Space of homomorphisms between two rings¶
- sage.rings.homset.RingHomset(R, S, category=None)[source]¶
Construct a space of homomorphisms between the rings
R
andS
.For more on homsets, see
Hom()
.EXAMPLES:
sage: Hom(ZZ, QQ) # indirect doctest Set of Homomorphisms from Integer Ring to Rational Field
>>> from sage.all import * >>> Hom(ZZ, QQ) # indirect doctest Set of Homomorphisms from Integer Ring to Rational Field
- class sage.rings.homset.RingHomset_generic(R, S, category=None)[source]¶
Bases:
HomsetWithBase
A generic space of homomorphisms between two rings.
EXAMPLES:
sage: Hom(ZZ, QQ) Set of Homomorphisms from Integer Ring to Rational Field sage: QQ.Hom(ZZ) Set of Homomorphisms from Rational Field to Integer Ring
>>> from sage.all import * >>> Hom(ZZ, QQ) Set of Homomorphisms from Integer Ring to Rational Field >>> QQ.Hom(ZZ) Set of Homomorphisms from Rational Field to Integer Ring
- Element[source]¶
alias of
RingHomomorphism
- has_coerce_map_from(x)[source]¶
The default for coercion maps between ring homomorphism spaces is very restrictive (until more implementation work is done).
Currently this checks if the domains and the codomains are equal.
EXAMPLES:
sage: H = Hom(ZZ, QQ) sage: H2 = Hom(QQ, ZZ) sage: H.has_coerce_map_from(H2) False
>>> from sage.all import * >>> H = Hom(ZZ, QQ) >>> H2 = Hom(QQ, ZZ) >>> H.has_coerce_map_from(H2) False
- natural_map()[source]¶
Return the natural map from the domain to the codomain.
The natural map is the coercion map from the domain ring to the codomain ring.
EXAMPLES:
sage: H = Hom(ZZ, QQ) sage: H.natural_map() Natural morphism: From: Integer Ring To: Rational Field
>>> from sage.all import * >>> H = Hom(ZZ, QQ) >>> H.natural_map() Natural morphism: From: Integer Ring To: Rational Field
- zero()[source]¶
Return the zero element of this homset.
EXAMPLES:
Since a ring homomorphism maps 1 to 1, there can only be a zero morphism when mapping to the trivial ring:
sage: Hom(ZZ, Zmod(1)).zero() Ring morphism: From: Integer Ring To: Ring of integers modulo 1 Defn: 1 |--> 0 sage: Hom(ZZ, Zmod(2)).zero() Traceback (most recent call last): ... ValueError: homset has no zero element
>>> from sage.all import * >>> Hom(ZZ, Zmod(Integer(1))).zero() Ring morphism: From: Integer Ring To: Ring of integers modulo 1 Defn: 1 |--> 0 >>> Hom(ZZ, Zmod(Integer(2))).zero() Traceback (most recent call last): ... ValueError: homset has no zero element
- class sage.rings.homset.RingHomset_quo_ring(R, S, category=None)[source]¶
Bases:
RingHomset_generic
Space of ring homomorphisms where the domain is a (formal) quotient ring.
EXAMPLES:
sage: R.<x,y> = PolynomialRing(QQ, 2) sage: S.<a,b> = R.quotient(x^2 + y^2) # needs sage.libs.singular sage: phi = S.hom([b,a]); phi # needs sage.libs.singular Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2) Defn: a |--> b b |--> a sage: phi(a) # needs sage.libs.singular b sage: phi(b) # needs sage.libs.singular a
>>> from sage.all import * >>> R = PolynomialRing(QQ, Integer(2), names=('x', 'y',)); (x, y,) = R._first_ngens(2) >>> S = R.quotient(x**Integer(2) + y**Integer(2), names=('a', 'b',)); (a, b,) = S._first_ngens(2)# needs sage.libs.singular >>> phi = S.hom([b,a]); phi # needs sage.libs.singular Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2) Defn: a |--> b b |--> a >>> phi(a) # needs sage.libs.singular b >>> phi(b) # needs sage.libs.singular a
- Element[source]¶
alias of
RingHomomorphism_from_quotient
- sage.rings.homset.is_RingHomset(H)[source]¶
Return
True
ifH
is a space of homomorphisms between two rings.EXAMPLES:
sage: from sage.rings.homset import is_RingHomset as is_RH sage: is_RH(Hom(ZZ, QQ)) doctest:warning... DeprecationWarning: the function is_RingHomset is deprecated; use 'isinstance(..., RingHomset_generic)' instead See https://github.com/sagemath/sage/issues/37922 for details. True sage: is_RH(ZZ) False sage: is_RH(Hom(RR, CC)) # needs sage.rings.real_mpfr True sage: is_RH(Hom(FreeModule(ZZ,1), FreeModule(QQ,1))) # needs sage.modules False
>>> from sage.all import * >>> from sage.rings.homset import is_RingHomset as is_RH >>> is_RH(Hom(ZZ, QQ)) doctest:warning... DeprecationWarning: the function is_RingHomset is deprecated; use 'isinstance(..., RingHomset_generic)' instead See https://github.com/sagemath/sage/issues/37922 for details. True >>> is_RH(ZZ) False >>> is_RH(Hom(RR, CC)) # needs sage.rings.real_mpfr True >>> is_RH(Hom(FreeModule(ZZ,Integer(1)), FreeModule(QQ,Integer(1)))) # needs sage.modules False