Base class for finite field elements#
AUTHORS:
David Roe (2010-01-14): factored out of sage.structure.element
Sebastian Oehms (2018-07-19): added
conjugate()
(see Issue #26761)
- class sage.rings.finite_rings.element_base.Cache_base[source]#
Bases:
SageObject
- fetch_int(number)[source]#
Given an integer less than \(p^n\) with base \(2\) representation \(a_0 + a_1 \cdot 2 + \cdots + a_k 2^k\), this returns \(a_0 + a_1 x + \cdots + a_k x^k\), where \(x\) is the generator of this finite field.
EXAMPLES:
sage: k.<a> = GF(2^48) sage: k._cache.fetch_int(2^33 + 2 + 1) # needs sage.libs.ntl a^33 + a + 1
>>> from sage.all import * >>> k = GF(Integer(2)**Integer(48), names=('a',)); (a,) = k._first_ngens(1) >>> k._cache.fetch_int(Integer(2)**Integer(33) + Integer(2) + Integer(1)) # needs sage.libs.ntl a^33 + a + 1
- class sage.rings.finite_rings.element_base.FinitePolyExtElement[source]#
Bases:
FiniteRingElement
Elements represented as polynomials modulo a given ideal.
- additive_order()[source]#
Return the additive order of this finite field element.
EXAMPLES:
sage: k.<a> = FiniteField(2^12, 'a') sage: b = a^3 + a + 1 sage: b.additive_order() 2 sage: k(0).additive_order() 1
>>> from sage.all import * >>> k = FiniteField(Integer(2)**Integer(12), 'a', names=('a',)); (a,) = k._first_ngens(1) >>> b = a**Integer(3) + a + Integer(1) >>> b.additive_order() 2 >>> k(Integer(0)).additive_order() 1
- charpoly(var='x', algorithm='pari')[source]#
Return the characteristic polynomial of
self
as a polynomial with given variable.INPUT:
var
– string (default: ‘x’)algorithm
– string (default:'pari'
)'pari'
– use pari’s charpoly'matrix'
– return the charpoly computed from the matrix of left multiplication byself
The result is not cached.
EXAMPLES:
sage: from sage.rings.finite_rings.element_base import FinitePolyExtElement sage: k.<a> = FiniteField(19^2) sage: parent(a) Finite Field in a of size 19^2 sage: b = a**20 sage: p = FinitePolyExtElement.charpoly(b, "x", algorithm="pari") sage: q = FinitePolyExtElement.charpoly(b, "x", algorithm="matrix") # needs sage.modules sage: q == p # needs sage.modules True sage: p x^2 + 15*x + 4 sage: factor(p) (x + 17)^2 sage: b.minpoly('x') x + 17
>>> from sage.all import * >>> from sage.rings.finite_rings.element_base import FinitePolyExtElement >>> k = FiniteField(Integer(19)**Integer(2), names=('a',)); (a,) = k._first_ngens(1) >>> parent(a) Finite Field in a of size 19^2 >>> b = a**Integer(20) >>> p = FinitePolyExtElement.charpoly(b, "x", algorithm="pari") >>> q = FinitePolyExtElement.charpoly(b, "x", algorithm="matrix") # needs sage.modules >>> q == p # needs sage.modules True >>> p x^2 + 15*x + 4 >>> factor(p) (x + 17)^2 >>> b.minpoly('x') x + 17
- conjugate()[source]#
This methods returns the result of the Frobenius morphism in the case where the field is a quadratic extension, say \(GF(q^2)\), where \(q=p^k\) is a prime power and \(p\) the characteristic of the field.
OUTPUT:
Instance of this class representing the image under the Frobenius morphisms.
EXAMPLES:
sage: F.<a> = GF(16) sage: b = a.conjugate(); b a + 1 sage: a == b.conjugate() True sage: F.<a> = GF(27) sage: a.conjugate() Traceback (most recent call last): ... TypeError: cardinality of the field must be a square number
>>> from sage.all import * >>> F = GF(Integer(16), names=('a',)); (a,) = F._first_ngens(1) >>> b = a.conjugate(); b a + 1 >>> a == b.conjugate() True >>> F = GF(Integer(27), names=('a',)); (a,) = F._first_ngens(1) >>> a.conjugate() Traceback (most recent call last): ... TypeError: cardinality of the field must be a square number
- frobenius(k=1)[source]#
Return the \((p^k)^{th}\) power of self, where \(p\) is the characteristic of the field.
INPUT:
k
– integer (default: 1, must fit in C int type)
Note that if \(k\) is negative, then this computes the appropriate root.
EXAMPLES:
sage: F.<a> = GF(29^2) sage: z = a^2 + 5*a + 1 sage: z.pth_power() 19*a + 20 sage: z.pth_power(10) 10*a + 28 sage: z.pth_power(-10) == z True sage: F.<b> = GF(2^12) sage: y = b^3 + b + 1 sage: y == (y.pth_power(-3))^(2^3) True sage: y.pth_power(2) b^7 + b^6 + b^5 + b^4 + b^3 + b
>>> from sage.all import * >>> F = GF(Integer(29)**Integer(2), names=('a',)); (a,) = F._first_ngens(1) >>> z = a**Integer(2) + Integer(5)*a + Integer(1) >>> z.pth_power() 19*a + 20 >>> z.pth_power(Integer(10)) 10*a + 28 >>> z.pth_power(-Integer(10)) == z True >>> F = GF(Integer(2)**Integer(12), names=('b',)); (b,) = F._first_ngens(1) >>> y = b**Integer(3) + b + Integer(1) >>> y == (y.pth_power(-Integer(3)))**(Integer(2)**Integer(3)) True >>> y.pth_power(Integer(2)) b^7 + b^6 + b^5 + b^4 + b^3 + b
- integer_representation(*args, **kwds)[source]#
Deprecated: Use
to_integer()
instead. See Issue #33941 for details.
- is_square()[source]#
Returns
True
if and only if this element is a perfect square.EXAMPLES:
sage: k.<a> = FiniteField(9, impl='givaro', modulus='primitive') # needs sage.libs.linbox sage: a.is_square() # needs sage.libs.linbox False sage: (a**2).is_square() # needs sage.libs.linbox True sage: k.<a> = FiniteField(4, impl='ntl', modulus='primitive') # needs sage.libs.ntl sage: (a**2).is_square() # needs sage.libs.ntl True sage: k.<a> = FiniteField(17^5, impl='pari_ffelt', modulus='primitive') # needs sage.libs.pari sage: a.is_square() # needs sage.libs.pari False sage: (a**2).is_square() # needs sage.libs.pari True
>>> from sage.all import * >>> k = FiniteField(Integer(9), impl='givaro', modulus='primitive', names=('a',)); (a,) = k._first_ngens(1)# needs sage.libs.linbox >>> a.is_square() # needs sage.libs.linbox False >>> (a**Integer(2)).is_square() # needs sage.libs.linbox True >>> k = FiniteField(Integer(4), impl='ntl', modulus='primitive', names=('a',)); (a,) = k._first_ngens(1)# needs sage.libs.ntl >>> (a**Integer(2)).is_square() # needs sage.libs.ntl True >>> k = FiniteField(Integer(17)**Integer(5), impl='pari_ffelt', modulus='primitive', names=('a',)); (a,) = k._first_ngens(1)# needs sage.libs.pari >>> a.is_square() # needs sage.libs.pari False >>> (a**Integer(2)).is_square() # needs sage.libs.pari True
sage: k(0).is_square() # needs sage.libs.linbox True
>>> from sage.all import * >>> k(Integer(0)).is_square() # needs sage.libs.linbox True
- list()[source]#
Return the list of coefficients (in little-endian) of this finite field element when written as a polynomial in the generator.
Equivalent to calling
list()
on this element.EXAMPLES:
sage: x = polygen(GF(71)) sage: F.<u> = GF(71^7, modulus=x^7 + x + 1) sage: a = 3 + u + 3*u^2 + 3*u^3 + 7*u^4 sage: a.list() [3, 1, 3, 3, 7, 0, 0] sage: a.list() == list(a) == [a[i] for i in range(F.degree())] True
>>> from sage.all import * >>> x = polygen(GF(Integer(71))) >>> F = GF(Integer(71)**Integer(7), modulus=x**Integer(7) + x + Integer(1), names=('u',)); (u,) = F._first_ngens(1) >>> a = Integer(3) + u + Integer(3)*u**Integer(2) + Integer(3)*u**Integer(3) + Integer(7)*u**Integer(4) >>> a.list() [3, 1, 3, 3, 7, 0, 0] >>> a.list() == list(a) == [a[i] for i in range(F.degree())] True
The coefficients returned are those of a fully reduced representative of the finite field element:
sage: b = u^777 sage: b.list() [9, 69, 4, 27, 40, 10, 56] sage: (u.polynomial()^777).list() [0, 0, 0, 0, ..., 0, 1]
>>> from sage.all import * >>> b = u**Integer(777) >>> b.list() [9, 69, 4, 27, 40, 10, 56] >>> (u.polynomial()**Integer(777)).list() [0, 0, 0, 0, ..., 0, 1]
- matrix(reverse=False)[source]#
Return the matrix of left multiplication by the element on the power basis \(1, x, x^2, \ldots, x^{d-1}\) for the field extension.
Thus the emph{columns} of this matrix give the images of each of the \(x^i\).
INPUT:
reverse
– if True, act on vectors in reversed order
EXAMPLES:
sage: # needs sage.modules sage: k.<a> = GF(2^4) sage: b = k.random_element() sage: vector(a*b) == a.matrix() * vector(b) True sage: (a*b)._vector_(reverse=True) == a.matrix(reverse=True) * b._vector_(reverse=True) True
>>> from sage.all import * >>> # needs sage.modules >>> k = GF(Integer(2)**Integer(4), names=('a',)); (a,) = k._first_ngens(1) >>> b = k.random_element() >>> vector(a*b) == a.matrix() * vector(b) True >>> (a*b)._vector_(reverse=True) == a.matrix(reverse=True) * b._vector_(reverse=True) True
- minimal_polynomial(var='x')[source]#
Returns the minimal polynomial of this element (over the corresponding prime subfield).
EXAMPLES:
sage: k.<a> = FiniteField(3^4) sage: parent(a) Finite Field in a of size 3^4 sage: b=a**20;p=charpoly(b,"y");p y^4 + 2*y^2 + 1 sage: factor(p) (y^2 + 1)^2 sage: b.minimal_polynomial('y') y^2 + 1
>>> from sage.all import * >>> k = FiniteField(Integer(3)**Integer(4), names=('a',)); (a,) = k._first_ngens(1) >>> parent(a) Finite Field in a of size 3^4 >>> b=a**Integer(20);p=charpoly(b,"y");p y^4 + 2*y^2 + 1 >>> factor(p) (y^2 + 1)^2 >>> b.minimal_polynomial('y') y^2 + 1
- minpoly(var='x', algorithm='pari')[source]#
Returns the minimal polynomial of this element (over the corresponding prime subfield).
INPUT:
var
– string (default: ‘x’)algorithm
– string (default: ‘pari’)‘pari’ – use pari’s minpoly
‘matrix’ – return the minpoly computed from the matrix of left multiplication by self
EXAMPLES:
sage: from sage.rings.finite_rings.element_base import FinitePolyExtElement sage: k.<a> = FiniteField(19^2) sage: parent(a) Finite Field in a of size 19^2 sage: b=a**20 sage: p=FinitePolyExtElement.minpoly(b,"x", algorithm="pari") sage: q=FinitePolyExtElement.minpoly(b,"x", algorithm="matrix") sage: q == p True sage: p x + 17
>>> from sage.all import * >>> from sage.rings.finite_rings.element_base import FinitePolyExtElement >>> k = FiniteField(Integer(19)**Integer(2), names=('a',)); (a,) = k._first_ngens(1) >>> parent(a) Finite Field in a of size 19^2 >>> b=a**Integer(20) >>> p=FinitePolyExtElement.minpoly(b,"x", algorithm="pari") >>> q=FinitePolyExtElement.minpoly(b,"x", algorithm="matrix") >>> q == p True >>> p x + 17
- multiplicative_order()[source]#
Return the multiplicative order of this field element.
EXAMPLES:
sage: S.<a> = GF(5^3); S Finite Field in a of size 5^3 sage: a.multiplicative_order() 124 sage: (a^8).multiplicative_order() 31 sage: S(0).multiplicative_order() Traceback (most recent call last): ... ArithmeticError: Multiplicative order of 0 not defined.
>>> from sage.all import * >>> S = GF(Integer(5)**Integer(3), names=('a',)); (a,) = S._first_ngens(1); S Finite Field in a of size 5^3 >>> a.multiplicative_order() 124 >>> (a**Integer(8)).multiplicative_order() 31 >>> S(Integer(0)).multiplicative_order() Traceback (most recent call last): ... ArithmeticError: Multiplicative order of 0 not defined.
- norm()[source]#
Return the norm of self down to the prime subfield.
This is the product of the Galois conjugates of self.
EXAMPLES:
sage: S.<b> = GF(5^2); S Finite Field in b of size 5^2 sage: b.norm() 2 sage: b.charpoly('t') t^2 + 4*t + 2
>>> from sage.all import * >>> S = GF(Integer(5)**Integer(2), names=('b',)); (b,) = S._first_ngens(1); S Finite Field in b of size 5^2 >>> b.norm() 2 >>> b.charpoly('t') t^2 + 4*t + 2
Next we consider a cubic extension:
sage: S.<a> = GF(5^3); S Finite Field in a of size 5^3 sage: a.norm() 2 sage: a.charpoly('t') t^3 + 3*t + 3 sage: a * a^5 * (a^25) 2
>>> from sage.all import * >>> S = GF(Integer(5)**Integer(3), names=('a',)); (a,) = S._first_ngens(1); S Finite Field in a of size 5^3 >>> a.norm() 2 >>> a.charpoly('t') t^3 + 3*t + 3 >>> a * a**Integer(5) * (a**Integer(25)) 2
- nth_root(n, extend=False, all=False, algorithm=None, cunningham=False)[source]#
Returns an \(n\)th root of
self
.INPUT:
n
– integer \(\geq 1\)extend
– bool (default:False
); ifTrue
, return an \(n\)th root in an extension ring, if necessary. Otherwise, raise a ValueError if the root is not in the base ring. Warning: this option is not implemented!all
– bool (default:False
); ifTrue
, return all \(n\)th roots ofself
, instead of just one.algorithm
– string (default:None
); ‘Johnston’ is the only currently supported option. For IntegerMod elements, the problem is reduced to the prime modulus case using CRT and \(p\)-adic logs, and then this algorithm used.
OUTPUT:
If self has an \(n\)th root, returns one (if
all
isFalse
) or a list of all of them (ifall
isTrue
). Otherwise, raises aValueError
(ifextend
isFalse
) or aNotImplementedError
(ifextend
isTrue
).Warning
The
extend
option is not implemented (yet).EXAMPLES:
sage: K = GF(31) sage: a = K(22) sage: K(22).nth_root(7) 13 sage: K(25).nth_root(5) 5 sage: K(23).nth_root(3) 29 sage: K.<a> = GF(625) sage: (3*a^2+a+1).nth_root(13)**13 3*a^2 + a + 1 sage: k.<a> = GF(29^2) sage: b = a^2 + 5*a + 1 sage: b.nth_root(11) 3*a + 20 sage: b.nth_root(5) Traceback (most recent call last): ... ValueError: no nth root sage: b.nth_root(5, all = True) [] sage: b.nth_root(3, all = True) [14*a + 18, 10*a + 13, 5*a + 27] sage: k.<a> = GF(29^5) sage: b = a^2 + 5*a + 1 sage: b.nth_root(5) 19*a^4 + 2*a^3 + 2*a^2 + 16*a + 3 sage: b.nth_root(7) Traceback (most recent call last): ... ValueError: no nth root sage: b.nth_root(4, all=True) []
>>> from sage.all import * >>> K = GF(Integer(31)) >>> a = K(Integer(22)) >>> K(Integer(22)).nth_root(Integer(7)) 13 >>> K(Integer(25)).nth_root(Integer(5)) 5 >>> K(Integer(23)).nth_root(Integer(3)) 29 >>> K = GF(Integer(625), names=('a',)); (a,) = K._first_ngens(1) >>> (Integer(3)*a**Integer(2)+a+Integer(1)).nth_root(Integer(13))**Integer(13) 3*a^2 + a + 1 >>> k = GF(Integer(29)**Integer(2), names=('a',)); (a,) = k._first_ngens(1) >>> b = a**Integer(2) + Integer(5)*a + Integer(1) >>> b.nth_root(Integer(11)) 3*a + 20 >>> b.nth_root(Integer(5)) Traceback (most recent call last): ... ValueError: no nth root >>> b.nth_root(Integer(5), all = True) [] >>> b.nth_root(Integer(3), all = True) [14*a + 18, 10*a + 13, 5*a + 27] >>> k = GF(Integer(29)**Integer(5), names=('a',)); (a,) = k._first_ngens(1) >>> b = a**Integer(2) + Integer(5)*a + Integer(1) >>> b.nth_root(Integer(5)) 19*a^4 + 2*a^3 + 2*a^2 + 16*a + 3 >>> b.nth_root(Integer(7)) Traceback (most recent call last): ... ValueError: no nth root >>> b.nth_root(Integer(4), all=True) []
ALGORITHM:
The default is currently an algorithm described in [Joh1999].
AUTHOR:
David Roe (2010-02-13)
- pth_power(k=1)[source]#
Return the \((p^k)^{th}\) power of self, where \(p\) is the characteristic of the field.
INPUT:
k
– integer (default: 1, must fit in C int type)
Note that if \(k\) is negative, then this computes the appropriate root.
EXAMPLES:
sage: F.<a> = GF(29^2) sage: z = a^2 + 5*a + 1 sage: z.pth_power() 19*a + 20 sage: z.pth_power(10) 10*a + 28 sage: z.pth_power(-10) == z True sage: F.<b> = GF(2^12) sage: y = b^3 + b + 1 sage: y == (y.pth_power(-3))^(2^3) True sage: y.pth_power(2) b^7 + b^6 + b^5 + b^4 + b^3 + b
>>> from sage.all import * >>> F = GF(Integer(29)**Integer(2), names=('a',)); (a,) = F._first_ngens(1) >>> z = a**Integer(2) + Integer(5)*a + Integer(1) >>> z.pth_power() 19*a + 20 >>> z.pth_power(Integer(10)) 10*a + 28 >>> z.pth_power(-Integer(10)) == z True >>> F = GF(Integer(2)**Integer(12), names=('b',)); (b,) = F._first_ngens(1) >>> y = b**Integer(3) + b + Integer(1) >>> y == (y.pth_power(-Integer(3)))**(Integer(2)**Integer(3)) True >>> y.pth_power(Integer(2)) b^7 + b^6 + b^5 + b^4 + b^3 + b
- pth_root(k=1)[source]#
Return the \((p^k)^{th}\) root of self, where \(p\) is the characteristic of the field.
INPUT:
k
– integer (default: 1, must fit in C int type)
Note that if \(k\) is negative, then this computes the appropriate power.
EXAMPLES:
sage: F.<b> = GF(2^12) sage: y = b^3 + b + 1 sage: y == (y.pth_root(3))^(2^3) True sage: y.pth_root(2) b^11 + b^10 + b^9 + b^7 + b^5 + b^4 + b^2 + b
>>> from sage.all import * >>> F = GF(Integer(2)**Integer(12), names=('b',)); (b,) = F._first_ngens(1) >>> y = b**Integer(3) + b + Integer(1) >>> y == (y.pth_root(Integer(3)))**(Integer(2)**Integer(3)) True >>> y.pth_root(Integer(2)) b^11 + b^10 + b^9 + b^7 + b^5 + b^4 + b^2 + b
- sqrt(extend=False, all=False)[source]#
See
square_root()
.EXAMPLES:
sage: k.<a> = GF(3^17) sage: (a^3 - a - 1).sqrt() a^16 + 2*a^15 + a^13 + 2*a^12 + a^10 + 2*a^9 + 2*a^8 + a^7 + a^6 + 2*a^5 + a^4 + 2*a^2 + 2*a + 2
>>> from sage.all import * >>> k = GF(Integer(3)**Integer(17), names=('a',)); (a,) = k._first_ngens(1) >>> (a**Integer(3) - a - Integer(1)).sqrt() a^16 + 2*a^15 + a^13 + 2*a^12 + a^10 + 2*a^9 + 2*a^8 + a^7 + a^6 + 2*a^5 + a^4 + 2*a^2 + 2*a + 2
- square_root(extend=False, all=False)[source]#
The square root function.
INPUT:
extend
– bool (default:True
); ifTrue
, return a square root in an extension ring, if necessary. Otherwise, raise a ValueError if the root is not in the base ring.Warning
This option is not implemented!
all
– bool (default:False
); ifTrue
, return all square roots ofself
, instead of just one.
Warning
The
'extend'
option is not implemented (yet).EXAMPLES:
sage: F = FiniteField(7^2, 'a') sage: F(2).square_root() 4 sage: F(3).square_root() 2*a + 6 sage: F(3).square_root()**2 3 sage: F(4).square_root() 2 sage: K = FiniteField(7^3, 'alpha', impl='pari_ffelt') sage: K(3).square_root() Traceback (most recent call last): ... ValueError: must be a perfect square.
>>> from sage.all import * >>> F = FiniteField(Integer(7)**Integer(2), 'a') >>> F(Integer(2)).square_root() 4 >>> F(Integer(3)).square_root() 2*a + 6 >>> F(Integer(3)).square_root()**Integer(2) 3 >>> F(Integer(4)).square_root() 2 >>> K = FiniteField(Integer(7)**Integer(3), 'alpha', impl='pari_ffelt') >>> K(Integer(3)).square_root() Traceback (most recent call last): ... ValueError: must be a perfect square.
- to_bytes(byteorder='big')[source]#
Return an array of bytes representing an integer.
Internally relies on the python
int.to_bytes()
method. Length of byte array is determined from the field’s order.INPUT:
byteorder
– str (default:"big"
); determines the byte order of the output; can only be"big"
or"little"
EXAMPLES:
sage: F.<z5> = GF(3^5) sage: a = z5^4 + 2*z5^3 + 1 sage: a.to_bytes() b'\x88'
>>> from sage.all import * >>> F = GF(Integer(3)**Integer(5), names=('z5',)); (z5,) = F._first_ngens(1) >>> a = z5**Integer(4) + Integer(2)*z5**Integer(3) + Integer(1) >>> a.to_bytes() b'\x88'
sage: F.<z3> = GF(163^3) sage: a = 136*z3^2 + 10*z3 + 125 sage: a.to_bytes() b'7)\xa3'
>>> from sage.all import * >>> F = GF(Integer(163)**Integer(3), names=('z3',)); (z3,) = F._first_ngens(1) >>> a = Integer(136)*z3**Integer(2) + Integer(10)*z3 + Integer(125) >>> a.to_bytes() b'7)\xa3'
- to_integer(reverse=False)[source]#
Return an integer representation of this finite field element obtained by lifting its representative polynomial to \(\ZZ\) and evaluating it at the characteristic \(p\).
If
reverse
is set toTrue
(default:False
), the list of coefficients is reversed prior to evaluation.Inverse of
sage.rings.finite_rings.finite_field_base.FiniteField.from_integer()
.EXAMPLES:
sage: F.<t> = GF(7^5) sage: F(5).to_integer() 5 sage: t.to_integer() 7 sage: (t^2).to_integer() 49 sage: (t^2+1).to_integer() 50 sage: (t^2+t+1).to_integer() 57
>>> from sage.all import * >>> F = GF(Integer(7)**Integer(5), names=('t',)); (t,) = F._first_ngens(1) >>> F(Integer(5)).to_integer() 5 >>> t.to_integer() 7 >>> (t**Integer(2)).to_integer() 49 >>> (t**Integer(2)+Integer(1)).to_integer() 50 >>> (t**Integer(2)+t+Integer(1)).to_integer() 57
sage: F.<t> = GF(2^8) sage: u = F.from_integer(0xd1) sage: bin(u.to_integer(False)) '0b11010001' sage: bin(u.to_integer(True)) '0b10001011'
>>> from sage.all import * >>> F = GF(Integer(2)**Integer(8), names=('t',)); (t,) = F._first_ngens(1) >>> u = F.from_integer(Integer(0xd1)) >>> bin(u.to_integer(False)) '0b11010001' >>> bin(u.to_integer(True)) '0b10001011'
- trace()[source]#
Return the trace of this element, which is the sum of the Galois conjugates.
EXAMPLES:
sage: S.<a> = GF(5^3); S Finite Field in a of size 5^3 sage: a.trace() 0 sage: a.charpoly('t') t^3 + 3*t + 3 sage: a + a^5 + a^25 0 sage: z = a^2 + a + 1 sage: z.trace() 2 sage: z.charpoly('t') t^3 + 3*t^2 + 2*t + 2 sage: z + z^5 + z^25 2
>>> from sage.all import * >>> S = GF(Integer(5)**Integer(3), names=('a',)); (a,) = S._first_ngens(1); S Finite Field in a of size 5^3 >>> a.trace() 0 >>> a.charpoly('t') t^3 + 3*t + 3 >>> a + a**Integer(5) + a**Integer(25) 0 >>> z = a**Integer(2) + a + Integer(1) >>> z.trace() 2 >>> z.charpoly('t') t^3 + 3*t^2 + 2*t + 2 >>> z + z**Integer(5) + z**Integer(25) 2
- class sage.rings.finite_rings.element_base.FiniteRingElement[source]#
Bases:
CommutativeRingElement
- to_bytes(byteorder='big')[source]#
Return an array of bytes representing an integer.
Internally relies on the python
int.to_bytes()
method. Length of byte array is determined from the field’s order.INPUT:
byteorder
– str (default:"big"
); determines the byte order ofinput_bytes
; can only be"big"
or"little"
EXAMPLES:
sage: F = GF(65537) sage: a = F(8726) sage: a.to_bytes() b'\x00"\x16' sage: a.to_bytes(byteorder="little") b'\x16"\x00'
>>> from sage.all import * >>> F = GF(Integer(65537)) >>> a = F(Integer(8726)) >>> a.to_bytes() b'\x00"\x16' >>> a.to_bytes(byteorder="little") b'\x16"\x00'
- sage.rings.finite_rings.element_base.is_FiniteFieldElement(x)[source]#
Return
True
ifx
is a finite field element.This function is deprecated.
EXAMPLES:
sage: from sage.rings.finite_rings.element_base import is_FiniteFieldElement sage: is_FiniteFieldElement(1) doctest:...: DeprecationWarning: the function is_FiniteFieldElement is deprecated; use isinstance(x, sage.structure.element.FieldElement) and x.parent().is_finite() instead See https://github.com/sagemath/sage/issues/32664 for details. False sage: is_FiniteFieldElement(IntegerRing()) False sage: is_FiniteFieldElement(GF(5)(2)) True
>>> from sage.all import * >>> from sage.rings.finite_rings.element_base import is_FiniteFieldElement >>> is_FiniteFieldElement(Integer(1)) doctest:...: DeprecationWarning: the function is_FiniteFieldElement is deprecated; use isinstance(x, sage.structure.element.FieldElement) and x.parent().is_finite() instead See https://github.com/sagemath/sage/issues/32664 for details. False >>> is_FiniteFieldElement(IntegerRing()) False >>> is_FiniteFieldElement(GF(Integer(5))(Integer(2))) True