Drinfeld modules over rings of characteristic zero¶
This module provides the classes
sage.rings.function_fields.drinfeld_module.charzero_drinfeld_module.DrinfeldModule_charzero
and
sage.rings.function_fields.drinfeld_module.charzero_drinfeld_module.DrinfeldModule_rational
,
which both inherit
sage.rings.function_fields.drinfeld_module.drinfeld_module.DrinfeldModule
.
AUTHORS:
David Ayotte (2023-09)
Xavier Caruso (2024-12) - computation of class polynomials
- class sage.rings.function_field.drinfeld_modules.charzero_drinfeld_module.DrinfeldModule_charzero(gen, category)[source]¶
Bases:
DrinfeldModule
This class implements Drinfeld \(\mathbb{F}_q[T]\)-modules defined over fields of \(\mathbb{F}_q[T]\)-characteristic zero.
Recall that the \(\mathbb{F}_q[T]\)-characteristic is defined as the kernel of the underlying structure morphism. For general definitions and help on Drinfeld modules, see class
sage.rings.function_fields.drinfeld_module.drinfeld_module.DrinfeldModule
.Construction:
The user does not ever need to directly call
DrinfeldModule_charzero
— the metaclassDrinfeldModule
is responsible for instantiating the right class depending on the input:sage: A = GF(3)['T'] sage: K.<T> = Frac(A) sage: phi = DrinfeldModule(A, [T, 1]) sage: phi Drinfeld module defined by T |--> t + T
>>> from sage.all import * >>> A = GF(Integer(3))['T'] >>> K = Frac(A, names=('T',)); (T,) = K._first_ngens(1) >>> phi = DrinfeldModule(A, [T, Integer(1)]) >>> phi Drinfeld module defined by T |--> t + T
sage: isinstance(phi, DrinfeldModule) True sage: from sage.rings.function_field.drinfeld_modules.charzero_drinfeld_module import DrinfeldModule_charzero sage: isinstance(phi, DrinfeldModule_charzero) True
>>> from sage.all import * >>> isinstance(phi, DrinfeldModule) True >>> from sage.rings.function_field.drinfeld_modules.charzero_drinfeld_module import DrinfeldModule_charzero >>> isinstance(phi, DrinfeldModule_charzero) True
Logarithm and exponential
It is possible to calculate the logarithm and the exponential of any Drinfeld modules of characteristic zero:
sage: A = GF(2)['T'] sage: K.<T> = Frac(A) sage: phi = DrinfeldModule(A, [T, 1]) sage: phi.exponential() z + ((1/(T^2+T))*z^2) + ((1/(T^8+T^6+T^5+T^3))*z^4) + O(z^8) sage: phi.logarithm() z + ((1/(T^2+T))*z^2) + ((1/(T^6+T^5+T^3+T^2))*z^4) + O(z^8)
>>> from sage.all import * >>> A = GF(Integer(2))['T'] >>> K = Frac(A, names=('T',)); (T,) = K._first_ngens(1) >>> phi = DrinfeldModule(A, [T, Integer(1)]) >>> phi.exponential() z + ((1/(T^2+T))*z^2) + ((1/(T^8+T^6+T^5+T^3))*z^4) + O(z^8) >>> phi.logarithm() z + ((1/(T^2+T))*z^2) + ((1/(T^6+T^5+T^3+T^2))*z^4) + O(z^8)
Goss polynomials
Goss polynomials are a sequence of polynomials related with the analytic theory of Drinfeld module. They provide a function field analogue of certain classical trigonometric functions:
sage: A = GF(2)['T'] sage: K.<T> = Frac(A) sage: phi = DrinfeldModule(A, [T, 1]) sage: phi.goss_polynomial(1) X sage: phi.goss_polynomial(2) X^2 sage: phi.goss_polynomial(3) X^3 + (1/(T^2 + T))*X^2
>>> from sage.all import * >>> A = GF(Integer(2))['T'] >>> K = Frac(A, names=('T',)); (T,) = K._first_ngens(1) >>> phi = DrinfeldModule(A, [T, Integer(1)]) >>> phi.goss_polynomial(Integer(1)) X >>> phi.goss_polynomial(Integer(2)) X^2 >>> phi.goss_polynomial(Integer(3)) X^3 + (1/(T^2 + T))*X^2
Base fields of \(\mathbb{F}_q[T]\)-characteristic zero
The base fields need not only be fraction fields of polynomials ring. In the following example, we construct a Drinfeld module over \(\mathbb{F}_q((1/T))\), the completion of the rational function field at the place \(1/T\):
sage: A.<T> = GF(2)[] sage: L.<s> = LaurentSeriesRing(GF(2)) # s = 1/T sage: phi = DrinfeldModule(A, [1/s, s + s^2 + s^5 + O(s^6), 1+1/s]) sage: phi(T) (s^-1 + 1)*t^2 + (s + s^2 + s^5 + O(s^6))*t + s^-1
>>> from sage.all import * >>> A = GF(Integer(2))['T']; (T,) = A._first_ngens(1) >>> L = LaurentSeriesRing(GF(Integer(2)), names=('s',)); (s,) = L._first_ngens(1)# s = 1/T >>> phi = DrinfeldModule(A, [Integer(1)/s, s + s**Integer(2) + s**Integer(5) + O(s**Integer(6)), Integer(1)+Integer(1)/s]) >>> phi(T) (s^-1 + 1)*t^2 + (s + s^2 + s^5 + O(s^6))*t + s^-1
One can also construct Drinfeld modules over SageMath’s global function fields:
sage: A.<T> = GF(5)[] sage: K.<z> = FunctionField(GF(5)) # z = T sage: phi = DrinfeldModule(A, [z, 1, z^2]) sage: phi(T) z^2*t^2 + t + z
>>> from sage.all import * >>> A = GF(Integer(5))['T']; (T,) = A._first_ngens(1) >>> K = FunctionField(GF(Integer(5)), names=('z',)); (z,) = K._first_ngens(1)# z = T >>> phi = DrinfeldModule(A, [z, Integer(1), z**Integer(2)]) >>> phi(T) z^2*t^2 + t + z
- exponential(prec=+Infinity, name='z')[source]¶
Return the exponential of this Drinfeld module.
Note that the exponential is only defined when the \(\mathbb{F}_q[T]\)-characteristic is zero.
INPUT:
prec
– an integer orInfinity
(default:Infinity
); the precision at which the series is returned; ifInfinity
, a lazy power series in returned, else, a classical power series is returned.name
– string (default:'z'
); the name of the generator of the lazy power series ring
EXAMPLES:
sage: A = GF(2)['T'] sage: K.<T> = Frac(A) sage: phi = DrinfeldModule(A, [T, 1]) sage: q = A.base_ring().cardinality()
>>> from sage.all import * >>> A = GF(Integer(2))['T'] >>> K = Frac(A, names=('T',)); (T,) = K._first_ngens(1) >>> phi = DrinfeldModule(A, [T, Integer(1)]) >>> q = A.base_ring().cardinality()
When
prec
isInfinity
(which is the default), the exponential is returned as a lazy power series, meaning that any of its coefficients can be computed on demands:sage: exp = phi.exponential(); exp z + ((1/(T^2+T))*z^2) + ((1/(T^8+T^6+T^5+T^3))*z^4) + O(z^8) sage: exp[2^4] 1/(T^64 + T^56 + T^52 + ... + T^27 + T^23 + T^15) sage: exp[2^5] 1/(T^160 + T^144 + T^136 + ... + T^55 + T^47 + T^31)
>>> from sage.all import * >>> exp = phi.exponential(); exp z + ((1/(T^2+T))*z^2) + ((1/(T^8+T^6+T^5+T^3))*z^4) + O(z^8) >>> exp[Integer(2)**Integer(4)] 1/(T^64 + T^56 + T^52 + ... + T^27 + T^23 + T^15) >>> exp[Integer(2)**Integer(5)] 1/(T^160 + T^144 + T^136 + ... + T^55 + T^47 + T^31)
On the contrary, when
prec
is a finite number, all the required coefficients are computed at once:sage: phi.exponential(prec=10) z + (1/(T^2 + T))*z^2 + (1/(T^8 + T^6 + T^5 + T^3))*z^4 + (1/(T^24 + T^20 + T^18 + T^17 + T^14 + T^13 + T^11 + T^7))*z^8 + O(z^10)
>>> from sage.all import * >>> phi.exponential(prec=Integer(10)) z + (1/(T^2 + T))*z^2 + (1/(T^8 + T^6 + T^5 + T^3))*z^4 + (1/(T^24 + T^20 + T^18 + T^17 + T^14 + T^13 + T^11 + T^7))*z^8 + O(z^10)
Example in higher rank:
sage: A = GF(5)['T'] sage: K.<T> = Frac(A) sage: phi = DrinfeldModule(A, [T, T^2, T + T^2 + T^4, 1]) sage: exp = phi.exponential(); exp z + ((T/(T^4+4))*z^5) + O(z^8)
>>> from sage.all import * >>> A = GF(Integer(5))['T'] >>> K = Frac(A, names=('T',)); (T,) = K._first_ngens(1) >>> phi = DrinfeldModule(A, [T, T**Integer(2), T + T**Integer(2) + T**Integer(4), Integer(1)]) >>> exp = phi.exponential(); exp z + ((T/(T^4+4))*z^5) + O(z^8)
The exponential is the compositional inverse of the logarithm (see
logarithm()
):sage: log = phi.logarithm(); log z + ((4*T/(T^4+4))*z^5) + O(z^8) sage: exp.compose(log) z + O(z^8) sage: log.compose(exp) z + O(z^8)
>>> from sage.all import * >>> log = phi.logarithm(); log z + ((4*T/(T^4+4))*z^5) + O(z^8) >>> exp.compose(log) z + O(z^8) >>> log.compose(exp) z + O(z^8)
REFERENCE:
See section 4.6 of [Gos1998] for the definition of the exponential.
- goss_polynomial(n, var='X')[source]¶
Return the \(n\)-th Goss polynomial of the Drinfeld module.
Note that Goss polynomials are only defined for Drinfeld modules of characteristic zero.
INPUT:
n
– integer; the index of the Goss polynomialvar
– string (default:'X'
); the name of polynomial variable
OUTPUT: a univariate polynomial in
var
over the base \(A\)-fieldEXAMPLES:
sage: A = GF(3)['T'] sage: K.<T> = Frac(A) sage: phi = DrinfeldModule(A, [T, 1]) # Carlitz module sage: phi.goss_polynomial(1) X sage: phi.goss_polynomial(2) X^2 sage: phi.goss_polynomial(4) X^4 + (1/(T^3 + 2*T))*X^2 sage: phi.goss_polynomial(5) X^5 + (2/(T^3 + 2*T))*X^3 sage: phi.goss_polynomial(10) X^10 + (1/(T^3 + 2*T))*X^8 + (1/(T^6 + T^4 + T^2))*X^6 + (1/(T^9 + 2*T^3))*X^4 + (1/(T^18 + 2*T^12 + 2*T^10 + T^4))*X^2
>>> from sage.all import * >>> A = GF(Integer(3))['T'] >>> K = Frac(A, names=('T',)); (T,) = K._first_ngens(1) >>> phi = DrinfeldModule(A, [T, Integer(1)]) # Carlitz module >>> phi.goss_polynomial(Integer(1)) X >>> phi.goss_polynomial(Integer(2)) X^2 >>> phi.goss_polynomial(Integer(4)) X^4 + (1/(T^3 + 2*T))*X^2 >>> phi.goss_polynomial(Integer(5)) X^5 + (2/(T^3 + 2*T))*X^3 >>> phi.goss_polynomial(Integer(10)) X^10 + (1/(T^3 + 2*T))*X^8 + (1/(T^6 + T^4 + T^2))*X^6 + (1/(T^9 + 2*T^3))*X^4 + (1/(T^18 + 2*T^12 + 2*T^10 + T^4))*X^2
REFERENCE:
Section 3 of [Gek1988] provides an exposition of Goss polynomials.
- logarithm(prec=+Infinity, name='z')[source]¶
Return the logarithm of the given Drinfeld module.
By definition, the logarithm is the compositional inverse of the exponential (see
exponential()
). Note that the logarithm is only defined when the \(\mathbb{F}_q[T]\)-characteristic is zero.INPUT:
prec
– an integer orInfinity
(default:Infinity
); the precision at which the series is returned; ifInfinity
, a lazy power series in returnedname
– string (default:'z'
); the name of the generator of the lazy power series ring
EXAMPLES:
sage: A = GF(2)['T'] sage: K.<T> = Frac(A) sage: phi = DrinfeldModule(A, [T, 1])
>>> from sage.all import * >>> A = GF(Integer(2))['T'] >>> K = Frac(A, names=('T',)); (T,) = K._first_ngens(1) >>> phi = DrinfeldModule(A, [T, Integer(1)])
When
prec
isInfinity
(which is the default), the logarithm is returned as a lazy power series, meaning that any of its coefficients can be computed on demands:sage: log = phi.logarithm(); log z + ((1/(T^2+T))*z^2) + ((1/(T^6+T^5+T^3+T^2))*z^4) + O(z^8) sage: log[2^4] 1/(T^30 + T^29 + T^27 + ... + T^7 + T^5 + T^4) sage: log[2^5] 1/(T^62 + T^61 + T^59 + ... + T^8 + T^6 + T^5)
>>> from sage.all import * >>> log = phi.logarithm(); log z + ((1/(T^2+T))*z^2) + ((1/(T^6+T^5+T^3+T^2))*z^4) + O(z^8) >>> log[Integer(2)**Integer(4)] 1/(T^30 + T^29 + T^27 + ... + T^7 + T^5 + T^4) >>> log[Integer(2)**Integer(5)] 1/(T^62 + T^61 + T^59 + ... + T^8 + T^6 + T^5)
If
prec
is a finite number, all the required coefficients are computed at once:sage: phi.logarithm(prec=10) z + (1/(T^2 + T))*z^2 + (1/(T^6 + T^5 + T^3 + T^2))*z^4 + (1/(T^14 + T^13 + T^11 + T^10 + T^7 + T^6 + T^4 + T^3))*z^8 + O(z^10)
>>> from sage.all import * >>> phi.logarithm(prec=Integer(10)) z + (1/(T^2 + T))*z^2 + (1/(T^6 + T^5 + T^3 + T^2))*z^4 + (1/(T^14 + T^13 + T^11 + T^10 + T^7 + T^6 + T^4 + T^3))*z^8 + O(z^10)
Example in higher rank:
sage: A = GF(5)['T'] sage: K.<T> = Frac(A) sage: phi = DrinfeldModule(A, [T, T^2, T + T^2 + T^4, 1]) sage: phi.logarithm() z + ((4*T/(T^4+4))*z^5) + O(z^8)
>>> from sage.all import * >>> A = GF(Integer(5))['T'] >>> K = Frac(A, names=('T',)); (T,) = K._first_ngens(1) >>> phi = DrinfeldModule(A, [T, T**Integer(2), T + T**Integer(2) + T**Integer(4), Integer(1)]) >>> phi.logarithm() z + ((4*T/(T^4+4))*z^5) + O(z^8)
- class sage.rings.function_field.drinfeld_modules.charzero_drinfeld_module.DrinfeldModule_rational(gen, category)[source]¶
Bases:
DrinfeldModule_charzero
A class for Drinfeld modules defined over the fraction field of the underlying function field.
- class_polynomial()[source]¶
Return the class polynomial, that is the Fitting ideal of the class module, of this Drinfeld module.
We refer to [Tae2012] for the definition and basic properties of the class module.
EXAMPLES:
We check that the class module of the Carlitz module is trivial:
sage: q = 5 sage: Fq = GF(q) sage: A = Fq['T'] sage: K.<T> = Frac(A) sage: C = DrinfeldModule(A, [T, 1]); C Drinfeld module defined by T |--> t + T sage: C.class_polynomial() 1
>>> from sage.all import * >>> q = Integer(5) >>> Fq = GF(q) >>> A = Fq['T'] >>> K = Frac(A, names=('T',)); (T,) = K._first_ngens(1) >>> C = DrinfeldModule(A, [T, Integer(1)]); C Drinfeld module defined by T |--> t + T >>> C.class_polynomial() 1
When the coefficients of the Drinfeld module have small enough degrees, the class module is always trivial:
sage: gs = [T] + [A.random_element(degree = q^i) ....: for i in range(1, 5)] sage: phi = DrinfeldModule(A, gs) sage: phi.class_polynomial() 1
>>> from sage.all import * >>> gs = [T] + [A.random_element(degree = q**i) ... for i in range(Integer(1), Integer(5))] >>> phi = DrinfeldModule(A, gs) >>> phi.class_polynomial() 1
Here is an example with a nontrivial class module:
sage: phi = DrinfeldModule(A, [T, 2*T^14 + 2*T^4]) sage: phi.class_polynomial() T + 3
>>> from sage.all import * >>> phi = DrinfeldModule(A, [T, Integer(2)*T**Integer(14) + Integer(2)*T**Integer(4)]) >>> phi.class_polynomial() T + 3
- coefficient_in_function_ring(n)[source]¶
Return the \(n\)-th coefficient of this Drinfeld module as an element of the underlying function ring.
INPUT:
n
– an integer
EXAMPLES:
sage: q = 5 sage: Fq = GF(q) sage: A = Fq['T'] sage: R = Fq['U'] sage: K.<U> = Frac(R) sage: phi = DrinfeldModule(A, [U, 0, U^2, U^3]) sage: phi.coefficient_in_function_ring(2) T^2
>>> from sage.all import * >>> q = Integer(5) >>> Fq = GF(q) >>> A = Fq['T'] >>> R = Fq['U'] >>> K = Frac(R, names=('U',)); (U,) = K._first_ngens(1) >>> phi = DrinfeldModule(A, [U, Integer(0), U**Integer(2), U**Integer(3)]) >>> phi.coefficient_in_function_ring(Integer(2)) T^2
Compare with the method meth:\(coefficient\):
sage: phi.coefficient(2) U^2
>>> from sage.all import * >>> phi.coefficient(Integer(2)) U^2
If the required coefficient is not a polynomials, an error is raised:
sage: psi = DrinfeldModule(A, [U, 1/U]) sage: psi.coefficient_in_function_ring(0) T sage: psi.coefficient_in_function_ring(1) Traceback (most recent call last): ... ValueError: coefficient is not polynomial
>>> from sage.all import * >>> psi = DrinfeldModule(A, [U, Integer(1)/U]) >>> psi.coefficient_in_function_ring(Integer(0)) T >>> psi.coefficient_in_function_ring(Integer(1)) Traceback (most recent call last): ... ValueError: coefficient is not polynomial
- coefficients_in_function_ring(sparse=True)[source]¶
Return the coefficients of this Drinfeld module as elements of the underlying function ring.
INPUT:
sparse
– a boolean (default:True
); ifTrue
, only return the nonzero coefficients; otherwise, return all of them.
EXAMPLES:
sage: q = 5 sage: Fq = GF(q) sage: A = Fq['T'] sage: R = Fq['U'] sage: K.<U> = Frac(R) sage: phi = DrinfeldModule(A, [U, 0, U^2, U^3]) sage: phi.coefficients_in_function_ring() [T, T^2, T^3] sage: phi.coefficients_in_function_ring(sparse=False) [T, 0, T^2, T^3]
>>> from sage.all import * >>> q = Integer(5) >>> Fq = GF(q) >>> A = Fq['T'] >>> R = Fq['U'] >>> K = Frac(R, names=('U',)); (U,) = K._first_ngens(1) >>> phi = DrinfeldModule(A, [U, Integer(0), U**Integer(2), U**Integer(3)]) >>> phi.coefficients_in_function_ring() [T, T^2, T^3] >>> phi.coefficients_in_function_ring(sparse=False) [T, 0, T^2, T^3]
Compare with the method meth:\(coefficients\):
sage: phi.coefficients() [U, U^2, U^3]
>>> from sage.all import * >>> phi.coefficients() [U, U^2, U^3]
If the coefficients are not polynomials, an error is raised:
sage: psi = DrinfeldModule(A, [U, 1/U]) sage: psi.coefficients_in_function_ring() Traceback (most recent call last): ... ValueError: coefficients are not polynomials
>>> from sage.all import * >>> psi = DrinfeldModule(A, [U, Integer(1)/U]) >>> psi.coefficients_in_function_ring() Traceback (most recent call last): ... ValueError: coefficients are not polynomials