Ring \(\ZZ/n\ZZ\) of integers modulo \(n\)#

EXAMPLES:

sage: R = Integers(97)
sage: a = R(5)
sage: a**100000000000000000000000000000000000000000000000000000000000000
61
>>> from sage.all import *
>>> R = Integers(Integer(97))
>>> a = R(Integer(5))
>>> a**Integer(100000000000000000000000000000000000000000000000000000000000000)
61

This example illustrates the relation between \(\ZZ/p\ZZ\) and \(\GF{p}\). In particular, there is a canonical map to \(\GF{p}\), but not in the other direction.

sage: r = Integers(7)
sage: s = GF(7)
sage: r.has_coerce_map_from(s)
False
sage: s.has_coerce_map_from(r)
True
sage: s(1) + r(1)
2
sage: parent(s(1) + r(1))
Finite Field of size 7
sage: parent(r(1) + s(1))
Finite Field of size 7
>>> from sage.all import *
>>> r = Integers(Integer(7))
>>> s = GF(Integer(7))
>>> r.has_coerce_map_from(s)
False
>>> s.has_coerce_map_from(r)
True
>>> s(Integer(1)) + r(Integer(1))
2
>>> parent(s(Integer(1)) + r(Integer(1)))
Finite Field of size 7
>>> parent(r(Integer(1)) + s(Integer(1)))
Finite Field of size 7

We list the elements of \(\ZZ/3\ZZ\):

sage: R = Integers(3)
sage: list(R)
[0, 1, 2]
>>> from sage.all import *
>>> R = Integers(Integer(3))
>>> list(R)
[0, 1, 2]

AUTHORS:

  • William Stein (initial code)

  • David Joyner (2005-12-22): most examples

  • Robert Bradshaw (2006-08-24): convert to SageX (Cython)

  • William Stein (2007-04-29): square_roots_of_one

  • Simon King (2011-04-21): allow to prescribe a category

  • Simon King (2013-09): Only allow to prescribe the category of fields

class sage.rings.finite_rings.integer_mod_ring.IntegerModFactory[source]#

Bases: UniqueFactory

Return the quotient ring \(\ZZ / n\ZZ\).

INPUT:

  • order – integer (default: 0); positive or negative

  • is_field – bool (default: False); assert that the order is prime and hence the quotient ring belongs to the category of fields

  • category (optional) – the category that the quotient ring belongs to.

Note

The optional argument is_field is not part of the cache key. Hence, this factory will create precisely one instance of \(\ZZ / n\ZZ\). However, if is_field is true, then a previously created instance of the quotient ring will be updated to be in the category of fields.

Use with care! Erroneously putting \(\ZZ / n\ZZ\) into the category of fields may have consequences that can compromise a whole Sage session, so that a restart will be needed.

EXAMPLES:

sage: IntegerModRing(15)
Ring of integers modulo 15
sage: IntegerModRing(7)
Ring of integers modulo 7
sage: IntegerModRing(-100)
Ring of integers modulo 100
>>> from sage.all import *
>>> IntegerModRing(Integer(15))
Ring of integers modulo 15
>>> IntegerModRing(Integer(7))
Ring of integers modulo 7
>>> IntegerModRing(-Integer(100))
Ring of integers modulo 100

Note that you can also use Integers, which is a synonym for IntegerModRing.

sage: Integers(18)
Ring of integers modulo 18
sage: Integers() is Integers(0) is ZZ
True
>>> from sage.all import *
>>> Integers(Integer(18))
Ring of integers modulo 18
>>> Integers() is Integers(Integer(0)) is ZZ
True

Note

Testing whether a quotient ring \(\ZZ / n\ZZ\) is a field can of course be very costly. By default, it is not tested whether \(n\) is prime or not, in contrast to GF(). If the user is sure that the modulus is prime and wants to avoid a primality test, (s)he can provide category=Fields() when constructing the quotient ring, and then the result will behave like a field. If the category is not provided during initialisation, and it is found out later that the ring is in fact a field, then the category will be changed at runtime, having the same effect as providing Fields() during initialisation.

EXAMPLES:

sage: R = IntegerModRing(5)
sage: R.category()
Join of Category of finite commutative rings
    and Category of subquotients of monoids
    and Category of quotients of semigroups
    and Category of finite enumerated sets
sage: R in Fields()
True
sage: R.category()
Join of Category of finite enumerated fields
    and Category of subquotients of monoids
    and Category of quotients of semigroups
sage: S = IntegerModRing(5, is_field=True)
sage: S is R
True
>>> from sage.all import *
>>> R = IntegerModRing(Integer(5))
>>> R.category()
Join of Category of finite commutative rings
    and Category of subquotients of monoids
    and Category of quotients of semigroups
    and Category of finite enumerated sets
>>> R in Fields()
True
>>> R.category()
Join of Category of finite enumerated fields
    and Category of subquotients of monoids
    and Category of quotients of semigroups
>>> S = IntegerModRing(Integer(5), is_field=True)
>>> S is R
True

Warning

If the optional argument is_field was used by mistake, there is currently no way to revert its impact, even though IntegerModRing_generic.is_field() with the optional argument proof=True would return the correct answer. So, prescribe is_field=True only if you know what your are doing!

EXAMPLES:

sage: R = IntegerModRing(33, is_field=True)
sage: R in Fields()
True
sage: R.is_field()
True
>>> from sage.all import *
>>> R = IntegerModRing(Integer(33), is_field=True)
>>> R in Fields()
True
>>> R.is_field()
True

If the optional argument \(proof=True\) is provided, primality is tested and the mistaken category assignment is reported:

sage: R.is_field(proof=True)
Traceback (most recent call last):
...
ValueError: THIS SAGE SESSION MIGHT BE SERIOUSLY COMPROMISED!
The order 33 is not prime, but this ring has been put
into the category of fields. This may already have consequences
in other parts of Sage. Either it was a mistake of the user,
or a probabilistic primality test has failed.
In the latter case, please inform the developers.
>>> from sage.all import *
>>> R.is_field(proof=True)
Traceback (most recent call last):
...
ValueError: THIS SAGE SESSION MIGHT BE SERIOUSLY COMPROMISED!
The order 33 is not prime, but this ring has been put
into the category of fields. This may already have consequences
in other parts of Sage. Either it was a mistake of the user,
or a probabilistic primality test has failed.
In the latter case, please inform the developers.

However, the mistaken assignment is not automatically corrected:

sage: R in Fields()
True
>>> from sage.all import *
>>> R in Fields()
True

To avoid side-effects of this test on other tests, we clear the cache of the ring factory:

sage: IntegerModRing._cache.clear()
>>> from sage.all import *
>>> IntegerModRing._cache.clear()
create_key_and_extra_args(order=0, is_field=False, category=None)[source]#

An integer mod ring is specified uniquely by its order.

EXAMPLES:

sage: Zmod.create_key_and_extra_args(7)
(7, {})
sage: Zmod.create_key_and_extra_args(7, True)
(7, {'category': Category of fields})
>>> from sage.all import *
>>> Zmod.create_key_and_extra_args(Integer(7))
(7, {})
>>> Zmod.create_key_and_extra_args(Integer(7), True)
(7, {'category': Category of fields})
create_object(version, order, **kwds)[source]#

EXAMPLES:

sage: R = Integers(10)
sage: TestSuite(R).run() # indirect doctest
>>> from sage.all import *
>>> R = Integers(Integer(10))
>>> TestSuite(R).run() # indirect doctest
get_object(version, key, extra_args)[source]#
class sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic(order, cache=None, category=None)[source]#

Bases: QuotientRing_generic, IntegerModRing

The ring of integers modulo \(N\).

INPUT:

  • order – an integer

  • category – a subcategory of CommutativeRings() (the default)

OUTPUT:

The ring of integers modulo \(N\).

EXAMPLES:

First we compute with integers modulo \(29\).

sage: FF = IntegerModRing(29)
sage: FF
Ring of integers modulo 29
sage: FF.category()
Join of Category of finite commutative rings
    and Category of subquotients of monoids
    and Category of quotients of semigroups
    and Category of finite enumerated sets
sage: FF.is_field()
True
sage: FF.characteristic()
29
sage: FF.order()
29

sage: # needs sage.groups
sage: gens = FF.unit_gens()
sage: a = gens[0]
sage: a
2
sage: a.is_square()
False
sage: def pow(i): return a**i
sage: [pow(i) for i in range(16)]
[1, 2, 4, 8, 16, 3, 6, 12, 24, 19, 9, 18, 7, 14, 28, 27]
sage: TestSuite(FF).run()
>>> from sage.all import *
>>> FF = IntegerModRing(Integer(29))
>>> FF
Ring of integers modulo 29
>>> FF.category()
Join of Category of finite commutative rings
    and Category of subquotients of monoids
    and Category of quotients of semigroups
    and Category of finite enumerated sets
>>> FF.is_field()
True
>>> FF.characteristic()
29
>>> FF.order()
29

>>> # needs sage.groups
>>> gens = FF.unit_gens()
>>> a = gens[Integer(0)]
>>> a
2
>>> a.is_square()
False
>>> def pow(i): return a**i
>>> [pow(i) for i in range(Integer(16))]
[1, 2, 4, 8, 16, 3, 6, 12, 24, 19, 9, 18, 7, 14, 28, 27]
>>> TestSuite(FF).run()

We have seen above that an integer mod ring is, by default, not initialised as an object in the category of fields. However, one can force it to be. Moreover, testing containment in the category of fields my re-initialise the category of the integer mod ring:

sage: F19 = IntegerModRing(19, is_field=True)
sage: F19.category().is_subcategory(Fields())
True
sage: F23 = IntegerModRing(23)
sage: F23.category().is_subcategory(Fields())
False
sage: F23 in Fields()
True
sage: F23.category().is_subcategory(Fields())
True
sage: TestSuite(F19).run()
sage: TestSuite(F23).run()
>>> from sage.all import *
>>> F19 = IntegerModRing(Integer(19), is_field=True)
>>> F19.category().is_subcategory(Fields())
True
>>> F23 = IntegerModRing(Integer(23))
>>> F23.category().is_subcategory(Fields())
False
>>> F23 in Fields()
True
>>> F23.category().is_subcategory(Fields())
True
>>> TestSuite(F19).run()
>>> TestSuite(F23).run()

By Issue #15229, there is a unique instance of the integral quotient ring of a given order. Using the IntegerModRing() factory twice, and using is_field=True the second time, will update the category of the unique instance:

sage: F31a = IntegerModRing(31)
sage: F31a.category().is_subcategory(Fields())
False
sage: F31b = IntegerModRing(31, is_field=True)
sage: F31a is F31b
True
sage: F31a.category().is_subcategory(Fields())
True
>>> from sage.all import *
>>> F31a = IntegerModRing(Integer(31))
>>> F31a.category().is_subcategory(Fields())
False
>>> F31b = IntegerModRing(Integer(31), is_field=True)
>>> F31a is F31b
True
>>> F31a.category().is_subcategory(Fields())
True

Next we compute with the integers modulo \(16\).

sage: Z16 = IntegerModRing(16)
sage: Z16.category()
Join of Category of finite commutative rings
    and Category of subquotients of monoids
    and Category of quotients of semigroups
    and Category of finite enumerated sets
sage: Z16.is_field()
False
sage: Z16.order()
16
sage: Z16.characteristic()
16

sage: # needs sage.groups
sage: gens = Z16.unit_gens()
sage: gens
(15, 5)
sage: a = gens[0]
sage: b = gens[1]
sage: def powa(i): return a**i
sage: def powb(i): return b**i
sage: gp_exp = FF.unit_group_exponent()
sage: gp_exp
28
sage: [powa(i) for i in range(15)]
[1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1]
sage: [powb(i) for i in range(15)]
[1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9]
sage: a.multiplicative_order()
2
sage: b.multiplicative_order()
4

sage: TestSuite(Z16).run()
>>> from sage.all import *
>>> Z16 = IntegerModRing(Integer(16))
>>> Z16.category()
Join of Category of finite commutative rings
    and Category of subquotients of monoids
    and Category of quotients of semigroups
    and Category of finite enumerated sets
>>> Z16.is_field()
False
>>> Z16.order()
16
>>> Z16.characteristic()
16

>>> # needs sage.groups
>>> gens = Z16.unit_gens()
>>> gens
(15, 5)
>>> a = gens[Integer(0)]
>>> b = gens[Integer(1)]
>>> def powa(i): return a**i
>>> def powb(i): return b**i
>>> gp_exp = FF.unit_group_exponent()
>>> gp_exp
28
>>> [powa(i) for i in range(Integer(15))]
[1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1]
>>> [powb(i) for i in range(Integer(15))]
[1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9]
>>> a.multiplicative_order()
2
>>> b.multiplicative_order()
4

>>> TestSuite(Z16).run()

Saving and loading:

sage: R = Integers(100000)
sage: TestSuite(R).run()  # long time (17s on sage.math, 2011)
>>> from sage.all import *
>>> R = Integers(Integer(100000))
>>> TestSuite(R).run()  # long time (17s on sage.math, 2011)

Testing ideals and quotients:

sage: Z10 = Integers(10)
sage: I = Z10.principal_ideal(0)
sage: Z10.quotient(I) == Z10
True
sage: I = Z10.principal_ideal(2)
sage: Z10.quotient(I) == Z10
False
sage: I.is_prime()
True
>>> from sage.all import *
>>> Z10 = Integers(Integer(10))
>>> I = Z10.principal_ideal(Integer(0))
>>> Z10.quotient(I) == Z10
True
>>> I = Z10.principal_ideal(Integer(2))
>>> Z10.quotient(I) == Z10
False
>>> I.is_prime()
True
sage: R = IntegerModRing(97)
sage: a = R(5)
sage: a**(10^62)
61
>>> from sage.all import *
>>> R = IntegerModRing(Integer(97))
>>> a = R(Integer(5))
>>> a**(Integer(10)**Integer(62))
61
cardinality()[source]#

Return the cardinality of this ring.

EXAMPLES:

sage: Zmod(87).cardinality()
87
>>> from sage.all import *
>>> Zmod(Integer(87)).cardinality()
87
characteristic()[source]#

EXAMPLES:

sage: R = IntegerModRing(18)
sage: FF = IntegerModRing(17)
sage: FF.characteristic()
17
sage: R.characteristic()
18
>>> from sage.all import *
>>> R = IntegerModRing(Integer(18))
>>> FF = IntegerModRing(Integer(17))
>>> FF.characteristic()
17
>>> R.characteristic()
18
degree()[source]#

Return 1.

EXAMPLES:

sage: R = Integers(12345678900)
sage: R.degree()
1
>>> from sage.all import *
>>> R = Integers(Integer(12345678900))
>>> R.degree()
1
extension(poly, name=None, names=None, **kwds)[source]#

Return an algebraic extension of self. See sage.rings.ring.CommutativeRing.extension() for more information.

EXAMPLES:

sage: R.<t> = QQ[]
sage: Integers(8).extension(t^2 - 3)
Univariate Quotient Polynomial Ring in t
 over Ring of integers modulo 8 with modulus t^2 + 5
>>> from sage.all import *
>>> R = QQ['t']; (t,) = R._first_ngens(1)
>>> Integers(Integer(8)).extension(t**Integer(2) - Integer(3))
Univariate Quotient Polynomial Ring in t
 over Ring of integers modulo 8 with modulus t^2 + 5
factored_order()[source]#

EXAMPLES:

sage: R = IntegerModRing(18)
sage: FF = IntegerModRing(17)
sage: R.factored_order()
2 * 3^2
sage: FF.factored_order()
17
>>> from sage.all import *
>>> R = IntegerModRing(Integer(18))
>>> FF = IntegerModRing(Integer(17))
>>> R.factored_order()
2 * 3^2
>>> FF.factored_order()
17
factored_unit_order()[source]#

Return a list of Factorization objects, each the factorization of the order of the units in a \(\ZZ / p^n \ZZ\) component of this group (using the Chinese Remainder Theorem).

EXAMPLES:

sage: R = Integers(8*9*25*17*29)
sage: R.factored_unit_order()
[2^2, 2 * 3, 2^2 * 5, 2^4, 2^2 * 7]
>>> from sage.all import *
>>> R = Integers(Integer(8)*Integer(9)*Integer(25)*Integer(17)*Integer(29))
>>> R.factored_unit_order()
[2^2, 2 * 3, 2^2 * 5, 2^4, 2^2 * 7]
field()[source]#

If this ring is a field, return the corresponding field as a finite field, which may have extra functionality and structure. Otherwise, raise a ValueError.

EXAMPLES:

sage: R = Integers(7); R
Ring of integers modulo 7
sage: R.field()
Finite Field of size 7
sage: R = Integers(9)
sage: R.field()
Traceback (most recent call last):
...
ValueError: self must be a field
>>> from sage.all import *
>>> R = Integers(Integer(7)); R
Ring of integers modulo 7
>>> R.field()
Finite Field of size 7
>>> R = Integers(Integer(9))
>>> R.field()
Traceback (most recent call last):
...
ValueError: self must be a field
is_field(proof=None)[source]#

Return True precisely if the order is prime.

INPUT:

  • proof (optional bool or None, default None): If False, then test whether the category of the quotient is a subcategory of Fields(), or do a probabilistic primality test. If None, then test the category and then do a primality test according to the global arithmetic proof settings. If True, do a deterministic primality test.

If it is found (perhaps probabilistically) that the ring is a field, then the category of the ring is refined to include the category of fields. This may change the Python class of the ring!

EXAMPLES:

sage: R = IntegerModRing(18)
sage: R.is_field()
False
sage: FF = IntegerModRing(17)
sage: FF.is_field()
True
>>> from sage.all import *
>>> R = IntegerModRing(Integer(18))
>>> R.is_field()
False
>>> FF = IntegerModRing(Integer(17))
>>> FF.is_field()
True

By Issue #15229, the category of the ring is refined, if it is found that the ring is in fact a field:

sage: R = IntegerModRing(127)
sage: R.category()
Join of Category of finite commutative rings
    and Category of subquotients of monoids
    and Category of quotients of semigroups
    and Category of finite enumerated sets
sage: R.is_field()
True
sage: R.category()
Join of Category of finite enumerated fields
    and Category of subquotients of monoids
    and Category of quotients of semigroups
>>> from sage.all import *
>>> R = IntegerModRing(Integer(127))
>>> R.category()
Join of Category of finite commutative rings
    and Category of subquotients of monoids
    and Category of quotients of semigroups
    and Category of finite enumerated sets
>>> R.is_field()
True
>>> R.category()
Join of Category of finite enumerated fields
    and Category of subquotients of monoids
    and Category of quotients of semigroups

It is possible to mistakenly put \(\ZZ/n\ZZ\) into the category of fields. In this case, is_field() will return True without performing a primality check. However, if the optional argument \(proof=True\) is provided, primality is tested and the mistake is uncovered in a warning message:

sage: R = IntegerModRing(21, is_field=True)
sage: R.is_field()
True
sage: R.is_field(proof=True)
Traceback (most recent call last):
...
ValueError: THIS SAGE SESSION MIGHT BE SERIOUSLY COMPROMISED!
The order 21 is not prime, but this ring has been put
into the category of fields. This may already have consequences
in other parts of Sage. Either it was a mistake of the user,
or a probabilistic primality test has failed.
In the latter case, please inform the developers.
>>> from sage.all import *
>>> R = IntegerModRing(Integer(21), is_field=True)
>>> R.is_field()
True
>>> R.is_field(proof=True)
Traceback (most recent call last):
...
ValueError: THIS SAGE SESSION MIGHT BE SERIOUSLY COMPROMISED!
The order 21 is not prime, but this ring has been put
into the category of fields. This may already have consequences
in other parts of Sage. Either it was a mistake of the user,
or a probabilistic primality test has failed.
In the latter case, please inform the developers.

To avoid side-effects of this test on other tests, we clear the cache of the ring factory:

sage: IntegerModRing._cache.clear()
>>> from sage.all import *
>>> IntegerModRing._cache.clear()
is_integral_domain(proof=None)[source]#

Return True if and only if the order of self is prime.

EXAMPLES:

sage: Integers(389).is_integral_domain()
True
sage: Integers(389^2).is_integral_domain()                                  # needs sage.libs.pari
False
>>> from sage.all import *
>>> Integers(Integer(389)).is_integral_domain()
True
>>> Integers(Integer(389)**Integer(2)).is_integral_domain()                                  # needs sage.libs.pari
False
is_noetherian()[source]#

Check if self is a Noetherian ring.

EXAMPLES:

sage: Integers(8).is_noetherian()
True
>>> from sage.all import *
>>> Integers(Integer(8)).is_noetherian()
True
is_prime_field()[source]#

Return True if the order is prime.

EXAMPLES:

sage: Zmod(7).is_prime_field()
True
sage: Zmod(8).is_prime_field()
False
>>> from sage.all import *
>>> Zmod(Integer(7)).is_prime_field()
True
>>> Zmod(Integer(8)).is_prime_field()
False
is_unique_factorization_domain(proof=None)[source]#

Return True if and only if the order of self is prime.

EXAMPLES:

sage: Integers(389).is_unique_factorization_domain()
True
sage: Integers(389^2).is_unique_factorization_domain()                      # needs sage.libs.pari
False
>>> from sage.all import *
>>> Integers(Integer(389)).is_unique_factorization_domain()
True
>>> Integers(Integer(389)**Integer(2)).is_unique_factorization_domain()                      # needs sage.libs.pari
False
krull_dimension()[source]#

Return the Krull dimension of self.

EXAMPLES:

sage: Integers(18).krull_dimension()
0
>>> from sage.all import *
>>> Integers(Integer(18)).krull_dimension()
0
list_of_elements_of_multiplicative_group()[source]#

Return a list of all invertible elements, as python ints.

EXAMPLES:

sage: R = Zmod(12)
sage: L = R.list_of_elements_of_multiplicative_group(); L
[1, 5, 7, 11]
sage: type(L[0])
<... 'int'>
sage: Zmod(1).list_of_elements_of_multiplicative_group()
[0]
>>> from sage.all import *
>>> R = Zmod(Integer(12))
>>> L = R.list_of_elements_of_multiplicative_group(); L
[1, 5, 7, 11]
>>> type(L[Integer(0)])
<... 'int'>
>>> Zmod(Integer(1)).list_of_elements_of_multiplicative_group()
[0]
modulus()[source]#

Return the polynomial \(x - 1\) over this ring.

Note

This function exists for consistency with the finite-field modulus function.

EXAMPLES:

sage: R = IntegerModRing(18)
sage: R.modulus()
x + 17
sage: R = IntegerModRing(17)
sage: R.modulus()
x + 16
>>> from sage.all import *
>>> R = IntegerModRing(Integer(18))
>>> R.modulus()
x + 17
>>> R = IntegerModRing(Integer(17))
>>> R.modulus()
x + 16
multiplicative_generator()[source]#

Return a generator for the multiplicative group of this ring, assuming the multiplicative group is cyclic.

Use the unit_gens function to obtain generators even in the non-cyclic case.

EXAMPLES:

sage: # needs sage.groups sage.libs.pari
sage: R = Integers(7); R
Ring of integers modulo 7
sage: R.multiplicative_generator()
3
sage: R = Integers(9)
sage: R.multiplicative_generator()
2
sage: Integers(8).multiplicative_generator()
Traceback (most recent call last):
...
ValueError: multiplicative group of this ring is not cyclic
sage: Integers(4).multiplicative_generator()
3
sage: Integers(25*3).multiplicative_generator()
Traceback (most recent call last):
...
ValueError: multiplicative group of this ring is not cyclic
sage: Integers(25*3).unit_gens()
(26, 52)
sage: Integers(162).unit_gens()
(83,)
>>> from sage.all import *
>>> # needs sage.groups sage.libs.pari
>>> R = Integers(Integer(7)); R
Ring of integers modulo 7
>>> R.multiplicative_generator()
3
>>> R = Integers(Integer(9))
>>> R.multiplicative_generator()
2
>>> Integers(Integer(8)).multiplicative_generator()
Traceback (most recent call last):
...
ValueError: multiplicative group of this ring is not cyclic
>>> Integers(Integer(4)).multiplicative_generator()
3
>>> Integers(Integer(25)*Integer(3)).multiplicative_generator()
Traceback (most recent call last):
...
ValueError: multiplicative group of this ring is not cyclic
>>> Integers(Integer(25)*Integer(3)).unit_gens()
(26, 52)
>>> Integers(Integer(162)).unit_gens()
(83,)
multiplicative_group_is_cyclic()[source]#

Return True if the multiplicative group of this field is cyclic. This is the case exactly when the order is less than 8, a power of an odd prime, or twice a power of an odd prime.

EXAMPLES:

sage: R = Integers(7); R
Ring of integers modulo 7
sage: R.multiplicative_group_is_cyclic()
True
sage: R = Integers(9)
sage: R.multiplicative_group_is_cyclic()                                    # needs sage.libs.pari
True
sage: Integers(8).multiplicative_group_is_cyclic()
False
sage: Integers(4).multiplicative_group_is_cyclic()
True
sage: Integers(25*3).multiplicative_group_is_cyclic()                       # needs sage.libs.pari
False
>>> from sage.all import *
>>> R = Integers(Integer(7)); R
Ring of integers modulo 7
>>> R.multiplicative_group_is_cyclic()
True
>>> R = Integers(Integer(9))
>>> R.multiplicative_group_is_cyclic()                                    # needs sage.libs.pari
True
>>> Integers(Integer(8)).multiplicative_group_is_cyclic()
False
>>> Integers(Integer(4)).multiplicative_group_is_cyclic()
True
>>> Integers(Integer(25)*Integer(3)).multiplicative_group_is_cyclic()                       # needs sage.libs.pari
False

We test that Issue #5250 is fixed:

sage: Integers(162).multiplicative_group_is_cyclic()                        # needs sage.libs.pari
True
>>> from sage.all import *
>>> Integers(Integer(162)).multiplicative_group_is_cyclic()                        # needs sage.libs.pari
True
multiplicative_subgroups()[source]#

Return generators for each subgroup of \((\ZZ/N\ZZ)^*\).

EXAMPLES:

sage: # optional - gap_package_polycyclic, needs sage.groups
sage: Integers(5).multiplicative_subgroups()
((2,), (4,), ())
sage: Integers(15).multiplicative_subgroups()
((11, 7), (11, 4), (2,), (11,), (14,), (7,), (4,), ())
sage: Integers(2).multiplicative_subgroups()
((),)
sage: len(Integers(341).multiplicative_subgroups())
80
>>> from sage.all import *
>>> # optional - gap_package_polycyclic, needs sage.groups
>>> Integers(Integer(5)).multiplicative_subgroups()
((2,), (4,), ())
>>> Integers(Integer(15)).multiplicative_subgroups()
((11, 7), (11, 4), (2,), (11,), (14,), (7,), (4,), ())
>>> Integers(Integer(2)).multiplicative_subgroups()
((),)
>>> len(Integers(Integer(341)).multiplicative_subgroups())
80
order()[source]#

Return the order of this ring.

EXAMPLES:

sage: Zmod(87).order()
87
>>> from sage.all import *
>>> Zmod(Integer(87)).order()
87
quadratic_nonresidue()[source]#

Return a quadratic non-residue in self.

EXAMPLES:

sage: R = Integers(17)
sage: R.quadratic_nonresidue()                                              # needs sage.libs.pari
3
sage: R(3).is_square()
False
>>> from sage.all import *
>>> R = Integers(Integer(17))
>>> R.quadratic_nonresidue()                                              # needs sage.libs.pari
3
>>> R(Integer(3)).is_square()
False
random_element(bound=None)[source]#

Return a random element of this ring.

INPUT:

  • bound, a positive integer or None (the default). Is given, return the coercion of an integer in the interval [-bound, bound] into this ring.

EXAMPLES:

sage: R = IntegerModRing(18)
sage: R.random_element().parent() is R
True
sage: found = [False]*18
sage: while not all(found):
....:     found[R.random_element()] = True
>>> from sage.all import *
>>> R = IntegerModRing(Integer(18))
>>> R.random_element().parent() is R
True
>>> found = [False]*Integer(18)
>>> while not all(found):
...     found[R.random_element()] = True

We test bound-option:

sage: R.random_element(2) in [R(16), R(17), R(0), R(1), R(2)]
True
>>> from sage.all import *
>>> R.random_element(Integer(2)) in [R(Integer(16)), R(Integer(17)), R(Integer(0)), R(Integer(1)), R(Integer(2))]
True
square_roots_of_one()[source]#

Return all square roots of 1 in self, i.e., all solutions to \(x^2 - 1 = 0\).

OUTPUT:

The square roots of 1 in self as a tuple.

EXAMPLES:

sage: R = Integers(2^10)
sage: [x for x in R if x^2 == 1]
[1, 511, 513, 1023]
sage: R.square_roots_of_one()
(1, 511, 513, 1023)
>>> from sage.all import *
>>> R = Integers(Integer(2)**Integer(10))
>>> [x for x in R if x**Integer(2) == Integer(1)]
[1, 511, 513, 1023]
>>> R.square_roots_of_one()
(1, 511, 513, 1023)
sage: # needs sage.libs.pari
sage: v = Integers(9*5).square_roots_of_one(); v
(1, 19, 26, 44)
sage: [x^2 for x in v]
[1, 1, 1, 1]
sage: v = Integers(9*5*8).square_roots_of_one(); v
(1, 19, 71, 89, 91, 109, 161, 179, 181, 199, 251, 269, 271, 289, 341, 359)
sage: [x^2 for x in v]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> v = Integers(Integer(9)*Integer(5)).square_roots_of_one(); v
(1, 19, 26, 44)
>>> [x**Integer(2) for x in v]
[1, 1, 1, 1]
>>> v = Integers(Integer(9)*Integer(5)*Integer(8)).square_roots_of_one(); v
(1, 19, 71, 89, 91, 109, 161, 179, 181, 199, 251, 269, 271, 289, 341, 359)
>>> [x**Integer(2) for x in v]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
unit_gens(**kwds)[source]#

Returns generators for the unit group \((\ZZ/N\ZZ)^*\).

We compute the list of generators using a deterministic algorithm, so the generators list will always be the same. For each odd prime divisor of \(N\) there will be exactly one corresponding generator; if \(N\) is even there will be 0, 1 or 2 generators according to whether 2 divides \(N\) to order 1, 2 or \(\geq 3\).

OUTPUT:

A tuple containing the units of self.

EXAMPLES:

sage: R = IntegerModRing(18)
sage: R.unit_gens()                                                         # needs sage.groups
(11,)
sage: R = IntegerModRing(17)
sage: R.unit_gens()                                                         # needs sage.groups
(3,)
sage: IntegerModRing(next_prime(10^30)).unit_gens()                         # needs sage.groups
(5,)
>>> from sage.all import *
>>> R = IntegerModRing(Integer(18))
>>> R.unit_gens()                                                         # needs sage.groups
(11,)
>>> R = IntegerModRing(Integer(17))
>>> R.unit_gens()                                                         # needs sage.groups
(3,)
>>> IntegerModRing(next_prime(Integer(10)**Integer(30))).unit_gens()                         # needs sage.groups
(5,)

The choice of generators is affected by the optional keyword algorithm; this can be 'sage' (default) or 'pari'. See unit_group() for details.

sage: A = Zmod(55)
sage: A.unit_gens(algorithm='sage')                                         # needs sage.groups
(12, 46)
sage: A.unit_gens(algorithm='pari')                                         # needs sage.groups sage.libs.pari
(2, 21)
>>> from sage.all import *
>>> A = Zmod(Integer(55))
>>> A.unit_gens(algorithm='sage')                                         # needs sage.groups
(12, 46)
>>> A.unit_gens(algorithm='pari')                                         # needs sage.groups sage.libs.pari
(2, 21)
unit_group(algorithm='sage')[source]#

Return the unit group of self.

INPUT:

  • self – the ring \(\ZZ/n\ZZ\) for a positive integer \(n\)

  • algorithm – either 'sage' (default) or 'pari'

OUTPUT:

The unit group of self. This is a finite Abelian group equipped with a distinguished set of generators, which is computed using a deterministic algorithm depending on the algorithm parameter.

  • If algorithm == 'sage', the generators correspond to the prime factors \(p \mid n\) (one generator for each odd \(p\); the number of generators for \(p = 2\) is 0, 1 or 2 depending on the order to which 2 divides \(n\)).

  • If algorithm == 'pari', the generators are chosen such that their orders form a decreasing sequence with respect to divisibility.

EXAMPLES:

The output of the algorithms 'sage' and 'pari' can differ in various ways. In the following example, the same cyclic factors are computed, but in a different order:

sage: # needs sage.groups
sage: A = Zmod(15)
sage: G = A.unit_group(); G
Multiplicative Abelian group isomorphic to C2 x C4
sage: G.gens_values()
(11, 7)
sage: H = A.unit_group(algorithm='pari'); H                                 # needs sage.libs.pari
Multiplicative Abelian group isomorphic to C4 x C2
sage: H.gens_values()                                                       # needs sage.libs.pari
(7, 11)
>>> from sage.all import *
>>> # needs sage.groups
>>> A = Zmod(Integer(15))
>>> G = A.unit_group(); G
Multiplicative Abelian group isomorphic to C2 x C4
>>> G.gens_values()
(11, 7)
>>> H = A.unit_group(algorithm='pari'); H                                 # needs sage.libs.pari
Multiplicative Abelian group isomorphic to C4 x C2
>>> H.gens_values()                                                       # needs sage.libs.pari
(7, 11)

Here are two examples where the cyclic factors are isomorphic, but are ordered differently and have different generators:

sage: # needs sage.groups
sage: A = Zmod(40)
sage: G = A.unit_group(); G
Multiplicative Abelian group isomorphic to C2 x C2 x C4
sage: G.gens_values()
(31, 21, 17)
sage: H = A.unit_group(algorithm='pari'); H                                 # needs sage.libs.pari
Multiplicative Abelian group isomorphic to C4 x C2 x C2
sage: H.gens_values()                                                       # needs sage.libs.pari
(17, 31, 21)

sage: # needs sage.groups
sage: A = Zmod(192)
sage: G = A.unit_group(); G
Multiplicative Abelian group isomorphic to C2 x C16 x C2
sage: G.gens_values()
(127, 133, 65)
sage: H = A.unit_group(algorithm='pari'); H                                 # needs sage.libs.pari
Multiplicative Abelian group isomorphic to C16 x C2 x C2
sage: H.gens_values()                                                       # needs sage.libs.pari
(133, 127, 65)
>>> from sage.all import *
>>> # needs sage.groups
>>> A = Zmod(Integer(40))
>>> G = A.unit_group(); G
Multiplicative Abelian group isomorphic to C2 x C2 x C4
>>> G.gens_values()
(31, 21, 17)
>>> H = A.unit_group(algorithm='pari'); H                                 # needs sage.libs.pari
Multiplicative Abelian group isomorphic to C4 x C2 x C2
>>> H.gens_values()                                                       # needs sage.libs.pari
(17, 31, 21)

>>> # needs sage.groups
>>> A = Zmod(Integer(192))
>>> G = A.unit_group(); G
Multiplicative Abelian group isomorphic to C2 x C16 x C2
>>> G.gens_values()
(127, 133, 65)
>>> H = A.unit_group(algorithm='pari'); H                                 # needs sage.libs.pari
Multiplicative Abelian group isomorphic to C16 x C2 x C2
>>> H.gens_values()                                                       # needs sage.libs.pari
(133, 127, 65)

In the following examples, the cyclic factors are not even isomorphic:

sage: A = Zmod(319)
sage: A.unit_group()                                                        # needs sage.groups
Multiplicative Abelian group isomorphic to C10 x C28
sage: A.unit_group(algorithm='pari')                                        # needs sage.groups sage.libs.pari
Multiplicative Abelian group isomorphic to C140 x C2

sage: A = Zmod(30.factorial())
sage: A.unit_group()                                                        # needs sage.groups
Multiplicative Abelian group isomorphic to
 C2 x C16777216 x C3188646 x C62500 x C2058 x C110 x C156 x C16 x C18 x C22 x C28
sage: A.unit_group(algorithm='pari')                                        # needs sage.groups sage.libs.pari
Multiplicative Abelian group isomorphic to
 C20499647385305088000000 x C55440 x C12 x C12 x C4 x C2 x C2 x C2 x C2 x C2 x C2
>>> from sage.all import *
>>> A = Zmod(Integer(319))
>>> A.unit_group()                                                        # needs sage.groups
Multiplicative Abelian group isomorphic to C10 x C28
>>> A.unit_group(algorithm='pari')                                        # needs sage.groups sage.libs.pari
Multiplicative Abelian group isomorphic to C140 x C2

>>> A = Zmod(Integer(30).factorial())
>>> A.unit_group()                                                        # needs sage.groups
Multiplicative Abelian group isomorphic to
 C2 x C16777216 x C3188646 x C62500 x C2058 x C110 x C156 x C16 x C18 x C22 x C28
>>> A.unit_group(algorithm='pari')                                        # needs sage.groups sage.libs.pari
Multiplicative Abelian group isomorphic to
 C20499647385305088000000 x C55440 x C12 x C12 x C4 x C2 x C2 x C2 x C2 x C2 x C2
unit_group_exponent()[source]#

EXAMPLES:

sage: R = IntegerModRing(17)
sage: R.unit_group_exponent()                                               # needs sage.groups
16
sage: R = IntegerModRing(18)
sage: R.unit_group_exponent()                                               # needs sage.groups
6
>>> from sage.all import *
>>> R = IntegerModRing(Integer(17))
>>> R.unit_group_exponent()                                               # needs sage.groups
16
>>> R = IntegerModRing(Integer(18))
>>> R.unit_group_exponent()                                               # needs sage.groups
6
unit_group_order()[source]#

Return the order of the unit group of this residue class ring.

EXAMPLES:

sage: R = Integers(500)
sage: R.unit_group_order()                                                  # needs sage.groups
200
>>> from sage.all import *
>>> R = Integers(Integer(500))
>>> R.unit_group_order()                                                  # needs sage.groups
200
sage.rings.finite_rings.integer_mod_ring.crt(v)[source]#

INPUT:

  • v – (list) a lift of elements of rings.IntegerMod(n), for various coprime moduli n

EXAMPLES:

sage: from sage.rings.finite_rings.integer_mod_ring import crt
sage: crt([mod(3, 8), mod(1,19), mod(7, 15)])
1027
>>> from sage.all import *
>>> from sage.rings.finite_rings.integer_mod_ring import crt
>>> crt([mod(Integer(3), Integer(8)), mod(Integer(1),Integer(19)), mod(Integer(7), Integer(15))])
1027