Dynamical systems on projective schemes#
A dynamical system of projective schemes determined by homogeneous polynomials functions that define what the morphism does on points in the ambient projective space.
The main constructor functions are given by DynamicalSystem
and
DynamicalSystem_projective
. The constructors function can take either
polynomials or a morphism from which to construct a dynamical system.
If the domain is not specified, it is constructed. However, if you plan on
working with points or subvarieties in the domain, it recommended to specify
the domain.
The initialization checks are always performed by the constructor functions. It is possible, but not recommended, to skip these checks by calling the class initialization directly.
AUTHORS:
David Kohel, William Stein
William Stein (2006-02-11): fixed bug where P(0,0,0) was allowed as a projective point.
Volker Braun (2011-08-08): Renamed classes, more documentation, misc cleanups.
Ben Hutz (2013-03) iteration functionality and new directory structure for affine/projective, height functionality
Brian Stout, Ben Hutz (Nov 2013) - added minimal model functionality
Dillon Rose (2014-01): Speed enhancements
Ben Hutz (2015-11): iteration of subschemes
Ben Hutz (2017-7): relocate code and create class
- class sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective(polys, domain)[source]#
Bases:
SchemeMorphism_polynomial_projective_space
,DynamicalSystem
A dynamical system of projective schemes determined by homogeneous polynomials that define what the morphism does on points in the ambient projective space.
Warning
You should not create objects of this class directly because no type or consistency checking is performed. The preferred method to construct such dynamical systems is to use
DynamicalSystem_projective()
functionINPUT:
morphism_or_polys
– a SchemeMorphism, a polynomial, a rational function, or a list or tuple of homogeneous polynomials.domain
– optional projective space or projective subscheme.names
– optional tuple of strings to be used as coordinate names for a projective space that is constructed; defaults to'X','Y'
.The following combinations of
morphism_or_polys
anddomain
are meaningful:morphism_or_polys
is a SchemeMorphism;domain
is ignored in this case.morphism_or_polys
is a list of homogeneous polynomials that define a rational endomorphism ofdomain
.morphism_or_polys
is a list of homogeneous polynomials anddomain
is unspecified;domain
is then taken to be the projective space of appropriate dimension over the common base ring, if one exists, of the elements ofmorphism_or_polys
.morphism_or_polys
is a single polynomial or rational function;domain
is ignored and taken to be a 1-dimensional projective space over the base ring ofmorphism_or_polys
with coordinate names given bynames
.
OUTPUT:
DynamicalSystem_projective
.EXAMPLES:
sage: P1.<x,y> = ProjectiveSpace(QQ,1) sage: DynamicalSystem_projective([y, 2*x]) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (y : 2*x)
>>> from sage.all import * >>> P1 = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P1._first_ngens(2) >>> DynamicalSystem_projective([y, Integer(2)*x]) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (y : 2*x)
We can define dynamical systems on \(P^1\) by giving a polynomial or rational function:
sage: R.<t> = QQ[] sage: DynamicalSystem_projective(t^2 - 3) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (X : Y) to (X^2 - 3*Y^2 : Y^2) sage: DynamicalSystem_projective(1/t^2) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (X : Y) to (Y^2 : X^2)
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> DynamicalSystem_projective(t**Integer(2) - Integer(3)) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (X : Y) to (X^2 - 3*Y^2 : Y^2) >>> DynamicalSystem_projective(Integer(1)/t**Integer(2)) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (X : Y) to (Y^2 : X^2)
sage: R.<x> = PolynomialRing(QQ,1) sage: DynamicalSystem_projective(x^2, names=['a','b']) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (a : b) to (a^2 : b^2)
>>> from sage.all import * >>> R = PolynomialRing(QQ,Integer(1), names=('x',)); (x,) = R._first_ngens(1) >>> DynamicalSystem_projective(x**Integer(2), names=['a','b']) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (a : b) to (a^2 : b^2)
Symbolic Ring elements are not allowed:
sage: x,y = var('x,y') # needs sage.symbolic sage: DynamicalSystem_projective([x^2, y^2]) # needs sage.symbolic Traceback (most recent call last): ... ValueError: [x^2, y^2] must be elements of a polynomial ring
>>> from sage.all import * >>> x,y = var('x,y') # needs sage.symbolic >>> DynamicalSystem_projective([x**Integer(2), y**Integer(2)]) # needs sage.symbolic Traceback (most recent call last): ... ValueError: [x^2, y^2] must be elements of a polynomial ring
sage: R.<x> = PolynomialRing(QQ,1) sage: DynamicalSystem_projective(x^2) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (X : Y) to (X^2 : Y^2)
>>> from sage.all import * >>> R = PolynomialRing(QQ,Integer(1), names=('x',)); (x,) = R._first_ngens(1) >>> DynamicalSystem_projective(x**Integer(2)) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (X : Y) to (X^2 : Y^2)
sage: R.<t> = PolynomialRing(QQ) sage: P.<x,y,z> = ProjectiveSpace(R, 2) sage: X = P.subscheme([x]) sage: DynamicalSystem_projective([x^2, t*y^2, x*z], domain=X) Dynamical System of Closed subscheme of Projective Space of dimension 2 over Univariate Polynomial Ring in t over Rational Field defined by: x Defn: Defined on coordinates by sending (x : y : z) to (x^2 : t*y^2 : x*z)
>>> from sage.all import * >>> R = PolynomialRing(QQ, names=('t',)); (t,) = R._first_ngens(1) >>> P = ProjectiveSpace(R, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> X = P.subscheme([x]) >>> DynamicalSystem_projective([x**Integer(2), t*y**Integer(2), x*z], domain=X) Dynamical System of Closed subscheme of Projective Space of dimension 2 over Univariate Polynomial Ring in t over Rational Field defined by: x Defn: Defined on coordinates by sending (x : y : z) to (x^2 : t*y^2 : x*z)
When elements of the quotient ring are used, they are reduced:
sage: P.<x,y,z> = ProjectiveSpace(CC, 2) sage: X = P.subscheme([x - y]) sage: u,v,w = X.coordinate_ring().gens() # needs sage.rings.function_field sage: DynamicalSystem_projective([u^2, v^2, w*u], domain=X) # needs sage.rings.function_field Dynamical System of Closed subscheme of Projective Space of dimension 2 over Complex Field with 53 bits of precision defined by: x - y Defn: Defined on coordinates by sending (x : y : z) to (y^2 : y^2 : y*z)
>>> from sage.all import * >>> P = ProjectiveSpace(CC, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> X = P.subscheme([x - y]) >>> u,v,w = X.coordinate_ring().gens() # needs sage.rings.function_field >>> DynamicalSystem_projective([u**Integer(2), v**Integer(2), w*u], domain=X) # needs sage.rings.function_field Dynamical System of Closed subscheme of Projective Space of dimension 2 over Complex Field with 53 bits of precision defined by: x - y Defn: Defined on coordinates by sending (x : y : z) to (y^2 : y^2 : y*z)
We can also compute the forward image of subschemes through elimination. In particular, let \(X = V(h_1,\ldots, h_t)\) and define the ideal \(I = (h_1,\ldots,h_t,y_0-f_0(\bar{x}), \ldots, y_n-f_n(\bar{x}))\). Then the elimination ideal \(I_{n+1} = I \cap K[y_0,\ldots,y_n]\) is a homogeneous ideal and \(f(X) = V(I_{n+1})\):
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([(x-2*y)^2, (x-2*z)^2, x^2]) sage: X = P.subscheme(y - z) sage: f(f(f(X))) # needs sage.rings.function_field Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: y - z
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([(x-Integer(2)*y)**Integer(2), (x-Integer(2)*z)**Integer(2), x**Integer(2)]) >>> X = P.subscheme(y - z) >>> f(f(f(X))) # needs sage.rings.function_field Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: y - z
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3) sage: f = DynamicalSystem_projective([(x-2*y)^2, (x-2*z)^2, (x-2*w)^2, x^2]) sage: f(P.subscheme([x, y, z])) # needs sage.rings.function_field Closed subscheme of Projective Space of dimension 3 over Rational Field defined by: w, y, x
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(3), names=('x', 'y', 'z', 'w',)); (x, y, z, w,) = P._first_ngens(4) >>> f = DynamicalSystem_projective([(x-Integer(2)*y)**Integer(2), (x-Integer(2)*z)**Integer(2), (x-Integer(2)*w)**Integer(2), x**Integer(2)]) >>> f(P.subscheme([x, y, z])) # needs sage.rings.function_field Closed subscheme of Projective Space of dimension 3 over Rational Field defined by: w, y, x
sage: T.<x,y,z,w,u> = ProductProjectiveSpaces([2, 1], QQ) sage: DynamicalSystem_projective([x^2*u, y^2*w, z^2*u, w^2, u^2], domain=T) Dynamical System of Product of projective spaces P^2 x P^1 over Rational Field Defn: Defined by sending (x : y : z , w : u) to (x^2*u : y^2*w : z^2*u , w^2 : u^2).
>>> from sage.all import * >>> T = ProductProjectiveSpaces([Integer(2), Integer(1)], QQ, names=('x', 'y', 'z', 'w', 'u',)); (x, y, z, w, u,) = T._first_ngens(5) >>> DynamicalSystem_projective([x**Integer(2)*u, y**Integer(2)*w, z**Integer(2)*u, w**Integer(2), u**Integer(2)], domain=T) Dynamical System of Product of projective spaces P^2 x P^1 over Rational Field Defn: Defined by sending (x : y : z , w : u) to (x^2*u : y^2*w : z^2*u , w^2 : u^2).
sage: # needs sage.rings.number_field sage: K.<v> = QuadraticField(-7) sage: P.<x,y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem([x^3 + v*x*y^2, y^3]) sage: fbar = f.change_ring(QQbar) sage: fbar.is_postcritically_finite() False
>>> from sage.all import * >>> # needs sage.rings.number_field >>> K = QuadraticField(-Integer(7), names=('v',)); (v,) = K._first_ngens(1) >>> P = ProjectiveSpace(K, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem([x**Integer(3) + v*x*y**Integer(2), y**Integer(3)]) >>> fbar = f.change_ring(QQbar) >>> fbar.is_postcritically_finite() False
- affine_preperiodic_model(m, n, return_conjugation=False)[source]#
Return a dynamical system conjugate to this one with affine (n, m) preperiodic points.
If the base ring of this dynamical system is finite, there may not be a model with affine preperiodic points, in which case a
ValueError
is raised.INPUT:
m
– the preperiod of the preperiodic points to make affine.n
– the period of the preperiodic points to make affine.return_conjugation
– (default:False
) IfTrue
, return a tuple(g, phi)
whereg
is a model with affine (n, m) preperiodic points andphi
is the matrix that movesf
tog
.
OUTPUT: a dynamical system conjugate to this one.
EXAMPLES:
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2, y^2, z^2]) sage: g = f.affine_preperiodic_model(0, 1); g # needs sage.rings.function_field Dynamical System of Projective Space of dimension 2 over Rational Field Defn: Defined on coordinates by sending (x : y : z) to (-x^2 : -2*x^2 + 2*x*y - y^2 : 2*x^2 - 2*x*y + 2*y^2 + 2*y*z + z^2)
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2), y**Integer(2), z**Integer(2)]) >>> g = f.affine_preperiodic_model(Integer(0), Integer(1)); g # needs sage.rings.function_field Dynamical System of Projective Space of dimension 2 over Rational Field Defn: Defined on coordinates by sending (x : y : z) to (-x^2 : -2*x^2 + 2*x*y - y^2 : 2*x^2 - 2*x*y + 2*y^2 + 2*y*z + z^2)
We can check that
g
has affine fixed points:sage: g.periodic_points(1) # needs sage.rings.function_field [(-1 : -1 : 1), (-1/2 : -1 : 1), (-1/2 : -1/2 : 1), (-1/3 : -2/3 : 1), (0 : -1 : 1), (0 : -1/2 : 1), (0 : 0 : 1)]
>>> from sage.all import * >>> g.periodic_points(Integer(1)) # needs sage.rings.function_field [(-1 : -1 : 1), (-1/2 : -1 : 1), (-1/2 : -1/2 : 1), (-1/3 : -2/3 : 1), (0 : -1 : 1), (0 : -1/2 : 1), (0 : 0 : 1)]
sage: # needs sage.rings.finite_rings sage: P.<x,y,z> = ProjectiveSpace(GF(9), 2) sage: f = DynamicalSystem_projective([x^2, y^2, z^2]) sage: f.affine_preperiodic_model(0, 1) # needs sage.rings.function_field Dynamical System of Projective Space of dimension 2 over Finite Field in z2 of size 3^2 Defn: Defined on coordinates by sending (x : y : z) to ((-z2)*x^2 : z2*x^2 + (-z2)*x*y + (-z2)*y^2 : (-z2)*x^2 + z2*x*y + (z2 + 1)*y^2 - y*z + z^2)
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> P = ProjectiveSpace(GF(Integer(9)), Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2), y**Integer(2), z**Integer(2)]) >>> f.affine_preperiodic_model(Integer(0), Integer(1)) # needs sage.rings.function_field Dynamical System of Projective Space of dimension 2 over Finite Field in z2 of size 3^2 Defn: Defined on coordinates by sending (x : y : z) to ((-z2)*x^2 : z2*x^2 + (-z2)*x*y + (-z2)*y^2 : (-z2)*x^2 + z2*x*y + (z2 + 1)*y^2 - y*z + z^2)
sage: R.<c> = GF(3)[] sage: P.<x,y,z> = ProjectiveSpace(R, 2) sage: f = DynamicalSystem_projective([x^2, y^2, z^2]) sage: f.affine_preperiodic_model(0, 1) # long time Dynamical System of Projective Space of dimension 2 over Univariate Polynomial Ring in c over Finite Field of size 3 Defn: Defined on coordinates by sending (x : y : z) to (2*c^3*x^2 : c^3*x^2 + 2*c^3*x*y + 2*c^3*y^2 : 2*c^3*x^2 + c^3*x*y + (c^3 + c^2)*y^2 + 2*c^2*y*z + c^2*z^2)
>>> from sage.all import * >>> R = GF(Integer(3))['c']; (c,) = R._first_ngens(1) >>> P = ProjectiveSpace(R, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2), y**Integer(2), z**Integer(2)]) >>> f.affine_preperiodic_model(Integer(0), Integer(1)) # long time Dynamical System of Projective Space of dimension 2 over Univariate Polynomial Ring in c over Finite Field of size 3 Defn: Defined on coordinates by sending (x : y : z) to (2*c^3*x^2 : c^3*x^2 + 2*c^3*x*y + 2*c^3*y^2 : 2*c^3*x^2 + c^3*x*y + (c^3 + c^2)*y^2 + 2*c^2*y*z + c^2*z^2)
sage: # needs sage.rings.number_field sage: K.<k> = CyclotomicField(3) sage: P.<x,y,z> = ProjectiveSpace(K, 2) sage: f = DynamicalSystem_projective([x^2 + k*x*y + y^2, z^2, y^2]) sage: f.affine_preperiodic_model(1, 1) # needs sage.rings.function_field Dynamical System of Projective Space of dimension 2 over Cyclotomic Field of order 3 and degree 2 Defn: Defined on coordinates by sending (x : y : z) to (-y^2 : x^2 : x^2 + (-k)*x*z + z^2)
>>> from sage.all import * >>> # needs sage.rings.number_field >>> K = CyclotomicField(Integer(3), names=('k',)); (k,) = K._first_ngens(1) >>> P = ProjectiveSpace(K, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2) + k*x*y + y**Integer(2), z**Integer(2), y**Integer(2)]) >>> f.affine_preperiodic_model(Integer(1), Integer(1)) # needs sage.rings.function_field Dynamical System of Projective Space of dimension 2 over Cyclotomic Field of order 3 and degree 2 Defn: Defined on coordinates by sending (x : y : z) to (-y^2 : x^2 : x^2 + (-k)*x*z + z^2)
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: g, mat = f.affine_preperiodic_model(0, 1, return_conjugation=True) # needs sage.rings.function_field sage: g == f.conjugate(mat) # needs sage.rings.function_field True
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), y**Integer(2)]) >>> g, mat = f.affine_preperiodic_model(Integer(0), Integer(1), return_conjugation=True) # needs sage.rings.function_field >>> g == f.conjugate(mat) # needs sage.rings.function_field True
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: X = P.subscheme(2*y - z) sage: f = DynamicalSystem_projective([x^2 + y^2, z^2 + y^2, z^2], domain=X) sage: f.affine_preperiodic_model(0, 1) # needs sage.rings.function_field Dynamical System of Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: 2*y - z Defn: Defined on coordinates by sending (x : y : z) to (-x^2 - y^2 : y^2 : x^2 + z^2)
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> X = P.subscheme(Integer(2)*y - z) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), z**Integer(2) + y**Integer(2), z**Integer(2)], domain=X) >>> f.affine_preperiodic_model(Integer(0), Integer(1)) # needs sage.rings.function_field Dynamical System of Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: 2*y - z Defn: Defined on coordinates by sending (x : y : z) to (-x^2 - y^2 : y^2 : x^2 + z^2)
- all_minimal_models(return_transformation=False, prime_list=None, algorithm=None, check_minimal=True)[source]#
Determine a representative in each \(SL(2,\ZZ)\)-orbit of this map.
This can be done either with the Bruin-Molnar algorithm or the Hutz-Stoll algorithm. The Hutz-Stoll algorithm requires the map to have minimal resultant and then finds representatives in orbits with minimal resultant. The Bruin-Molnar algorithm finds representatives with the same resultant (up to sign) of the given map.
Bruin-Molnar does not work for polynomials and is more efficient for large primes.
INPUT:
return_transformation
– (default:False
) boolean; this signals a return of the \(PGL_2\) transformation to conjugate this map to the calculated modelsprime_list
– (optional) a list of primes, in case one only wants to determine minimality at those specific primesalgorithm
– (optional) string; can be one of the following:if not specified, properties of the map are utilized to choose
check_minimal
– (optional) boolean; to first check if the map is minimal and if not, compute a minimal model before computing for orbit representatives
OUTPUT:
A list of pairs \((F,m)\), where \(F\) is dynamical system on the projective line and \(m\) is the associated \(PGL(2,\QQ)\) element. Or just a list of dynamical systems if not returning the conjugation.
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem([2*x^2, 3*y^2]) sage: f.all_minimal_models() # needs sage.rings.function_field [Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^2 : y^2)]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem([Integer(2)*x**Integer(2), Integer(3)*y**Integer(2)]) >>> f.all_minimal_models() # needs sage.rings.function_field [Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^2 : y^2)]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: c = 2*3^6 sage: f = DynamicalSystem([x^3 - c^2*y^3, x*y^2]) sage: len(f.all_minimal_models(algorithm='HS')) # needs sage.rings.function_field 14 sage: len(f.all_minimal_models(prime_list=[2], algorithm='HS')) # needs sage.rings.function_field 2
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> c = Integer(2)*Integer(3)**Integer(6) >>> f = DynamicalSystem([x**Integer(3) - c**Integer(2)*y**Integer(3), x*y**Integer(2)]) >>> len(f.all_minimal_models(algorithm='HS')) # needs sage.rings.function_field 14 >>> len(f.all_minimal_models(prime_list=[Integer(2)], algorithm='HS')) # needs sage.rings.function_field 2
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem([237568*x^3 + 1204224*x^2*y + 2032560*x*y^2 ....: + 1142289*y^3, -131072*x^3 - 663552*x^2*y - 1118464*x*y^2 ....: - 627664*y^3]) sage: len(f.all_minimal_models(algorithm='BM')) # needs sage.rings.function_field 2
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem([Integer(237568)*x**Integer(3) + Integer(1204224)*x**Integer(2)*y + Integer(2032560)*x*y**Integer(2) ... + Integer(1142289)*y**Integer(3), -Integer(131072)*x**Integer(3) - Integer(663552)*x**Integer(2)*y - Integer(1118464)*x*y**Integer(2) ... - Integer(627664)*y**Integer(3)]) >>> len(f.all_minimal_models(algorithm='BM')) # needs sage.rings.function_field 2
REFERENCES:
- arakelov_zhang_pairing(g, **kwds)[source]#
Return an estimate of the Arakelov-Zhang pairing of the rational maps
self
andg
on \(\mathbb{P}^1\) over a number field.The Arakelov-Zhang pairing was introduced by Petsche, Szpiro, and Tucker in 2012, which measures the dynamical closeness of two rational maps. They prove inter alia that if one takes a sequence of small points for one map (for example, preperiodic points for
self
) and measure their dynamical height with respect to the other map (say,g
), then the values of the height will tend to the value of the Arakelov-Zhang pairing.The Arakelov-Zhang pairing involves mutual energy integrals between dynamical measures, which are in the case of polynomials, the equilibrium measures of the associated Julia sets at each place. As a result, these pairings are very difficult to compute exactly via analytic methods. We use a discrete approximation to these energy integrals.
ALGORITHM:
We select periodic points of order \(n\), or
n
-th preimages of a specified starting value given byf_starting_point
andg_starting_point
. At the archimedean places and the places of bad reduction of the two maps, we compute the discrete approximations to the energy integrals involved using these points.INPUT:
g
– a rational map of \(\mathbb{P}^1\) given as a projective morphism.g
andself
should have the same field of definition.
kwds:
n
– (default: 5) a positive integer Order of periodic points to use or preimages to take if starting points are specified.f_starting_point
– (default:None
) value in the base number field or None. Iff_starting_point
is None, we solve for points of periodn
forself
. Otherwise, we taken
-th preimages of the point given byf_starting_point
underf
on the affine line.g_starting_point
– (default:None
) value in the base number field or None. Ifg_starting_point
is None, we solve for points of periodn
forg
. Otherwise, we taken
-th preimages of the point given byg_starting_point
underg
on the affine line.check_primes_of_bad_reduction
– (default:False
) boolean. Passed to theprimes_of_bad_reduction
function forself
andg
.prec
– (default:RealField
default) default precision for RealField values which are returned.noise_multiplier
– (default: 2) a real number. Discriminant terms involved in the computation at the archimedean places are often not needed, particularly if the capacity of the Julia sets is 1, and introduce a lot of error. By a well-known result of Mahler (see also M. Baker, “”A lower bound for averages of dynamical Green’s functions”) such error (for a set of \(N\) points) is on the order of \(\log(N)/N\) after our normalization. We check if the value of the archimedean discriminant terms is within2*noise_multiplier
of \(\log(N)/N\). If so, we discard it. In practice this greatly improves the accuracy of the estimate of the pairing. If desired,noise_multiplier
can be set to 0, and no terms will be ignored.
OUTPUT:
a real number estimating the Arakelov-Zhang pairing of the two rational maps.
EXAMPLES:
sage: # needs sage.rings.number_field sage: K.<k> = CyclotomicField(3) sage: P.<x,y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem_projective([x^2 + (2*k + 2)*y^2, y^2]) sage: g = DynamicalSystem_projective([x^2, y^2]) sage: pairingval = f.arakelov_zhang_pairing(g, n=5); pairingval 0.409598197761958
>>> from sage.all import * >>> # needs sage.rings.number_field >>> K = CyclotomicField(Integer(3), names=('k',)); (k,) = K._first_ngens(1) >>> P = ProjectiveSpace(K, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + (Integer(2)*k + Integer(2))*y**Integer(2), y**Integer(2)]) >>> g = DynamicalSystem_projective([x**Integer(2), y**Integer(2)]) >>> pairingval = f.arakelov_zhang_pairing(g, n=Integer(5)); pairingval 0.409598197761958
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + 4*y^2, y^2]) sage: g = DynamicalSystem_projective([x^2, y^2]) sage: pairingval = f.arakelov_zhang_pairing(g, n=6); pairingval # needs sage.rings.function_field 0.750178391443644 sage: # Compare to the exact value: sage: dynheight = f.canonical_height(P(0, 1)); dynheight # needs sage.libs.pari 0.75017839144364417318023000563 sage: dynheight - pairingval # needs sage.libs.pari sage.rings.function_field 0.000000000000000
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + Integer(4)*y**Integer(2), y**Integer(2)]) >>> g = DynamicalSystem_projective([x**Integer(2), y**Integer(2)]) >>> pairingval = f.arakelov_zhang_pairing(g, n=Integer(6)); pairingval # needs sage.rings.function_field 0.750178391443644 >>> # Compare to the exact value: >>> dynheight = f.canonical_height(P(Integer(0), Integer(1))); dynheight # needs sage.libs.pari 0.75017839144364417318023000563 >>> dynheight - pairingval # needs sage.libs.pari sage.rings.function_field 0.000000000000000
Notice that if we set the noise_multiplier to 0, the accuracy is diminished:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + 4*y^2, y^2]) sage: g = DynamicalSystem_projective([x^2, y^2]) sage: pairingval = f.arakelov_zhang_pairing(g, n=6, noise_multiplier=0) # needs sage.rings.function_field sage: pairingval # needs sage.rings.number_field 0.650660018921632 sage: dynheight = f.canonical_height(P(0, 1)); dynheight # needs sage.libs.pari 0.75017839144364417318023000563 sage: pairingval - dynheight # needs sage.libs.pari sage.rings.function_field -0.0995183725220122
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + Integer(4)*y**Integer(2), y**Integer(2)]) >>> g = DynamicalSystem_projective([x**Integer(2), y**Integer(2)]) >>> pairingval = f.arakelov_zhang_pairing(g, n=Integer(6), noise_multiplier=Integer(0)) # needs sage.rings.function_field >>> pairingval # needs sage.rings.number_field 0.650660018921632 >>> dynheight = f.canonical_height(P(Integer(0), Integer(1))); dynheight # needs sage.libs.pari 0.75017839144364417318023000563 >>> pairingval - dynheight # needs sage.libs.pari sage.rings.function_field -0.0995183725220122
We compute the example of Prop. 18(d) from Petsche, Szpiro and Tucker:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([y^2 - (y - x)^2, y^2]) sage: g = DynamicalSystem_projective([x^2, y^2]) sage: f.arakelov_zhang_pairing(g) # needs sage.rings.function_field 0.326954667248466 sage: # Correct value should be = 0.323067... sage: f.arakelov_zhang_pairing(g, n=9) # long time # needs sage.rings.function_field 0.323091061918965 sage: _ - 0.323067 # long time # needs sage.rings.function_field 0.0000240619189654789
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([y**Integer(2) - (y - x)**Integer(2), y**Integer(2)]) >>> g = DynamicalSystem_projective([x**Integer(2), y**Integer(2)]) >>> f.arakelov_zhang_pairing(g) # needs sage.rings.function_field 0.326954667248466 >>> # Correct value should be = 0.323067... >>> f.arakelov_zhang_pairing(g, n=Integer(9)) # long time # needs sage.rings.function_field 0.323091061918965 >>> _ - RealNumber('0.323067') # long time # needs sage.rings.function_field 0.0000240619189654789
Also from Prop. 18 of Petsche, Szpiro and Tucker, includes places of bad reduction:
sage: # needs sage.rings.number_field sage: R.<z> = PolynomialRing(ZZ) sage: K.<b> = NumberField(z^3 - 11) sage: P.<x,y> = ProjectiveSpace(K,1) sage: a = 7/(b - 1) sage: f = DynamicalSystem_projective([a*y^2 - (a*y - x)^2, y^2]) sage: g = DynamicalSystem_projective([x^2, y^2])
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = PolynomialRing(ZZ, names=('z',)); (z,) = R._first_ngens(1) >>> K = NumberField(z**Integer(3) - Integer(11), names=('b',)); (b,) = K._first_ngens(1) >>> P = ProjectiveSpace(K,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> a = Integer(7)/(b - Integer(1)) >>> f = DynamicalSystem_projective([a*y**Integer(2) - (a*y - x)**Integer(2), y**Integer(2)]) >>> g = DynamicalSystem_projective([x**Integer(2), y**Integer(2)])
If all archimedean absolute values of a have modulus > 2, then the pairing should be h(a).:
sage: f.arakelov_zhang_pairing(g, n=6) # long time # needs sage.rings.number_field 1.93846423207664 sage: _ - a.global_height() # long time # needs sage.rings.number_field -0.00744591697867292
>>> from sage.all import * >>> f.arakelov_zhang_pairing(g, n=Integer(6)) # long time # needs sage.rings.number_field 1.93846423207664 >>> _ - a.global_height() # long time # needs sage.rings.number_field -0.00744591697867292
- automorphism_group(**kwds)[source]#
Calculates the subgroup of \(PGL2\) that is the automorphism group of this dynamical system.
The automorphism group is the set of \(PGL(2)\) elements that fixes this map under conjugation.
INPUT:
The following keywords are used in most cases:
num_cpus
– (default: 2) the number of threads to use. Setting to a larger number can greatly speed up this function.
The following keywords are used only when the dimension of the domain is 1 and the base ring is the rationals, but ignored in all other cases:
starting_prime
– (default: 5) the first prime to use for CRTalgorithm
– (optional) can be one of the following:'CRT'
– Chinese Remainder Theorem'fixed_points'
– fixed points algorithm
return_functions
– (default:False
) boolean;True
returns elements as linear fractional transformations andFalse
returns elements as \(PGL2\) matricesiso_type
– (default:False
) boolean;True
returns the isomorphism type of the automorphism group
OUTPUT: a list of elements in the automorphism group
AUTHORS:
Original algorithm written by Xander Faber, Michelle Manes, Bianca Viray
Modified by Joao Alberto de Faria, Ben Hutz, Bianca Thompson
REFERENCES:
EXAMPLES:
sage: R.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 - y^2, x*y]) sage: f.automorphism_group(return_functions=True) # needs sage.libs.pari [x, -x]
>>> from sage.all import * >>> R = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = R._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - y**Integer(2), x*y]) >>> f.automorphism_group(return_functions=True) # needs sage.libs.pari [x, -x]
sage: R.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + 5*x*y + 5*y^2, 5*x^2 + 5*x*y + y^2]) sage: f.automorphism_group() # needs sage.libs.pari [ [1 0] [0 2] [0 1], [2 0] ]
>>> from sage.all import * >>> R = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = R._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + Integer(5)*x*y + Integer(5)*y**Integer(2), Integer(5)*x**Integer(2) + Integer(5)*x*y + y**Integer(2)]) >>> f.automorphism_group() # needs sage.libs.pari [ [1 0] [0 2] [0 1], [2 0] ]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem([x^3, y^3, z^3]) sage: len(f.automorphism_group()) # needs sage.rings.function_field 24
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem([x**Integer(3), y**Integer(3), z**Integer(3)]) >>> len(f.automorphism_group()) # needs sage.rings.function_field 24
sage: R.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 - 2*x*y - 2*y^2, -2*x^2 - 2*x*y + y^2]) sage: f.automorphism_group(return_functions=True) # needs sage.libs.pari [x, 1/x, -x - 1, -x/(x + 1), (-x - 1)/x, -1/(x + 1)]
>>> from sage.all import * >>> R = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = R._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - Integer(2)*x*y - Integer(2)*y**Integer(2), -Integer(2)*x**Integer(2) - Integer(2)*x*y + y**Integer(2)]) >>> f.automorphism_group(return_functions=True) # needs sage.libs.pari [x, 1/x, -x - 1, -x/(x + 1), (-x - 1)/x, -1/(x + 1)]
sage: R.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([3*x^2*y - y^3, x^3 - 3*x*y^2]) sage: lst, label = f.automorphism_group(algorithm='CRT', # needs sage.libs.pari ....: return_functions=True, ....: iso_type=True) sage: sorted(lst), label # needs sage.libs.pari ([-1/x, 1/x, (-x - 1)/(x - 1), (-x + 1)/(x + 1), (x - 1)/(x + 1), (x + 1)/(x - 1), -x, x], 'Dihedral of order 8')
>>> from sage.all import * >>> R = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = R._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(3)*x**Integer(2)*y - y**Integer(3), x**Integer(3) - Integer(3)*x*y**Integer(2)]) >>> lst, label = f.automorphism_group(algorithm='CRT', # needs sage.libs.pari ... return_functions=True, ... iso_type=True) >>> sorted(lst), label # needs sage.libs.pari ([-1/x, 1/x, (-x - 1)/(x - 1), (-x + 1)/(x + 1), (x - 1)/(x + 1), (x + 1)/(x - 1), -x, x], 'Dihedral of order 8')
sage: A.<z> = AffineSpace(QQ, 1) sage: f = DynamicalSystem_affine([1/z^3]) sage: F = f.homogenize(1) sage: F.automorphism_group() # needs sage.libs.pari [ [1 0] [0 2] [-1 0] [ 0 -2] [0 1], [2 0], [ 0 1], [ 2 0] ]
>>> from sage.all import * >>> A = AffineSpace(QQ, Integer(1), names=('z',)); (z,) = A._first_ngens(1) >>> f = DynamicalSystem_affine([Integer(1)/z**Integer(3)]) >>> F = f.homogenize(Integer(1)) >>> F.automorphism_group() # needs sage.libs.pari [ [1 0] [0 2] [-1 0] [ 0 -2] [0 1], [2 0], [ 0 1], [ 2 0] ]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x**2 + x*z, y**2, z**2]) sage: f.automorphism_group() # needs sage.rings.function_field [ [1 0 0] [0 1 0] [0 0 1] ]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2) + x*z, y**Integer(2), z**Integer(2)]) >>> f.automorphism_group() # needs sage.rings.function_field [ [1 0 0] [0 1 0] [0 0 1] ]
sage: # needs sage.rings.number_field sage: K.<w> = CyclotomicField(3) sage: P.<x,y> = ProjectiveSpace(K, 1) sage: D6 = DynamicalSystem_projective([y^2, x^2]) sage: sorted(D6.automorphism_group()) [ [-w - 1 0] [ 0 -w - 1] [w 0] [0 w] [0 1] [1 0] [ 0 1], [ 1 0], [0 1], [1 0], [1 0], [0 1] ]
>>> from sage.all import * >>> # needs sage.rings.number_field >>> K = CyclotomicField(Integer(3), names=('w',)); (w,) = K._first_ngens(1) >>> P = ProjectiveSpace(K, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> D6 = DynamicalSystem_projective([y**Integer(2), x**Integer(2)]) >>> sorted(D6.automorphism_group()) [ [-w - 1 0] [ 0 -w - 1] [w 0] [0 w] [0 1] [1 0] [ 0 1], [ 1 0], [0 1], [1 0], [1 0], [0 1] ]
- canonical_height(P, **kwds)[source]#
Evaluate the (absolute) canonical height of
P
with respect to this dynamical system.Must be over number field or order of a number field. Specify either the number of terms of the series to evaluate or the error bound required.
ALGORITHM:
The sum of the Green’s function at the archimedean places and the places of bad reduction.
If function is defined over \(\QQ\) uses Wells’ Algorithm, which allows us to not have to factor the resultant.
INPUT:
P
– a projective point
kwds:
badprimes
– (optional) a list of primes of bad reductionN
– (default: 10) positive integer. number of terms of the series to use in the local green functionsprec
– (default: 100) positive integer, float point or \(p\)-adic precisionerror_bound
– (optional) a positive real number
OUTPUT: a real number
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, 2*x*y]); sage: f.canonical_height(P.point([5,4]), error_bound=0.001) # needs sage.libs.pari 2.1970553519503404898926835324 sage: f.canonical_height(P.point([2,1]), error_bound=0.001) # needs sage.libs.pari 1.0984430632822307984974382955
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), Integer(2)*x*y]); >>> f.canonical_height(P.point([Integer(5),Integer(4)]), error_bound=RealNumber('0.001')) # needs sage.libs.pari 2.1970553519503404898926835324 >>> f.canonical_height(P.point([Integer(2),Integer(1)]), error_bound=RealNumber('0.001')) # needs sage.libs.pari 1.0984430632822307984974382955
Notice that preperiodic points may not return exactly 0:
sage: # needs sage.rings.number_field sage: R.<X> = PolynomialRing(QQ) sage: K.<a> = NumberField(X^2 + X - 1) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^2 - 2*y^2, y^2]) sage: Q = P.point([a,1]) sage: f.canonical_height(Q, error_bound=0.000001) # Answer only within error_bound of 0 5.7364919788790160119266380480e-8 sage: f.nth_iterate(Q, 2) == Q # but it is indeed preperiodic True
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = PolynomialRing(QQ, names=('X',)); (X,) = R._first_ngens(1) >>> K = NumberField(X**Integer(2) + X - Integer(1), names=('a',)); (a,) = K._first_ngens(1) >>> P = ProjectiveSpace(K,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - Integer(2)*y**Integer(2), y**Integer(2)]) >>> Q = P.point([a,Integer(1)]) >>> f.canonical_height(Q, error_bound=RealNumber('0.000001')) # Answer only within error_bound of 0 5.7364919788790160119266380480e-8 >>> f.nth_iterate(Q, Integer(2)) == Q # but it is indeed preperiodic True
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: X = P.subscheme(x^2 - y^2); sage: f = DynamicalSystem_projective([x^2, y^2, 4*z^2], domain=X); sage: Q = X([4,4,1]) sage: f.canonical_height(Q, badprimes=[2]) # needs sage.rings.function_field 0.0013538030870311431824555314882
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> X = P.subscheme(x**Integer(2) - y**Integer(2)); >>> f = DynamicalSystem_projective([x**Integer(2), y**Integer(2), Integer(4)*z**Integer(2)], domain=X); >>> Q = X([Integer(4),Integer(4),Integer(1)]) >>> f.canonical_height(Q, badprimes=[Integer(2)]) # needs sage.rings.function_field 0.0013538030870311431824555314882
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: X = P.subscheme(x^2 - y^2); sage: f = DynamicalSystem_projective([x^2, y^2, 30*z^2], domain=X) sage: Q = X([4, 4, 1]) sage: f.canonical_height(Q, badprimes=[2,3,5], prec=200) # needs sage.rings.function_field 2.7054056208276961889784303469356774912979228770208655455481
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> X = P.subscheme(x**Integer(2) - y**Integer(2)); >>> f = DynamicalSystem_projective([x**Integer(2), y**Integer(2), Integer(30)*z**Integer(2)], domain=X) >>> Q = X([Integer(4), Integer(4), Integer(1)]) >>> f.canonical_height(Q, badprimes=[Integer(2),Integer(3),Integer(5)], prec=Integer(200)) # needs sage.rings.function_field 2.7054056208276961889784303469356774912979228770208655455481
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([1000*x^2 - 29*y^2, 1000*y^2]) sage: Q = P(-1/4, 1) sage: f.canonical_height(Q, error_bound=0.01) # needs sage.libs.pari 3.7996079979254623065837411853
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(1000)*x**Integer(2) - Integer(29)*y**Integer(2), Integer(1000)*y**Integer(2)]) >>> Q = P(-Integer(1)/Integer(4), Integer(1)) >>> f.canonical_height(Q, error_bound=RealNumber('0.01')) # needs sage.libs.pari 3.7996079979254623065837411853
sage: RSA768 = 123018668453011775513049495838496272077285356959533479219732245215\ ....: 1726400507263657518745202199786469389956474942774063845925192557326303453731548\ ....: 2685079170261221429134616704292143116022212404792747377940806653514195974598569\ ....: 02143413 sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([RSA768*x^2 + y^2, x*y]) sage: Q = P(RSA768,1) sage: f.canonical_height(Q, error_bound=0.00000000000000001) # needs sage.libs.pari 931.18256422718241278672729195
>>> from sage.all import * >>> RSA768 = Integer(123018668453011775513049495838496272077285356959533479219732245215)Integer(1726400507263657518745202199786469389956474942774063845925192557326303453731548)Integer(2685079170261221429134616704292143116022212404792747377940806653514195974598569)Integer(2143413) >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([RSA768*x**Integer(2) + y**Integer(2), x*y]) >>> Q = P(RSA768,Integer(1)) >>> f.canonical_height(Q, error_bound=RealNumber('0.00000000000000001')) # needs sage.libs.pari 931.18256422718241278672729195
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem([2*(-2*x^3 + 3*(x^2*y)) + 3*y^3, 3*y^3]) sage: f.canonical_height(P(1,0)) # needs sage.libs.pari 0.00000000000000000000000000000
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem([Integer(2)*(-Integer(2)*x**Integer(3) + Integer(3)*(x**Integer(2)*y)) + Integer(3)*y**Integer(3), Integer(3)*y**Integer(3)]) >>> f.canonical_height(P(Integer(1),Integer(0))) # needs sage.libs.pari 0.00000000000000000000000000000
- conjugate(M, adjugate=False, normalize=False)[source]#
Conjugate this dynamical system by
M
, i.e. \(M^{-1} \circ f \circ M\).If possible the new map will be defined over the same space. Otherwise, will try to coerce to the base ring of
M
.INPUT:
M
– a square invertible matrixadjugate
– (default:False
) boolean, also classically called adjoint, takes a square matrixM
and finds the transpose of its cofactor matrix. Used for conjugation in place of inverse when specifiedTrue
. Functionality is the same in projective space.normalize
– (default:False
) boolean, ifnormalize
isTrue
, then the methodnormalize_coordinates
is called.
OUTPUT: a dynamical system
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: f.conjugate(matrix([[1,2], [0,1]])) Dynamical System of Projective Space of dimension 1 over Integer Ring Defn: Defined on coordinates by sending (x : y) to (x^2 + 4*x*y + 3*y^2 : y^2)
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), y**Integer(2)]) >>> f.conjugate(matrix([[Integer(1),Integer(2)], [Integer(0),Integer(1)]])) Dynamical System of Projective Space of dimension 1 over Integer Ring Defn: Defined on coordinates by sending (x : y) to (x^2 + 4*x*y + 3*y^2 : y^2)
sage: R.<x> = PolynomialRing(QQ) sage: K.<i> = NumberField(x^2 + 1) # needs sage.rings.number_field sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^3 + y^3, y^3]) sage: f.conjugate(matrix([[i,0], [0,-i]])) # needs sage.rings.number_field Dynamical System of Projective Space of dimension 1 over Integer Ring Defn: Defined on coordinates by sending (x : y) to (-x^3 + y^3 : -y^3)
>>> from sage.all import * >>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1) >>> K = NumberField(x**Integer(2) + Integer(1), names=('i',)); (i,) = K._first_ngens(1)# needs sage.rings.number_field >>> P = ProjectiveSpace(ZZ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(3) + y**Integer(3), y**Integer(3)]) >>> f.conjugate(matrix([[i,Integer(0)], [Integer(0),-i]])) # needs sage.rings.number_field Dynamical System of Projective Space of dimension 1 over Integer Ring Defn: Defined on coordinates by sending (x : y) to (-x^3 + y^3 : -y^3)
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2, y*z]) sage: f.conjugate(matrix([[1,2,3], [0,1,2], [0,0,1]])) Dynamical System of Projective Space of dimension 2 over Integer Ring Defn: Defined on coordinates by sending (x : y : z) to (x^2 + 4*x*y + 3*y^2 + 6*x*z + 9*y*z + 7*z^2 : y^2 + 2*y*z : y*z + 2*z^2)
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), y**Integer(2), y*z]) >>> f.conjugate(matrix([[Integer(1),Integer(2),Integer(3)], [Integer(0),Integer(1),Integer(2)], [Integer(0),Integer(0),Integer(1)]])) Dynamical System of Projective Space of dimension 2 over Integer Ring Defn: Defined on coordinates by sending (x : y : z) to (x^2 + 4*x*y + 3*y^2 + 6*x*z + 9*y*z + 7*z^2 : y^2 + 2*y*z : y*z + 2*z^2)
sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^2+y^2, y^2]) sage: f.conjugate(matrix([[2,0], [0,1/2]])) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (2*x^2 + 1/8*y^2 : 1/2*y^2)
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2)+y**Integer(2), y**Integer(2)]) >>> f.conjugate(matrix([[Integer(2),Integer(0)], [Integer(0),Integer(1)/Integer(2)]])) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (2*x^2 + 1/8*y^2 : 1/2*y^2)
sage: R.<x> = PolynomialRing(QQ) sage: K.<i> = NumberField(x^2 + 1) # needs sage.rings.number_field sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([1/3*x^2 + 1/2*y^2, y^2]) sage: f.conjugate(matrix([[i,0], [0,-i]])) # needs sage.rings.number_field Dynamical System of Projective Space of dimension 1 over Number Field in i with defining polynomial x^2 + 1 Defn: Defined on coordinates by sending (x : y) to ((1/3*i)*x^2 + (1/2*i)*y^2 : (-i)*y^2)
>>> from sage.all import * >>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1) >>> K = NumberField(x**Integer(2) + Integer(1), names=('i',)); (i,) = K._first_ngens(1)# needs sage.rings.number_field >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(1)/Integer(3)*x**Integer(2) + Integer(1)/Integer(2)*y**Integer(2), y**Integer(2)]) >>> f.conjugate(matrix([[i,Integer(0)], [Integer(0),-i]])) # needs sage.rings.number_field Dynamical System of Projective Space of dimension 1 over Number Field in i with defining polynomial x^2 + 1 Defn: Defined on coordinates by sending (x : y) to ((1/3*i)*x^2 + (1/2*i)*y^2 : (-i)*y^2)
Todo
Use the left and right action functionality to replace the code below with #return DynamicalSystem_projective(M.inverse()*self*M, domain=self.codomain()) once there is a function to pass to the smallest field of definition.
- critical_height(**kwds)[source]#
Compute the critical height of this dynamical system.
The critical height is defined by J. Silverman as the sum of the canonical heights of the critical points. This must be dimension 1 and defined over a number field or number field order.
The computations can be done either over the algebraic closure of the base field or over the minimal extension of the base field that contains the critical points.
INPUT:
kwds:
badprimes
– (optional) a list of primes of bad reductionN
– (default: 10) positive integer; number of terms of the series to use in the local green functionsprec
– (default: 100) positive integer, float point or \(p\)-adic precisionerror_bound
– (optional) a positive real numberuse_algebraic_closure
– boolean (default:True
) – IfTrue
, uses the algebraic closure. IfFalse
, uses the smallest extension of the base field containing all the critical points.
OUTPUT: real number
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^3 + 7*y^3, 11*y^3]) sage: f.critical_height() # needs sage.rings.number_field 1.1989273321156851418802151128
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(3) + Integer(7)*y**Integer(3), Integer(11)*y**Integer(3)]) >>> f.critical_height() # needs sage.rings.number_field 1.1989273321156851418802151128
sage: # needs sage.rings.number_field sage: K.<w> = QuadraticField(2) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^2 + w*y^2, y^2]) sage: f.critical_height() 0.16090842452312941163719755472
>>> from sage.all import * >>> # needs sage.rings.number_field >>> K = QuadraticField(Integer(2), names=('w',)); (w,) = K._first_ngens(1) >>> P = ProjectiveSpace(K,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + w*y**Integer(2), y**Integer(2)]) >>> f.critical_height() 0.16090842452312941163719755472
Postcritically finite maps have critical height 0:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^3 - 3/4*x*y^2 + 3/4*y^3, y^3]) sage: f.critical_height(error_bound=0.0001) # needs sage.rings.number_field 0.00000000000000000000000000000
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(3) - Integer(3)/Integer(4)*x*y**Integer(2) + Integer(3)/Integer(4)*y**Integer(3), y**Integer(3)]) >>> f.critical_height(error_bound=RealNumber('0.0001')) # needs sage.rings.number_field 0.00000000000000000000000000000
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^3 + 3*x*y^2, y^3]) sage: f.critical_height(use_algebraic_closure=False) # needs sage.rings.number_field 0.000023477016733897112886491967991 sage: f.critical_height() # needs sage.rings.number_field 0.000023477016733897112886491967991
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(3) + Integer(3)*x*y**Integer(2), y**Integer(3)]) >>> f.critical_height(use_algebraic_closure=False) # needs sage.rings.number_field 0.000023477016733897112886491967991 >>> f.critical_height() # needs sage.rings.number_field 0.000023477016733897112886491967991
- critical_point_portrait(check=True, use_algebraic_closure=True)[source]#
If this dynamical system is post-critically finite, return its critical point portrait.
This is the directed graph of iterates starting with the critical points. Must be dimension 1. If
check
isTrue
, then the map is first checked to see if it is postcritically finite.The computations can be done either over the algebraic closure of the base field or over the minimal extension of the base field that contains the critical points.
INPUT:
check
– boolean (default:True
)use_algebraic_closure
– boolean (default:True
) – IfTrue
, uses the algebraic closure. IfFalse
, uses the smallest extension of the base field containing all the critical points.
OUTPUT: a digraph
EXAMPLES:
sage: # needs sage.rings.number_field sage: R.<z> = QQ[] sage: K.<v> = NumberField(z^6 + 2*z^5 + 2*z^4 + 2*z^3 + z^2 + 1) sage: PS.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^2 + v*y^2, y^2]) sage: f.critical_point_portrait(check=False) # long time # needs sage.graphs Looped digraph on 6 vertices
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = QQ['z']; (z,) = R._first_ngens(1) >>> K = NumberField(z**Integer(6) + Integer(2)*z**Integer(5) + Integer(2)*z**Integer(4) + Integer(2)*z**Integer(3) + z**Integer(2) + Integer(1), names=('v',)); (v,) = K._first_ngens(1) >>> PS = ProjectiveSpace(K,Integer(1), names=('x', 'y',)); (x, y,) = PS._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + v*y**Integer(2), y**Integer(2)]) >>> f.critical_point_portrait(check=False) # long time # needs sage.graphs Looped digraph on 6 vertices
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^5 + 5/4*x*y^4, y^5]) sage: f.critical_point_portrait(check=False) # needs sage.graphs sage.rings.number_field Looped digraph on 5 vertices
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(5) + Integer(5)/Integer(4)*x*y**Integer(4), y**Integer(5)]) >>> f.critical_point_portrait(check=False) # needs sage.graphs sage.rings.number_field Looped digraph on 5 vertices
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + 2*y^2, y^2]) sage: f.critical_point_portrait() # needs sage.rings.number_field Traceback (most recent call last): ... TypeError: map must be post-critically finite
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + Integer(2)*y**Integer(2), y**Integer(2)]) >>> f.critical_point_portrait() # needs sage.rings.number_field Traceback (most recent call last): ... TypeError: map must be post-critically finite
sage: # needs sage.rings.number_field sage: R.<t> = QQ[] sage: K.<v> = NumberField(t^3 + 2*t^2 + t + 1) sage: phi = K.embeddings(QQbar)[0] sage: P.<x, y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem_projective([x^2 + v*y^2, y^2]) sage: f.change_ring(phi).critical_point_portrait() # needs sage.graphs Looped digraph on 4 vertices
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> K = NumberField(t**Integer(3) + Integer(2)*t**Integer(2) + t + Integer(1), names=('v',)); (v,) = K._first_ngens(1) >>> phi = K.embeddings(QQbar)[Integer(0)] >>> P = ProjectiveSpace(K, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + v*y**Integer(2), y**Integer(2)]) >>> f.change_ring(phi).critical_point_portrait() # needs sage.graphs Looped digraph on 4 vertices
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([8*x^4 - 8*x^2*y^2 + y^4, y^4]) sage: f.critical_point_portrait(use_algebraic_closure=False) # long time Looped digraph on 6 vertices
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(8)*x**Integer(4) - Integer(8)*x**Integer(2)*y**Integer(2) + y**Integer(4), y**Integer(4)]) >>> f.critical_point_portrait(use_algebraic_closure=False) # long time Looped digraph on 6 vertices
sage: # needs sage.rings.number_field sage: P.<x,y> = ProjectiveSpace(QQbar,1) sage: f = DynamicalSystem_projective([8*x^4 - 8*x^2*y^2 + y^4, y^4]) sage: f.critical_point_portrait() # long time # needs sage.graphs Looped digraph on 6 vertices
>>> from sage.all import * >>> # needs sage.rings.number_field >>> P = ProjectiveSpace(QQbar,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(8)*x**Integer(4) - Integer(8)*x**Integer(2)*y**Integer(2) + y**Integer(4), y**Integer(4)]) >>> f.critical_point_portrait() # long time # needs sage.graphs Looped digraph on 6 vertices
sage: P.<x,y> = ProjectiveSpace(GF(3),1) sage: f = DynamicalSystem_projective([x^2 + x*y - y^2, x*y]) sage: f.critical_point_portrait(use_algebraic_closure=False) # needs sage.libs.pari Looped digraph on 6 vertices sage: f.critical_point_portrait() #long time Looped digraph on 6 vertices
>>> from sage.all import * >>> P = ProjectiveSpace(GF(Integer(3)),Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + x*y - y**Integer(2), x*y]) >>> f.critical_point_portrait(use_algebraic_closure=False) # needs sage.libs.pari Looped digraph on 6 vertices >>> f.critical_point_portrait() #long time Looped digraph on 6 vertices
- critical_points(R=None)[source]#
Return the critical points of this dynamical system defined over the ring
R
or the base ring of this map.Must be dimension 1.
INPUT:
R
– (optional) a ring
OUTPUT: a list of projective space points defined over
R
EXAMPLES:
sage: set_verbose(None) sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^3 - 2*x*y^2 + 2*y^3, y^3]) sage: f.critical_points() # needs sage.rings.function_field [(1 : 0)] sage: K.<w> = QuadraticField(6) # needs sage.rings.number_field sage: f.critical_points(K) # needs sage.rings.number_field [(-1/3*w : 1), (1/3*w : 1), (1 : 0)]
>>> from sage.all import * >>> set_verbose(None) >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(3) - Integer(2)*x*y**Integer(2) + Integer(2)*y**Integer(3), y**Integer(3)]) >>> f.critical_points() # needs sage.rings.function_field [(1 : 0)] >>> K = QuadraticField(Integer(6), names=('w',)); (w,) = K._first_ngens(1)# needs sage.rings.number_field >>> f.critical_points(K) # needs sage.rings.number_field [(-1/3*w : 1), (1/3*w : 1), (1 : 0)]
sage: set_verbose(None) sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([2*x^2 - y^2, x*y]) sage: f.critical_points(QQbar) # needs sage.rings.number_field [(-0.7071067811865475?*I : 1), (0.7071067811865475?*I : 1)]
>>> from sage.all import * >>> set_verbose(None) >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(2)*x**Integer(2) - y**Integer(2), x*y]) >>> f.critical_points(QQbar) # needs sage.rings.number_field [(-0.7071067811865475?*I : 1), (0.7071067811865475?*I : 1)]
- critical_subscheme()[source]#
Return the critical subscheme of this dynamical system.
OUTPUT: projective subscheme
EXAMPLES:
sage: set_verbose(None) sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^3 - 2*x*y^2 + 2*y^3, y^3]) sage: f.critical_subscheme() # needs sage.rings.function_field Closed subscheme of Projective Space of dimension 1 over Rational Field defined by: 9*x^2*y^2 - 6*y^4
>>> from sage.all import * >>> set_verbose(None) >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(3) - Integer(2)*x*y**Integer(2) + Integer(2)*y**Integer(3), y**Integer(3)]) >>> f.critical_subscheme() # needs sage.rings.function_field Closed subscheme of Projective Space of dimension 1 over Rational Field defined by: 9*x^2*y^2 - 6*y^4
sage: set_verbose(None) sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([2*x^2 - y^2, x*y]) sage: f.critical_subscheme() # needs sage.rings.function_field Closed subscheme of Projective Space of dimension 1 over Rational Field defined by: 4*x^2 + 2*y^2
>>> from sage.all import * >>> set_verbose(None) >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(2)*x**Integer(2) - y**Integer(2), x*y]) >>> f.critical_subscheme() # needs sage.rings.function_field Closed subscheme of Projective Space of dimension 1 over Rational Field defined by: 4*x^2 + 2*y^2
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: f = DynamicalSystem_projective([2*x^2 - y^2, x*y, z^2]) sage: f.critical_subscheme() # needs sage.rings.function_field Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: 8*x^2*z + 4*y^2*z
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([Integer(2)*x**Integer(2) - y**Integer(2), x*y, z**Integer(2)]) >>> f.critical_subscheme() # needs sage.rings.function_field Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: 8*x^2*z + 4*y^2*z
sage: # needs sage.rings.finite_rings sage: P.<x,y,z,w> = ProjectiveSpace(GF(81), 3) sage: g = DynamicalSystem_projective([x^3 + y^3, y^3 + z^3, z^3 + x^3, w^3]) sage: g.critical_subscheme() Closed subscheme of Projective Space of dimension 3 over Finite Field in z4 of size 3^4 defined by: 0
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> P = ProjectiveSpace(GF(Integer(81)), Integer(3), names=('x', 'y', 'z', 'w',)); (x, y, z, w,) = P._first_ngens(4) >>> g = DynamicalSystem_projective([x**Integer(3) + y**Integer(3), y**Integer(3) + z**Integer(3), z**Integer(3) + x**Integer(3), w**Integer(3)]) >>> g.critical_subscheme() Closed subscheme of Projective Space of dimension 3 over Finite Field in z4 of size 3^4 defined by: 0
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2, x*y]) sage: f.critical_subscheme() # needs sage.rings.function_field Traceback (most recent call last): ... TypeError: the function is not a morphism
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2), x*y]) >>> f.critical_subscheme() # needs sage.rings.function_field Traceback (most recent call last): ... TypeError: the function is not a morphism
- degree_sequence(iterates=2)[source]#
Return sequence of degrees of normalized iterates starting with the degree of this dynamical system.
INPUT:
iterates
– (default: 2) positive integerOUTPUT: list of integers
EXAMPLES:
sage: P2.<X,Y,Z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([Z^2, X*Y, Y^2]) sage: f.degree_sequence(15) # needs sage.rings.function_field [2, 3, 5, 8, 11, 17, 24, 31, 45, 56, 68, 91, 93, 184, 275]
>>> from sage.all import * >>> P2 = ProjectiveSpace(QQ, Integer(2), names=('X', 'Y', 'Z',)); (X, Y, Z,) = P2._first_ngens(3) >>> f = DynamicalSystem_projective([Z**Integer(2), X*Y, Y**Integer(2)]) >>> f.degree_sequence(Integer(15)) # needs sage.rings.function_field [2, 3, 5, 8, 11, 17, 24, 31, 45, 56, 68, 91, 93, 184, 275]
sage: F.<t> = PolynomialRing(QQ) sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2) sage: f = DynamicalSystem_projective([Y*Z, X*Y, Y^2 + t*X*Z]) sage: f.degree_sequence(5) # needs sage.rings.function_field [2, 3, 5, 8, 13]
>>> from sage.all import * >>> F = PolynomialRing(QQ, names=('t',)); (t,) = F._first_ngens(1) >>> P2 = ProjectiveSpace(F, Integer(2), names=('X', 'Y', 'Z',)); (X, Y, Z,) = P2._first_ngens(3) >>> f = DynamicalSystem_projective([Y*Z, X*Y, Y**Integer(2) + t*X*Z]) >>> f.degree_sequence(Integer(5)) # needs sage.rings.function_field [2, 3, 5, 8, 13]
sage: P2.<X,Y,Z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([X^2, Y^2, Z^2]) sage: f.degree_sequence(10) # needs sage.rings.function_field [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
>>> from sage.all import * >>> P2 = ProjectiveSpace(QQ, Integer(2), names=('X', 'Y', 'Z',)); (X, Y, Z,) = P2._first_ngens(3) >>> f = DynamicalSystem_projective([X**Integer(2), Y**Integer(2), Z**Integer(2)]) >>> f.degree_sequence(Integer(10)) # needs sage.rings.function_field [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
sage: P2.<X,Y,Z> = ProjectiveSpace(ZZ, 2) sage: f = DynamicalSystem_projective([X*Y, Y*Z+Z^2, Z^2]) sage: f.degree_sequence(10) # needs sage.rings.function_field [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
>>> from sage.all import * >>> P2 = ProjectiveSpace(ZZ, Integer(2), names=('X', 'Y', 'Z',)); (X, Y, Z,) = P2._first_ngens(3) >>> f = DynamicalSystem_projective([X*Y, Y*Z+Z**Integer(2), Z**Integer(2)]) >>> f.degree_sequence(Integer(10)) # needs sage.rings.function_field [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
- dehomogenize(n)[source]#
Return the standard dehomogenization at the
n[0]
coordinate for the domain and then[1]
coordinate for the codomain.Note that the new function is defined over the fraction field of the base ring of this map.
INPUT:
n
– a tuple of nonnegative integers; ifn
is an integer, then the two values of the tuple are assumed to be the same
OUTPUT:
If the dehomogenizing indices are the same for the domain and codomain, then a
DynamicalSystem_affine
given by dehomogenizing the source and target ofself
with respect to the given indices is returned. If the dehomogenizing indices for the domain and codomain are different then the resulting affine patches are different and a scheme morphism is returned.EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: f.dehomogenize(0) Dynamical System of Affine Space of dimension 1 over Integer Ring Defn: Defined on coordinates by sending (y) to (y^2/(y^2 + 1)) sage: f.dehomogenize((0, 1)) Scheme morphism: From: Affine Space of dimension 1 over Integer Ring To: Affine Space of dimension 1 over Integer Ring Defn: Defined on coordinates by sending (y) to ((y^2 + 1)/y^2)
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), y**Integer(2)]) >>> f.dehomogenize(Integer(0)) Dynamical System of Affine Space of dimension 1 over Integer Ring Defn: Defined on coordinates by sending (y) to (y^2/(y^2 + 1)) >>> f.dehomogenize((Integer(0), Integer(1))) Scheme morphism: From: Affine Space of dimension 1 over Integer Ring To: Affine Space of dimension 1 over Integer Ring Defn: Defined on coordinates by sending (y) to ((y^2 + 1)/y^2)
- dynamical_degree(N=3, prec=53)[source]#
Return an approximation to the dynamical degree of this dynamical system. The dynamical degree is defined as \(\lim_{n \to \infty} \sqrt[n]{\deg(f^n)}\).
INPUT:
N
– (default: 3) positive integer, iterate to use for approximationprec
– (default: 53) positive integer, real precision to use when computing root
OUTPUT: real number
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + x*y, y^2]) sage: f.dynamical_degree() # needs sage.rings.function_field 2.00000000000000
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + x*y, y**Integer(2)]) >>> f.dynamical_degree() # needs sage.rings.function_field 2.00000000000000
sage: P2.<X,Y,Z> = ProjectiveSpace(ZZ, 2) sage: f = DynamicalSystem_projective([X*Y, Y*Z + Z^2, Z^2]) sage: f.dynamical_degree(N=5, prec=100) # needs sage.rings.function_field 1.4309690811052555010452244131
>>> from sage.all import * >>> P2 = ProjectiveSpace(ZZ, Integer(2), names=('X', 'Y', 'Z',)); (X, Y, Z,) = P2._first_ngens(3) >>> f = DynamicalSystem_projective([X*Y, Y*Z + Z**Integer(2), Z**Integer(2)]) >>> f.dynamical_degree(N=Integer(5), prec=Integer(100)) # needs sage.rings.function_field 1.4309690811052555010452244131
- dynatomic_polynomial(period)[source]#
For a dynamical system of \(\mathbb{P}^1\) compute the dynatomic polynomial.
The dynatomic polynomial is the analog of the cyclotomic polynomial and its roots are the points of formal period \(period\). If possible the division is done in the coordinate ring of this map and a polynomial is returned. In rings where that is not possible, a
FractionField
element will be returned. In certain cases, when the conversion back to a polynomial fails, aSymbolRing
element will be returned.ALGORITHM:
For a positive integer \(n\), let \([F_n,G_n]\) be the coordinates of the \(n\)-th iterate of \(f\). Then construct
\[\Phi^{\ast}_n(f)(x,y) = \sum_{d \mid n} (yF_d(x,y) - xG_d(x,y))^{\mu(n/d)},\]where \(\mu\) is the Möbius function.
For a pair \([m,n]\), let \(f^m = [F_m,G_m]\). Compute
\[\Phi^{\ast}_{m,n}(f)(x,y) = \Phi^{\ast}_n(f)(F_m,G_m) / \Phi^{\ast}_n(f)(F_{m-1},G_{m-1})\]REFERENCES:
INPUT:
period
– a positive integer or a list/tuple \([m,n]\) where \(m\) is the preperiod and \(n\) is the period
OUTPUT:
If possible, a two variable polynomial in the coordinate ring of this map. Otherwise a fraction field element of the coordinate ring of this map. Or, a
SymbolicRing
element.Todo
Do the division when the base ring is \(p\)-adic so that the output is a polynomial.
Convert back to a polynomial when the base ring is a function field (not over \(\QQ\) or \(F_p\)).
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: f.dynatomic_polynomial(2) # needs sage.libs.pari x^2 + x*y + 2*y^2
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), y**Integer(2)]) >>> f.dynatomic_polynomial(Integer(2)) # needs sage.libs.pari x^2 + x*y + 2*y^2
sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, x*y]) sage: f.dynatomic_polynomial(4) # needs sage.libs.pari 2*x^12 + 18*x^10*y^2 + 57*x^8*y^4 + 79*x^6*y^6 + 48*x^4*y^8 + 12*x^2*y^10 + y^12
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), x*y]) >>> f.dynatomic_polynomial(Integer(4)) # needs sage.libs.pari 2*x^12 + 18*x^10*y^2 + 57*x^8*y^4 + 79*x^6*y^6 + 48*x^4*y^8 + 12*x^2*y^10 + y^12
sage: P.<x,y> = ProjectiveSpace(CC,1) sage: f = DynamicalSystem_projective([x^2 + y^2, 3*x*y]) sage: f.dynatomic_polynomial(3) # needs sage.libs.pari 13.0000000000000*x^6 + 117.000000000000*x^4*y^2 + 78.0000000000000*x^2*y^4 + y^6
>>> from sage.all import * >>> P = ProjectiveSpace(CC,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), Integer(3)*x*y]) >>> f.dynatomic_polynomial(Integer(3)) # needs sage.libs.pari 13.0000000000000*x^6 + 117.000000000000*x^4*y^2 + 78.0000000000000*x^2*y^4 + y^6
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 - 10/9*y^2, y^2]) sage: f.dynatomic_polynomial([2,1]) x^4*y^2 - 11/9*x^2*y^4 - 80/81*y^6
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - Integer(10)/Integer(9)*y**Integer(2), y**Integer(2)]) >>> f.dynatomic_polynomial([Integer(2),Integer(1)]) x^4*y^2 - 11/9*x^2*y^4 - 80/81*y^6
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 - 29/16*y^2, y^2]) sage: f.dynatomic_polynomial([2,3]) # needs sage.libs.pari x^12 - 95/8*x^10*y^2 + 13799/256*x^8*y^4 - 119953/1024*x^6*y^6 + 8198847/65536*x^4*y^8 - 31492431/524288*x^2*y^10 + 172692729/16777216*y^12
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - Integer(29)/Integer(16)*y**Integer(2), y**Integer(2)]) >>> f.dynatomic_polynomial([Integer(2),Integer(3)]) # needs sage.libs.pari x^12 - 95/8*x^10*y^2 + 13799/256*x^8*y^4 - 119953/1024*x^6*y^6 + 8198847/65536*x^4*y^8 - 31492431/524288*x^2*y^10 + 172692729/16777216*y^12
sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^2 - y^2, y^2]) sage: f.dynatomic_polynomial([1,2]) # needs sage.libs.pari x^2 - x*y
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - y**Integer(2), y**Integer(2)]) >>> f.dynatomic_polynomial([Integer(1),Integer(2)]) # needs sage.libs.pari x^2 - x*y
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^3 - y^3, 3*x*y^2]) sage: f.dynatomic_polynomial([0,4])==f.dynatomic_polynomial(4) # needs sage.libs.pari True
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(3) - y**Integer(3), Integer(3)*x*y**Integer(2)]) >>> f.dynatomic_polynomial([Integer(0),Integer(4)])==f.dynatomic_polynomial(Integer(4)) # needs sage.libs.pari True
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: f = DynamicalSystem_projective([x^2 + y^2, x*y, z^2]) sage: f.dynatomic_polynomial(2) Traceback (most recent call last): ... TypeError: does not make sense in dimension >1
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), x*y, z**Integer(2)]) >>> f.dynatomic_polynomial(Integer(2)) Traceback (most recent call last): ... TypeError: does not make sense in dimension >1
sage: P.<x,y> = ProjectiveSpace(Qp(5),1) # needs sage.rings.padics sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) # needs sage.rings.padics sage: f.dynatomic_polynomial(2) # needs sage.rings.padics (x^4*y + (2 + O(5^20))*x^2*y^3 - x*y^4 + (2 + O(5^20))*y^5)/(x^2*y - x*y^2 + y^3)
>>> from sage.all import * >>> P = ProjectiveSpace(Qp(Integer(5)),Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)# needs sage.rings.padics >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), y**Integer(2)]) # needs sage.rings.padics >>> f.dynatomic_polynomial(Integer(2)) # needs sage.rings.padics (x^4*y + (2 + O(5^20))*x^2*y^3 - x*y^4 + (2 + O(5^20))*y^5)/(x^2*y - x*y^2 + y^3)
sage: L.<t> = PolynomialRing(QQ) sage: P.<x,y> = ProjectiveSpace(L,1) sage: f = DynamicalSystem_projective([x^2 + t*y^2, y^2]) sage: f.dynatomic_polynomial(2) # needs sage.libs.pari x^2 + x*y + (t + 1)*y^2
>>> from sage.all import * >>> L = PolynomialRing(QQ, names=('t',)); (t,) = L._first_ngens(1) >>> P = ProjectiveSpace(L,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + t*y**Integer(2), y**Integer(2)]) >>> f.dynatomic_polynomial(Integer(2)) # needs sage.libs.pari x^2 + x*y + (t + 1)*y^2
sage: K.<c> = PolynomialRing(ZZ) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^2 + c*y^2, y^2]) sage: f.dynatomic_polynomial([1, 2]) # needs sage.libs.pari x^2 - x*y + (c + 1)*y^2
>>> from sage.all import * >>> K = PolynomialRing(ZZ, names=('c',)); (c,) = K._first_ngens(1) >>> P = ProjectiveSpace(K,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + c*y**Integer(2), y**Integer(2)]) >>> f.dynatomic_polynomial([Integer(1), Integer(2)]) # needs sage.libs.pari x^2 - x*y + (c + 1)*y^2
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: f.dynatomic_polynomial(2) # needs sage.libs.pari x^2 + x*y + 2*y^2 sage: R.<X> = PolynomialRing(QQ) sage: K.<c> = NumberField(X^2 + X + 2) # needs sage.rings.number_field sage: PP = P.change_ring(K) sage: ff = f.change_ring(K) sage: p = PP((c, 1)) sage: ff(ff(p)) == p True
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), y**Integer(2)]) >>> f.dynatomic_polynomial(Integer(2)) # needs sage.libs.pari x^2 + x*y + 2*y^2 >>> R = PolynomialRing(QQ, names=('X',)); (X,) = R._first_ngens(1) >>> K = NumberField(X**Integer(2) + X + Integer(2), names=('c',)); (c,) = K._first_ngens(1)# needs sage.rings.number_field >>> PP = P.change_ring(K) >>> ff = f.change_ring(K) >>> p = PP((c, Integer(1))) >>> ff(ff(p)) == p True
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, x*y]) sage: f.dynatomic_polynomial([2, 2]) # needs sage.libs.pari x^4 + 4*x^2*y^2 + y^4 sage: R.<X> = PolynomialRing(QQ) sage: K.<c> = NumberField(X^4 + 4*X^2 + 1) # needs sage.rings.number_field sage: PP = P.change_ring(K) sage: ff = f.change_ring(K) sage: p = PP((c, 1)) sage: ff.nth_iterate(p, 4) == ff.nth_iterate(p, 2) # needs sage.rings.number_field True
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), x*y]) >>> f.dynatomic_polynomial([Integer(2), Integer(2)]) # needs sage.libs.pari x^4 + 4*x^2*y^2 + y^4 >>> R = PolynomialRing(QQ, names=('X',)); (X,) = R._first_ngens(1) >>> K = NumberField(X**Integer(4) + Integer(4)*X**Integer(2) + Integer(1), names=('c',)); (c,) = K._first_ngens(1)# needs sage.rings.number_field >>> PP = P.change_ring(K) >>> ff = f.change_ring(K) >>> p = PP((c, Integer(1))) >>> ff.nth_iterate(p, Integer(4)) == ff.nth_iterate(p, Integer(2)) # needs sage.rings.number_field True
sage: P.<x,y> = ProjectiveSpace(CC, 1) sage: f = DynamicalSystem_projective([x^2 - CC.0/3*y^2, y^2]) sage: f.dynatomic_polynomial(2) # needs sage.libs.pari (x^4*y + (-0.666666666666667*I)*x^2*y^3 - x*y^4 + (-0.111111111111111 - 0.333333333333333*I)*y^5)/(x^2*y - x*y^2 + (-0.333333333333333*I)*y^3)
>>> from sage.all import * >>> P = ProjectiveSpace(CC, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - CC.gen(0)/Integer(3)*y**Integer(2), y**Integer(2)]) >>> f.dynatomic_polynomial(Integer(2)) # needs sage.libs.pari (x^4*y + (-0.666666666666667*I)*x^2*y^3 - x*y^4 + (-0.111111111111111 - 0.333333333333333*I)*y^5)/(x^2*y - x*y^2 + (-0.333333333333333*I)*y^3)
sage: P.<x,y> = ProjectiveSpace(CC, 1) sage: f = DynamicalSystem_projective([x^2 - CC.0/5*y^2, y^2]) sage: f.dynatomic_polynomial(2) # needs sage.libs.pari x^2 + x*y + (1.00000000000000 - 0.200000000000000*I)*y^2
>>> from sage.all import * >>> P = ProjectiveSpace(CC, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - CC.gen(0)/Integer(5)*y**Integer(2), y**Integer(2)]) >>> f.dynatomic_polynomial(Integer(2)) # needs sage.libs.pari x^2 + x*y + (1.00000000000000 - 0.200000000000000*I)*y^2
sage: L.<t> = PolynomialRing(QuadraticField(2).maximal_order()) # needs sage.rings.number_field sage: P.<x, y> = ProjectiveSpace(L.fraction_field(), 1) sage: f = DynamicalSystem_projective([x^2 + (t^2 + 1)*y^2, y^2]) sage: f.dynatomic_polynomial(2) # needs sage.libs.pari sage.rings.number_field x^2 + x*y + (t^2 + 2)*y^2
>>> from sage.all import * >>> L = PolynomialRing(QuadraticField(Integer(2)).maximal_order(), names=('t',)); (t,) = L._first_ngens(1)# needs sage.rings.number_field >>> P = ProjectiveSpace(L.fraction_field(), Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + (t**Integer(2) + Integer(1))*y**Integer(2), y**Integer(2)]) >>> f.dynatomic_polynomial(Integer(2)) # needs sage.libs.pari sage.rings.number_field x^2 + x*y + (t^2 + 2)*y^2
sage: P.<x,y> = ProjectiveSpace(ZZ, 1) sage: f = DynamicalSystem_projective([x^2 - 5*y^2, y^2]) sage: f.dynatomic_polynomial([3,0 ]) 0
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - Integer(5)*y**Integer(2), y**Integer(2)]) >>> f.dynatomic_polynomial([Integer(3),Integer(0) ]) 0
- green_function(P, v, **kwds)[source]#
Evaluate the local Green’s function at the place
v
forP
withN
terms of the series or to within a given error bound.Must be over a number field or order of a number field. Note that this is the absolute local Green’s function so is scaled by the degree of the base field.
Use
v=0
for the archimedean place over \(\QQ\) or field embedding. Non-archimedean places are prime ideals for number fields or primes over \(\QQ\).ALGORITHM:
See Exercise 5.29 and Figure 5.6 of [Sil2007].
INPUT:
P
– a projective pointv
– non-negative integer. a place, use0
for the archimedean place
kwds:
N
– (default: 10) positive integer. number of terms of the series to useprec
– (default: 100) positive integer, float point or \(p\)-adic precisionerror_bound
– (optional) a positive real number
OUTPUT: a real number
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, x*y]); sage: Q = P(5, 1) sage: f.green_function(Q, 0, N=30) 1.6460930159932946233759277576
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), x*y]); >>> Q = P(Integer(5), Integer(1)) >>> f.green_function(Q, Integer(0), N=Integer(30)) 1.6460930159932946233759277576
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, x*y]); sage: Q = P(5, 1) sage: f.green_function(Q, 0, N=200, prec=200) 1.6460930160038721802875250367738355497198064992657997569827
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), x*y]); >>> Q = P(Integer(5), Integer(1)) >>> f.green_function(Q, Integer(0), N=Integer(200), prec=Integer(200)) 1.6460930160038721802875250367738355497198064992657997569827
sage: # needs sage.rings.number_field sage: K.<w> = QuadraticField(3) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([17*x^2 + 1/7*y^2, 17*w*x*y]) sage: f.green_function(P.point([w, 2], False), K.places()[1]) 1.7236334013785676107373093775 sage: f.green_function(P([2, 1]), K.ideal(7), N=7) 0.48647753726382832627633818586 sage: f.green_function(P([w, 1]), K.ideal(17), error_bound=0.001) -0.70813041039490996737374178059
>>> from sage.all import * >>> # needs sage.rings.number_field >>> K = QuadraticField(Integer(3), names=('w',)); (w,) = K._first_ngens(1) >>> P = ProjectiveSpace(K,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(17)*x**Integer(2) + Integer(1)/Integer(7)*y**Integer(2), Integer(17)*w*x*y]) >>> f.green_function(P.point([w, Integer(2)], False), K.places()[Integer(1)]) 1.7236334013785676107373093775 >>> f.green_function(P([Integer(2), Integer(1)]), K.ideal(Integer(7)), N=Integer(7)) 0.48647753726382832627633818586 >>> f.green_function(P([w, Integer(1)]), K.ideal(Integer(17)), error_bound=RealNumber('0.001')) -0.70813041039490996737374178059
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, x*y]) sage: f.green_function(P.point([5,2], False), 0, N=30) 1.7315451844777407992085512000 sage: f.green_function(P.point([2,1], False), 0, N=30) 0.86577259223181088325226209926 sage: f.green_function(P.point([1,1], False), 0, N=30) 0.43288629610862338612700146098
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), x*y]) >>> f.green_function(P.point([Integer(5),Integer(2)], False), Integer(0), N=Integer(30)) 1.7315451844777407992085512000 >>> f.green_function(P.point([Integer(2),Integer(1)], False), Integer(0), N=Integer(30)) 0.86577259223181088325226209926 >>> f.green_function(P.point([Integer(1),Integer(1)], False), Integer(0), N=Integer(30)) 0.43288629610862338612700146098
- height_difference_bound(prec=None)[source]#
Return an upper bound on the different between the canonical height of a point with respect to this dynamical system and the absolute height of the point.
This map must be a morphism.
ALGORITHM:
Uses a Nullstellensatz argument to compute the constant. For details: see [Hutz2015].
INPUT:
prec
– (default:RealField
default) positive integer, float point precision
OUTPUT: a real number
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + y^2, x*y]) sage: f.height_difference_bound() # needs sage.symbolic 1.38629436111989 sage: P.<x,y,z> = ProjectiveSpace(ZZ, 2) sage: f = DynamicalSystem_projective([4*x^2 + 100*y^2, 210*x*y, 10000*z^2]) sage: f.height_difference_bound() # needs sage.symbolic 10.3089526606443
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), x*y]) >>> f.height_difference_bound() # needs sage.symbolic 1.38629436111989 >>> P = ProjectiveSpace(ZZ, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([Integer(4)*x**Integer(2) + Integer(100)*y**Integer(2), Integer(210)*x*y, Integer(10000)*z**Integer(2)]) >>> f.height_difference_bound() # needs sage.symbolic 10.3089526606443
A number field example:
sage: # needs sage.rings.number_field sage: R.<x> = QQ[] sage: K.<c> = NumberField(x^3 - 2) sage: P.<x,y,z> = ProjectiveSpace(K, 2) sage: f = DynamicalSystem_projective([1/(c+1)*x^2 + c*y^2, 210*x*y, 10000*z^2]) sage: f.height_difference_bound() # needs sage.symbolic 11.3683039374269
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = QQ['x']; (x,) = R._first_ngens(1) >>> K = NumberField(x**Integer(3) - Integer(2), names=('c',)); (c,) = K._first_ngens(1) >>> P = ProjectiveSpace(K, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([Integer(1)/(c+Integer(1))*x**Integer(2) + c*y**Integer(2), Integer(210)*x*y, Integer(10000)*z**Integer(2)]) >>> f.height_difference_bound() # needs sage.symbolic 11.3683039374269
sage: # needs sage.rings.number_field sage.symbolic sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2) sage: f = DynamicalSystem_projective([x^2, QQbar(sqrt(-1))*y^2, ....: QQbar(sqrt(3))*z^2]) sage: f.height_difference_bound() 2.89037175789616
>>> from sage.all import * >>> # needs sage.rings.number_field sage.symbolic >>> P = ProjectiveSpace(QQbar, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2), QQbar(sqrt(-Integer(1)))*y**Integer(2), ... QQbar(sqrt(Integer(3)))*z**Integer(2)]) >>> f.height_difference_bound() 2.89037175789616
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem([5*x^2 + 3*x*y , y^2 + 3*x^2]) sage: f.height_difference_bound(prec=100) # needs sage.symbolic 5.3375380797013179737224159274
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem([Integer(5)*x**Integer(2) + Integer(3)*x*y , y**Integer(2) + Integer(3)*x**Integer(2)]) >>> f.height_difference_bound(prec=Integer(100)) # needs sage.symbolic 5.3375380797013179737224159274
- is_Lattes()[source]#
Check if
self
is a Lattes mapOUTPUT:
True
ifself
is Lattes,False
otherwiseEXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: F = DynamicalSystem_projective([x^3, y^3]) sage: F.is_Lattes() False
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> F = DynamicalSystem_projective([x**Integer(3), y**Integer(3)]) >>> F.is_Lattes() False
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: F = DynamicalSystem_projective([x^2 - 2*y^2, y^2]) sage: F.is_Lattes() False
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> F = DynamicalSystem_projective([x**Integer(2) - Integer(2)*y**Integer(2), y**Integer(2)]) >>> F.is_Lattes() False
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: F = DynamicalSystem_projective([x^2 + y^2 + z^2, y^2, z^2]) sage: F.is_Lattes() False
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> F = DynamicalSystem_projective([x**Integer(2) + y**Integer(2) + z**Integer(2), y**Integer(2), z**Integer(2)]) >>> F.is_Lattes() False
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: F = DynamicalSystem_projective([(x + y)*(x - y)^3, y*(2*x + y)^3]) sage: F.is_Lattes() True
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> F = DynamicalSystem_projective([(x + y)*(x - y)**Integer(3), y*(Integer(2)*x + y)**Integer(3)]) >>> F.is_Lattes() True
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: F = DynamicalSystem_projective([(x + y)^4, 16*x*y*(x - y)^2]) sage: F.is_Lattes() True
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> F = DynamicalSystem_projective([(x + y)**Integer(4), Integer(16)*x*y*(x - y)**Integer(2)]) >>> F.is_Lattes() True
sage: f = P.Lattes_map(EllipticCurve([0, 0, 0, 0, 2]),2) sage: f.is_Lattes() True
>>> from sage.all import * >>> f = P.Lattes_map(EllipticCurve([Integer(0), Integer(0), Integer(0), Integer(0), Integer(2)]),Integer(2)) >>> f.is_Lattes() True
sage: f = P.Lattes_map(EllipticCurve([0, 0, 0, 0, 2]), 2) sage: L.<i> = CyclotomicField(4) sage: M = Matrix([[i, 0], [0, -i]]) sage: f.conjugate(M) Dynamical System of Projective Space of dimension 1 over Cyclotomic Field of order 4 and degree 2 Defn: Defined on coordinates by sending (x : y) to ((-1/4*i)*x^4 + (-4*i)*x*y^3 : (-i)*x^3*y + (2*i)*y^4) sage: f.is_Lattes() True
>>> from sage.all import * >>> f = P.Lattes_map(EllipticCurve([Integer(0), Integer(0), Integer(0), Integer(0), Integer(2)]), Integer(2)) >>> L = CyclotomicField(Integer(4), names=('i',)); (i,) = L._first_ngens(1) >>> M = Matrix([[i, Integer(0)], [Integer(0), -i]]) >>> f.conjugate(M) Dynamical System of Projective Space of dimension 1 over Cyclotomic Field of order 4 and degree 2 Defn: Defined on coordinates by sending (x : y) to ((-1/4*i)*x^4 + (-4*i)*x*y^3 : (-i)*x^3*y + (2*i)*y^4) >>> f.is_Lattes() True
REFERENCES:
- is_PGL_minimal(prime_list=None)[source]#
Check if this dynamical system is a minimal model in its conjugacy class.
See [BM2012] and [Mol2015] for a description of the algorithm. For polynomial maps it uses [HS2018].
INPUT:
prime_list
– (optional) list of primes to check minimality
OUTPUT: boolean
EXAMPLES:
sage: PS.<X,Y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([X^2 + 3*Y^2, X*Y]) sage: f.is_PGL_minimal() # needs sage.rings.function_field True
>>> from sage.all import * >>> PS = ProjectiveSpace(QQ,Integer(1), names=('X', 'Y',)); (X, Y,) = PS._first_ngens(2) >>> f = DynamicalSystem_projective([X**Integer(2) + Integer(3)*Y**Integer(2), X*Y]) >>> f.is_PGL_minimal() # needs sage.rings.function_field True
sage: PS.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([6*x^2 + 12*x*y + 7*y^2, 12*x*y]) sage: f.is_PGL_minimal() # needs sage.rings.function_field False
>>> from sage.all import * >>> PS = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = PS._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(6)*x**Integer(2) + Integer(12)*x*y + Integer(7)*y**Integer(2), Integer(12)*x*y]) >>> f.is_PGL_minimal() # needs sage.rings.function_field False
sage: PS.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([6*x^2 + 12*x*y + 7*y^2, y^2]) sage: f.is_PGL_minimal() # needs sage.rings.function_field False
>>> from sage.all import * >>> PS = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = PS._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(6)*x**Integer(2) + Integer(12)*x*y + Integer(7)*y**Integer(2), y**Integer(2)]) >>> f.is_PGL_minimal() # needs sage.rings.function_field False
- is_chebyshev()[source]#
Check if
self
is a Chebyshev polynomial.OUTPUT: True if
self
is Chebyshev, False otherwise.EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: F = DynamicalSystem_projective([x^4, y^4]) sage: F.is_chebyshev() False
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> F = DynamicalSystem_projective([x**Integer(4), y**Integer(4)]) >>> F.is_chebyshev() False
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: F = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: F.is_chebyshev() False
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> F = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), y**Integer(2)]) >>> F.is_chebyshev() False
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: F = DynamicalSystem_projective([2*x^2 - y^2, y^2]) sage: F.is_chebyshev() True
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> F = DynamicalSystem_projective([Integer(2)*x**Integer(2) - y**Integer(2), y**Integer(2)]) >>> F.is_chebyshev() True
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: F = DynamicalSystem_projective([x^3, 4*y^3 - 3*x^2*y]) sage: F.is_chebyshev() True
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> F = DynamicalSystem_projective([x**Integer(3), Integer(4)*y**Integer(3) - Integer(3)*x**Integer(2)*y]) >>> F.is_chebyshev() True
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: F = DynamicalSystem_projective([2*x^2 - y^2, y^2]) sage: L.<i> = CyclotomicField(4) sage: M = Matrix([[0,i],[-i,0]]) sage: F.conjugate(M) Dynamical System of Projective Space of dimension 1 over Cyclotomic Field of order 4 and degree 2 Defn: Defined on coordinates by sending (x : y) to ((-i)*x^2 : (-i)*x^2 + (2*i)*y^2) sage: F.is_chebyshev() True
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> F = DynamicalSystem_projective([Integer(2)*x**Integer(2) - y**Integer(2), y**Integer(2)]) >>> L = CyclotomicField(Integer(4), names=('i',)); (i,) = L._first_ngens(1) >>> M = Matrix([[Integer(0),i],[-i,Integer(0)]]) >>> F.conjugate(M) Dynamical System of Projective Space of dimension 1 over Cyclotomic Field of order 4 and degree 2 Defn: Defined on coordinates by sending (x : y) to ((-i)*x^2 : (-i)*x^2 + (2*i)*y^2) >>> F.is_chebyshev() True
REFERENCES:
- is_dynamical_belyi_map()[source]#
Return if this dynamical system is a dynamical Belyi map.
We define a dynamical Belyi map to be a map conjugate to a dynamical system \(f: \mathbb{P}^1 \to \mathbb{P}^1\) where the branch points are contained in \(\{0, 1, \infty \}\) and the postcritical set is contained in \(\{0, 1, \infty \}\).
Output: Boolean
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([-2*x^3 - 9*x^2*y - 12*x*y^2 - 6*y^3, y^3]) sage: f.is_dynamical_belyi_map() # needs sage.rings.number_field True
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([-Integer(2)*x**Integer(3) - Integer(9)*x**Integer(2)*y - Integer(12)*x*y**Integer(2) - Integer(6)*y**Integer(3), y**Integer(3)]) >>> f.is_dynamical_belyi_map() # needs sage.rings.number_field True
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([5*x^7 - 7*x^6*y, -7*x*y^6 + 5*y^7]) sage: f.is_dynamical_belyi_map() # needs sage.rings.number_field True
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(5)*x**Integer(7) - Integer(7)*x**Integer(6)*y, -Integer(7)*x*y**Integer(6) + Integer(5)*y**Integer(7)]) >>> f.is_dynamical_belyi_map() # needs sage.rings.number_field True
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: f.is_dynamical_belyi_map() # needs sage.rings.number_field False
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), y**Integer(2)]) >>> f.is_dynamical_belyi_map() # needs sage.rings.number_field False
sage: # needs sage.rings.number_field sage: F = QuadraticField(-7) sage: P.<x,y> = ProjectiveSpace(F, 1) sage: f = DynamicalSystem_projective([5*x^7 - 7*x^6*y, -7*x*y^6 + 5*y^7]) sage: f.is_dynamical_belyi_map() True
>>> from sage.all import * >>> # needs sage.rings.number_field >>> F = QuadraticField(-Integer(7)) >>> P = ProjectiveSpace(F, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(5)*x**Integer(7) - Integer(7)*x**Integer(6)*y, -Integer(7)*x*y**Integer(6) + Integer(5)*y**Integer(7)]) >>> f.is_dynamical_belyi_map() True
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([2*x^3 + 3*x^2*y - 3*x*y^2 + 2*y^3, ....: x^3 + y^3]) sage: f.is_dynamical_belyi_map() # needs sage.rings.number_field False
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(2)*x**Integer(3) + Integer(3)*x**Integer(2)*y - Integer(3)*x*y**Integer(2) + Integer(2)*y**Integer(3), ... x**Integer(3) + y**Integer(3)]) >>> f.is_dynamical_belyi_map() # needs sage.rings.number_field False
sage: # needs sage.rings.number_field sage: R.<t> = PolynomialRing(QQ) sage: N.<c> = NumberField(t^3 - 2) sage: P.<x,y> = ProjectiveSpace(N, 1) sage: f=DynamicalSystem_projective([x^2 + c*y^2, x*y]) sage: f.is_dynamical_belyi_map() False
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = PolynomialRing(QQ, names=('t',)); (t,) = R._first_ngens(1) >>> N = NumberField(t**Integer(3) - Integer(2), names=('c',)); (c,) = N._first_ngens(1) >>> P = ProjectiveSpace(N, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f=DynamicalSystem_projective([x**Integer(2) + c*y**Integer(2), x*y]) >>> f.is_dynamical_belyi_map() False
sage: P.<x,y> = ProjectiveSpace(GF(7), 1) sage: f = DynamicalSystem_projective([x^3 + 6*y^3, y^3]) sage: f.is_dynamical_belyi_map() # needs sage.libs.pari False
>>> from sage.all import * >>> P = ProjectiveSpace(GF(Integer(7)), Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(3) + Integer(6)*y**Integer(3), y**Integer(3)]) >>> f.is_dynamical_belyi_map() # needs sage.libs.pari False
- is_postcritically_finite(err=0.01, use_algebraic_closure=True)[source]#
Determine if this dynamical system is post-critically finite.
Only for endomorphisms of \(\mathbb{P}^1\). It checks if each critical point is preperiodic. The optional parameter
err
is passed intois_preperiodic()
as part of the preperiodic check.The computations can be done either over the algebraic closure of the base field or over the minimal extension of the base field that contains the critical points.
INPUT:
err
– (default: 0.01) positive real numberuse_algebraic_closure
– boolean (default:True
) – IfTrue
, uses the algebraic closure. IfFalse
, uses the smallest extension of the base field containing all the critical points.
OUTPUT: boolean
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 - y^2, y^2]) sage: f.is_postcritically_finite() # needs sage.rings.number_field True
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - y**Integer(2), y**Integer(2)]) >>> f.is_postcritically_finite() # needs sage.rings.number_field True
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^3 - y^3, y^3]) sage: f.is_postcritically_finite() # needs sage.rings.number_field False
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(3) - y**Integer(3), y**Integer(3)]) >>> f.is_postcritically_finite() # needs sage.rings.number_field False
sage: # needs sage.rings.number_field sage: R.<z> = QQ[] sage: K.<v> = NumberField(z^8 + 3*z^6 + 3*z^4 + z^2 + 1) sage: PS.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^3 + v*y^3, y^3]) sage: f.is_postcritically_finite() # long time True
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = QQ['z']; (z,) = R._first_ngens(1) >>> K = NumberField(z**Integer(8) + Integer(3)*z**Integer(6) + Integer(3)*z**Integer(4) + z**Integer(2) + Integer(1), names=('v',)); (v,) = K._first_ngens(1) >>> PS = ProjectiveSpace(K,Integer(1), names=('x', 'y',)); (x, y,) = PS._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(3) + v*y**Integer(3), y**Integer(3)]) >>> f.is_postcritically_finite() # long time True
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([6*x^2 + 16*x*y + 16*y^2, ....: -3*x^2 - 4*x*y - 4*y^2]) sage: f.is_postcritically_finite() # needs sage.rings.number_field True
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(6)*x**Integer(2) + Integer(16)*x*y + Integer(16)*y**Integer(2), ... -Integer(3)*x**Integer(2) - Integer(4)*x*y - Integer(4)*y**Integer(2)]) >>> f.is_postcritically_finite() # needs sage.rings.number_field True
sage: # needs sage.libs.gap sage.rings.number_field sage: K = UniversalCyclotomicField() sage: P.<x,y> = ProjectiveSpace(K,1) sage: F = DynamicalSystem_projective([x^2 - y^2, y^2], domain=P) sage: F.is_postcritically_finite() True
>>> from sage.all import * >>> # needs sage.libs.gap sage.rings.number_field >>> K = UniversalCyclotomicField() >>> P = ProjectiveSpace(K,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> F = DynamicalSystem_projective([x**Integer(2) - y**Integer(2), y**Integer(2)], domain=P) >>> F.is_postcritically_finite() True
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([8*x^4 - 8*x^2*y^2 + y^4, y^4]) sage: f.is_postcritically_finite(use_algebraic_closure=False) # long time True
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(8)*x**Integer(4) - Integer(8)*x**Integer(2)*y**Integer(2) + y**Integer(4), y**Integer(4)]) >>> f.is_postcritically_finite(use_algebraic_closure=False) # long time True
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^4 - x^2*y^2 + y^4, y^4]) sage: f.is_postcritically_finite(use_algebraic_closure=False) # needs sage.rings.number_field False
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(4) - x**Integer(2)*y**Integer(2) + y**Integer(4), y**Integer(4)]) >>> f.is_postcritically_finite(use_algebraic_closure=False) # needs sage.rings.number_field False
sage: # needs sage.rings.number_field sage: P.<x,y> = ProjectiveSpace(QQbar,1) sage: f = DynamicalSystem_projective([x^4 - x^2*y^2, y^4]) sage: f.is_postcritically_finite() False
>>> from sage.all import * >>> # needs sage.rings.number_field >>> P = ProjectiveSpace(QQbar,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(4) - x**Integer(2)*y**Integer(2), y**Integer(4)]) >>> f.is_postcritically_finite() False
- minimal_model(return_transformation=False, prime_list=None, algorithm=None, check_primes=True)[source]#
Determine if this dynamical system is minimal.
This dynamical system must be defined over the projective line over the rationals. In particular, determine if this map is affine minimal, which is enough to decide if it is minimal or not. See Proposition 2.10 in [BM2012].
INPUT:
return_transformation
– (default:False
) boolean; this signals a return of the \(PGL_2\) transformation to conjugate this map to the calculated minimal modelprime_list
– (optional) a list of primes, in case one only wants to determine minimality at those specific primesalgorithm
– (optional) string; can be one of the following:check_primes
– (optional) boolean: this signals whether tocheck whether each element in
prime_list
is a prime
OUTPUT:
a dynamical system on the projective line which is a minimal model of this map
a \(PGL(2,\QQ)\) element which conjugates this map to a minimal model
EXAMPLES:
sage: PS.<X,Y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([X^2 + 3*Y^2, X*Y]) sage: f.minimal_model(return_transformation=True) # needs sage.rings.function_field ( Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (X : Y) to (X^2 + 3*Y^2 : X*Y) , [1 0] [0 1] )
>>> from sage.all import * >>> PS = ProjectiveSpace(QQ,Integer(1), names=('X', 'Y',)); (X, Y,) = PS._first_ngens(2) >>> f = DynamicalSystem_projective([X**Integer(2) + Integer(3)*Y**Integer(2), X*Y]) >>> f.minimal_model(return_transformation=True) # needs sage.rings.function_field ( Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (X : Y) to (X^2 + 3*Y^2 : X*Y) , [1 0] [0 1] )
sage: PS.<X,Y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([7365/2*X^4 + 6282*X^3*Y + 4023*X^2*Y^2 ....: + 1146*X*Y^3 + 245/2*Y^4, ....: -12329/2*X^4 - 10506*X^3*Y - 6723*X^2*Y^2 ....: - 1914*X*Y^3 - 409/2*Y^4]) sage: f.minimal_model(return_transformation=True) # needs sage.rings.function_field ( Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (X : Y) to (9847*X^4 + 28088*X^3*Y + 30048*X^2*Y^2 + 14288*X*Y^3 + 2548*Y^4 : -12329*X^4 - 35164*X^3*Y - 37614*X^2*Y^2 - 17884*X*Y^3 - 3189*Y^4), [2 1] [0 1] )
>>> from sage.all import * >>> PS = ProjectiveSpace(QQ,Integer(1), names=('X', 'Y',)); (X, Y,) = PS._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(7365)/Integer(2)*X**Integer(4) + Integer(6282)*X**Integer(3)*Y + Integer(4023)*X**Integer(2)*Y**Integer(2) ... + Integer(1146)*X*Y**Integer(3) + Integer(245)/Integer(2)*Y**Integer(4), ... -Integer(12329)/Integer(2)*X**Integer(4) - Integer(10506)*X**Integer(3)*Y - Integer(6723)*X**Integer(2)*Y**Integer(2) ... - Integer(1914)*X*Y**Integer(3) - Integer(409)/Integer(2)*Y**Integer(4)]) >>> f.minimal_model(return_transformation=True) # needs sage.rings.function_field ( Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (X : Y) to (9847*X^4 + 28088*X^3*Y + 30048*X^2*Y^2 + 14288*X*Y^3 + 2548*Y^4 : -12329*X^4 - 35164*X^3*Y - 37614*X^2*Y^2 - 17884*X*Y^3 - 3189*Y^4), <BLANKLINE> [2 1] [0 1] )
sage: PS.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([6*x^2 + 12*x*y + 7*y^2, 12*x*y]) sage: f.minimal_model() # needs sage.rings.function_field Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^2 + 12*x*y + 42*y^2 : 2*x*y)
>>> from sage.all import * >>> PS = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = PS._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(6)*x**Integer(2) + Integer(12)*x*y + Integer(7)*y**Integer(2), Integer(12)*x*y]) >>> f.minimal_model() # needs sage.rings.function_field Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^2 + 12*x*y + 42*y^2 : 2*x*y)
sage: PS.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([6*x^2 + 12*x*y + 7*y^2, 12*x*y + 42*y^2]) sage: g,M = f.minimal_model(return_transformation=True, algorithm='BM') # needs sage.rings.function_field sage: f.conjugate(M) == g # needs sage.rings.function_field True
>>> from sage.all import * >>> PS = ProjectiveSpace(ZZ,Integer(1), names=('x', 'y',)); (x, y,) = PS._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(6)*x**Integer(2) + Integer(12)*x*y + Integer(7)*y**Integer(2), Integer(12)*x*y + Integer(42)*y**Integer(2)]) >>> g,M = f.minimal_model(return_transformation=True, algorithm='BM') # needs sage.rings.function_field >>> f.conjugate(M) == g # needs sage.rings.function_field True
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem([2*x^2, y^2]) sage: f.minimal_model(return_transformation=True) # needs sage.rings.function_field ( Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^2 : y^2) , [1 0] [0 2] ) sage: f.minimal_model(prime_list=[3]) # needs sage.rings.function_field Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (2*x^2 : y^2)
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem([Integer(2)*x**Integer(2), y**Integer(2)]) >>> f.minimal_model(return_transformation=True) # needs sage.rings.function_field ( Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^2 : y^2) , [1 0] [0 2] ) >>> f.minimal_model(prime_list=[Integer(3)]) # needs sage.rings.function_field Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (2*x^2 : y^2)
REFERENCES:
- multiplier(P, n, check=True)[source]#
Return the multiplier of the point
P
of periodn
with respect to this dynamical system.INPUT:
P
– a point on domain of this mapn
– a positive integer, the period ofP
check
– (default:True
) boolean; verify thatP
has periodn
OUTPUT:
A square matrix of size
self.codomain().dimension_relative()
in thebase_ring
of this dynamical system.EXAMPLES:
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: f = DynamicalSystem_projective([x^2, y^2, 4*z^2]) sage: Q = P.point([4,4,1], False) sage: f.multiplier(Q,1) [2 0] [0 2]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2), y**Integer(2), Integer(4)*z**Integer(2)]) >>> Q = P.point([Integer(4),Integer(4),Integer(1)], False) >>> f.multiplier(Q,Integer(1)) [2 0] [0 2]
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([7*x^2 - 28*y^2, 24*x*y]) sage: f.multiplier(P(2,5), 4) [231361/20736]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(7)*x**Integer(2) - Integer(28)*y**Integer(2), Integer(24)*x*y]) >>> f.multiplier(P(Integer(2),Integer(5)), Integer(4)) [231361/20736]
sage: P.<x,y> = ProjectiveSpace(CC,1) sage: f = DynamicalSystem_projective([x^3 - 25*x*y^2 + 12*y^3, 12*y^3]) sage: f.multiplier(P(1,1), 5) [0.389017489711934]
>>> from sage.all import * >>> P = ProjectiveSpace(CC,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(3) - Integer(25)*x*y**Integer(2) + Integer(12)*y**Integer(3), Integer(12)*y**Integer(3)]) >>> f.multiplier(P(Integer(1),Integer(1)), Integer(5)) [0.389017489711934]
sage: P.<x,y> = ProjectiveSpace(RR,1) sage: f = DynamicalSystem_projective([x^2 - 2*y^2, y^2]) sage: f.multiplier(P(2,1), 1) [4.00000000000000]
>>> from sage.all import * >>> P = ProjectiveSpace(RR,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - Integer(2)*y**Integer(2), y**Integer(2)]) >>> f.multiplier(P(Integer(2),Integer(1)), Integer(1)) [4.00000000000000]
sage: P.<x,y> = ProjectiveSpace(Qp(13),1) # needs sage.rings.padics sage: f = DynamicalSystem_projective([x^2 - 29/16*y^2, y^2]) sage: f.multiplier(P(5,4), 3) # needs sage.rings.padics [6 + 8*13 + 13^2 + 8*13^3 + 13^4 + 8*13^5 + 13^6 + 8*13^7 + 13^8 + 8*13^9 + 13^10 + 8*13^11 + 13^12 + 8*13^13 + 13^14 + 8*13^15 + 13^16 + 8*13^17 + 13^18 + 8*13^19 + O(13^20)]
>>> from sage.all import * >>> P = ProjectiveSpace(Qp(Integer(13)),Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)# needs sage.rings.padics >>> f = DynamicalSystem_projective([x**Integer(2) - Integer(29)/Integer(16)*y**Integer(2), y**Integer(2)]) >>> f.multiplier(P(Integer(5),Integer(4)), Integer(3)) # needs sage.rings.padics [6 + 8*13 + 13^2 + 8*13^3 + 13^4 + 8*13^5 + 13^6 + 8*13^7 + 13^8 + 8*13^9 + 13^10 + 8*13^11 + 13^12 + 8*13^13 + 13^14 + 8*13^15 + 13^16 + 8*13^17 + 13^18 + 8*13^19 + O(13^20)]
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 - y^2, y^2]) sage: f.multiplier(P(0,1), 1) Traceback (most recent call last): ... ValueError: (0 : 1) is not periodic of period 1
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - y**Integer(2), y**Integer(2)]) >>> f.multiplier(P(Integer(0),Integer(1)), Integer(1)) Traceback (most recent call last): ... ValueError: (0 : 1) is not periodic of period 1
- multiplier_spectra(n, formal=False, type='point', use_algebraic_closure=True, check=True)[source]#
Computes the
n
multiplier spectra of this dynamical system.This is the set of multipliers of all peroidic points of period
n
included with the appropriate multiplicity. User can also specify to compute the formaln
multiplier spectra instead which includes the multipliers of all formal periodic points of periodn
with appropriate multiplicity. The map must be defined over projective space over a number field or finite field.By default, the computations are done over the algebraic closure of the base field. If the map is defined over projective space of dimension 1, the computation can be done over the minimal extension of the base field that contains the periodic points. Otherwise, it will be done over the base ring of the map.
INPUT:
n
– a positive integer, the periodformal
– (default:False
) boolean;True
specifies to find the formaln
multiplier spectra of this map andFalse
specifies to find then
multiplier spectratype
– (default:'point'
) string; either'point'
or'cycle'
depending on whether you compute one multiplier per point or one per cycleuse_algebraic_closure
– boolean (default:True
) – IfTrue
uses the algebraic closure. Using the algebraic closure can sometimes lead to numerical instability and extraneous errors. For most accurate results in dimension 1, set toFalse
. IfFalse
, and the map is defined over projective space of dimension 1, uses the smallest extension of the base field containing all the periodic points. If the map is defined over projective space of dimension greater than 1, then the base ring of the map is used.check
– (defualt:True
) whether to check if the full multiplier spectra was computed. IfFalse
, can lead to mathematically incorrect answers in dimension greater than 1. Ignored ifuse_algebraic_closure
isTrue
or if this dynamical system is defined over projective space of dimension 1.
OUTPUT:
A list of field elements if the domain of the map is projective space of dimension 1. If the domain of the map is projective space of dimension greater than 1, a list of matrices
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 - 3/4*y^2, y^2]) sage: sorted(f.multiplier_spectra(2, type='point')) # needs sage.rings.number_field [0, 1, 1, 1, 9] sage: sorted(f.multiplier_spectra(2, type='cycle')) # needs sage.rings.number_field [0, 1, 1, 9]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - Integer(3)/Integer(4)*y**Integer(2), y**Integer(2)]) >>> sorted(f.multiplier_spectra(Integer(2), type='point')) # needs sage.rings.number_field [0, 1, 1, 1, 9] >>> sorted(f.multiplier_spectra(Integer(2), type='cycle')) # needs sage.rings.number_field [0, 1, 1, 9]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2, z^2, y^2]) sage: f.multiplier_spectra(1) # needs sage.rings.number_field [ [ 2 1 - 1.732050807568878?*I] [ 0 -2], [ 2 1 + 1.732050807568878?*I] [ 0 0] [ 0 0] [ 0 -2], [ 0 -2], [ 0 -2], [ 0 0] [0 0] [ 2 -2] [ 0 -2], [0 0], [ 0 -2] ]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2), z**Integer(2), y**Integer(2)]) >>> f.multiplier_spectra(Integer(1)) # needs sage.rings.number_field [ [ 2 1 - 1.732050807568878?*I] [ 0 -2], [ 2 1 + 1.732050807568878?*I] [ 0 0] [ 0 0] [ 0 -2], [ 0 -2], [ 0 -2], [ 0 0] [0 0] [ 2 -2] [ 0 -2], [0 0], [ 0 -2] ]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2, z^2, y^2]) sage: f.multiplier_spectra(2, formal=True) # long time [ [4 0] [4 0] [4 0] [4 0] [4 0] [4 0] [4 0] [4 0] [0 0] [0 0] [0 4], [0 0], [0 0], [0 4], [0 4], [0 0], [0 0], [0 4], [0 0], [0 0], [4 0] [4 0] [4 0] [4 0] [0 4], [0 4], [0 0], [0 0] ]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2), z**Integer(2), y**Integer(2)]) >>> f.multiplier_spectra(Integer(2), formal=True) # long time [ [4 0] [4 0] [4 0] [4 0] [4 0] [4 0] [4 0] [4 0] [0 0] [0 0] [0 4], [0 0], [0 0], [0 4], [0 4], [0 0], [0 0], [0 4], [0 0], [0 0], [4 0] [4 0] [4 0] [4 0] [0 4], [0 4], [0 0], [0 0] ]
sage: # needs sage.rings.number_field sage: set_verbose(None) sage: z = QQ['z'].0 sage: K.<w> = NumberField(z^4 - 4*z^2 + 1,'z') sage: P.<x,y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem_projective([x^2 - w/4*y^2, y^2]) sage: sorted(f.multiplier_spectra(2, formal=False, type='cycle')) [0, 0.0681483474218635? - 1.930649271699173?*I, 0.0681483474218635? + 1.930649271699173?*I, 5.931851652578137? + 0.?e-49*I]
>>> from sage.all import * >>> # needs sage.rings.number_field >>> set_verbose(None) >>> z = QQ['z'].gen(0) >>> K = NumberField(z**Integer(4) - Integer(4)*z**Integer(2) + Integer(1),'z', names=('w',)); (w,) = K._first_ngens(1) >>> P = ProjectiveSpace(K, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - w/Integer(4)*y**Integer(2), y**Integer(2)]) >>> sorted(f.multiplier_spectra(Integer(2), formal=False, type='cycle')) [0, 0.0681483474218635? - 1.930649271699173?*I, 0.0681483474218635? + 1.930649271699173?*I, 5.931851652578137? + 0.?e-49*I]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([4608*x^10 - 2910096*x^9*y + 325988068*x^8*y^2 ....: + 31825198932*x^7*y^3 - 4139806626613*x^6*y^4 - 44439736715486*x^5*y^5 ....: + 2317935971590902*x^4*y^6 - 15344764859590852*x^3*y^7 ....: + 2561851642765275*x^2*y^8 + 113578270285012470*x*y^9 ....: - 150049940203963800*y^10, 4608*y^10]) sage: sorted(f.multiplier_spectra(1)) # needs sage.rings.number_field [-119820502365680843999, -7198147681176255644585/256, -3086380435599991/9, -3323781962860268721722583135/35184372088832, -4290991994944936653/2097152, 0, 529278480109921/256, 1061953534167447403/19683, 848446157556848459363/19683, 82911372672808161930567/8192, 3553497751559301575157261317/8192]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([Integer(4608)*x**Integer(10) - Integer(2910096)*x**Integer(9)*y + Integer(325988068)*x**Integer(8)*y**Integer(2) ... + Integer(31825198932)*x**Integer(7)*y**Integer(3) - Integer(4139806626613)*x**Integer(6)*y**Integer(4) - Integer(44439736715486)*x**Integer(5)*y**Integer(5) ... + Integer(2317935971590902)*x**Integer(4)*y**Integer(6) - Integer(15344764859590852)*x**Integer(3)*y**Integer(7) ... + Integer(2561851642765275)*x**Integer(2)*y**Integer(8) + Integer(113578270285012470)*x*y**Integer(9) ... - Integer(150049940203963800)*y**Integer(10), Integer(4608)*y**Integer(10)]) >>> sorted(f.multiplier_spectra(Integer(1))) # needs sage.rings.number_field [-119820502365680843999, -7198147681176255644585/256, -3086380435599991/9, -3323781962860268721722583135/35184372088832, -4290991994944936653/2097152, 0, 529278480109921/256, 1061953534167447403/19683, 848446157556848459363/19683, 82911372672808161930567/8192, 3553497751559301575157261317/8192]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^2 - 7/4*y^2, y^2]) sage: f.multiplier_spectra(3, formal=True, type='cycle') # needs sage.rings.number_field [1, 1] sage: f.multiplier_spectra(3, formal=True, type='point') # needs sage.rings.number_field [1, 1, 1, 1, 1, 1]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - Integer(7)/Integer(4)*y**Integer(2), y**Integer(2)]) >>> f.multiplier_spectra(Integer(3), formal=True, type='cycle') # needs sage.rings.number_field [1, 1] >>> f.multiplier_spectra(Integer(3), formal=True, type='point') # needs sage.rings.number_field [1, 1, 1, 1, 1, 1]
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^4 + 3*y^4, 4*x^2*y^2]) sage: f.multiplier_spectra(1, use_algebraic_closure=False) # needs sage.rings.number_field [0, -1, 1/128*a^5 - 13/384*a^4 + 5/96*a^3 + 1/16*a^2 + 43/128*a + 303/128, -1/288*a^5 + 1/96*a^4 + 1/24*a^3 - 1/3*a^2 + 5/32*a - 115/32, -5/1152*a^5 + 3/128*a^4 - 3/32*a^3 + 13/48*a^2 - 63/128*a - 227/128] sage: f.multiplier_spectra(1) # needs sage.rings.number_field [0, -1, 1.951373035591442?, -2.475686517795721? - 0.730035681602057?*I, -2.475686517795721? + 0.730035681602057?*I]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(4) + Integer(3)*y**Integer(4), Integer(4)*x**Integer(2)*y**Integer(2)]) >>> f.multiplier_spectra(Integer(1), use_algebraic_closure=False) # needs sage.rings.number_field [0, -1, 1/128*a^5 - 13/384*a^4 + 5/96*a^3 + 1/16*a^2 + 43/128*a + 303/128, -1/288*a^5 + 1/96*a^4 + 1/24*a^3 - 1/3*a^2 + 5/32*a - 115/32, -5/1152*a^5 + 3/128*a^4 - 3/32*a^3 + 13/48*a^2 - 63/128*a - 227/128] >>> f.multiplier_spectra(Integer(1)) # needs sage.rings.number_field [0, -1, 1.951373035591442?, -2.475686517795721? - 0.730035681602057?*I, -2.475686517795721? + 0.730035681602057?*I]
sage: P.<x,y> = ProjectiveSpace(GF(5), 1) sage: f = DynamicalSystem_projective([x^4 + 2*y^4, 4*x^2*y^2]) sage: f.multiplier_spectra(1, use_algebraic_closure=False) # needs sage.rings.finite_rings [0, 3*a + 3, 2*a + 1, 1, 1] sage: f.multiplier_spectra(1) [0, 2*z2 + 1, 3*z2 + 3, 1, 1]
>>> from sage.all import * >>> P = ProjectiveSpace(GF(Integer(5)), Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(4) + Integer(2)*y**Integer(4), Integer(4)*x**Integer(2)*y**Integer(2)]) >>> f.multiplier_spectra(Integer(1), use_algebraic_closure=False) # needs sage.rings.finite_rings [0, 3*a + 3, 2*a + 1, 1, 1] >>> f.multiplier_spectra(Integer(1)) [0, 2*z2 + 1, 3*z2 + 3, 1, 1]
sage: # needs sage.rings.number_field sage: P.<x,y> = ProjectiveSpace(QQbar, 1) sage: f = DynamicalSystem_projective([x^5 + 3*y^5, 4*x^3*y^2]) sage: f.multiplier_spectra(1) [0, -4.106544657178796?, -7/4, 1.985176555073911?, -3.064315948947558? - 1.150478041113253?*I, -3.064315948947558? + 1.150478041113253?*I]
>>> from sage.all import * >>> # needs sage.rings.number_field >>> P = ProjectiveSpace(QQbar, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(5) + Integer(3)*y**Integer(5), Integer(4)*x**Integer(3)*y**Integer(2)]) >>> f.multiplier_spectra(Integer(1)) [0, -4.106544657178796?, -7/4, 1.985176555073911?, -3.064315948947558? - 1.150478041113253?*I, -3.064315948947558? + 1.150478041113253?*I]
sage: K = GF(3).algebraic_closure() sage: P.<x,y> = ProjectiveSpace(K, 1) sage: f = DynamicalSystem_projective([x^5 + 2*y^5, 4*x^3*y^2]) sage: f.multiplier_spectra(1) [0, z3 + 2, z3 + 1, z3, 1, 1]
>>> from sage.all import * >>> K = GF(Integer(3)).algebraic_closure() >>> P = ProjectiveSpace(K, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(5) + Integer(2)*y**Integer(5), Integer(4)*x**Integer(3)*y**Integer(2)]) >>> f.multiplier_spectra(Integer(1)) [0, z3 + 2, z3 + 1, z3, 1, 1]
- nth_iterate(P, n, **kwds)[source]#
Return the
n
-th iterate of the pointP
by this dynamical system.If
normalize
isTrue
, then the coordinates are automatically normalized.Todo
Is there a more efficient way to do this?
INPUT:
P
– a point in this map’s domainn
– a positive integer
kwds:
normalize
– (default:False
) boolean
OUTPUT: a point in this map’s codomain
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, 2*y^2]) sage: Q = P(1,1) sage: f.nth_iterate(Q,4) (32768 : 32768)
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), Integer(2)*y**Integer(2)]) >>> Q = P(Integer(1),Integer(1)) >>> f.nth_iterate(Q,Integer(4)) (32768 : 32768)
sage: P.<x,y> = ProjectiveSpace(ZZ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, 2*y^2]) sage: Q = P(1,1) sage: f.nth_iterate(Q, 4, normalize=True) (1 : 1)
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), Integer(2)*y**Integer(2)]) >>> Q = P(Integer(1),Integer(1)) >>> f.nth_iterate(Q, Integer(4), normalize=True) (1 : 1)
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: f = DynamicalSystem_projective([x^2, 2*y^2, z^2 - x^2]) sage: Q = P(2,7,1) sage: f.nth_iterate(Q,2) (-16/7 : -2744 : 1)
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2), Integer(2)*y**Integer(2), z**Integer(2) - x**Integer(2)]) >>> Q = P(Integer(2),Integer(7),Integer(1)) >>> f.nth_iterate(Q,Integer(2)) (-16/7 : -2744 : 1)
sage: R.<t> = PolynomialRing(QQ) sage: P.<x,y,z> = ProjectiveSpace(R,2) sage: f = DynamicalSystem_projective([x^2 + t*y^2, (2-t)*y^2, z^2]) sage: Q = P(2 + t, 7, t) sage: f.nth_iterate(Q,2) (t^4 + 2507*t^3 - 6787*t^2 + 10028*t + 16 : -2401*t^3 + 14406*t^2 - 28812*t + 19208 : t^4)
>>> from sage.all import * >>> R = PolynomialRing(QQ, names=('t',)); (t,) = R._first_ngens(1) >>> P = ProjectiveSpace(R,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2) + t*y**Integer(2), (Integer(2)-t)*y**Integer(2), z**Integer(2)]) >>> Q = P(Integer(2) + t, Integer(7), t) >>> f.nth_iterate(Q,Integer(2)) (t^4 + 2507*t^3 - 6787*t^2 + 10028*t + 16 : -2401*t^3 + 14406*t^2 - 28812*t + 19208 : t^4)
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2) sage: X = P.subscheme(x^2-y^2) sage: f = DynamicalSystem_projective([x^2, y^2, z^2], domain=X) sage: f.nth_iterate(X(2,2,3), 3) (256 : 256 : 6561)
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> X = P.subscheme(x**Integer(2)-y**Integer(2)) >>> f = DynamicalSystem_projective([x**Integer(2), y**Integer(2), z**Integer(2)], domain=X) >>> f.nth_iterate(X(Integer(2),Integer(2),Integer(3)), Integer(3)) (256 : 256 : 6561)
sage: K.<c> = FunctionField(QQ) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^3 - 2*x*y^2 - c*y^3, x*y^2]) sage: f.nth_iterate(P(c,1), 2) ((c^6 - 9*c^4 + 25*c^2 - c - 21)/(c^2 - 3) : 1) sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: f = DynamicalSystem_projective([x^2 + 3*y^2, 2*y^2, z^2]) sage: f.nth_iterate(P(2, 7, 1), -2) Traceback (most recent call last): ... TypeError: must be a forward orbit
>>> from sage.all import * >>> K = FunctionField(QQ, names=('c',)); (c,) = K._first_ngens(1) >>> P = ProjectiveSpace(K,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(3) - Integer(2)*x*y**Integer(2) - c*y**Integer(3), x*y**Integer(2)]) >>> f.nth_iterate(P(c,Integer(1)), Integer(2)) ((c^6 - 9*c^4 + 25*c^2 - c - 21)/(c^2 - 3) : 1) >>> P = ProjectiveSpace(QQ,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2) + Integer(3)*y**Integer(2), Integer(2)*y**Integer(2), z**Integer(2)]) >>> f.nth_iterate(P(Integer(2), Integer(7), Integer(1)), -Integer(2)) Traceback (most recent call last): ... TypeError: must be a forward orbit
sage: P.<x,y> = ProjectiveSpace(QQ, 1) sage: f = DynamicalSystem_projective([x^3, x*y^2], domain=P) sage: f.nth_iterate(P(0, 1), 3, check=False) (0 : 0) sage: f.nth_iterate(P(0, 1), 3) Traceback (most recent call last): ... ValueError: [0, 0] does not define a valid projective point since all entries are zero
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(3), x*y**Integer(2)], domain=P) >>> f.nth_iterate(P(Integer(0), Integer(1)), Integer(3), check=False) (0 : 0) >>> f.nth_iterate(P(Integer(0), Integer(1)), Integer(3)) Traceback (most recent call last): ... ValueError: [0, 0] does not define a valid projective point since all entries are zero
sage: P.<x,y> = ProjectiveSpace(ZZ, 1) sage: f = DynamicalSystem_projective([x^3, x*y^2], domain=P) sage: f.nth_iterate(P(2,1), 3, normalize=False) (134217728 : 524288) sage: f.nth_iterate(P(2,1), 3, normalize=True) (256 : 1)
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(3), x*y**Integer(2)], domain=P) >>> f.nth_iterate(P(Integer(2),Integer(1)), Integer(3), normalize=False) (134217728 : 524288) >>> f.nth_iterate(P(Integer(2),Integer(1)), Integer(3), normalize=True) (256 : 1)
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem([x + y, y]) sage: Q = (3,1) sage: f.nth_iterate(Q,0) (3 : 1)
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem([x + y, y]) >>> Q = (Integer(3),Integer(1)) >>> f.nth_iterate(Q,Integer(0)) (3 : 1)
- nth_iterate_map(n, normalize=False)[source]#
Return the
n
-th iterate of this dynamical system.ALGORITHM:
Uses a form of successive squaring to reducing computations.
Todo
This could be improved.
INPUT:
n
– positive integernormalize
– boolean; remove gcd’s during iteration
OUTPUT: a projective dynamical system
EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: f.nth_iterate_map(2) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^4 + 2*x^2*y^2 + 2*y^4 : y^4)
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), y**Integer(2)]) >>> f.nth_iterate_map(Integer(2)) Dynamical System of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x : y) to (x^4 + 2*x^2*y^2 + 2*y^4 : y^4)
sage: P.<x,y> = ProjectiveSpace(CC,1) sage: f = DynamicalSystem_projective([x^2 - y^2, x*y]) sage: f.nth_iterate_map(3) Dynamical System of Projective Space of dimension 1 over Complex Field with 53 bits of precision Defn: Defined on coordinates by sending (x : y) to (x^8 + (-7.00000000000000)*x^6*y^2 + 13.0000000000000*x^4*y^4 + (-7.00000000000000)*x^2*y^6 + y^8 : x^7*y + (-4.00000000000000)*x^5*y^3 + 4.00000000000000*x^3*y^5 - x*y^7)
>>> from sage.all import * >>> P = ProjectiveSpace(CC,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - y**Integer(2), x*y]) >>> f.nth_iterate_map(Integer(3)) Dynamical System of Projective Space of dimension 1 over Complex Field with 53 bits of precision Defn: Defined on coordinates by sending (x : y) to (x^8 + (-7.00000000000000)*x^6*y^2 + 13.0000000000000*x^4*y^4 + (-7.00000000000000)*x^2*y^6 + y^8 : x^7*y + (-4.00000000000000)*x^5*y^3 + 4.00000000000000*x^3*y^5 - x*y^7)
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2) sage: f = DynamicalSystem_projective([x^2 - y^2, x*y, z^2 + x^2]) sage: f.nth_iterate_map(2) Dynamical System of Projective Space of dimension 2 over Integer Ring Defn: Defined on coordinates by sending (x : y : z) to (x^4 - 3*x^2*y^2 + y^4 : x^3*y - x*y^3 : 2*x^4 - 2*x^2*y^2 + y^4 + 2*x^2*z^2 + z^4)
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2) - y**Integer(2), x*y, z**Integer(2) + x**Integer(2)]) >>> f.nth_iterate_map(Integer(2)) Dynamical System of Projective Space of dimension 2 over Integer Ring Defn: Defined on coordinates by sending (x : y : z) to (x^4 - 3*x^2*y^2 + y^4 : x^3*y - x*y^3 : 2*x^4 - 2*x^2*y^2 + y^4 + 2*x^2*z^2 + z^4)
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: X = P.subscheme(x*z-y^2) sage: f = DynamicalSystem_projective([x^2, x*z, z^2], domain=X) sage: f.nth_iterate_map(2) # needs sage.rings.function_field Dynamical System of Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: -y^2 + x*z Defn: Defined on coordinates by sending (x : y : z) to (x^4 : x^2*z^2 : z^4)
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> X = P.subscheme(x*z-y**Integer(2)) >>> f = DynamicalSystem_projective([x**Integer(2), x*z, z**Integer(2)], domain=X) >>> f.nth_iterate_map(Integer(2)) # needs sage.rings.function_field Dynamical System of Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: -y^2 + x*z Defn: Defined on coordinates by sending (x : y : z) to (x^4 : x^2*z^2 : z^4)
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([y^2 * z^3, y^3 * z^2, x^5]) sage: f.nth_iterate_map( 5, normalize=True) Dynamical System of Projective Space of dimension 2 over Rational Field Defn: Defined on coordinates by sending (x : y : z) to (y^202*z^443 : x^140*y^163*z^342 : x^645)
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([y**Integer(2) * z**Integer(3), y**Integer(3) * z**Integer(2), x**Integer(5)]) >>> f.nth_iterate_map( Integer(5), normalize=True) Dynamical System of Projective Space of dimension 2 over Rational Field Defn: Defined on coordinates by sending (x : y : z) to (y^202*z^443 : x^140*y^163*z^342 : x^645)
- nth_preimage_tree(Q, n, **kwds)[source]#
Return the
n
-th pre-image tree rooted atQ
.This map must be an endomorphism of the projective line defined over a number field, algebraic field, or finite field.
INPUT:
Q
– a point in the domain of this mapn
– a positive integer, the depth of the pre-image tree
kwds:
return_points
– (default:False
) boolean; ifTrue
, return a list of lists where the index \(i\) is the level of the tree and the elements of the list at that index are the \(i\)-th preimage points as an algebraic element of the splitting field of the polynomial \(f^n - Q = 0\)numerical
– (default:False
) boolean; calculate pre-images numerically. Note if this is set toTrue
, preimage points are displayed as complex numbersprec
– (default: 100) positive integer; the precision of theComplexField
if we compute the preimage points numericallydisplay_labels
– (default:True
) boolean; whether to display vertex labels. Since labels can be very cluttered, can setdisplay_labels
toFalse
and usereturn_points
to get a hold of the points themselves, either as algebraic or complex numbersdisplay_complex
– (default:False
) boolean; display vertex labels as complex numbers. Note if this option is chosen that we must choose an embedding from the splitting fieldfield_def
of the \(n\)-th-preimage equation into \(\CC\). We make the choice of the first embedding returned byfield_def.embeddings(ComplexField())
digits
– a positive integer, the number of decimal digits to display for complex numbers. This only applies ifdisplay_complex
is set toTrue
OUTPUT:
If
return_points
isFalse
, aGraphPlot
object representing the \(n\)-th pre-image tree. Ifreturn_points
isTrue
, a tuple(GP, points)
, whereGP
is aGraphPlot
object, andpoints
is a list of lists as described above underreturn_points
.EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: Q = P(0,1) sage: f.nth_preimage_tree(Q, 2) # needs sage.plot GraphPlot object for Digraph on 7 vertices
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), y**Integer(2)]) >>> Q = P(Integer(0),Integer(1)) >>> f.nth_preimage_tree(Q, Integer(2)) # needs sage.plot GraphPlot object for Digraph on 7 vertices
sage: P.<x,y> = ProjectiveSpace(GF(3), 1) sage: f = DynamicalSystem_projective([x^2 + x*y + y^2, y^2]) sage: Q = P(0,1) sage: f.nth_preimage_tree(Q, 2, return_points=True) # needs sage.plot (GraphPlot object for Digraph on 4 vertices, [[(0 : 1)], [(1 : 1)], [(0 : 1), (2 : 1)]])
>>> from sage.all import * >>> P = ProjectiveSpace(GF(Integer(3)), Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + x*y + y**Integer(2), y**Integer(2)]) >>> Q = P(Integer(0),Integer(1)) >>> f.nth_preimage_tree(Q, Integer(2), return_points=True) # needs sage.plot (GraphPlot object for Digraph on 4 vertices, [[(0 : 1)], [(1 : 1)], [(0 : 1), (2 : 1)]])
- orbit(P, N, **kwds)[source]#
Return the orbit of the point
P
by this dynamical system.Let \(F\) be this dynamical system. If
N
is an integer return \([P,F(P),\ldots,F^N(P)]\). IfN
is a list or tuple \(N=[m,k]\) return \([F^m(P),\ldots,F^k(P)]\). Automatically normalize the points ifnormalize=True
. Perform the checks on point initialization ifcheck=True
.INPUT:
P
– a point in this dynamical system’s domainn
– a non-negative integer or list or tuple of two non-negative integers
kwds:
check
– (default:True
) booleannormalize
– (default:False
) boolean
OUTPUT: a list of points in this dynamical system’s codomain
EXAMPLES:
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2 - z^2, 2*z^2]) sage: f.orbit(P(1,2,1), 3) [(1 : 2 : 1), (5 : 3 : 2), (34 : 5 : 8), (1181 : -39 : 128)]
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), y**Integer(2) - z**Integer(2), Integer(2)*z**Integer(2)]) >>> f.orbit(P(Integer(1),Integer(2),Integer(1)), Integer(3)) [(1 : 2 : 1), (5 : 3 : 2), (34 : 5 : 8), (1181 : -39 : 128)]
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2 - z^2, 2*z^2]) sage: f.orbit(P(1,2,1), [2,4]) [(34 : 5 : 8), (1181 : -39 : 128), (1396282 : -14863 : 32768)]
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), y**Integer(2) - z**Integer(2), Integer(2)*z**Integer(2)]) >>> f.orbit(P(Integer(1),Integer(2),Integer(1)), [Integer(2),Integer(4)]) [(34 : 5 : 8), (1181 : -39 : 128), (1396282 : -14863 : 32768)]
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2) sage: X = P.subscheme(x^2 - y^2) sage: f = DynamicalSystem_projective([x^2, y^2, x*z], domain=X) sage: f.orbit(X(2,2,3), 3, normalize=True) [(2 : 2 : 3), (2 : 2 : 3), (2 : 2 : 3), (2 : 2 : 3)]
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> X = P.subscheme(x**Integer(2) - y**Integer(2)) >>> f = DynamicalSystem_projective([x**Integer(2), y**Integer(2), x*z], domain=X) >>> f.orbit(X(Integer(2),Integer(2),Integer(3)), Integer(3), normalize=True) [(2 : 2 : 3), (2 : 2 : 3), (2 : 2 : 3), (2 : 2 : 3)]
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: f.orbit(P.point([1,2], False), 4, check=False) [(1 : 2), (5 : 4), (41 : 16), (1937 : 256), (3817505 : 65536)]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), y**Integer(2)]) >>> f.orbit(P.point([Integer(1),Integer(2)], False), Integer(4), check=False) [(1 : 2), (5 : 4), (41 : 16), (1937 : 256), (3817505 : 65536)]
sage: K.<c> = FunctionField(QQ) sage: P.<x,y> = ProjectiveSpace(K,1) sage: f = DynamicalSystem_projective([x^2 + c*y^2, y^2]) sage: f.orbit(P(0,1), 3) [(0 : 1), (c : 1), (c^2 + c : 1), (c^4 + 2*c^3 + c^2 + c : 1)]
>>> from sage.all import * >>> K = FunctionField(QQ, names=('c',)); (c,) = K._first_ngens(1) >>> P = ProjectiveSpace(K,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + c*y**Integer(2), y**Integer(2)]) >>> f.orbit(P(Integer(0),Integer(1)), Integer(3)) [(0 : 1), (c : 1), (c^2 + c : 1), (c^4 + 2*c^3 + c^2 + c : 1)]
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2], domain=P) sage: f.orbit(P.point([1, 2], False), 4, check=False) [(1 : 2), (5 : 4), (41 : 16), (1937 : 256), (3817505 : 65536)]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), y**Integer(2)], domain=P) >>> f.orbit(P.point([Integer(1), Integer(2)], False), Integer(4), check=False) [(1 : 2), (5 : 4), (41 : 16), (1937 : 256), (3817505 : 65536)]
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^2, 2*y^2], domain=P) sage: f.orbit(P(2, 1),[-1, 4]) Traceback (most recent call last): ... TypeError: orbit bounds must be non-negative sage: f.orbit(P(2, 1), 0.1) Traceback (most recent call last): ... TypeError: Attempt to coerce non-integral RealNumber to Integer
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2), Integer(2)*y**Integer(2)], domain=P) >>> f.orbit(P(Integer(2), Integer(1)),[-Integer(1), Integer(4)]) Traceback (most recent call last): ... TypeError: orbit bounds must be non-negative >>> f.orbit(P(Integer(2), Integer(1)), RealNumber('0.1')) Traceback (most recent call last): ... TypeError: Attempt to coerce non-integral RealNumber to Integer
sage: P.<x,y> = ProjectiveSpace(QQ,1) sage: f = DynamicalSystem_projective([x^3, x*y^2], domain=P) sage: f.orbit(P(0, 1), 3) Traceback (most recent call last): ... ValueError: [0, 0] does not define a valid projective point since all entries are zero sage: f.orbit(P(0, 1), 3, check=False) [(0 : 1), (0 : 0), (0 : 0), (0 : 0)]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(3), x*y**Integer(2)], domain=P) >>> f.orbit(P(Integer(0), Integer(1)), Integer(3)) Traceback (most recent call last): ... ValueError: [0, 0] does not define a valid projective point since all entries are zero >>> f.orbit(P(Integer(0), Integer(1)), Integer(3), check=False) [(0 : 1), (0 : 0), (0 : 0), (0 : 0)]
sage: P.<x,y> = ProjectiveSpace(ZZ, 1) sage: f = DynamicalSystem_projective([x^3, x*y^2], domain=P) sage: f.orbit(P(2,1), 3, normalize=False) [(2 : 1), (8 : 2), (512 : 32), (134217728 : 524288)] sage: f.orbit(P(2, 1), 3, normalize=True) [(2 : 1), (4 : 1), (16 : 1), (256 : 1)]
>>> from sage.all import * >>> P = ProjectiveSpace(ZZ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(3), x*y**Integer(2)], domain=P) >>> f.orbit(P(Integer(2),Integer(1)), Integer(3), normalize=False) [(2 : 1), (8 : 2), (512 : 32), (134217728 : 524288)] >>> f.orbit(P(Integer(2), Integer(1)), Integer(3), normalize=True) [(2 : 1), (4 : 1), (16 : 1), (256 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QQ,2) sage: f = DynamicalSystem_projective([x^2, y^2, x*z]) sage: f.orbit((2/3, 1/3), 3) [(2/3 : 1/3 : 1), (2/3 : 1/6 : 1), (2/3 : 1/24 : 1), (2/3 : 1/384 : 1)]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ,Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2), y**Integer(2), x*z]) >>> f.orbit((Integer(2)/Integer(3), Integer(1)/Integer(3)), Integer(3)) [(2/3 : 1/3 : 1), (2/3 : 1/6 : 1), (2/3 : 1/24 : 1), (2/3 : 1/384 : 1)]
- periodic_points(n, minimal=True, formal=False, R=None, algorithm='variety', return_scheme=False)[source]#
Computes the periodic points of period
n
of this dynamical system defined over the ringR
or the base ring of the map.This can be done either by finding the rational points on the variety defining the points of period
n
, or, for finite fields, finding the cycle of appropriate length in the cyclegraph. For small cardinality fields, the cyclegraph algorithm is effective for any map and length cycle, but is slow when the cyclegraph is large. The variety algorithm is good for small period, degree, and dimension, but is slow as the defining equations of the variety get more complicated.For rational maps, where there are potentially infinitely many periodic points of a given period, you must use the
return_scheme
option. Note that this scheme will include the indeterminacy locus.INPUT:
n
– a positive integerminimal
– (default:True
) boolean;True
specifies to find only the periodic points of minimal periodn
andFalse
specifies to find all periodic points of periodn
formal
– (default:False
) boolean;True
specifies to find the formal periodic points only. The formal periodic points are the points in the support of the dynatomic cycle.R
– (optional) a commutative ring. Defaults to the base ring of this map.algorithm
– (default:'variety'
) must be one of the following:'variety'
– find the rational points on the appropriate variety'cyclegraph'
– find the cycles from the cycle graph
return_scheme
– return a subscheme of the ambient space that defines then
th periodic points
OUTPUT:
A list of periodic points of this map or the subscheme defining the periodic points.
EXAMPLES:
sage: # needs sage.rings.number_field sage: set_verbose(None) sage: P.<x,y> = ProjectiveSpace(QQbar, 1) sage: f = DynamicalSystem_projective([x^2 - x*y + y^2, x^2 - y^2 + x*y]) sage: f.periodic_points(1) [(-0.50000000000000000? - 0.866025403784439?*I : 1), (-0.50000000000000000? + 0.866025403784439?*I : 1), (1 : 1)]
>>> from sage.all import * >>> # needs sage.rings.number_field >>> set_verbose(None) >>> P = ProjectiveSpace(QQbar, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) - x*y + y**Integer(2), x**Integer(2) - y**Integer(2) + x*y]) >>> f.periodic_points(Integer(1)) [(-0.50000000000000000? - 0.866025403784439?*I : 1), (-0.50000000000000000? + 0.866025403784439?*I : 1), (1 : 1)]
sage: # needs sage.rings.number_field sage: P.<x,y,z> = ProjectiveSpace(QuadraticField(5,'t'), 2) sage: f = DynamicalSystem_projective([x^2 - 21/16*z^2, y^2 - z^2, z^2]) sage: f.periodic_points(2) [(-5/4 : -1 : 1), (-5/4 : -1/2*t + 1/2 : 1), (-5/4 : 0 : 1), (-5/4 : 1/2*t + 1/2 : 1), (-3/4 : -1 : 1), (-3/4 : 0 : 1), (1/4 : -1 : 1), (1/4 : -1/2*t + 1/2 : 1), (1/4 : 0 : 1), (1/4 : 1/2*t + 1/2 : 1), (7/4 : -1 : 1), (7/4 : 0 : 1)]
>>> from sage.all import * >>> # needs sage.rings.number_field >>> P = ProjectiveSpace(QuadraticField(Integer(5),'t'), Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2) - Integer(21)/Integer(16)*z**Integer(2), y**Integer(2) - z**Integer(2), z**Integer(2)]) >>> f.periodic_points(Integer(2)) [(-5/4 : -1 : 1), (-5/4 : -1/2*t + 1/2 : 1), (-5/4 : 0 : 1), (-5/4 : 1/2*t + 1/2 : 1), (-3/4 : -1 : 1), (-3/4 : 0 : 1), (1/4 : -1 : 1), (1/4 : -1/2*t + 1/2 : 1), (1/4 : 0 : 1), (1/4 : 1/2*t + 1/2 : 1), (7/4 : -1 : 1), (7/4 : 0 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2 - 3/4*y^2, y^2 , z^2]) sage: f.periodic_points(2, formal=True) # needs sage.rings.function_field [(-1/2 : 1 : 0), (-1/2 : 1 : 1)]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2) - Integer(3)/Integer(4)*y**Integer(2), y**Integer(2) , z**Integer(2)]) >>> f.periodic_points(Integer(2), formal=True) # needs sage.rings.function_field [(-1/2 : 1 : 0), (-1/2 : 1 : 1)]
sage: # needs sage.rings.number_field sage: w = QQ['w'].0 sage: K = NumberField(w^6 - 3*w^5 + 5*w^4 - 5*w^3 + 5*w^2 - 3*w + 1,'s') sage: P.<x,y,z> = ProjectiveSpace(K, 2) sage: f = DynamicalSystem_projective([x^2 + z^2, y^2 + x^2, z^2 + y^2]) sage: sorted(f.periodic_points(1), key=str) # needs sage.rings.function_field [(-2*s^5 + 4*s^4 - 5*s^3 + 3*s^2 - 4*s : -2*s^5 + 5*s^4 - 7*s^3 + 6*s^2 - 7*s + 3 : 1), (-s^5 + 3*s^4 - 4*s^3 + 4*s^2 - 4*s + 2 : -s^5 + 2*s^4 - 2*s^3 + s^2 - s : 1), (-s^5 + 3*s^4 - 5*s^3 + 4*s^2 - 3*s + 1 : s^5 - 2*s^4 + 3*s^3 - 3*s^2 + 4*s - 1 : 1), (1 : 1 : 1), (2*s^5 - 6*s^4 + 9*s^3 - 8*s^2 + 7*s - 4 : 2*s^5 - 5*s^4 + 7*s^3 - 5*s^2 + 6*s - 2 : 1), (s^5 - 2*s^4 + 2*s^3 + s : s^5 - 3*s^4 + 4*s^3 - 3*s^2 + 2*s - 1 : 1), (s^5 - 2*s^4 + 3*s^3 - 3*s^2 + 3*s - 1 : -s^5 + 3*s^4 - 5*s^3 + 4*s^2 - 4*s + 2 : 1)]
>>> from sage.all import * >>> # needs sage.rings.number_field >>> w = QQ['w'].gen(0) >>> K = NumberField(w**Integer(6) - Integer(3)*w**Integer(5) + Integer(5)*w**Integer(4) - Integer(5)*w**Integer(3) + Integer(5)*w**Integer(2) - Integer(3)*w + Integer(1),'s') >>> P = ProjectiveSpace(K, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2) + z**Integer(2), y**Integer(2) + x**Integer(2), z**Integer(2) + y**Integer(2)]) >>> sorted(f.periodic_points(Integer(1)), key=str) # needs sage.rings.function_field [(-2*s^5 + 4*s^4 - 5*s^3 + 3*s^2 - 4*s : -2*s^5 + 5*s^4 - 7*s^3 + 6*s^2 - 7*s + 3 : 1), (-s^5 + 3*s^4 - 4*s^3 + 4*s^2 - 4*s + 2 : -s^5 + 2*s^4 - 2*s^3 + s^2 - s : 1), (-s^5 + 3*s^4 - 5*s^3 + 4*s^2 - 3*s + 1 : s^5 - 2*s^4 + 3*s^3 - 3*s^2 + 4*s - 1 : 1), (1 : 1 : 1), (2*s^5 - 6*s^4 + 9*s^3 - 8*s^2 + 7*s - 4 : 2*s^5 - 5*s^4 + 7*s^3 - 5*s^2 + 6*s - 2 : 1), (s^5 - 2*s^4 + 2*s^3 + s : s^5 - 3*s^4 + 4*s^3 - 3*s^2 + 2*s - 1 : 1), (s^5 - 2*s^4 + 3*s^3 - 3*s^2 + 3*s - 1 : -s^5 + 3*s^4 - 5*s^3 + 4*s^2 - 4*s + 2 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2 - 21/16*z^2, y^2 - 2*z^2, z^2]) sage: f.periodic_points(2, False) # needs sage.rings.function_field [(-5/4 : -1 : 1), (-5/4 : 2 : 1), (-3/4 : -1 : 1), (-3/4 : 2 : 1), (0 : 1 : 0), (1/4 : -1 : 1), (1/4 : 2 : 1), (1 : 0 : 0), (1 : 1 : 0), (7/4 : -1 : 1), (7/4 : 2 : 1)]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2) - Integer(21)/Integer(16)*z**Integer(2), y**Integer(2) - Integer(2)*z**Integer(2), z**Integer(2)]) >>> f.periodic_points(Integer(2), False) # needs sage.rings.function_field [(-5/4 : -1 : 1), (-5/4 : 2 : 1), (-3/4 : -1 : 1), (-3/4 : 2 : 1), (0 : 1 : 0), (1/4 : -1 : 1), (1/4 : 2 : 1), (1 : 0 : 0), (1 : 1 : 0), (7/4 : -1 : 1), (7/4 : 2 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2 - 21/16*z^2, y^2 - 2*z^2, z^2]) sage: f.periodic_points(2) # needs sage.rings.function_field [(-5/4 : -1 : 1), (-5/4 : 2 : 1), (1/4 : -1 : 1), (1/4 : 2 : 1)]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2) - Integer(21)/Integer(16)*z**Integer(2), y**Integer(2) - Integer(2)*z**Integer(2), z**Integer(2)]) >>> f.periodic_points(Integer(2)) # needs sage.rings.function_field [(-5/4 : -1 : 1), (-5/4 : 2 : 1), (1/4 : -1 : 1), (1/4 : 2 : 1)]
sage: set_verbose(None) sage: P.<x,y> = ProjectiveSpace(ZZ, 1) sage: f = DynamicalSystem_projective([x^2 + y^2, y^2]) sage: f.periodic_points(2, R=QQbar, minimal=False) # needs sage.rings.number_field [(-0.50000000000000000? - 1.322875655532296?*I : 1), (-0.50000000000000000? + 1.322875655532296?*I : 1), (0.50000000000000000? - 0.866025403784439?*I : 1), (0.50000000000000000? + 0.866025403784439?*I : 1), (1 : 0)]
>>> from sage.all import * >>> set_verbose(None) >>> P = ProjectiveSpace(ZZ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(2) + y**Integer(2), y**Integer(2)]) >>> f.periodic_points(Integer(2), R=QQbar, minimal=False) # needs sage.rings.number_field [(-0.50000000000000000? - 1.322875655532296?*I : 1), (-0.50000000000000000? + 1.322875655532296?*I : 1), (0.50000000000000000? - 0.866025403784439?*I : 1), (0.50000000000000000? + 0.866025403784439?*I : 1), (1 : 0)]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: f = DynamicalSystem_projective([x^2 - 3/4*z^2, y^2 - 3/4*z^2, z^2]) sage: f.periodic_points(2, formal=True) # needs sage.rings.function_field [(-1/2 : -1/2 : 1), (-1/2 : 3/2 : 1), (3/2 : -1/2 : 1)]
>>> from sage.all import * >>> P = ProjectiveSpace(QQ, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = DynamicalSystem_projective([x**Integer(2) - Integer(3)/Integer(4)*z**Integer(2), y**Integer(2) - Integer(3)/Integer(4)*z**Integer(2), z**Integer(2)]) >>> f.periodic_points(Integer(2), formal=True) # needs sage.rings.function_field [(-1/2 : -1/2 : 1), (-1/2 : 3/2 : 1), (3/2 : -1/2 : 1)]
sage: P.<x,y> = ProjectiveSpace(GF(307), 1) sage: f = DynamicalSystem_projective([x^10 + y^10, y^10]) sage: f.periodic_points(16, minimal=True, algorithm='cyclegraph') # needs sage.graphs [(69 : 1), (185 : 1), (120 : 1), (136 : 1), (97 : 1), (183 : 1), (170 : 1), (105 : 1), (274 : 1), (275 : 1), (154 : 1), (156 : 1), (87 : 1), (95 : 1), (161 : 1), (128 : 1)]
>>> from sage.all import * >>> P = ProjectiveSpace(GF(Integer(307)), Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2) >>> f = DynamicalSystem_projective([x**Integer(10) + y**Integer(10), y**Integer(10)]) >>> f.periodic_points(Integer(16), minimal=True, algorithm='cyclegraph') # needs sage.graphs [(69 : 1), (185 : 1), (120 : 1), (136 : 1), (97 : 1), (183 : 1), (170 : 1), (105 : 1), (274 : 1), (275 : 1), (154 : 1), (156 : 1), (87 : 1), (95 : 1), (161 : 1), (128 : 1)]