Frank Lübeck’s tables of Conway polynomials over finite fields#
- class sage.databases.conway.ConwayPolynomials[source]#
Bases:
Mapping
Initialize the database.
- degrees(p)[source]#
Return the list of integers
n
for which the database of Conway polynomials contains the polynomial of degreen
overGF(p)
.EXAMPLES:
sage: c = ConwayPolynomials() sage: c.degrees(60821) [1, 2, 3, 4] sage: c.degrees(next_prime(10^7)) []
>>> from sage.all import * >>> c = ConwayPolynomials() >>> c.degrees(Integer(60821)) [1, 2, 3, 4] >>> c.degrees(next_prime(Integer(10)**Integer(7))) []
- has_polynomial(p, n)[source]#
Return True if the database of Conway polynomials contains the polynomial of degree
n
overGF(p)
.INPUT:
p
– prime numbern
– positive integer
EXAMPLES:
sage: c = ConwayPolynomials() sage: c.has_polynomial(97, 12) True sage: c.has_polynomial(60821, 5) False
>>> from sage.all import * >>> c = ConwayPolynomials() >>> c.has_polynomial(Integer(97), Integer(12)) True >>> c.has_polynomial(Integer(60821), Integer(5)) False
- polynomial(p, n)[source]#
Return the Conway polynomial of degree
n
overGF(p)
, or raise aRuntimeError
if this polynomial is not in the database.Note
See also the global function
conway_polynomial
for a more user-friendly way of accessing the polynomial.INPUT:
p
– prime numbern
– positive integer
OUTPUT:
List of Python int’s giving the coefficients of the corresponding Conway polynomial in ascending order of degree.
EXAMPLES:
sage: c = ConwayPolynomials() sage: c.polynomial(3, 21) (1, 2, 0, 2, 0, 1, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) sage: c.polynomial(97, 128) Traceback (most recent call last): ... RuntimeError: Conway polynomial over F_97 of degree 128 not in database.
>>> from sage.all import * >>> c = ConwayPolynomials() >>> c.polynomial(Integer(3), Integer(21)) (1, 2, 0, 2, 0, 1, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) >>> c.polynomial(Integer(97), Integer(128)) Traceback (most recent call last): ... RuntimeError: Conway polynomial over F_97 of degree 128 not in database.
- primes()[source]#
Return the list of prime numbers
p
for which the database of Conway polynomials contains polynomials overGF(p)
.EXAMPLES:
sage: c = ConwayPolynomials() sage: P = c.primes() sage: 2 in P True sage: next_prime(10^7) in P False
>>> from sage.all import * >>> c = ConwayPolynomials() >>> P = c.primes() >>> Integer(2) in P True >>> next_prime(Integer(10)**Integer(7)) in P False