Koszul Complexes¶
- class sage.homology.koszul_complex.KoszulComplex(R, elements)[source]¶
Bases:
ChainComplex_class
,UniqueRepresentation
A Koszul complex.
Let \(R\) be a ring and consider \(x_1, x_2, \ldots, x_n \in R\). The Koszul complex \(K_*(x_1, \ldots, x_n)\) is given by defining a chain complex structure on the exterior algebra \(\bigwedge^n R\) with the basis \(e_{i_1} \wedge \cdots \wedge e_{i_a}\). The differential is given by
\[\partial(e_{i_1} \wedge \cdots \wedge e_{i_a}) = \sum_{r=1}^a (-1)^{r-1} x_{i_r} e_{i_1} \wedge \cdots \wedge \hat{e}_{i_r} \wedge \cdots \wedge e_{i_a},\]where \(\hat{e}_{i_r}\) denotes the omitted factor.
Alternatively we can describe the Koszul complex by considering the basic complex \(K_{x_i}\)
\[0 \rightarrow R \xrightarrow{x_i} R \rightarrow 0.\]Then the Koszul complex is given by \(K_*(x_1, \ldots, x_n) = \bigotimes_i K_{x_i}\).
INPUT:
R
– the base ringelements
– tuple of elements of \(R\)
EXAMPLES:
sage: R.<x,y,z> = QQ[] sage: K = KoszulComplex(R, [x,y]) sage: ascii_art(K) [-y] [x y] [ x] 0 <-- C_0 <------ C_1 <----- C_2 <-- 0 sage: K = KoszulComplex(R, [x,y,z]) sage: ascii_art(K) [-y -z 0] [ z] [ x 0 -z] [-y] [x y z] [ 0 x y] [ x] 0 <-- C_0 <-------- C_1 <----------- C_2 <----- C_3 <-- 0 sage: K = KoszulComplex(R, [x+y*z,x+y-z]) sage: ascii_art(K) [-x - y + z] [ y*z + x x + y - z] [ y*z + x] 0 <-- C_0 <---------------------- C_1 <------------- C_2 <-- 0
>>> from sage.all import * >>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3) >>> K = KoszulComplex(R, [x,y]) >>> ascii_art(K) [-y] [x y] [ x] 0 <-- C_0 <------ C_1 <----- C_2 <-- 0 >>> K = KoszulComplex(R, [x,y,z]) >>> ascii_art(K) [-y -z 0] [ z] [ x 0 -z] [-y] [x y z] [ 0 x y] [ x] 0 <-- C_0 <-------- C_1 <----------- C_2 <----- C_3 <-- 0 >>> K = KoszulComplex(R, [x+y*z,x+y-z]) >>> ascii_art(K) [-x - y + z] [ y*z + x x + y - z] [ y*z + x] 0 <-- C_0 <---------------------- C_1 <------------- C_2 <-- 0
REFERENCES: