Alternating contravariant tensors on free modules#

Given a free module \(M\) of finite rank over a commutative ring \(R\) and a positive integer \(p\), an alternating contravariant tensor of degree \(p\) is a map

\[a:\ \underbrace{M^*\times\cdots\times M^*}_{p\ \; \mbox{times}} \longrightarrow R\]

that (i) is multilinear and (ii) vanishes whenever any of two of its arguments are equal (\(M^*\) stands for the dual of \(M\)). \(a\) is an element of the \(p\)-th exterior power of \(M\), \(\Lambda^p(M)\).

Alternating contravariant tensors are implemented via the class AlternatingContrTensor, which is a subclass of the generic tensor class FreeModuleTensor.

AUTHORS:

  • Eric Gourgoulhon (2017): initial version

REFERENCES:

class sage.tensor.modules.alternating_contr_tensor.AlternatingContrTensor(fmodule, degree, name=None, latex_name=None)[source]#

Bases: FreeModuleTensor

Alternating contravariant tensor on a free module of finite rank over a commutative ring.

This is a Sage element class, the corresponding parent class being ExtPowerFreeModule.

INPUT:

  • fmodule – free module \(M\) of finite rank over a commutative ring \(R\), as an instance of FiniteRankFreeModule

  • degree – positive integer; the degree \(p\) of the alternating contravariant tensor (i.e. the tensor rank)

  • name – (default: None) string; name given to the alternating contravariant tensor

  • latex_name – (default: None) string; LaTeX symbol to denote the alternating contravariant tensor; if none is provided, name is used

EXAMPLES:

Alternating contravariant tensor of degree 2 on a rank-3 free module:

sage: M = FiniteRankFreeModule(ZZ, 3, name='M', start_index=1)
sage: e = M.basis('e')
sage: a = M.alternating_contravariant_tensor(2, name='a') ; a
Alternating contravariant tensor a of degree 2 on the Rank-3
 free module M over the Integer Ring
sage: type(a)
<class 'sage.tensor.modules.ext_pow_free_module.ExtPowerFreeModule_with_category.element_class'>
sage: a.parent()
2nd exterior power of the Rank-3 free module M over the Integer Ring
sage: a[1,2], a[2,3] = 4, -3
sage: a.display(e)
a = 4 e_1∧e_2 - 3 e_2∧e_3
>>> from sage.all import *
>>> M = FiniteRankFreeModule(ZZ, Integer(3), name='M', start_index=Integer(1))
>>> e = M.basis('e')
>>> a = M.alternating_contravariant_tensor(Integer(2), name='a') ; a
Alternating contravariant tensor a of degree 2 on the Rank-3
 free module M over the Integer Ring
>>> type(a)
<class 'sage.tensor.modules.ext_pow_free_module.ExtPowerFreeModule_with_category.element_class'>
>>> a.parent()
2nd exterior power of the Rank-3 free module M over the Integer Ring
>>> a[Integer(1),Integer(2)], a[Integer(2),Integer(3)] = Integer(4), -Integer(3)
>>> a.display(e)
a = 4 e_1∧e_2 - 3 e_2∧e_3

The alternating contravariant tensor acting on the dual basis elements:

sage: f = e.dual_basis(); f
Dual basis (e^1,e^2,e^3) on the Rank-3 free module M over the
 Integer Ring
sage: a(f[1],f[2])
4
sage: a(f[1],f[3])
0
sage: a(f[2],f[3])
-3
sage: a(f[2],f[1])
-4
>>> from sage.all import *
>>> f = e.dual_basis(); f
Dual basis (e^1,e^2,e^3) on the Rank-3 free module M over the
 Integer Ring
>>> a(f[Integer(1)],f[Integer(2)])
4
>>> a(f[Integer(1)],f[Integer(3)])
0
>>> a(f[Integer(2)],f[Integer(3)])
-3
>>> a(f[Integer(2)],f[Integer(1)])
-4

An alternating contravariant tensor of degree 1 is an element of the module \(M\):

sage: b = M.alternating_contravariant_tensor(1, name='b') ; b
Element b of the Rank-3 free module M over the Integer Ring
sage: b[:] = [2,-1,3]  # components w.r.t. the module's default basis (e)
sage: b.parent() is M
True
>>> from sage.all import *
>>> b = M.alternating_contravariant_tensor(Integer(1), name='b') ; b
Element b of the Rank-3 free module M over the Integer Ring
>>> b[:] = [Integer(2),-Integer(1),Integer(3)]  # components w.r.t. the module's default basis (e)
>>> b.parent() is M
True

The standard tensor operations apply to alternating contravariant tensors, like the extraction of components with respect to a given basis:

sage: a[e,1,2]
4
sage: a[1,2]  # since e is the module's default basis
4
sage: all( a[i,j] == - a[j,i] for i in {1,2,3} for j in {1,2,3} )
True
>>> from sage.all import *
>>> a[e,Integer(1),Integer(2)]
4
>>> a[Integer(1),Integer(2)]  # since e is the module's default basis
4
>>> all( a[i,j] == - a[j,i] for i in {Integer(1),Integer(2),Integer(3)} for j in {Integer(1),Integer(2),Integer(3)} )
True

the tensor product:

sage: c = b*b ; c
Type-(2,0) tensor b⊗b on the Rank-3 free module M over the
 Integer Ring
sage: c.symmetries()
symmetry: (0, 1); no antisymmetry
sage: c.parent()
Free module of type-(2,0) tensors on the Rank-3 free module M
 over the Integer Ring
sage: c.display(e)
b⊗b = 4 e_1⊗e_1 - 2 e_1⊗e_2 + 6 e_1⊗e_3 - 2 e_2⊗e_1 + e_2⊗e_2
 - 3 e_2⊗e_3 + 6 e_3⊗e_1 - 3 e_3⊗e_2 + 9 e_3⊗e_3
>>> from sage.all import *
>>> c = b*b ; c
Type-(2,0) tensor b⊗b on the Rank-3 free module M over the
 Integer Ring
>>> c.symmetries()
symmetry: (0, 1); no antisymmetry
>>> c.parent()
Free module of type-(2,0) tensors on the Rank-3 free module M
 over the Integer Ring
>>> c.display(e)
b⊗b = 4 e_1⊗e_1 - 2 e_1⊗e_2 + 6 e_1⊗e_3 - 2 e_2⊗e_1 + e_2⊗e_2
 - 3 e_2⊗e_3 + 6 e_3⊗e_1 - 3 e_3⊗e_2 + 9 e_3⊗e_3

the contractions:

sage: w = f[1] + f[2] + f[3]  # a linear form
sage: s = a.contract(w) ; s
Element of the Rank-3 free module M over the Integer Ring
sage: s.display(e)
4 e_1 - 7 e_2 + 3 e_3
>>> from sage.all import *
>>> w = f[Integer(1)] + f[Integer(2)] + f[Integer(3)]  # a linear form
>>> s = a.contract(w) ; s
Element of the Rank-3 free module M over the Integer Ring
>>> s.display(e)
4 e_1 - 7 e_2 + 3 e_3

or tensor arithmetics:

sage: s = 3*a + c ; s
Type-(2,0) tensor on the Rank-3 free module M over the Integer Ring
sage: s.parent()
Free module of type-(2,0) tensors on the Rank-3 free module M
 over the Integer Ring
sage: s.display(e)
4 e_1⊗e_1 + 10 e_1⊗e_2 + 6 e_1⊗e_3 - 14 e_2⊗e_1 + e_2⊗e_2
 - 12 e_2⊗e_3 + 6 e_3⊗e_1 + 6 e_3⊗e_2 + 9 e_3⊗e_3
>>> from sage.all import *
>>> s = Integer(3)*a + c ; s
Type-(2,0) tensor on the Rank-3 free module M over the Integer Ring
>>> s.parent()
Free module of type-(2,0) tensors on the Rank-3 free module M
 over the Integer Ring
>>> s.display(e)
4 e_1⊗e_1 + 10 e_1⊗e_2 + 6 e_1⊗e_3 - 14 e_2⊗e_1 + e_2⊗e_2
 - 12 e_2⊗e_3 + 6 e_3⊗e_1 + 6 e_3⊗e_2 + 9 e_3⊗e_3

Note that tensor arithmetics preserves the alternating character if both operands are alternating:

sage: s = a - 2*a ; s
Alternating contravariant tensor of degree 2 on the Rank-3 free
 module M over the Integer Ring
sage: s.parent() # note the difference with s = 3*a + c above
2nd exterior power of the Rank-3 free module M over the Integer
 Ring
sage: s == -a
True
>>> from sage.all import *
>>> s = a - Integer(2)*a ; s
Alternating contravariant tensor of degree 2 on the Rank-3 free
 module M over the Integer Ring
>>> s.parent() # note the difference with s = 3*a + c above
2nd exterior power of the Rank-3 free module M over the Integer
 Ring
>>> s == -a
True

An operation specific to alternating contravariant tensors is of course the exterior product:

sage: s = a.wedge(b) ; s
Alternating contravariant tensor a∧b of degree 3 on the Rank-3 free
 module M over the Integer Ring
sage: s.parent()
3rd exterior power of the Rank-3 free module M over the Integer Ring
sage: s.display(e)
a∧b = 6 e_1∧e_2∧e_3
sage: s[1,2,3] == a[1,2]*b[3] + a[2,3]*b[1] + a[3,1]*b[2]
True
>>> from sage.all import *
>>> s = a.wedge(b) ; s
Alternating contravariant tensor a∧b of degree 3 on the Rank-3 free
 module M over the Integer Ring
>>> s.parent()
3rd exterior power of the Rank-3 free module M over the Integer Ring
>>> s.display(e)
a∧b = 6 e_1∧e_2∧e_3
>>> s[Integer(1),Integer(2),Integer(3)] == a[Integer(1),Integer(2)]*b[Integer(3)] + a[Integer(2),Integer(3)]*b[Integer(1)] + a[Integer(3),Integer(1)]*b[Integer(2)]
True

The exterior product is nilpotent on module elements:

sage: s = b.wedge(b) ; s
Alternating contravariant tensor b∧b of degree 2 on the Rank-3 free
 module M over the Integer Ring
sage: s.display(e)
b∧b = 0
>>> from sage.all import *
>>> s = b.wedge(b) ; s
Alternating contravariant tensor b∧b of degree 2 on the Rank-3 free
 module M over the Integer Ring
>>> s.display(e)
b∧b = 0
degree()[source]#

Return the degree of self.

EXAMPLES:

sage: M = FiniteRankFreeModule(ZZ, 3, name='M')
sage: a = M.alternating_contravariant_tensor(2, name='a')
sage: a.degree()
2
>>> from sage.all import *
>>> M = FiniteRankFreeModule(ZZ, Integer(3), name='M')
>>> a = M.alternating_contravariant_tensor(Integer(2), name='a')
>>> a.degree()
2
disp(basis=None, format_spec=None)[source]#

Display the alternating contravariant tensor self in terms of its expansion w.r.t. a given module basis.

The expansion is actually performed onto exterior products of elements of basis (see examples below). The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

INPUT:

  • basis – (default: None) basis of the free module with respect to which self is expanded; if none is provided, the module’s default basis is assumed

  • format_spec – (default: None) format specification passed to self._fmodule._output_formatter to format the output

EXAMPLES:

Display of an alternating contravariant tensor of degree 2 on a rank-3 free module:

sage: M = FiniteRankFreeModule(ZZ, 3, name='M')
sage: e = M.basis('e')
sage: a = M.alternating_contravariant_tensor(2, 'a', latex_name=r'\alpha')
sage: a[0,1], a[0,2], a[1,2] = 3, 2, -1
sage: a.display()
a = 3 e_0∧e_1 + 2 e_0∧e_2 - e_1∧e_2
sage: latex(a.display())  # display in the notebook
\alpha = 3 e_{0}\wedge e_{1} + 2 e_{0}\wedge e_{2} -e_{1}\wedge e_{2}
>>> from sage.all import *
>>> M = FiniteRankFreeModule(ZZ, Integer(3), name='M')
>>> e = M.basis('e')
>>> a = M.alternating_contravariant_tensor(Integer(2), 'a', latex_name=r'\alpha')
>>> a[Integer(0),Integer(1)], a[Integer(0),Integer(2)], a[Integer(1),Integer(2)] = Integer(3), Integer(2), -Integer(1)
>>> a.display()
a = 3 e_0∧e_1 + 2 e_0∧e_2 - e_1∧e_2
>>> latex(a.display())  # display in the notebook
\alpha = 3 e_{0}\wedge e_{1} + 2 e_{0}\wedge e_{2} -e_{1}\wedge e_{2}

Display of an alternating contravariant tensor of degree 3 on a rank-3 free module:

sage: b = M.alternating_contravariant_tensor(3, 'b')
sage: b[0,1,2] = 4
sage: b.display()
b = 4 e_0∧e_1∧e_2
sage: latex(b.display())
b = 4 e_{0}\wedge e_{1}\wedge e_{2}
>>> from sage.all import *
>>> b = M.alternating_contravariant_tensor(Integer(3), 'b')
>>> b[Integer(0),Integer(1),Integer(2)] = Integer(4)
>>> b.display()
b = 4 e_0∧e_1∧e_2
>>> latex(b.display())
b = 4 e_{0}\wedge e_{1}\wedge e_{2}

Display of a vanishing alternating contravariant tensor:

sage: b[0,1,2] = 0  # the only independent component set to zero
sage: b.is_zero()
True
sage: b.display()
b = 0
sage: latex(b.display())
b = 0
sage: b[0,1,2] = 4  # value restored for what follows
>>> from sage.all import *
>>> b[Integer(0),Integer(1),Integer(2)] = Integer(0)  # the only independent component set to zero
>>> b.is_zero()
True
>>> b.display()
b = 0
>>> latex(b.display())
b = 0
>>> b[Integer(0),Integer(1),Integer(2)] = Integer(4)  # value restored for what follows

Display in a basis which is not the default one:

sage: aut = M.automorphism(matrix=[[0,1,0], [0,0,-1], [1,0,0]],
....:                      basis=e)
sage: f = e.new_basis(aut, 'f')
sage: a.display(f)
a = -2 f_0∧f_1 - f_0∧f_2 - 3 f_1∧f_2
sage: a.disp(f)     # shortcut notation
a = -2 f_0∧f_1 - f_0∧f_2 - 3 f_1∧f_2
sage: b.display(f)
b = -4 f_0∧f_1∧f_2
>>> from sage.all import *
>>> aut = M.automorphism(matrix=[[Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),-Integer(1)], [Integer(1),Integer(0),Integer(0)]],
...                      basis=e)
>>> f = e.new_basis(aut, 'f')
>>> a.display(f)
a = -2 f_0∧f_1 - f_0∧f_2 - 3 f_1∧f_2
>>> a.disp(f)     # shortcut notation
a = -2 f_0∧f_1 - f_0∧f_2 - 3 f_1∧f_2
>>> b.display(f)
b = -4 f_0∧f_1∧f_2

The output format can be set via the argument output_formatter passed at the module construction:

sage: N = FiniteRankFreeModule(QQ, 3, name='N', start_index=1,
....:                   output_formatter=Rational.numerical_approx)
sage: e = N.basis('e')
sage: a = N.alternating_contravariant_tensor(2, 'a')
sage: a[1,2], a[1,3], a[2,3] = 1/3, 5/2, 4
sage: a.display()  # default format (53 bits of precision)
a = 0.333333333333333 e_1∧e_2 + 2.50000000000000 e_1∧e_3
 + 4.00000000000000 e_2∧e_3
>>> from sage.all import *
>>> N = FiniteRankFreeModule(QQ, Integer(3), name='N', start_index=Integer(1),
...                   output_formatter=Rational.numerical_approx)
>>> e = N.basis('e')
>>> a = N.alternating_contravariant_tensor(Integer(2), 'a')
>>> a[Integer(1),Integer(2)], a[Integer(1),Integer(3)], a[Integer(2),Integer(3)] = Integer(1)/Integer(3), Integer(5)/Integer(2), Integer(4)
>>> a.display()  # default format (53 bits of precision)
a = 0.333333333333333 e_1∧e_2 + 2.50000000000000 e_1∧e_3
 + 4.00000000000000 e_2∧e_3

The output format is then controlled by the argument format_spec of the method display():

sage: a.display(format_spec=10)  # 10 bits of precision
a = 0.33 e_1∧e_2 + 2.5 e_1∧e_3 + 4.0 e_2∧e_3
>>> from sage.all import *
>>> a.display(format_spec=Integer(10))  # 10 bits of precision
a = 0.33 e_1∧e_2 + 2.5 e_1∧e_3 + 4.0 e_2∧e_3
display(basis=None, format_spec=None)[source]#

Display the alternating contravariant tensor self in terms of its expansion w.r.t. a given module basis.

The expansion is actually performed onto exterior products of elements of basis (see examples below). The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

INPUT:

  • basis – (default: None) basis of the free module with respect to which self is expanded; if none is provided, the module’s default basis is assumed

  • format_spec – (default: None) format specification passed to self._fmodule._output_formatter to format the output

EXAMPLES:

Display of an alternating contravariant tensor of degree 2 on a rank-3 free module:

sage: M = FiniteRankFreeModule(ZZ, 3, name='M')
sage: e = M.basis('e')
sage: a = M.alternating_contravariant_tensor(2, 'a', latex_name=r'\alpha')
sage: a[0,1], a[0,2], a[1,2] = 3, 2, -1
sage: a.display()
a = 3 e_0∧e_1 + 2 e_0∧e_2 - e_1∧e_2
sage: latex(a.display())  # display in the notebook
\alpha = 3 e_{0}\wedge e_{1} + 2 e_{0}\wedge e_{2} -e_{1}\wedge e_{2}
>>> from sage.all import *
>>> M = FiniteRankFreeModule(ZZ, Integer(3), name='M')
>>> e = M.basis('e')
>>> a = M.alternating_contravariant_tensor(Integer(2), 'a', latex_name=r'\alpha')
>>> a[Integer(0),Integer(1)], a[Integer(0),Integer(2)], a[Integer(1),Integer(2)] = Integer(3), Integer(2), -Integer(1)
>>> a.display()
a = 3 e_0∧e_1 + 2 e_0∧e_2 - e_1∧e_2
>>> latex(a.display())  # display in the notebook
\alpha = 3 e_{0}\wedge e_{1} + 2 e_{0}\wedge e_{2} -e_{1}\wedge e_{2}

Display of an alternating contravariant tensor of degree 3 on a rank-3 free module:

sage: b = M.alternating_contravariant_tensor(3, 'b')
sage: b[0,1,2] = 4
sage: b.display()
b = 4 e_0∧e_1∧e_2
sage: latex(b.display())
b = 4 e_{0}\wedge e_{1}\wedge e_{2}
>>> from sage.all import *
>>> b = M.alternating_contravariant_tensor(Integer(3), 'b')
>>> b[Integer(0),Integer(1),Integer(2)] = Integer(4)
>>> b.display()
b = 4 e_0∧e_1∧e_2
>>> latex(b.display())
b = 4 e_{0}\wedge e_{1}\wedge e_{2}

Display of a vanishing alternating contravariant tensor:

sage: b[0,1,2] = 0  # the only independent component set to zero
sage: b.is_zero()
True
sage: b.display()
b = 0
sage: latex(b.display())
b = 0
sage: b[0,1,2] = 4  # value restored for what follows
>>> from sage.all import *
>>> b[Integer(0),Integer(1),Integer(2)] = Integer(0)  # the only independent component set to zero
>>> b.is_zero()
True
>>> b.display()
b = 0
>>> latex(b.display())
b = 0
>>> b[Integer(0),Integer(1),Integer(2)] = Integer(4)  # value restored for what follows

Display in a basis which is not the default one:

sage: aut = M.automorphism(matrix=[[0,1,0], [0,0,-1], [1,0,0]],
....:                      basis=e)
sage: f = e.new_basis(aut, 'f')
sage: a.display(f)
a = -2 f_0∧f_1 - f_0∧f_2 - 3 f_1∧f_2
sage: a.disp(f)     # shortcut notation
a = -2 f_0∧f_1 - f_0∧f_2 - 3 f_1∧f_2
sage: b.display(f)
b = -4 f_0∧f_1∧f_2
>>> from sage.all import *
>>> aut = M.automorphism(matrix=[[Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),-Integer(1)], [Integer(1),Integer(0),Integer(0)]],
...                      basis=e)
>>> f = e.new_basis(aut, 'f')
>>> a.display(f)
a = -2 f_0∧f_1 - f_0∧f_2 - 3 f_1∧f_2
>>> a.disp(f)     # shortcut notation
a = -2 f_0∧f_1 - f_0∧f_2 - 3 f_1∧f_2
>>> b.display(f)
b = -4 f_0∧f_1∧f_2

The output format can be set via the argument output_formatter passed at the module construction:

sage: N = FiniteRankFreeModule(QQ, 3, name='N', start_index=1,
....:                   output_formatter=Rational.numerical_approx)
sage: e = N.basis('e')
sage: a = N.alternating_contravariant_tensor(2, 'a')
sage: a[1,2], a[1,3], a[2,3] = 1/3, 5/2, 4
sage: a.display()  # default format (53 bits of precision)
a = 0.333333333333333 e_1∧e_2 + 2.50000000000000 e_1∧e_3
 + 4.00000000000000 e_2∧e_3
>>> from sage.all import *
>>> N = FiniteRankFreeModule(QQ, Integer(3), name='N', start_index=Integer(1),
...                   output_formatter=Rational.numerical_approx)
>>> e = N.basis('e')
>>> a = N.alternating_contravariant_tensor(Integer(2), 'a')
>>> a[Integer(1),Integer(2)], a[Integer(1),Integer(3)], a[Integer(2),Integer(3)] = Integer(1)/Integer(3), Integer(5)/Integer(2), Integer(4)
>>> a.display()  # default format (53 bits of precision)
a = 0.333333333333333 e_1∧e_2 + 2.50000000000000 e_1∧e_3
 + 4.00000000000000 e_2∧e_3

The output format is then controlled by the argument format_spec of the method display():

sage: a.display(format_spec=10)  # 10 bits of precision
a = 0.33 e_1∧e_2 + 2.5 e_1∧e_3 + 4.0 e_2∧e_3
>>> from sage.all import *
>>> a.display(format_spec=Integer(10))  # 10 bits of precision
a = 0.33 e_1∧e_2 + 2.5 e_1∧e_3 + 4.0 e_2∧e_3
interior_product(form)[source]#

Interior product with an alternating form.

If self is an alternating contravariant tensor \(A\) of degree \(p\) and \(B\) is an alternating form of degree \(q\geq p\) on the same free module, the interior product of \(A\) by \(B\) is the alternating form \(\iota_A B\) of degree \(q-p\) defined by

\[(\iota_A B)_{i_1\ldots i_{q-p}} = A^{k_1\ldots k_p} B_{k_1\ldots k_p i_1\ldots i_{q-p}}\]

Note

A.interior_product(B) yields the same result as A.contract(0,..., p-1, B, 0,..., p-1) (cf. contract()), but interior_product is more efficient, the alternating character of \(A\) being not used to reduce the computation in contract()

INPUT:

  • form – alternating form \(B\) (instance of FreeModuleAltForm); the degree of \(B\) must be at least equal to the degree of self

OUTPUT:

  • element of the base ring (case \(p=q\)) or FreeModuleAltForm (case \(p<q\)) representing the interior product \(\iota_A B\), where \(A\) is self

See also

interior_product() for the interior product of an alternating form by an alternating contravariant tensor

EXAMPLES:

Let us consider a rank-4 free module:

sage: M = FiniteRankFreeModule(ZZ, 4, name='M', start_index=1)
sage: e = M.basis('e')
>>> from sage.all import *
>>> M = FiniteRankFreeModule(ZZ, Integer(4), name='M', start_index=Integer(1))
>>> e = M.basis('e')

and various interior products on it, starting with a module element (p=1) and a linear form (q=1):

sage: a = M([-2,1,2,3], basis=e, name='A')
sage: b = M.linear_form(name='B')
sage: b[:] = [2, 0, -3, 4]
sage: c = a.interior_product(b); c
2
sage: c == a.contract(b)
True
>>> from sage.all import *
>>> a = M([-Integer(2),Integer(1),Integer(2),Integer(3)], basis=e, name='A')
>>> b = M.linear_form(name='B')
>>> b[:] = [Integer(2), Integer(0), -Integer(3), Integer(4)]
>>> c = a.interior_product(b); c
2
>>> c == a.contract(b)
True

Case p=1 and q=3:

sage: b = M.alternating_form(3, name='B')
sage: b[1,2,3], b[1,2,4], b[1,3,4], b[2,3,4] = 3, -1, 2, 5
sage: c = a.interior_product(b); c
Alternating form i_A B of degree 2 on the Rank-4 free module M over the Integer Ring
sage: c.display()
i_A B = 3 e^1∧e^2 + 3 e^1∧e^3 - 3 e^1∧e^4 + 9 e^2∧e^3 - 8 e^2∧e^4 + e^3∧e^4
sage: latex(c)
\iota_{A} B
sage: c == a.contract(b)
True
>>> from sage.all import *
>>> b = M.alternating_form(Integer(3), name='B')
>>> b[Integer(1),Integer(2),Integer(3)], b[Integer(1),Integer(2),Integer(4)], b[Integer(1),Integer(3),Integer(4)], b[Integer(2),Integer(3),Integer(4)] = Integer(3), -Integer(1), Integer(2), Integer(5)
>>> c = a.interior_product(b); c
Alternating form i_A B of degree 2 on the Rank-4 free module M over the Integer Ring
>>> c.display()
i_A B = 3 e^1∧e^2 + 3 e^1∧e^3 - 3 e^1∧e^4 + 9 e^2∧e^3 - 8 e^2∧e^4 + e^3∧e^4
>>> latex(c)
\iota_{A} B
>>> c == a.contract(b)
True

Case p=2 and q=3:

sage: a = M.alternating_contravariant_tensor(2, name='A')
sage: a[1,2], a[1,3], a[1,4] = 2, -5, 3
sage: a[2,3], a[2,4], a[3,4] = -1, 4, 2
sage: c = a.interior_product(b); c
Linear form i_A B on the Rank-4 free module M over the Integer Ring
sage: c.display()
i_A B = -6 e^1 + 56 e^2 - 40 e^3 - 34 e^4
sage: c == a.contract(0, 1, b, 0, 1)  # contraction on all indices of a
True
>>> from sage.all import *
>>> a = M.alternating_contravariant_tensor(Integer(2), name='A')
>>> a[Integer(1),Integer(2)], a[Integer(1),Integer(3)], a[Integer(1),Integer(4)] = Integer(2), -Integer(5), Integer(3)
>>> a[Integer(2),Integer(3)], a[Integer(2),Integer(4)], a[Integer(3),Integer(4)] = -Integer(1), Integer(4), Integer(2)
>>> c = a.interior_product(b); c
Linear form i_A B on the Rank-4 free module M over the Integer Ring
>>> c.display()
i_A B = -6 e^1 + 56 e^2 - 40 e^3 - 34 e^4
>>> c == a.contract(Integer(0), Integer(1), b, Integer(0), Integer(1))  # contraction on all indices of a
True

Case p=2 and q=4:

sage: b = M.alternating_form(4, name='B')
sage: b[1,2,3,4] = 5
sage: c = a.interior_product(b); c
Alternating form i_A B of degree 2 on the Rank-4 free module M over the Integer Ring
sage: c.display()
i_A B = 20 e^1∧e^2 - 40 e^1∧e^3 - 10 e^1∧e^4 + 30 e^2∧e^3 + 50 e^2∧e^4 + 20 e^3∧e^4
sage: c == a.contract(0, 1, b, 0, 1)
True
>>> from sage.all import *
>>> b = M.alternating_form(Integer(4), name='B')
>>> b[Integer(1),Integer(2),Integer(3),Integer(4)] = Integer(5)
>>> c = a.interior_product(b); c
Alternating form i_A B of degree 2 on the Rank-4 free module M over the Integer Ring
>>> c.display()
i_A B = 20 e^1∧e^2 - 40 e^1∧e^3 - 10 e^1∧e^4 + 30 e^2∧e^3 + 50 e^2∧e^4 + 20 e^3∧e^4
>>> c == a.contract(Integer(0), Integer(1), b, Integer(0), Integer(1))
True

Case p=2 and q=2:

sage: b = M.alternating_form(2)
sage: b[1,2], b[1,3], b[1,4] = 6, 0, -2
sage: b[2,3], b[2,4], b[3,4] = 2, 3, 4
sage: c = a.interior_product(b); c
48
sage: c == a.contract(0, 1, b, 0, 1)
True
>>> from sage.all import *
>>> b = M.alternating_form(Integer(2))
>>> b[Integer(1),Integer(2)], b[Integer(1),Integer(3)], b[Integer(1),Integer(4)] = Integer(6), Integer(0), -Integer(2)
>>> b[Integer(2),Integer(3)], b[Integer(2),Integer(4)], b[Integer(3),Integer(4)] = Integer(2), Integer(3), Integer(4)
>>> c = a.interior_product(b); c
48
>>> c == a.contract(Integer(0), Integer(1), b, Integer(0), Integer(1))
True

Case p=3 and q=3:

sage: a = M.alternating_contravariant_tensor(3, name='A')
sage: a[1,2,3], a[1,2,4], a[1,3,4], a[2,3,4] = -3, 2, 8, -5
sage: b = M.alternating_form(3, name='B')
sage: b[1,2,3], b[1,2,4], b[1,3,4], b[2,3,4] = 3, -1, 2, 5
sage: c = a.interior_product(b); c
-120
sage: c == a.contract(0, 1, 2, b, 0, 1, 2)
True
>>> from sage.all import *
>>> a = M.alternating_contravariant_tensor(Integer(3), name='A')
>>> a[Integer(1),Integer(2),Integer(3)], a[Integer(1),Integer(2),Integer(4)], a[Integer(1),Integer(3),Integer(4)], a[Integer(2),Integer(3),Integer(4)] = -Integer(3), Integer(2), Integer(8), -Integer(5)
>>> b = M.alternating_form(Integer(3), name='B')
>>> b[Integer(1),Integer(2),Integer(3)], b[Integer(1),Integer(2),Integer(4)], b[Integer(1),Integer(3),Integer(4)], b[Integer(2),Integer(3),Integer(4)] = Integer(3), -Integer(1), Integer(2), Integer(5)
>>> c = a.interior_product(b); c
-120
>>> c == a.contract(Integer(0), Integer(1), Integer(2), b, Integer(0), Integer(1), Integer(2))
True

Case p=3 and q=4:

sage: b = M.alternating_form(4, name='B')
sage: b[1,2,3,4] = 5
sage: c = a.interior_product(b); c
Linear form i_A B on the Rank-4 free module M over the Integer Ring
sage: c.display()
i_A B = 150 e^1 + 240 e^2 - 60 e^3 - 90 e^4
sage: c == a.contract(0, 1, 2, b, 0, 1, 2)
True
>>> from sage.all import *
>>> b = M.alternating_form(Integer(4), name='B')
>>> b[Integer(1),Integer(2),Integer(3),Integer(4)] = Integer(5)
>>> c = a.interior_product(b); c
Linear form i_A B on the Rank-4 free module M over the Integer Ring
>>> c.display()
i_A B = 150 e^1 + 240 e^2 - 60 e^3 - 90 e^4
>>> c == a.contract(Integer(0), Integer(1), Integer(2), b, Integer(0), Integer(1), Integer(2))
True

Case p=4 and q=4:

sage: a = M.alternating_contravariant_tensor(4, name='A')
sage: a[1,2,3,4] = -2
sage: c = a.interior_product(b); c
-240
sage: c == a.contract(0, 1, 2, 3, b, 0, 1, 2, 3)
True
>>> from sage.all import *
>>> a = M.alternating_contravariant_tensor(Integer(4), name='A')
>>> a[Integer(1),Integer(2),Integer(3),Integer(4)] = -Integer(2)
>>> c = a.interior_product(b); c
-240
>>> c == a.contract(Integer(0), Integer(1), Integer(2), Integer(3), b, Integer(0), Integer(1), Integer(2), Integer(3))
True
wedge(other)[source]#

Exterior product of self with the alternating contravariant tensor other.

INPUT:

  • other – an alternating contravariant tensor

OUTPUT:

EXAMPLES:

Exterior product of two module elements:

sage: M = FiniteRankFreeModule(ZZ, 3, name='M')
sage: e = M.basis('e')
sage: a = M([1,-3,4], basis=e, name='A')
sage: b = M([2,-1,2], basis=e, name='B')
sage: c = a.wedge(b) ; c
Alternating contravariant tensor A∧B of degree 2 on the Rank-3
 free module M over the Integer Ring
sage: c.display()
A∧B = 5 e_0∧e_1 - 6 e_0∧e_2 - 2 e_1∧e_2
sage: latex(c)
A\wedge B
sage: latex(c.display())
A\wedge B = 5 e_{0}\wedge e_{1} -6 e_{0}\wedge e_{2}
 -2 e_{1}\wedge e_{2}
>>> from sage.all import *
>>> M = FiniteRankFreeModule(ZZ, Integer(3), name='M')
>>> e = M.basis('e')
>>> a = M([Integer(1),-Integer(3),Integer(4)], basis=e, name='A')
>>> b = M([Integer(2),-Integer(1),Integer(2)], basis=e, name='B')
>>> c = a.wedge(b) ; c
Alternating contravariant tensor A∧B of degree 2 on the Rank-3
 free module M over the Integer Ring
>>> c.display()
A∧B = 5 e_0∧e_1 - 6 e_0∧e_2 - 2 e_1∧e_2
>>> latex(c)
A\wedge B
>>> latex(c.display())
A\wedge B = 5 e_{0}\wedge e_{1} -6 e_{0}\wedge e_{2}
 -2 e_{1}\wedge e_{2}

Test of the computation:

sage: a.wedge(b) == a*b - b*a
True
>>> from sage.all import *
>>> a.wedge(b) == a*b - b*a
True

Exterior product of a module element and an alternating contravariant tensor of degree 2:

sage: d = M([-1,2,4], basis=e, name='D')
sage: s = d.wedge(c) ; s
Alternating contravariant tensor D∧A∧B of degree 3 on the Rank-3
 free module M over the Integer Ring
sage: s.display()
D∧A∧B = 34 e_0∧e_1∧e_2
>>> from sage.all import *
>>> d = M([-Integer(1),Integer(2),Integer(4)], basis=e, name='D')
>>> s = d.wedge(c) ; s
Alternating contravariant tensor D∧A∧B of degree 3 on the Rank-3
 free module M over the Integer Ring
>>> s.display()
D∧A∧B = 34 e_0∧e_1∧e_2

Test of the computation:

sage: s[0,1,2] == d[0]*c[1,2] + d[1]*c[2,0] + d[2]*c[0,1]
True
>>> from sage.all import *
>>> s[Integer(0),Integer(1),Integer(2)] == d[Integer(0)]*c[Integer(1),Integer(2)] + d[Integer(1)]*c[Integer(2),Integer(0)] + d[Integer(2)]*c[Integer(0),Integer(1)]
True

Let us check that the exterior product is associative:

sage: d.wedge(a.wedge(b)) == (d.wedge(a)).wedge(b)
True
>>> from sage.all import *
>>> d.wedge(a.wedge(b)) == (d.wedge(a)).wedge(b)
True

and that it is graded anticommutative:

sage: a.wedge(b) == - b.wedge(a)
True
sage: d.wedge(c) == c.wedge(d)
True
>>> from sage.all import *
>>> a.wedge(b) == - b.wedge(a)
True
>>> d.wedge(c) == c.wedge(d)
True