Circles#
- class sage.plot.circle.Circle(x, y, r, options)[source]#
Bases:
GraphicPrimitive
Primitive class for the
Circle
graphics type. Seecircle?
for information about actually plotting circles.INPUT:
x
– \(x\)-coordinate of center of Circley
– \(y\)-coordinate of center of Circler
– radius of Circle objectoptions
– dict of valid plot options to pass to constructor
EXAMPLES:
Note this should normally be used indirectly via
circle
:sage: from sage.plot.circle import Circle sage: C = Circle(2,3,5,{'zorder':2}) sage: C Circle defined by (2.0,3.0) with r=5.0 sage: C.options()['zorder'] 2 sage: C.r 5.0
>>> from sage.all import * >>> from sage.plot.circle import Circle >>> C = Circle(Integer(2),Integer(3),Integer(5),{'zorder':Integer(2)}) >>> C Circle defined by (2.0,3.0) with r=5.0 >>> C.options()['zorder'] 2 >>> C.r 5.0
- get_minmax_data()[source]#
Return a dictionary with the bounding box data.
EXAMPLES:
sage: p = circle((3, 3), 1) sage: d = p.get_minmax_data() sage: d['xmin'] 2.0 sage: d['ymin'] 2.0
>>> from sage.all import * >>> p = circle((Integer(3), Integer(3)), Integer(1)) >>> d = p.get_minmax_data() >>> d['xmin'] 2.0 >>> d['ymin'] 2.0
- plot3d(z=0, **kwds)[source]#
Plots a 2D circle (actually a 50-gon) in 3D, with default height zero.
INPUT:
z
– optional 3D height above \(xy\)-plane.
EXAMPLES:
sage: circle((0,0), 1).plot3d() Graphics3d Object
>>> from sage.all import * >>> circle((Integer(0),Integer(0)), Integer(1)).plot3d() Graphics3d Object
This example uses this method implicitly, but does not pass the optional parameter z to this method:
sage: sum(circle((random(),random()), random()).plot3d(z=random()) ....: for _ in range(20)) Graphics3d Object
>>> from sage.all import * >>> sum(circle((random(),random()), random()).plot3d(z=random()) ... for _ in range(Integer(20))) Graphics3d Object
These examples are explicit, and pass z to this method:
sage: from math import pi sage: C = circle((2,pi), 2, hue=.8, alpha=.3, fill=True) sage: c = C[0] sage: d = c.plot3d(z=2) sage: d.texture.opacity 0.3
>>> from sage.all import * >>> from math import pi >>> C = circle((Integer(2),pi), Integer(2), hue=RealNumber('.8'), alpha=RealNumber('.3'), fill=True) >>> c = C[Integer(0)] >>> d = c.plot3d(z=Integer(2)) >>> d.texture.opacity 0.3
sage: C = circle((2,pi), 2, hue=.8, alpha=.3, linestyle='dotted') sage: c = C[0] sage: d = c.plot3d(z=2) sage: d.jmol_repr(d.testing_render_params())[0][-1] 'color $line_1 translucent 0.7 [204,0,255]'
>>> from sage.all import * >>> C = circle((Integer(2),pi), Integer(2), hue=RealNumber('.8'), alpha=RealNumber('.3'), linestyle='dotted') >>> c = C[Integer(0)] >>> d = c.plot3d(z=Integer(2)) >>> d.jmol_repr(d.testing_render_params())[Integer(0)][-Integer(1)] 'color $line_1 translucent 0.7 [204,0,255]'
- sage.plot.circle.circle(center, radius, alpha=1, fill=False, thickness=1, edgecolor='blue', facecolor='blue', linestyle='solid', zorder=5, legend_label=None, legend_color=None, clip=True, aspect_ratio=1.0, **options)[source]#
Return a circle at a point center = \((x,y)\) (or \((x,y,z)\) and parallel to the \(xy\)-plane) with radius = \(r\). Type
circle.options
to see all options.OPTIONS:
alpha
– default: 1fill
– default:False
thickness
– default: 1linestyle
– default:'solid'
(2D plotting only) The style of the line, which is one of'dashed'
,'dotted'
,'solid'
,'dashdot'
, or'--'
,':'
,'-'
,'-.'
, respectively.edgecolor
– default: ‘blue’ (2D plotting only)facecolor
– default: ‘blue’ (2D plotting only, useful only iffill=True
)rgbcolor
– 2D or 3D plotting. This option overridesedgecolor
andfacecolor
for 2D plotting.legend_label
– the label for this item in the legendlegend_color
– the color for the legend label
EXAMPLES:
The default color is blue, the default linestyle is solid, but this is easy to change:
sage: c = circle((1,1), 1) sage: c Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> c = circle((Integer(1),Integer(1)), Integer(1)) >>> c Graphics object consisting of 1 graphics primitive
sage: c = circle((1,1), 1, rgbcolor=(1,0,0), linestyle='-.') sage: c Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> c = circle((Integer(1),Integer(1)), Integer(1), rgbcolor=(Integer(1),Integer(0),Integer(0)), linestyle='-.') >>> c Graphics object consisting of 1 graphics primitive
We can also use this command to plot three-dimensional circles parallel to the \(xy\)-plane:
sage: c = circle((1,1,3), 1, rgbcolor=(1,0,0)) sage: c Graphics3d Object sage: type(c) <class 'sage.plot.plot3d.base.TransformGroup'>
>>> from sage.all import * >>> c = circle((Integer(1),Integer(1),Integer(3)), Integer(1), rgbcolor=(Integer(1),Integer(0),Integer(0))) >>> c Graphics3d Object >>> type(c) <class 'sage.plot.plot3d.base.TransformGroup'>
To correct the aspect ratio of certain graphics, it is necessary to show with a
figsize
of square dimensions:sage: c.show(figsize=[5,5],xmin=-1,xmax=3,ymin=-1,ymax=3)
>>> from sage.all import * >>> c.show(figsize=[Integer(5),Integer(5)],xmin=-Integer(1),xmax=Integer(3),ymin=-Integer(1),ymax=Integer(3))
Here we make a more complicated plot, with many circles of different colors:
sage: g = Graphics() sage: step = 6; ocur = 1/5; paths = 16 sage: PI = math.pi # numerical for speed -- fine for graphics sage: for r in range(1,paths+1): ....: for x,y in [((r+ocur)*math.cos(n), (r+ocur)*math.sin(n)) ....: for n in srange(0, 2*PI+PI/step, PI/step)]: ....: g += circle((x,y), ocur, rgbcolor=hue(r/paths)) ....: rnext = (r+1)^2 ....: ocur = (rnext-r)-ocur sage: g.show(xmin=-(paths+1)^2, xmax=(paths+1)^2, ....: ymin=-(paths+1)^2, ymax=(paths+1)^2, figsize=[6,6])
>>> from sage.all import * >>> g = Graphics() >>> step = Integer(6); ocur = Integer(1)/Integer(5); paths = Integer(16) >>> PI = math.pi # numerical for speed -- fine for graphics >>> for r in range(Integer(1),paths+Integer(1)): ... for x,y in [((r+ocur)*math.cos(n), (r+ocur)*math.sin(n)) ... for n in srange(Integer(0), Integer(2)*PI+PI/step, PI/step)]: ... g += circle((x,y), ocur, rgbcolor=hue(r/paths)) ... rnext = (r+Integer(1))**Integer(2) ... ocur = (rnext-r)-ocur >>> g.show(xmin=-(paths+Integer(1))**Integer(2), xmax=(paths+Integer(1))**Integer(2), ... ymin=-(paths+Integer(1))**Integer(2), ymax=(paths+Integer(1))**Integer(2), figsize=[Integer(6),Integer(6)])
Note that the
rgbcolor
option overrides the other coloring options. This produces red fill in a blue circle:sage: circle((2,3), 1, fill=True, edgecolor='blue', facecolor='red') Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> circle((Integer(2),Integer(3)), Integer(1), fill=True, edgecolor='blue', facecolor='red') Graphics object consisting of 1 graphics primitive
This produces an all-green filled circle:
sage: circle((2,3), 1, fill=True, edgecolor='blue', rgbcolor='green') Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> circle((Integer(2),Integer(3)), Integer(1), fill=True, edgecolor='blue', rgbcolor='green') Graphics object consisting of 1 graphics primitive
The option
hue
overrides all other options, so be careful with its use. This produces a purplish filled circle:sage: circle((2,3), 1, fill=True, edgecolor='blue', rgbcolor='green', hue=.8) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> circle((Integer(2),Integer(3)), Integer(1), fill=True, edgecolor='blue', rgbcolor='green', hue=RealNumber('.8')) Graphics object consisting of 1 graphics primitive
And circles with legends:
sage: circle((4,5), 1, rgbcolor='yellow', fill=True, ....: legend_label='the sun').show(xmin=0, ymin=0)
>>> from sage.all import * >>> circle((Integer(4),Integer(5)), Integer(1), rgbcolor='yellow', fill=True, ... legend_label='the sun').show(xmin=Integer(0), ymin=Integer(0))
sage: circle((4,5), 1, ....: legend_label='the sun', legend_color='yellow').show(xmin=0, ymin=0)
>>> from sage.all import * >>> circle((Integer(4),Integer(5)), Integer(1), ... legend_label='the sun', legend_color='yellow').show(xmin=Integer(0), ymin=Integer(0))
Extra options will get passed on to show(), as long as they are valid:
sage: circle((0, 0), 2, figsize=[10,10]) # That circle is huge! Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> circle((Integer(0), Integer(0)), Integer(2), figsize=[Integer(10),Integer(10)]) # That circle is huge! Graphics object consisting of 1 graphics primitive
sage: circle((0, 0), 2).show(figsize=[10,10]) # These are equivalent
>>> from sage.all import * >>> circle((Integer(0), Integer(0)), Integer(2)).show(figsize=[Integer(10),Integer(10)]) # These are equivalent