# Sets of morphisms between free modules#

The class FreeModuleHomset implements sets of homomorphisms between two free modules of finite rank over the same commutative ring.

The subclass FreeModuleEndset implements the special case of sets of endomorphisms.

AUTHORS:

REFERENCES:

class sage.tensor.modules.free_module_homset.FreeModuleEndset(fmodule, name, latex_name)[source]#

Ring of endomorphisms of a free module of finite rank over a commutative ring.

Given a free modules $$M$$ of rank $$n$$ over a commutative ring $$R$$, the class FreeModuleEndset implements the ring $$\mathrm{Hom}(M,M)$$ of endomorphisms $$M\rightarrow M$$.

This is a Sage parent class, whose element class is FiniteRankFreeModuleMorphism.

INPUT:

• fmodule – free module $$M$$ (domain and codomain of the endomorphisms), as an instance of FiniteRankFreeModule

• name – (default: None) string; name given to the end-set; if none is provided, Hom(M,M) will be used

• latex_name – (default: None) string; LaTeX symbol to denote the hom-set; if none is provided, $$\mathrm{Hom}(M,M)$$ will be used

EXAMPLES:

The set of homomorphisms $$M\rightarrow M$$, i.e. endomorphisms, is obtained by the function End():

sage: M = FiniteRankFreeModule(ZZ, 3, name='M')
sage: e = M.basis('e')
sage: End(M)
Set of Morphisms from Rank-3 free module M over the Integer Ring
to Rank-3 free module M over the Integer Ring
in Category of finite dimensional modules over Integer Ring

>>> from sage.all import *
>>> M = FiniteRankFreeModule(ZZ, Integer(3), name='M')
>>> e = M.basis('e')
>>> End(M)
Set of Morphisms from Rank-3 free module M over the Integer Ring
to Rank-3 free module M over the Integer Ring
in Category of finite dimensional modules over Integer Ring


End(M) is actually identical to Hom(M,M):

sage: End(M) is Hom(M,M)
True

>>> from sage.all import *
>>> End(M) is Hom(M,M)
True


The unit of the endomorphism ring is the identity map:

sage: End(M).one()
Identity endomorphism of Rank-3 free module M over the Integer Ring

>>> from sage.all import *
>>> End(M).one()
Identity endomorphism of Rank-3 free module M over the Integer Ring


whose matrix in any basis is of course the identity matrix:

sage: End(M).one().matrix(e)
[1 0 0]
[0 1 0]
[0 0 1]

>>> from sage.all import *
>>> End(M).one().matrix(e)
[1 0 0]
[0 1 0]
[0 0 1]


There is a canonical identification between endomorphisms of $$M$$ and tensors of type $$(1,1)$$ on $$M$$. Accordingly, coercion maps have been implemented between $$\mathrm{End}(M)$$ and $$T^{(1,1)}(M)$$ (the module of all type-$$(1,1)$$ tensors on $$M$$, see TensorFreeModule):

sage: T11 = M.tensor_module(1,1) ; T11
Free module of type-(1,1) tensors on the Rank-3 free module M over
the Integer Ring
sage: End(M).has_coerce_map_from(T11)
True
sage: T11.has_coerce_map_from(End(M))
True

>>> from sage.all import *
>>> T11 = M.tensor_module(Integer(1),Integer(1)) ; T11
Free module of type-(1,1) tensors on the Rank-3 free module M over
the Integer Ring
>>> End(M).has_coerce_map_from(T11)
True
>>> T11.has_coerce_map_from(End(M))
True


See TensorFreeModule for examples of the above coercions.

There is a coercion $$\mathrm{GL}(M) \rightarrow \mathrm{End}(M)$$, since every automorphism is an endomorphism:

sage: GL = M.general_linear_group() ; GL
General linear group of the Rank-3 free module M over the Integer Ring
sage: End(M).has_coerce_map_from(GL)
True

>>> from sage.all import *
>>> GL = M.general_linear_group() ; GL
General linear group of the Rank-3 free module M over the Integer Ring
>>> End(M).has_coerce_map_from(GL)
True


Of course, there is no coercion in the reverse direction, since only bijective endomorphisms are automorphisms:

sage: GL.has_coerce_map_from(End(M))
False

>>> from sage.all import *
>>> GL.has_coerce_map_from(End(M))
False


The coercion $$\mathrm{GL}(M) \rightarrow \mathrm{End}(M)$$ in action:

sage: a = GL.an_element() ; a
Automorphism of the Rank-3 free module M over the Integer Ring
sage: a.matrix(e)
[ 1  0  0]
[ 0 -1  0]
[ 0  0  1]
sage: ea = End(M)(a) ; ea
Generic endomorphism of Rank-3 free module M over the Integer Ring
sage: ea.matrix(e)
[ 1  0  0]
[ 0 -1  0]
[ 0  0  1]

>>> from sage.all import *
>>> a = GL.an_element() ; a
Automorphism of the Rank-3 free module M over the Integer Ring
>>> a.matrix(e)
[ 1  0  0]
[ 0 -1  0]
[ 0  0  1]
>>> ea = End(M)(a) ; ea
Generic endomorphism of Rank-3 free module M over the Integer Ring
>>> ea.matrix(e)
[ 1  0  0]
[ 0 -1  0]
[ 0  0  1]

Element[source]#
one()[source]#

Return the identity element of self considered as a monoid.

OUTPUT:

EXAMPLES:

Identity element of the set of endomorphisms of a free module over $$\ZZ$$:

sage: M = FiniteRankFreeModule(ZZ, 3, name='M')
sage: e = M.basis('e')
sage: H = End(M)
sage: H.one()
Identity endomorphism of Rank-3 free module M over the Integer Ring
sage: H.one().matrix(e)
[1 0 0]
[0 1 0]
[0 0 1]
sage: H.one().is_identity()
True

>>> from sage.all import *
>>> M = FiniteRankFreeModule(ZZ, Integer(3), name='M')
>>> e = M.basis('e')
>>> H = End(M)
>>> H.one()
Identity endomorphism of Rank-3 free module M over the Integer Ring
>>> H.one().matrix(e)
[1 0 0]
[0 1 0]
[0 0 1]
>>> H.one().is_identity()
True


NB: mathematically, H.one() coincides with the identity map of the free module $$M$$. However the latter is considered here as an element of $$\mathrm{GL}(M)$$, the general linear group of $$M$$. Accordingly, one has to use the coercion map $$\mathrm{GL}(M) \rightarrow \mathrm{End}(M)$$ to recover H.one() from M.identity_map():

sage: M.identity_map()
Identity map of the Rank-3 free module M over the Integer Ring
sage: M.identity_map().parent()
General linear group of the Rank-3 free module M over the Integer Ring
sage: H.one().parent()
Set of Morphisms from Rank-3 free module M over the Integer Ring
to Rank-3 free module M over the Integer Ring
in Category of finite dimensional modules over Integer Ring
sage: H.one() == H(M.identity_map())
True

>>> from sage.all import *
>>> M.identity_map()
Identity map of the Rank-3 free module M over the Integer Ring
>>> M.identity_map().parent()
General linear group of the Rank-3 free module M over the Integer Ring
>>> H.one().parent()
Set of Morphisms from Rank-3 free module M over the Integer Ring
to Rank-3 free module M over the Integer Ring
in Category of finite dimensional modules over Integer Ring
>>> H.one() == H(M.identity_map())
True


Conversely, one can recover M.identity_map() from H.one() by means of a conversion $$\mathrm{End}(M)\rightarrow \mathrm{GL}(M)$$:

sage: GL = M.general_linear_group()
sage: M.identity_map() == GL(H.one())
True

>>> from sage.all import *
>>> GL = M.general_linear_group()
>>> M.identity_map() == GL(H.one())
True

class sage.tensor.modules.free_module_homset.FreeModuleHomset(fmodule1, fmodule2, name, latex_name)[source]#

Bases: Homset

Set of homomorphisms between free modules of finite rank over a commutative ring.

Given two free modules $$M$$ and $$N$$ of respective ranks $$m$$ and $$n$$ over a commutative ring $$R$$, the class FreeModuleHomset implements the set $$\mathrm{Hom}(M,N)$$ of homomorphisms $$M\rightarrow N$$. The set $$\mathrm{Hom}(M,N)$$ is actually a free module of rank $$mn$$ over $$R$$, but this aspect is not taken into account here.

This is a Sage parent class, whose element class is FiniteRankFreeModuleMorphism.

The case $$M=N$$ (endomorphisms) is delegated to the subclass FreeModuleEndset.

INPUT:

• fmodule1 – free module $$M$$ (domain of the homomorphisms), as an instance of FiniteRankFreeModule

• fmodule2 – free module $$N$$ (codomain of the homomorphisms), as an instance of FiniteRankFreeModule

• name – (default: None) string; name given to the hom-set; if none is provided, Hom(M,N) will be used

• latex_name – (default: None) string; LaTeX symbol to denote the hom-set; if none is provided, $$\mathrm{Hom}(M,N)$$ will be used

EXAMPLES:

Set of homomorphisms between two free modules over $$\ZZ$$:

sage: M = FiniteRankFreeModule(ZZ, 3, name='M')
sage: N = FiniteRankFreeModule(ZZ, 2, name='N')
sage: H = Hom(M,N) ; H
Set of Morphisms from Rank-3 free module M over the Integer Ring
to Rank-2 free module N over the Integer Ring
in Category of finite dimensional modules over Integer Ring
sage: type(H)
<class 'sage.tensor.modules.free_module_homset.FreeModuleHomset_with_category_with_equality_by_id'>
sage: H.category()
Category of homsets of modules over Integer Ring

>>> from sage.all import *
>>> M = FiniteRankFreeModule(ZZ, Integer(3), name='M')
>>> N = FiniteRankFreeModule(ZZ, Integer(2), name='N')
>>> H = Hom(M,N) ; H
Set of Morphisms from Rank-3 free module M over the Integer Ring
to Rank-2 free module N over the Integer Ring
in Category of finite dimensional modules over Integer Ring
>>> type(H)
<class 'sage.tensor.modules.free_module_homset.FreeModuleHomset_with_category_with_equality_by_id'>
>>> H.category()
Category of homsets of modules over Integer Ring


Hom-sets are cached:

sage: H is Hom(M,N)
True

>>> from sage.all import *
>>> H is Hom(M,N)
True


The LaTeX formatting is:

sage: latex(H)
\mathrm{Hom}\left(M,N\right)

>>> from sage.all import *
>>> latex(H)
\mathrm{Hom}\left(M,N\right)


As usual, the construction of an element is performed by the __call__ method; the argument can be the matrix representing the morphism in the default bases of the two modules:

sage: e = M.basis('e')
sage: f = N.basis('f')
sage: phi = H([[-1,2,0], [5,1,2]]) ; phi
Generic morphism:
From: Rank-3 free module M over the Integer Ring
To:   Rank-2 free module N over the Integer Ring
sage: phi.parent() is H
True

>>> from sage.all import *
>>> e = M.basis('e')
>>> f = N.basis('f')
>>> phi = H([[-Integer(1),Integer(2),Integer(0)], [Integer(5),Integer(1),Integer(2)]]) ; phi
Generic morphism:
From: Rank-3 free module M over the Integer Ring
To:   Rank-2 free module N over the Integer Ring
>>> phi.parent() is H
True


An example of construction from a matrix w.r.t. bases that are not the default ones:

sage: ep = M.basis('ep', latex_symbol=r"e'")
sage: fp = N.basis('fp', latex_symbol=r"f'")
sage: phi2 = H([[3,2,1], [1,2,3]], bases=(ep,fp)) ; phi2
Generic morphism:
From: Rank-3 free module M over the Integer Ring
To:   Rank-2 free module N over the Integer Ring

>>> from sage.all import *
>>> ep = M.basis('ep', latex_symbol=r"e'")
>>> fp = N.basis('fp', latex_symbol=r"f'")
>>> phi2 = H([[Integer(3),Integer(2),Integer(1)], [Integer(1),Integer(2),Integer(3)]], bases=(ep,fp)) ; phi2
Generic morphism:
From: Rank-3 free module M over the Integer Ring
To:   Rank-2 free module N over the Integer Ring


The zero element:

sage: z = H.zero() ; z
Generic morphism:
From: Rank-3 free module M over the Integer Ring
To:   Rank-2 free module N over the Integer Ring
sage: z.matrix(e,f)
[0 0 0]
[0 0 0]

>>> from sage.all import *
>>> z = H.zero() ; z
Generic morphism:
From: Rank-3 free module M over the Integer Ring
To:   Rank-2 free module N over the Integer Ring
>>> z.matrix(e,f)
[0 0 0]
[0 0 0]


The test suite for H is passed:

sage: TestSuite(H).run()

>>> from sage.all import *
>>> TestSuite(H).run()

Element[source]#