Discrete valuations on function fields¶
AUTHORS:
Julian Rüth (2016-10-16): initial version
EXAMPLES:
We can create classical valuations that correspond to finite and infinite places on a rational function field:
sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(1); v
(x - 1)-adic valuation
sage: v = K.valuation(x^2 + 1); v
(x^2 + 1)-adic valuation
sage: v = K.valuation(1/x); v
Valuation at the infinite place
>>> from sage.all import *
>>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1)
>>> v = K.valuation(Integer(1)); v
(x - 1)-adic valuation
>>> v = K.valuation(x**Integer(2) + Integer(1)); v
(x^2 + 1)-adic valuation
>>> v = K.valuation(Integer(1)/x); v
Valuation at the infinite place
Note that we can also specify valuations which do not correspond to a place of the function field:
sage: R.<x> = QQ[]
sage: w = valuations.GaussValuation(R, QQ.valuation(2))
sage: v = K.valuation(w); v
2-adic valuation
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> w = valuations.GaussValuation(R, QQ.valuation(Integer(2)))
>>> v = K.valuation(w); v
2-adic valuation
Valuations on a rational function field can then be extended to finite extensions:
sage: v = K.valuation(x - 1); v
(x - 1)-adic valuation
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x) # needs sage.rings.function_field
sage: w = v.extensions(L); w # needs sage.rings.function_field
[[ (x - 1)-adic valuation, v(y + 1) = 1 ]-adic valuation,
[ (x - 1)-adic valuation, v(y - 1) = 1 ]-adic valuation]
>>> from sage.all import *
>>> v = K.valuation(x - Integer(1)); v
(x - 1)-adic valuation
>>> R = K['y']; (y,) = R._first_ngens(1)
>>> L = K.extension(y**Integer(2) - x, names=('y',)); (y,) = L._first_ngens(1)# needs sage.rings.function_field
>>> w = v.extensions(L); w # needs sage.rings.function_field
[[ (x - 1)-adic valuation, v(y + 1) = 1 ]-adic valuation,
[ (x - 1)-adic valuation, v(y - 1) = 1 ]-adic valuation]
REFERENCES:
An overview of some computational tools relating to valuations on function fields can be found in Section 4.6 of [Rüt2014]. Most of this was originally developed for number fields in [Mac1936I] and [Mac1936II].
- class sage.rings.function_field.valuation.ClassicalFunctionFieldValuation_base(parent)[source]¶
Bases:
DiscreteFunctionFieldValuation_base
Base class for discrete valuations on rational function fields that come from points on the projective line.
- class sage.rings.function_field.valuation.DiscreteFunctionFieldValuation_base(parent)[source]¶
Bases:
DiscreteValuation
Base class for discrete valuations on function fields.
- extensions(L)[source]¶
Return the extensions of this valuation to
L
.EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = K.valuation(x) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 - x) # needs sage.rings.function_field sage: v.extensions(L) # needs sage.rings.function_field [(x)-adic valuation]
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> v = K.valuation(x) >>> R = K['y']; (y,) = R._first_ngens(1) >>> L = K.extension(y**Integer(2) - x, names=('y',)); (y,) = L._first_ngens(1)# needs sage.rings.function_field >>> v.extensions(L) # needs sage.rings.function_field [(x)-adic valuation]
- class sage.rings.function_field.valuation.FiniteRationalFunctionFieldValuation(parent, base_valuation)[source]¶
Bases:
InducedRationalFunctionFieldValuation_base
,ClassicalFunctionFieldValuation_base
,RationalFunctionFieldValuation_base
Valuation of a finite place of a function field.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = K.valuation(x + 1); v # indirect doctest (x + 1)-adic valuation
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> v = K.valuation(x + Integer(1)); v # indirect doctest (x + 1)-adic valuation
A finite place with residual degree:
sage: w = K.valuation(x^2 + 1); w (x^2 + 1)-adic valuation
>>> from sage.all import * >>> w = K.valuation(x**Integer(2) + Integer(1)); w (x^2 + 1)-adic valuation
A finite place with ramification:
sage: K.<t> = FunctionField(GF(3)) sage: L.<x> = FunctionField(K) sage: u = L.valuation(x^3 - t); u (x^3 + 2*t)-adic valuation
>>> from sage.all import * >>> K = FunctionField(GF(Integer(3)), names=('t',)); (t,) = K._first_ngens(1) >>> L = FunctionField(K, names=('x',)); (x,) = L._first_ngens(1) >>> u = L.valuation(x**Integer(3) - t); u (x^3 + 2*t)-adic valuation
A finite place with residual degree and ramification:
sage: q = L.valuation(x^6 - t); q (x^6 + 2*t)-adic valuation
>>> from sage.all import * >>> q = L.valuation(x**Integer(6) - t); q (x^6 + 2*t)-adic valuation
- class sage.rings.function_field.valuation.FunctionFieldExtensionMappedValuation(parent, base_valuation, to_base_valuation_domain, from_base_valuation_domain)[source]¶
Bases:
FunctionFieldMappedValuationRelative_base
A valuation on a finite extensions of function fields \(L=K[y]/(G)\) where \(K\) is another function field which redirects to another
base_valuation
on an isomorphism function field \(M=K[y]/(H)\).The isomorphisms must be trivial on
K
.EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 + y + x^3) # needs sage.rings.function_field sage: v = K.valuation(1/x) sage: w = v.extension(L) # needs sage.rings.function_field sage: w(x) # needs sage.rings.function_field -1 sage: w(y) # needs sage.rings.function_field -3/2 sage: w.uniformizer() # needs sage.rings.function_field 1/x^2*y
>>> from sage.all import * >>> K = FunctionField(GF(Integer(2)), names=('x',)); (x,) = K._first_ngens(1) >>> R = K['y']; (y,) = R._first_ngens(1) >>> L = K.extension(y**Integer(2) + y + x**Integer(3), names=('y',)); (y,) = L._first_ngens(1)# needs sage.rings.function_field >>> v = K.valuation(Integer(1)/x) >>> w = v.extension(L) # needs sage.rings.function_field >>> w(x) # needs sage.rings.function_field -1 >>> w(y) # needs sage.rings.function_field -3/2 >>> w.uniformizer() # needs sage.rings.function_field 1/x^2*y
- restriction(ring)[source]¶
Return the restriction of this valuation to
ring
.EXAMPLES:
sage: # needs sage.rings.function_field sage: K.<x> = FunctionField(GF(2)) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 + y + x^3) sage: v = K.valuation(1/x) sage: w = v.extension(L) sage: w.restriction(K) is v True
>>> from sage.all import * >>> # needs sage.rings.function_field >>> K = FunctionField(GF(Integer(2)), names=('x',)); (x,) = K._first_ngens(1) >>> R = K['y']; (y,) = R._first_ngens(1) >>> L = K.extension(y**Integer(2) + y + x**Integer(3), names=('y',)); (y,) = L._first_ngens(1) >>> v = K.valuation(Integer(1)/x) >>> w = v.extension(L) >>> w.restriction(K) is v True
- class sage.rings.function_field.valuation.FunctionFieldFromLimitValuation(parent, approximant, G, approximants)[source]¶
Bases:
FiniteExtensionFromLimitValuation
,DiscreteFunctionFieldValuation_base
A valuation on a finite extensions of function fields \(L=K[y]/(G)\) where \(K\) is another function field.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 - (x^2 + x + 1)) # needs sage.rings.function_field sage: v = K.valuation(x - 1) # indirect doctest # needs sage.rings.function_field sage: w = v.extension(L); w # needs sage.rings.function_field (x - 1)-adic valuation
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> R = K['y']; (y,) = R._first_ngens(1) >>> L = K.extension(y**Integer(2) - (x**Integer(2) + x + Integer(1)), names=('y',)); (y,) = L._first_ngens(1)# needs sage.rings.function_field >>> v = K.valuation(x - Integer(1)) # indirect doctest # needs sage.rings.function_field >>> w = v.extension(L); w # needs sage.rings.function_field (x - 1)-adic valuation
- scale(scalar)[source]¶
Return this valuation scaled by
scalar
.EXAMPLES:
sage: # needs sage.rings.function_field sage: K.<x> = FunctionField(QQ) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 - (x^2 + x + 1)) sage: v = K.valuation(x - 1) # indirect doctest sage: w = v.extension(L) sage: 3*w 3 * (x - 1)-adic valuation
>>> from sage.all import * >>> # needs sage.rings.function_field >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> R = K['y']; (y,) = R._first_ngens(1) >>> L = K.extension(y**Integer(2) - (x**Integer(2) + x + Integer(1)), names=('y',)); (y,) = L._first_ngens(1) >>> v = K.valuation(x - Integer(1)) # indirect doctest >>> w = v.extension(L) >>> Integer(3)*w 3 * (x - 1)-adic valuation
- class sage.rings.function_field.valuation.FunctionFieldMappedValuationRelative_base(parent, base_valuation, to_base_valuation_domain, from_base_valuation_domain)[source]¶
Bases:
FunctionFieldMappedValuation_base
A valuation on a function field which relies on a
base_valuation
on an isomorphic function field and which is such that the map from and to the other function field is the identity on the constant field.EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: v = K.valuation(1/x); v Valuation at the infinite place
>>> from sage.all import * >>> K = FunctionField(GF(Integer(2)), names=('x',)); (x,) = K._first_ngens(1) >>> v = K.valuation(Integer(1)/x); v Valuation at the infinite place
- restriction(ring)[source]¶
Return the restriction of this valuation to
ring
.EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: K.valuation(1/x).restriction(GF(2)) Trivial valuation on Finite Field of size 2
>>> from sage.all import * >>> K = FunctionField(GF(Integer(2)), names=('x',)); (x,) = K._first_ngens(1) >>> K.valuation(Integer(1)/x).restriction(GF(Integer(2))) Trivial valuation on Finite Field of size 2
- class sage.rings.function_field.valuation.FunctionFieldMappedValuation_base(parent, base_valuation, to_base_valuation_domain, from_base_valuation_domain)[source]¶
Bases:
FunctionFieldValuation_base
,MappedValuation_base
A valuation on a function field which relies on a
base_valuation
on an isomorphic function field.EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: v = K.valuation(1/x); v Valuation at the infinite place
>>> from sage.all import * >>> K = FunctionField(GF(Integer(2)), names=('x',)); (x,) = K._first_ngens(1) >>> v = K.valuation(Integer(1)/x); v Valuation at the infinite place
- is_discrete_valuation()[source]¶
Return whether this is a discrete valuation.
EXAMPLES:
sage: # needs sage.rings.function_field sage: K.<x> = FunctionField(QQ) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 - x^4 - 1) sage: v = K.valuation(1/x) sage: w0,w1 = v.extensions(L) sage: w0.is_discrete_valuation() True
>>> from sage.all import * >>> # needs sage.rings.function_field >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> R = K['y']; (y,) = R._first_ngens(1) >>> L = K.extension(y**Integer(2) - x**Integer(4) - Integer(1), names=('y',)); (y,) = L._first_ngens(1) >>> v = K.valuation(Integer(1)/x) >>> w0,w1 = v.extensions(L) >>> w0.is_discrete_valuation() True
- scale(scalar)[source]¶
Return this valuation scaled by
scalar
.EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 + y + x^3) # needs sage.rings.function_field sage: v = K.valuation(1/x) sage: w = v.extension(L) # needs sage.rings.function_field sage: 3*w # needs sage.rings.function_field 3 * (x)-adic valuation (in Rational function field in x over Finite Field of size 2 after x |--> 1/x)
>>> from sage.all import * >>> K = FunctionField(GF(Integer(2)), names=('x',)); (x,) = K._first_ngens(1) >>> R = K['y']; (y,) = R._first_ngens(1) >>> L = K.extension(y**Integer(2) + y + x**Integer(3), names=('y',)); (y,) = L._first_ngens(1)# needs sage.rings.function_field >>> v = K.valuation(Integer(1)/x) >>> w = v.extension(L) # needs sage.rings.function_field >>> Integer(3)*w # needs sage.rings.function_field 3 * (x)-adic valuation (in Rational function field in x over Finite Field of size 2 after x |--> 1/x)
- class sage.rings.function_field.valuation.FunctionFieldValuationFactory[source]¶
Bases:
UniqueFactory
Create a valuation on
domain
corresponding toprime
.INPUT:
domain
– a function fieldprime
– a place of the function field, a valuation on a subring, or a valuation on another function field together with information for isomorphisms to and from that function field
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = K.valuation(1); v # indirect doctest (x - 1)-adic valuation sage: v(x) 0 sage: v(x - 1) 1
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> v = K.valuation(Integer(1)); v # indirect doctest (x - 1)-adic valuation >>> v(x) 0 >>> v(x - Integer(1)) 1
See
sage.rings.function_field.function_field.FunctionField.valuation()
for further examples.- create_key_and_extra_args(domain, prime)[source]¶
Create a unique key which identifies the valuation given by
prime
ondomain
.
- create_key_and_extra_args_from_place(domain, generator)[source]¶
Create a unique key which identifies the valuation at the place specified by
generator
.
- create_key_and_extra_args_from_valuation(domain, valuation)[source]¶
Create a unique key which identifies the valuation which extends
valuation
.
- create_key_and_extra_args_from_valuation_on_isomorphic_field(domain, valuation, to_valuation_domain, from_valuation_domain)[source]¶
Create a unique key which identifies the valuation which is
valuation
after mapping throughto_valuation_domain
.
- create_object(version, key, **extra_args)[source]¶
Create the valuation specified by
key
.EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: R.<x> = QQ[] sage: w = valuations.GaussValuation(R, QQ.valuation(2)) sage: v = K.valuation(w); v # indirect doctest 2-adic valuation
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> R = QQ['x']; (x,) = R._first_ngens(1) >>> w = valuations.GaussValuation(R, QQ.valuation(Integer(2))) >>> v = K.valuation(w); v # indirect doctest 2-adic valuation
- class sage.rings.function_field.valuation.FunctionFieldValuation_base(parent)[source]¶
Bases:
DiscretePseudoValuation
Abstract base class for any discrete (pseudo-)valuation on a function field.
- class sage.rings.function_field.valuation.InducedRationalFunctionFieldValuation_base(parent, base_valuation)[source]¶
Bases:
FunctionFieldValuation_base
Base class for function field valuation induced by a valuation on the underlying polynomial ring.
- extensions(L)[source]¶
Return all extensions of this valuation to
L
which has a larger constant field than the domain of this valuation.EXAMPLES:
sage: # needs sage.rings.number_field sage: K.<x> = FunctionField(QQ) sage: v = K.valuation(x^2 + 1) sage: L.<x> = FunctionField(GaussianIntegers().fraction_field()) sage: v.extensions(L) # indirect doctest [(x - I)-adic valuation, (x + I)-adic valuation]
>>> from sage.all import * >>> # needs sage.rings.number_field >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> v = K.valuation(x**Integer(2) + Integer(1)) >>> L = FunctionField(GaussianIntegers().fraction_field(), names=('x',)); (x,) = L._first_ngens(1) >>> v.extensions(L) # indirect doctest [(x - I)-adic valuation, (x + I)-adic valuation]
- lift(F)[source]¶
Return a lift of
F
to the domain of this valuation such thatreduce()
returns the original element.EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = K.valuation(x) sage: v.lift(0) 0 sage: v.lift(1) 1
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> v = K.valuation(x) >>> v.lift(Integer(0)) 0 >>> v.lift(Integer(1)) 1
- reduce(f)[source]¶
Return the reduction of
f
inresidue_ring()
.EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = K.valuation(x^2 + 1) sage: v.reduce(x) # needs sage.rings.number_field u1
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> v = K.valuation(x**Integer(2) + Integer(1)) >>> v.reduce(x) # needs sage.rings.number_field u1
- residue_ring()[source]¶
Return the residue field of this valuation.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: K.valuation(x).residue_ring() Rational Field
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> K.valuation(x).residue_ring() Rational Field
- restriction(ring)[source]¶
Return the restriction of this valuation to
ring
.EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: K.valuation(x).restriction(QQ) Trivial valuation on Rational Field
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> K.valuation(x).restriction(QQ) Trivial valuation on Rational Field
- simplify(f, error=None, force=False)[source]¶
Return a simplified version of
f
.Produce an element which differs from
f
by an element of valuation strictly greater than the valuation off
(or strictly greater thanerror
if set.)If
force
is not set, then expensive simplifications may be avoided.EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = K.valuation(2) sage: f = (x + 1)/(x - 1)
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> v = K.valuation(Integer(2)) >>> f = (x + Integer(1))/(x - Integer(1))
As the coefficients of this fraction are small, we do not simplify as this could be very costly in some cases:
sage: v.simplify(f) (x + 1)/(x - 1)
>>> from sage.all import * >>> v.simplify(f) (x + 1)/(x - 1)
However, simplification can be forced:
sage: v.simplify(f, force=True) 3
>>> from sage.all import * >>> v.simplify(f, force=True) 3
- uniformizer()[source]¶
Return a uniformizing element for this valuation.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: K.valuation(x).uniformizer() x
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> K.valuation(x).uniformizer() x
- value_group()[source]¶
Return the value group of this valuation.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: K.valuation(x).value_group() Additive Abelian Group generated by 1
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> K.valuation(x).value_group() Additive Abelian Group generated by 1
- class sage.rings.function_field.valuation.InfiniteRationalFunctionFieldValuation(parent)[source]¶
Bases:
FunctionFieldMappedValuationRelative_base
,RationalFunctionFieldValuation_base
,ClassicalFunctionFieldValuation_base
Valuation of the infinite place of a function field.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = K.valuation(1/x) # indirect doctest
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> v = K.valuation(Integer(1)/x) # indirect doctest
- class sage.rings.function_field.valuation.NonClassicalRationalFunctionFieldValuation(parent, base_valuation)[source]¶
Bases:
InducedRationalFunctionFieldValuation_base
,RationalFunctionFieldValuation_base
Valuation induced by a valuation on the underlying polynomial ring which is non-classical.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = GaussValuation(QQ['x'], QQ.valuation(2)) sage: w = K.valuation(v); w # indirect doctest 2-adic valuation
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> v = GaussValuation(QQ['x'], QQ.valuation(Integer(2))) >>> w = K.valuation(v); w # indirect doctest 2-adic valuation
- residue_ring()[source]¶
Return the residue field of this valuation.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: v = valuations.GaussValuation(QQ['x'], QQ.valuation(2)) sage: w = K.valuation(v) sage: w.residue_ring() Rational function field in x over Finite Field of size 2 sage: R.<x> = QQ[] sage: vv = v.augmentation(x, 1) sage: w = K.valuation(vv) sage: w.residue_ring() Rational function field in x over Finite Field of size 2 sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 + 2*x) # needs sage.rings.function_field sage: w.extension(L).residue_ring() # needs sage.rings.function_field Function field in u2 defined by u2^2 + x
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> v = valuations.GaussValuation(QQ['x'], QQ.valuation(Integer(2))) >>> w = K.valuation(v) >>> w.residue_ring() Rational function field in x over Finite Field of size 2 >>> R = QQ['x']; (x,) = R._first_ngens(1) >>> vv = v.augmentation(x, Integer(1)) >>> w = K.valuation(vv) >>> w.residue_ring() Rational function field in x over Finite Field of size 2 >>> R = K['y']; (y,) = R._first_ngens(1) >>> L = K.extension(y**Integer(2) + Integer(2)*x, names=('y',)); (y,) = L._first_ngens(1)# needs sage.rings.function_field >>> w.extension(L).residue_ring() # needs sage.rings.function_field Function field in u2 defined by u2^2 + x
- class sage.rings.function_field.valuation.RationalFunctionFieldMappedValuation(parent, base_valuation, to_base_valuation_doain, from_base_valuation_domain)[source]¶
Bases:
FunctionFieldMappedValuationRelative_base
,RationalFunctionFieldValuation_base
Valuation on a rational function field that is implemented after a map to an isomorphic rational function field.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: R.<x> = QQ[] sage: w = GaussValuation(R, QQ.valuation(2)).augmentation(x, 1) sage: w = K.valuation(w) sage: v = K.valuation((w, K.hom([~K.gen()]), K.hom([~K.gen()]))); v Valuation on rational function field induced by [ Gauss valuation induced by 2-adic valuation, v(x) = 1 ] (in Rational function field in x over Rational Field after x |--> 1/x)
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> R = QQ['x']; (x,) = R._first_ngens(1) >>> w = GaussValuation(R, QQ.valuation(Integer(2))).augmentation(x, Integer(1)) >>> w = K.valuation(w) >>> v = K.valuation((w, K.hom([~K.gen()]), K.hom([~K.gen()]))); v Valuation on rational function field induced by [ Gauss valuation induced by 2-adic valuation, v(x) = 1 ] (in Rational function field in x over Rational Field after x |--> 1/x)
- class sage.rings.function_field.valuation.RationalFunctionFieldValuation_base(parent)[source]¶
Bases:
FunctionFieldValuation_base
Base class for valuations on rational function fields.
- element_with_valuation(s)[source]¶
Return an element with valuation
s
.EXAMPLES:
sage: # needs sage.rings.number_field sage: x = polygen(ZZ, 'x') sage: K.<a> = NumberField(x^3 + 6) sage: v = K.valuation(2) sage: R.<x> = K[] sage: w = GaussValuation(R, v).augmentation(x, 1/123) sage: K.<x> = FunctionField(K) sage: w = w.extension(K) sage: w.element_with_valuation(122/123) 2/x sage: w.element_with_valuation(1) 2
>>> from sage.all import * >>> # needs sage.rings.number_field >>> x = polygen(ZZ, 'x') >>> K = NumberField(x**Integer(3) + Integer(6), names=('a',)); (a,) = K._first_ngens(1) >>> v = K.valuation(Integer(2)) >>> R = K['x']; (x,) = R._first_ngens(1) >>> w = GaussValuation(R, v).augmentation(x, Integer(1)/Integer(123)) >>> K = FunctionField(K, names=('x',)); (x,) = K._first_ngens(1) >>> w = w.extension(K) >>> w.element_with_valuation(Integer(122)/Integer(123)) 2/x >>> w.element_with_valuation(Integer(1)) 2