Wehler K3 Surfaces¶
AUTHORS:
Ben Hutz (11-2012)
Joao Alberto de Faria (10-2013)
Todo
Hasse-Weil Zeta Function
Picard Number
Number Fields
REFERENCES: [FH2015], [CS1996], [Weh1998], [Hutz2007]
- sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface(polys)[source]¶
Define a K3 Surface over \(\mathbb{P}^2 \times \mathbb{P}^2\) defined as the intersection of a bilinear and biquadratic form. [Weh1998]
INPUT:
polys
– bilinear and biquadratic polynomials as a tuple or list
OUTPUT:
WehlerK3Surface_ring
EXAMPLES:
sage: PP.<x0,x1, x2, y0, y1, y2> = ProductProjectiveSpaces([2, 2], QQ) sage: L = x0*y0 + x1*y1 - x2*y2 sage: Q = x0*x1*y1^2 + x2^2*y0*y2 sage: WehlerK3Surface([L, Q]) Closed subscheme of Product of projective spaces P^2 x P^2 over Rational Field defined by: x0*y0 + x1*y1 - x2*y2, x0*x1*y1^2 + x2^2*y0*y2
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> L = x0*y0 + x1*y1 - x2*y2 >>> Q = x0*x1*y1**Integer(2) + x2**Integer(2)*y0*y2 >>> WehlerK3Surface([L, Q]) Closed subscheme of Product of projective spaces P^2 x P^2 over Rational Field defined by: x0*y0 + x1*y1 - x2*y2, x0*x1*y1^2 + x2^2*y0*y2
- class sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_field(polys)[source]¶
Bases:
WehlerK3Surface_ring
- class sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_finite_field(polys)[source]¶
Bases:
WehlerK3Surface_field
- cardinality()[source]¶
Count the total number of points on the K3 surface.
ALGORITHM:
Enumerate points over \(\mathbb{P}^2\), and then count the points on the fiber of each of those points.
OUTPUT: integer; total number of points on the surface
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], GF(7)) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + \ 3*x0*x1*y0*y1 - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 -4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \ + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: X.cardinality() 55
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], GF(Integer(7)), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + \ 3*x0*x1*y0*y1 - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 -4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \ + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> X.cardinality() 55
- class sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring(polys)[source]¶
Bases:
AlgebraicScheme_subscheme_product_projective
A K3 surface in \(\mathbb{P}^2 \times \mathbb{P}^2\) defined as the intersection of a bilinear and biquadratic form. [Weh1998]
EXAMPLES:
sage: R.<x,y,z,u,v,w> = PolynomialRing(QQ, 6) sage: L = x*u - y*v sage: Q = x*y*v^2 + z^2*u*w sage: WehlerK3Surface([L, Q]) Closed subscheme of Product of projective spaces P^2 x P^2 over Rational Field defined by: x*u - y*v, x*y*v^2 + z^2*u*w
>>> from sage.all import * >>> R = PolynomialRing(QQ, Integer(6), names=('x', 'y', 'z', 'u', 'v', 'w',)); (x, y, z, u, v, w,) = R._first_ngens(6) >>> L = x*u - y*v >>> Q = x*y*v**Integer(2) + z**Integer(2)*u*w >>> WehlerK3Surface([L, Q]) Closed subscheme of Product of projective spaces P^2 x P^2 over Rational Field defined by: x*u - y*v, x*y*v^2 + z^2*u*w
- Gpoly(component, k)[source]¶
Return the G polynomials \(G^*_k\).
They are defined as: \(G^*_k = \left(L^*_j\right)^2Q^*_{ii}-L^*_iL^*_jQ^*_{ij}+\left(L^*_i\right)^2Q^*_{jj}\) where \((i, j, k)\) is some permutation of \((0, 1, 2)\) and \(*\) is either \(x\) (
component=1
) or \(y\) (component=0
).INPUT:
component
– integer; 0 or 1k
– integer; 0, 1 or 2
OUTPUT: polynomial in terms of either \(y\) (
component=0
) or \(x\) (component=1
)EXAMPLES:
sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(ZZ, 6) sage: Y = x0*y0 + x1*y1 - x2*y2 sage: Z = x0^2*y0*y1 + x0^2*y2^2 - x0*x1*y1*y2 + x1^2*y2*y1 \ + x2^2*y2^2 + x2^2*y1^2 + x1^2*y2^2 sage: X = WehlerK3Surface([Z, Y]) sage: X.Gpoly(1, 0) x0^2*x1^2 + x1^4 - x0*x1^2*x2 + x1^3*x2 + x1^2*x2^2 + x2^4
>>> from sage.all import * >>> R = PolynomialRing(ZZ, Integer(6), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = R._first_ngens(6) >>> Y = x0*y0 + x1*y1 - x2*y2 >>> Z = x0**Integer(2)*y0*y1 + x0**Integer(2)*y2**Integer(2) - x0*x1*y1*y2 + x1**Integer(2)*y2*y1 \ + x2^2*y2^2 + x2^2*y1^2 + x1^2*y2^2 >>> X = WehlerK3Surface([Z, Y]) >>> X.Gpoly(Integer(1), Integer(0)) x0^2*x1^2 + x1^4 - x0*x1^2*x2 + x1^3*x2 + x1^2*x2^2 + x2^4
- Hpoly(component, i, j)[source]¶
Return the H polynomials defined as \(H^*_{ij}\).
This polynomial is defined by:
\(H^*_{ij} = 2L^*_iL^*_jQ^*_{kk}-L^*_iL^*_kQ^*_{jk} - L^*_jL^*_kQ^*_{ik}+\left(L^*_k\right)^2Q^*_{ij}\) where {i, j, k} is some permutation of (0, 1, 2) and * is either y (
component=0
) or x (component=1
).INPUT:
component
– integer; 0 or 1i
– integer; 0, 1 or 2j
– integer; 0, 1 or 2
OUTPUT: polynomial in terms of either y (
component=0
) or x (component=1
)EXAMPLES:
sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(ZZ, 6) sage: Y = x0*y0 + x1*y1 - x2*y2 sage: Z = x0^2*y0*y1 + x0^2*y2^2 - x0*x1*y1*y2 + x1^2*y2*y1 \ + x2^2*y2^2 + x2^2*y1^2 + x1^2*y2^2 sage: X = WehlerK3Surface([Z, Y]) sage: X.Hpoly(0, 1, 0) 2*y0*y1^3 + 2*y0*y1*y2^2 - y1*y2^3
>>> from sage.all import * >>> R = PolynomialRing(ZZ, Integer(6), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = R._first_ngens(6) >>> Y = x0*y0 + x1*y1 - x2*y2 >>> Z = x0**Integer(2)*y0*y1 + x0**Integer(2)*y2**Integer(2) - x0*x1*y1*y2 + x1**Integer(2)*y2*y1 \ + x2^2*y2^2 + x2^2*y1^2 + x1^2*y2^2 >>> X = WehlerK3Surface([Z, Y]) >>> X.Hpoly(Integer(0), Integer(1), Integer(0)) 2*y0*y1^3 + 2*y0*y1*y2^2 - y1*y2^3
- Lxa(a)[source]¶
Function will return the L polynomial defining the fiber, given by \(L^{x}_{a}\).
This polynomial is defined as:
\(L^{x}_{a} = \{(a, y) \in \mathbb{P}^{2} \times \mathbb{P}^{2} \colon L(a, y) = 0\}\).
Notation and definition from: [CS1996]
INPUT:
a
– point in \(\mathbb{P}^2\)
OUTPUT: a polynomial representing the fiber
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 \ + 3*x0*x1*y0*y1 - 2*x2^2*y0*y1 - \ x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 4*x1*x2*y1^2 \ + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 \ + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: T = PP(1, 1, 0, 1, 0, 0) sage: X.Lxa(T[0]) y0 + y1
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 \ + 3*x0*x1*y0*y1 - 2*x2^2*y0*y1 - \ x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 4*x1*x2*y1^2 \ + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 \ + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> T = PP(Integer(1), Integer(1), Integer(0), Integer(1), Integer(0), Integer(0)) >>> X.Lxa(T[Integer(0)]) y0 + y1
- Lyb(b)[source]¶
Function will return a fiber by \(L^{y}_{b}\).
This polynomial is defined as:
\(L^{y}_{b} = \{(x,b) \in \mathbb{P}^{2} \times \mathbb{P}^{2} \colon L(x,b) = 0\}\).
Notation and definition from: [CS1996]
INPUT:
b
– point in projective space
OUTPUT: a polynomial representing the fiber
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z =x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 \ + 3*x0*x1*y0*y1 \ - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 4*x1*x2*y1^2 \ + 5*x0*x2*y0*y2 \ - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: T = PP(1, 1, 0, 1, 0, 0) sage: X.Lyb(T[1]) x0
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z =x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 \ + 3*x0*x1*y0*y1 \ - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 4*x1*x2*y1^2 \ + 5*x0*x2*y0*y2 \ - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> T = PP(Integer(1), Integer(1), Integer(0), Integer(1), Integer(0), Integer(0)) >>> X.Lyb(T[Integer(1)]) x0
- Qxa(a)[source]¶
Function will return the Q polynomial defining a fiber given by \(Q^{x}_{a}\).
This polynomial is defined as:
\(Q^{x}_{a} = \{(a,y) \in \mathbb{P}^{2} \times \mathbb{P}^{2} \colon Q(a,y) = 0\}\).
Notation and definition from: [CS1996]
INPUT:
a
– point in \(\mathbb{P}^2\)
OUTPUT: a polynomial representing the fiber
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + 3*x0*x1*y0*y1 \ - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 4*x1*x2*y1^2 \ + 5*x0*x2*y0*y2 \ - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: T = PP(1, 1, 0, 1, 0, 0) sage: X.Qxa(T[0]) 5*y0^2 + 7*y0*y1 + y1^2 + 11*y1*y2 + y2^2
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + Integer(3)*x0*x1*y0*y1 \ - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 4*x1*x2*y1^2 \ + 5*x0*x2*y0*y2 \ - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> T = PP(Integer(1), Integer(1), Integer(0), Integer(1), Integer(0), Integer(0)) >>> X.Qxa(T[Integer(0)]) 5*y0^2 + 7*y0*y1 + y1^2 + 11*y1*y2 + y2^2
- Qyb(b)[source]¶
Function will return a fiber by \(Q^{y}_{b}\).
This polynomial is defined as:
\(Q^{y}_{b} = \{(x,b) \in \mathbb{P}^{2} \times \mathbb{P}^{2} \colon Q(x,b) = 0\}\).
Notation and definition from: [CS1996]
INPUT:
b
– point in projective space
OUTPUT: a polynomial representing the fiber
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 \ + 3*x0*x1*y0*y1 - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 \ + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: T = PP(1, 1, 0, 1, 0, 0) sage: X.Qyb(T[1]) x0^2 + 3*x0*x1 + x1^2
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 \ + 3*x0*x1*y0*y1 - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 \ + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> T = PP(Integer(1), Integer(1), Integer(0), Integer(1), Integer(0), Integer(0)) >>> X.Qyb(T[Integer(1)]) x0^2 + 3*x0*x1 + x1^2
- Ramification_poly(i)[source]¶
Function will return the Ramification polynomial \(g^*\).
This polynomial is defined by:
\(g^* = \frac{\left(H^*_{ij}\right)^2 - 4G^*_iG^*_j}{\left(L^*_k\right)^2}\).
The roots of this polynomial will either be degenerate fibers or fixed points of the involutions \(\sigma_x\) or \(\sigma_y\) for more information, see [CS1996].
INPUT:
i
– integer; either 0 (polynomial in y) or 1 (polynomial in x)
OUTPUT: polynomial in the coordinate ring of the ambient space
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = (x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + 3*x0*x1*y0*y1 ....: - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 4*x1*x2*y1^2 ....: + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 ....: + x0*x1*y2^2 + 3*x2^2*y2^2) sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: X.Ramification_poly(0) 8*y0^5*y1 - 24*y0^4*y1^2 + 48*y0^2*y1^4 - 16*y0*y1^5 + y1^6 + 84*y0^3*y1^2*y2 + 46*y0^2*y1^3*y2 - 20*y0*y1^4*y2 + 16*y1^5*y2 + 53*y0^4*y2^2 + 56*y0^3*y1*y2^2 - 32*y0^2*y1^2*y2^2 - 80*y0*y1^3*y2^2 - 92*y1^4*y2^2 - 12*y0^2*y1*y2^3 - 168*y0*y1^2*y2^3 - 122*y1^3*y2^3 + 14*y0^2*y2^4 + 8*y0*y1*y2^4 - 112*y1^2*y2^4 + y2^6
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = (x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + Integer(3)*x0*x1*y0*y1 ... - Integer(2)*x2**Integer(2)*y0*y1 - x0**Integer(2)*y1**Integer(2) + Integer(2)*x1**Integer(2)*y1**Integer(2) - x0*x2*y1**Integer(2) - Integer(4)*x1*x2*y1**Integer(2) ... + Integer(5)*x0*x2*y0*y2 - Integer(4)*x1*x2*y0*y2 + Integer(7)*x0**Integer(2)*y1*y2 + Integer(4)*x1**Integer(2)*y1*y2 ... + x0*x1*y2**Integer(2) + Integer(3)*x2**Integer(2)*y2**Integer(2)) >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> X.Ramification_poly(Integer(0)) 8*y0^5*y1 - 24*y0^4*y1^2 + 48*y0^2*y1^4 - 16*y0*y1^5 + y1^6 + 84*y0^3*y1^2*y2 + 46*y0^2*y1^3*y2 - 20*y0*y1^4*y2 + 16*y1^5*y2 + 53*y0^4*y2^2 + 56*y0^3*y1*y2^2 - 32*y0^2*y1^2*y2^2 - 80*y0*y1^3*y2^2 - 92*y1^4*y2^2 - 12*y0^2*y1*y2^3 - 168*y0*y1^2*y2^3 - 122*y1^3*y2^3 + 14*y0^2*y2^4 + 8*y0*y1*y2^4 - 112*y1^2*y2^4 + y2^6
- Sxa(a)[source]¶
Function will return fiber by \(S^{x}_{a}\).
This function is defined as:
\(S^{x}_{a} = L^{x}_{a} \cap Q^{x}_{a}\).
Notation and definition from: [CS1996]
INPUT:
a
– point in \(\mathbb{P}^2\)
OUTPUT: a subscheme representing the fiber
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 \ + 3*x0*x1*y0*y1 \ - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 4*x1*x2*y1^2 \ + 5*x0*x2*y0*y2 \ - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: T = PP(1, 1, 0, 1, 0, 0) sage: X.Sxa(T[0]) Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: y0 + y1, 5*y0^2 + 7*y0*y1 + y1^2 + 11*y1*y2 + y2^2
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 \ + 3*x0*x1*y0*y1 \ - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 4*x1*x2*y1^2 \ + 5*x0*x2*y0*y2 \ - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> T = PP(Integer(1), Integer(1), Integer(0), Integer(1), Integer(0), Integer(0)) >>> X.Sxa(T[Integer(0)]) Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: y0 + y1, 5*y0^2 + 7*y0*y1 + y1^2 + 11*y1*y2 + y2^2
- Syb(b)[source]¶
Function will return fiber by \(S^{y}_{b}\).
This function is defined by:
\(S^{y}_{b} = L^{y}_{b} \cap Q^{y}_{b}\).
Notation and definition from: [CS1996]
INPUT:
b
– point in \(\mathbb{P}^2\)
OUTPUT: a subscheme representing the fiber
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + \ 3*x0*x1*y0*y1 - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 \ + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0 * y0 + x1 * y1 + x2 * y2 sage: X = WehlerK3Surface([Z, Y]) sage: T = PP(1, 1, 0, 1, 0, 0) sage: X.Syb(T[1]) Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: x0, x0^2 + 3*x0*x1 + x1^2
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + \ 3*x0*x1*y0*y1 - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 \ + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0 * y0 + x1 * y1 + x2 * y2 >>> X = WehlerK3Surface([Z, Y]) >>> T = PP(Integer(1), Integer(1), Integer(0), Integer(1), Integer(0), Integer(0)) >>> X.Syb(T[Integer(1)]) Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: x0, x0^2 + 3*x0*x1 + x1^2
- canonical_height(P, N, badprimes=None, prec=100)[source]¶
Evaluates the canonical height for
P
withN
terms of the series of the local heights.ALGORITHM:
The sum of the canonical height minus and canonical height plus, for more info see section 4 of [CS1996].
INPUT:
P
– a surface pointN
– positive integer (number of terms of the series to use)badprimes
– (optional) list of integer primes (where the surface is degenerate)prec
– (default: 100) float point or \(p\)-adic precision
OUTPUT: a real number
EXAMPLES:
sage: set_verbose(None) sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(QQ, 6) sage: L = (-y0 - y1)*x0 + (-y0*x1 - y2*x2) sage: Q = (-y2*y0 - y1^2)*x0^2 + ((-y0^2 - y2*y0 + (-y2*y1 - y2^2))*x1 + \ (-y0^2 - y2*y1)*x2)*x0 + ((-y0^2 - y2*y0 - y2^2)*x1^2 + (-y2*y0 - y1^2)*x2*x1 \ + (-y0^2 + (-y1 - y2)*y0)*x2^2) sage: X = WehlerK3Surface([L, Q]) sage: P = X([1, 0, -1, 1,- 1, 0]) #order 16 sage: X.canonical_height(P, 5) # long time 0.00000000000000000000000000000
>>> from sage.all import * >>> set_verbose(None) >>> R = PolynomialRing(QQ, Integer(6), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = R._first_ngens(6) >>> L = (-y0 - y1)*x0 + (-y0*x1 - y2*x2) >>> Q = (-y2*y0 - y1**Integer(2))*x0**Integer(2) + ((-y0**Integer(2) - y2*y0 + (-y2*y1 - y2**Integer(2)))*x1 + \ (-y0^2 - y2*y1)*x2)*x0 + ((-y0^2 - y2*y0 - y2^2)*x1^2 + (-y2*y0 - y1^2)*x2*x1 \ + (-y0^2 + (-y1 - y2)*y0)*x2^2) >>> X = WehlerK3Surface([L, Q]) >>> P = X([Integer(1), Integer(0), -Integer(1), Integer(1),- Integer(1), Integer(0)]) #order 16 >>> X.canonical_height(P, Integer(5)) # long time 0.00000000000000000000000000000
Call-Silverman example:
sage: set_verbose(None) sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + 3*x0*x1*y0*y1 - \ 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 \ -4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: P = X(0, 1, 0, 0, 0, 1) sage: X.canonical_height(P, 4) 0.69826458668659859569990618895
>>> from sage.all import * >>> set_verbose(None) >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + Integer(3)*x0*x1*y0*y1 - \ 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 \ -4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> P = X(Integer(0), Integer(1), Integer(0), Integer(0), Integer(0), Integer(1)) >>> X.canonical_height(P, Integer(4)) 0.69826458668659859569990618895
- canonical_height_minus(P, N, badprimes=None, prec=100)[source]¶
Evaluates the canonical height minus function of Call-Silverman for
P
withN
terms of the series of the local heights.Must be over \(\ZZ\) or \(\QQ\).
ALGORITHM:
Sum over the lambda minus heights (local heights) in a convergent series, for more detail see section 7 of [CS1996].
INPUT:
P
– a surface pointN
– positive integer (number of terms of the series to use)badprimes
– (optional) list of integer primes (where the surface is degenerate)prec
– (default: 100) float point or \(p\)-adic precision
OUTPUT: a real number
EXAMPLES:
sage: set_verbose(None) sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(QQ, 6) sage: L = (-y0 - y1)*x0 + (-y0*x1 - y2*x2) sage: Q = (-y2*y0 - y1^2)*x0^2 + ((-y0^2 - y2*y0 + (-y2*y1 - y2^2))*x1\ + (-y0^2 - y2*y1)*x2)*x0 + ((-y0^2 - y2*y0 - y2^2)*x1^2 + (-y2*y0 - y1^2)*x2*x1\ + (-y0^2 + (-y1 - y2)*y0)*x2^2) sage: X = WehlerK3Surface([L, Q]) sage: P = X([1, 0, -1, 1, -1, 0]) #order 16 sage: X.canonical_height_minus(P, 5) # long time 0.00000000000000000000000000000
>>> from sage.all import * >>> set_verbose(None) >>> R = PolynomialRing(QQ, Integer(6), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = R._first_ngens(6) >>> L = (-y0 - y1)*x0 + (-y0*x1 - y2*x2) >>> Q = (-y2*y0 - y1**Integer(2))*x0**Integer(2) + ((-y0**Integer(2) - y2*y0 + (-y2*y1 - y2**Integer(2)))*x1\ + (-y0^2 - y2*y1)*x2)*x0 + ((-y0^2 - y2*y0 - y2^2)*x1^2 + (-y2*y0 - y1^2)*x2*x1\ + (-y0^2 + (-y1 - y2)*y0)*x2^2) >>> X = WehlerK3Surface([L, Q]) >>> P = X([Integer(1), Integer(0), -Integer(1), Integer(1), -Integer(1), Integer(0)]) #order 16 >>> X.canonical_height_minus(P, Integer(5)) # long time 0.00000000000000000000000000000
Call-Silverman example:
sage: set_verbose(None) sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 +\ 3*x0*x1*y0*y1 - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - \ 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + \ x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: P = X([0, 1, 0, 0, 0, 1]) sage: X.canonical_height_minus(P, 4) # long time 0.55073705369676788175590206734
>>> from sage.all import * >>> set_verbose(None) >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 +\ 3*x0*x1*y0*y1 - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - \ 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + \ x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> P = X([Integer(0), Integer(1), Integer(0), Integer(0), Integer(0), Integer(1)]) >>> X.canonical_height_minus(P, Integer(4)) # long time 0.55073705369676788175590206734
- canonical_height_plus(P, N, badprimes=None, prec=100)[source]¶
Evaluates the canonical height plus function of Call-Silverman for
P
withN
terms of the series of the local heights.Must be over \(\ZZ\) or \(\QQ\).
ALGORITHM:
Sum over the lambda plus heights (local heights) in a convergent series, for more detail see section 7 of [CS1996].
INPUT:
P
– a surface pointN
– positive integer. Number of terms of the series to usebadprimes
– (optional) list of integer primes (where the surface is degenerate)prec
– (default: 100) float point or \(p\)-adic precision
OUTPUT: a real number
EXAMPLES:
sage: set_verbose(None) sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(QQ, 6) sage: L = (-y0 - y1)*x0 + (-y0*x1 - y2*x2) sage: Q = (-y2*y0 - y1^2)*x0^2 + ((-y0^2 - y2*y0 + (-y2*y1 - y2^2))*x1 + \ (-y0^2 - y2*y1)*x2)*x0 + ((-y0^2 - y2*y0 - y2^2)*x1^2 + (-y2*y0 - y1^2)*x2*x1 \ + (-y0^2 + (-y1 - y2)*y0)*x2^2) sage: X = WehlerK3Surface([L, Q]) sage: P = X([1, 0, -1, 1, -1, 0]) #order 16 sage: X.canonical_height_plus(P, 5) # long time 0.00000000000000000000000000000
>>> from sage.all import * >>> set_verbose(None) >>> R = PolynomialRing(QQ, Integer(6), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = R._first_ngens(6) >>> L = (-y0 - y1)*x0 + (-y0*x1 - y2*x2) >>> Q = (-y2*y0 - y1**Integer(2))*x0**Integer(2) + ((-y0**Integer(2) - y2*y0 + (-y2*y1 - y2**Integer(2)))*x1 + \ (-y0^2 - y2*y1)*x2)*x0 + ((-y0^2 - y2*y0 - y2^2)*x1^2 + (-y2*y0 - y1^2)*x2*x1 \ + (-y0^2 + (-y1 - y2)*y0)*x2^2) >>> X = WehlerK3Surface([L, Q]) >>> P = X([Integer(1), Integer(0), -Integer(1), Integer(1), -Integer(1), Integer(0)]) #order 16 >>> X.canonical_height_plus(P, Integer(5)) # long time 0.00000000000000000000000000000
Call-Silverman Example:
sage: set_verbose(None) sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + \ 3*x0*x1*y0*y1 - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 -4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \ + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: P = X([0, 1, 0, 0, 0, 1]) sage: X.canonical_height_plus(P, 4) # long time 0.14752753298983071394400412161
>>> from sage.all import * >>> set_verbose(None) >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + \ 3*x0*x1*y0*y1 - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 -4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \ + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> P = X([Integer(0), Integer(1), Integer(0), Integer(0), Integer(0), Integer(1)]) >>> X.canonical_height_plus(P, Integer(4)) # long time 0.14752753298983071394400412161
- change_ring(R)[source]¶
Changes the base ring on which the Wehler K3 Surface is defined.
INPUT:
R
– ring
OUTPUT: K3 Surface defined over input ring
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], GF(3)) sage: L = x0*y0 + x1*y1 - x2*y2 sage: Q = x0*x1*y1^2 + x2^2*y0*y2 sage: W = WehlerK3Surface([L, Q]) sage: W.base_ring() Finite Field of size 3 sage: T = W.change_ring(GF(7)) sage: T.base_ring() Finite Field of size 7
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], GF(Integer(3)), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> L = x0*y0 + x1*y1 - x2*y2 >>> Q = x0*x1*y1**Integer(2) + x2**Integer(2)*y0*y2 >>> W = WehlerK3Surface([L, Q]) >>> W.base_ring() Finite Field of size 3 >>> T = W.change_ring(GF(Integer(7))) >>> T.base_ring() Finite Field of size 7
- degenerate_fibers()[source]¶
Return the (rational) degenerate fibers of the surface defined over the base ring, or the fraction field of the base ring if it is not a field.
ALGORITHM:
The criteria for degeneracy by the common vanishing of the polynomials
self.Gpoly(1, 0)
,self.Gpoly(1, 1)
,self.Gpoly(1, 2)
,self.Hpoly(1, 0, 1)
,self.Hpoly(1, 0, 2)
,self.Hpoly(1, 1, 2)
(for the first component), is from Proposition 1.4 in the following article: [CS1996].This function finds the common solution through elimination via Groebner bases by using the .variety() function on the three affine charts in each component.
OUTPUT: the output is a list of lists where the elements of lists are points in the appropriate projective space. The first list is the points whose pullback by the projection to the first component (projective space) is dimension greater than 0. The second list is points in the second component
EXAMPLES:
sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(ZZ, 6) sage: Y = x0*y0 + x1*y1 - x2*y2 sage: Z = x0^2*y0*y1 + x0^2*y2^2 - x0*x1*y1*y2 + x1^2*y2*y1 + x2^2*y2^2\ + x2^2*y1^2 + x1^2*y2^2 sage: X = WehlerK3Surface([Z, Y]) sage: X.degenerate_fibers() [[], [(1 : 0 : 0)]]
>>> from sage.all import * >>> R = PolynomialRing(ZZ, Integer(6), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = R._first_ngens(6) >>> Y = x0*y0 + x1*y1 - x2*y2 >>> Z = x0**Integer(2)*y0*y1 + x0**Integer(2)*y2**Integer(2) - x0*x1*y1*y2 + x1**Integer(2)*y2*y1 + x2**Integer(2)*y2**Integer(2)\ + x2^2*y1^2 + x1^2*y2^2 >>> X = WehlerK3Surface([Z, Y]) >>> X.degenerate_fibers() [[], [(1 : 0 : 0)]]
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = (x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + 3*x0*x1*y0*y1 ....: - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 4*x1*x2*y1^2 ....: + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 ....: + x0*x1*y2^2 + 3*x2^2*y2^2) sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: X.degenerate_fibers() [[], []]
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = (x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + Integer(3)*x0*x1*y0*y1 ... - Integer(2)*x2**Integer(2)*y0*y1 - x0**Integer(2)*y1**Integer(2) + Integer(2)*x1**Integer(2)*y1**Integer(2) - x0*x2*y1**Integer(2) - Integer(4)*x1*x2*y1**Integer(2) ... + Integer(5)*x0*x2*y0*y2 - Integer(4)*x1*x2*y0*y2 + Integer(7)*x0**Integer(2)*y1*y2 + Integer(4)*x1**Integer(2)*y1*y2 ... + x0*x1*y2**Integer(2) + Integer(3)*x2**Integer(2)*y2**Integer(2)) >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> X.degenerate_fibers() [[], []]
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: R = PP.coordinate_ring() sage: l = y0*x0 + y1*x1 + (y0 - y1)*x2 sage: q = (y1*y0 + y2^2)*x0^2 + ((y0^2 - y2*y1)*x1 + (y0^2 + (y1^2 - y2^2))*x2)*x0 \ + (y2*y0 + y1^2)*x1^2 + (y0^2 + (-y1^2 + y2^2))*x2*x1 sage: X = WehlerK3Surface([l,q]) sage: X.degenerate_fibers() [[(-1 : 1 : 1), (0 : 0 : 1)], [(-1 : -1 : 1), (0 : 0 : 1)]]
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> R = PP.coordinate_ring() >>> l = y0*x0 + y1*x1 + (y0 - y1)*x2 >>> q = (y1*y0 + y2**Integer(2))*x0**Integer(2) + ((y0**Integer(2) - y2*y1)*x1 + (y0**Integer(2) + (y1**Integer(2) - y2**Integer(2)))*x2)*x0 \ + (y2*y0 + y1^2)*x1^2 + (y0^2 + (-y1^2 + y2^2))*x2*x1 >>> X = WehlerK3Surface([l,q]) >>> X.degenerate_fibers() [[(-1 : 1 : 1), (0 : 0 : 1)], [(-1 : -1 : 1), (0 : 0 : 1)]]
- degenerate_primes(check=True)[source]¶
Determine which primes \(p\)
self
has degenerate fibers over \(\GF{p}\).If
check
isFalse
, then may return primes that do not have degenerate fibers. Raises an error if the surface is degenerate. Works only forZZ
orQQ
.INPUT:
check
– boolean (default:True
); whether the primes are verified
ALGORITHM:
\(p\) is a prime of bad reduction if and only if the defining polynomials of
self
plus the G and H polynomials have a common zero. Or stated another way, \(p\) is a prime of bad reduction if and only if the radical of the ideal defined by the defining polynomials ofself
plus the G and H polynomials is not \((x_0,x_1,\ldots,x_N)\). This happens if and only if some power of each \(x_i\) is not in the ideal defined by the defining polynomials ofself
(with G and H). This last condition is what is checked. The lcm of the coefficients of the monomials \(x_i\) in a Groebner basis is computed. This may return extra primes.OUTPUT: list of primes
EXAMPLES:
sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(QQ, 6) sage: L = y0*x0 + (y1*x1 + y2*x2) sage: Q = (2*y0^2 + y2*y0 + (2*y1^2 + y2^2))*x0^2 + ((y0^2 + y1*y0 + \ (y1^2 + 2*y2*y1 + y2^2))*x1 + (2*y1^2 + y2*y1 + y2^2)*x2)*x0 + ((2*y0^2\ + (y1 + 2*y2)*y0 + (2*y1^2 + y2*y1))*x1^2 + ((2*y1 + 2*y2)*y0 + (y1^2 + \ y2*y1 + 2*y2^2))*x2*x1 + (2*y0^2 + y1*y0 + (2*y1^2 + y2^2))*x2^2) sage: X = WehlerK3Surface([L, Q]) sage: X.degenerate_primes() [2, 3, 5, 11, 23, 47, 48747691, 111301831]
>>> from sage.all import * >>> R = PolynomialRing(QQ, Integer(6), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = R._first_ngens(6) >>> L = y0*x0 + (y1*x1 + y2*x2) >>> Q = (Integer(2)*y0**Integer(2) + y2*y0 + (Integer(2)*y1**Integer(2) + y2**Integer(2)))*x0**Integer(2) + ((y0**Integer(2) + y1*y0 + \ (y1^2 + 2*y2*y1 + y2^2))*x1 + (2*y1^2 + y2*y1 + y2^2)*x2)*x0 + ((2*y0^2\ + (y1 + 2*y2)*y0 + (2*y1^2 + y2*y1))*x1^2 + ((2*y1 + 2*y2)*y0 + (y1^2 + \ y2*y1 + 2*y2^2))*x2*x1 + (2*y0^2 + y1*y0 + (2*y1^2 + y2^2))*x2^2) >>> X = WehlerK3Surface([L, Q]) >>> X.degenerate_primes() [2, 3, 5, 11, 23, 47, 48747691, 111301831]
- fiber(p, component)[source]¶
Return the fibers [y (component = 1) or x (Component = 0)] of a point on a K3 Surface.
This will work for nondegenerate fibers only.
For algorithm, see [Hutz2007].
INPUT:
p
– a point in \(\mathbb{P}^2\)
OUTPUT: the corresponding fiber (as a list)
EXAMPLES:
sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(ZZ, 6) sage: Y = x0*y0 + x1*y1 - x2*y2 sage: Z = y0^2*x0*x1 + y0^2*x2^2 - y0*y1*x1*x2 + y1^2*x2*x1 + y2^2*x2^2 +\ y2^2*x1^2 + y1^2*x2^2 sage: X = WehlerK3Surface([Z, Y]) sage: Proj = ProjectiveSpace(QQ, 2) sage: P = Proj([1, 0, 0]) sage: X.fiber(P, 1) Traceback (most recent call last): ... TypeError: fiber is degenerate
>>> from sage.all import * >>> R = PolynomialRing(ZZ, Integer(6), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = R._first_ngens(6) >>> Y = x0*y0 + x1*y1 - x2*y2 >>> Z = y0**Integer(2)*x0*x1 + y0**Integer(2)*x2**Integer(2) - y0*y1*x1*x2 + y1**Integer(2)*x2*x1 + y2**Integer(2)*x2**Integer(2) +\ y2^2*x1^2 + y1^2*x2^2 >>> X = WehlerK3Surface([Z, Y]) >>> Proj = ProjectiveSpace(QQ, Integer(2)) >>> P = Proj([Integer(1), Integer(0), Integer(0)]) >>> X.fiber(P, Integer(1)) Traceback (most recent call last): ... TypeError: fiber is degenerate
sage: P.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + 3*x0*x1*y0*y1 - \ 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 -4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - \ 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: Proj = P[0] sage: T = Proj([0, 0, 1]) sage: X.fiber(T, 1) [(0 : 0 : 1 , 0 : 1 : 0), (0 : 0 : 1 , 2 : 0 : 0)]
>>> from sage.all import * >>> P = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = P._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + Integer(3)*x0*x1*y0*y1 - \ 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 -4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - \ 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> Proj = P[Integer(0)] >>> T = Proj([Integer(0), Integer(0), Integer(1)]) >>> X.fiber(T, Integer(1)) [(0 : 0 : 1 , 0 : 1 : 0), (0 : 0 : 1 , 2 : 0 : 0)]
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], GF(7)) sage: L = x0*y0 + x1*y1 - 1*x2*y2 sage: Q = ((2*x0^2 + x2*x0 + (2*x1^2 + x2^2))*y0^2 ....: + ((x0^2 + x1*x0 +(x1^2 + 2*x2*x1 + x2^2))*y1 ....: + (2*x1^2 + x2*x1 + x2^2)*y2)*y0 ....: + ((2*x0^2 + (x1 + 2*x2)*x0 + (2*x1^2 + x2*x1))*y1^2 ....: + ((2*x1 + 2*x2)*x0 + (x1^2 + x2*x1 + 2*x2^2))*y2*y1 ....: + (2*x0^2 + x1*x0 + (2*x1^2 + x2^2))*y2^2)) sage: W = WehlerK3Surface([L, Q]) sage: W.fiber([4, 0, 1], 0) [(0 : 1 : 0 , 4 : 0 : 1), (4 : 0 : 2 , 4 : 0 : 1)]
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], GF(Integer(7)), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> L = x0*y0 + x1*y1 - Integer(1)*x2*y2 >>> Q = ((Integer(2)*x0**Integer(2) + x2*x0 + (Integer(2)*x1**Integer(2) + x2**Integer(2)))*y0**Integer(2) ... + ((x0**Integer(2) + x1*x0 +(x1**Integer(2) + Integer(2)*x2*x1 + x2**Integer(2)))*y1 ... + (Integer(2)*x1**Integer(2) + x2*x1 + x2**Integer(2))*y2)*y0 ... + ((Integer(2)*x0**Integer(2) + (x1 + Integer(2)*x2)*x0 + (Integer(2)*x1**Integer(2) + x2*x1))*y1**Integer(2) ... + ((Integer(2)*x1 + Integer(2)*x2)*x0 + (x1**Integer(2) + x2*x1 + Integer(2)*x2**Integer(2)))*y2*y1 ... + (Integer(2)*x0**Integer(2) + x1*x0 + (Integer(2)*x1**Integer(2) + x2**Integer(2)))*y2**Integer(2))) >>> W = WehlerK3Surface([L, Q]) >>> W.fiber([Integer(4), Integer(0), Integer(1)], Integer(0)) [(0 : 1 : 0 , 4 : 0 : 1), (4 : 0 : 2 , 4 : 0 : 1)]
- is_degenerate()[source]¶
Function will return
True
if there is a fiber (over the algebraic closure of the base ring) of dimension greater than 0 andFalse
otherwise.OUTPUT: boolean
EXAMPLES:
sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(ZZ, 6) sage: Y = x0*y0 + x1*y1 - x2*y2 sage: Z = x0^2*y0*y1 + x0^2*y2^2 - x0*x1*y1*y2 + x1^2*y2*y1 + x2^2*y2^2 + \ x2^2*y1^2 + x1^2*y2^2 sage: X = WehlerK3Surface([Z, Y]) sage: X.is_degenerate() True
>>> from sage.all import * >>> R = PolynomialRing(ZZ, Integer(6), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = R._first_ngens(6) >>> Y = x0*y0 + x1*y1 - x2*y2 >>> Z = x0**Integer(2)*y0*y1 + x0**Integer(2)*y2**Integer(2) - x0*x1*y1*y2 + x1**Integer(2)*y2*y1 + x2**Integer(2)*y2**Integer(2) + \ x2^2*y1^2 + x1^2*y2^2 >>> X = WehlerK3Surface([Z, Y]) >>> X.is_degenerate() True
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + 3*x0*x1*y0*y1 - \ 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 -4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - \ 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: X.is_degenerate() False
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + Integer(3)*x0*x1*y0*y1 - \ 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 -4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - \ 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> X.is_degenerate() False
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], GF(3)) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + 3*x0*x1*y0*y1 - \ 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 -4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - \ 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: X.is_degenerate() True
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], GF(Integer(3)), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + Integer(3)*x0*x1*y0*y1 - \ 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 -4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - \ 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> X.is_degenerate() True
- is_isomorphic(right)[source]¶
Check to see if two K3 surfaces have the same defining ideal.
INPUT:
right
– the K3 surface to compare to the original
OUTPUT: boolean
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + \ 3*x0*x1*y0*y1 -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ -4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \ + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: W = WehlerK3Surface([Z + Y^2, Y]) sage: X.is_isomorphic(W) True
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + \ 3*x0*x1*y0*y1 -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ -4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \ + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> W = WehlerK3Surface([Z + Y**Integer(2), Y]) >>> X.is_isomorphic(W) True
sage: R.<x,y,z,u,v,w> = PolynomialRing(QQ, 6) sage: L = x*u - y*v sage: Q = x*y*v^2 + z^2*u*w sage: W1 = WehlerK3Surface([L, Q]) sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: L = x0*y0 + x1*y1 + x2*y2 sage: Q = x1^2*y0^2 + 2*x2^2*y0*y1 + x0^2*y1^2 - x0*x1*y2^2 sage: W2 = WehlerK3Surface([L, Q]) sage: W1.is_isomorphic(W2) False
>>> from sage.all import * >>> R = PolynomialRing(QQ, Integer(6), names=('x', 'y', 'z', 'u', 'v', 'w',)); (x, y, z, u, v, w,) = R._first_ngens(6) >>> L = x*u - y*v >>> Q = x*y*v**Integer(2) + z**Integer(2)*u*w >>> W1 = WehlerK3Surface([L, Q]) >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> L = x0*y0 + x1*y1 + x2*y2 >>> Q = x1**Integer(2)*y0**Integer(2) + Integer(2)*x2**Integer(2)*y0*y1 + x0**Integer(2)*y1**Integer(2) - x0*x1*y2**Integer(2) >>> W2 = WehlerK3Surface([L, Q]) >>> W1.is_isomorphic(W2) False
- is_smooth()[source]¶
Function will return the status of the smoothness of the surface.
ALGORITHM:
Checks to confirm that all of the 2x2 minors of the Jacobian generated from the biquadratic and bilinear forms have no common vanishing points.
OUTPUT: boolean
EXAMPLES:
sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(ZZ, 6) sage: Y = x0*y0 + x1*y1 - x2*y2 sage: Z = x0^2*y0*y1 + x0^2*y2^2 - x0*x1*y1*y2 + x1^2*y2*y1 +\ x2^2*y2^2 + x2^2*y1^2 + x1^2*y2^2 sage: X = WehlerK3Surface([Z, Y]) sage: X.is_smooth() False
>>> from sage.all import * >>> R = PolynomialRing(ZZ, Integer(6), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = R._first_ngens(6) >>> Y = x0*y0 + x1*y1 - x2*y2 >>> Z = x0**Integer(2)*y0*y1 + x0**Integer(2)*y2**Integer(2) - x0*x1*y1*y2 + x1**Integer(2)*y2*y1 +\ x2^2*y2^2 + x2^2*y1^2 + x1^2*y2^2 >>> X = WehlerK3Surface([Z, Y]) >>> X.is_smooth() False
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + \ 3*x0*x1*y0*y1 - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \ + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: X.is_smooth() True
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + \ 3*x0*x1*y0*y1 - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \ + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> X.is_smooth() True
- is_symmetric_orbit(orbit)[source]¶
Check to see if the orbit is symmetric (i.e. if one of the points on the orbit is fixed by ‘sigma_x’ or ‘sigma_y’).
INPUT:
orbit
– a periodic cycle of either psi or phi
OUTPUT: boolean
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], GF(7)) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + 3*x0*x1*y0*y1 \ -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 -4*x1*x2*y1^2 + 5*x0*x2*y0*y2 \ -4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: T = PP([0, 0, 1, 1, 0, 0]) sage: orbit = X.orbit_psi(T, 4) sage: X.is_symmetric_orbit(orbit) True
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], GF(Integer(7)), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + Integer(3)*x0*x1*y0*y1 \ -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 -4*x1*x2*y1^2 + 5*x0*x2*y0*y2 \ -4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> T = PP([Integer(0), Integer(0), Integer(1), Integer(1), Integer(0), Integer(0)]) >>> orbit = X.orbit_psi(T, Integer(4)) >>> X.is_symmetric_orbit(orbit) True
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: L = x0*y0 + x1*y1 + x2*y2 sage: Q = x1^2*y0^2 + 2*x2^2*y0*y1 + x0^2*y1^2 - x0*x1*y2^2 sage: W = WehlerK3Surface([L, Q]) sage: T = W([-1, -1, 1, 1, 0, 1]) sage: Orb = W.orbit_phi(T, 7) sage: W.is_symmetric_orbit(Orb) False
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> L = x0*y0 + x1*y1 + x2*y2 >>> Q = x1**Integer(2)*y0**Integer(2) + Integer(2)*x2**Integer(2)*y0*y1 + x0**Integer(2)*y1**Integer(2) - x0*x1*y2**Integer(2) >>> W = WehlerK3Surface([L, Q]) >>> T = W([-Integer(1), -Integer(1), Integer(1), Integer(1), Integer(0), Integer(1)]) >>> Orb = W.orbit_phi(T, Integer(7)) >>> W.is_symmetric_orbit(Orb) False
- lambda_minus(P, v, N, m, n, prec=100)[source]¶
Evaluates the local canonical height minus function of Call-Silverman at the place
v
forP
withN
terms of the series.Use
v = 0
for the Archimedean place. Must be over \(\ZZ\) or \(\QQ\).ALGORITHM:
Sum over local heights using convergent series, for more details, see section 4 of [CS1996].
INPUT:
P
– a projective pointN
– positive integer. number of terms of the series to usev
– nonnegative integer. a place, use v = 0 for the Archimedean placem
,n
– positive integers; we compute the local height for the divisor \(E_{mn}^{+}\). These must be indices of nonzero coordinates of the pointP
.prec
– (default: 100) float point or \(p\)-adic precision
OUTPUT: a real number
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + 3*x0*x1*y0*y1 \ - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 -4*x1*x2*y1^2 + 5*x0*x2*y0*y2\ - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: P = X([0, 0, 1, 1, 0, 0]) sage: X.lambda_minus(P, 2, 20, 2, 0, 200) -0.18573351672047135037172805779671791488351056677474271893705
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + Integer(3)*x0*x1*y0*y1 \ - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 -4*x1*x2*y1^2 + 5*x0*x2*y0*y2\ - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> P = X([Integer(0), Integer(0), Integer(1), Integer(1), Integer(0), Integer(0)]) >>> X.lambda_minus(P, Integer(2), Integer(20), Integer(2), Integer(0), Integer(200)) -0.18573351672047135037172805779671791488351056677474271893705
- lambda_plus(P, v, N, m, n, prec=100)[source]¶
Evaluates the local canonical height plus function of Call-Silverman at the place
v
forP
withN
terms of the series.Use
v = 0
for the archimedean place. Must be over \(\ZZ\) or \(\QQ\).ALGORITHM:
Sum over local heights using convergent series, for more details, see section 4 of [CS1996].
INPUT:
P
– a surface pointN
– positive integer; number of terms of the series to usev
– nonnegative integer; a place, use v = 0 for the Archimedean placem
,n
– positive integers; we compute the local height for the divisor \(E_{mn}^{+}\). These must be indices of nonzero coordinates of the pointP
prec
– (default: 100) float point or \(p\)-adic precision
OUTPUT: a real number
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + 3*x0*x1*y0*y1\ - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 -4*x1*x2*y1^2 + 5*x0*x2*y0*y2\ - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: P = X([0, 0, 1, 1, 0, 0]) sage: X.lambda_plus(P, 0, 10, 2, 0) 0.89230705169161608922595928129
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + Integer(3)*x0*x1*y0*y1\ - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 -4*x1*x2*y1^2 + 5*x0*x2*y0*y2\ - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> P = X([Integer(0), Integer(0), Integer(1), Integer(1), Integer(0), Integer(0)]) >>> X.lambda_plus(P, Integer(0), Integer(10), Integer(2), Integer(0)) 0.89230705169161608922595928129
- nth_iterate_phi(P, n, **kwds)[source]¶
Compute the \(n\)-th iterate for the phi function.
INPUT:
P
– a point in \(\mathbb{P}^2 \times \mathbb{P}^2\)n
– integer
kwds:
check
– boolean (default:True
); checks to see if point is on the surfacenormalize
– boolean (default:False
); normalizes the point
OUTPUT: the \(n\)-th iterate of the point given the phi function (if \(n\) is positive), or the psi function (if \(n\) is negative)
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: L = x0*y0 + x1*y1 + x2*y2 sage: Q = x1^2*y0^2 + 2*x2^2*y0*y1 + x0^2*y1^2 - x0*x1*y2^2 sage: W = WehlerK3Surface([L, Q]) sage: T = W([-1, -1, 1, 1, 0, 1]) sage: W.nth_iterate_phi(T, 7) (-1 : 0 : 1 , 1 : -2 : 1)
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> L = x0*y0 + x1*y1 + x2*y2 >>> Q = x1**Integer(2)*y0**Integer(2) + Integer(2)*x2**Integer(2)*y0*y1 + x0**Integer(2)*y1**Integer(2) - x0*x1*y2**Integer(2) >>> W = WehlerK3Surface([L, Q]) >>> T = W([-Integer(1), -Integer(1), Integer(1), Integer(1), Integer(0), Integer(1)]) >>> W.nth_iterate_phi(T, Integer(7)) (-1 : 0 : 1 , 1 : -2 : 1)
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: L = x0*y0 + x1*y1 + x2*y2 sage: Q = x1^2*y0^2 + 2*x2^2*y0*y1 + x0^2*y1^2 - x0*x1*y2^2 sage: W = WehlerK3Surface([L, Q]) sage: T = W([-1, -1, 1, 1, 0, 1]) sage: W.nth_iterate_phi(T, -7) (1 : 0 : 1 , -1 : 2 : 1)
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> L = x0*y0 + x1*y1 + x2*y2 >>> Q = x1**Integer(2)*y0**Integer(2) + Integer(2)*x2**Integer(2)*y0*y1 + x0**Integer(2)*y1**Integer(2) - x0*x1*y2**Integer(2) >>> W = WehlerK3Surface([L, Q]) >>> T = W([-Integer(1), -Integer(1), Integer(1), Integer(1), Integer(0), Integer(1)]) >>> W.nth_iterate_phi(T, -Integer(7)) (1 : 0 : 1 , -1 : 2 : 1)
sage: R.<x0,x1,x2,y0,y1,y2>=PolynomialRing(QQ, 6) sage: L = (-y0 - y1)*x0 + (-y0*x1 - y2*x2) sage: Q = (-y2*y0 - y1^2)*x0^2 + ((-y0^2 - y2*y0 + (-y2*y1 - y2^2))*x1 + (-y0^2 - y2*y1)*x2)*x0 \ + ((-y0^2 - y2*y0 - y2^2)*x1^2 + (-y2*y0 - y1^2)*x2*x1 + (-y0^2 + (-y1 - y2)*y0)*x2^2) sage: X = WehlerK3Surface([L, Q]) sage: P = X([1, 0, -1, 1, -1, 0]) sage: X.nth_iterate_phi(P, 8) == X.nth_iterate_psi(P, 8) True
>>> from sage.all import * >>> R = PolynomialRing(QQ, Integer(6), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = R._first_ngens(6) >>> L = (-y0 - y1)*x0 + (-y0*x1 - y2*x2) >>> Q = (-y2*y0 - y1**Integer(2))*x0**Integer(2) + ((-y0**Integer(2) - y2*y0 + (-y2*y1 - y2**Integer(2)))*x1 + (-y0**Integer(2) - y2*y1)*x2)*x0 \ + ((-y0^2 - y2*y0 - y2^2)*x1^2 + (-y2*y0 - y1^2)*x2*x1 + (-y0^2 + (-y1 - y2)*y0)*x2^2) >>> X = WehlerK3Surface([L, Q]) >>> P = X([Integer(1), Integer(0), -Integer(1), Integer(1), -Integer(1), Integer(0)]) >>> X.nth_iterate_phi(P, Integer(8)) == X.nth_iterate_psi(P, Integer(8)) True
- nth_iterate_psi(P, n, **kwds)[source]¶
Compute the \(n\)-th iterate for the psi function.
INPUT:
P
– a point in \(\mathbb{P}^2 \times \mathbb{P}^2\)n
– integer
kwds:
check
– boolean (default:True
); checks to see if point is on the surfacenormalize
– boolean (default:False
); normalizes the point
OUTPUT: the \(n\)-th iterate of the point given the psi function (if \(n\) is positive), or the phi function (if \(n\) is negative)
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: L = x0*y0 + x1*y1 + x2*y2 sage: Q = x1^2*y0^2 + 2*x2^2*y0*y1 + x0^2*y1^2 - x0*x1*y2^2 sage: W = WehlerK3Surface([L, Q]) sage: T = W([-1, -1, 1, 1, 0, 1]) sage: W.nth_iterate_psi(T, -7) (-1 : 0 : 1 , 1 : -2 : 1)
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> L = x0*y0 + x1*y1 + x2*y2 >>> Q = x1**Integer(2)*y0**Integer(2) + Integer(2)*x2**Integer(2)*y0*y1 + x0**Integer(2)*y1**Integer(2) - x0*x1*y2**Integer(2) >>> W = WehlerK3Surface([L, Q]) >>> T = W([-Integer(1), -Integer(1), Integer(1), Integer(1), Integer(0), Integer(1)]) >>> W.nth_iterate_psi(T, -Integer(7)) (-1 : 0 : 1 , 1 : -2 : 1)
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: L = x0*y0 + x1*y1 + x2*y2 sage: Q = x1^2*y0^2 + 2*x2^2*y0*y1 + x0^2*y1^2 - x0*x1*y2^2 sage: W = WehlerK3Surface([L, Q]) sage: T = W([-1, -1, 1, 1, 0, 1]) sage: W.nth_iterate_psi(T, 7) (1 : 0 : 1 , -1 : 2 : 1)
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> L = x0*y0 + x1*y1 + x2*y2 >>> Q = x1**Integer(2)*y0**Integer(2) + Integer(2)*x2**Integer(2)*y0*y1 + x0**Integer(2)*y1**Integer(2) - x0*x1*y2**Integer(2) >>> W = WehlerK3Surface([L, Q]) >>> T = W([-Integer(1), -Integer(1), Integer(1), Integer(1), Integer(0), Integer(1)]) >>> W.nth_iterate_psi(T, Integer(7)) (1 : 0 : 1 , -1 : 2 : 1)
- orbit_phi(P, N, **kwds)[source]¶
Return the orbit of the \(\phi\) function defined by \(\phi = \sigma_y \circ \sigma_x\).
This function is defined in [CS1996].
INPUT:
P
– point on the K3 surfaceN
– nonnegative integer or list or tuple of two nonnegative integers
kwds:
check
– boolean (default:True
); checks to see if point is on the surfacenormalize
– boolean (default:False
); normalizes the point
OUTPUT: list of points in the orbit
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + \ 3*x0*x1*y0*y1 -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - \ 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + \ x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: T = PP(0, 0, 1, 1, 0, 0) sage: X.orbit_phi(T,2, normalize = True) [(0 : 0 : 1 , 1 : 0 : 0), (-1 : 0 : 1 , 0 : 1 : 0), (-12816/6659 : 55413/6659 : 1 , 1 : 1/9 : 1)] sage: X.orbit_phi(T,[2,3], normalize = True) [(-12816/6659 : 55413/6659 : 1 , 1 : 1/9 : 1), (7481279673854775690938629732119966552954626693713001783595660989241/18550615454277582153932951051931712107449915856862264913424670784695 : 3992260691327218828582255586014718568398539828275296031491644987908/18550615454277582153932951051931712107449915856862264913424670784695 : 1 , -117756062505511/54767410965117 : -23134047983794359/37466994368025041 : 1)]
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + \ 3*x0*x1*y0*y1 -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - \ 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + \ x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> T = PP(Integer(0), Integer(0), Integer(1), Integer(1), Integer(0), Integer(0)) >>> X.orbit_phi(T,Integer(2), normalize = True) [(0 : 0 : 1 , 1 : 0 : 0), (-1 : 0 : 1 , 0 : 1 : 0), (-12816/6659 : 55413/6659 : 1 , 1 : 1/9 : 1)] >>> X.orbit_phi(T,[Integer(2),Integer(3)], normalize = True) [(-12816/6659 : 55413/6659 : 1 , 1 : 1/9 : 1), (7481279673854775690938629732119966552954626693713001783595660989241/18550615454277582153932951051931712107449915856862264913424670784695 : 3992260691327218828582255586014718568398539828275296031491644987908/18550615454277582153932951051931712107449915856862264913424670784695 : 1 , -117756062505511/54767410965117 : -23134047983794359/37466994368025041 : 1)]
- orbit_psi(P, N, **kwds)[source]¶
Return the orbit of the \(\psi\) function defined by \(\psi = \sigma_x \circ \sigma_y\).
This function is defined in [CS1996].
INPUT:
P
– a point on the K3 surfaceN
– nonnegative integer or list or tuple of two nonnegative integers
kwds:
check
– boolean (default:True
); checks to see if point is on the surfacenormalize
– boolean (default:False
); normalizes the point
OUTPUT: list of points in the orbit
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + \ 3*x0*x1*y0*y1 -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - \ 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 -4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + \ x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: T = X(0, 0, 1, 1, 0, 0) sage: X.orbit_psi(T, 2, normalize=True) [(0 : 0 : 1 , 1 : 0 : 0), (0 : 0 : 1 , 0 : 1 : 0), (-1 : 0 : 1 , 1 : 1/9 : 1)] sage: X.orbit_psi(T,[2,3], normalize=True) [(-1 : 0 : 1 , 1 : 1/9 : 1), (-12816/6659 : 55413/6659 : 1 , -117756062505511/54767410965117 : -23134047983794359/37466994368025041 : 1)]
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + \ 3*x0*x1*y0*y1 -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - \ 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 -4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + \ x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> T = X(Integer(0), Integer(0), Integer(1), Integer(1), Integer(0), Integer(0)) >>> X.orbit_psi(T, Integer(2), normalize=True) [(0 : 0 : 1 , 1 : 0 : 0), (0 : 0 : 1 , 0 : 1 : 0), (-1 : 0 : 1 , 1 : 1/9 : 1)] >>> X.orbit_psi(T,[Integer(2),Integer(3)], normalize=True) [(-1 : 0 : 1 , 1 : 1/9 : 1), (-12816/6659 : 55413/6659 : 1 , -117756062505511/54767410965117 : -23134047983794359/37466994368025041 : 1)]
- phi(a, **kwds)[source]¶
Evaluates the function \(\phi = \sigma_y \circ \sigma_x\).
ALGORITHM:
Refer to Section 6: “An algorithm to compute \(\sigma_x\), \(\sigma_y\), \(\phi\), and \(\psi\)” in [CS1996].
For the degenerate case refer to [FH2015].
INPUT:
a
– point in \(\mathbb{P}^2 \times \mathbb{P}^2\)
kwds:
check
– boolean (default:True
); checks to see if point is on the surfacenormalize
– boolean (default:True
); normalizes the point
OUTPUT: a point on this surface
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + \ 3*x0*x1*y0*y1 -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 -4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \ + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: T = PP([0, 0, 1, 1 ,0, 0]) sage: X.phi(T) (-1 : 0 : 1 , 0 : 1 : 0)
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + \ 3*x0*x1*y0*y1 -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 -4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \ + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> T = PP([Integer(0), Integer(0), Integer(1), Integer(1) ,Integer(0), Integer(0)]) >>> X.phi(T) (-1 : 0 : 1 , 0 : 1 : 0)
- psi(a, **kwds)[source]¶
Evaluates the function \(\psi = \sigma_x \circ \sigma_y\).
ALGORITHM:
Refer to Section 6: “An algorithm to compute \(\sigma_x\), \(\sigma_y\), \(\phi\), and \(\psi\)” in [CS1996].
For the degenerate case refer to [FH2015].
INPUT:
a
– point in \(\mathbb{P}^2 \times \mathbb{P}^2\)
kwds:
check
– boolean (default:True
); checks to see if point is on the surfacenormalize
– boolean (default:True
); normalizes the point
OUTPUT: a point on this surface
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + \ 3*x0*x1*y0*y1 -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \ + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: T = PP([0, 0, 1, 1, 0, 0]) sage: X.psi(T) (0 : 0 : 1 , 0 : 1 : 0)
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + \ 3*x0*x1*y0*y1 -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \ + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> T = PP([Integer(0), Integer(0), Integer(1), Integer(1), Integer(0), Integer(0)]) >>> X.psi(T) (0 : 0 : 1 , 0 : 1 : 0)
- sigmaX(P, **kwds)[source]¶
Function returns the involution on the Wehler K3 surface induced by the double covers.
In particular, it fixes the projection to the first coordinate and swaps the two points in the fiber, i.e. \((x, y) \to (x, y')\). Note that in the degenerate case, while we can split fiber into pairs of points, it is not always possibleto distinguish them, using this algorithm.
ALGORITHM:
Refer to Section 6: “An algorithm to compute \(\sigma_x\), \(\sigma_y\), \(\phi\), and \(\psi\)” in [CS1996FH2015. For the degenerate case refer to [FH2015].
INPUT:
P
– a point in \(\mathbb{P}^2 \times \mathbb{P}^2\)
kwds:
check
– boolean (default:True
); checks to see if point is on the surfacenormalize
– boolean (default:True
); normalizes the point
OUTPUT: a point on the K3 surface
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 +\ 3*x0*x1*y0*y1 -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 -\ 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 -4*x1*x2*y0*y2 + 7*x0^2*y1*y2 +\ 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: T = PP(0, 0, 1, 1, 0, 0) sage: X.sigmaX(T) (0 : 0 : 1 , 0 : 1 : 0)
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 +\ 3*x0*x1*y0*y1 -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 -\ 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 -4*x1*x2*y0*y2 + 7*x0^2*y1*y2 +\ 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> T = PP(Integer(0), Integer(0), Integer(1), Integer(1), Integer(0), Integer(0)) >>> X.sigmaX(T) (0 : 0 : 1 , 0 : 1 : 0)
degenerate examples:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: l = y0*x0 + y1*x1 + (y0 - y1)*x2 sage: q = (y1*y0)*x0^2 + ((y0^2)*x1 + (y0^2 + (y1^2 - y2^2))*x2)*x0\ + (y2*y0 + y1^2)*x1^2 + (y0^2 + (-y1^2 + y2^2))*x2*x1 sage: X = WehlerK3Surface([l, q]) sage: X.sigmaX(X([1, 0, 0, 0, 1, -2])) (1 : 0 : 0 , 0 : 1/2 : 1) sage: X.sigmaX(X([1, 0, 0, 0, 0, 1])) (1 : 0 : 0 , 0 : 0 : 1) sage: X.sigmaX(X([-1, 1, 1, -1, -1, 1])) (-1 : 1 : 1 , 2 : 2 : 1) sage: X.sigmaX(X([0, 0, 1, 1, 1, 0])) (0 : 0 : 1 , 1 : 1 : 0) sage: X.sigmaX(X([0, 0, 1, 1, 1, 1])) (0 : 0 : 1 , -1 : -1 : 1)
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> l = y0*x0 + y1*x1 + (y0 - y1)*x2 >>> q = (y1*y0)*x0**Integer(2) + ((y0**Integer(2))*x1 + (y0**Integer(2) + (y1**Integer(2) - y2**Integer(2)))*x2)*x0\ + (y2*y0 + y1^2)*x1^2 + (y0^2 + (-y1^2 + y2^2))*x2*x1 >>> X = WehlerK3Surface([l, q]) >>> X.sigmaX(X([Integer(1), Integer(0), Integer(0), Integer(0), Integer(1), -Integer(2)])) (1 : 0 : 0 , 0 : 1/2 : 1) >>> X.sigmaX(X([Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(1)])) (1 : 0 : 0 , 0 : 0 : 1) >>> X.sigmaX(X([-Integer(1), Integer(1), Integer(1), -Integer(1), -Integer(1), Integer(1)])) (-1 : 1 : 1 , 2 : 2 : 1) >>> X.sigmaX(X([Integer(0), Integer(0), Integer(1), Integer(1), Integer(1), Integer(0)])) (0 : 0 : 1 , 1 : 1 : 0) >>> X.sigmaX(X([Integer(0), Integer(0), Integer(1), Integer(1), Integer(1), Integer(1)])) (0 : 0 : 1 , -1 : -1 : 1)
Case where we cannot distinguish the two points:
sage: PP.<y0,y1,y2,x0,x1,x2>=ProductProjectiveSpaces([2, 2], GF(3)) sage: l = x0*y0 + x1*y1 + x2*y2 sage: q = (-3*x0^2*y0^2 + 4*x0*x1*y0^2 - 3*x0*x2*y0^2 - 5*x0^2*y0*y1 ....: - 190*x0*x1*y0*y1 - 5*x1^2*y0*y1 + 5*x0*x2*y0*y1 + 14*x1*x2*y0*y1 ....: + 5*x2^2*y0*y1 - x0^2*y1^2 - 6*x0*x1*y1^2 - 2*x1^2*y1^2 ....: + 2*x0*x2*y1^2 - 4*x2^2*y1^2 + 4*x0^2*y0*y2 - x1^2*y0*y2 ....: + 3*x0*x2*y0*y2 + 6*x1*x2*y0*y2 - 6*x0^2*y1*y2 - 4*x0*x1*y1*y2 ....: - x1^2*y1*y2 + 51*x0*x2*y1*y2 - 7*x1*x2*y1*y2 - 9*x2^2*y1*y2 ....: - x0^2*y2^2 - 4*x0*x1*y2^2 + 4*x1^2*y2^2 - x0*x2*y2^2 ....: + 13*x1*x2*y2^2 - x2^2*y2^2) sage: X = WehlerK3Surface([l, q]) sage: P = X([1, 0, 0, 0, 1, 1]) sage: X.sigmaX(X.sigmaX(P)) Traceback (most recent call last): ... ValueError: cannot distinguish points in the degenerate fiber
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], GF(Integer(3)), names=('y0', 'y1', 'y2', 'x0', 'x1', 'x2',)); (y0, y1, y2, x0, x1, x2,) = PP._first_ngens(6) >>> l = x0*y0 + x1*y1 + x2*y2 >>> q = (-Integer(3)*x0**Integer(2)*y0**Integer(2) + Integer(4)*x0*x1*y0**Integer(2) - Integer(3)*x0*x2*y0**Integer(2) - Integer(5)*x0**Integer(2)*y0*y1 ... - Integer(190)*x0*x1*y0*y1 - Integer(5)*x1**Integer(2)*y0*y1 + Integer(5)*x0*x2*y0*y1 + Integer(14)*x1*x2*y0*y1 ... + Integer(5)*x2**Integer(2)*y0*y1 - x0**Integer(2)*y1**Integer(2) - Integer(6)*x0*x1*y1**Integer(2) - Integer(2)*x1**Integer(2)*y1**Integer(2) ... + Integer(2)*x0*x2*y1**Integer(2) - Integer(4)*x2**Integer(2)*y1**Integer(2) + Integer(4)*x0**Integer(2)*y0*y2 - x1**Integer(2)*y0*y2 ... + Integer(3)*x0*x2*y0*y2 + Integer(6)*x1*x2*y0*y2 - Integer(6)*x0**Integer(2)*y1*y2 - Integer(4)*x0*x1*y1*y2 ... - x1**Integer(2)*y1*y2 + Integer(51)*x0*x2*y1*y2 - Integer(7)*x1*x2*y1*y2 - Integer(9)*x2**Integer(2)*y1*y2 ... - x0**Integer(2)*y2**Integer(2) - Integer(4)*x0*x1*y2**Integer(2) + Integer(4)*x1**Integer(2)*y2**Integer(2) - x0*x2*y2**Integer(2) ... + Integer(13)*x1*x2*y2**Integer(2) - x2**Integer(2)*y2**Integer(2)) >>> X = WehlerK3Surface([l, q]) >>> P = X([Integer(1), Integer(0), Integer(0), Integer(0), Integer(1), Integer(1)]) >>> X.sigmaX(X.sigmaX(P)) Traceback (most recent call last): ... ValueError: cannot distinguish points in the degenerate fiber
- sigmaY(P, **kwds)[source]¶
Return the involution on the Wehler K3 surfaces induced by the double covers.
In particular, it fixes the projection to the second coordinate and swaps the two points in the fiber, i.e. \((x,y) \to (x',y)\). Note that in the degenerate case, while we can split the fiber into two points, it is not always possible to distinguish them, using this algorithm.
ALGORITHM:
Refer to Section 6: “An algorithm to compute \(\sigma_x\), \(\sigma_y\), \(\phi\), and \(\psi\)” in [CS1996]. For the degenerate case refer to [FH2015].
INPUT:
P
– a point in \(\mathbb{P}^2 \times \mathbb{P}^2\)
kwds:
check
– boolean (default:True
); checks to see if point is on the surfacenormalize
– boolean (default:True
); normalizes the point
OUTPUT: a point on the K3 surface
EXAMPLES:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + \ 3*x0*x1*y0*y1 -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \ + x0*x1*y2^2 + 3*x2^2*y2^2 sage: Y = x0*y0 + x1*y1 + x2*y2 sage: X = WehlerK3Surface([Z, Y]) sage: T = PP(0, 0, 1, 1, 0, 0) sage: X.sigmaY(T) (0 : 0 : 1 , 1 : 0 : 0)
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> Z = x0**Integer(2)*y0**Integer(2) + Integer(3)*x0*x1*y0**Integer(2) + x1**Integer(2)*y0**Integer(2) + Integer(4)*x0**Integer(2)*y0*y1 + \ 3*x0*x1*y0*y1 -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \ + x0*x1*y2^2 + 3*x2^2*y2^2 >>> Y = x0*y0 + x1*y1 + x2*y2 >>> X = WehlerK3Surface([Z, Y]) >>> T = PP(Integer(0), Integer(0), Integer(1), Integer(1), Integer(0), Integer(0)) >>> X.sigmaY(T) (0 : 0 : 1 , 1 : 0 : 0)
degenerate examples:
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) sage: l = y0*x0 + y1*x1 + (y0 - y1)*x2 sage: q = (y1*y0)*x0^2 + ((y0^2)*x1 + (y0^2 + (y1^2 - y2^2))*x2)*x0 +\ (y2*y0 + y1^2)*x1^2 + (y0^2 + (-y1^2 + y2^2))*x2*x1 sage: X = WehlerK3Surface([l, q]) sage: X.sigmaY(X([1, -1, 0 ,-1, -1, 1])) (1/10 : -1/10 : 1 , -1 : -1 : 1) sage: X.sigmaY(X([0, 0, 1, -1, -1, 1])) (-4 : 4 : 1 , -1 : -1 : 1) sage: X.sigmaY(X([1, 2, 0, 0, 0, 1])) (-3 : -3 : 1 , 0 : 0 : 1) sage: X.sigmaY(X([1, 1, 1, 0, 0, 1])) (1 : 0 : 0 , 0 : 0 : 1)
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> l = y0*x0 + y1*x1 + (y0 - y1)*x2 >>> q = (y1*y0)*x0**Integer(2) + ((y0**Integer(2))*x1 + (y0**Integer(2) + (y1**Integer(2) - y2**Integer(2)))*x2)*x0 +\ (y2*y0 + y1^2)*x1^2 + (y0^2 + (-y1^2 + y2^2))*x2*x1 >>> X = WehlerK3Surface([l, q]) >>> X.sigmaY(X([Integer(1), -Integer(1), Integer(0) ,-Integer(1), -Integer(1), Integer(1)])) (1/10 : -1/10 : 1 , -1 : -1 : 1) >>> X.sigmaY(X([Integer(0), Integer(0), Integer(1), -Integer(1), -Integer(1), Integer(1)])) (-4 : 4 : 1 , -1 : -1 : 1) >>> X.sigmaY(X([Integer(1), Integer(2), Integer(0), Integer(0), Integer(0), Integer(1)])) (-3 : -3 : 1 , 0 : 0 : 1) >>> X.sigmaY(X([Integer(1), Integer(1), Integer(1), Integer(0), Integer(0), Integer(1)])) (1 : 0 : 0 , 0 : 0 : 1)
Case where we cannot distinguish the two points:
sage: PP.<x0,x1,x2,y0,y1,y2>=ProductProjectiveSpaces([2, 2], GF(3)) sage: l = x0*y0 + x1*y1 + x2*y2 sage: q = (-3*x0^2*y0^2 + 4*x0*x1*y0^2 - 3*x0*x2*y0^2 - 5*x0^2*y0*y1 ....: - 190*x0*x1*y0*y1 - 5*x1^2*y0*y1 + 5*x0*x2*y0*y1 + 14*x1*x2*y0*y1 ....: + 5*x2^2*y0*y1 - x0^2*y1^2 - 6*x0*x1*y1^2 - 2*x1^2*y1^2 + 2*x0*x2*y1^2 ....: - 4*x2^2*y1^2 + 4*x0^2*y0*y2 - x1^2*y0*y2 + 3*x0*x2*y0*y2 ....: + 6*x1*x2*y0*y2 - 6*x0^2*y1*y2 - 4*x0*x1*y1*y2 - x1^2*y1*y2 ....: + 51*x0*x2*y1*y2 - 7*x1*x2*y1*y2 - 9*x2^2*y1*y2 - x0^2*y2^2 ....: - 4*x0*x1*y2^2 + 4*x1^2*y2^2 - x0*x2*y2^2 + 13*x1*x2*y2^2 - x2^2*y2^2) sage: X = WehlerK3Surface([l ,q]) sage: P = X([0, 1, 1, 1, 0, 0]) sage: X.sigmaY(X.sigmaY(P)) Traceback (most recent call last): ... ValueError: cannot distinguish points in the degenerate fiber
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], GF(Integer(3)), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> l = x0*y0 + x1*y1 + x2*y2 >>> q = (-Integer(3)*x0**Integer(2)*y0**Integer(2) + Integer(4)*x0*x1*y0**Integer(2) - Integer(3)*x0*x2*y0**Integer(2) - Integer(5)*x0**Integer(2)*y0*y1 ... - Integer(190)*x0*x1*y0*y1 - Integer(5)*x1**Integer(2)*y0*y1 + Integer(5)*x0*x2*y0*y1 + Integer(14)*x1*x2*y0*y1 ... + Integer(5)*x2**Integer(2)*y0*y1 - x0**Integer(2)*y1**Integer(2) - Integer(6)*x0*x1*y1**Integer(2) - Integer(2)*x1**Integer(2)*y1**Integer(2) + Integer(2)*x0*x2*y1**Integer(2) ... - Integer(4)*x2**Integer(2)*y1**Integer(2) + Integer(4)*x0**Integer(2)*y0*y2 - x1**Integer(2)*y0*y2 + Integer(3)*x0*x2*y0*y2 ... + Integer(6)*x1*x2*y0*y2 - Integer(6)*x0**Integer(2)*y1*y2 - Integer(4)*x0*x1*y1*y2 - x1**Integer(2)*y1*y2 ... + Integer(51)*x0*x2*y1*y2 - Integer(7)*x1*x2*y1*y2 - Integer(9)*x2**Integer(2)*y1*y2 - x0**Integer(2)*y2**Integer(2) ... - Integer(4)*x0*x1*y2**Integer(2) + Integer(4)*x1**Integer(2)*y2**Integer(2) - x0*x2*y2**Integer(2) + Integer(13)*x1*x2*y2**Integer(2) - x2**Integer(2)*y2**Integer(2)) >>> X = WehlerK3Surface([l ,q]) >>> P = X([Integer(0), Integer(1), Integer(1), Integer(1), Integer(0), Integer(0)]) >>> X.sigmaY(X.sigmaY(P)) Traceback (most recent call last): ... ValueError: cannot distinguish points in the degenerate fiber
- sage.dynamics.arithmetic_dynamics.wehlerK3.random_WehlerK3Surface(PP)[source]¶
Produces a random K3 surface in \(\mathbb{P}^2 \times \mathbb{P}^2\) defined as the intersection of a bilinear and biquadratic form. [Weh1998]
INPUT:
PP
– projective space cartesian product
OUTPUT:
WehlerK3Surface_ring
EXAMPLES:
sage: PP.<x0, x1, x2, y0, y1, y2> = ProductProjectiveSpaces([2, 2], GF(3)) sage: w = random_WehlerK3Surface(PP) sage: type(w) <class 'sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_finite_field_with_category'>
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2)], GF(Integer(3)), names=('x0', 'x1', 'x2', 'y0', 'y1', 'y2',)); (x0, x1, x2, y0, y1, y2,) = PP._first_ngens(6) >>> w = random_WehlerK3Surface(PP) >>> type(w) <class 'sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_finite_field_with_category'>