Solving ODE numerically by GSL#

AUTHORS:

• Joshua Kantor (2004-2006)

• Robert Marik (2010 - fixed docstrings)

class sage.calculus.ode.PyFunctionWrapper#

Bases: object

class sage.calculus.ode.ode_solver(function=None, jacobian=None, h=0.01, error_abs=1e-10, error_rel=1e-10, a=False, a_dydt=False, scale_abs=False, algorithm='rkf45', y_0=None, t_span=None, params=[])#

Bases: object

ode_solver() is a class that wraps the GSL library’s ode solver routines.

To use it, instantiate the class:

sage: T = ode_solver()


To solve a system of the form $$dy_i/dt=f_i(t,y)$$, you must supply a vector or tuple/list valued function f representing $$f_i$$. The functions $$f$$ and the jacobian should have the form foo(t,y) or foo(t,y,params). params which is optional allows for your function to depend on one or a tuple of parameters. Note if you use it, params must be a tuple even if it only has one component. For example if you wanted to solve $$y''+y=0$$, you would need to write it as a first order system:

y_0' = y_1
y_1' = -y_0


In code:

sage: f = lambda t, y: [y[1], -y[0]]
sage: T.function = f


For some algorithms, the jacobian must be supplied as well, the form of this should be a function returning a list of lists of the form [ [df_1/dy_1,...,df_1/dy_n], ..., [df_n/dy_1,...,df_n,dy_n], [df_1/dt,...,df_n/dt] ].

There are examples below, if your jacobian was the function my_jacobian you would do:

sage: T.jacobian = my_jacobian     # not tested, since it doesn't make sense to test this


There are a variety of algorithms available for different types of systems. Possible algorithms are

• 'rkf45' – Runge-Kutta-Fehlberg (4,5)

• 'rk2' – embedded Runge-Kutta (2,3)

• 'rk4' – 4th order classical Runge-Kutta

• 'rk8pd' – Runge-Kutta Prince-Dormand (8,9)

• 'rk2imp' – implicit 2nd order Runge-Kutta at gaussian points

• 'rk4imp' – implicit 4th order Runge-Kutta at gaussian points

• 'bsimp' – implicit Burlisch-Stoer (requires jacobian)

• 'gear1' – M=1 implicit gear

• 'gear2' – M=2 implicit gear

The default algorithm is 'rkf45'. If you instead wanted to use 'bsimp' you would do:

sage: T.algorithm = "bsimp"


The user should supply initial conditions in y_0. For example if your initial conditions are $$y_0=1, y_1=1$$, do:

sage: T.y_0 = [1,1]


The actual solver is invoked by the method ode_solve(). It has arguments t_span, y_0, num_points, params. y_0 must be supplied either as an argument or above by assignment. Params which are optional and only necessary if your system uses params can be supplied to ode_solve or by assignment.

t_span is the time interval on which to solve the ode. There are two ways to specify t_span:

• If num_points is not specified, then the sequence t_span is used as the time points for the solution. Note that the first element t_span[0] is the initial time, where the initial condition y_0 is the specified solution, and subsequent elements are the ones where the solution is computed.

• If num_points is specified and t_span is a sequence with just 2 elements, then these are the starting and ending times, and the solution will be computed at num_points equally spaced points between t_span[0] and t_span[1]. The initial condition is also included in the output so that num_points + 1 total points are returned. E.g. if t_span = [0.0, 1.0] and num_points = 10, then solution is returned at the 11 time points [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0].

(Note that if num_points is specified and t_span is not length 2 then t_span are used as the time points and num_points is ignored.)

Error is estimated via the expression D_i = error_abs*s_i+error_rel*(a|y_i|+a_dydt*h*|y_i'|). The user can specify

• error_abs (1e-10 by default),

• error_rel (1e-10 by default),

• a (1 by default),

• a_dydt (0 by default) and

• s_i (as scaling_abs which should be a tuple and is 1 in all components by default).

If you specify one of a or a_dydt you must specify the other. You may specify a and a_dydt without scaling_abs (which will be taken =1 be default). h is the initial step size, which is 1e-2 by default.

ode_solve solves the solution as a list of tuples of the form, [ (t_0,[y_1,...,y_n]),(t_1,[y_1,...,y_n]),...,(t_n,[y_1,...,y_n])].

This data is stored in the variable solutions:

sage: T.solution               # not tested


EXAMPLES:

Consider solving the Van der Pol oscillator $$x''(t) + ux'(t)(x(t)^2-1)+x(t)=0$$ between $$t=0$$ and $$t= 100$$. As a first order system it is $$x'=y$$, $$y'=-x+uy(1-x^2)$$. Let us take $$u=10$$ and use initial conditions $$(x,y)=(1,0)$$ and use the Runge-Kutta Prince-Dormand algorithm.

sage: def f_1(t, y, params):
....:    return [y[1], -y[0] - params[0]*y[1]*(y[0]**2-1.0)]

sage: def j_1(t, y, params):
....:    return [[0.0, 1.0],
....:            [-2.0*params[0]*y[0]*y[1] - 1.0, -params[0]*(y[0]*y[0]-1.0)],
....:            [0.0, 0.0]]

sage: T = ode_solver()
sage: T.algorithm = "rk8pd"
sage: T.function = f_1
sage: T.jacobian = j_1
sage: T.ode_solve(y_0=[1,0], t_span=[0,100], params=[10.0], num_points=1000)
sage: import tempfile
sage: with tempfile.NamedTemporaryFile(suffix=".png") as f:                     # needs sage.plot
....:     T.plot_solution(filename=f.name)


The solver line is equivalent to:

sage: T.ode_solve(y_0=[1,0], t_span=[x/10.0 for x in range(1000)], params=[10.0])


Let’s try a system:

y_0'=y_1*y_2
y_1'=-y_0*y_2
y_2'=-.51*y_0*y_1


We will not use the jacobian this time and will change the error tolerances.

sage: g_1 = lambda t,y: [y[1]*y[2], -y[0]*y[2], -0.51*y[0]*y[1]]
sage: T.function = g_1
sage: T.y_0 = [0,1,1]
sage: T.scale_abs = [1e-4, 1e-4, 1e-5]
sage: T.error_rel = 1e-4
sage: T.ode_solve(t_span=[0,12], num_points=100)


By default T.plot_solution() plots the $$y_0$$; to plot general $$y_i$$, use:

sage: with tempfile.NamedTemporaryFile(suffix=".png") as f:                     # needs sage.plot
....:     T.plot_solution(i=0, filename=f.name)
....:     T.plot_solution(i=1, filename=f.name)
....:     T.plot_solution(i=2, filename=f.name)


The method interpolate_solution will return a spline interpolation through the points found by the solver. By default, $$y_0$$ is interpolated. You can interpolate $$y_i$$ through the keyword argument i.

sage: f = T.interpolate_solution()
sage: plot(f,0,12).show()                                                       # needs sage.plot
sage: f = T.interpolate_solution(i=1)
sage: plot(f,0,12).show()                                                       # needs sage.plot
sage: f = T.interpolate_solution(i=2)
sage: plot(f,0,12).show()                                                       # needs sage.plot
sage: f = T.interpolate_solution()
sage: from math import pi
sage: f(pi)
0.5379...


The solver attributes may also be set up using arguments to ode_solver. The previous example can be rewritten as:

sage: T = ode_solver(g_1, y_0=[0,1,1], scale_abs=[1e-4,1e-4,1e-5],
....:                error_rel=1e-4, algorithm="rk8pd")
sage: T.ode_solve(t_span=[0,12], num_points=100)
sage: f = T.interpolate_solution()
sage: f(pi)
0.5379...


Unfortunately because Python functions are used, this solver is slow on systems that require many function evaluations. It is possible to pass a compiled function by deriving from the class ode_system and overloading c_f and c_j with C functions that specify the system. The following will work in the notebook:

%cython
cimport sage.calculus.ode
import sage.calculus.ode
from sage.libs.gsl.all cimport *

cdef class van_der_pol(sage.calculus.ode.ode_system):
cdef int c_f(self,double t, double *y,double *dydt):
dydt[0]=y[1]
dydt[1]=-y[0]-1000*y[1]*(y[0]*y[0]-1)
return GSL_SUCCESS
cdef int c_j(self, double t,double *y,double *dfdy,double *dfdt):
dfdy[0]=0
dfdy[1]=1.0
dfdy[2]=-2.0*1000*y[0]*y[1]-1.0
dfdy[3]=-1000*(y[0]*y[0]-1.0)
dfdt[0]=0
dfdt[1]=0
return GSL_SUCCESS


After executing the above block of code you can do the following (WARNING: the following is not automatically doctested):

sage: # not tested
sage: T = ode_solver()
sage: T.algorithm = "bsimp"
sage: vander = van_der_pol()
sage: T.function = vander
sage: T.ode_solve(y_0=[1, 0], t_span=[0, 2000],
....:             num_points=1000)
sage: from tempfile import NamedTemporaryFile
sage: with NamedTemporaryFile(suffix=".png") as f:
....:     T.plot_solution(i=0, filename=f.name)

interpolate_solution(i=0)#
ode_solve(t_span=False, y_0=False, num_points=False, params=[])#
plot_solution(i=0, filename=None, interpolate=False, **kwds)#

Plot a one dimensional projection of the solution.

INPUT:

• i – (non-negative integer) composant of the projection

• filename – (string or None) whether to plot the picture or save it in a file

• interpolate – whether to interpolate between the points of the discretized solution

• additional keywords are passed to the graphics primitive

EXAMPLES:

sage: T = ode_solver()
sage: T.function = lambda t,y: [cos(y[0]) * sin(t)]
sage: T.jacobian = lambda t,y: [[-sin(y[0]) * sin(t)]]
sage: T.ode_solve(y_0=[1],t_span=[0,20],num_points=1000)
sage: T.plot_solution()                                                     # needs sage.plot


And with some options:

sage: T.plot_solution(color='red', axes_labels=["t", "x(t)"])               # needs sage.plot

class sage.calculus.ode.ode_system#

Bases: object