.get_coefficient(Integer(5))) 4*s[1, 1, 1, 1, 1] + 4*s[2, 1, 1, 1] + 2*s[2, 2, 1] + 2*s[3, 1, 1] + s[3, 2] + s[4, 1] + s[5] >>> [s(h.get_coefficient(i)) for i in range(Integer(6))] [0, s[1], s[1, 1] + s[2], 2*s[1, 1, 1] + s[2, 1] + s[3], 3*s[1, 1, 1, 1] + 2*s[2, 1, 1] + s[2, 2] + s[3, 1] + s[4], 4*s[1, 1, 1, 1, 1] + 4*s[2, 1, 1, 1] + 2*s[2, 2, 1] + 2*s[3, 1, 1] + s[3, 2] + s[4, 1] + s[5]]
- stretched_power_restrict_degree(i, m, d)[source]#
Return the degree
d*i
part ofp([i]*m)(g)
in terms ofself._basis
.INPUT:
i
,m
– positive integersd
– integer
EXAMPLES:
sage: # needs sage.modules sage: from sage.data_structures.stream import Stream_plethysm, Stream_exact, Stream_function, Stream_zero sage: s = SymmetricFunctions(QQ).s() sage: p = SymmetricFunctions(QQ).p() sage: f = Stream_exact([1]) # irrelevant for this test sage: g = Stream_exact([s[2], s[3]], 0, 4, 2) sage: h = Stream_plethysm(f, g, True, p) sage: A = h.stretched_power_restrict_degree(2, 3, 6) sage: A == p[2,2,2](s[2] + s[3]).homogeneous_component(12) True sage: # needs sage.modules sage: p2 = tensor([p, p]) sage: f = Stream_exact([1]) # irrelevant for this test sage: g = Stream_function(lambda n: sum(tensor([p[k], p[n-k]]) ....: for k in range(n+1)), True, 1) sage: h = Stream_plethysm(f, g, True, p2) sage: A = h.stretched_power_restrict_degree(2, 3, 6) sage: B = p[2,2,2](sum(g[n] for n in range(7))) # long time sage: B = p2.element_class(p2, {m: c for m, c in B # long time ....: if sum(mu.size() for mu in m) == 12}) sage: A == B # long time True
>>> from sage.all import * >>> # needs sage.modules >>> from sage.data_structures.stream import Stream_plethysm, Stream_exact, Stream_function, Stream_zero >>> s = SymmetricFunctions(QQ).s() >>> p = SymmetricFunctions(QQ).p() >>> f = Stream_exact([Integer(1)]) # irrelevant for this test >>> g = Stream_exact([s[Integer(2)], s[Integer(3)]], Integer(0), Integer(4), Integer(2)) >>> h = Stream_plethysm(f, g, True, p) >>> A = h.stretched_power_restrict_degree(Integer(2), Integer(3), Integer(6)) >>> A == p[Integer(2),Integer(2),Integer(2)](s[Integer(2)] + s[Integer(3)]).homogeneous_component(Integer(12)) True >>> # needs sage.modules >>> p2 = tensor([p, p]) >>> f = Stream_exact([Integer(1)]) # irrelevant for this test >>> g = Stream_function(lambda n: sum(tensor([p[k], p[n-k]]) ... for k in range(n+Integer(1))), True, Integer(1)) >>> h = Stream_plethysm(f, g, True, p2) >>> A = h.stretched_power_restrict_degree(Integer(2), Integer(3), Integer(6)) >>> B = p[Integer(2),Integer(2),Integer(2)](sum(g[n] for n in range(Integer(7)))) # long time >>> B = p2.element_class(p2, {m: c for m, c in B # long time ... if sum(mu.size() for mu in m) == Integer(12)}) >>> A == B # long time True
- class sage.data_structures.stream.Stream_rmul(series, scalar, is_sparse)[source]#
Bases:
Stream_scalar
Operator for multiplying a coefficient stream with a scalar as
scalar * self
.INPUT:
series
– aStream
scalar
– a non-zero, non-one scalar
EXAMPLES:
sage: # needs sage.modules sage: from sage.data_structures.stream import (Stream_rmul, Stream_function) sage: W = algebras.DifferentialWeyl(QQ, names=('x',)) sage: x, dx = W.gens() sage: f = Stream_function(lambda n: x^n, True, 1) sage: g = Stream_rmul(f, dx, True) sage: [g[i] for i in range(5)] [0, x*dx + 1, x^2*dx + 2*x, x^3*dx + 3*x^2, x^4*dx + 4*x^3]
>>> from sage.all import * >>> # needs sage.modules >>> from sage.data_structures.stream import (Stream_rmul, Stream_function) >>> W = algebras.DifferentialWeyl(QQ, names=('x',)) >>> x, dx = W.gens() >>> f = Stream_function(lambda n: x**n, True, Integer(1)) >>> g = Stream_rmul(f, dx, True) >>> [g[i] for i in range(Integer(5))] [0, x*dx + 1, x^2*dx + 2*x, x^3*dx + 3*x^2, x^4*dx + 4*x^3]
- get_coefficient(n)[source]#
Return the
n
-th coefficient ofself
.INPUT:
n
– integer; the degree for the coefficient
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_rmul, Stream_function) sage: f = Stream_function(lambda n: n, True, 1) sage: g = Stream_rmul(f, 3, True) sage: g.get_coefficient(5) 15 sage: [g.get_coefficient(i) for i in range(10)] [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_rmul, Stream_function) >>> f = Stream_function(lambda n: n, True, Integer(1)) >>> g = Stream_rmul(f, Integer(3), True) >>> g.get_coefficient(Integer(5)) 15 >>> [g.get_coefficient(i) for i in range(Integer(10))] [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
- class sage.data_structures.stream.Stream_scalar(series, scalar, is_sparse)[source]#
Bases:
Stream_unary
Base class for operators multiplying a coefficient stream by a scalar.
INPUT:
series
– aStream
scalar
– a non-zero, non-one scalaris_sparse
– boolean
- is_nonzero()[source]#
Return
True
if and only if this stream is known to be non-zero.EXAMPLES:
sage: from sage.data_structures.stream import (Stream_rmul, Stream_function) sage: f = Stream_function(lambda n: n, True, 1) sage: g = Stream_rmul(f, 2, True) sage: g.is_nonzero() False sage: from sage.data_structures.stream import Stream_cauchy_invert sage: fi = Stream_cauchy_invert(f) sage: g = Stream_rmul(fi, 2, True) sage: g.is_nonzero() True
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_rmul, Stream_function) >>> f = Stream_function(lambda n: n, True, Integer(1)) >>> g = Stream_rmul(f, Integer(2), True) >>> g.is_nonzero() False >>> from sage.data_structures.stream import Stream_cauchy_invert >>> fi = Stream_cauchy_invert(f) >>> g = Stream_rmul(fi, Integer(2), True) >>> g.is_nonzero() True
- class sage.data_structures.stream.Stream_shift(series, shift)[source]#
Bases:
Stream
Operator for shifting a non-zero, non-exact stream.
Instances of this class share the cache with its input stream.
INPUT:
series
– aStream
shift
– an integer
- is_nonzero()[source]#
Return
True
if and only if this stream is known to be non-zero.An assumption of this class is that it is non-zero.
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_cauchy_invert, Stream_function) sage: f = Stream_function(lambda n: n^2, False, 1) sage: g = Stream_cauchy_invert(f) sage: g.is_nonzero() True
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_cauchy_invert, Stream_function) >>> f = Stream_function(lambda n: n**Integer(2), False, Integer(1)) >>> g = Stream_cauchy_invert(f) >>> g.is_nonzero() True
- is_uninitialized()[source]#
Return
True
ifself
is an uninitialized stream.EXAMPLES:
sage: from sage.data_structures.stream import Stream_uninitialized, Stream_shift sage: C = Stream_uninitialized(0) sage: S = Stream_shift(C, 5) sage: S.is_uninitialized() True
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_uninitialized, Stream_shift >>> C = Stream_uninitialized(Integer(0)) >>> S = Stream_shift(C, Integer(5)) >>> S.is_uninitialized() True
- order()[source]#
Return the order of
self
, which is the minimum indexn
such thatself[n]
is non-zero.EXAMPLES:
sage: from sage.data_structures.stream import Stream_function, Stream_shift sage: s = Stream_shift(Stream_function(lambda n: n, True, 0), 2) sage: s.order() 3
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_function, Stream_shift >>> s = Stream_shift(Stream_function(lambda n: n, True, Integer(0)), Integer(2)) >>> s.order() 3
- class sage.data_structures.stream.Stream_sub(left, right, is_sparse)[source]#
Bases:
Stream_binary
Operator for subtraction of two coefficient streams.
INPUT:
left
–Stream
of coefficients on the left side of the operatorright
–Stream
of coefficients on the right side of the operator
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_sub, Stream_function) sage: f = Stream_function(lambda n: n, True, 0) sage: g = Stream_function(lambda n: 1, True, 0) sage: h = Stream_sub(f, g, True) sage: [h[i] for i in range(10)] [-1, 0, 1, 2, 3, 4, 5, 6, 7, 8] sage: u = Stream_sub(g, f, True) sage: [u[i] for i in range(10)] [1, 0, -1, -2, -3, -4, -5, -6, -7, -8]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_sub, Stream_function) >>> f = Stream_function(lambda n: n, True, Integer(0)) >>> g = Stream_function(lambda n: Integer(1), True, Integer(0)) >>> h = Stream_sub(f, g, True) >>> [h[i] for i in range(Integer(10))] [-1, 0, 1, 2, 3, 4, 5, 6, 7, 8] >>> u = Stream_sub(g, f, True) >>> [u[i] for i in range(Integer(10))] [1, 0, -1, -2, -3, -4, -5, -6, -7, -8]
- get_coefficient(n)[source]#
Return the
n
-th coefficient ofself
.INPUT:
n
– integer; the degree for the coefficient
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_function, Stream_sub) sage: f = Stream_function(lambda n: n, True, 0) sage: g = Stream_function(lambda n: n^2, True, 0) sage: h = Stream_sub(f, g, True) sage: h.get_coefficient(5) -20 sage: [h.get_coefficient(i) for i in range(10)] [0, 0, -2, -6, -12, -20, -30, -42, -56, -72]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_function, Stream_sub) >>> f = Stream_function(lambda n: n, True, Integer(0)) >>> g = Stream_function(lambda n: n**Integer(2), True, Integer(0)) >>> h = Stream_sub(f, g, True) >>> h.get_coefficient(Integer(5)) -20 >>> [h.get_coefficient(i) for i in range(Integer(10))] [0, 0, -2, -6, -12, -20, -30, -42, -56, -72]
- class sage.data_structures.stream.Stream_taylor(function, is_sparse)[source]#
Bases:
Stream_inexact
Class that returns a stream for the Taylor series of a function.
INPUT:
function
– a function that has aderivative
method and takes a single inputis_sparse
– boolean; specifies whether the stream is sparse
EXAMPLES:
sage: from sage.data_structures.stream import Stream_taylor sage: g(x) = sin(x) sage: f = Stream_taylor(g, False) sage: f[3] -1/6 sage: [f[i] for i in range(10)] [0, 1, 0, -1/6, 0, 1/120, 0, -1/5040, 0, 1/362880] sage: g(y) = cos(y) sage: f = Stream_taylor(g, False) sage: n = f.iterate_coefficients() sage: [next(n) for _ in range(10)] [1, 0, -1/2, 0, 1/24, 0, -1/720, 0, 1/40320, 0] sage: g(z) = 1 / (1 - 2*z) sage: f = Stream_taylor(g, True) sage: [f[i] for i in range(4)] [1, 2, 4, 8]
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_taylor >>> __tmp__=var("x"); g = symbolic_expression(sin(x)).function(x) >>> f = Stream_taylor(g, False) >>> f[Integer(3)] -1/6 >>> [f[i] for i in range(Integer(10))] [0, 1, 0, -1/6, 0, 1/120, 0, -1/5040, 0, 1/362880] >>> __tmp__=var("y"); g = symbolic_expression(cos(y)).function(y) >>> f = Stream_taylor(g, False) >>> n = f.iterate_coefficients() >>> [next(n) for _ in range(Integer(10))] [1, 0, -1/2, 0, 1/24, 0, -1/720, 0, 1/40320, 0] >>> __tmp__=var("z"); g = symbolic_expression(Integer(1) / (Integer(1) - Integer(2)*z)).function(z) >>> f = Stream_taylor(g, True) >>> [f[i] for i in range(Integer(4))] [1, 2, 4, 8]
- get_coefficient(n)[source]#
Return the
n
-th coefficient ofself
.INPUT:
n
– integer; the degree for the coefficient
EXAMPLES:
sage: from sage.data_structures.stream import Stream_taylor sage: g(x) = exp(x) sage: f = Stream_taylor(g, True) sage: f.get_coefficient(5) 1/120 sage: from sage.data_structures.stream import Stream_taylor sage: y = SR.var('y') sage: f = Stream_taylor(sin(y), True) sage: f.get_coefficient(0) 0 sage: f.get_coefficient(5) 1/120
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_taylor >>> __tmp__=var("x"); g = symbolic_expression(exp(x)).function(x) >>> f = Stream_taylor(g, True) >>> f.get_coefficient(Integer(5)) 1/120 >>> from sage.data_structures.stream import Stream_taylor >>> y = SR.var('y') >>> f = Stream_taylor(sin(y), True) >>> f.get_coefficient(Integer(0)) 0 >>> f.get_coefficient(Integer(5)) 1/120
- iterate_coefficients()[source]#
A generator for the coefficients of
self
.EXAMPLES:
sage: from sage.data_structures.stream import Stream_taylor sage: x = polygen(QQ, 'x') sage: f = Stream_taylor(x^3, False) sage: it = f.iterate_coefficients() sage: [next(it) for _ in range(10)] [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] sage: y = SR.var('y') sage: f = Stream_taylor(y^3, False) sage: it = f.iterate_coefficients() sage: [next(it) for _ in range(10)] [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_taylor >>> x = polygen(QQ, 'x') >>> f = Stream_taylor(x**Integer(3), False) >>> it = f.iterate_coefficients() >>> [next(it) for _ in range(Integer(10))] [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] >>> y = SR.var('y') >>> f = Stream_taylor(y**Integer(3), False) >>> it = f.iterate_coefficients() >>> [next(it) for _ in range(Integer(10))] [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
- class sage.data_structures.stream.Stream_truncated(series, shift, minimal_valuation)[source]#
Bases:
Stream_unary
Operator for shifting a non-zero, non-exact stream that has been shifted below its minimal valuation.
Instances of this class share the cache with its input stream.
INPUT:
series
– aStream_inexact
shift
– an integerminimal_valuation
– an integer; this is also the approximate order
- is_nonzero()[source]#
Return
True
if and only if this stream is known to be non-zero.EXAMPLES:
sage: from sage.data_structures.stream import Stream_function, Stream_truncated sage: def fun(n): return 1 if ZZ(n).is_power_of(2) else 0 sage: f = Stream_function(fun, False, 0) sage: [f[i] for i in range(0, 4)] [0, 1, 1, 0] sage: f._cache [1, 1, 0] sage: s = Stream_truncated(f, -5, 0) sage: s.is_nonzero() False sage: [f[i] for i in range(7,10)] # updates the cache of s [0, 1, 0] sage: s.is_nonzero() True sage: f = Stream_function(fun, True, 0) sage: [f[i] for i in range(0, 4)] [0, 1, 1, 0] sage: f._cache {1: 1, 2: 1, 3: 0} sage: s = Stream_truncated(f, -5, 0) sage: s.is_nonzero() False sage: [f[i] for i in range(7,10)] # updates the cache of s [0, 1, 0] sage: s.is_nonzero() True
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_function, Stream_truncated >>> def fun(n): return Integer(1) if ZZ(n).is_power_of(Integer(2)) else Integer(0) >>> f = Stream_function(fun, False, Integer(0)) >>> [f[i] for i in range(Integer(0), Integer(4))] [0, 1, 1, 0] >>> f._cache [1, 1, 0] >>> s = Stream_truncated(f, -Integer(5), Integer(0)) >>> s.is_nonzero() False >>> [f[i] for i in range(Integer(7),Integer(10))] # updates the cache of s [0, 1, 0] >>> s.is_nonzero() True >>> f = Stream_function(fun, True, Integer(0)) >>> [f[i] for i in range(Integer(0), Integer(4))] [0, 1, 1, 0] >>> f._cache {1: 1, 2: 1, 3: 0} >>> s = Stream_truncated(f, -Integer(5), Integer(0)) >>> s.is_nonzero() False >>> [f[i] for i in range(Integer(7),Integer(10))] # updates the cache of s [0, 1, 0] >>> s.is_nonzero() True
- order()[source]#
Return the order of
self
, which is the minimum indexn
such thatself[n]
is non-zero.EXAMPLES:
sage: from sage.data_structures.stream import Stream_function, Stream_truncated sage: def fun(n): return 1 if ZZ(n).is_power_of(2) else 0 sage: s = Stream_truncated(Stream_function(fun, True, 0), -5, 0) sage: s.order() 3 sage: s = Stream_truncated(Stream_function(fun, False, 0), -5, 0) sage: s.order() 3
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_function, Stream_truncated >>> def fun(n): return Integer(1) if ZZ(n).is_power_of(Integer(2)) else Integer(0) >>> s = Stream_truncated(Stream_function(fun, True, Integer(0)), -Integer(5), Integer(0)) >>> s.order() 3 >>> s = Stream_truncated(Stream_function(fun, False, Integer(0)), -Integer(5), Integer(0)) >>> s.order() 3
Check that it also worked properly with the cache partially filled:
sage: f = Stream_function(fun, True, 0) sage: dummy = [f[i] for i in range(10)] sage: s = Stream_truncated(f, -5, 0) sage: s.order() 3 sage: f = Stream_function(fun, False, 0) sage: dummy = [f[i] for i in range(10)] sage: s = Stream_truncated(f, -5, 0) sage: s.order() 3
>>> from sage.all import * >>> f = Stream_function(fun, True, Integer(0)) >>> dummy = [f[i] for i in range(Integer(10))] >>> s = Stream_truncated(f, -Integer(5), Integer(0)) >>> s.order() 3 >>> f = Stream_function(fun, False, Integer(0)) >>> dummy = [f[i] for i in range(Integer(10))] >>> s = Stream_truncated(f, -Integer(5), Integer(0)) >>> s.order() 3
- class sage.data_structures.stream.Stream_unary(series, is_sparse, true_order=False)[source]#
Bases:
Stream_inexact
Base class for unary operators on coefficient streams.
INPUT:
series
–Stream
the operator acts onis_sparse
– booleantrue_order
– boolean (default:False
) if the approximate order is the actual order
EXAMPLES:
sage: from sage.data_structures.stream import (Stream_function, Stream_cauchy_invert, Stream_lmul) sage: f = Stream_function(lambda n: 2*n, False, 1) sage: g = Stream_cauchy_invert(f) sage: [g[i] for i in range(10)] [-1, 1/2, 0, 0, 0, 0, 0, 0, 0, 0] sage: g = Stream_lmul(f, 2, True) sage: [g[i] for i in range(10)] [0, 4, 8, 12, 16, 20, 24, 28, 32, 36]
>>> from sage.all import * >>> from sage.data_structures.stream import (Stream_function, Stream_cauchy_invert, Stream_lmul) >>> f = Stream_function(lambda n: Integer(2)*n, False, Integer(1)) >>> g = Stream_cauchy_invert(f) >>> [g[i] for i in range(Integer(10))] [-1, 1/2, 0, 0, 0, 0, 0, 0, 0, 0] >>> g = Stream_lmul(f, Integer(2), True) >>> [g[i] for i in range(Integer(10))] [0, 4, 8, 12, 16, 20, 24, 28, 32, 36]
- is_uninitialized()[source]#
Return
True
ifself
is an uninitialized stream.EXAMPLES:
sage: from sage.data_structures.stream import Stream_uninitialized, Stream_unary sage: C = Stream_uninitialized(0) sage: M = Stream_unary(C, True) sage: M.is_uninitialized() True
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_uninitialized, Stream_unary >>> C = Stream_uninitialized(Integer(0)) >>> M = Stream_unary(C, True) >>> M.is_uninitialized() True
- class sage.data_structures.stream.Stream_uninitialized(approximate_order, true_order=False)[source]#
Bases:
Stream_inexact
Coefficient stream for an uninitialized series.
INPUT:
approximate_order
– integer; a lower bound for the order of the stream
Instances of this class are always dense.
Todo
Should instances of this class share the cache with its
_target
?EXAMPLES:
sage: from sage.data_structures.stream import Stream_uninitialized sage: from sage.data_structures.stream import Stream_exact sage: one = Stream_exact([1]) sage: C = Stream_uninitialized(0) sage: C._target sage: C._target = one sage: C[4] 0
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_uninitialized >>> from sage.data_structures.stream import Stream_exact >>> one = Stream_exact([Integer(1)]) >>> C = Stream_uninitialized(Integer(0)) >>> C._target >>> C._target = one >>> C[Integer(4)] 0
- is_uninitialized()[source]#
Return
True
ifself
is an uninitialized stream.EXAMPLES:
sage: from sage.data_structures.stream import Stream_uninitialized sage: C = Stream_uninitialized(0) sage: C.is_uninitialized() True
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_uninitialized >>> C = Stream_uninitialized(Integer(0)) >>> C.is_uninitialized() True
A more subtle uninitialized series:
sage: L.<z> = LazyPowerSeriesRing(QQ) sage: T = L.undefined(1) sage: D = L.undefined(0) sage: T.define(z * exp(T) * D) sage: T._coeff_stream.is_uninitialized() True
>>> from sage.all import * >>> L = LazyPowerSeriesRing(QQ, names=('z',)); (z,) = L._first_ngens(1) >>> T = L.undefined(Integer(1)) >>> D = L.undefined(Integer(0)) >>> T.define(z * exp(T) * D) >>> T._coeff_stream.is_uninitialized() True
- iterate_coefficients()[source]#
A generator for the coefficients of
self
.EXAMPLES:
sage: from sage.data_structures.stream import Stream_uninitialized sage: from sage.data_structures.stream import Stream_exact sage: z = Stream_exact([1], order=1) sage: C = Stream_uninitialized(0) sage: C._target sage: C._target = z sage: n = C.iterate_coefficients() sage: [next(n) for _ in range(10)] [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_uninitialized >>> from sage.data_structures.stream import Stream_exact >>> z = Stream_exact([Integer(1)], order=Integer(1)) >>> C = Stream_uninitialized(Integer(0)) >>> C._target >>> C._target = z >>> n = C.iterate_coefficients() >>> [next(n) for _ in range(Integer(10))] [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
- class sage.data_structures.stream.Stream_zero[source]#
Bases:
Stream
A coefficient stream that is exactly equal to zero.
EXAMPLES:
sage: from sage.data_structures.stream import Stream_zero sage: s = Stream_zero() sage: s[5] 0
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_zero >>> s = Stream_zero() >>> s[Integer(5)] 0
- order()[source]#
Return the order of
self
, which isinfinity
.EXAMPLES:
sage: from sage.data_structures.stream import Stream_zero sage: s = Stream_zero() sage: s.order() +Infinity
>>> from sage.all import * >>> from sage.data_structures.stream import Stream_zero >>> s = Stream_zero() >>> s.order() +Infinity