Histograms#
- class sage.plot.histogram.Histogram(datalist, options)[source]#
Bases:
GraphicPrimitive
Graphics primitive that represents a histogram. This takes quite a few options as well.
EXAMPLES:
sage: from sage.plot.histogram import Histogram sage: g = Histogram([1,3,2,0], {}); g Histogram defined by a data list of size 4 sage: type(g) <class 'sage.plot.histogram.Histogram'> sage: opts = { 'bins':20, 'label':'mydata'} sage: g = Histogram([random() for _ in range(500)], opts); g Histogram defined by a data list of size 500
>>> from sage.all import * >>> from sage.plot.histogram import Histogram >>> g = Histogram([Integer(1),Integer(3),Integer(2),Integer(0)], {}); g Histogram defined by a data list of size 4 >>> type(g) <class 'sage.plot.histogram.Histogram'> >>> opts = { 'bins':Integer(20), 'label':'mydata'} >>> g = Histogram([random() for _ in range(Integer(500))], opts); g Histogram defined by a data list of size 500
We can accept multiple sets of the same length:
sage: g = Histogram([[1,3,2,0], [4,4,3,3]], {}); g Histogram defined by 2 data lists
>>> from sage.all import * >>> g = Histogram([[Integer(1),Integer(3),Integer(2),Integer(0)], [Integer(4),Integer(4),Integer(3),Integer(3)]], {}); g Histogram defined by 2 data lists
- get_minmax_data()[source]#
Get minimum and maximum horizontal and vertical ranges for the Histogram object.
EXAMPLES:
sage: H = histogram([10,3,5], density=True); h = H[0] sage: h.get_minmax_data() # rel tol 1e-15 {'xmax': 10.0, 'xmin': 3.0, 'ymax': 0.4761904761904765, 'ymin': 0} sage: G = histogram([random() for _ in range(500)]); g = G[0] sage: g.get_minmax_data() # random output {'xmax': 0.99729312925213209, 'xmin': 0.00013024562219410285, 'ymax': 61, 'ymin': 0} sage: Y = histogram([random()*10 for _ in range(500)], range=[2,8]); y = Y[0] sage: ymm = y.get_minmax_data(); ymm['xmax'], ymm['xmin'] (8.0, 2.0) sage: Z = histogram([[1,3,2,0], [4,4,3,3]]); z = Z[0] sage: z.get_minmax_data() {'xmax': 4.0, 'xmin': 0, 'ymax': 2, 'ymin': 0}
>>> from sage.all import * >>> H = histogram([Integer(10),Integer(3),Integer(5)], density=True); h = H[Integer(0)] >>> h.get_minmax_data() # rel tol 1e-15 {'xmax': 10.0, 'xmin': 3.0, 'ymax': 0.4761904761904765, 'ymin': 0} >>> G = histogram([random() for _ in range(Integer(500))]); g = G[Integer(0)] >>> g.get_minmax_data() # random output {'xmax': 0.99729312925213209, 'xmin': 0.00013024562219410285, 'ymax': 61, 'ymin': 0} >>> Y = histogram([random()*Integer(10) for _ in range(Integer(500))], range=[Integer(2),Integer(8)]); y = Y[Integer(0)] >>> ymm = y.get_minmax_data(); ymm['xmax'], ymm['xmin'] (8.0, 2.0) >>> Z = histogram([[Integer(1),Integer(3),Integer(2),Integer(0)], [Integer(4),Integer(4),Integer(3),Integer(3)]]); z = Z[Integer(0)] >>> z.get_minmax_data() {'xmax': 4.0, 'xmin': 0, 'ymax': 2, 'ymin': 0}
- sage.plot.histogram.histogram(datalist, aspect_ratio='automatic', align='mid', weights=None, range=None, bins=10, edgecolor='black', **options)[source]#
Computes and draws the histogram for list(s) of numerical data. See examples for the many options; even more customization is available using matplotlib directly.
INPUT:
datalist
– A list, or a list of lists, of numerical dataalign
– (default: “mid”) How the bars align inside of each bin. Acceptable values are “left”, “right” or “mid”alpha
– (float in [0,1], default: 1) The transparency of the plotbins
– The number of sections in which to divide the range. Also can be a sequence of points within the range that create the partitioncolor
– The color of the face of the bars or list of colors if multiple data sets are givencumulative
– (default:False
) If True, then a histogram is computed in which each bin gives the counts in that bin plus all bins for smaller values. Negative values give a reversed direction of accumulationedgecolor
– The color of the border of each barfill
– (default:True
) Whether to fill the barshatch
– (default: None) symbol to fill the bars with; one of “/”, “", “|”, “-”, “+”, “x”, “o”, “O”, “.”, “*”, “” (or None)hue
– The color of the bars given as a hue. Seehue
for more information on the huelabel
– A string label for each data list givenlinewidth
– (float) width of the lines defining the barslinestyle
– (default: ‘solid’) Style of the line. One of ‘solid’ or ‘-’, ‘dashed’ or ‘–’, ‘dotted’ or ‘:’, ‘dashdot’ or ‘-.’density
– (default:False
) If True, the result is the value of the probability density function at the bin, normalized such that the integral over the range is 1.range
– A list [min, max] which define the range of the histogram. Values outside of this range are treated as outliers and omitted from countsrwidth
– (float in [0,1], default: 1) The relative width of the bars as a fraction of the bin widthstacked
– (default:False
) If True, multiple data are stacked on top of each otherweights
– (list) A sequence of weights the same length as the data list. If supplied, then each value contributes its associated weight to the bin countzorder
– (integer) the layer level at which to draw the histogram
Note
The
weights
option works only with a single list. List of lists representing multiple data are not supported.EXAMPLES:
A very basic histogram for four data points:
sage: histogram([1, 2, 3, 4], bins=2) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> histogram([Integer(1), Integer(2), Integer(3), Integer(4)], bins=Integer(2)) Graphics object consisting of 1 graphics primitive
We can see how the histogram compares to various distributions. Note the use of the
density
keyword to guarantee the plot looks like the probability density function:sage: nv = normalvariate sage: H = histogram([nv(0, 1) for _ in range(1000)], bins=20, density=True, range=[-5, 5]) sage: P = plot(1/sqrt(2*pi)*e^(-x^2/2), (x, -5, 5), color='red', linestyle='--') # needs sage.symbolic sage: H + P # needs sage.symbolic Graphics object consisting of 2 graphics primitives
>>> from sage.all import * >>> nv = normalvariate >>> H = histogram([nv(Integer(0), Integer(1)) for _ in range(Integer(1000))], bins=Integer(20), density=True, range=[-Integer(5), Integer(5)]) >>> P = plot(Integer(1)/sqrt(Integer(2)*pi)*e**(-x**Integer(2)/Integer(2)), (x, -Integer(5), Integer(5)), color='red', linestyle='--') # needs sage.symbolic >>> H + P # needs sage.symbolic Graphics object consisting of 2 graphics primitives
There are many options one can use with histograms. Some of these control the presentation of the data, even if it is boring:
sage: histogram(list(range(100)), color=(1,0,0), label='mydata', rwidth=.5, align="right") Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> histogram(list(range(Integer(100))), color=(Integer(1),Integer(0),Integer(0)), label='mydata', rwidth=RealNumber('.5'), align="right") Graphics object consisting of 1 graphics primitive
This includes many usual matplotlib styling options:
sage: T = RealDistribution('lognormal', [0, 1]) sage: histogram( [T.get_random_element() for _ in range(100)], alpha=0.3, edgecolor='red', fill=False, linestyle='dashed', hatch='O', linewidth=5) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> T = RealDistribution('lognormal', [Integer(0), Integer(1)]) >>> histogram( [T.get_random_element() for _ in range(Integer(100))], alpha=RealNumber('0.3'), edgecolor='red', fill=False, linestyle='dashed', hatch='O', linewidth=Integer(5)) Graphics object consisting of 1 graphics primitive
sage: histogram( [T.get_random_element() for _ in range(100)],linestyle='-.') Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> histogram( [T.get_random_element() for _ in range(Integer(100))],linestyle='-.') Graphics object consisting of 1 graphics primitive
We can do several data sets at once if desired:
sage: histogram([srange(0, 1, .1)*10, [nv(0, 1) for _ in range(100)]], color=['red', 'green'], bins=5) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> histogram([srange(Integer(0), Integer(1), RealNumber('.1'))*Integer(10), [nv(Integer(0), Integer(1)) for _ in range(Integer(100))]], color=['red', 'green'], bins=Integer(5)) Graphics object consisting of 1 graphics primitive
We have the option of stacking the data sets too:
sage: histogram([[1, 1, 1, 1, 2, 2, 2, 3, 3, 3], [4, 4, 4, 4, 3, 3, 3, 2, 2, 2] ], stacked=True, color=['blue', 'red']) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> histogram([[Integer(1), Integer(1), Integer(1), Integer(1), Integer(2), Integer(2), Integer(2), Integer(3), Integer(3), Integer(3)], [Integer(4), Integer(4), Integer(4), Integer(4), Integer(3), Integer(3), Integer(3), Integer(2), Integer(2), Integer(2)] ], stacked=True, color=['blue', 'red']) Graphics object consisting of 1 graphics primitive
It is possible to use weights with the histogram as well:
sage: histogram(list(range(10)), bins=3, weights=[1, 2, 3, 4, 5, 5, 4, 3, 2, 1]) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> histogram(list(range(Integer(10))), bins=Integer(3), weights=[Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(5), Integer(4), Integer(3), Integer(2), Integer(1)]) Graphics object consisting of 1 graphics primitive