Subschemes of products of projective spaces#
AUTHORS:
Ben Hutz (2014): subschemes of Cartesian products of projective space
- class sage.schemes.product_projective.subscheme.AlgebraicScheme_subscheme_product_projective(A, polynomials, category=None)[source]#
Bases:
AlgebraicScheme_subscheme_projective
Construct an algebraic subscheme of a product of projective spaces.
Warning
You should not create objects of this class directly. The preferred method to construct such subschemes is to use
subscheme()
method ofProduct of Projective Spaces
.INPUT:
A
– ambientProduct of Projective Spaces
.polynomials
– single polynomial, ideal or iterable of defining multi-homogeneous polynomials.
EXAMPLES:
sage: P.<x, y, u, v> = ProductProjectiveSpaces([1, 1], QQ) sage: P.subscheme([u*x^2 - v*y*x]) Closed subscheme of Product of projective spaces P^1 x P^1 over Rational Field defined by: x^2*u - x*y*v
>>> from sage.all import * >>> P = ProductProjectiveSpaces([Integer(1), Integer(1)], QQ, names=('x', 'y', 'u', 'v',)); (x, y, u, v,) = P._first_ngens(4) >>> P.subscheme([u*x**Integer(2) - v*y*x]) Closed subscheme of Product of projective spaces P^1 x P^1 over Rational Field defined by: x^2*u - x*y*v
- affine_patch(I, return_embedding=False)[source]#
Return the \(I^{th}\) affine patch of this projective scheme where \(I\) is a multi-index.
INPUT:
I
– a list or tuple of positive integersreturn_embedding
– Boolean, if true the projective embedding is also returned
OUTPUT:
An affine algebraic scheme
An embedding into a product of projective space (optional)
EXAMPLES:
sage: PP.<x,y,z,w,u,v> = ProductProjectiveSpaces([3, 1],QQ) sage: W = PP.subscheme([y^2*z - x^3, z^2 - w^2, u^3 - v^3]) sage: W.affine_patch([0, 1], True) (Closed subscheme of Affine Space of dimension 4 over Rational Field defined by: x0^2*x1 - 1, x1^2 - x2^2, x3^3 - 1, Scheme morphism: From: Closed subscheme of Affine Space of dimension 4 over Rational Field defined by: x0^2*x1 - 1, x1^2 - x2^2, x3^3 - 1 To: Closed subscheme of Product of projective spaces P^3 x P^1 over Rational Field defined by: -x^3 + y^2*z, z^2 - w^2, u^3 - v^3 Defn: Defined on coordinates by sending (x0, x1, x2, x3) to (1 : x0 : x1 : x2 , x3 : 1))
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(3), Integer(1)],QQ, names=('x', 'y', 'z', 'w', 'u', 'v',)); (x, y, z, w, u, v,) = PP._first_ngens(6) >>> W = PP.subscheme([y**Integer(2)*z - x**Integer(3), z**Integer(2) - w**Integer(2), u**Integer(3) - v**Integer(3)]) >>> W.affine_patch([Integer(0), Integer(1)], True) (Closed subscheme of Affine Space of dimension 4 over Rational Field defined by: x0^2*x1 - 1, x1^2 - x2^2, x3^3 - 1, Scheme morphism: From: Closed subscheme of Affine Space of dimension 4 over Rational Field defined by: x0^2*x1 - 1, x1^2 - x2^2, x3^3 - 1 To: Closed subscheme of Product of projective spaces P^3 x P^1 over Rational Field defined by: -x^3 + y^2*z, z^2 - w^2, u^3 - v^3 Defn: Defined on coordinates by sending (x0, x1, x2, x3) to (1 : x0 : x1 : x2 , x3 : 1))
- dimension()[source]#
Return the dimension of the algebraic subscheme.
OUTPUT: An integer.
EXAMPLES:
sage: X.<x,y,z,w,u,v> = ProductProjectiveSpaces([2, 2], QQ) sage: L = (-w - v)*x + (-w*y - u*z) sage: Q = ((-u*w - v^2)*x^2 + ((-w^2 - u*w + (-u*v - u^2))*y + (-w^2 - u*v)*z)*x ....: + ((-w^2 - u*w - u^2)*y^2 + (-u*w - v^2)*z*y + (-w^2 + (-v - u)*w)*z^2)) sage: W = X.subscheme([L, Q]) sage: W.dimension() # needs sage.libs.singular 2
>>> from sage.all import * >>> X = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x', 'y', 'z', 'w', 'u', 'v',)); (x, y, z, w, u, v,) = X._first_ngens(6) >>> L = (-w - v)*x + (-w*y - u*z) >>> Q = ((-u*w - v**Integer(2))*x**Integer(2) + ((-w**Integer(2) - u*w + (-u*v - u**Integer(2)))*y + (-w**Integer(2) - u*v)*z)*x ... + ((-w**Integer(2) - u*w - u**Integer(2))*y**Integer(2) + (-u*w - v**Integer(2))*z*y + (-w**Integer(2) + (-v - u)*w)*z**Integer(2))) >>> W = X.subscheme([L, Q]) >>> W.dimension() # needs sage.libs.singular 2
sage: PP.<x,y,z,u,v,s,t> = ProductProjectiveSpaces([2, 1, 1], QQ) sage: X = PP.subscheme([x^3, x^5 + y^5, z^6, x*u - v*y, s^2 - t^2]) sage: X.dimension() # needs sage.libs.singular -1
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(1), Integer(1)], QQ, names=('x', 'y', 'z', 'u', 'v', 's', 't',)); (x, y, z, u, v, s, t,) = PP._first_ngens(7) >>> X = PP.subscheme([x**Integer(3), x**Integer(5) + y**Integer(5), z**Integer(6), x*u - v*y, s**Integer(2) - t**Integer(2)]) >>> X.dimension() # needs sage.libs.singular -1
sage: PP = ProductProjectiveSpaces([2, 1, 3], CC, 't') # needs sage.rings.real_mpfr sage: PP.subscheme([]).dimension() # needs sage.libs.singular sage.rings.real_mpfr 6
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(1), Integer(3)], CC, 't') # needs sage.rings.real_mpfr >>> PP.subscheme([]).dimension() # needs sage.libs.singular sage.rings.real_mpfr 6
sage: PP = ProductProjectiveSpaces([1, 3, 1], ZZ, 't') sage: PP.subscheme([]).dimension() # needs sage.libs.singular 5
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(1), Integer(3), Integer(1)], ZZ, 't') >>> PP.subscheme([]).dimension() # needs sage.libs.singular 5
sage: PP.<x,y,u,v,s,t> = ProductProjectiveSpaces([1,1,1], CC) # needs sage.rings.real_mpfr sage: X = PP.subscheme([x^2 - y^2, u - v, s^2 - t^2]) # needs sage.libs.singular sage.rings.real_mpfr sage: X.dimension() # needs sage.libs.singular sage.rings.real_mpfr 0
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(1),Integer(1),Integer(1)], CC, names=('x', 'y', 'u', 'v', 's', 't',)); (x, y, u, v, s, t,) = PP._first_ngens(6)# needs sage.rings.real_mpfr >>> X = PP.subscheme([x**Integer(2) - y**Integer(2), u - v, s**Integer(2) - t**Integer(2)]) # needs sage.libs.singular sage.rings.real_mpfr >>> X.dimension() # needs sage.libs.singular sage.rings.real_mpfr 0
- intersection_multiplicity(X, P)[source]#
Return the intersection multiplicity of this subscheme and the subscheme
X
at the pointP
.This uses the intersection_multiplicity function for affine subschemes on affine patches of this subscheme and
X
that containP
.INPUT:
X
– subscheme in the same ambient space as this subscheme.P
– a point in the intersection of this subscheme withX
.
OUTPUT: An integer.
EXAMPLES:
Multiplicity of a fixed point of the map \(z^2 + \frac{1}{4}\):
sage: PP.<x,y,u,v> = ProductProjectiveSpaces(QQ, [1, 1]) sage: G = PP.subscheme([(x^2 + 1/4*y^2)*v - y^2*u]) sage: D = PP.subscheme([x*v - y*u]) sage: sorted(G.intersection(D).rational_points()) # needs sage.libs.singular [(1/2 : 1 , 1/2 : 1), (1 : 0 , 1 : 0)] sage: Q = PP([1/2,1,1/2,1]) sage: G.intersection_multiplicity(D, Q) # needs sage.libs.singular 2
>>> from sage.all import * >>> PP = ProductProjectiveSpaces(QQ, [Integer(1), Integer(1)], names=('x', 'y', 'u', 'v',)); (x, y, u, v,) = PP._first_ngens(4) >>> G = PP.subscheme([(x**Integer(2) + Integer(1)/Integer(4)*y**Integer(2))*v - y**Integer(2)*u]) >>> D = PP.subscheme([x*v - y*u]) >>> sorted(G.intersection(D).rational_points()) # needs sage.libs.singular [(1/2 : 1 , 1/2 : 1), (1 : 0 , 1 : 0)] >>> Q = PP([Integer(1)/Integer(2),Integer(1),Integer(1)/Integer(2),Integer(1)]) >>> G.intersection_multiplicity(D, Q) # needs sage.libs.singular 2
sage: # needs sage.rings.finite_rings sage: F.<a> = GF(4) sage: PP.<x,y,z,u,v,w> = ProductProjectiveSpaces(F, [2, 2]) sage: X = PP.subscheme([z^5 + 3*x*y^4 + 8*y^5, u^2 - v^2]) sage: Y = PP.subscheme([x^6 + z^6, w*z - v*y]) sage: Q = PP([a,a+1,1,a,a,1]) sage: X.intersection_multiplicity(Y, Q) # needs sage.libs.singular 16
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> F = GF(Integer(4), names=('a',)); (a,) = F._first_ngens(1) >>> PP = ProductProjectiveSpaces(F, [Integer(2), Integer(2)], names=('x', 'y', 'z', 'u', 'v', 'w',)); (x, y, z, u, v, w,) = PP._first_ngens(6) >>> X = PP.subscheme([z**Integer(5) + Integer(3)*x*y**Integer(4) + Integer(8)*y**Integer(5), u**Integer(2) - v**Integer(2)]) >>> Y = PP.subscheme([x**Integer(6) + z**Integer(6), w*z - v*y]) >>> Q = PP([a,a+Integer(1),Integer(1),a,a,Integer(1)]) >>> X.intersection_multiplicity(Y, Q) # needs sage.libs.singular 16
sage: PP.<x,y,z,u,v,w> = ProductProjectiveSpaces(QQ, [2, 2]) sage: X = PP.subscheme([x^2*u^3 + y*z*u*v^2, x - y]) sage: Y = PP.subscheme([u^3 - w^3, x*v - y*w, z^3*w^2 - y^3*u*v]) sage: Q = PP([0,0,1,0,1,0]) sage: X.intersection_multiplicity(Y, Q) # needs sage.libs.singular Traceback (most recent call last): ... TypeError: the intersection of this subscheme and (=Closed subscheme of Affine Space of dimension 4 over Rational Field defined by: x2^3 - x3^3, -x1*x3 + x0, -x1^3*x2 + x3^2) must be proper and finite
>>> from sage.all import * >>> PP = ProductProjectiveSpaces(QQ, [Integer(2), Integer(2)], names=('x', 'y', 'z', 'u', 'v', 'w',)); (x, y, z, u, v, w,) = PP._first_ngens(6) >>> X = PP.subscheme([x**Integer(2)*u**Integer(3) + y*z*u*v**Integer(2), x - y]) >>> Y = PP.subscheme([u**Integer(3) - w**Integer(3), x*v - y*w, z**Integer(3)*w**Integer(2) - y**Integer(3)*u*v]) >>> Q = PP([Integer(0),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0)]) >>> X.intersection_multiplicity(Y, Q) # needs sage.libs.singular Traceback (most recent call last): ... TypeError: the intersection of this subscheme and (=Closed subscheme of Affine Space of dimension 4 over Rational Field defined by: x2^3 - x3^3, -x1*x3 + x0, -x1^3*x2 + x3^2) must be proper and finite
- is_smooth(point=None)[source]#
Test whether the algebraic subscheme is smooth.
EXAMPLES:
sage: X.<x,y,z,w,u,v> = ProductProjectiveSpaces([2, 2],QQ) sage: L = (-w - v)*x + (-w*y - u*z) sage: Q = ((-u*w - v^2)*x^2 + ((-w^2 - u*w + (-u*v - u^2))*y + (-w^2 - u*v)*z)*x ....: + ((-w^2 - u*w - u^2)*y^2 + (-u*w - v^2)*z*y + (-w^2 + (-v - u)*w)*z^2)) sage: W = X.subscheme([L, Q]) sage: W.is_smooth() Traceback (most recent call last): ... NotImplementedError: Not Implemented
>>> from sage.all import * >>> X = ProductProjectiveSpaces([Integer(2), Integer(2)],QQ, names=('x', 'y', 'z', 'w', 'u', 'v',)); (x, y, z, w, u, v,) = X._first_ngens(6) >>> L = (-w - v)*x + (-w*y - u*z) >>> Q = ((-u*w - v**Integer(2))*x**Integer(2) + ((-w**Integer(2) - u*w + (-u*v - u**Integer(2)))*y + (-w**Integer(2) - u*v)*z)*x ... + ((-w**Integer(2) - u*w - u**Integer(2))*y**Integer(2) + (-u*w - v**Integer(2))*z*y + (-w**Integer(2) + (-v - u)*w)*z**Integer(2))) >>> W = X.subscheme([L, Q]) >>> W.is_smooth() Traceback (most recent call last): ... NotImplementedError: Not Implemented
- multiplicity(P)[source]#
Return the multiplicity of
P
on this subscheme.This is computed as the multiplicity of the corresponding point on an affine patch of this subscheme that contains
P
. This subscheme must be defined over a field. An error is returned ifP
not a point on this subscheme.INPUT:
P
– a point on this subscheme.
OUTPUT: An integer.
EXAMPLES:
sage: PP.<x,y,z,w> = ProductProjectiveSpaces(QQ, [1, 1]) sage: X = PP.subscheme([x^4*z^3 - y^4*w^3]) sage: Q1 = PP([1,1,1,1]) sage: X.multiplicity(Q1) # needs sage.libs.singular 1 sage: Q2 = PP([0,1,1,0]) sage: X.multiplicity(Q2) # needs sage.libs.singular 3
>>> from sage.all import * >>> PP = ProductProjectiveSpaces(QQ, [Integer(1), Integer(1)], names=('x', 'y', 'z', 'w',)); (x, y, z, w,) = PP._first_ngens(4) >>> X = PP.subscheme([x**Integer(4)*z**Integer(3) - y**Integer(4)*w**Integer(3)]) >>> Q1 = PP([Integer(1),Integer(1),Integer(1),Integer(1)]) >>> X.multiplicity(Q1) # needs sage.libs.singular 1 >>> Q2 = PP([Integer(0),Integer(1),Integer(1),Integer(0)]) >>> X.multiplicity(Q2) # needs sage.libs.singular 3
sage: PP.<x,y,z,w,u> = ProductProjectiveSpaces(GF(11), [1,2]) sage: X = PP.subscheme([x^7*u - y^7*z, u^6*x^2 - w^3*z^3*x*y - w^6*y^2]) sage: Q1 = PP([1,0,10,1,0]) sage: X.multiplicity(Q1) # needs sage.libs.singular sage.rings.finite_rings 1 sage: Q2 = PP([1,0,1,0,0]) sage: X.multiplicity(Q2) # needs sage.libs.singular sage.rings.finite_rings 4
>>> from sage.all import * >>> PP = ProductProjectiveSpaces(GF(Integer(11)), [Integer(1),Integer(2)], names=('x', 'y', 'z', 'w', 'u',)); (x, y, z, w, u,) = PP._first_ngens(5) >>> X = PP.subscheme([x**Integer(7)*u - y**Integer(7)*z, u**Integer(6)*x**Integer(2) - w**Integer(3)*z**Integer(3)*x*y - w**Integer(6)*y**Integer(2)]) >>> Q1 = PP([Integer(1),Integer(0),Integer(10),Integer(1),Integer(0)]) >>> X.multiplicity(Q1) # needs sage.libs.singular sage.rings.finite_rings 1 >>> Q2 = PP([Integer(1),Integer(0),Integer(1),Integer(0),Integer(0)]) >>> X.multiplicity(Q2) # needs sage.libs.singular sage.rings.finite_rings 4
- segre_embedding(PP=None)[source]#
Return the Segre embedding of this subscheme into the appropriate projective space.
INPUT:
PP
– (default:None
) ambient image projective space; this is constructed if it is not given.
OUTPUT:
Hom from this subscheme to the appropriate subscheme of projective space
EXAMPLES:
sage: X.<x,y,z,w,u,v> = ProductProjectiveSpaces([2, 2], QQ) sage: P = ProjectiveSpace(QQ, 8, 't') sage: L = (-w - v)*x + (-w*y - u*z) sage: Q = ((-u*w - v^2)*x^2 + ((-w^2 - u*w + (-u*v - u^2))*y + (-w^2 - u*v)*z)*x ....: + ((-w^2 - u*w - u^2)*y^2 + (-u*w - v^2)*z*y + (-w^2 + (-v - u)*w)*z^2)) sage: W = X.subscheme([L,Q]) sage: phi = W.segre_embedding(P) # needs sage.libs.singular sage: phi.codomain().ambient_space() == P # needs sage.libs.singular True
>>> from sage.all import * >>> X = ProductProjectiveSpaces([Integer(2), Integer(2)], QQ, names=('x', 'y', 'z', 'w', 'u', 'v',)); (x, y, z, w, u, v,) = X._first_ngens(6) >>> P = ProjectiveSpace(QQ, Integer(8), 't') >>> L = (-w - v)*x + (-w*y - u*z) >>> Q = ((-u*w - v**Integer(2))*x**Integer(2) + ((-w**Integer(2) - u*w + (-u*v - u**Integer(2)))*y + (-w**Integer(2) - u*v)*z)*x ... + ((-w**Integer(2) - u*w - u**Integer(2))*y**Integer(2) + (-u*w - v**Integer(2))*z*y + (-w**Integer(2) + (-v - u)*w)*z**Integer(2))) >>> W = X.subscheme([L,Q]) >>> phi = W.segre_embedding(P) # needs sage.libs.singular >>> phi.codomain().ambient_space() == P # needs sage.libs.singular True
sage: PP.<x,y,u,v,s,t> = ProductProjectiveSpaces([1, 1, 1], CC) # needs sage.rings.real_mpfr sage: PP.subscheme([]).segre_embedding() # needs sage.libs.singular sage.rings.real_mpfr Scheme morphism: From: Closed subscheme of Product of projective spaces P^1 x P^1 x P^1 over Complex Field with 53 bits of precision defined by: (no polynomials) To: Closed subscheme of Projective Space of dimension 7 over Complex Field with 53 bits of precision defined by: -u5*u6 + u4*u7, -u3*u6 + u2*u7, -u3*u4 + u2*u5, -u3*u5 + u1*u7, -u3*u4 + u1*u6, -u3*u4 + u0*u7, -u2*u4 + u0*u6, -u1*u4 + u0*u5, -u1*u2 + u0*u3 Defn: Defined by sending (x : y , u : v , s : t) to (x*u*s : x*u*t : x*v*s : x*v*t : y*u*s : y*u*t : y*v*s : y*v*t).
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(1), Integer(1), Integer(1)], CC, names=('x', 'y', 'u', 'v', 's', 't',)); (x, y, u, v, s, t,) = PP._first_ngens(6)# needs sage.rings.real_mpfr >>> PP.subscheme([]).segre_embedding() # needs sage.libs.singular sage.rings.real_mpfr Scheme morphism: From: Closed subscheme of Product of projective spaces P^1 x P^1 x P^1 over Complex Field with 53 bits of precision defined by: (no polynomials) To: Closed subscheme of Projective Space of dimension 7 over Complex Field with 53 bits of precision defined by: -u5*u6 + u4*u7, -u3*u6 + u2*u7, -u3*u4 + u2*u5, -u3*u5 + u1*u7, -u3*u4 + u1*u6, -u3*u4 + u0*u7, -u2*u4 + u0*u6, -u1*u4 + u0*u5, -u1*u2 + u0*u3 Defn: Defined by sending (x : y , u : v , s : t) to (x*u*s : x*u*t : x*v*s : x*v*t : y*u*s : y*u*t : y*v*s : y*v*t).
sage: PP.<x,y,z,u,v,s,t> = ProductProjectiveSpaces([2, 1, 1], ZZ) sage: PP.subscheme([x^3, u - v, s^2 - t^2]).segre_embedding() # needs sage.libs.singular Scheme morphism: From: Closed subscheme of Product of projective spaces P^2 x P^1 x P^1 over Integer Ring defined by: x^3, u - v, s^2 - t^2 To: Closed subscheme of Projective Space of dimension 11 over Integer Ring defined by: u10^2 - u11^2, u9 - u11, u8 - u10, -u7*u10 + u6*u11, u6*u10 - u7*u11, u6^2 - u7^2, u5 - u7, u4 - u6, u3^3, -u3*u10 + u2*u11, u2*u10 - u3*u11, -u3*u6 + u2*u7, u2*u6 - u3*u7, u2*u3^2, u2^2 - u3^2, u1 - u3, u0 - u2 Defn: Defined by sending (x : y : z , u : v , s : t) to (x*u*s : x*u*t : x*v*s : x*v*t : y*u*s : y*u*t : y*v*s : y*v*t : z*u*s : z*u*t : z*v*s : z*v*t).
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(1), Integer(1)], ZZ, names=('x', 'y', 'z', 'u', 'v', 's', 't',)); (x, y, z, u, v, s, t,) = PP._first_ngens(7) >>> PP.subscheme([x**Integer(3), u - v, s**Integer(2) - t**Integer(2)]).segre_embedding() # needs sage.libs.singular Scheme morphism: From: Closed subscheme of Product of projective spaces P^2 x P^1 x P^1 over Integer Ring defined by: x^3, u - v, s^2 - t^2 To: Closed subscheme of Projective Space of dimension 11 over Integer Ring defined by: u10^2 - u11^2, u9 - u11, u8 - u10, -u7*u10 + u6*u11, u6*u10 - u7*u11, u6^2 - u7^2, u5 - u7, u4 - u6, u3^3, -u3*u10 + u2*u11, u2*u10 - u3*u11, -u3*u6 + u2*u7, u2*u6 - u3*u7, u2*u3^2, u2^2 - u3^2, u1 - u3, u0 - u2 Defn: Defined by sending (x : y : z , u : v , s : t) to (x*u*s : x*u*t : x*v*s : x*v*t : y*u*s : y*u*t : y*v*s : y*v*t : z*u*s : z*u*t : z*v*s : z*v*t).