Abelian Monoid Elements¶
AUTHORS:
David Kohel (2005-09)
EXAMPLES:
Recall the example from abelian monoids:
sage: F = FreeAbelianMonoid(5,names = list("abcde"))
sage: (a,b,c,d,e) = F.gens()
sage: a*b^2*e*d
a*b^2*d*e
sage: x = b^2*e*d*a^7
sage: x
a^7*b^2*d*e
sage: x.list()
[7, 2, 0, 1, 1]
>>> from sage.all import *
>>> F = FreeAbelianMonoid(Integer(5),names = list("abcde"))
>>> (a,b,c,d,e) = F.gens()
>>> a*b**Integer(2)*e*d
a*b^2*d*e
>>> x = b**Integer(2)*e*d*a**Integer(7)
>>> x
a^7*b^2*d*e
>>> x.list()
[7, 2, 0, 1, 1]
The list is a copy, so changing the list does not change the element:
sage: x.list()[0] = 0
sage: x
a^7*b^2*d*e
>>> from sage.all import *
>>> x.list()[Integer(0)] = Integer(0)
>>> x
a^7*b^2*d*e
- class sage.monoids.free_abelian_monoid_element.FreeAbelianMonoidElement[source]¶
Bases:
MonoidElement
Create the element
x
of the FreeAbelianMonoidparent
.EXAMPLES:
sage: F = FreeAbelianMonoid(5, 'abcde') sage: F Free abelian monoid on 5 generators (a, b, c, d, e) sage: F(1) 1 sage: F(2) Traceback (most recent call last): ... TypeError: argument x (= 2) is of the wrong type sage: F(int(1)) 1 sage: a, b, c, d, e = F.gens() sage: a^2 * b^3 * a^2 * b^4 a^4*b^7 sage: F = FreeAbelianMonoid(5, 'abcde') sage: a, b, c, d, e = F.gens() sage: a in F True sage: a*b in F True
>>> from sage.all import * >>> F = FreeAbelianMonoid(Integer(5), 'abcde') >>> F Free abelian monoid on 5 generators (a, b, c, d, e) >>> F(Integer(1)) 1 >>> F(Integer(2)) Traceback (most recent call last): ... TypeError: argument x (= 2) is of the wrong type >>> F(int(Integer(1))) 1 >>> a, b, c, d, e = F.gens() >>> a**Integer(2) * b**Integer(3) * a**Integer(2) * b**Integer(4) a^4*b^7 >>> F = FreeAbelianMonoid(Integer(5), 'abcde') >>> a, b, c, d, e = F.gens() >>> a in F True >>> a*b in F True
- list()[source]¶
Return the underlying list used to represent
self
.If this is a monoid in an abelian monoid on \(n\) generators, then this is a list of nonnegative integers of length \(n\).
EXAMPLES:
sage: F = FreeAbelianMonoid(5, 'abcde') sage: (a, b, c, d, e) = F.gens() sage: a.list() [1, 0, 0, 0, 0]
>>> from sage.all import * >>> F = FreeAbelianMonoid(Integer(5), 'abcde') >>> (a, b, c, d, e) = F.gens() >>> a.list() [1, 0, 0, 0, 0]