Discrete subgroups of \(\ZZ^n\)#

AUTHORS:

  • Martin Albrecht (2014-03): initial version

  • Jan Pöschko (2012-08): some code in this module was taken from Jan Pöschko’s 2012 GSoC project

class sage.modules.free_module_integer.FreeModule_submodule_with_basis_integer(ambient, basis, check=True, echelonize=False, echelonized_basis=None, already_echelonized=False, lll_reduce=True)#

Bases: FreeModule_submodule_with_basis_pid

This class represents submodules of \(\ZZ^n\) with a distinguished basis.

However, most functionality in excess of standard submodules over PID is for these submodules considered as discrete subgroups of \(\ZZ^n\), i.e. as lattices. That is, this class provides functions for computing LLL and BKZ reduced bases for this free module with respect to the standard Euclidean norm.

EXAMPLES:

sage: from sage.modules.free_module_integer import IntegerLattice
sage: L = IntegerLattice(sage.crypto.gen_lattice(type='modular', m=10,
....:                                            seed=1337, dual=True)); L
Free module of degree 10 and rank 10 over Integer Ring
User basis matrix:
[-1  1  2 -2  0  1  0 -1  2  1]
[ 1  0  0 -1 -2  1 -2  3 -1  0]
[ 1  2  0  2 -1  1 -2  2  2  0]
[ 1  0 -1  0  2  3  0  0 -1 -2]
[ 1 -3  0  0  2  1 -2 -1  0  0]
[-3  0 -1  0 -1  2 -2  0  0  2]
[ 0  0  0  1  0  2 -3 -3 -2 -1]
[ 0 -1 -4 -1 -1  1  2 -1  0  1]
[ 1  1 -2  1  1  2  1  1 -2  3]
[ 2 -1  1  2 -3  2  2  1  0  1]
sage: L.shortest_vector()
(-1, 1, 2, -2, 0, 1, 0, -1, 2, 1)
BKZ(*args, **kwds)#

Return a Block Korkine-Zolotareff reduced basis for self.

INPUT:

OUTPUT:

An integer matrix which is a BKZ-reduced basis for this lattice.

EXAMPLES:

sage: # needs sage.libs.linbox (o/w timeout)
sage: from sage.modules.free_module_integer import IntegerLattice
sage: A = sage.crypto.gen_lattice(type='random', n=1, m=60, q=2^60, seed=42)
sage: L = IntegerLattice(A, lll_reduce=False)
sage: min(v.norm().n() for v in L.reduced_basis)
4.17330740711759e15
sage: L.LLL()
60 x 60 dense matrix over Integer Ring (use the '.str()' method to see the entries)
sage: min(v.norm().n() for v in L.reduced_basis)
5.19615242270663
sage: L.BKZ(block_size=10)
60 x 60 dense matrix over Integer Ring (use the '.str()' method to see the entries)
sage: min(v.norm().n() for v in L.reduced_basis)
4.12310562561766

Note

If block_size == L.rank() where L is this lattice, then this function performs Hermite-Korkine-Zolotareff (HKZ) reduction.

HKZ(*args, **kwds)#

Hermite-Korkine-Zolotarev (HKZ) reduce the basis.

A basis \(B\) of a lattice \(L\), with orthogonalized basis \(B^*\) such that \(B = M \cdot B^*\) is HKZ reduced, if and only if, the following properties are satisfied:

  1. The basis \(B\) is size-reduced, i.e., all off-diagonal coefficients of \(M\) satisfy \(|\mu_{i,j}| \leq 1/2\)

  2. The vector \(b_1\) realizes the first minimum \(\lambda_1(L)\).

  3. The projection of the vectors \(b_2, \ldots,b_r\) orthogonally to \(b_1\) form an HKZ reduced basis.

Note

This is realized by calling sage.modules.free_module_integer.FreeModule_submodule_with_basis_integer.BKZ() with block_size == self.rank().

INPUT:

  • *args – passed through to BKZ()

  • *kwds – passed through to BKZ()

OUTPUT:

An integer matrix which is a HKZ-reduced basis for this lattice.

EXAMPLES:

sage: from sage.modules.free_module_integer import IntegerLattice
sage: L = sage.crypto.gen_lattice(type='random', n=1, m=40, q=2^60, seed=1337, lattice=True)
sage: L.HKZ()
40 x 40 dense matrix over Integer Ring (use the '.str()' method to see the entries)

sage: L.reduced_basis[0]
(0, 0, -1, -1, 0, 0, -1, 1, 0, 0, -1, 1, 1, 0, 0, 1, 1, 1, -1, 0, 0, 1, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 1, 0, 0, -2)
LLL(*args, **kwds)#

Return an LLL reduced basis for self.

A lattice basis \((b_1, b_2, ..., b_d)\) is \((\delta, \eta)\)-LLL-reduced if the two following conditions hold:

  • For any \(i > j\), we have \(\lvert \mu_{i, j} \rvert \leq η\).

  • For any \(i < d\), we have \(\delta \lvert b_i^* \rvert^2 \leq \lvert b_{i+1}^* + \mu_{i+1, i} b_i^* \rvert^2\),

where \(\mu_{i,j} = \langle b_i, b_j^* \rangle / \langle b_j^*,b_j^* \rangle\) and \(b_i^*\) is the \(i\)-th vector of the Gram-Schmidt orthogonalisation of \((b_1, b_2, \ldots, b_d)\).

The default reduction parameters are \(\delta = 3/4\) and \(\eta = 0.501\).

The parameters \(\delta\) and \(\eta\) must satisfy: \(0.25 < \delta \leq 1.0\) and \(0.5 \leq \eta < \sqrt{\delta}\). Polynomial time complexity is only guaranteed for \(\delta < 1\).

INPUT:

OUTPUT:

An integer matrix which is an LLL-reduced basis for this lattice.

EXAMPLES:

sage: from sage.modules.free_module_integer import IntegerLattice
sage: A = random_matrix(ZZ, 10, 10, x=-2000, y=2000)
sage: while A.rank() < 10:
....:     A = random_matrix(ZZ, 10, 10)
sage: L = IntegerLattice(A, lll_reduce=False); L
Free module of degree 10 and rank 10 over Integer Ring
User basis matrix:
...
sage: L.reduced_basis == A
True
sage: old = L.reduced_basis[0].norm().n()                                   # needs sage.symbolic
sage: _ = L.LLL()
sage: new = L.reduced_basis[0].norm().n()                                   # needs sage.symbolic
sage: new <= old                                                            # needs sage.symbolic
True
closest_vector(t)#

Compute the closest vector in the embedded lattice to a given vector.

INPUT:

  • t – the target vector to compute the closest vector to

OUTPUT:

The vector in the lattice closest to t.

EXAMPLES:

sage: from sage.modules.free_module_integer import IntegerLattice
sage: L = IntegerLattice([[1, 0], [0, 1]])
sage: L.closest_vector((-6, 5/3))
(-6, 2)

ALGORITHM:

Uses the algorithm from [MV2010].

discriminant()#

Return \(|\det(G)|\), i.e. the absolute value of the determinant of the Gram matrix \(B \cdot B^T\) for any basis \(B\).

OUTPUT:

An integer.

EXAMPLES:

sage: L = sage.crypto.gen_lattice(m=10, seed=1337, lattice=True)
sage: L.discriminant()
214358881
is_unimodular()#

Return True if this lattice is unimodular.

OUTPUT:

A boolean.

EXAMPLES:

sage: from sage.modules.free_module_integer import IntegerLattice
sage: L = IntegerLattice([[1, 0], [0, 1]])
sage: L.is_unimodular()
True
sage: IntegerLattice([[2, 0], [0, 3]]).is_unimodular()
False
property reduced_basis#

This attribute caches the currently best known reduced basis for self, where “best” is defined by the Euclidean norm of the first row vector.

EXAMPLES:

sage: from sage.modules.free_module_integer import IntegerLattice
sage: M = random_matrix(ZZ, 10, 10)
sage: while M.rank() < 10:
....:     M = random_matrix(ZZ, 10, 10)
sage: L = IntegerLattice(M, lll_reduce=False)
sage: L.reduced_basis == M
True

sage: LLL = L.LLL()
sage: LLL == L.reduced_basis or bool(LLL[0].norm() >= M[0].norm())
True
shortest_vector(update_reduced_basis=True, algorithm='fplll', *args, **kwds)#

Return a shortest vector.

INPUT:

  • update_reduced_basis – (default: True) set this flag if the found vector should be used to improve the basis

  • algorithm – (default: "fplll") either "fplll" or "pari"

  • *args – passed through to underlying implementation

  • **kwds – passed through to underlying implementation

OUTPUT:

A shortest non-zero vector for this lattice.

EXAMPLES:

sage: from sage.modules.free_module_integer import IntegerLattice
sage: A = sage.crypto.gen_lattice(type='random', n=1, m=30, q=2^40, seed=42)
sage: L = IntegerLattice(A, lll_reduce=False)
sage: min(v.norm().n() for v in L.reduced_basis)                            # needs sage.symbolic
6.03890756700000e10

sage: L.shortest_vector().norm().n()                                        # needs sage.symbolic
3.74165738677394

sage: L = IntegerLattice(A, lll_reduce=False)
sage: min(v.norm().n() for v in L.reduced_basis)                            # needs sage.symbolic
6.03890756700000e10

sage: L.shortest_vector(algorithm="pari").norm().n()                        # needs sage.symbolic
3.74165738677394

sage: L = IntegerLattice(A, lll_reduce=True)
sage: L.shortest_vector(algorithm="pari").norm().n()                        # needs sage.symbolic
3.74165738677394
update_reduced_basis(w)#

Inject the vector w and run LLL to update the basis.

INPUT:

  • w – a vector

OUTPUT:

Nothing is returned but the internal state is modified.

EXAMPLES:

sage: from sage.modules.free_module_integer import IntegerLattice
sage: A = sage.crypto.gen_lattice(type='random', n=1, m=30, q=2^40, seed=42)
sage: L = IntegerLattice(A)
sage: B = L.reduced_basis
sage: v = L.shortest_vector(update_reduced_basis=False)
sage: L.update_reduced_basis(v)
sage: bool(L.reduced_basis[0].norm() < B[0].norm())
True
volume()#

Return \(vol(L)\) which is \(\sqrt{\det(B \cdot B^T)}\) for any basis \(B\).

OUTPUT:

An integer.

EXAMPLES:

sage: L = sage.crypto.gen_lattice(m=10, seed=1337, lattice=True)
sage: L.volume()
14641
voronoi_cell(radius=None)#

Compute the Voronoi cell of a lattice, returning a Polyhedron.

INPUT:

  • radius – (default: automatic determination) radius of ball containing considered vertices

OUTPUT:

The Voronoi cell as a Polyhedron instance.

The result is cached so that subsequent calls to this function return instantly.

EXAMPLES:

sage: from sage.modules.free_module_integer import IntegerLattice
sage: L = IntegerLattice([[1, 0], [0, 1]])
sage: V = L.voronoi_cell()
sage: V.Vrepresentation()
(A vertex at (1/2, -1/2),
 A vertex at (1/2, 1/2),
 A vertex at (-1/2, 1/2),
 A vertex at (-1/2, -1/2))

The volume of the Voronoi cell is the square root of the discriminant of the lattice:

sage: L = IntegerLattice(Matrix(ZZ, 4, 4, [[0,0,1,-1],[1,-1,2,1],[-6,0,3,3,],[-6,-24,-6,-5]])); L
Free module of degree 4 and rank 4 over Integer Ring
User basis matrix:
[  0   0   1  -1]
[  1  -1   2   1]
[ -6   0   3   3]
[ -6 -24  -6  -5]
sage: V = L.voronoi_cell()  # long time
sage: V.volume()            # long time
678
sage: sqrt(L.discriminant())
678

Lattices not having full dimension are handled as well:

sage: L = IntegerLattice([[2, 0, 0], [0, 2, 0]])
sage: V = L.voronoi_cell()
sage: V.Hrepresentation()
(An inequality (-1, 0, 0) x + 1 >= 0,
 An inequality (0, -1, 0) x + 1 >= 0,
 An inequality (1, 0, 0) x + 1 >= 0,
 An inequality (0, 1, 0) x + 1 >= 0)

ALGORITHM:

Uses parts of the algorithm from [VB1996].

voronoi_relevant_vectors()#

Compute the embedded vectors inducing the Voronoi cell.

OUTPUT:

The list of Voronoi relevant vectors.

EXAMPLES:

sage: from sage.modules.free_module_integer import IntegerLattice
sage: L = IntegerLattice([[3, 0], [4, 0]])
sage: L.voronoi_relevant_vectors()
[(-1, 0), (1, 0)]
sage.modules.free_module_integer.IntegerLattice(basis, lll_reduce=True)#

Construct a new integer lattice from basis.

INPUT:

  • basis – can be one of the following:

    • a list of vectors

    • a matrix over the integers

    • an element of an absolute order

  • lll_reduce – (default: True) run LLL reduction on the basis on construction.

EXAMPLES:

We construct a lattice from a list of rows:

sage: from sage.modules.free_module_integer import IntegerLattice
sage: IntegerLattice([[1,0,3], [0,2,1], [0,2,7]])
Free module of degree 3 and rank 3 over Integer Ring
User basis matrix:
[-2  0  0]
[ 0  2  1]
[ 1 -2  2]

Sage includes a generator for hard lattices from cryptography:

sage: from sage.modules.free_module_integer import IntegerLattice
sage: A = sage.crypto.gen_lattice(type='modular', m=10, seed=1337, dual=True)
sage: IntegerLattice(A)
Free module of degree 10 and rank 10 over Integer Ring
User basis matrix:
[-1  1  2 -2  0  1  0 -1  2  1]
[ 1  0  0 -1 -2  1 -2  3 -1  0]
[ 1  2  0  2 -1  1 -2  2  2  0]
[ 1  0 -1  0  2  3  0  0 -1 -2]
[ 1 -3  0  0  2  1 -2 -1  0  0]
[-3  0 -1  0 -1  2 -2  0  0  2]
[ 0  0  0  1  0  2 -3 -3 -2 -1]
[ 0 -1 -4 -1 -1  1  2 -1  0  1]
[ 1  1 -2  1  1  2  1  1 -2  3]
[ 2 -1  1  2 -3  2  2  1  0  1]

You can also construct the lattice directly:

sage: from sage.modules.free_module_integer import IntegerLattice
sage: sage.crypto.gen_lattice(type='modular', m=10, seed=1337, dual=True, lattice=True)
Free module of degree 10 and rank 10 over Integer Ring
User basis matrix:
[-1  1  2 -2  0  1  0 -1  2  1]
[ 1  0  0 -1 -2  1 -2  3 -1  0]
[ 1  2  0  2 -1  1 -2  2  2  0]
[ 1  0 -1  0  2  3  0  0 -1 -2]
[ 1 -3  0  0  2  1 -2 -1  0  0]
[-3  0 -1  0 -1  2 -2  0  0  2]
[ 0  0  0  1  0  2 -3 -3 -2 -1]
[ 0 -1 -4 -1 -1  1  2 -1  0  1]
[ 1  1 -2  1  1  2  1  1 -2  3]
[ 2 -1  1  2 -3  2  2  1  0  1]

We construct an ideal lattice from an element of an absolute order:

sage: # needs sage.rings.number_field
sage: K.<a>  = CyclotomicField(17)
sage: O = K.ring_of_integers()
sage: f = O(-a^15 + a^13 + 4*a^12 - 12*a^11 - 256*a^10 + a^9 - a^7
....:       - 4*a^6 + a^5 + 210*a^4 + 2*a^3 - 2*a^2 + 2*a - 2)
sage: from sage.modules.free_module_integer import IntegerLattice
sage: IntegerLattice(f)
Free module of degree 16 and rank 16 over Integer Ring
User basis matrix:
[  -2    2   -2    2  210    1   -4   -1    0    1 -256  -12    4    1    0   -1]
[  33   48   44   48  256 -209   28   51   45   49   -1   35   44   48   44   48]
[   1   -1    3   -1    3  211    2   -3    0    1    2 -255  -11    5    2    1]
[-223   34   50   47  258    0   29   45   46   47    2  -11   33   48   44   48]
[ -13   31   46   42   46   -2 -225   32   48   45  256   -2   27   43   44   45]
[ -16   33   42   46  254    1  -19   32   44   45    0  -13 -225   32   48   45]
[ -15 -223   30   50  255    1  -20   32   42   47   -2  -11  -15   33   44   44]
[ -11  -11   33   48  256    3  -17 -222   32   53    1   -9  -14   35   44   48]
[ -12  -13   32   45  257    0  -16  -13   32   48   -1  -10  -14 -222   31   51]
[  -9  -13 -221   32   52    1  -11  -12   33   46  258    1  -15  -12   33   49]
[  -5   -2   -1    0 -257  -13    3    0   -1   -2   -1   -3    1   -3    1  209]
[ -15  -11  -15   33  256   -1  -17  -14 -225   33    4  -12  -13  -14   31   44]
[  11   11   11   11 -245   -3   17   10   13  220   12    5   12    9   14  -35]
[ -18  -15  -20   29  250   -3  -23  -16  -19   30   -4  -17  -17  -17 -229   28]
[ -15  -11  -15 -223  242    5  -18  -12  -16   34   -2  -11  -15  -11  -15   33]
[ 378  120   92  147  152  462  136   96   99  144  -52  412  133   91 -107  138]

We construct \(\ZZ^n\):

sage: from sage.modules.free_module_integer import IntegerLattice
sage: IntegerLattice(ZZ^10)
Free module of degree 10 and rank 10 over Integer Ring
User basis matrix:
[1 0 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 1]

Sage also interfaces with fpylll’s lattice generator:

sage: # needs fpylll
sage: from sage.modules.free_module_integer import IntegerLattice
sage: from fpylll import IntegerMatrix
sage: A = IntegerMatrix.random(8, "simdioph", bits=20, bits2=10)
sage: A = A.to_matrix(matrix(ZZ, 8, 8))
sage: IntegerLattice(A, lll_reduce=False)
Free module of degree 8 and rank 8 over Integer Ring
User basis matrix:
[   1024  829556  161099   11567  521155  769480  639201  689979]
[      0 1048576       0       0       0       0       0       0]
[      0       0 1048576       0       0       0       0       0]
[      0       0       0 1048576       0       0       0       0]
[      0       0       0       0 1048576       0       0       0]
[      0       0       0       0       0 1048576       0       0]
[      0       0       0       0       0       0 1048576       0]
[      0       0       0       0       0       0       0 1048576]