Sets of morphisms between free modules¶
The class FreeModuleHomset
implements sets of homomorphisms between
two free modules of finite rank over the same commutative ring.
The subclass FreeModuleEndset
implements the special case of
sets of endomorphisms.
AUTHORS:
Eric Gourgoulhon, Michal Bejger (2014-2015): initial version
Matthias Koeppe (2024): add
FreeModuleEndset
REFERENCES:
- class sage.tensor.modules.free_module_homset.FreeModuleEndset(fmodule, name, latex_name)[source]¶
Bases:
FreeModuleHomset
Ring of endomorphisms of a free module of finite rank over a commutative ring.
Given a free modules \(M\) of rank \(n\) over a commutative ring \(R\), the class
FreeModuleEndset
implements the ring \(\mathrm{Hom}(M,M)\) of endomorphisms \(M\rightarrow M\).This is a Sage parent class, whose element class is
FiniteRankFreeModuleMorphism
.INPUT:
fmodule
– free module \(M\) (domain and codomain of the endomorphisms), as an instance ofFiniteRankFreeModule
name
– (default:None
) string; name given to the end-set; if none is provided, Hom(M,M) will be usedlatex_name
– (default:None
) string; LaTeX symbol to denote the hom-set; if none is provided, \(\mathrm{Hom}(M,M)\) will be used
EXAMPLES:
The set of homomorphisms \(M\rightarrow M\), i.e. endomorphisms, is obtained by the function
End()
:sage: M = FiniteRankFreeModule(ZZ, 3, name='M') sage: e = M.basis('e') sage: End(M) Set of Morphisms from Rank-3 free module M over the Integer Ring to Rank-3 free module M over the Integer Ring in Category of finite dimensional modules over Integer Ring
>>> from sage.all import * >>> M = FiniteRankFreeModule(ZZ, Integer(3), name='M') >>> e = M.basis('e') >>> End(M) Set of Morphisms from Rank-3 free module M over the Integer Ring to Rank-3 free module M over the Integer Ring in Category of finite dimensional modules over Integer Ring
End(M)
is actually identical toHom(M,M)
:sage: End(M) is Hom(M,M) True
>>> from sage.all import * >>> End(M) is Hom(M,M) True
The unit of the endomorphism ring is the identity map:
sage: End(M).one() Identity endomorphism of Rank-3 free module M over the Integer Ring
>>> from sage.all import * >>> End(M).one() Identity endomorphism of Rank-3 free module M over the Integer Ring
whose matrix in any basis is of course the identity matrix:
sage: End(M).one().matrix(e) [1 0 0] [0 1 0] [0 0 1]
>>> from sage.all import * >>> End(M).one().matrix(e) [1 0 0] [0 1 0] [0 0 1]
There is a canonical identification between endomorphisms of \(M\) and tensors of type \((1,1)\) on \(M\). Accordingly, coercion maps have been implemented between \(\mathrm{End}(M)\) and \(T^{(1,1)}(M)\) (the module of all type-\((1,1)\) tensors on \(M\), see
TensorFreeModule
):sage: T11 = M.tensor_module(1,1) ; T11 Free module of type-(1,1) tensors on the Rank-3 free module M over the Integer Ring sage: End(M).has_coerce_map_from(T11) True sage: T11.has_coerce_map_from(End(M)) True
>>> from sage.all import * >>> T11 = M.tensor_module(Integer(1),Integer(1)) ; T11 Free module of type-(1,1) tensors on the Rank-3 free module M over the Integer Ring >>> End(M).has_coerce_map_from(T11) True >>> T11.has_coerce_map_from(End(M)) True
See
TensorFreeModule
for examples of the above coercions.There is a coercion \(\mathrm{GL}(M) \rightarrow \mathrm{End}(M)\), since every automorphism is an endomorphism:
sage: GL = M.general_linear_group() ; GL General linear group of the Rank-3 free module M over the Integer Ring sage: End(M).has_coerce_map_from(GL) True
>>> from sage.all import * >>> GL = M.general_linear_group() ; GL General linear group of the Rank-3 free module M over the Integer Ring >>> End(M).has_coerce_map_from(GL) True
Of course, there is no coercion in the reverse direction, since only bijective endomorphisms are automorphisms:
sage: GL.has_coerce_map_from(End(M)) False
>>> from sage.all import * >>> GL.has_coerce_map_from(End(M)) False
The coercion \(\mathrm{GL}(M) \rightarrow \mathrm{End}(M)\) in action:
sage: a = GL.an_element() ; a Automorphism of the Rank-3 free module M over the Integer Ring sage: a.matrix(e) [ 1 0 0] [ 0 -1 0] [ 0 0 1] sage: ea = End(M)(a) ; ea Generic endomorphism of Rank-3 free module M over the Integer Ring sage: ea.matrix(e) [ 1 0 0] [ 0 -1 0] [ 0 0 1]
>>> from sage.all import * >>> a = GL.an_element() ; a Automorphism of the Rank-3 free module M over the Integer Ring >>> a.matrix(e) [ 1 0 0] [ 0 -1 0] [ 0 0 1] >>> ea = End(M)(a) ; ea Generic endomorphism of Rank-3 free module M over the Integer Ring >>> ea.matrix(e) [ 1 0 0] [ 0 -1 0] [ 0 0 1]
- Element[source]¶
alias of
FiniteRankFreeModuleEndomorphism
- one()[source]¶
Return the identity element of
self
considered as a monoid.OUTPUT:
the identity element of \(\mathrm{End}(M) = \mathrm{Hom}(M,M)\), as an instance of
FiniteRankFreeModuleMorphism
EXAMPLES:
Identity element of the set of endomorphisms of a free module over \(\ZZ\):
sage: M = FiniteRankFreeModule(ZZ, 3, name='M') sage: e = M.basis('e') sage: H = End(M) sage: H.one() Identity endomorphism of Rank-3 free module M over the Integer Ring sage: H.one().matrix(e) [1 0 0] [0 1 0] [0 0 1] sage: H.one().is_identity() True
>>> from sage.all import * >>> M = FiniteRankFreeModule(ZZ, Integer(3), name='M') >>> e = M.basis('e') >>> H = End(M) >>> H.one() Identity endomorphism of Rank-3 free module M over the Integer Ring >>> H.one().matrix(e) [1 0 0] [0 1 0] [0 0 1] >>> H.one().is_identity() True
NB: mathematically,
H.one()
coincides with the identity map of the free module \(M\). However the latter is considered here as an element of \(\mathrm{GL}(M)\), the general linear group of \(M\). Accordingly, one has to use the coercion map \(\mathrm{GL}(M) \rightarrow \mathrm{End}(M)\) to recoverH.one()
fromM.identity_map()
:sage: M.identity_map() Identity map of the Rank-3 free module M over the Integer Ring sage: M.identity_map().parent() General linear group of the Rank-3 free module M over the Integer Ring sage: H.one().parent() Set of Morphisms from Rank-3 free module M over the Integer Ring to Rank-3 free module M over the Integer Ring in Category of finite dimensional modules over Integer Ring sage: H.one() == H(M.identity_map()) True
>>> from sage.all import * >>> M.identity_map() Identity map of the Rank-3 free module M over the Integer Ring >>> M.identity_map().parent() General linear group of the Rank-3 free module M over the Integer Ring >>> H.one().parent() Set of Morphisms from Rank-3 free module M over the Integer Ring to Rank-3 free module M over the Integer Ring in Category of finite dimensional modules over Integer Ring >>> H.one() == H(M.identity_map()) True
Conversely, one can recover
M.identity_map()
fromH.one()
by means of a conversion \(\mathrm{End}(M)\rightarrow \mathrm{GL}(M)\):sage: GL = M.general_linear_group() sage: M.identity_map() == GL(H.one()) True
>>> from sage.all import * >>> GL = M.general_linear_group() >>> M.identity_map() == GL(H.one()) True
- class sage.tensor.modules.free_module_homset.FreeModuleHomset(fmodule1, fmodule2, name, latex_name)[source]¶
Bases:
Homset
Set of homomorphisms between free modules of finite rank over a commutative ring.
Given two free modules \(M\) and \(N\) of respective ranks \(m\) and \(n\) over a commutative ring \(R\), the class
FreeModuleHomset
implements the set \(\mathrm{Hom}(M,N)\) of homomorphisms \(M\rightarrow N\). The set \(\mathrm{Hom}(M,N)\) is actually a free module of rank \(mn\) over \(R\), but this aspect is not taken into account here.This is a Sage parent class, whose element class is
FiniteRankFreeModuleMorphism
.The case \(M=N\) (endomorphisms) is delegated to the subclass
FreeModuleEndset
.INPUT:
fmodule1
– free module \(M\) (domain of the homomorphisms), as an instance ofFiniteRankFreeModule
fmodule2
– free module \(N\) (codomain of the homomorphisms), as an instance ofFiniteRankFreeModule
name
– (default:None
) string; name given to the hom-set; if none is provided, Hom(M,N) will be usedlatex_name
– (default:None
) string; LaTeX symbol to denote the hom-set; if none is provided, \(\mathrm{Hom}(M,N)\) will be used
EXAMPLES:
Set of homomorphisms between two free modules over \(\ZZ\):
sage: M = FiniteRankFreeModule(ZZ, 3, name='M') sage: N = FiniteRankFreeModule(ZZ, 2, name='N') sage: H = Hom(M,N) ; H Set of Morphisms from Rank-3 free module M over the Integer Ring to Rank-2 free module N over the Integer Ring in Category of finite dimensional modules over Integer Ring sage: type(H) <class 'sage.tensor.modules.free_module_homset.FreeModuleHomset_with_category_with_equality_by_id'> sage: H.category() Category of homsets of modules over Integer Ring
>>> from sage.all import * >>> M = FiniteRankFreeModule(ZZ, Integer(3), name='M') >>> N = FiniteRankFreeModule(ZZ, Integer(2), name='N') >>> H = Hom(M,N) ; H Set of Morphisms from Rank-3 free module M over the Integer Ring to Rank-2 free module N over the Integer Ring in Category of finite dimensional modules over Integer Ring >>> type(H) <class 'sage.tensor.modules.free_module_homset.FreeModuleHomset_with_category_with_equality_by_id'> >>> H.category() Category of homsets of modules over Integer Ring
Hom-sets are cached:
sage: H is Hom(M,N) True
>>> from sage.all import * >>> H is Hom(M,N) True
The LaTeX formatting is:
sage: latex(H) \mathrm{Hom}\left(M,N\right)
>>> from sage.all import * >>> latex(H) \mathrm{Hom}\left(M,N\right)
As usual, the construction of an element is performed by the
__call__
method; the argument can be the matrix representing the morphism in the default bases of the two modules:sage: e = M.basis('e') sage: f = N.basis('f') sage: phi = H([[-1,2,0], [5,1,2]]) ; phi Generic morphism: From: Rank-3 free module M over the Integer Ring To: Rank-2 free module N over the Integer Ring sage: phi.parent() is H True
>>> from sage.all import * >>> e = M.basis('e') >>> f = N.basis('f') >>> phi = H([[-Integer(1),Integer(2),Integer(0)], [Integer(5),Integer(1),Integer(2)]]) ; phi Generic morphism: From: Rank-3 free module M over the Integer Ring To: Rank-2 free module N over the Integer Ring >>> phi.parent() is H True
An example of construction from a matrix w.r.t. bases that are not the default ones:
sage: ep = M.basis('ep', latex_symbol=r"e'") sage: fp = N.basis('fp', latex_symbol=r"f'") sage: phi2 = H([[3,2,1], [1,2,3]], bases=(ep,fp)) ; phi2 Generic morphism: From: Rank-3 free module M over the Integer Ring To: Rank-2 free module N over the Integer Ring
>>> from sage.all import * >>> ep = M.basis('ep', latex_symbol=r"e'") >>> fp = N.basis('fp', latex_symbol=r"f'") >>> phi2 = H([[Integer(3),Integer(2),Integer(1)], [Integer(1),Integer(2),Integer(3)]], bases=(ep,fp)) ; phi2 Generic morphism: From: Rank-3 free module M over the Integer Ring To: Rank-2 free module N over the Integer Ring
The zero element:
sage: z = H.zero() ; z Generic morphism: From: Rank-3 free module M over the Integer Ring To: Rank-2 free module N over the Integer Ring sage: z.matrix(e,f) [0 0 0] [0 0 0]
>>> from sage.all import * >>> z = H.zero() ; z Generic morphism: From: Rank-3 free module M over the Integer Ring To: Rank-2 free module N over the Integer Ring >>> z.matrix(e,f) [0 0 0] [0 0 0]
The test suite for H is passed:
sage: TestSuite(H).run()
>>> from sage.all import * >>> TestSuite(H).run()
- Element[source]¶
alias of
FiniteRankFreeModuleMorphism