Signed and Unsigned Infinities#
The unsigned infinity “ring” is the set of two elements
infinity
A number less than infinity
The rules for arithmetic are that the unsigned infinity ring does not canonically coerce to any other ring, and all other rings canonically coerce to the unsigned infinity ring, sending all elements to the single element “a number less than infinity” of the unsigned infinity ring. Arithmetic and comparisons then take place in the unsigned infinity ring, where all arithmetic operations that are well-defined are defined.
The infinity “ring” is the set of five elements
plus infinity
a positive finite element
zero
a negative finite element
negative infinity
The infinity ring coerces to the unsigned infinity ring, sending the infinite elements to infinity and the non-infinite elements to “a number less than infinity.” Any ordered ring coerces to the infinity ring in the obvious way.
Note
The shorthand oo
is predefined in Sage to be the same as
+Infinity
in the infinity ring. It is considered equal to, but not
the same as Infinity
in the
UnsignedInfinityRing
.
EXAMPLES:
We fetch the unsigned infinity ring and create some elements:
sage: P = UnsignedInfinityRing; P
The Unsigned Infinity Ring
sage: P(5)
A number less than infinity
sage: P.ngens()
1
sage: unsigned_oo = P.0; unsigned_oo
Infinity
>>> from sage.all import *
>>> P = UnsignedInfinityRing; P
The Unsigned Infinity Ring
>>> P(Integer(5))
A number less than infinity
>>> P.ngens()
1
>>> unsigned_oo = P.gen(0); unsigned_oo
Infinity
We compare finite numbers with infinity:
sage: 5 < unsigned_oo
True
sage: 5 > unsigned_oo
False
sage: unsigned_oo < 5
False
sage: unsigned_oo > 5
True
>>> from sage.all import *
>>> Integer(5) < unsigned_oo
True
>>> Integer(5) > unsigned_oo
False
>>> unsigned_oo < Integer(5)
False
>>> unsigned_oo > Integer(5)
True
Demonstrating the shorthand oo
versus Infinity
:
sage: oo
+Infinity
sage: oo is InfinityRing.0
True
sage: oo is UnsignedInfinityRing.0
False
sage: oo == UnsignedInfinityRing.0
True
>>> from sage.all import *
>>> oo
+Infinity
>>> oo is InfinityRing.gen(0)
True
>>> oo is UnsignedInfinityRing.gen(0)
False
>>> oo == UnsignedInfinityRing.gen(0)
True
We do arithmetic:
sage: unsigned_oo + 5
Infinity
>>> from sage.all import *
>>> unsigned_oo + Integer(5)
Infinity
We make 1 / unsigned_oo
return the integer 0 so that arithmetic of
the following type works:
sage: (1/unsigned_oo) + 2
2
sage: 32/5 - (2.439/unsigned_oo)
32/5
>>> from sage.all import *
>>> (Integer(1)/unsigned_oo) + Integer(2)
2
>>> Integer(32)/Integer(5) - (RealNumber('2.439')/unsigned_oo)
32/5
Note that many operations are not defined, since the result is not well-defined:
sage: unsigned_oo/0
Traceback (most recent call last):
...
ValueError: quotient of number < oo by number < oo not defined
>>> from sage.all import *
>>> unsigned_oo/Integer(0)
Traceback (most recent call last):
...
ValueError: quotient of number < oo by number < oo not defined
What happened above is that 0 is canonically coerced to “A number less than infinity” in the unsigned infinity ring. Next, Sage tries to divide by multiplying with its inverse. Finally, this inverse is not well-defined.
sage: 0/unsigned_oo
0
sage: unsigned_oo * 0
Traceback (most recent call last):
...
ValueError: unsigned oo times smaller number not defined
sage: unsigned_oo/unsigned_oo
Traceback (most recent call last):
...
ValueError: unsigned oo times smaller number not defined
>>> from sage.all import *
>>> Integer(0)/unsigned_oo
0
>>> unsigned_oo * Integer(0)
Traceback (most recent call last):
...
ValueError: unsigned oo times smaller number not defined
>>> unsigned_oo/unsigned_oo
Traceback (most recent call last):
...
ValueError: unsigned oo times smaller number not defined
In the infinity ring, we can negate infinity, multiply positive numbers by infinity, etc.
sage: P = InfinityRing; P
The Infinity Ring
sage: P(5)
A positive finite number
>>> from sage.all import *
>>> P = InfinityRing; P
The Infinity Ring
>>> P(Integer(5))
A positive finite number
The symbol oo
is predefined as a shorthand for +Infinity
:
sage: oo
+Infinity
>>> from sage.all import *
>>> oo
+Infinity
We compare finite and infinite elements:
sage: 5 < oo
True
sage: P(-5) < P(5)
True
sage: P(2) < P(3)
False
sage: -oo < oo
True
>>> from sage.all import *
>>> Integer(5) < oo
True
>>> P(-Integer(5)) < P(Integer(5))
True
>>> P(Integer(2)) < P(Integer(3))
False
>>> -oo < oo
True
We can do more arithmetic than in the unsigned infinity ring:
sage: 2 * oo
+Infinity
sage: -2 * oo
-Infinity
sage: 1 - oo
-Infinity
sage: 1 / oo
0
sage: -1 / oo
0
>>> from sage.all import *
>>> Integer(2) * oo
+Infinity
>>> -Integer(2) * oo
-Infinity
>>> Integer(1) - oo
-Infinity
>>> Integer(1) / oo
0
>>> -Integer(1) / oo
0
We make 1 / oo
and 1 / -oo
return the integer 0 instead of the
infinity ring Zero so that arithmetic of the following type works:
sage: (1/oo) + 2
2
sage: 32/5 - (2.439/-oo)
32/5
>>> from sage.all import *
>>> (Integer(1)/oo) + Integer(2)
2
>>> Integer(32)/Integer(5) - (RealNumber('2.439')/-oo)
32/5
If we try to subtract infinities or multiply infinity by zero we still get an error:
sage: oo - oo
Traceback (most recent call last):
...
SignError: cannot add infinity to minus infinity
sage: 0 * oo
Traceback (most recent call last):
...
SignError: cannot multiply infinity by zero
sage: P(2) + P(-3)
Traceback (most recent call last):
...
SignError: cannot add positive finite value to negative finite value
>>> from sage.all import *
>>> oo - oo
Traceback (most recent call last):
...
SignError: cannot add infinity to minus infinity
>>> Integer(0) * oo
Traceback (most recent call last):
...
SignError: cannot multiply infinity by zero
>>> P(Integer(2)) + P(-Integer(3))
Traceback (most recent call last):
...
SignError: cannot add positive finite value to negative finite value
Signed infinity can also be represented by RR / RDF elements. But unsigned infinity cannot:
sage: oo in RR, oo in RDF
(True, True)
sage: unsigned_infinity in RR, unsigned_infinity in RDF
(False, False)
>>> from sage.all import *
>>> oo in RR, oo in RDF
(True, True)
>>> unsigned_infinity in RR, unsigned_infinity in RDF
(False, False)
- class sage.rings.infinity.AnInfinity[source]#
Bases:
object
- lcm(x)[source]#
Return the least common multiple of
oo
andx
, which is by definition oo unlessx
is 0.EXAMPLES:
sage: oo.lcm(0) 0 sage: oo.lcm(oo) +Infinity sage: oo.lcm(-oo) +Infinity sage: oo.lcm(10) +Infinity sage: (-oo).lcm(10) +Infinity
>>> from sage.all import * >>> oo.lcm(Integer(0)) 0 >>> oo.lcm(oo) +Infinity >>> oo.lcm(-oo) +Infinity >>> oo.lcm(Integer(10)) +Infinity >>> (-oo).lcm(Integer(10)) +Infinity
- class sage.rings.infinity.FiniteNumber(parent, x)[source]#
Bases:
RingElement
Initialize
self
.- sign()[source]#
Return the sign of
self
.EXAMPLES:
sage: sign(InfinityRing(2)) 1 sage: sign(InfinityRing(0)) 0 sage: sign(InfinityRing(-2)) -1
>>> from sage.all import * >>> sign(InfinityRing(Integer(2))) 1 >>> sign(InfinityRing(Integer(0))) 0 >>> sign(InfinityRing(-Integer(2))) -1
- sqrt()[source]#
EXAMPLES:
sage: InfinityRing(7).sqrt() A positive finite number sage: InfinityRing(0).sqrt() Zero sage: InfinityRing(-.001).sqrt() Traceback (most recent call last): ... SignError: cannot take square root of a negative number
>>> from sage.all import * >>> InfinityRing(Integer(7)).sqrt() A positive finite number >>> InfinityRing(Integer(0)).sqrt() Zero >>> InfinityRing(-RealNumber('.001')).sqrt() Traceback (most recent call last): ... SignError: cannot take square root of a negative number
- class sage.rings.infinity.InfinityRing_class[source]#
Bases:
Singleton
,CommutativeRing
Initialize
self
.- gen(n=0)[source]#
The two generators are plus and minus infinity.
EXAMPLES:
sage: InfinityRing.gen(0) +Infinity sage: InfinityRing.gen(1) -Infinity sage: InfinityRing.gen(2) Traceback (most recent call last): ... IndexError: n must be 0 or 1
>>> from sage.all import * >>> InfinityRing.gen(Integer(0)) +Infinity >>> InfinityRing.gen(Integer(1)) -Infinity >>> InfinityRing.gen(Integer(2)) Traceback (most recent call last): ... IndexError: n must be 0 or 1
- gens()[source]#
The two generators are plus and minus infinity.
EXAMPLES:
sage: InfinityRing.gens() (+Infinity, -Infinity)
>>> from sage.all import * >>> InfinityRing.gens() (+Infinity, -Infinity)
- is_commutative()[source]#
The Infinity Ring is commutative
EXAMPLES:
sage: InfinityRing.is_commutative() True
>>> from sage.all import * >>> InfinityRing.is_commutative() True
- class sage.rings.infinity.LessThanInfinity(*args)[source]#
Bases:
_uniq
,RingElement
Initialize
self
.EXAMPLES:
sage: sage.rings.infinity.LessThanInfinity() is UnsignedInfinityRing(5) True
>>> from sage.all import * >>> sage.rings.infinity.LessThanInfinity() is UnsignedInfinityRing(Integer(5)) True
- sign()[source]#
Raise an error because the sign of
self
is not well defined.EXAMPLES:
sage: sign(UnsignedInfinityRing(2)) Traceback (most recent call last): ... NotImplementedError: sign of number < oo is not well defined sage: sign(UnsignedInfinityRing(0)) Traceback (most recent call last): ... NotImplementedError: sign of number < oo is not well defined sage: sign(UnsignedInfinityRing(-2)) Traceback (most recent call last): ... NotImplementedError: sign of number < oo is not well defined
>>> from sage.all import * >>> sign(UnsignedInfinityRing(Integer(2))) Traceback (most recent call last): ... NotImplementedError: sign of number < oo is not well defined >>> sign(UnsignedInfinityRing(Integer(0))) Traceback (most recent call last): ... NotImplementedError: sign of number < oo is not well defined >>> sign(UnsignedInfinityRing(-Integer(2))) Traceback (most recent call last): ... NotImplementedError: sign of number < oo is not well defined
- class sage.rings.infinity.MinusInfinity(*args)[source]#
Bases:
_uniq
,AnInfinity
,InfinityElement
Initialize
self
.
- class sage.rings.infinity.PlusInfinity(*args)[source]#
Bases:
_uniq
,AnInfinity
,InfinityElement
Initialize
self
.
- exception sage.rings.infinity.SignError[source]#
Bases:
ArithmeticError
Sign error exception.
- class sage.rings.infinity.UnsignedInfinity(*args)[source]#
Bases:
_uniq
,AnInfinity
,InfinityElement
Initialize
self
.
- class sage.rings.infinity.UnsignedInfinityRing_class[source]#
-
Initialize
self
.- gen(n=0)[source]#
The “generator” of
self
is the infinity object.EXAMPLES:
sage: UnsignedInfinityRing.gen() Infinity sage: UnsignedInfinityRing.gen(1) Traceback (most recent call last): ... IndexError: UnsignedInfinityRing only has one generator
>>> from sage.all import * >>> UnsignedInfinityRing.gen() Infinity >>> UnsignedInfinityRing.gen(Integer(1)) Traceback (most recent call last): ... IndexError: UnsignedInfinityRing only has one generator
- gens()[source]#
The “generator” of
self
is the infinity object.EXAMPLES:
sage: UnsignedInfinityRing.gens() (Infinity,)
>>> from sage.all import * >>> UnsignedInfinityRing.gens() (Infinity,)
- less_than_infinity()[source]#
This is the element that represents a finite value.
EXAMPLES:
sage: UnsignedInfinityRing.less_than_infinity() A number less than infinity sage: UnsignedInfinityRing(5) is UnsignedInfinityRing.less_than_infinity() True
>>> from sage.all import * >>> UnsignedInfinityRing.less_than_infinity() A number less than infinity >>> UnsignedInfinityRing(Integer(5)) is UnsignedInfinityRing.less_than_infinity() True
- sage.rings.infinity.is_Infinite(x)[source]#
This is a type check for infinity elements.
EXAMPLES:
sage: sage.rings.infinity.is_Infinite(oo) True sage: sage.rings.infinity.is_Infinite(-oo) True sage: sage.rings.infinity.is_Infinite(unsigned_infinity) True sage: sage.rings.infinity.is_Infinite(3) False sage: sage.rings.infinity.is_Infinite(RR(infinity)) False sage: sage.rings.infinity.is_Infinite(ZZ) False
>>> from sage.all import * >>> sage.rings.infinity.is_Infinite(oo) True >>> sage.rings.infinity.is_Infinite(-oo) True >>> sage.rings.infinity.is_Infinite(unsigned_infinity) True >>> sage.rings.infinity.is_Infinite(Integer(3)) False >>> sage.rings.infinity.is_Infinite(RR(infinity)) False >>> sage.rings.infinity.is_Infinite(ZZ) False
- sage.rings.infinity.test_comparison(ring)[source]#
Check comparison with infinity
INPUT:
ring
– a sub-ring of the real numbers
OUTPUT:
Various attempts are made to generate elements of
ring
. An assertion is triggered if one of these elements does not compare correctly with plus/minus infinity.EXAMPLES:
sage: from sage.rings.infinity import test_comparison sage: rings = [ZZ, QQ, RDF] sage: rings += [RR, RealField(200)] # needs sage.rings.real_mpfr sage: rings += [RLF, RIF] # needs sage.rings.real_interval_field sage: for R in rings: ....: print('testing {}'.format(R)) ....: test_comparison(R) testing Integer Ring testing Rational Field testing Real Double Field... sage: test_comparison(AA) # needs sage.rings.number_field
>>> from sage.all import * >>> from sage.rings.infinity import test_comparison >>> rings = [ZZ, QQ, RDF] >>> rings += [RR, RealField(Integer(200))] # needs sage.rings.real_mpfr >>> rings += [RLF, RIF] # needs sage.rings.real_interval_field >>> for R in rings: ... print('testing {}'.format(R)) ... test_comparison(R) testing Integer Ring testing Rational Field testing Real Double Field... >>> test_comparison(AA) # needs sage.rings.number_field
Comparison with number fields does not work:
sage: x = polygen(ZZ, 'x') sage: K.<sqrt3> = NumberField(x^2 - 3) # needs sage.rings.number_field sage: (-oo < 1 + sqrt3) and (1 + sqrt3 < oo) # known bug # needs sage.rings.number_field False
>>> from sage.all import * >>> x = polygen(ZZ, 'x') >>> K = NumberField(x**Integer(2) - Integer(3), names=('sqrt3',)); (sqrt3,) = K._first_ngens(1)# needs sage.rings.number_field >>> (-oo < Integer(1) + sqrt3) and (Integer(1) + sqrt3 < oo) # known bug # needs sage.rings.number_field False
The symbolic ring handles its own infinities, but answers
False
(meaning: cannot decide) already for some very elementary comparisons:sage: test_comparison(SR) # known bug # needs sage.symbolic Traceback (most recent call last): ... AssertionError: testing -1000.0 in Symbolic Ring: id = ...
>>> from sage.all import * >>> test_comparison(SR) # known bug # needs sage.symbolic Traceback (most recent call last): ... AssertionError: testing -1000.0 in Symbolic Ring: id = ...
- sage.rings.infinity.test_signed_infinity(pos_inf)[source]#
Test consistency of infinity representations.
There are different possible representations of infinity in Sage. These are all consistent with the infinity ring, that is, compare with infinity in the expected way. See also Issue #14045
INPUT:
pos_inf
– a representation of positive infinity.
OUTPUT:
An assertion error is raised if the representation is not consistent with the infinity ring.
Check that Issue #14045 is fixed:
sage: InfinityRing(float('+inf')) +Infinity sage: InfinityRing(float('-inf')) -Infinity sage: oo > float('+inf') False sage: oo == float('+inf') True
>>> from sage.all import * >>> InfinityRing(float('+inf')) +Infinity >>> InfinityRing(float('-inf')) -Infinity >>> oo > float('+inf') False >>> oo == float('+inf') True
EXAMPLES:
sage: from sage.rings.infinity import test_signed_infinity sage: test_signed_infinity(oo) sage: test_signed_infinity(float('+inf')) sage: test_signed_infinity(RLF(oo)) # needs sage.rings.real_interval_field sage: test_signed_infinity(RIF(oo)) # needs sage.rings.real_interval_field sage: test_signed_infinity(SR(oo)) # needs sage.symbolic
>>> from sage.all import * >>> from sage.rings.infinity import test_signed_infinity >>> test_signed_infinity(oo) >>> test_signed_infinity(float('+inf')) >>> test_signed_infinity(RLF(oo)) # needs sage.rings.real_interval_field >>> test_signed_infinity(RIF(oo)) # needs sage.rings.real_interval_field >>> test_signed_infinity(SR(oo)) # needs sage.symbolic