Database of Modular Polynomials#
- class sage.databases.db_modular_polynomials.AtkinModularCorrespondenceDatabase#
Bases:
ModularCorrespondenceDatabase
- model = 'AtkCrr'#
- class sage.databases.db_modular_polynomials.AtkinModularPolynomialDatabase#
Bases:
ModularPolynomialDatabase
The database of modular polynomials Phi(x,j) for \(X_0(p)\), where x is a function on invariant under the Atkin-Lehner invariant, with pole of minimal order at infinity.
- model = 'Atk'#
- class sage.databases.db_modular_polynomials.ClassicalModularPolynomialDatabase#
Bases:
ModularPolynomialDatabase
The database of classical modular polynomials, i.e. the polynomials Phi_N(X,Y) relating the j-functions j(q) and j(q^N).
- model = 'Cls'#
- class sage.databases.db_modular_polynomials.DedekindEtaModularCorrespondenceDatabase#
Bases:
ModularCorrespondenceDatabase
The database of modular correspondences in \(X_0(p) \times X_0(p)\), where the model of the curves \(X_0(p) = \Bold{P}^1\) are specified by quotients of Dedekind’s eta function.
- model = 'EtaCrr'#
- class sage.databases.db_modular_polynomials.DedekindEtaModularPolynomialDatabase#
Bases:
ModularPolynomialDatabase
The database of modular polynomials Phi_N(X,Y) relating a quotient of Dedekind eta functions, well-defined on X_0(N), relating x(q) and the j-function j(q).
- model = 'Eta'#
- class sage.databases.db_modular_polynomials.ModularCorrespondenceDatabase#
Bases:
ModularPolynomialDatabase
- class sage.databases.db_modular_polynomials.ModularPolynomialDatabase#
Bases:
object