Places of function fields: rational¶
- class sage.rings.function_field.place_rational.FunctionFieldPlace_rational(parent, prime)[source]¶
Bases:
FunctionFieldPlace
Places of rational function fields.
- degree()[source]¶
Return the degree of the place.
EXAMPLES:
sage: F.<x> = FunctionField(GF(2)) sage: O = F.maximal_order() sage: i = O.ideal(x^2 + x + 1) sage: p = i.place() sage: p.degree() 2
>>> from sage.all import * >>> F = FunctionField(GF(Integer(2)), names=('x',)); (x,) = F._first_ngens(1) >>> O = F.maximal_order() >>> i = O.ideal(x**Integer(2) + x + Integer(1)) >>> p = i.place() >>> p.degree() 2
- is_infinite_place()[source]¶
Return
True
if the place is at infinite.EXAMPLES:
sage: F.<x> = FunctionField(GF(2)) sage: F.places() [Place (1/x), Place (x), Place (x + 1)] sage: [p.is_infinite_place() for p in F.places()] [True, False, False]
>>> from sage.all import * >>> F = FunctionField(GF(Integer(2)), names=('x',)); (x,) = F._first_ngens(1) >>> F.places() [Place (1/x), Place (x), Place (x + 1)] >>> [p.is_infinite_place() for p in F.places()] [True, False, False]
- local_uniformizer()[source]¶
Return a local uniformizer of the place.
EXAMPLES:
sage: F.<x> = FunctionField(GF(2)) sage: F.places() [Place (1/x), Place (x), Place (x + 1)] sage: [p.local_uniformizer() for p in F.places()] [1/x, x, x + 1]
>>> from sage.all import * >>> F = FunctionField(GF(Integer(2)), names=('x',)); (x,) = F._first_ngens(1) >>> F.places() [Place (1/x), Place (x), Place (x + 1)] >>> [p.local_uniformizer() for p in F.places()] [1/x, x, x + 1]
- residue_field(name=None)[source]¶
Return the residue field of the place.
EXAMPLES:
sage: F.<x> = FunctionField(GF(2)) sage: O = F.maximal_order() sage: p = O.ideal(x^2 + x + 1).place() sage: k, fr_k, to_k = p.residue_field() # needs sage.rings.function_field sage: k # needs sage.rings.function_field Finite Field in z2 of size 2^2 sage: fr_k # needs sage.rings.function_field Ring morphism: From: Finite Field in z2 of size 2^2 To: Valuation ring at Place (x^2 + x + 1) sage: to_k # needs sage.rings.function_field Ring morphism: From: Valuation ring at Place (x^2 + x + 1) To: Finite Field in z2 of size 2^2
>>> from sage.all import * >>> F = FunctionField(GF(Integer(2)), names=('x',)); (x,) = F._first_ngens(1) >>> O = F.maximal_order() >>> p = O.ideal(x**Integer(2) + x + Integer(1)).place() >>> k, fr_k, to_k = p.residue_field() # needs sage.rings.function_field >>> k # needs sage.rings.function_field Finite Field in z2 of size 2^2 >>> fr_k # needs sage.rings.function_field Ring morphism: From: Finite Field in z2 of size 2^2 To: Valuation ring at Place (x^2 + x + 1) >>> to_k # needs sage.rings.function_field Ring morphism: From: Valuation ring at Place (x^2 + x + 1) To: Finite Field in z2 of size 2^2
- valuation_ring()[source]¶
Return the valuation ring at the place.
EXAMPLES:
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[] sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) # needs sage.rings.function_field sage: p = L.places_finite()[0] # needs sage.rings.function_field sage: p.valuation_ring() # needs sage.rings.function_field Valuation ring at Place (x, x*y)
>>> from sage.all import * >>> K = FunctionField(GF(Integer(2)), names=('x',)); (x,) = K._first_ngens(1); _ = K['Y']; (Y,) = _._first_ngens(1) >>> L = K.extension(Y**Integer(2) + Y + x + Integer(1)/x, names=('y',)); (y,) = L._first_ngens(1)# needs sage.rings.function_field >>> p = L.places_finite()[Integer(0)] # needs sage.rings.function_field >>> p.valuation_ring() # needs sage.rings.function_field Valuation ring at Place (x, x*y)