Scheme morphism#

Note

You should never create the morphisms directly. Instead, use the hom() and Hom() methods that are inherited by all schemes.

If you want to extend the Sage library with some new kind of scheme, your new class (say, MyScheme) should provide a method

  • MyScheme._morphism(*args, **kwds) returning a morphism between two schemes in your category, usually defined via polynomials. Your morphism class should derive from SchemeMorphism_polynomial. These morphisms will usually be elements of the Hom-set SchemeHomset_generic.

Optionally, you can also provide a special Hom-set class for your subcategory of schemes. If you want to do this, you should also provide a method

  • MyScheme._homset(*args, **kwds) returning a Hom-set, which must be an element of a derived class of SchemeHomset_generic. If your new Hom-set class does not use MyScheme._morphism then you do not have to provide it.

Note that points on schemes are morphisms \(\mathrm{Spec}(K)\to X\), too. But we typically use a different notation, so they are implemented in a different derived class. For this, you should implement a method

  • MyScheme._point(*args, **kwds) returning a point, that is, a morphism \(\mathrm{Spec}(K)\to X\). Your point class should derive from SchemeMorphism_point.

Optionally, you can also provide a special Hom-set for the points, for example the point Hom-set can provide a method to enumerate all points. If you want to do this, you should also provide a method

  • MyScheme._point_homset(*args, **kwds) returning the homset of points. The Hom-sets of points are implemented in classes named SchemeHomset_points_.... If your new Hom-set class does not use MyScheme._point then you do not have to provide it.

AUTHORS:

  • David Kohel, William Stein

  • William Stein (2006-02-11): fixed bug where P(0,0,0) was allowed as a projective point.

  • Volker Braun (2011-08-08): Renamed classes, more documentation, misc cleanups.

  • Ben Hutz (June 2012): added support for projective ring

  • Simon King (2013-10): copy the changes of Morphism that have been introduced in Issue #14711.

class sage.schemes.generic.morphism.SchemeMorphism(parent, codomain=None)[source]#

Bases: Element

Base class for scheme morphisms

INPUT:

  • parent – the parent of the morphism.

Todo

For historical reasons, SchemeMorphism copies code from Map rather than inheriting from it. Proper inheritance should be used instead. See Issue #14711.

EXAMPLES:

sage: X = Spec(ZZ)
sage: Hom = X.Hom(X)
sage: from sage.schemes.generic.morphism import SchemeMorphism
sage: f = SchemeMorphism(Hom)
sage: type(f)
<class 'sage.schemes.generic.morphism.SchemeMorphism'>
>>> from sage.all import *
>>> X = Spec(ZZ)
>>> Hom = X.Hom(X)
>>> from sage.schemes.generic.morphism import SchemeMorphism
>>> f = SchemeMorphism(Hom)
>>> type(f)
<class 'sage.schemes.generic.morphism.SchemeMorphism'>
base_ring()[source]#

Return the base ring of self, that is, the ring over which the defining polynomials of self are defined.

OUTPUT:

  • ring

EXAMPLES:

sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: H = Hom(P, P)
sage: f = H([3/5*x^2, 6*y^2])
sage: f.base_ring()
Rational Field
>>> from sage.all import *
>>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> H = Hom(P, P)
>>> f = H([Integer(3)/Integer(5)*x**Integer(2), Integer(6)*y**Integer(2)])
>>> f.base_ring()
Rational Field
sage: R.<t> = PolynomialRing(ZZ, 1)
sage: P.<x,y> = ProjectiveSpace(R, 1)
sage: H = Hom(P, P)
sage: f = H([3*x^2, y^2])
sage: f.base_ring()
Multivariate Polynomial Ring in t over Integer Ring
>>> from sage.all import *
>>> R = PolynomialRing(ZZ, Integer(1), names=('t',)); (t,) = R._first_ngens(1)
>>> P = ProjectiveSpace(R, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> H = Hom(P, P)
>>> f = H([Integer(3)*x**Integer(2), y**Integer(2)])
>>> f.base_ring()
Multivariate Polynomial Ring in t over Integer Ring

Points have correct base rings too (Issue #34336):

sage: x = P(t, 5); x
(t : 5)
sage: x.base_ring()
Multivariate Polynomial Ring in t over Integer Ring
>>> from sage.all import *
>>> x = P(t, Integer(5)); x
(t : 5)
>>> x.base_ring()
Multivariate Polynomial Ring in t over Integer Ring
sage: # needs sage.rings.finite_rings sage.schemes
sage: E = EllipticCurve(GF((17,2)), [1,2,3,4,5])
sage: P = E.random_point()
sage: P.base_ring()
Finite Field in z2 of size 17^2
>>> from sage.all import *
>>> # needs sage.rings.finite_rings sage.schemes
>>> E = EllipticCurve(GF((Integer(17),Integer(2))), [Integer(1),Integer(2),Integer(3),Integer(4),Integer(5)])
>>> P = E.random_point()
>>> P.base_ring()
Finite Field in z2 of size 17^2
category()[source]#

Return the category of the Hom-set.

OUTPUT:

A category.

EXAMPLES:

sage: A2 = AffineSpace(QQ, 2)
sage: A2.structure_morphism().category()
Category of homsets of schemes
>>> from sage.all import *
>>> A2 = AffineSpace(QQ, Integer(2))
>>> A2.structure_morphism().category()
Category of homsets of schemes
category_for()[source]#

Return the category which this morphism belongs to.

EXAMPLES:

sage: A2 = AffineSpace(QQ, 2)
sage: A2.structure_morphism().category_for()
Category of schemes
>>> from sage.all import *
>>> A2 = AffineSpace(QQ, Integer(2))
>>> A2.structure_morphism().category_for()
Category of schemes
codomain()[source]#

The constant function from the codomain.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ['x,y'])
sage: H = A.Hom(A)
sage: f = H([y, x^2 + y])
sage: f.codomain() is A
True
>>> from sage.all import *
>>> A = AffineSpace(QQ['x,y'], names=('x', 'y',)); (x, y,) = A._first_ngens(2)
>>> H = A.Hom(A)
>>> f = H([y, x**Integer(2) + y])
>>> f.codomain() is A
True
domain()[source]#

The constant function from the domain.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ['x,y'])
sage: H = A.Hom(A)
sage: f = H([y, x^2 + y])
sage: f.domain() is A
True
>>> from sage.all import *
>>> A = AffineSpace(QQ['x,y'], names=('x', 'y',)); (x, y,) = A._first_ngens(2)
>>> H = A.Hom(A)
>>> f = H([y, x**Integer(2) + y])
>>> f.domain() is A
True
glue_along_domains(other)[source]#

Glue two morphism

INPUT:

  • other – a scheme morphism with the same domain.

OUTPUT:

Assuming that self and other are open immersions with the same domain, return scheme obtained by gluing along the images.

EXAMPLES:

We construct a scheme isomorphic to the projective line over \(\mathrm{Spec}(\QQ)\) by gluing two copies of \(\mathbb{A}^1\) minus a point:

sage: # needs sage.libs.singular
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<xbar, ybar> = R.quotient(x*y - 1)
sage: Rx = PolynomialRing(QQ, 'x')
sage: i1 = Rx.hom([xbar])
sage: Ry = PolynomialRing(QQ, 'y')
sage: i2 = Ry.hom([ybar])
sage: Sch = Schemes()
sage: f1 = Sch(i1)
sage: f2 = Sch(i2)
>>> from sage.all import *
>>> # needs sage.libs.singular
>>> R = PolynomialRing(QQ, Integer(2), names=('x', 'y',)); (x, y,) = R._first_ngens(2)
>>> S = R.quotient(x*y - Integer(1), names=('xbar', 'ybar',)); (xbar, ybar,) = S._first_ngens(2)
>>> Rx = PolynomialRing(QQ, 'x')
>>> i1 = Rx.hom([xbar])
>>> Ry = PolynomialRing(QQ, 'y')
>>> i2 = Ry.hom([ybar])
>>> Sch = Schemes()
>>> f1 = Sch(i1)
>>> f2 = Sch(i2)

Now f1 and f2 have the same domain, which is a \(\mathbb{A}^1\) minus a point. We glue along the domain:

sage: # needs sage.libs.singular
sage: P1 = f1.glue_along_domains(f2); P1
Scheme obtained by gluing X and Y along U, where
  X: Spectrum of Univariate Polynomial Ring in x over Rational Field
  Y: Spectrum of Univariate Polynomial Ring in y over Rational Field
  U: Spectrum of Quotient of Multivariate Polynomial Ring in x, y
     over Rational Field by the ideal (x*y - 1)
sage: a, b = P1.gluing_maps()
sage: a
Affine Scheme morphism:
  From: Spectrum of Quotient of Multivariate Polynomial Ring in x, y
        over Rational Field by the ideal (x*y - 1)
  To:   Spectrum of Univariate Polynomial Ring in x over Rational Field
  Defn: Ring morphism:
          From: Univariate Polynomial Ring in x over Rational Field
          To:   Quotient of Multivariate Polynomial Ring in x, y over
                Rational Field by the ideal (x*y - 1)
          Defn: x |--> xbar
sage: b
Affine Scheme morphism:
  From: Spectrum of Quotient of Multivariate Polynomial Ring in x, y
        over Rational Field by the ideal (x*y - 1)
  To:   Spectrum of Univariate Polynomial Ring in y over Rational Field
  Defn: Ring morphism:
          From: Univariate Polynomial Ring in y over Rational Field
          To:   Quotient of Multivariate Polynomial Ring in x, y over
                Rational Field by the ideal (x*y - 1)
          Defn: y |--> ybar
>>> from sage.all import *
>>> # needs sage.libs.singular
>>> P1 = f1.glue_along_domains(f2); P1
Scheme obtained by gluing X and Y along U, where
  X: Spectrum of Univariate Polynomial Ring in x over Rational Field
  Y: Spectrum of Univariate Polynomial Ring in y over Rational Field
  U: Spectrum of Quotient of Multivariate Polynomial Ring in x, y
     over Rational Field by the ideal (x*y - 1)
>>> a, b = P1.gluing_maps()
>>> a
Affine Scheme morphism:
  From: Spectrum of Quotient of Multivariate Polynomial Ring in x, y
        over Rational Field by the ideal (x*y - 1)
  To:   Spectrum of Univariate Polynomial Ring in x over Rational Field
  Defn: Ring morphism:
          From: Univariate Polynomial Ring in x over Rational Field
          To:   Quotient of Multivariate Polynomial Ring in x, y over
                Rational Field by the ideal (x*y - 1)
          Defn: x |--> xbar
>>> b
Affine Scheme morphism:
  From: Spectrum of Quotient of Multivariate Polynomial Ring in x, y
        over Rational Field by the ideal (x*y - 1)
  To:   Spectrum of Univariate Polynomial Ring in y over Rational Field
  Defn: Ring morphism:
          From: Univariate Polynomial Ring in y over Rational Field
          To:   Quotient of Multivariate Polynomial Ring in x, y over
                Rational Field by the ideal (x*y - 1)
          Defn: y |--> ybar
is_endomorphism()[source]#

Return whether the morphism is an endomorphism.

OUTPUT:

Boolean. Whether the domain and codomain are identical.

EXAMPLES:

sage: X = AffineSpace(QQ, 2)
sage: X.structure_morphism().is_endomorphism()
False
sage: X.identity_morphism().is_endomorphism()
True
>>> from sage.all import *
>>> X = AffineSpace(QQ, Integer(2))
>>> X.structure_morphism().is_endomorphism()
False
>>> X.identity_morphism().is_endomorphism()
True
class sage.schemes.generic.morphism.SchemeMorphism_id(X)[source]#

Bases: SchemeMorphism

Return the identity morphism from \(X\) to itself.

INPUT:

  • X – the scheme.

EXAMPLES:

sage: X = Spec(ZZ)
sage: X.identity_morphism()  # indirect doctest
Scheme endomorphism of Spectrum of Integer Ring
  Defn: Identity map
>>> from sage.all import *
>>> X = Spec(ZZ)
>>> X.identity_morphism()  # indirect doctest
Scheme endomorphism of Spectrum of Integer Ring
  Defn: Identity map
class sage.schemes.generic.morphism.SchemeMorphism_point(parent, codomain=None)[source]#

Bases: SchemeMorphism

Base class for rational points on schemes.

Recall that the \(K\)-rational points of a scheme \(X\) over \(k\) can be identified with the set of morphisms \(\mathrm{Spec}(K) \to X\). In Sage, the rational points are implemented by such scheme morphisms.

EXAMPLES:

sage: from sage.schemes.generic.morphism import SchemeMorphism
sage: f = SchemeMorphism(Spec(ZZ).Hom(Spec(ZZ)))
sage: type(f)
<class 'sage.schemes.generic.morphism.SchemeMorphism'>
>>> from sage.all import *
>>> from sage.schemes.generic.morphism import SchemeMorphism
>>> f = SchemeMorphism(Spec(ZZ).Hom(Spec(ZZ)))
>>> type(f)
<class 'sage.schemes.generic.morphism.SchemeMorphism'>
change_ring(R, check=True)[source]#

Returns a new SchemeMorphism_point which is this point coerced to R.

If check is true, then the initialization checks are performed.

INPUT:

  • R – ring or morphism.

  • check – Boolean

OUTPUT: SchemeMorphism_point

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(ZZ, 2)
sage: X = P.subscheme(x^2 - y^2)
sage: X(23,23,1).change_ring(GF(13))
(10 : 10 : 1)
>>> from sage.all import *
>>> P = ProjectiveSpace(ZZ, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3)
>>> X = P.subscheme(x**Integer(2) - y**Integer(2))
>>> X(Integer(23),Integer(23),Integer(1)).change_ring(GF(Integer(13)))
(10 : 10 : 1)
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: P(-2/3,1).change_ring(CC)                                             # needs sage.rings.real_mpfr
(-0.666666666666667 : 1.00000000000000)
>>> from sage.all import *
>>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> P(-Integer(2)/Integer(3),Integer(1)).change_ring(CC)                                             # needs sage.rings.real_mpfr
(-0.666666666666667 : 1.00000000000000)
sage: P.<x,y> = ProjectiveSpace(ZZ, 1)
sage: P(152,113).change_ring(Zp(5))                                         # needs sage.rings.padics
(2 + 5^2 + 5^3 + O(5^20) : 3 + 2*5 + 4*5^2 + O(5^20))
>>> from sage.all import *
>>> P = ProjectiveSpace(ZZ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> P(Integer(152),Integer(113)).change_ring(Zp(Integer(5)))                                         # needs sage.rings.padics
(2 + 5^2 + 5^3 + O(5^20) : 3 + 2*5 + 4*5^2 + O(5^20))
sage: # needs sage.rings.number_field
sage: K.<v> = QuadraticField(-7)
sage: O = K.maximal_order()
sage: P.<x,y> = ProjectiveSpace(O, 1)
sage: H = End(P)
sage: F = H([x^2 + O(v)*y^2, y^2])
sage: F.change_ring(K).change_ring(K.embeddings(QQbar)[0])
Scheme endomorphism of Projective Space of dimension 1
 over Algebraic Field
  Defn: Defined on coordinates by sending (x : y) to
        (x^2 + (-2.645751311064591?*I)*y^2 : y^2)
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> K = QuadraticField(-Integer(7), names=('v',)); (v,) = K._first_ngens(1)
>>> O = K.maximal_order()
>>> P = ProjectiveSpace(O, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> H = End(P)
>>> F = H([x**Integer(2) + O(v)*y**Integer(2), y**Integer(2)])
>>> F.change_ring(K).change_ring(K.embeddings(QQbar)[Integer(0)])
Scheme endomorphism of Projective Space of dimension 1
 over Algebraic Field
  Defn: Defined on coordinates by sending (x : y) to
        (x^2 + (-2.645751311064591?*I)*y^2 : y^2)
sage: # needs sage.rings.number_field
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^2 - x + 1)
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: Q = P([a + 1, 1])
sage: emb = K.embeddings(QQbar)
sage: Q.change_ring(emb[0])
(1.5000000000000000? - 0.866025403784439?*I : 1)
sage: Q.change_ring(emb[1])
(1.5000000000000000? + 0.866025403784439?*I : 1)
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> K = NumberField(x**Integer(2) - x + Integer(1), names=('a',)); (a,) = K._first_ngens(1)
>>> P = ProjectiveSpace(K, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> Q = P([a + Integer(1), Integer(1)])
>>> emb = K.embeddings(QQbar)
>>> Q.change_ring(emb[Integer(0)])
(1.5000000000000000? - 0.866025403784439?*I : 1)
>>> Q.change_ring(emb[Integer(1)])
(1.5000000000000000? + 0.866025403784439?*I : 1)
sage: # needs sage.rings.number_field
sage: K.<v> = QuadraticField(2)
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: Q = P([v,1])
sage: Q.change_ring(K.embeddings(QQbar)[0])
(-1.414213562373095? : 1)
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> K = QuadraticField(Integer(2), names=('v',)); (v,) = K._first_ngens(1)
>>> P = ProjectiveSpace(K, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> Q = P([v,Integer(1)])
>>> Q.change_ring(K.embeddings(QQbar)[Integer(0)])
(-1.414213562373095? : 1)
sage: # needs sage.rings.number_field
sage: R.<x> = QQ[]
sage: f = x^6 - 2
sage: L.<b> = NumberField(f, embedding=f.roots(QQbar)[1][0])
sage: A.<x,y> = AffineSpace(L, 2)
sage: P = A([b,1])
sage: P.change_ring(QQbar)
(1.122462048309373?, 1)
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(6) - Integer(2)
>>> L = NumberField(f, embedding=f.roots(QQbar)[Integer(1)][Integer(0)], names=('b',)); (b,) = L._first_ngens(1)
>>> A = AffineSpace(L, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2)
>>> P = A([b,Integer(1)])
>>> P.change_ring(QQbar)
(1.122462048309373?, 1)
scheme()[source]#

Return the scheme whose point is represented.

OUTPUT:

A scheme.

EXAMPLES:

sage: A = AffineSpace(2, QQ)
sage: a = A(1,2)
sage: a.scheme()
Affine Space of dimension 2 over Rational Field
>>> from sage.all import *
>>> A = AffineSpace(Integer(2), QQ)
>>> a = A(Integer(1),Integer(2))
>>> a.scheme()
Affine Space of dimension 2 over Rational Field
specialization(D=None, phi=None, ambient=None)[source]#

Specialization of this point.

Given a family of points defined over a polynomial ring. A specialization is a particular member of that family. The specialization can be specified either by a dictionary or a SpecializationMorphism.

INPUT:

  • D – dictionary (optional)

  • phi – SpecializationMorphism (optional)

  • ambient – ambient space of specialized point (optional)

OUTPUT: SchemeMorphism_polynomial

EXAMPLES:

sage: R.<c> = PolynomialRing(QQ)
sage: P.<x,y> = ProjectiveSpace(R, 1)
sage: Q = P([c,1])
sage: Q.specialization({c: 1})
(1 : 1)
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('c',)); (c,) = R._first_ngens(1)
>>> P = ProjectiveSpace(R, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> Q = P([c,Integer(1)])
>>> Q.specialization({c: Integer(1)})
(1 : 1)
sage: R.<a,b> = PolynomialRing(QQ)
sage: P.<x,y> = ProjectiveSpace(R, 1)
sage: Q = P([a^2 + 2*a*b + 34, 1])
sage: from sage.rings.polynomial.flatten import SpecializationMorphism
sage: phi = SpecializationMorphism(P.coordinate_ring(), {a: 2, b: -1})
sage: T = Q.specialization(phi=phi); T
(34 : 1)
sage: Q2 = P([a,1])
sage: T2 = Q2.specialization(phi=phi)
sage: T2.codomain() is T.codomain()
True
sage: T3 = Q2.specialization(phi=phi, ambient=T.codomain())
sage: T3.codomain() is T.codomain()
True
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('a', 'b',)); (a, b,) = R._first_ngens(2)
>>> P = ProjectiveSpace(R, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> Q = P([a**Integer(2) + Integer(2)*a*b + Integer(34), Integer(1)])
>>> from sage.rings.polynomial.flatten import SpecializationMorphism
>>> phi = SpecializationMorphism(P.coordinate_ring(), {a: Integer(2), b: -Integer(1)})
>>> T = Q.specialization(phi=phi); T
(34 : 1)
>>> Q2 = P([a,Integer(1)])
>>> T2 = Q2.specialization(phi=phi)
>>> T2.codomain() is T.codomain()
True
>>> T3 = Q2.specialization(phi=phi, ambient=T.codomain())
>>> T3.codomain() is T.codomain()
True
sage: R.<c> = PolynomialRing(QQ)
sage: P.<x,y> = ProjectiveSpace(R, 1)
sage: X = P.subscheme([x - c*y])
sage: Q = X([c, 1])
sage: Q2 = Q.specialization({c:2}); Q2
(2 : 1)
sage: Q2.codomain()
Closed subscheme of Projective Space of dimension 1 over Rational Field
 defined by: x - 2*y
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('c',)); (c,) = R._first_ngens(1)
>>> P = ProjectiveSpace(R, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> X = P.subscheme([x - c*y])
>>> Q = X([c, Integer(1)])
>>> Q2 = Q.specialization({c:Integer(2)}); Q2
(2 : 1)
>>> Q2.codomain()
Closed subscheme of Projective Space of dimension 1 over Rational Field
 defined by: x - 2*y
sage: R.<l> = PolynomialRing(QQ)
sage: S.<k,j> = PolynomialRing(R)
sage: K.<a,b,c,d> = S[]
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: H = End(P)
sage: Q = P([a^2, b^2])
sage: Q.specialization({a: 2})
(4 : b^2)
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('l',)); (l,) = R._first_ngens(1)
>>> S = PolynomialRing(R, names=('k', 'j',)); (k, j,) = S._first_ngens(2)
>>> K = S['a, b, c, d']; (a, b, c, d,) = K._first_ngens(4)
>>> P = ProjectiveSpace(K, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> H = End(P)
>>> Q = P([a**Integer(2), b**Integer(2)])
>>> Q.specialization({a: Integer(2)})
(4 : b^2)
class sage.schemes.generic.morphism.SchemeMorphism_polynomial(parent, polys, check=True)[source]#

Bases: SchemeMorphism

A morphism of schemes determined by polynomials that define what the morphism does on points in the ambient space.

INPUT:

  • parent – Hom-set whose domain and codomain are affine or projective schemes.

  • polys – a list/tuple/iterable of polynomials defining the scheme morphism.

  • check – boolean (default:True). Whether to check the input for consistency.

EXAMPLES:

An example involving the affine plane:

sage: R.<x,y> = QQ[]
sage: A2 = AffineSpace(R)
sage: H = A2.Hom(A2)
sage: f = H([x - y, x*y])
sage: f([0, 1])
(-1, 0)
>>> from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> A2 = AffineSpace(R)
>>> H = A2.Hom(A2)
>>> f = H([x - y, x*y])
>>> f([Integer(0), Integer(1)])
(-1, 0)

An example involving the projective line:

sage: R.<x,y> = QQ[]
sage: P1 = ProjectiveSpace(R)
sage: H = P1.Hom(P1)
sage: f = H([x^2 + y^2, x*y])
sage: f([0, 1])
(1 : 0)
>>> from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> P1 = ProjectiveSpace(R)
>>> H = P1.Hom(P1)
>>> f = H([x**Integer(2) + y**Integer(2), x*y])
>>> f([Integer(0), Integer(1)])
(1 : 0)

Some checks are performed to make sure the given polynomials define a morphism:

sage: f = H([exp(x),exp(y)])                                                    # needs sage.symbolic
Traceback (most recent call last):
...
TypeError: polys (=[e^x, e^y]) must be elements of Multivariate
Polynomial Ring in x, y over Rational Field
>>> from sage.all import *
>>> f = H([exp(x),exp(y)])                                                    # needs sage.symbolic
Traceback (most recent call last):
...
TypeError: polys (=[e^x, e^y]) must be elements of Multivariate
Polynomial Ring in x, y over Rational Field
change_ring(R, check=True)[source]#

Returns a new SchemeMorphism_polynomial which is this map coerced to R.

If check is True, then the initialization checks are performed.

INPUT:

  • R – ring or morphism.

  • check – Boolean

OUTPUT:

EXAMPLES:

sage: P.<x,y> = ProjectiveSpace(ZZ, 1)
sage: H = Hom(P, P)
sage: f = H([3*x^2, y^2])
sage: f.change_ring(GF(3))
Scheme endomorphism of Projective Space of dimension 1 over Finite Field of size 3
  Defn: Defined on coordinates by sending (x : y) to (0 : y^2)
>>> from sage.all import *
>>> P = ProjectiveSpace(ZZ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> H = Hom(P, P)
>>> f = H([Integer(3)*x**Integer(2), y**Integer(2)])
>>> f.change_ring(GF(Integer(3)))
Scheme endomorphism of Projective Space of dimension 1 over Finite Field of size 3
  Defn: Defined on coordinates by sending (x : y) to (0 : y^2)
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: H = Hom(P, P)
sage: f = H([5/2*x^3 + 3*x*y^2 - y^3, 3*z^3 + y*x^2, x^3 - z^3])
sage: f.change_ring(GF(3))
Scheme endomorphism of Projective Space of dimension 2 over Finite Field of size 3
  Defn: Defined on coordinates by sending (x : y : z) to
        (x^3 - y^3 : x^2*y : x^3 - z^3)
>>> from sage.all import *
>>> P = ProjectiveSpace(QQ, Integer(2), names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3)
>>> H = Hom(P, P)
>>> f = H([Integer(5)/Integer(2)*x**Integer(3) + Integer(3)*x*y**Integer(2) - y**Integer(3), Integer(3)*z**Integer(3) + y*x**Integer(2), x**Integer(3) - z**Integer(3)])
>>> f.change_ring(GF(Integer(3)))
Scheme endomorphism of Projective Space of dimension 2 over Finite Field of size 3
  Defn: Defined on coordinates by sending (x : y : z) to
        (x^3 - y^3 : x^2*y : x^3 - z^3)
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: X = P.subscheme([5*x^2 - y^2])
sage: H = Hom(X, X)
sage: f = H([x, y])
sage: f.change_ring(GF(3))
Scheme endomorphism of Closed subscheme of Projective Space of dimension 1
over Finite Field of size 3 defined by: -x^2 - y^2
  Defn: Defined on coordinates by sending (x : y) to (x : y)
>>> from sage.all import *
>>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> X = P.subscheme([Integer(5)*x**Integer(2) - y**Integer(2)])
>>> H = Hom(X, X)
>>> f = H([x, y])
>>> f.change_ring(GF(Integer(3)))
Scheme endomorphism of Closed subscheme of Projective Space of dimension 1
over Finite Field of size 3 defined by: -x^2 - y^2
  Defn: Defined on coordinates by sending (x : y) to (x : y)

Check that Issue #16834 is fixed:

sage: # needs sage.rings.real_mpfr
sage: A.<x,y,z> = AffineSpace(RR, 3)
sage: h = Hom(A, A)
sage: f = h([x^2 + 1.5, y^3, z^5 - 2.0])
sage: f.change_ring(CC)
Scheme endomorphism of Affine Space of dimension 3 over
 Complex Field with 53 bits of precision
  Defn: Defined on coordinates by sending (x, y, z) to
        (x^2 + 1.50000000000000, y^3, z^5 - 2.00000000000000)
>>> from sage.all import *
>>> # needs sage.rings.real_mpfr
>>> A = AffineSpace(RR, Integer(3), names=('x', 'y', 'z',)); (x, y, z,) = A._first_ngens(3)
>>> h = Hom(A, A)
>>> f = h([x**Integer(2) + RealNumber('1.5'), y**Integer(3), z**Integer(5) - RealNumber('2.0')])
>>> f.change_ring(CC)
Scheme endomorphism of Affine Space of dimension 3 over
 Complex Field with 53 bits of precision
  Defn: Defined on coordinates by sending (x, y, z) to
        (x^2 + 1.50000000000000, y^3, z^5 - 2.00000000000000)
sage: A.<x,y> = AffineSpace(ZZ, 2)
sage: B.<u,v> = ProjectiveSpace(QQ, 1)
sage: h = Hom(A,B)
sage: f = h([x^2, y^2])
sage: f.change_ring(QQ)
Scheme morphism:
  From: Affine Space of dimension 2 over Rational Field
  To:   Projective Space of dimension 1 over Rational Field
  Defn: Defined on coordinates by sending (x, y) to (x^2 : y^2)
>>> from sage.all import *
>>> A = AffineSpace(ZZ, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2)
>>> B = ProjectiveSpace(QQ, Integer(1), names=('u', 'v',)); (u, v,) = B._first_ngens(2)
>>> h = Hom(A,B)
>>> f = h([x**Integer(2), y**Integer(2)])
>>> f.change_ring(QQ)
Scheme morphism:
  From: Affine Space of dimension 2 over Rational Field
  To:   Projective Space of dimension 1 over Rational Field
  Defn: Defined on coordinates by sending (x, y) to (x^2 : y^2)
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: H = Hom(A, A)
sage: f = H([3*x^2/y, y^2/x])
sage: f.change_ring(RR)                                                     # needs sage.rings.real_mpfr
Scheme endomorphism of Affine Space of dimension 2 over Real Field with
53 bits of precision
  Defn: Defined on coordinates by sending (x, y) to
        (3.00000000000000*x^2/y, y^2/x)
>>> from sage.all import *
>>> A = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2)
>>> H = Hom(A, A)
>>> f = H([Integer(3)*x**Integer(2)/y, y**Integer(2)/x])
>>> f.change_ring(RR)                                                     # needs sage.rings.real_mpfr
Scheme endomorphism of Affine Space of dimension 2 over Real Field with
53 bits of precision
  Defn: Defined on coordinates by sending (x, y) to
        (3.00000000000000*x^2/y, y^2/x)
sage: # needs sage.rings.number_field
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^3 - x + 1)
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: H = End(P)
sage: f = H([x^2 + a*x*y + a^2*y^2, y^2])
sage: emb = K.embeddings(QQbar)
sage: f.change_ring(emb[0])
Scheme endomorphism of Projective Space of dimension 1
 over Algebraic Field
   Defn: Defined on coordinates by sending (x : y) to
         (x^2 + (-1.324717957244746?)*x*y + 1.754877666246693?*y^2 : y^2)
sage: f.change_ring(emb[1])
Scheme endomorphism of Projective Space of dimension 1
 over Algebraic Field
   Defn: Defined on coordinates by sending (x : y) to
         (x^2 + (0.6623589786223730? - 0.5622795120623013?*I)*x*y
          + (0.1225611668766537? - 0.744861766619745?*I)*y^2 : y^2)
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> K = NumberField(x**Integer(3) - x + Integer(1), names=('a',)); (a,) = K._first_ngens(1)
>>> P = ProjectiveSpace(K, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> H = End(P)
>>> f = H([x**Integer(2) + a*x*y + a**Integer(2)*y**Integer(2), y**Integer(2)])
>>> emb = K.embeddings(QQbar)
>>> f.change_ring(emb[Integer(0)])
Scheme endomorphism of Projective Space of dimension 1
 over Algebraic Field
   Defn: Defined on coordinates by sending (x : y) to
         (x^2 + (-1.324717957244746?)*x*y + 1.754877666246693?*y^2 : y^2)
>>> f.change_ring(emb[Integer(1)])
Scheme endomorphism of Projective Space of dimension 1
 over Algebraic Field
   Defn: Defined on coordinates by sending (x : y) to
         (x^2 + (0.6623589786223730? - 0.5622795120623013?*I)*x*y
          + (0.1225611668766537? - 0.744861766619745?*I)*y^2 : y^2)
sage: # needs sage.rings.number_field sage.symbolic
sage: K.<v> = QuadraticField(2, embedding=QQbar(sqrt(2)))
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: H = End(P)
sage: f = H([x^2 + v*y^2, y^2])
sage: f.change_ring(QQbar)
Scheme endomorphism of Projective Space of dimension 1
 over Algebraic Field
  Defn: Defined on coordinates by sending (x : y) to
        (x^2 + 1.414213562373095?*y^2 : y^2)
>>> from sage.all import *
>>> # needs sage.rings.number_field sage.symbolic
>>> K = QuadraticField(Integer(2), embedding=QQbar(sqrt(Integer(2))), names=('v',)); (v,) = K._first_ngens(1)
>>> P = ProjectiveSpace(K, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> H = End(P)
>>> f = H([x**Integer(2) + v*y**Integer(2), y**Integer(2)])
>>> f.change_ring(QQbar)
Scheme endomorphism of Projective Space of dimension 1
 over Algebraic Field
  Defn: Defined on coordinates by sending (x : y) to
        (x^2 + 1.414213562373095?*y^2 : y^2)
sage: # needs sage.rings.number_field sage.symbolic
sage: from sage.misc.verbose import set_verbose
sage: set_verbose(-1)
sage: K.<w> = QuadraticField(2, embedding=QQbar(-sqrt(2)))
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: X = P.subscheme(x - y)
sage: H = End(X)
sage: f = H([6*x^2 + 2*x*y + 16*y^2, -w*x^2 - 4*x*y - 4*y^2])
sage: f.change_ring(QQbar)
Scheme endomorphism of Closed subscheme of Projective Space of dimension 1
 over Algebraic Field defined by: x - y
  Defn: Defined on coordinates by sending (x : y) to
        (6*x^2 + 2*x*y + 16*y^2 : 1.414213562373095?*x^2 + (-4)*x*y + (-4)*y^2)
>>> from sage.all import *
>>> # needs sage.rings.number_field sage.symbolic
>>> from sage.misc.verbose import set_verbose
>>> set_verbose(-Integer(1))
>>> K = QuadraticField(Integer(2), embedding=QQbar(-sqrt(Integer(2))), names=('w',)); (w,) = K._first_ngens(1)
>>> P = ProjectiveSpace(K, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> X = P.subscheme(x - y)
>>> H = End(X)
>>> f = H([Integer(6)*x**Integer(2) + Integer(2)*x*y + Integer(16)*y**Integer(2), -w*x**Integer(2) - Integer(4)*x*y - Integer(4)*y**Integer(2)])
>>> f.change_ring(QQbar)
Scheme endomorphism of Closed subscheme of Projective Space of dimension 1
 over Algebraic Field defined by: x - y
  Defn: Defined on coordinates by sending (x : y) to
        (6*x^2 + 2*x*y + 16*y^2 : 1.414213562373095?*x^2 + (-4)*x*y + (-4)*y^2)
sage: # needs sage.rings.number_field
sage: R.<x> = QQ[]
sage: f = x^6 - 2
sage: L.<b> = NumberField(f, embedding=f.roots(QQbar)[1][0])
sage: A.<x,y> = AffineSpace(L, 2)
sage: H = Hom(A, A)
sage: F = H([b*x/y, 1 + y])
sage: F.change_ring(QQbar)
Scheme endomorphism of Affine Space of dimension 2 over Algebraic Field
  Defn: Defined on coordinates by sending (x, y) to
        (1.122462048309373?*x/y, y + 1)
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(6) - Integer(2)
>>> L = NumberField(f, embedding=f.roots(QQbar)[Integer(1)][Integer(0)], names=('b',)); (b,) = L._first_ngens(1)
>>> A = AffineSpace(L, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2)
>>> H = Hom(A, A)
>>> F = H([b*x/y, Integer(1) + y])
>>> F.change_ring(QQbar)
Scheme endomorphism of Affine Space of dimension 2 over Algebraic Field
  Defn: Defined on coordinates by sending (x, y) to
        (1.122462048309373?*x/y, y + 1)
sage: # needs sage.rings.number_field
sage: K.<a> = QuadraticField(-1)
sage: A.<x,y> = AffineSpace(K, 2)
sage: H = End(A)
sage: phi = H([x/y, y])
sage: emb = K.embeddings(QQbar)[0]
sage: phi.change_ring(emb)
Scheme endomorphism of Affine Space of dimension 2 over Algebraic Field
  Defn: Defined on coordinates by sending (x, y) to (x/y, y)
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> K = QuadraticField(-Integer(1), names=('a',)); (a,) = K._first_ngens(1)
>>> A = AffineSpace(K, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2)
>>> H = End(A)
>>> phi = H([x/y, y])
>>> emb = K.embeddings(QQbar)[Integer(0)]
>>> phi.change_ring(emb)
Scheme endomorphism of Affine Space of dimension 2 over Algebraic Field
  Defn: Defined on coordinates by sending (x, y) to (x/y, y)
coordinate_ring()[source]#

Return the coordinate ring of the ambient projective space.

OUTPUT: A multivariable polynomial ring over the base ring.

EXAMPLES:

sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: H = Hom(P, P)
sage: f = H([3/5*x^2, 6*y^2])
sage: f.coordinate_ring()
Multivariate Polynomial Ring in x, y over Rational Field
>>> from sage.all import *
>>> P = ProjectiveSpace(QQ, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> H = Hom(P, P)
>>> f = H([Integer(3)/Integer(5)*x**Integer(2), Integer(6)*y**Integer(2)])
>>> f.coordinate_ring()
Multivariate Polynomial Ring in x, y over Rational Field
sage: R.<t> = PolynomialRing(ZZ, 1)
sage: P.<x,y> = ProjectiveSpace(R, 1)
sage: H = Hom(P, P)
sage: f = H([3*x^2, y^2])
sage: f.coordinate_ring()
Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring
in t over Integer Ring
>>> from sage.all import *
>>> R = PolynomialRing(ZZ, Integer(1), names=('t',)); (t,) = R._first_ngens(1)
>>> P = ProjectiveSpace(R, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> H = Hom(P, P)
>>> f = H([Integer(3)*x**Integer(2), y**Integer(2)])
>>> f.coordinate_ring()
Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring
in t over Integer Ring
defining_polynomials()[source]#

Return the defining polynomials.

OUTPUT:

An immutable sequence of polynomials that defines this scheme morphism.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: A.<x,y> = AffineSpace(R)
sage: H = A.Hom(A)
sage: H([x^3 + y, 1 - x - y]).defining_polynomials()
(x^3 + y, -x - y + 1)
>>> from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> A = AffineSpace(R, names=('x', 'y',)); (x, y,) = A._first_ngens(2)
>>> H = A.Hom(A)
>>> H([x**Integer(3) + y, Integer(1) - x - y]).defining_polynomials()
(x^3 + y, -x - y + 1)
specialization(D=None, phi=None, homset=None)[source]#

Specialization of this map.

Given a family of maps defined over a polynomial ring. A specialization is a particular member of that family. The specialization can be specified either by a dictionary or a SpecializationMorphism.

INPUT:

  • D – dictionary (optional)

  • phi – SpecializationMorphism (optional)

  • homset – homset of specialized map (optional)

OUTPUT: SchemeMorphism_polynomial

EXAMPLES:

sage: R.<c> = PolynomialRing(QQ)
sage: P.<x,y> = ProjectiveSpace(R, 1)
sage: H = End(P)
sage: f = H([x^2 + c*y^2, y^2])
sage: f.specialization({c: 1})
Scheme endomorphism of Projective Space of dimension 1 over Rational Field
  Defn: Defined on coordinates by sending (x : y) to (x^2 + y^2 : y^2)
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('c',)); (c,) = R._first_ngens(1)
>>> P = ProjectiveSpace(R, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> H = End(P)
>>> f = H([x**Integer(2) + c*y**Integer(2), y**Integer(2)])
>>> f.specialization({c: Integer(1)})
Scheme endomorphism of Projective Space of dimension 1 over Rational Field
  Defn: Defined on coordinates by sending (x : y) to (x^2 + y^2 : y^2)
sage: R.<a,b> = PolynomialRing(QQ)
sage: P.<x,y> = ProjectiveSpace(R, 1)
sage: H = End(P)
sage: f = H([x^3 + a*x*y^2 + b*y^3, y^3])
sage: from sage.rings.polynomial.flatten import SpecializationMorphism
sage: phi = SpecializationMorphism(P.coordinate_ring(), {a: 2, b: -1})
sage: F = f.specialization(phi=phi); F
Scheme endomorphism of Projective Space of dimension 1 over Rational Field
  Defn: Defined on coordinates by sending (x : y) to
        (x^3 + 2*x*y^2 - y^3 : y^3)
sage: g = H([x^2 + a*y^2, y^2])
sage: G = g.specialization(phi=phi)
sage: G.parent() is F.parent()
True
sage: G = g.specialization(phi=phi, homset=F.parent())
sage: G.parent() is F.parent()
True
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('a', 'b',)); (a, b,) = R._first_ngens(2)
>>> P = ProjectiveSpace(R, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> H = End(P)
>>> f = H([x**Integer(3) + a*x*y**Integer(2) + b*y**Integer(3), y**Integer(3)])
>>> from sage.rings.polynomial.flatten import SpecializationMorphism
>>> phi = SpecializationMorphism(P.coordinate_ring(), {a: Integer(2), b: -Integer(1)})
>>> F = f.specialization(phi=phi); F
Scheme endomorphism of Projective Space of dimension 1 over Rational Field
  Defn: Defined on coordinates by sending (x : y) to
        (x^3 + 2*x*y^2 - y^3 : y^3)
>>> g = H([x**Integer(2) + a*y**Integer(2), y**Integer(2)])
>>> G = g.specialization(phi=phi)
>>> G.parent() is F.parent()
True
>>> G = g.specialization(phi=phi, homset=F.parent())
>>> G.parent() is F.parent()
True
sage: R.<c> = PolynomialRing(QQ)
sage: P.<x,y> = ProjectiveSpace(R, 1)
sage: X = P.subscheme([x - c*y])
sage: H = End(X)
sage: f = H([x^2, c*y^2])
sage: f.specialization({c: 2})
Scheme endomorphism of Closed subscheme of Projective Space of dimension 1
 over Rational Field defined by: x - 2*y
      Defn: Defined on coordinates by sending (x : y) to (x^2 : 2*y^2)
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('c',)); (c,) = R._first_ngens(1)
>>> P = ProjectiveSpace(R, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> X = P.subscheme([x - c*y])
>>> H = End(X)
>>> f = H([x**Integer(2), c*y**Integer(2)])
>>> f.specialization({c: Integer(2)})
Scheme endomorphism of Closed subscheme of Projective Space of dimension 1
 over Rational Field defined by: x - 2*y
      Defn: Defined on coordinates by sending (x : y) to (x^2 : 2*y^2)
sage: R.<c> = QQ[]
sage: P.<x,y> = ProjectiveSpace(R, 1)
sage: f = DynamicalSystem_projective([x^2 + c*y^2, y^2], domain=P)
sage: F = f.dynatomic_polynomial(3)                                         # needs sage.libs.pari
sage: g = F.specialization({c: 1}); g
x^6 + x^5*y + 4*x^4*y^2 + 3*x^3*y^3 + 7*x^2*y^4 + 4*x*y^5 + 5*y^6
sage: g == f.specialization({c:1}).dynatomic_polynomial(3)                  # needs sage.libs.pari
True
>>> from sage.all import *
>>> R = QQ['c']; (c,) = R._first_ngens(1)
>>> P = ProjectiveSpace(R, Integer(1), names=('x', 'y',)); (x, y,) = P._first_ngens(2)
>>> f = DynamicalSystem_projective([x**Integer(2) + c*y**Integer(2), y**Integer(2)], domain=P)
>>> F = f.dynatomic_polynomial(Integer(3))                                         # needs sage.libs.pari
>>> g = F.specialization({c: Integer(1)}); g
x^6 + x^5*y + 4*x^4*y^2 + 3*x^3*y^3 + 7*x^2*y^4 + 4*x*y^5 + 5*y^6
>>> g == f.specialization({c:Integer(1)}).dynatomic_polynomial(Integer(3))                  # needs sage.libs.pari
True
sage: R1.<alpha, beta> = QQ[]
sage: A.<x> = AffineSpace(Frac(R1), 1)
sage: f = DynamicalSystem_affine([alpha/(x^2 + 1/alpha)/(x - 1/beta^2)])
sage: f.specialization({alpha: 5, beta: 10})
Dynamical System of Affine Space of dimension 1 over Rational Field
  Defn: Defined on coordinates by sending (x) to
          (5/(x^3 - 1/100*x^2 + 1/5*x - 1/500))
sage: f_5_10 = f.specialization({alpha: 5}).specialization({beta: 10})
sage: f_5_10 == f.specialization({alpha: 5, beta: 10})
True
>>> from sage.all import *
>>> R1 = QQ['alpha, beta']; (alpha, beta,) = R1._first_ngens(2)
>>> A = AffineSpace(Frac(R1), Integer(1), names=('x',)); (x,) = A._first_ngens(1)
>>> f = DynamicalSystem_affine([alpha/(x**Integer(2) + Integer(1)/alpha)/(x - Integer(1)/beta**Integer(2))])
>>> f.specialization({alpha: Integer(5), beta: Integer(10)})
Dynamical System of Affine Space of dimension 1 over Rational Field
  Defn: Defined on coordinates by sending (x) to
          (5/(x^3 - 1/100*x^2 + 1/5*x - 1/500))
>>> f_5_10 = f.specialization({alpha: Integer(5)}).specialization({beta: Integer(10)})
>>> f_5_10 == f.specialization({alpha: Integer(5), beta: Integer(10)})
True
class sage.schemes.generic.morphism.SchemeMorphism_polynomial_id(X)[source]#

Bases: SchemeMorphism_id, SchemeMorphism_polynomial

Return the identity morphism from \(X\) to itself.

INPUT:

  • X – an affine or projective scheme

EXAMPLES:

sage: X = Spec(ZZ)
sage: X.identity_morphism()  # indirect doctest
Scheme endomorphism of Spectrum of Integer Ring
  Defn: Identity map
>>> from sage.all import *
>>> X = Spec(ZZ)
>>> X.identity_morphism()  # indirect doctest
Scheme endomorphism of Spectrum of Integer Ring
  Defn: Identity map
class sage.schemes.generic.morphism.SchemeMorphism_spec(parent, phi, check=True)[source]#

Bases: SchemeMorphism

Morphism of spectra of rings

INPUT:

  • parent – Hom-set whose domain and codomain are affine schemes.

  • phi – a ring morphism with matching domain and codomain.

  • check – boolean (default:True). Whether to check the input for consistency.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: phi = R.hom([QQ(7)]); phi
Ring morphism:
  From: Univariate Polynomial Ring in x over Rational Field
  To:   Rational Field
  Defn: x |--> 7

sage: X = Spec(QQ); Y = Spec(R)
sage: f = X.hom(phi); f
Affine Scheme morphism:
  From: Spectrum of Rational Field
  To:   Spectrum of Univariate Polynomial Ring in x over Rational Field
  Defn: Ring morphism:
          From: Univariate Polynomial Ring in x over Rational Field
          To:   Rational Field
          Defn: x |--> 7

sage: f.ring_homomorphism()
Ring morphism:
  From: Univariate Polynomial Ring in x over Rational Field
  To:   Rational Field
  Defn: x |--> 7
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> phi = R.hom([QQ(Integer(7))]); phi
Ring morphism:
  From: Univariate Polynomial Ring in x over Rational Field
  To:   Rational Field
  Defn: x |--> 7

>>> X = Spec(QQ); Y = Spec(R)
>>> f = X.hom(phi); f
Affine Scheme morphism:
  From: Spectrum of Rational Field
  To:   Spectrum of Univariate Polynomial Ring in x over Rational Field
  Defn: Ring morphism:
          From: Univariate Polynomial Ring in x over Rational Field
          To:   Rational Field
          Defn: x |--> 7

>>> f.ring_homomorphism()
Ring morphism:
  From: Univariate Polynomial Ring in x over Rational Field
  To:   Rational Field
  Defn: x |--> 7
ring_homomorphism()[source]#

Return the underlying ring homomorphism.

OUTPUT:

A ring homomorphism.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: phi = R.hom([QQ(7)])
sage: X = Spec(QQ); Y = Spec(R)
sage: f = X.hom(phi)
sage: f.ring_homomorphism()
Ring morphism:
  From: Univariate Polynomial Ring in x over Rational Field
  To:   Rational Field
  Defn: x |--> 7
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> phi = R.hom([QQ(Integer(7))])
>>> X = Spec(QQ); Y = Spec(R)
>>> f = X.hom(phi)
>>> f.ring_homomorphism()
Ring morphism:
  From: Univariate Polynomial Ring in x over Rational Field
  To:   Rational Field
  Defn: x |--> 7
class sage.schemes.generic.morphism.SchemeMorphism_structure_map(parent, codomain=None)[source]#

Bases: SchemeMorphism

The structure morphism

INPUT:

  • parent – Hom-set with codomain equal to the base scheme of the domain.

EXAMPLES:

sage: Spec(ZZ).structure_morphism()    # indirect doctest
Scheme endomorphism of Spectrum of Integer Ring
  Defn: Structure map
>>> from sage.all import *
>>> Spec(ZZ).structure_morphism()    # indirect doctest
Scheme endomorphism of Spectrum of Integer Ring
  Defn: Structure map
sage.schemes.generic.morphism.is_SchemeMorphism(f)[source]#

Test whether f is a scheme morphism.

INPUT:

  • f – anything.

OUTPUT:

Boolean. Return True if f is a scheme morphism or a point on an elliptic curve.

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2); H = A.Hom(A)
sage: f = H([y, x^2 + y]); f
Scheme endomorphism of Affine Space of dimension 2 over Rational Field
  Defn: Defined on coordinates by sending (x, y) to (y, x^2 + y)
sage: from sage.schemes.generic.morphism import is_SchemeMorphism
sage: is_SchemeMorphism(f)
True
>>> from sage.all import *
>>> A = AffineSpace(QQ, Integer(2), names=('x', 'y',)); (x, y,) = A._first_ngens(2); H = A.Hom(A)
>>> f = H([y, x**Integer(2) + y]); f
Scheme endomorphism of Affine Space of dimension 2 over Rational Field
  Defn: Defined on coordinates by sending (x, y) to (y, x^2 + y)
>>> from sage.schemes.generic.morphism import is_SchemeMorphism
>>> is_SchemeMorphism(f)
True