Fraction fields of Ore polynomial rings¶
Sage provides support for building the fraction field of any Ore
polynomial ring and performing basic operations in it.
The fraction field is constructed by the method
sage.rings.polynomial.ore_polynomial_ring.OrePolynomialRing.fraction_field()
as demonstrated below:
sage: R.<t> = QQ[]
sage: der = R.derivation()
sage: A.<d> = R['d', der]
sage: K = A.fraction_field()
sage: K
Ore Function Field in d over Fraction Field of Univariate Polynomial Ring in t
over Rational Field twisted by d/dt
>>> from sage.all import *
>>> R = QQ['t']; (t,) = R._first_ngens(1)
>>> der = R.derivation()
>>> A = R['d', der]; (d,) = A._first_ngens(1)
>>> K = A.fraction_field()
>>> K
Ore Function Field in d over Fraction Field of Univariate Polynomial Ring in t
over Rational Field twisted by d/dt
The simplest way to build elements in \(K\) is to use the division operator over Ore polynomial rings:
sage: f = 1/d
sage: f
d^(-1)
sage: f.parent() is K
True
>>> from sage.all import *
>>> f = Integer(1)/d
>>> f
d^(-1)
>>> f.parent() is K
True
REPRESENTATION OF ELEMENTS:
Elements in \(K\) are internally represented by fractions of the form \(s^{-1} t\) with the denominator on the left. Notice that, because of noncommutativity, this is not the same that fractions with denominator on the right. For example, a fraction created by the division operator is usually displayed with a different numerator and/or a different denominator:
sage: g = t / d
sage: g
(d - 1/t)^(-1) * t
>>> from sage.all import *
>>> g = t / d
>>> g
(d - 1/t)^(-1) * t
The left numerator and right denominator are accessible as follows:
sage: g.left_numerator()
t
sage: g.right_denominator()
d
>>> from sage.all import *
>>> g.left_numerator()
t
>>> g.right_denominator()
d
Similarly the methods OrePolynomial.left_denominator()
and
OrePolynomial.right_numerator()
give access to the Ore polynomials
\(s\) and \(t\) in the representation \(s^{-1} t\):
sage: g.left_denominator()
d - 1/t
sage: g.right_numerator()
t
>>> from sage.all import *
>>> g.left_denominator()
d - 1/t
>>> g.right_numerator()
t
We favored the writing \(s^{-1} t\) because it always exists. On the contrary, the writing \(s t^{-1}\) is only guaranteed when the twisting morphism defining the Ore polynomial ring is bijective. As a consequence, when the latter assumption is not fulfilled (or actually if Sage cannot invert the twisting morphism), computing the left numerator and the right denominator fails:
sage: # needs sage.rings.function_field
sage: sigma = R.hom([t^2])
sage: S.<x> = R['x', sigma]
sage: F = S.fraction_field()
sage: f = F.random_element()
sage: while not f:
....: f = F.random_element()
sage: f.left_numerator()
Traceback (most recent call last):
...
NotImplementedError: inversion of the twisting morphism
Ring endomorphism of Fraction Field of Univariate Polynomial Ring in t over Rational Field
Defn: t |--> t^2
>>> from sage.all import *
>>> # needs sage.rings.function_field
>>> sigma = R.hom([t**Integer(2)])
>>> S = R['x', sigma]; (x,) = S._first_ngens(1)
>>> F = S.fraction_field()
>>> f = F.random_element()
>>> while not f:
... f = F.random_element()
>>> f.left_numerator()
Traceback (most recent call last):
...
NotImplementedError: inversion of the twisting morphism
Ring endomorphism of Fraction Field of Univariate Polynomial Ring in t over Rational Field
Defn: t |--> t^2
On a related note, fractions are systematically simplified when the twisting morphism is bijective but they are not otherwise. As an example, compare the two following computations:
sage: # needs sage.rings.function_field
sage: P = d^2 + t*d + 1
sage: Q = d + t^2
sage: D = d^3 + t^2 + 1
sage: f = P^(-1) * Q
sage: f
(d^2 + t*d + 1)^(-1) * (d + t^2)
sage: g = (D*P)^(-1) * (D*Q)
sage: g
(d^2 + t*d + 1)^(-1) * (d + t^2)
sage: # needs sage.rings.function_field
sage: P = x^2 + t*x + 1
sage: Q = x + t^2
sage: D = x^3 + t^2 + 1
sage: f = P^(-1) * Q
sage: f
(x^2 + t*x + 1)^(-1) * (x + t^2)
sage: g = (D*P)^(-1) * (D*Q)
sage: g
(x^5 + t^8*x^4 + x^3 + (t^2 + 1)*x^2 + (t^3 + t)*x + t^2 + 1)^(-1)
* (x^4 + t^16*x^3 + (t^2 + 1)*x + t^4 + t^2)
sage: f == g
True
>>> from sage.all import *
>>> # needs sage.rings.function_field
>>> P = d**Integer(2) + t*d + Integer(1)
>>> Q = d + t**Integer(2)
>>> D = d**Integer(3) + t**Integer(2) + Integer(1)
>>> f = P**(-Integer(1)) * Q
>>> f
(d^2 + t*d + 1)^(-1) * (d + t^2)
>>> g = (D*P)**(-Integer(1)) * (D*Q)
>>> g
(d^2 + t*d + 1)^(-1) * (d + t^2)
>>> # needs sage.rings.function_field
>>> P = x**Integer(2) + t*x + Integer(1)
>>> Q = x + t**Integer(2)
>>> D = x**Integer(3) + t**Integer(2) + Integer(1)
>>> f = P**(-Integer(1)) * Q
>>> f
(x^2 + t*x + 1)^(-1) * (x + t^2)
>>> g = (D*P)**(-Integer(1)) * (D*Q)
>>> g
(x^5 + t^8*x^4 + x^3 + (t^2 + 1)*x^2 + (t^3 + t)*x + t^2 + 1)^(-1)
* (x^4 + t^16*x^3 + (t^2 + 1)*x + t^4 + t^2)
>>> f == g
True
OPERATIONS:
Basic arithmetical operations are available:
sage: # needs sage.rings.function_field
sage: f = 1 / d
sage: g = 1 / (d + t)
sage: u = f + g; u
(d^2 + ((t^2 - 1)/t)*d)^(-1) * (2*d + (t^2 - 2)/t)
sage: v = f - g; v
(d^2 + ((t^2 - 1)/t)*d)^(-1) * t
sage: u + v
d^(-1) * 2
sage: f * g
(d^2 + t*d)^(-1)
sage: f / g
d^(-1) * (d + t)
>>> from sage.all import *
>>> # needs sage.rings.function_field
>>> f = Integer(1) / d
>>> g = Integer(1) / (d + t)
>>> u = f + g; u
(d^2 + ((t^2 - 1)/t)*d)^(-1) * (2*d + (t^2 - 2)/t)
>>> v = f - g; v
(d^2 + ((t^2 - 1)/t)*d)^(-1) * t
>>> u + v
d^(-1) * 2
>>> f * g
(d^2 + t*d)^(-1)
>>> f / g
d^(-1) * (d + t)
Of course, multiplication remains noncommutative:
sage: # needs sage.rings.function_field
sage: g * f
(d^2 + t*d + 1)^(-1)
sage: g^(-1) * f
(d - 1/t)^(-1) * (d + (t^2 - 1)/t)
>>> from sage.all import *
>>> # needs sage.rings.function_field
>>> g * f
(d^2 + t*d + 1)^(-1)
>>> g**(-Integer(1)) * f
(d - 1/t)^(-1) * (d + (t^2 - 1)/t)
AUTHOR:
Xavier Caruso (2020-05)
- class sage.rings.polynomial.ore_function_field.OreFunctionCenterInjection(domain, codomain, ringembed)[source]¶
Bases:
RingHomomorphism
Canonical injection of the center of a Ore function field into this field.
- section()[source]¶
Return a section of this morphism.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<a> = GF(5^3) sage: S.<x> = SkewPolynomialRing(k, k.frobenius_endomorphism()) sage: K = S.fraction_field() sage: Z = K.center() sage: iota = K.coerce_map_from(Z) sage: sigma = iota.section() sage: sigma(x^3 / (x^6 + 1)) z/(z^2 + 1)
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('a',)); (a,) = k._first_ngens(1) >>> S = SkewPolynomialRing(k, k.frobenius_endomorphism(), names=('x',)); (x,) = S._first_ngens(1) >>> K = S.fraction_field() >>> Z = K.center() >>> iota = K.coerce_map_from(Z) >>> sigma = iota.section() >>> sigma(x**Integer(3) / (x**Integer(6) + Integer(1))) z/(z^2 + 1)
- class sage.rings.polynomial.ore_function_field.OreFunctionField(ring, category=None)[source]¶
Bases:
Parent
,UniqueRepresentation
A class for fraction fields of Ore polynomial rings.
- Element = None¶
- change_var(var)[source]¶
Return the Ore function field in variable
var
with the same base ring, twisting morphism and twisting derivation asself
.INPUT:
var
– string representing the name of the new variable
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: R.<x> = OrePolynomialRing(k,Frob) sage: K = R.fraction_field() sage: K Ore Function Field in x over Finite Field in t of size 5^3 twisted by t |--> t^5 sage: Ky = K.change_var('y'); Ky Ore Function Field in y over Finite Field in t of size 5^3 twisted by t |--> t^5 sage: Ky is K.change_var('y') True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> R = OrePolynomialRing(k,Frob, names=('x',)); (x,) = R._first_ngens(1) >>> K = R.fraction_field() >>> K Ore Function Field in x over Finite Field in t of size 5^3 twisted by t |--> t^5 >>> Ky = K.change_var('y'); Ky Ore Function Field in y over Finite Field in t of size 5^3 twisted by t |--> t^5 >>> Ky is K.change_var('y') True
- characteristic()[source]¶
Return the characteristic of this Ore function field.
EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S = R['x',sigma] sage: S.fraction_field().characteristic() # needs sage.rings.function_field 0 sage: # needs sage.rings.finite_rings sage: k.<u> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S = k['y',Frob] sage: S.fraction_field().characteristic() # needs sage.rings.function_field 5
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma] >>> S.fraction_field().characteristic() # needs sage.rings.function_field 0 >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('u',)); (u,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['y',Frob] >>> S.fraction_field().characteristic() # needs sage.rings.function_field 5
- fraction_field()[source]¶
Return the fraction field of this Ore function field, i.e. this Ore function field itself.
EXAMPLES:
sage: R.<t> = QQ[] sage: der = R.derivation() sage: A.<d> = R['d', der] sage: K = A.fraction_field(); K Ore Function Field in d over Fraction Field of Univariate Polynomial Ring in t over Rational Field twisted by d/dt sage: K.fraction_field() Ore Function Field in d over Fraction Field of Univariate Polynomial Ring in t over Rational Field twisted by d/dt sage: K.fraction_field() is K True
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> der = R.derivation() >>> A = R['d', der]; (d,) = A._first_ngens(1) >>> K = A.fraction_field(); K Ore Function Field in d over Fraction Field of Univariate Polynomial Ring in t over Rational Field twisted by d/dt >>> K.fraction_field() Ore Function Field in d over Fraction Field of Univariate Polynomial Ring in t over Rational Field twisted by d/dt >>> K.fraction_field() is K True
- gen(n=0)[source]¶
Return the indeterminate generator of this Ore function field.
INPUT:
n
– index of generator to return (default: 0); exists for compatibility with other polynomial rings
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<a> = GF(5^4) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x', Frob] sage: K = S.fraction_field() sage: K.gen() x
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(4), names=('a',)); (a,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x', Frob]; (x,) = S._first_ngens(1) >>> K = S.fraction_field() >>> K.gen() x
- gens()[source]¶
Return the tuple of generators of
self
.EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<a> = GF(5^4) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x', Frob] sage: K = S.fraction_field() sage: K.gens() (x,)
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(4), names=('a',)); (a,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x', Frob]; (x,) = S._first_ngens(1) >>> K = S.fraction_field() >>> K.gens() (x,)
- gens_dict()[source]¶
Return a {name: variable} dictionary of the generators of this Ore function field.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = OrePolynomialRing(R, sigma) sage: K = S.fraction_field() sage: K.gens_dict() {'x': x}
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = OrePolynomialRing(R, sigma, names=('x',)); (x,) = S._first_ngens(1) >>> K = S.fraction_field() >>> K.gens_dict() {'x': x}
- is_commutative()[source]¶
Return
True
if this Ore function field is commutative, i.e. if the twisting morphism is the identity and the twisting derivation vanishes.EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<a> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x', Frob] sage: K = S.fraction_field() sage: K.is_commutative() False sage: T.<y> = k['y', Frob^3] sage: L = T.fraction_field() sage: L.is_commutative() True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('a',)); (a,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x', Frob]; (x,) = S._first_ngens(1) >>> K = S.fraction_field() >>> K.is_commutative() False >>> T = k['y', Frob**Integer(3)]; (y,) = T._first_ngens(1) >>> L = T.fraction_field() >>> L.is_commutative() True
- is_exact()[source]¶
Return
True
if elements of this Ore function field are exact. This happens if and only if elements of the base ring are exact.EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x', Frob] sage: K = S.fraction_field() sage: K.is_exact() True sage: # needs sage.rings.padics sage: k.<u> = Qq(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x', Frob] sage: K = S.fraction_field() sage: K.is_exact() False
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x', Frob]; (x,) = S._first_ngens(1) >>> K = S.fraction_field() >>> K.is_exact() True >>> # needs sage.rings.padics >>> k = Qq(Integer(5)**Integer(3), names=('u',)); (u,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x', Frob]; (x,) = S._first_ngens(1) >>> K = S.fraction_field() >>> K.is_exact() False
- is_field(proof=False)[source]¶
Return always
True
since Ore function field are (skew) fields.EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<a> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x', Frob] sage: K = S.fraction_field() sage: S.is_field() False sage: K.is_field() True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('a',)); (a,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x', Frob]; (x,) = S._first_ngens(1) >>> K = S.fraction_field() >>> S.is_field() False >>> K.is_field() True
- is_finite()[source]¶
Return
False
since Ore function field are not finite.EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: k.is_finite() True sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: K = S.fraction_field() sage: K.is_finite() False
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> k.is_finite() True >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> K = S.fraction_field() >>> K.is_finite() False
- is_sparse()[source]¶
Return
True
if the elements of this Ore function field are sparsely represented.Warning
Since sparse Ore polynomials are not yet implemented, this function always returns
False
.EXAMPLES:
sage: # needs sage.rings.function_field sage.rings.real_mpfr sage: R.<t> = RR[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x', sigma] sage: K = S.fraction_field() sage: K.is_sparse() False
>>> from sage.all import * >>> # needs sage.rings.function_field sage.rings.real_mpfr >>> R = RR['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x', sigma]; (x,) = S._first_ngens(1) >>> K = S.fraction_field() >>> K.is_sparse() False
- ngens()[source]¶
Return the number of generators of this Ore function field, which is \(1\).
EXAMPLES:
sage: # needs sage.rings.function_field sage.rings.real_mpfr sage: R.<t> = RR[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: K = S.fraction_field() sage: K.ngens() 1
>>> from sage.all import * >>> # needs sage.rings.function_field sage.rings.real_mpfr >>> R = RR['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> K = S.fraction_field() >>> K.ngens() 1
- parameter(n=0)[source]¶
Return the indeterminate generator of this Ore function field.
INPUT:
n
– index of generator to return (default: 0); exists for compatibility with other polynomial rings
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<a> = GF(5^4) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x', Frob] sage: K = S.fraction_field() sage: K.gen() x
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(4), names=('a',)); (a,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x', Frob]; (x,) = S._first_ngens(1) >>> K = S.fraction_field() >>> K.gen() x
- random_element(degree=2, monic=False, *args, **kwds)[source]¶
Return a random Ore function in this field.
INPUT:
degree
– (default: 2) an integer or a list of two integers; the degrees of the denominator and numeratormonic
– boolean (default:False
); ifTrue
, return a monic Ore function with monic numerator and denominator*args
,**kwds
– passed in to therandom_element()
method for the base ring
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x', Frob] sage: K = S.fraction_field() sage: K.random_element() # random (x^2 + (2*t^2 + t + 1)*x + 2*t^2 + 2*t + 3)^(-1) * ((2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2) sage: K.random_element(monic=True) # random (x^2 + (4*t^2 + 3*t + 4)*x + 4*t^2 + t)^(-1) * (x^2 + (2*t^2 + t + 3)*x + 3*t^2 + t + 2) sage: K.random_element(degree=3) # random (x^3 + (2*t^2 + 3)*x^2 + (2*t^2 + 4)*x + t + 3)^(-1) * ((t + 4)*x^3 + (4*t^2 + 2*t + 2)*x^2 + (2*t^2 + 3*t + 3)*x + 3*t^2 + 3*t + 1) sage: K.random_element(degree=[2,5]) # random (x^2 + (4*t^2 + 2*t + 2)*x + 4*t^2 + t + 2)^(-1) * ((3*t^2 + t + 1)*x^5 + (2*t^2 + 2*t)*x^4 + (t^2 + 2*t + 4)*x^3 + (3*t^2 + 2*t)*x^2 + (t^2 + t + 4)*x)
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x', Frob]; (x,) = S._first_ngens(1) >>> K = S.fraction_field() >>> K.random_element() # random (x^2 + (2*t^2 + t + 1)*x + 2*t^2 + 2*t + 3)^(-1) * ((2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2) >>> K.random_element(monic=True) # random (x^2 + (4*t^2 + 3*t + 4)*x + 4*t^2 + t)^(-1) * (x^2 + (2*t^2 + t + 3)*x + 3*t^2 + t + 2) >>> K.random_element(degree=Integer(3)) # random (x^3 + (2*t^2 + 3)*x^2 + (2*t^2 + 4)*x + t + 3)^(-1) * ((t + 4)*x^3 + (4*t^2 + 2*t + 2)*x^2 + (2*t^2 + 3*t + 3)*x + 3*t^2 + 3*t + 1) >>> K.random_element(degree=[Integer(2),Integer(5)]) # random (x^2 + (4*t^2 + 2*t + 2)*x + 4*t^2 + t + 2)^(-1) * ((3*t^2 + t + 1)*x^5 + (2*t^2 + 2*t)*x^4 + (t^2 + 2*t + 4)*x^3 + (3*t^2 + 2*t)*x^2 + (t^2 + t + 4)*x)
- twisting_derivation()[source]¶
Return the twisting derivation defining this Ore function field or
None
if this Ore function field is not twisted by a derivation.EXAMPLES:
sage: R.<t> = QQ[] sage: der = R.derivation(); der d/dt sage: A.<d> = R['d', der] sage: F = A.fraction_field() sage: F.twisting_derivation() d/dt sage: # needs sage.rings.finite_rings sage: k.<a> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x', Frob] sage: K = S.fraction_field() sage: K.twisting_derivation()
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> der = R.derivation(); der d/dt >>> A = R['d', der]; (d,) = A._first_ngens(1) >>> F = A.fraction_field() >>> F.twisting_derivation() d/dt >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('a',)); (a,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x', Frob]; (x,) = S._first_ngens(1) >>> K = S.fraction_field() >>> K.twisting_derivation()
See also
sage.rings.polynomial.ore_polynomial_element.OrePolynomial.twisting_derivation()
,twisting_morphism()
- twisting_morphism(n=1)[source]¶
Return the twisting endomorphism defining this Ore function field iterated
n
times orNone
if this Ore function field is not twisted by an endomorphism.INPUT:
n
– integer (default: 1)
EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x', sigma] sage: K = S.fraction_field() # needs sage.rings.function_field sage: K.twisting_morphism() # needs sage.rings.function_field Ring endomorphism of Fraction Field of Univariate Polynomial Ring in t over Rational Field Defn: t |--> t + 1
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x', sigma]; (x,) = S._first_ngens(1) >>> K = S.fraction_field() # needs sage.rings.function_field >>> K.twisting_morphism() # needs sage.rings.function_field Ring endomorphism of Fraction Field of Univariate Polynomial Ring in t over Rational Field Defn: t |--> t + 1
When the Ore polynomial ring is only twisted by a derivation, this method returns nothing:
sage: der = R.derivation() sage: A.<d> = R['x', der] sage: F = A.fraction_field() # needs sage.rings.function_field sage: F.twisting_morphism() # needs sage.rings.function_field
>>> from sage.all import * >>> der = R.derivation() >>> A = R['x', der]; (d,) = A._first_ngens(1) >>> F = A.fraction_field() # needs sage.rings.function_field >>> F.twisting_morphism() # needs sage.rings.function_field
See also
sage.rings.polynomial.ore_polynomial_element.OrePolynomial.twisting_morphism()
,twisting_derivation()
- class sage.rings.polynomial.ore_function_field.OreFunctionField_with_large_center(ring, category=None)[source]¶
Bases:
OreFunctionField
A specialized class for Ore polynomial fields whose center has finite index.
- center(name=None, names=None, default=False)[source]¶
Return the center of this Ore function field.
Note
One can prove that the center is a field of rational functions over a subfield of the base ring of this Ore function field.
INPUT:
name
– string orNone
(default:None
); the name for the central variabledefault
– boolean (default:False
); ifTrue
, set the default variable name for the center toname
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: K = S.fraction_field() sage: Z = K.center(); Z Fraction Field of Univariate Polynomial Ring in z over Finite Field of size 5
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> K = S.fraction_field() >>> Z = K.center(); Z Fraction Field of Univariate Polynomial Ring in z over Finite Field of size 5
We can pass in another variable name:
sage: K.center(name='y') # needs sage.rings.finite_rings Fraction Field of Univariate Polynomial Ring in y over Finite Field of size 5
>>> from sage.all import * >>> K.center(name='y') # needs sage.rings.finite_rings Fraction Field of Univariate Polynomial Ring in y over Finite Field of size 5
or use the bracket notation:
sage: Zy.<y> = K.center(); Zy # needs sage.rings.finite_rings Fraction Field of Univariate Polynomial Ring in y over Finite Field of size 5
>>> from sage.all import * >>> Zy = K.center(names=('y',)); (y,) = Zy._first_ngens(1); Zy # needs sage.rings.finite_rings Fraction Field of Univariate Polynomial Ring in y over Finite Field of size 5
A coercion map from the center to the Ore function field is set:
sage: K.has_coerce_map_from(Zy) # needs sage.rings.finite_rings True
>>> from sage.all import * >>> K.has_coerce_map_from(Zy) # needs sage.rings.finite_rings True
and pushout works:
sage: # needs sage.rings.finite_rings sage: x.parent() Ore Polynomial Ring in x over Finite Field in t of size 5^3 twisted by t |--> t^5 sage: y.parent() Fraction Field of Univariate Polynomial Ring in y over Finite Field of size 5 sage: P = x + y; P x^3 + x sage: P.parent() Ore Function Field in x over Finite Field in t of size 5^3 twisted by t |--> t^5
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> x.parent() Ore Polynomial Ring in x over Finite Field in t of size 5^3 twisted by t |--> t^5 >>> y.parent() Fraction Field of Univariate Polynomial Ring in y over Finite Field of size 5 >>> P = x + y; P x^3 + x >>> P.parent() Ore Function Field in x over Finite Field in t of size 5^3 twisted by t |--> t^5
A conversion map in the reverse direction is also set:
sage: # needs sage.rings.finite_rings sage: Zy(x^(-6) + 2) (2*y^2 + 1)/y^2 sage: Zy(1/x^2) Traceback (most recent call last): ... ValueError: x^(-2) is not in the center
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> Zy(x**(-Integer(6)) + Integer(2)) (2*y^2 + 1)/y^2 >>> Zy(Integer(1)/x**Integer(2)) Traceback (most recent call last): ... ValueError: x^(-2) is not in the center
ABOUT THE DEFAULT NAME OF THE CENTRAL VARIABLE:
A priori, the default is
z
.However, a variable name is given the first time this method is called, the given name become the default for the next calls:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(11^3) sage: phi = k.frobenius_endomorphism() sage: S.<X> = k['X', phi] sage: K = S.fraction_field() sage: C.<u> = K.center() # first call sage: C Fraction Field of Univariate Polynomial Ring in u over Finite Field of size 11 sage: K.center() # second call: the variable name is still u Fraction Field of Univariate Polynomial Ring in u over Finite Field of size 11
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(11)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> phi = k.frobenius_endomorphism() >>> S = k['X', phi]; (X,) = S._first_ngens(1) >>> K = S.fraction_field() >>> C = K.center(names=('u',)); (u,) = C._first_ngens(1)# first call >>> C Fraction Field of Univariate Polynomial Ring in u over Finite Field of size 11 >>> K.center() # second call: the variable name is still u Fraction Field of Univariate Polynomial Ring in u over Finite Field of size 11
We can update the default variable name by passing in the argument
default=True
:sage: # needs sage.rings.finite_rings sage: D.<v> = K.center(default=True) sage: D Fraction Field of Univariate Polynomial Ring in v over Finite Field of size 11 sage: K.center() Fraction Field of Univariate Polynomial Ring in v over Finite Field of size 11
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> D = K.center(default=True, names=('v',)); (v,) = D._first_ngens(1) >>> D Fraction Field of Univariate Polynomial Ring in v over Finite Field of size 11 >>> K.center() Fraction Field of Univariate Polynomial Ring in v over Finite Field of size 11