# Differentials of function fields¶

Sage provides arithmetic with differentials of function fields.

EXAMPLES:

The module of differentials on a function field forms an one-dimensional vector space over the function field:

sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
sage: f = x + y
sage: g = 1 / y
sage: df = f.differential()
sage: dg = g.differential()
sage: dfdg = f.derivative() / g.derivative()
sage: df == dfdg * dg
True
sage: df
(x*y^2 + 1/x*y + 1) d(x)
sage: df.parent()
Space of differentials of Function field in y defined by y^3 + x^3*y + x


We can compute a canonical divisor:

sage: k = df.divisor()
sage: k.degree()
4
sage: k.degree() == 2 * L.genus() - 2
True


Exact differentials vanish and logarithmic differentials are stable under the Cartier operation:

sage: df.cartier()
0
sage: w = 1/f * df
sage: w.cartier() == w
True


AUTHORS:

• Kwankyu Lee (2017-04-30): initial version
class sage.rings.function_field.differential.DifferentialsSpace(field, category=None)

Space of differentials of a function field.

INPUT:

• field – function field

EXAMPLES:

sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
sage: L.space_of_differentials()
Space of differentials of Function field in y defined by y^3 + x^3*y + x


The space of differentials is a one-dimensional module over the function field. So a base differential is chosen to represent differentials. Usually the generator of the base rational function field is a separating element and used to generate the base differential. Otherwise a separating element is automatically found and used to generate the base differential relative to which other differentials are denoted:

sage: K.<x> = FunctionField(GF(5))
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^5 - 1/x)
sage: L(x).differential()
0
sage: y.differential()
d(y)
sage: (y^2).differential()
(2*y) d(y)

Element
basis()

Return a basis.

EXAMPLES:

sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
sage: S = L.space_of_differentials()
sage: S.basis()
Family (d(x),)

function_field()

Return the function field to which the space of differentials is attached.

EXAMPLES:

sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
sage: S = L.space_of_differentials()
sage: S.function_field()
Function field in y defined by y^3 + x^3*y + x

class sage.rings.function_field.differential.DifferentialsSpaceInclusion

Inclusion morphisms for extensions of function fields.

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3)
sage: OK = K.space_of_differentials()
sage: OL = L.space_of_differentials()
sage: OL.coerce_map_from(OK)
Inclusion morphism:
From: Space of differentials of Rational function field in x over Rational Field
To:   Space of differentials of Function field in y defined by y^2 - x*y + 4*x^3

is_injective()

Return True, since the inclusion morphism is injective.

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3)
sage: OK = K.space_of_differentials()
sage: OL = L.space_of_differentials()
sage: OL.coerce_map_from(OK).is_injective()
True

is_surjective()

Return True if the inclusion morphism is surjective.

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3)
sage: OK = K.space_of_differentials()
sage: OL = L.space_of_differentials()
sage: OL.coerce_map_from(OK).is_surjective()
False
sage: S.<z> = L[]
sage: M.<z> = L.extension(z - 1)
sage: OM = M.space_of_differentials()
sage: OM.coerce_map_from(OL).is_surjective()
True

class sage.rings.function_field.differential.DifferentialsSpace_global(field, category=None)

Space of differentials of a global function field.

INPUT:

• field – function field

EXAMPLES:

sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
sage: L.space_of_differentials()
Space of differentials of Function field in y defined by y^3 + x^3*y + x

Element
class sage.rings.function_field.differential.FunctionFieldDifferential(parent, f, t=None)

Base class for differentials on function fields.

INPUT:

• f – element of the function field
• t – element of the function field; if $$t$$ is not specified, the generator of the base differential is assumed

EXAMPLES:

sage: F.<x>=FunctionField(QQ)
sage: f = x/(x^2 + x + 1)
sage: f.differential()
((-x^2 + 1)/(x^4 + 2*x^3 + 3*x^2 + 2*x + 1)) d(x)

sage: K.<x> = FunctionField(QQ); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
sage: L(x).differential()
d(x)
sage: y.differential()
((21/4*x/(x^7 + 27/4))*y^2 + ((3/2*x^7 + 9/4)/(x^8 + 27/4*x))*y + 7/2*x^4/(x^7 + 27/4)) d(x)

divisor()

Return the divisor of the differential.

EXAMPLES:

sage: K.<x> = FunctionField(GF(5)); _.<Y>=K[]
sage: L.<y> = K.extension(Y^3+x+x^3*Y)
sage: w = (1/y) * y.differential()
sage: w.divisor()
- Place (1/x, 1/x^3*y^2 + 1/x)
- Place (1/x, 1/x^3*y^2 + 1/x^2*y + 1)
- Place (x, y)
+ Place (x + 2, y + 3)
+ Place (x^6 + 3*x^5 + 4*x^4 + 2*x^3 + x^2 + 3*x + 4, y + x^5)

sage: F.<x> = FunctionField(QQ)
sage: w = (1/x).differential()
sage: w.divisor()
-2*Place (x)

monomial_coefficients(copy=True)

Return a dictionary whose keys are indices of basis elements in the support of self and whose values are the corresponding coefficients.

EXAMPLES:

sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3+x+x^3*Y)
sage: d = y.differential()
sage: d
((4*x/(x^7 + 3))*y^2 + ((4*x^7 + 1)/(x^8 + 3*x))*y + x^4/(x^7 + 3)) d(x)
sage: d.monomial_coefficients()
{0: (4*x/(x^7 + 3))*y^2 + ((4*x^7 + 1)/(x^8 + 3*x))*y + x^4/(x^7 + 3)}

residue(place)

Return the residue of the differential at the place.

INPUT:

• place – a place of the function field

OUTPUT:

• an element of the residue field of the place

EXAMPLES:

We verify the residue theorem in a rational function field:

sage: F.<x> = FunctionField(GF(4))
sage: f = 0
sage: while f == 0:
....:     f = F.random_element()
sage: w = 1/f * f.differential()
sage: d = f.divisor()
sage: s = d.support()
sage: sum([w.residue(p).trace() for p in s])
0


and in an extension field:

sage: K.<x> = FunctionField(GF(7)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
sage: f = 0
sage: while f == 0:
....:     f = L.random_element()
sage: w = 1/f * f.differential()
sage: d = f.divisor()
sage: s = d.support()
sage: sum([w.residue(p).trace() for p in s])
0


and also in a function field of characteristic zero:

sage: R.<x> = FunctionField(QQ)
sage: L.<Y> = R[]
sage: F.<y> = R.extension(Y^2 - x^4 - 4*x^3 - 2*x^2 - 1)
sage: a = 6*x^2 + 5*x + 7
sage: b = 2*x^6 + 8*x^5 + 3*x^4 - 4*x^3 -1
sage: w = y*a/b*x.differential()
sage: d = w.divisor()
sage: sum([QQ(w.residue(p)) for p in d.support()])
0

valuation(place)

Return the valuation of the differential at the place.

INPUT:

• place – a place of the function field

EXAMPLES:

sage: K.<x> = FunctionField(GF(5)); _.<Y>=K[]
sage: L.<y> = K.extension(Y^3+x+x^3*Y)
sage: w = (1/y) * y.differential()
sage: [w.valuation(p) for p in L.places()]
[-1, -1, -1, 0, 1, 0]

class sage.rings.function_field.differential.FunctionFieldDifferential_global(parent, f, t=None)

Differentials on global function fields.

EXAMPLES:

sage: F.<x>=FunctionField(GF(7))
sage: f = x/(x^2 + x + 1)
sage: f.differential()
((6*x^2 + 1)/(x^4 + 2*x^3 + 3*x^2 + 2*x + 1)) d(x)

sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
sage: y.differential()
(x*y^2 + 1/x*y) d(x)

cartier()

Return the image of the differential by the Cartier operator.

The Cartier operator operates on differentials. Let $$x$$ be a separating element of the function field. If a differential $$\omega$$ is written in prime-power representation $$\omega=(f_0^p+f_1^px+\dots+f_{p-1}^px^{p-1})dx$$, then the Cartier operator maps $$\omega$$ to $$f_{p-1}dx$$. It is known that this definition does not depend on the choice of $$x$$.

The Cartier operator has interesting properties. Notably, the set of exact differentials is precisely the kernel of the Cartier operator and logarithmic differentials are stable under the Cartier operation.

EXAMPLES:

sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
sage: f = x/y
sage: w = 1/f*f.differential()
sage: w.cartier() == w
True

sage: F.<x> = FunctionField(GF(4))
sage: f = x/(x^2 + x + 1)
sage: w = 1/f*f.differential()
sage: w.cartier() == w
True