Database of modular polynomials#
This module gives access to the database of modular polynomials. To use the database, you need to install the optional database_kohel package by the Sage command
sage -i database_kohel
EXAMPLES:
sage: # optional - database_kohel
sage: DBMP = ClassicalModularPolynomialDatabase()
sage: f = DBMP[29]
sage: f.degree()
58
sage: f.coefficient([28,28])
400152899204646997840260839128
>>> from sage.all import *
>>> # optional - database_kohel
>>> DBMP = ClassicalModularPolynomialDatabase()
>>> f = DBMP[Integer(29)]
>>> f.degree()
58
>>> f.coefficient([Integer(28),Integer(28)])
400152899204646997840260839128
AUTHORS:
David Kohel (2006-08-04): initial version
- class sage.databases.db_modular_polynomials.AtkinModularCorrespondenceDatabase[source]#
Bases:
ModularCorrespondenceDatabase
- model = 'AtkCrr'#
- class sage.databases.db_modular_polynomials.AtkinModularPolynomialDatabase[source]#
Bases:
ModularPolynomialDatabase
The database of modular polynomials Phi(x,j) for \(X_0(p)\), where x is a function on invariant under the Atkin-Lehner invariant, with pole of minimal order at infinity.
- model = 'Atk'#
- class sage.databases.db_modular_polynomials.ClassicalModularPolynomialDatabase[source]#
Bases:
ModularPolynomialDatabase
The database of classical modular polynomials, i.e. the polynomials Phi_N(X,Y) relating the j-functions j(q) and j(q^N).
- model = 'Cls'#
- class sage.databases.db_modular_polynomials.DedekindEtaModularCorrespondenceDatabase[source]#
Bases:
ModularCorrespondenceDatabase
The database of modular correspondences in \(X_0(p) \times X_0(p)\), where the model of the curves \(X_0(p) = \Bold{P}^1\) are specified by quotients of Dedekind’s eta function.
- model = 'EtaCrr'#
- class sage.databases.db_modular_polynomials.DedekindEtaModularPolynomialDatabase[source]#
Bases:
ModularPolynomialDatabase
The database of modular polynomials Phi_N(X,Y) relating a quotient of Dedekind eta functions, well-defined on X_0(N), relating x(q) and the j-function j(q).
- model = 'Eta'#
- class sage.databases.db_modular_polynomials.ModularCorrespondenceDatabase[source]#
Bases:
ModularPolynomialDatabase