Hypergeometric motives¶
This is largely a port of the corresponding package in Magma. One important conventional difference: the motivic parameter \(t\) has been replaced with \(1/t\) to match the classical literature on hypergeometric series. (E.g., see [BeukersHeckman])
The computation of Euler factors is currently only supported for primes \(p\) of good or tame reduction.
AUTHORS:
Frédéric Chapoton
Kiran S. Kedlaya
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp
sage: H = Hyp(cyclotomic=([30], [1,2,3,5]))
sage: H.alpha_beta()
([1/30, 7/30, 11/30, 13/30, 17/30, 19/30, 23/30, 29/30],
[0, 1/5, 1/3, 2/5, 1/2, 3/5, 2/3, 4/5])
sage: H.M_value() == 30**30 / (15**15 * 10**10 * 6**6)
True
sage: H.euler_factor(2, 7)
T^8 + T^5 + T^3 + 1
>>> from sage.all import *
>>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp
>>> H = Hyp(cyclotomic=([Integer(30)], [Integer(1),Integer(2),Integer(3),Integer(5)]))
>>> H.alpha_beta()
([1/30, 7/30, 11/30, 13/30, 17/30, 19/30, 23/30, 29/30],
[0, 1/5, 1/3, 2/5, 1/2, 3/5, 2/3, 4/5])
>>> H.M_value() == Integer(30)**Integer(30) / (Integer(15)**Integer(15) * Integer(10)**Integer(10) * Integer(6)**Integer(6))
True
>>> H.euler_factor(Integer(2), Integer(7))
T^8 + T^5 + T^3 + 1
REFERENCES:
- class sage.modular.hypergeometric_motive.HypergeometricData(cyclotomic=None, alpha_beta=None, gamma_list=None)[source]¶
Bases:
object
Creation of hypergeometric motives.
INPUT:
Three possibilities are offered, each describing a quotient of products of cyclotomic polynomials.
cyclotomic
– a pair of lists of nonnegative integers, each integer \(k\) represents a cyclotomic polynomial \(\Phi_k\)alpha_beta
– a pair of lists of rationals, each rational represents a root of unitygamma_list
– a pair of lists of nonnegative integers, each integer \(n\) represents a polynomial \(x^n - 1\)
In the last case, it is also allowed to send just one list of signed integers where signs indicate to which part the integer belongs to.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(cyclotomic=([2], [1])) Hypergeometric data for [1/2] and [0] sage: Hyp(alpha_beta=([1/2], [0])) Hypergeometric data for [1/2] and [0] sage: Hyp(alpha_beta=([1/5,2/5,3/5,4/5], [0,0,0,0])) Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0] sage: Hyp(gamma_list=([5], [1,1,1,1,1])) Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0] sage: Hyp(gamma_list=([5,-1,-1,-1,-1,-1])) Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> Hyp(cyclotomic=([Integer(2)], [Integer(1)])) Hypergeometric data for [1/2] and [0] >>> Hyp(alpha_beta=([Integer(1)/Integer(2)], [Integer(0)])) Hypergeometric data for [1/2] and [0] >>> Hyp(alpha_beta=([Integer(1)/Integer(5),Integer(2)/Integer(5),Integer(3)/Integer(5),Integer(4)/Integer(5)], [Integer(0),Integer(0),Integer(0),Integer(0)])) Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0] >>> Hyp(gamma_list=([Integer(5)], [Integer(1),Integer(1),Integer(1),Integer(1),Integer(1)])) Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0] >>> Hyp(gamma_list=([Integer(5),-Integer(1),-Integer(1),-Integer(1),-Integer(1),-Integer(1)])) Hypergeometric data for [1/5, 2/5, 3/5, 4/5] and [0, 0, 0, 0]
- E_polynomial(vars=None)[source]¶
Return the E-polynomial of
self
.This is a bivariate polynomial.
The algorithm is taken from [FRV2019].
INPUT:
vars
– (optional) pair of variables (default: \(u,v\))
REFERENCES:
[FRV2019]Fernando Rodriguez Villegas, Mixed Hodge numbers and factorial ratios, arXiv 1907.02722
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData sage: H = HypergeometricData(gamma_list=[-30, -1, 6, 10, 15]) sage: H.E_polynomial() 8*u*v + 7*u + 7*v + 8 sage: p, q = polygens(QQ,'p,q') sage: H.E_polynomial((p, q)) 8*p*q + 7*p + 7*q + 8 sage: H = HypergeometricData(gamma_list=(-11, -2, 1, 3, 4, 5)) sage: H.E_polynomial() 5*u^2*v + 5*u*v^2 + u*v + 1 sage: H = HypergeometricData(gamma_list=(-63, -8, -2, 1, 4, 16, 21, 31)) sage: H.E_polynomial() 21*u^3*v^2 + 21*u^2*v^3 + u^3*v + 23*u^2*v^2 + u*v^3 + u^2*v + u*v^2 + 2*u*v + 1
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData >>> H = HypergeometricData(gamma_list=[-Integer(30), -Integer(1), Integer(6), Integer(10), Integer(15)]) >>> H.E_polynomial() 8*u*v + 7*u + 7*v + 8 >>> p, q = polygens(QQ,'p,q') >>> H.E_polynomial((p, q)) 8*p*q + 7*p + 7*q + 8 >>> H = HypergeometricData(gamma_list=(-Integer(11), -Integer(2), Integer(1), Integer(3), Integer(4), Integer(5))) >>> H.E_polynomial() 5*u^2*v + 5*u*v^2 + u*v + 1 >>> H = HypergeometricData(gamma_list=(-Integer(63), -Integer(8), -Integer(2), Integer(1), Integer(4), Integer(16), Integer(21), Integer(31))) >>> H.E_polynomial() 21*u^3*v^2 + 21*u^2*v^3 + u^3*v + 23*u^2*v^2 + u*v^3 + u^2*v + u*v^2 + 2*u*v + 1
- H_value(p, f, t, ring=None)[source]¶
Return the trace of the Frobenius, computed in terms of Gauss sums using the hypergeometric trace formula.
INPUT:
p
– a prime numberf
– integer such that \(q = p^f\)t
– a rational parameterring
– (default:UniversalCyclotomicfield
)
The ring could be also
ComplexField(n)
orQQbar
.OUTPUT: integer
Warning
This is apparently working correctly as can be tested using
ComplexField(70)
as the value ring.Using instead
UniversalCyclotomicfield
, this is much slower than the \(p\)-adic versionpadic_H_value()
.Unlike in
padic_H_value()
, tame and wild primes are not supported.EXAMPLES:
With values in the
UniversalCyclotomicField
(slow):sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2]*4, [0]*4)) sage: [H.H_value(3,i,-1) for i in range(1,3)] [0, -12] sage: [H.H_value(5,i,-1) for i in range(1,3)] [-4, 276] sage: [H.H_value(7,i,-1) for i in range(1,3)] # not tested [0, -476] sage: [H.H_value(11,i,-1) for i in range(1,3)] # not tested [0, -4972] sage: [H.H_value(13,i,-1) for i in range(1,3)] # not tested [-84, -1420]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(alpha_beta=([Integer(1)/Integer(2)]*Integer(4), [Integer(0)]*Integer(4))) >>> [H.H_value(Integer(3),i,-Integer(1)) for i in range(Integer(1),Integer(3))] [0, -12] >>> [H.H_value(Integer(5),i,-Integer(1)) for i in range(Integer(1),Integer(3))] [-4, 276] >>> [H.H_value(Integer(7),i,-Integer(1)) for i in range(Integer(1),Integer(3))] # not tested [0, -476] >>> [H.H_value(Integer(11),i,-Integer(1)) for i in range(Integer(1),Integer(3))] # not tested [0, -4972] >>> [H.H_value(Integer(13),i,-Integer(1)) for i in range(Integer(1),Integer(3))] # not tested [-84, -1420]
With values in
ComplexField
:sage: [H.H_value(5,i,-1, ComplexField(60)) for i in range(1,3)] [-4, 276]
>>> from sage.all import * >>> [H.H_value(Integer(5),i,-Integer(1), ComplexField(Integer(60))) for i in range(Integer(1),Integer(3))] [-4, 276]
Check issue from Issue #28404:
sage: H1 = Hyp(cyclotomic=([1,1,1], [6,2])) sage: H2 = Hyp(cyclotomic=([6,2], [1,1,1])) sage: [H1.H_value(5,1,i) for i in range(2,5)] [1, -4, -4] sage: [H2.H_value(5,1,QQ(i)) for i in range(2,5)] [-4, 1, -4]
>>> from sage.all import * >>> H1 = Hyp(cyclotomic=([Integer(1),Integer(1),Integer(1)], [Integer(6),Integer(2)])) >>> H2 = Hyp(cyclotomic=([Integer(6),Integer(2)], [Integer(1),Integer(1),Integer(1)])) >>> [H1.H_value(Integer(5),Integer(1),i) for i in range(Integer(2),Integer(5))] [1, -4, -4] >>> [H2.H_value(Integer(5),Integer(1),QQ(i)) for i in range(Integer(2),Integer(5))] [-4, 1, -4]
REFERENCES:
[BeCoMe] (Theorem 1.3)
- M_value()[source]¶
Return the \(M\) coefficient that appears in the trace formula.
OUTPUT: a rational
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/6,1/3,2/3,5/6], [1/8,3/8,5/8,7/8])) sage: H.M_value() 729/4096 sage: Hyp(alpha_beta=(([1/2,1/2,1/2,1/2], [0,0,0,0]))).M_value() 256 sage: Hyp(cyclotomic=([5], [1,1,1,1])).M_value() 3125
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(alpha_beta=([Integer(1)/Integer(6),Integer(1)/Integer(3),Integer(2)/Integer(3),Integer(5)/Integer(6)], [Integer(1)/Integer(8),Integer(3)/Integer(8),Integer(5)/Integer(8),Integer(7)/Integer(8)])) >>> H.M_value() 729/4096 >>> Hyp(alpha_beta=(([Integer(1)/Integer(2),Integer(1)/Integer(2),Integer(1)/Integer(2),Integer(1)/Integer(2)], [Integer(0),Integer(0),Integer(0),Integer(0)]))).M_value() 256 >>> Hyp(cyclotomic=([Integer(5)], [Integer(1),Integer(1),Integer(1),Integer(1)])).M_value() 3125
- alpha()[source]¶
Return the first tuple of rational arguments.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2], [0])).alpha() [1/2]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> Hyp(alpha_beta=([Integer(1)/Integer(2)], [Integer(0)])).alpha() [1/2]
- alpha_beta()[source]¶
Return the pair of lists of rational arguments.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2], [0])).alpha_beta() ([1/2], [0])
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> Hyp(alpha_beta=([Integer(1)/Integer(2)], [Integer(0)])).alpha_beta() ([1/2], [0])
- beta()[source]¶
Return the second tuple of rational arguments.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2], [0])).beta() [0]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> Hyp(alpha_beta=([Integer(1)/Integer(2)], [Integer(0)])).beta() [0]
- canonical_scheme(t=None)[source]¶
Return the canonical scheme.
This is a scheme that contains this hypergeometric motive in its cohomology.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([3], [4])) sage: H.gamma_list() [-1, 2, 3, -4] sage: H.canonical_scheme() Spectrum of Quotient of Multivariate Polynomial Ring in X0, X1, Y0, Y1 over Fraction Field of Univariate Polynomial Ring in t over Rational Field by the ideal (X0 + X1 - 1, Y0 + Y1 - 1, (-t)*X0^2*X1^3 + 27/64*Y0*Y1^4) sage: H = Hyp(gamma_list=[-2, 3, 4, -5]) sage: H.canonical_scheme() Spectrum of Quotient of Multivariate Polynomial Ring in X0, X1, Y0, Y1 over Fraction Field of Univariate Polynomial Ring in t over Rational Field by the ideal (X0 + X1 - 1, Y0 + Y1 - 1, (-t)*X0^3*X1^4 + 1728/3125*Y0^2*Y1^5)
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(cyclotomic=([Integer(3)], [Integer(4)])) >>> H.gamma_list() [-1, 2, 3, -4] >>> H.canonical_scheme() Spectrum of Quotient of Multivariate Polynomial Ring in X0, X1, Y0, Y1 over Fraction Field of Univariate Polynomial Ring in t over Rational Field by the ideal (X0 + X1 - 1, Y0 + Y1 - 1, (-t)*X0^2*X1^3 + 27/64*Y0*Y1^4) >>> H = Hyp(gamma_list=[-Integer(2), Integer(3), Integer(4), -Integer(5)]) >>> H.canonical_scheme() Spectrum of Quotient of Multivariate Polynomial Ring in X0, X1, Y0, Y1 over Fraction Field of Univariate Polynomial Ring in t over Rational Field by the ideal (X0 + X1 - 1, Y0 + Y1 - 1, (-t)*X0^3*X1^4 + 1728/3125*Y0^2*Y1^5)
REFERENCES:
[Kat1991], section 5.4
- cyclotomic_data()[source]¶
Return the pair of tuples of indices of cyclotomic polynomials.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2], [0])).cyclotomic_data() ([2], [1])
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> Hyp(alpha_beta=([Integer(1)/Integer(2)], [Integer(0)])).cyclotomic_data() ([2], [1])
- defining_polynomials()[source]¶
Return the pair of products of cyclotomic polynomials.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/4,3/4], [0,0])).defining_polynomials() (x^2 + 1, x^2 - 2*x + 1)
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> Hyp(alpha_beta=([Integer(1)/Integer(4),Integer(3)/Integer(4)], [Integer(0),Integer(0)])).defining_polynomials() (x^2 + 1, x^2 - 2*x + 1)
- degree()[source]¶
Return the degree.
This is the sum of the Hodge numbers.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2], [0])).degree() 1 sage: Hyp(gamma_list=([2,2,4], [8])).degree() 4 sage: Hyp(cyclotomic=([5,6], [1,1,2,2,3])).degree() 6 sage: Hyp(cyclotomic=([3,8], [1,1,1,2,6])).degree() 6 sage: Hyp(cyclotomic=([3,3], [2,2,4])).degree() 4
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> Hyp(alpha_beta=([Integer(1)/Integer(2)], [Integer(0)])).degree() 1 >>> Hyp(gamma_list=([Integer(2),Integer(2),Integer(4)], [Integer(8)])).degree() 4 >>> Hyp(cyclotomic=([Integer(5),Integer(6)], [Integer(1),Integer(1),Integer(2),Integer(2),Integer(3)])).degree() 6 >>> Hyp(cyclotomic=([Integer(3),Integer(8)], [Integer(1),Integer(1),Integer(1),Integer(2),Integer(6)])).degree() 6 >>> Hyp(cyclotomic=([Integer(3),Integer(3)], [Integer(2),Integer(2),Integer(4)])).degree() 4
- euler_factor(t, p, deg=None, cache_p=False)[source]¶
Return the Euler factor of the motive \(H_t\) at prime \(p\).
INPUT:
t
– rational number, not 0p
– prime number of good reductiondeg
– integer orNone
OUTPUT: a polynomial
See [Benasque2009] for explicit examples of Euler factors.
For odd weight, the sign of the functional equation is +1. For even weight, the sign is computed by a recipe found in Section 11.1 of [Watkins].
If
deg
is specified, then the polynomial is only computed up to degreedeg
(inclusive).The prime \(p\) may be tame, but not wild. When \(v_p(t-1)\) is nonzero and even, the Euler factor includes a linear term described in Section 11.2 of [Watkins].
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2]*4, [0]*4)) sage: H.euler_factor(-1, 5) 15625*T^4 + 500*T^3 - 130*T^2 + 4*T + 1 sage: H = Hyp(gamma_list=[-6,-1,4,3]) sage: H.weight(), H.degree() (1, 2) sage: t = 189/125 sage: [H.euler_factor(1/t,p) for p in [11,13,17,19,23,29]] [11*T^2 + 4*T + 1, 13*T^2 + 1, 17*T^2 + 1, 19*T^2 + 1, 23*T^2 + 8*T + 1, 29*T^2 + 2*T + 1] sage: H = Hyp(cyclotomic=([6,2], [1,1,1])) sage: H.weight(), H.degree() (2, 3) sage: [H.euler_factor(1/4,p) for p in [5,7,11,13,17,19]] [125*T^3 + 20*T^2 + 4*T + 1, 343*T^3 - 42*T^2 - 6*T + 1, -1331*T^3 - 22*T^2 + 2*T + 1, -2197*T^3 - 156*T^2 + 12*T + 1, 4913*T^3 + 323*T^2 + 19*T + 1, 6859*T^3 - 57*T^2 - 3*T + 1] sage: H = Hyp(alpha_beta=([1/12,5/12,7/12,11/12], [0,1/2,1/2,1/2])) sage: H.weight(), H.degree() (2, 4) sage: t = -5 sage: [H.euler_factor(1/t,p) for p in [11,13,17,19,23,29]] [-14641*T^4 - 1210*T^3 + 10*T + 1, -28561*T^4 - 2704*T^3 + 16*T + 1, -83521*T^4 - 4046*T^3 + 14*T + 1, 130321*T^4 + 14440*T^3 + 969*T^2 + 40*T + 1, 279841*T^4 - 25392*T^3 + 1242*T^2 - 48*T + 1, 707281*T^4 - 7569*T^3 + 696*T^2 - 9*T + 1]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(alpha_beta=([Integer(1)/Integer(2)]*Integer(4), [Integer(0)]*Integer(4))) >>> H.euler_factor(-Integer(1), Integer(5)) 15625*T^4 + 500*T^3 - 130*T^2 + 4*T + 1 >>> H = Hyp(gamma_list=[-Integer(6),-Integer(1),Integer(4),Integer(3)]) >>> H.weight(), H.degree() (1, 2) >>> t = Integer(189)/Integer(125) >>> [H.euler_factor(Integer(1)/t,p) for p in [Integer(11),Integer(13),Integer(17),Integer(19),Integer(23),Integer(29)]] [11*T^2 + 4*T + 1, 13*T^2 + 1, 17*T^2 + 1, 19*T^2 + 1, 23*T^2 + 8*T + 1, 29*T^2 + 2*T + 1] >>> H = Hyp(cyclotomic=([Integer(6),Integer(2)], [Integer(1),Integer(1),Integer(1)])) >>> H.weight(), H.degree() (2, 3) >>> [H.euler_factor(Integer(1)/Integer(4),p) for p in [Integer(5),Integer(7),Integer(11),Integer(13),Integer(17),Integer(19)]] [125*T^3 + 20*T^2 + 4*T + 1, 343*T^3 - 42*T^2 - 6*T + 1, -1331*T^3 - 22*T^2 + 2*T + 1, -2197*T^3 - 156*T^2 + 12*T + 1, 4913*T^3 + 323*T^2 + 19*T + 1, 6859*T^3 - 57*T^2 - 3*T + 1] >>> H = Hyp(alpha_beta=([Integer(1)/Integer(12),Integer(5)/Integer(12),Integer(7)/Integer(12),Integer(11)/Integer(12)], [Integer(0),Integer(1)/Integer(2),Integer(1)/Integer(2),Integer(1)/Integer(2)])) >>> H.weight(), H.degree() (2, 4) >>> t = -Integer(5) >>> [H.euler_factor(Integer(1)/t,p) for p in [Integer(11),Integer(13),Integer(17),Integer(19),Integer(23),Integer(29)]] [-14641*T^4 - 1210*T^3 + 10*T + 1, -28561*T^4 - 2704*T^3 + 16*T + 1, -83521*T^4 - 4046*T^3 + 14*T + 1, 130321*T^4 + 14440*T^3 + 969*T^2 + 40*T + 1, 279841*T^4 - 25392*T^3 + 1242*T^2 - 48*T + 1, 707281*T^4 - 7569*T^3 + 696*T^2 - 9*T + 1]
This is an example of higher degree:
sage: H = Hyp(cyclotomic=([11], [7, 12])) sage: H.euler_factor(2, 13) 371293*T^10 - 85683*T^9 + 26364*T^8 + 1352*T^7 - 65*T^6 + 394*T^5 - 5*T^4 + 8*T^3 + 12*T^2 - 3*T + 1 sage: H.euler_factor(2, 13, deg=4) -5*T^4 + 8*T^3 + 12*T^2 - 3*T + 1 sage: H.euler_factor(2, 19) # long time 2476099*T^10 - 651605*T^9 + 233206*T^8 - 77254*T^7 + 20349*T^6 - 4611*T^5 + 1071*T^4 - 214*T^3 + 34*T^2 - 5*T + 1
>>> from sage.all import * >>> H = Hyp(cyclotomic=([Integer(11)], [Integer(7), Integer(12)])) >>> H.euler_factor(Integer(2), Integer(13)) 371293*T^10 - 85683*T^9 + 26364*T^8 + 1352*T^7 - 65*T^6 + 394*T^5 - 5*T^4 + 8*T^3 + 12*T^2 - 3*T + 1 >>> H.euler_factor(Integer(2), Integer(13), deg=Integer(4)) -5*T^4 + 8*T^3 + 12*T^2 - 3*T + 1 >>> H.euler_factor(Integer(2), Integer(19)) # long time 2476099*T^10 - 651605*T^9 + 233206*T^8 - 77254*T^7 + 20349*T^6 - 4611*T^5 + 1071*T^4 - 214*T^3 + 34*T^2 - 5*T + 1
This is an example of tame primes:
sage: H = Hyp(cyclotomic=[[4,2,2], [3,1,1]]) sage: H.euler_factor(8, 7) -7*T^3 + 7*T^2 - T + 1 sage: H.euler_factor(50, 7) -7*T^3 + 7*T^2 - T + 1 sage: H.euler_factor(7, 7) -T + 1 sage: H.euler_factor(1/7^2, 7) T + 1 sage: H.euler_factor(1/7^4, 7) 7*T^3 + 7*T^2 + T + 1
>>> from sage.all import * >>> H = Hyp(cyclotomic=[[Integer(4),Integer(2),Integer(2)], [Integer(3),Integer(1),Integer(1)]]) >>> H.euler_factor(Integer(8), Integer(7)) -7*T^3 + 7*T^2 - T + 1 >>> H.euler_factor(Integer(50), Integer(7)) -7*T^3 + 7*T^2 - T + 1 >>> H.euler_factor(Integer(7), Integer(7)) -T + 1 >>> H.euler_factor(Integer(1)/Integer(7)**Integer(2), Integer(7)) T + 1 >>> H.euler_factor(Integer(1)/Integer(7)**Integer(4), Integer(7)) 7*T^3 + 7*T^2 + T + 1
This is an example with \(t = 1\):
sage: H = Hyp(cyclotomic=[[4,2], [3,1]]) sage: H.euler_factor(1, 7) -T^2 + 1 sage: H = Hyp(cyclotomic=[[5], [1,1,1,1]]) sage: H.euler_factor(1, 7) 343*T^2 - 6*T + 1
>>> from sage.all import * >>> H = Hyp(cyclotomic=[[Integer(4),Integer(2)], [Integer(3),Integer(1)]]) >>> H.euler_factor(Integer(1), Integer(7)) -T^2 + 1 >>> H = Hyp(cyclotomic=[[Integer(5)], [Integer(1),Integer(1),Integer(1),Integer(1)]]) >>> H.euler_factor(Integer(1), Integer(7)) 343*T^2 - 6*T + 1
REFERENCES:
- euler_factor_tame_contribution(t, p, mo, deg=None)[source]¶
Return a contribution to the Euler factor of the motive \(H_t\) at a tame prime.
The output is only nontrivial when \(t\) has nonzero \(p\)-adic valuation. The algorithm is described in Section 11.4.1 of [Watkins].
INPUT:
t
– rational number, not 0 or 1p
– prime number of good reductionmo
– integerdeg
– integer (optional)
OUTPUT: a polynomial
If
deg
is specified, the output is truncated to that degree (inclusive).EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=[[3,7], [4,5,6]]) sage: H.euler_factor_tame_contribution(11^2, 11, 4) 1 sage: H.euler_factor_tame_contribution(11^20, 11, 4) 1331*T^2 + 1 sage: H.euler_factor_tame_contribution(11^20, 11, 4, deg=1) 1 sage: H.euler_factor_tame_contribution(11^20, 11, 5) 1771561*T^4 + 161051*T^3 + 6171*T^2 + 121*T + 1 sage: H.euler_factor_tame_contribution(11^20, 11, 5, deg=3) 161051*T^3 + 6171*T^2 + 121*T + 1 sage: H.euler_factor_tame_contribution(11^20, 11, 6) 1
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(cyclotomic=[[Integer(3),Integer(7)], [Integer(4),Integer(5),Integer(6)]]) >>> H.euler_factor_tame_contribution(Integer(11)**Integer(2), Integer(11), Integer(4)) 1 >>> H.euler_factor_tame_contribution(Integer(11)**Integer(20), Integer(11), Integer(4)) 1331*T^2 + 1 >>> H.euler_factor_tame_contribution(Integer(11)**Integer(20), Integer(11), Integer(4), deg=Integer(1)) 1 >>> H.euler_factor_tame_contribution(Integer(11)**Integer(20), Integer(11), Integer(5)) 1771561*T^4 + 161051*T^3 + 6171*T^2 + 121*T + 1 >>> H.euler_factor_tame_contribution(Integer(11)**Integer(20), Integer(11), Integer(5), deg=Integer(3)) 161051*T^3 + 6171*T^2 + 121*T + 1 >>> H.euler_factor_tame_contribution(Integer(11)**Integer(20), Integer(11), Integer(6)) 1
- gamma_array()[source]¶
Return the dictionary \(\{v: \gamma_v\}\) for the expression
\[\prod_v (T^v - 1)^{\gamma_v}\]EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2], [0])).gamma_array() {1: -2, 2: 1} sage: Hyp(cyclotomic=([6,2], [1,1,1])).gamma_array() {1: -3, 3: -1, 6: 1}
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> Hyp(alpha_beta=([Integer(1)/Integer(2)], [Integer(0)])).gamma_array() {1: -2, 2: 1} >>> Hyp(cyclotomic=([Integer(6),Integer(2)], [Integer(1),Integer(1),Integer(1)])).gamma_array() {1: -3, 3: -1, 6: 1}
- gamma_list()[source]¶
Return a list of integers describing the \(x^n - 1\) factors.
Each integer \(n\) stands for \((x^{|n|} - 1)^{\operatorname{sgn}(n)}\).
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2], [0])).gamma_list() [-1, -1, 2] sage: Hyp(cyclotomic=([6,2], [1,1,1])).gamma_list() [-1, -1, -1, -3, 6] sage: Hyp(cyclotomic=([3], [4])).gamma_list() [-1, 2, 3, -4]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> Hyp(alpha_beta=([Integer(1)/Integer(2)], [Integer(0)])).gamma_list() [-1, -1, 2] >>> Hyp(cyclotomic=([Integer(6),Integer(2)], [Integer(1),Integer(1),Integer(1)])).gamma_list() [-1, -1, -1, -3, 6] >>> Hyp(cyclotomic=([Integer(3)], [Integer(4)])).gamma_list() [-1, 2, 3, -4]
- gauss_table(p, f, prec)[source]¶
Return (and cache) a table of Gauss sums used in the trace formula.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([3], [4])) sage: H.gauss_table(2, 2, 4) (4, [1 + 2 + 2^2 + 2^3, 1 + 2 + 2^2 + 2^3, 1 + 2 + 2^2 + 2^3])
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(cyclotomic=([Integer(3)], [Integer(4)])) >>> H.gauss_table(Integer(2), Integer(2), Integer(4)) (4, [1 + 2 + 2^2 + 2^3, 1 + 2 + 2^2 + 2^3, 1 + 2 + 2^2 + 2^3])
- gauss_table_full()[source]¶
Return a dict of all stored tables of Gauss sums.
The result is passed by reference, and is an attribute of the class; consequently, modifying the result has global side effects. Use with caution.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([3], [4])) sage: H.euler_factor(2, 7, cache_p=True) 7*T^2 - 3*T + 1 sage: H.gauss_table_full()[(7, 1)] (2, array('l', [-1, -29, -25, -48, -47, -22]))
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(cyclotomic=([Integer(3)], [Integer(4)])) >>> H.euler_factor(Integer(2), Integer(7), cache_p=True) 7*T^2 - 3*T + 1 >>> H.gauss_table_full()[(Integer(7), Integer(1))] (2, array('l', [-1, -29, -25, -48, -47, -22]))
Clearing cached values:
sage: H = Hyp(cyclotomic=([3], [4])) sage: H.euler_factor(2, 7, cache_p=True) 7*T^2 - 3*T + 1 sage: d = H.gauss_table_full() sage: d.clear() # Delete all entries of this dict sage: H1 = Hyp(cyclotomic=([5], [12])) sage: d1 = H1.gauss_table_full() sage: len(d1.keys()) # No cached values 0
>>> from sage.all import * >>> H = Hyp(cyclotomic=([Integer(3)], [Integer(4)])) >>> H.euler_factor(Integer(2), Integer(7), cache_p=True) 7*T^2 - 3*T + 1 >>> d = H.gauss_table_full() >>> d.clear() # Delete all entries of this dict >>> H1 = Hyp(cyclotomic=([Integer(5)], [Integer(12)])) >>> d1 = H1.gauss_table_full() >>> len(d1.keys()) # No cached values 0
- has_symmetry_at_one()[source]¶
If
True
, the motive H(t=1) is a direct sum of two motives.Note that simultaneous exchange of (t,1/t) and (alpha,beta) always gives the same motive.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=[[1/2]*16, [0]*16]).has_symmetry_at_one() True
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> Hyp(alpha_beta=[[Integer(1)/Integer(2)]*Integer(16), [Integer(0)]*Integer(16)]).has_symmetry_at_one() True
REFERENCES:
- hodge_function(x)[source]¶
Evaluate the Hodge polygon as a function.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([6,10], [3,12])) sage: H.hodge_function(3) 2 sage: H.hodge_function(4) 4
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(cyclotomic=([Integer(6),Integer(10)], [Integer(3),Integer(12)])) >>> H.hodge_function(Integer(3)) 2 >>> H.hodge_function(Integer(4)) 4
- hodge_numbers()[source]¶
Return the Hodge numbers.
See also
degree()
,hodge_polynomial()
,hodge_polygon()
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([3], [6])) sage: H.hodge_numbers() [1, 1] sage: H = Hyp(cyclotomic=([4], [1,2])) sage: H.hodge_numbers() [2] sage: H = Hyp(gamma_list=([8,2,2,2], [6,4,3,1])) sage: H.hodge_numbers() [1, 2, 2, 1] sage: H = Hyp(gamma_list=([5], [1,1,1,1,1])) sage: H.hodge_numbers() [1, 1, 1, 1] sage: H = Hyp(gamma_list=[6,1,-4,-3]) sage: H.hodge_numbers() [1, 1] sage: H = Hyp(gamma_list=[-3]*4 + [1]*12) sage: H.hodge_numbers() [1, 1, 1, 1, 1, 1, 1, 1]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(cyclotomic=([Integer(3)], [Integer(6)])) >>> H.hodge_numbers() [1, 1] >>> H = Hyp(cyclotomic=([Integer(4)], [Integer(1),Integer(2)])) >>> H.hodge_numbers() [2] >>> H = Hyp(gamma_list=([Integer(8),Integer(2),Integer(2),Integer(2)], [Integer(6),Integer(4),Integer(3),Integer(1)])) >>> H.hodge_numbers() [1, 2, 2, 1] >>> H = Hyp(gamma_list=([Integer(5)], [Integer(1),Integer(1),Integer(1),Integer(1),Integer(1)])) >>> H.hodge_numbers() [1, 1, 1, 1] >>> H = Hyp(gamma_list=[Integer(6),Integer(1),-Integer(4),-Integer(3)]) >>> H.hodge_numbers() [1, 1] >>> H = Hyp(gamma_list=[-Integer(3)]*Integer(4) + [Integer(1)]*Integer(12)) >>> H.hodge_numbers() [1, 1, 1, 1, 1, 1, 1, 1]
REFERENCES:
- hodge_polygon_vertices()[source]¶
Return the vertices of the Hodge polygon.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([6,10], [3,12])) sage: H.hodge_polygon_vertices() [(0, 0), (1, 0), (3, 2), (5, 6), (6, 9)] sage: H = Hyp(cyclotomic=([2,2,2,2,3,3,3,6,6], [1,1,4,5,9])) sage: H.hodge_polygon_vertices() [(0, 0), (1, 0), (4, 3), (7, 9), (10, 18), (13, 30), (14, 35)]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(cyclotomic=([Integer(6),Integer(10)], [Integer(3),Integer(12)])) >>> H.hodge_polygon_vertices() [(0, 0), (1, 0), (3, 2), (5, 6), (6, 9)] >>> H = Hyp(cyclotomic=([Integer(2),Integer(2),Integer(2),Integer(2),Integer(3),Integer(3),Integer(3),Integer(6),Integer(6)], [Integer(1),Integer(1),Integer(4),Integer(5),Integer(9)])) >>> H.hodge_polygon_vertices() [(0, 0), (1, 0), (4, 3), (7, 9), (10, 18), (13, 30), (14, 35)]
- hodge_polynomial()[source]¶
Return the Hodge polynomial.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([6,10], [3,12])) sage: H.hodge_polynomial() (T^3 + 2*T^2 + 2*T + 1)/T^2 sage: H = Hyp(cyclotomic=([2,2,2,2,3,3,3,6,6], [1,1,4,5,9])) sage: H.hodge_polynomial() (T^5 + 3*T^4 + 3*T^3 + 3*T^2 + 3*T + 1)/T^2
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(cyclotomic=([Integer(6),Integer(10)], [Integer(3),Integer(12)])) >>> H.hodge_polynomial() (T^3 + 2*T^2 + 2*T + 1)/T^2 >>> H = Hyp(cyclotomic=([Integer(2),Integer(2),Integer(2),Integer(2),Integer(3),Integer(3),Integer(3),Integer(6),Integer(6)], [Integer(1),Integer(1),Integer(4),Integer(5),Integer(9)])) >>> H.hodge_polynomial() (T^5 + 3*T^4 + 3*T^3 + 3*T^2 + 3*T + 1)/T^2
- is_primitive()[source]¶
Return whether this data is primitive.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(cyclotomic=([3], [4])).is_primitive() True sage: Hyp(gamma_list=[-2, 4, 6, -8]).is_primitive() False sage: Hyp(gamma_list=[-3, 6, 9, -12]).is_primitive() False
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> Hyp(cyclotomic=([Integer(3)], [Integer(4)])).is_primitive() True >>> Hyp(gamma_list=[-Integer(2), Integer(4), Integer(6), -Integer(8)]).is_primitive() False >>> Hyp(gamma_list=[-Integer(3), Integer(6), Integer(9), -Integer(12)]).is_primitive() False
- lattice_polytope()[source]¶
Return the associated lattice polytope.
This uses the matrix defined in section 3 of [RRV2022] and section 3 of [RV2019].
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(gamma_list=[-5, -2, 3, 4]) sage: P = H.lattice_polytope(); P 2-d lattice polytope in 2-d lattice M sage: P.polyhedron().f_vector() (1, 4, 4, 1) sage: len(P.points()) 7
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(gamma_list=[-Integer(5), -Integer(2), Integer(3), Integer(4)]) >>> P = H.lattice_polytope(); P 2-d lattice polytope in 2-d lattice M >>> P.polyhedron().f_vector() (1, 4, 4, 1) >>> len(P.points()) 7
The Chebyshev example from [RV2019]:
sage: H = Hyp(gamma_list=[-30, -1, 6, 10, 15]) sage: P = H.lattice_polytope(); P 3-d lattice polytope in 3-d lattice M sage: len(P.points()) 19 sage: P.polyhedron().f_vector() (1, 5, 9, 6, 1)
>>> from sage.all import * >>> H = Hyp(gamma_list=[-Integer(30), -Integer(1), Integer(6), Integer(10), Integer(15)]) >>> P = H.lattice_polytope(); P 3-d lattice polytope in 3-d lattice M >>> len(P.points()) 19 >>> P.polyhedron().f_vector() (1, 5, 9, 6, 1)
- lfunction(t, prec=53)[source]¶
Return the \(L\)-function of
self
.The result is a wrapper around a PARI \(L\)-function.
INPUT:
prec
– precision (default: 53)
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([3], [4])) sage: L = H.lfunction(1/64); L PARI L-function associated to Hypergeometric data for [1/3, 2/3] and [1/4, 3/4] sage: L(4) 0.997734256321692
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(cyclotomic=([Integer(3)], [Integer(4)])) >>> L = H.lfunction(Integer(1)/Integer(64)); L PARI L-function associated to Hypergeometric data for [1/3, 2/3] and [1/4, 3/4] >>> L(Integer(4)) 0.997734256321692
- padic_H_value(p, f, t, prec=None, cache_p=False)[source]¶
Return the \(p\)-adic trace of Frobenius, computed using the Gross-Koblitz formula.
If left unspecified, \(prec\) is set to the minimum \(p\)-adic precision needed to recover the Euler factor.
If \(cache_p\) is
True
, then the function caches an intermediate result which depends only on \(p\) and \(f\). This leads to a significant speedup when iterating over \(t\).INPUT:
p
– a prime numberf
– integer such that \(q = p^f\)t
– a rational parameterprec
– precision (optional)cache_p
– boolean
OUTPUT: integer
EXAMPLES:
From Benasque report [Benasque2009], page 8:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2]*4, [0]*4)) sage: [H.padic_H_value(3,i,-1) for i in range(1,3)] [0, -12] sage: [H.padic_H_value(5,i,-1) for i in range(1,3)] [-4, 276] sage: [H.padic_H_value(7,i,-1) for i in range(1,3)] [0, -476] sage: [H.padic_H_value(11,i,-1) for i in range(1,3)] [0, -4972]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(alpha_beta=([Integer(1)/Integer(2)]*Integer(4), [Integer(0)]*Integer(4))) >>> [H.padic_H_value(Integer(3),i,-Integer(1)) for i in range(Integer(1),Integer(3))] [0, -12] >>> [H.padic_H_value(Integer(5),i,-Integer(1)) for i in range(Integer(1),Integer(3))] [-4, 276] >>> [H.padic_H_value(Integer(7),i,-Integer(1)) for i in range(Integer(1),Integer(3))] [0, -476] >>> [H.padic_H_value(Integer(11),i,-Integer(1)) for i in range(Integer(1),Integer(3))] [0, -4972]
From [Roberts2015] (but note conventions regarding \(t\)):
sage: H = Hyp(gamma_list=[-6,-1,4,3]) sage: t = 189/125 sage: H.padic_H_value(13,1,1/t) 0
>>> from sage.all import * >>> H = Hyp(gamma_list=[-Integer(6),-Integer(1),Integer(4),Integer(3)]) >>> t = Integer(189)/Integer(125) >>> H.padic_H_value(Integer(13),Integer(1),Integer(1)/t) 0
REFERENCES:
- primitive_data()[source]¶
Return a primitive version.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([3], [4])) sage: H2 = Hyp(gamma_list=[-2, 4, 6, -8]) sage: H2.primitive_data() == H True
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(cyclotomic=([Integer(3)], [Integer(4)])) >>> H2 = Hyp(gamma_list=[-Integer(2), Integer(4), Integer(6), -Integer(8)]) >>> H2.primitive_data() == H True
- primitive_index()[source]¶
Return the primitive index.
See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(cyclotomic=([3], [4])).primitive_index() 1 sage: Hyp(gamma_list=[-2, 4, 6, -8]).primitive_index() 2 sage: Hyp(gamma_list=[-3, 6, 9, -12]).primitive_index() 3
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> Hyp(cyclotomic=([Integer(3)], [Integer(4)])).primitive_index() 1 >>> Hyp(gamma_list=[-Integer(2), Integer(4), Integer(6), -Integer(8)]).primitive_index() 2 >>> Hyp(gamma_list=[-Integer(3), Integer(6), Integer(9), -Integer(12)]).primitive_index() 3
- sign(t, p)[source]¶
Return the sign of the functional equation for the Euler factor of the motive \(H_t\) at the prime \(p\).
For odd weight, the sign of the functional equation is +1. For even weight, the sign is computed by a recipe found in Section 11.1 of [Watkins] (when 0 is not in alpha).
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(cyclotomic=([6,2], [1,1,1])) sage: H.weight(), H.degree() (2, 3) sage: [H.sign(1/4,p) for p in [5,7,11,13,17,19]] [1, 1, -1, -1, 1, 1] sage: H = Hyp(alpha_beta=([1/12,5/12,7/12,11/12], [0,1/2,1/2,1/2])) sage: H.weight(), H.degree() (2, 4) sage: t = -5 sage: [H.sign(1/t,p) for p in [11,13,17,19,23,29]] [-1, -1, -1, 1, 1, 1]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(cyclotomic=([Integer(6),Integer(2)], [Integer(1),Integer(1),Integer(1)])) >>> H.weight(), H.degree() (2, 3) >>> [H.sign(Integer(1)/Integer(4),p) for p in [Integer(5),Integer(7),Integer(11),Integer(13),Integer(17),Integer(19)]] [1, 1, -1, -1, 1, 1] >>> H = Hyp(alpha_beta=([Integer(1)/Integer(12),Integer(5)/Integer(12),Integer(7)/Integer(12),Integer(11)/Integer(12)], [Integer(0),Integer(1)/Integer(2),Integer(1)/Integer(2),Integer(1)/Integer(2)])) >>> H.weight(), H.degree() (2, 4) >>> t = -Integer(5) >>> [H.sign(Integer(1)/t,p) for p in [Integer(11),Integer(13),Integer(17),Integer(19),Integer(23),Integer(29)]] [-1, -1, -1, 1, 1, 1]
We check that Issue #28404 is fixed:
sage: H = Hyp(cyclotomic=([1,1,1], [6,2])) sage: [H.sign(4,p) for p in [5,7,11,13,17,19]] [1, 1, -1, -1, 1, 1]
>>> from sage.all import * >>> H = Hyp(cyclotomic=([Integer(1),Integer(1),Integer(1)], [Integer(6),Integer(2)])) >>> [H.sign(Integer(4),p) for p in [Integer(5),Integer(7),Integer(11),Integer(13),Integer(17),Integer(19)]] [1, 1, -1, -1, 1, 1]
- swap_alpha_beta()[source]¶
Return the hypergeometric data with
alpha
andbeta
exchanged.EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2], [0])) sage: H.swap_alpha_beta() Hypergeometric data for [0] and [1/2]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(alpha_beta=([Integer(1)/Integer(2)], [Integer(0)])) >>> H.swap_alpha_beta() Hypergeometric data for [0] and [1/2]
- trace(p, f, t, prec=None, cache_p=False)[source]¶
Return the \(p\)-adic trace of Frobenius, computed using the Gross-Koblitz formula.
If left unspecified, \(prec\) is set to the minimum \(p\)-adic precision needed to recover the Euler factor.
If \(cache_p\) is
True
, then the function caches an intermediate result which depends only on \(p\) and \(f\). This leads to a significant speedup when iterating over \(t\).INPUT:
p
– a prime numberf
– integer such that \(q = p^f\)t
– a rational parameterprec
– precision (optional)cache_p
– boolean
OUTPUT: integer
EXAMPLES:
From Benasque report [Benasque2009], page 8:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2]*4, [0]*4)) sage: [H.padic_H_value(3,i,-1) for i in range(1,3)] [0, -12] sage: [H.padic_H_value(5,i,-1) for i in range(1,3)] [-4, 276] sage: [H.padic_H_value(7,i,-1) for i in range(1,3)] [0, -476] sage: [H.padic_H_value(11,i,-1) for i in range(1,3)] [0, -4972]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(alpha_beta=([Integer(1)/Integer(2)]*Integer(4), [Integer(0)]*Integer(4))) >>> [H.padic_H_value(Integer(3),i,-Integer(1)) for i in range(Integer(1),Integer(3))] [0, -12] >>> [H.padic_H_value(Integer(5),i,-Integer(1)) for i in range(Integer(1),Integer(3))] [-4, 276] >>> [H.padic_H_value(Integer(7),i,-Integer(1)) for i in range(Integer(1),Integer(3))] [0, -476] >>> [H.padic_H_value(Integer(11),i,-Integer(1)) for i in range(Integer(1),Integer(3))] [0, -4972]
From [Roberts2015] (but note conventions regarding \(t\)):
sage: H = Hyp(gamma_list=[-6,-1,4,3]) sage: t = 189/125 sage: H.padic_H_value(13,1,1/t) 0
>>> from sage.all import * >>> H = Hyp(gamma_list=[-Integer(6),-Integer(1),Integer(4),Integer(3)]) >>> t = Integer(189)/Integer(125) >>> H.padic_H_value(Integer(13),Integer(1),Integer(1)/t) 0
REFERENCES:
- twist()[source]¶
Return the twist of this data.
This is defined by adding \(1/2\) to each rational in \(\alpha\) and \(\beta\).
This is an involution.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/2], [0])) sage: H.twist() Hypergeometric data for [0] and [1/2] sage: H.twist().twist() == H True sage: Hyp(cyclotomic=([6], [1,2])).twist().cyclotomic_data() ([3], [1, 2])
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(alpha_beta=([Integer(1)/Integer(2)], [Integer(0)])) >>> H.twist() Hypergeometric data for [0] and [1/2] >>> H.twist().twist() == H True >>> Hyp(cyclotomic=([Integer(6)], [Integer(1),Integer(2)])).twist().cyclotomic_data() ([3], [1, 2])
- weight()[source]¶
Return the motivic weight of this motivic data.
EXAMPLES:
With rational inputs:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(alpha_beta=([1/2], [0])).weight() 0 sage: Hyp(alpha_beta=([1/4,3/4], [0,0])).weight() 1 sage: Hyp(alpha_beta=([1/6,1/3,2/3,5/6], [0,0,1/4,3/4])).weight() 1 sage: H = Hyp(alpha_beta=([1/6,1/3,2/3,5/6], [1/8,3/8,5/8,7/8])) sage: H.weight() 1
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> Hyp(alpha_beta=([Integer(1)/Integer(2)], [Integer(0)])).weight() 0 >>> Hyp(alpha_beta=([Integer(1)/Integer(4),Integer(3)/Integer(4)], [Integer(0),Integer(0)])).weight() 1 >>> Hyp(alpha_beta=([Integer(1)/Integer(6),Integer(1)/Integer(3),Integer(2)/Integer(3),Integer(5)/Integer(6)], [Integer(0),Integer(0),Integer(1)/Integer(4),Integer(3)/Integer(4)])).weight() 1 >>> H = Hyp(alpha_beta=([Integer(1)/Integer(6),Integer(1)/Integer(3),Integer(2)/Integer(3),Integer(5)/Integer(6)], [Integer(1)/Integer(8),Integer(3)/Integer(8),Integer(5)/Integer(8),Integer(7)/Integer(8)])) >>> H.weight() 1
With cyclotomic inputs:
sage: Hyp(cyclotomic=([6,2], [1,1,1])).weight() 2 sage: Hyp(cyclotomic=([6], [1,2])).weight() 0 sage: Hyp(cyclotomic=([8], [1,2,3])).weight() 0 sage: Hyp(cyclotomic=([5], [1,1,1,1])).weight() 3 sage: Hyp(cyclotomic=([5,6], [1,1,2,2,3])).weight() 1 sage: Hyp(cyclotomic=([3,8], [1,1,1,2,6])).weight() 2 sage: Hyp(cyclotomic=([3,3], [2,2,4])).weight() 1
>>> from sage.all import * >>> Hyp(cyclotomic=([Integer(6),Integer(2)], [Integer(1),Integer(1),Integer(1)])).weight() 2 >>> Hyp(cyclotomic=([Integer(6)], [Integer(1),Integer(2)])).weight() 0 >>> Hyp(cyclotomic=([Integer(8)], [Integer(1),Integer(2),Integer(3)])).weight() 0 >>> Hyp(cyclotomic=([Integer(5)], [Integer(1),Integer(1),Integer(1),Integer(1)])).weight() 3 >>> Hyp(cyclotomic=([Integer(5),Integer(6)], [Integer(1),Integer(1),Integer(2),Integer(2),Integer(3)])).weight() 1 >>> Hyp(cyclotomic=([Integer(3),Integer(8)], [Integer(1),Integer(1),Integer(1),Integer(2),Integer(6)])).weight() 2 >>> Hyp(cyclotomic=([Integer(3),Integer(3)], [Integer(2),Integer(2),Integer(4)])).weight() 1
With gamma list input:
sage: Hyp(gamma_list=([8,2,2,2], [6,4,3,1])).weight() 3
>>> from sage.all import * >>> Hyp(gamma_list=([Integer(8),Integer(2),Integer(2),Integer(2)], [Integer(6),Integer(4),Integer(3),Integer(1)])).weight() 3
- wild_primes()[source]¶
Return the wild primes.
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: Hyp(cyclotomic=([3], [4])).wild_primes() [2, 3] sage: Hyp(cyclotomic=([2,2,2,2,3,3,3,6,6], [1,1,4,5,9])).wild_primes() [2, 3, 5]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> Hyp(cyclotomic=([Integer(3)], [Integer(4)])).wild_primes() [2, 3] >>> Hyp(cyclotomic=([Integer(2),Integer(2),Integer(2),Integer(2),Integer(3),Integer(3),Integer(3),Integer(6),Integer(6)], [Integer(1),Integer(1),Integer(4),Integer(5),Integer(9)])).wild_primes() [2, 3, 5]
- zigzag(x, flip_beta=False)[source]¶
Count
alpha
’s at mostx
minusbeta
’s at mostx
.This function is used to compute the weight and the Hodge numbers. With \(flip_beta\) set to
True
, replace each \(b\) in \(\beta\) with \(1-b\).See also
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp sage: H = Hyp(alpha_beta=([1/6,1/3,2/3,5/6], [1/8,3/8,5/8,7/8])) sage: [H.zigzag(x) for x in [0, 1/3, 1/2]] [0, 1, 0] sage: H = Hyp(cyclotomic=([5], [1,1,1,1])) sage: [H.zigzag(x) for x in [0,1/6,1/4,1/2,3/4,5/6]] [-4, -4, -3, -2, -1, 0]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import HypergeometricData as Hyp >>> H = Hyp(alpha_beta=([Integer(1)/Integer(6),Integer(1)/Integer(3),Integer(2)/Integer(3),Integer(5)/Integer(6)], [Integer(1)/Integer(8),Integer(3)/Integer(8),Integer(5)/Integer(8),Integer(7)/Integer(8)])) >>> [H.zigzag(x) for x in [Integer(0), Integer(1)/Integer(3), Integer(1)/Integer(2)]] [0, 1, 0] >>> H = Hyp(cyclotomic=([Integer(5)], [Integer(1),Integer(1),Integer(1),Integer(1)])) >>> [H.zigzag(x) for x in [Integer(0),Integer(1)/Integer(6),Integer(1)/Integer(4),Integer(1)/Integer(2),Integer(3)/Integer(4),Integer(5)/Integer(6)]] [-4, -4, -3, -2, -1, 0]
- sage.modular.hypergeometric_motive.alpha_to_cyclotomic(alpha)[source]¶
Convert from a list of rationals arguments to a list of integers.
The input represents arguments of some roots of unity.
The output represent a product of cyclotomic polynomials with exactly the given roots. Note that the multiplicity of \(r/s\) in the list must be independent of \(r\); otherwise, a
ValueError
will be raised.This is the inverse of
cyclotomic_to_alpha()
.EXAMPLES:
sage: from sage.modular.hypergeometric_motive import alpha_to_cyclotomic sage: alpha_to_cyclotomic([0]) [1] sage: alpha_to_cyclotomic([1/2]) [2] sage: alpha_to_cyclotomic([1/5, 2/5, 3/5, 4/5]) [5] sage: alpha_to_cyclotomic([0, 1/6, 1/3, 1/2, 2/3, 5/6]) [1, 2, 3, 6] sage: alpha_to_cyclotomic([1/3, 2/3, 1/2]) [2, 3]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import alpha_to_cyclotomic >>> alpha_to_cyclotomic([Integer(0)]) [1] >>> alpha_to_cyclotomic([Integer(1)/Integer(2)]) [2] >>> alpha_to_cyclotomic([Integer(1)/Integer(5), Integer(2)/Integer(5), Integer(3)/Integer(5), Integer(4)/Integer(5)]) [5] >>> alpha_to_cyclotomic([Integer(0), Integer(1)/Integer(6), Integer(1)/Integer(3), Integer(1)/Integer(2), Integer(2)/Integer(3), Integer(5)/Integer(6)]) [1, 2, 3, 6] >>> alpha_to_cyclotomic([Integer(1)/Integer(3), Integer(2)/Integer(3), Integer(1)/Integer(2)]) [2, 3]
- sage.modular.hypergeometric_motive.capital_M(n)[source]¶
Auxiliary function, used to describe the canonical scheme.
INPUT:
n
– integer
OUTPUT: a rational
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import capital_M sage: [capital_M(i) for i in range(1, 8)] [1, 4, 27, 64, 3125, 432, 823543]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import capital_M >>> [capital_M(i) for i in range(Integer(1), Integer(8))] [1, 4, 27, 64, 3125, 432, 823543]
- sage.modular.hypergeometric_motive.characteristic_polynomial_from_traces(traces, d, q, i, sign, deg=None, use_fe=True)[source]¶
Given a sequence of traces \(t_1, \dots, t_k\), return the corresponding characteristic polynomial with Weil numbers as roots.
The characteristic polynomial is defined by the generating series
\[P(T) = \exp\left(- \sum_{k\geq 1} t_k \frac{T^k}{k}\right)\]and should have the property that reciprocals of all roots have absolute value \(q^{i/2}\).
INPUT:
traces
– list of integers \(t_1, \dots, t_k\)d
– the degree of the characteristic polynomialq
– power of a prime numberi
– integer; the weight in the motivic sensesign
– integer; the signdeg
– integer orNone
use_fe
– boolean (default:True
)
OUTPUT: a polynomial
If
deg
is specified, only the coefficients up to this degree (inclusive) are computed.If
use_fe
isFalse
, we ignore the local functional equation.EXAMPLES:
sage: from sage.modular.hypergeometric_motive import characteristic_polynomial_from_traces sage: characteristic_polynomial_from_traces([1, 1], 1, 3, 0, -1) -T + 1 sage: characteristic_polynomial_from_traces([25], 1, 5, 4, -1) -25*T + 1 sage: characteristic_polynomial_from_traces([3], 2, 5, 1, 1) 5*T^2 - 3*T + 1 sage: characteristic_polynomial_from_traces([1], 2, 7, 1, 1) 7*T^2 - T + 1 sage: characteristic_polynomial_from_traces([20], 3, 29, 2, 1) 24389*T^3 - 580*T^2 - 20*T + 1 sage: characteristic_polynomial_from_traces([12], 3, 13, 2, -1) -2197*T^3 + 156*T^2 - 12*T + 1 sage: characteristic_polynomial_from_traces([36, 7620], 4, 17, 3, 1) 24137569*T^4 - 176868*T^3 - 3162*T^2 - 36*T + 1 sage: characteristic_polynomial_from_traces([-4, 276], 4, 5, 3, 1) 15625*T^4 + 500*T^3 - 130*T^2 + 4*T + 1 sage: characteristic_polynomial_from_traces([4, -276], 4, 5, 3, 1) 15625*T^4 - 500*T^3 + 146*T^2 - 4*T + 1 sage: characteristic_polynomial_from_traces([22, 484], 4, 31, 2, -1) -923521*T^4 + 21142*T^3 - 22*T + 1 sage: characteristic_polynomial_from_traces([22], 4, 31, 2, -1, deg=1) -22*T + 1 sage: characteristic_polynomial_from_traces([22, 484], 4, 31, 2, -1, deg=4) -923521*T^4 + 21142*T^3 - 22*T + 1
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import characteristic_polynomial_from_traces >>> characteristic_polynomial_from_traces([Integer(1), Integer(1)], Integer(1), Integer(3), Integer(0), -Integer(1)) -T + 1 >>> characteristic_polynomial_from_traces([Integer(25)], Integer(1), Integer(5), Integer(4), -Integer(1)) -25*T + 1 >>> characteristic_polynomial_from_traces([Integer(3)], Integer(2), Integer(5), Integer(1), Integer(1)) 5*T^2 - 3*T + 1 >>> characteristic_polynomial_from_traces([Integer(1)], Integer(2), Integer(7), Integer(1), Integer(1)) 7*T^2 - T + 1 >>> characteristic_polynomial_from_traces([Integer(20)], Integer(3), Integer(29), Integer(2), Integer(1)) 24389*T^3 - 580*T^2 - 20*T + 1 >>> characteristic_polynomial_from_traces([Integer(12)], Integer(3), Integer(13), Integer(2), -Integer(1)) -2197*T^3 + 156*T^2 - 12*T + 1 >>> characteristic_polynomial_from_traces([Integer(36), Integer(7620)], Integer(4), Integer(17), Integer(3), Integer(1)) 24137569*T^4 - 176868*T^3 - 3162*T^2 - 36*T + 1 >>> characteristic_polynomial_from_traces([-Integer(4), Integer(276)], Integer(4), Integer(5), Integer(3), Integer(1)) 15625*T^4 + 500*T^3 - 130*T^2 + 4*T + 1 >>> characteristic_polynomial_from_traces([Integer(4), -Integer(276)], Integer(4), Integer(5), Integer(3), Integer(1)) 15625*T^4 - 500*T^3 + 146*T^2 - 4*T + 1 >>> characteristic_polynomial_from_traces([Integer(22), Integer(484)], Integer(4), Integer(31), Integer(2), -Integer(1)) -923521*T^4 + 21142*T^3 - 22*T + 1 >>> characteristic_polynomial_from_traces([Integer(22)], Integer(4), Integer(31), Integer(2), -Integer(1), deg=Integer(1)) -22*T + 1 >>> characteristic_polynomial_from_traces([Integer(22), Integer(484)], Integer(4), Integer(31), Integer(2), -Integer(1), deg=Integer(4)) -923521*T^4 + 21142*T^3 - 22*T + 1
- sage.modular.hypergeometric_motive.cyclotomic_to_alpha(cyclo)[source]¶
Convert a list of indices of cyclotomic polynomials to a list of rational numbers.
The input represents a product of cyclotomic polynomials.
The output is the list of arguments of the roots of the given product of cyclotomic polynomials.
This is the inverse of
alpha_to_cyclotomic()
.EXAMPLES:
sage: from sage.modular.hypergeometric_motive import cyclotomic_to_alpha sage: cyclotomic_to_alpha([1]) [0] sage: cyclotomic_to_alpha([2]) [1/2] sage: cyclotomic_to_alpha([5]) [1/5, 2/5, 3/5, 4/5] sage: cyclotomic_to_alpha([1, 2, 3, 6]) [0, 1/6, 1/3, 1/2, 2/3, 5/6] sage: cyclotomic_to_alpha([2, 3]) [1/3, 1/2, 2/3]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import cyclotomic_to_alpha >>> cyclotomic_to_alpha([Integer(1)]) [0] >>> cyclotomic_to_alpha([Integer(2)]) [1/2] >>> cyclotomic_to_alpha([Integer(5)]) [1/5, 2/5, 3/5, 4/5] >>> cyclotomic_to_alpha([Integer(1), Integer(2), Integer(3), Integer(6)]) [0, 1/6, 1/3, 1/2, 2/3, 5/6] >>> cyclotomic_to_alpha([Integer(2), Integer(3)]) [1/3, 1/2, 2/3]
- sage.modular.hypergeometric_motive.cyclotomic_to_gamma(cyclo_up, cyclo_down)[source]¶
Convert a quotient of products of cyclotomic polynomials to a quotient of products of polynomials \(x^n - 1\).
INPUT:
cyclo_up
– list of indices of cyclotomic polynomials in the numeratorcyclo_down
– list of indices of cyclotomic polynomials in the denominator
OUTPUT:
a dictionary mapping an integer \(n\) to the power of \(x^n - 1\) that appears in the given product
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import cyclotomic_to_gamma sage: cyclotomic_to_gamma([6], [1]) {2: -1, 3: -1, 6: 1}
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import cyclotomic_to_gamma >>> cyclotomic_to_gamma([Integer(6)], [Integer(1)]) {2: -1, 3: -1, 6: 1}
- sage.modular.hypergeometric_motive.enumerate_hypergeometric_data(d, weight=None)[source]¶
Return an iterator over parameters of hypergeometric motives (up to swapping).
INPUT:
d
– the degreeweight
– (optional) integer; specifies the motivic weight
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import enumerate_hypergeometric_data as enum sage: l = [H for H in enum(6, weight=2) if H.hodge_numbers()[0] == 1] sage: len(l) 112
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import enumerate_hypergeometric_data as enum >>> l = [H for H in enum(Integer(6), weight=Integer(2)) if H.hodge_numbers()[Integer(0)] == Integer(1)] >>> len(l) 112
- sage.modular.hypergeometric_motive.gamma_list_to_cyclotomic(galist)[source]¶
Convert a quotient of products of polynomials \(x^n - 1\) to a quotient of products of cyclotomic polynomials.
INPUT:
galist
– list of integers, where an integer \(n\) represents the power \((x^{|n|} - 1)^{\operatorname{sgn}(n)}\)
OUTPUT:
a pair of list of integers, where \(k\) represents the cyclotomic polynomial \(\Phi_k\)
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import gamma_list_to_cyclotomic sage: gamma_list_to_cyclotomic([-1, -1, 2]) ([2], [1]) sage: gamma_list_to_cyclotomic([-1, -1, -1, -3, 6]) ([2, 6], [1, 1, 1]) sage: gamma_list_to_cyclotomic([-1, 2, 3, -4]) ([3], [4]) sage: gamma_list_to_cyclotomic([8, 2, 2, 2, -6, -4, -3, -1]) ([2, 2, 8], [3, 3, 6])
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import gamma_list_to_cyclotomic >>> gamma_list_to_cyclotomic([-Integer(1), -Integer(1), Integer(2)]) ([2], [1]) >>> gamma_list_to_cyclotomic([-Integer(1), -Integer(1), -Integer(1), -Integer(3), Integer(6)]) ([2, 6], [1, 1, 1]) >>> gamma_list_to_cyclotomic([-Integer(1), Integer(2), Integer(3), -Integer(4)]) ([3], [4]) >>> gamma_list_to_cyclotomic([Integer(8), Integer(2), Integer(2), Integer(2), -Integer(6), -Integer(4), -Integer(3), -Integer(1)]) ([2, 2, 8], [3, 3, 6])
- sage.modular.hypergeometric_motive.possible_hypergeometric_data(d, weight=None)[source]¶
Return the list of possible parameters of hypergeometric motives (up to swapping).
INPUT:
d
– the degreeweight
– (optional) integer; specifies the motivic weight
EXAMPLES:
sage: from sage.modular.hypergeometric_motive import possible_hypergeometric_data as P sage: [len(P(i,weight=2)) for i in range(1, 7)] [0, 0, 10, 30, 93, 234]
>>> from sage.all import * >>> from sage.modular.hypergeometric_motive import possible_hypergeometric_data as P >>> [len(P(i,weight=Integer(2))) for i in range(Integer(1), Integer(7))] [0, 0, 10, 30, 93, 234]