Universal cyclotomic field¶
The universal cyclotomic field is the smallest subfield of the complex field containing all roots of unity. It is also the maximal abelian extension of the rational numbers.
EXAMPLES:
sage: UCF = UniversalCyclotomicField(); UCF
Universal Cyclotomic Field
>>> from sage.all import *
>>> UCF = UniversalCyclotomicField(); UCF
Universal Cyclotomic Field
To generate cyclotomic elements:
sage: UCF.gen(5)
E(5)
sage: UCF.gen(5,2)
E(5)^2
sage: E = UCF.gen
>>> from sage.all import *
>>> UCF.gen(Integer(5))
E(5)
>>> UCF.gen(Integer(5),Integer(2))
E(5)^2
>>> E = UCF.gen
Equality and inequality checks:
sage: E(6,2) == E(6)^2 == E(3)
True
sage: E(6)^2 != E(3)
False
>>> from sage.all import *
>>> E(Integer(6),Integer(2)) == E(Integer(6))**Integer(2) == E(Integer(3))
True
>>> E(Integer(6))**Integer(2) != E(Integer(3))
False
Addition and multiplication:
sage: E(2) * E(3)
-E(3)
sage: f = E(2) + E(3); f
2*E(3) + E(3)^2
>>> from sage.all import *
>>> E(Integer(2)) * E(Integer(3))
-E(3)
>>> f = E(Integer(2)) + E(Integer(3)); f
2*E(3) + E(3)^2
Inverses:
sage: f^-1
1/3*E(3) + 2/3*E(3)^2
sage: f.inverse()
1/3*E(3) + 2/3*E(3)^2
sage: f * f.inverse()
1
>>> from sage.all import *
>>> f**-Integer(1)
1/3*E(3) + 2/3*E(3)^2
>>> f.inverse()
1/3*E(3) + 2/3*E(3)^2
>>> f * f.inverse()
1
Conjugation and Galois conjugates:
sage: f.conjugate()
E(3) + 2*E(3)^2
sage: f.galois_conjugates()
[2*E(3) + E(3)^2, E(3) + 2*E(3)^2]
sage: f.norm_of_galois_extension()
3
>>> from sage.all import *
>>> f.conjugate()
E(3) + 2*E(3)^2
>>> f.galois_conjugates()
[2*E(3) + E(3)^2, E(3) + 2*E(3)^2]
>>> f.norm_of_galois_extension()
3
One can create matrices and polynomials:
sage: m = matrix(2,[E(3),1,1,E(4)]); m
[E(3) 1]
[ 1 E(4)]
sage: m.parent()
Full MatrixSpace of 2 by 2 dense matrices over Universal Cyclotomic Field
sage: m**2
[ -E(3) E(12)^4 - E(12)^7 - E(12)^11]
[E(12)^4 - E(12)^7 - E(12)^11 0]
sage: m.charpoly()
x^2 + (-E(12)^4 + E(12)^7 + E(12)^11)*x + E(12)^4 + E(12)^7 + E(12)^8
sage: m.echelon_form()
[1 0]
[0 1]
sage: m.pivots()
(0, 1)
sage: m.rank()
2
sage: R.<x> = PolynomialRing(UniversalCyclotomicField(), 'x')
sage: E(3) * x - 1
E(3)*x - 1
>>> from sage.all import *
>>> m = matrix(Integer(2),[E(Integer(3)),Integer(1),Integer(1),E(Integer(4))]); m
[E(3) 1]
[ 1 E(4)]
>>> m.parent()
Full MatrixSpace of 2 by 2 dense matrices over Universal Cyclotomic Field
>>> m**Integer(2)
[ -E(3) E(12)^4 - E(12)^7 - E(12)^11]
[E(12)^4 - E(12)^7 - E(12)^11 0]
>>> m.charpoly()
x^2 + (-E(12)^4 + E(12)^7 + E(12)^11)*x + E(12)^4 + E(12)^7 + E(12)^8
>>> m.echelon_form()
[1 0]
[0 1]
>>> m.pivots()
(0, 1)
>>> m.rank()
2
>>> R = PolynomialRing(UniversalCyclotomicField(), 'x', names=('x',)); (x,) = R._first_ngens(1)
>>> E(Integer(3)) * x - Integer(1)
E(3)*x - 1
The implementation simply wraps GAP Cyclotomic. As mentioned in their documentation: arithmetical operations are quite expensive, so the use of internally represented cyclotomics is not recommended for doing arithmetic over number fields, such as calculations with matrices of cyclotomics.
Note
There used to be a native Sage version of the universal cyclotomic field written by Christian Stump (see Issue #8327). It was slower on most operations and it was decided to use a version based on GAP instead (see Issue #18152). One main difference in the design choices is that GAP stores dense vectors whereas the native ones used Python dictionaries (storing only nonzero coefficients). Most operations are faster with GAP except some operation on very sparse elements. All details can be found in Issue #18152.
REFERENCES:
AUTHORS:
Christian Stump (2013): initial Sage version (see Issue #8327)
Vincent Delecroix (2015): completed rewriting using libgap (see Issue #18152)
Sebastian Oehms (2018): deleted the method is_finite since it returned the wrong result (see Issue #25686)
Sebastian Oehms (2019): added
_factor_univariate_polynomial()
(see Issue #28631)
- sage.rings.universal_cyclotomic_field.E(n, k=1)[source]¶
Return the
n
-th root of unity as an element of the universal cyclotomic field.EXAMPLES:
sage: E(3) E(3) sage: E(3) + E(5) -E(15)^2 - 2*E(15)^8 - E(15)^11 - E(15)^13 - E(15)^14
>>> from sage.all import * >>> E(Integer(3)) E(3) >>> E(Integer(3)) + E(Integer(5)) -E(15)^2 - 2*E(15)^8 - E(15)^11 - E(15)^13 - E(15)^14
- sage.rings.universal_cyclotomic_field.UCF_sqrt_int(N, UCF)[source]¶
Return the square root of the integer
N
.EXAMPLES:
sage: from sage.rings.universal_cyclotomic_field import UCF_sqrt_int sage: UCF = UniversalCyclotomicField() sage: UCF_sqrt_int(0, UCF) 0 sage: UCF_sqrt_int(1, UCF) 1 sage: UCF_sqrt_int(-1, UCF) E(4) sage: UCF_sqrt_int(2, UCF) E(8) - E(8)^3 sage: UCF_sqrt_int(-2, UCF) E(8) + E(8)^3
>>> from sage.all import * >>> from sage.rings.universal_cyclotomic_field import UCF_sqrt_int >>> UCF = UniversalCyclotomicField() >>> UCF_sqrt_int(Integer(0), UCF) 0 >>> UCF_sqrt_int(Integer(1), UCF) 1 >>> UCF_sqrt_int(-Integer(1), UCF) E(4) >>> UCF_sqrt_int(Integer(2), UCF) E(8) - E(8)^3 >>> UCF_sqrt_int(-Integer(2), UCF) E(8) + E(8)^3
- class sage.rings.universal_cyclotomic_field.UCFtoQQbar(UCF)[source]¶
Bases:
Morphism
Conversion to
QQbar
.EXAMPLES:
sage: UCF = UniversalCyclotomicField() sage: QQbar(UCF.gen(3)) -0.500000000000000? + 0.866025403784439?*I sage: CC(UCF.gen(7,2) + UCF.gen(7,6)) 0.400968867902419 + 0.193096429713793*I sage: complex(E(7)+E(7,2)) (0.40096886790241915+1.7567593946498534j) sage: complex(UCF.one()/2) (0.5+0j)
>>> from sage.all import * >>> UCF = UniversalCyclotomicField() >>> QQbar(UCF.gen(Integer(3))) -0.500000000000000? + 0.866025403784439?*I >>> CC(UCF.gen(Integer(7),Integer(2)) + UCF.gen(Integer(7),Integer(6))) 0.400968867902419 + 0.193096429713793*I >>> complex(E(Integer(7))+E(Integer(7),Integer(2))) (0.40096886790241915+1.7567593946498534j) >>> complex(UCF.one()/Integer(2)) (0.5+0j)
- class sage.rings.universal_cyclotomic_field.UniversalCyclotomicField(names=None)[source]¶
Bases:
UniqueRepresentation
,UniversalCyclotomicField
The universal cyclotomic field.
The universal cyclotomic field is the infinite algebraic extension of \(\QQ\) generated by the roots of unity. It is also the maximal Abelian extension of \(\QQ\) in the sense that any Abelian Galois extension of \(\QQ\) is also a subfield of the universal cyclotomic field.
- Element[source]¶
alias of
UniversalCyclotomicFieldElement
- algebraic_closure()[source]¶
The algebraic closure.
EXAMPLES:
sage: UniversalCyclotomicField().algebraic_closure() Algebraic Field
>>> from sage.all import * >>> UniversalCyclotomicField().algebraic_closure() Algebraic Field
- an_element()[source]¶
Return an element.
EXAMPLES:
sage: UniversalCyclotomicField().an_element() E(5) - 3*E(5)^2
>>> from sage.all import * >>> UniversalCyclotomicField().an_element() E(5) - 3*E(5)^2
- characteristic()[source]¶
Return the characteristic.
EXAMPLES:
sage: UniversalCyclotomicField().characteristic() 0 sage: parent(_) Integer Ring
>>> from sage.all import * >>> UniversalCyclotomicField().characteristic() 0 >>> parent(_) Integer Ring
- degree()[source]¶
Return the degree of
self
as a field extension over the Rationals.EXAMPLES:
sage: UCF = UniversalCyclotomicField() sage: UCF.degree() +Infinity
>>> from sage.all import * >>> UCF = UniversalCyclotomicField() >>> UCF.degree() +Infinity
- gen(n, k=1)[source]¶
Return the standard primitive
n
-th root of unity.If
k
is notNone
, return thek
-th power of it.EXAMPLES:
sage: UCF = UniversalCyclotomicField() sage: UCF.gen(15) E(15) sage: UCF.gen(7,3) E(7)^3 sage: UCF.gen(4,2) -1
>>> from sage.all import * >>> UCF = UniversalCyclotomicField() >>> UCF.gen(Integer(15)) E(15) >>> UCF.gen(Integer(7),Integer(3)) E(7)^3 >>> UCF.gen(Integer(4),Integer(2)) -1
There is an alias
zeta
also available:sage: UCF.zeta(6) -E(3)^2
>>> from sage.all import * >>> UCF.zeta(Integer(6)) -E(3)^2
- is_exact()[source]¶
Return
True
as this is an exact ring (i.e. not numerical).EXAMPLES:
sage: UniversalCyclotomicField().is_exact() True
>>> from sage.all import * >>> UniversalCyclotomicField().is_exact() True
- one()[source]¶
Return one.
EXAMPLES:
sage: UCF = UniversalCyclotomicField() sage: UCF.one() 1 sage: parent(_) Universal Cyclotomic Field
>>> from sage.all import * >>> UCF = UniversalCyclotomicField() >>> UCF.one() 1 >>> parent(_) Universal Cyclotomic Field
- some_elements()[source]¶
Return a tuple of some elements in the universal cyclotomic field.
EXAMPLES:
sage: UniversalCyclotomicField().some_elements() (0, 1, -1, E(3), E(7) - 2/3*E(7)^2) sage: all(parent(x) is UniversalCyclotomicField() for x in _) True
>>> from sage.all import * >>> UniversalCyclotomicField().some_elements() (0, 1, -1, E(3), E(7) - 2/3*E(7)^2) >>> all(parent(x) is UniversalCyclotomicField() for x in _) True
- zero()[source]¶
Return zero.
EXAMPLES:
sage: UCF = UniversalCyclotomicField() sage: UCF.zero() 0 sage: parent(_) Universal Cyclotomic Field
>>> from sage.all import * >>> UCF = UniversalCyclotomicField() >>> UCF.zero() 0 >>> parent(_) Universal Cyclotomic Field
- zeta(n, k=1)[source]¶
Return the standard primitive
n
-th root of unity.If
k
is notNone
, return thek
-th power of it.EXAMPLES:
sage: UCF = UniversalCyclotomicField() sage: UCF.gen(15) E(15) sage: UCF.gen(7,3) E(7)^3 sage: UCF.gen(4,2) -1
>>> from sage.all import * >>> UCF = UniversalCyclotomicField() >>> UCF.gen(Integer(15)) E(15) >>> UCF.gen(Integer(7),Integer(3)) E(7)^3 >>> UCF.gen(Integer(4),Integer(2)) -1
There is an alias
zeta
also available:sage: UCF.zeta(6) -E(3)^2
>>> from sage.all import * >>> UCF.zeta(Integer(6)) -E(3)^2
- class sage.rings.universal_cyclotomic_field.UniversalCyclotomicFieldElement(parent, obj)[source]¶
Bases:
FieldElement
INPUT:
parent
– a universal cyclotomic fieldobj
– a libgap element (either an integer, a rational or a cyclotomic)
- abs()[source]¶
Return the absolute value (or complex modulus) of
self
.The absolute value is returned as an algebraic real number.
EXAMPLES:
sage: f = 5/2*E(3)+E(5)/7 sage: f.abs() 2.597760303873084? sage: abs(f) 2.597760303873084? sage: a = E(8) sage: abs(a) 1 sage: v, w = vector([a]), vector([a, a]) sage: v.norm(), w.norm() (1, 1.414213562373095?) sage: v.norm().parent() Algebraic Real Field
>>> from sage.all import * >>> f = Integer(5)/Integer(2)*E(Integer(3))+E(Integer(5))/Integer(7) >>> f.abs() 2.597760303873084? >>> abs(f) 2.597760303873084? >>> a = E(Integer(8)) >>> abs(a) 1 >>> v, w = vector([a]), vector([a, a]) >>> v.norm(), w.norm() (1, 1.414213562373095?) >>> v.norm().parent() Algebraic Real Field
- additive_order()[source]¶
Return the additive order.
EXAMPLES:
sage: UCF = UniversalCyclotomicField() sage: UCF.zero().additive_order() 0 sage: UCF.one().additive_order() +Infinity sage: UCF.gen(3).additive_order() +Infinity
>>> from sage.all import * >>> UCF = UniversalCyclotomicField() >>> UCF.zero().additive_order() 0 >>> UCF.one().additive_order() +Infinity >>> UCF.gen(Integer(3)).additive_order() +Infinity
- conductor()[source]¶
Return the conductor of
self
.EXAMPLES:
sage: E(3).conductor() 3 sage: (E(5) + E(3)).conductor() 15
>>> from sage.all import * >>> E(Integer(3)).conductor() 3 >>> (E(Integer(5)) + E(Integer(3))).conductor() 15
- conjugate()[source]¶
Return the complex conjugate.
EXAMPLES:
sage: (E(7) + 3*E(7,2) - 5 * E(7,3)).conjugate() -5*E(7)^4 + 3*E(7)^5 + E(7)^6
>>> from sage.all import * >>> (E(Integer(7)) + Integer(3)*E(Integer(7),Integer(2)) - Integer(5) * E(Integer(7),Integer(3))).conjugate() -5*E(7)^4 + 3*E(7)^5 + E(7)^6
- denominator()[source]¶
Return the denominator of this element.
See also
EXAMPLES:
sage: a = E(5) + 1/2*E(5,2) + 1/3*E(5,3) sage: a E(5) + 1/2*E(5)^2 + 1/3*E(5)^3 sage: a.denominator() 6 sage: parent(_) Integer Ring
>>> from sage.all import * >>> a = E(Integer(5)) + Integer(1)/Integer(2)*E(Integer(5),Integer(2)) + Integer(1)/Integer(3)*E(Integer(5),Integer(3)) >>> a E(5) + 1/2*E(5)^2 + 1/3*E(5)^3 >>> a.denominator() 6 >>> parent(_) Integer Ring
- galois_conjugates(n=None)[source]¶
Return the Galois conjugates of
self
.INPUT:
n
– an optional integer. If provided, return the orbit of the Galois group of then
-th cyclotomic field over \(\QQ\). Note thatn
must be such that this element belongs to then
-th cyclotomic field (in other words, it must be a multiple of the conductor).
EXAMPLES:
sage: E(6).galois_conjugates() [-E(3)^2, -E(3)] sage: E(6).galois_conjugates() [-E(3)^2, -E(3)] sage: (E(9,2) - E(9,4)).galois_conjugates() [E(9)^2 - E(9)^4, E(9)^2 + E(9)^4 + E(9)^5, -E(9)^2 - E(9)^5 - E(9)^7, -E(9)^2 - E(9)^4 - E(9)^7, E(9)^4 + E(9)^5 + E(9)^7, -E(9)^5 + E(9)^7] sage: zeta = E(5) sage: zeta.galois_conjugates(5) [E(5), E(5)^2, E(5)^3, E(5)^4] sage: zeta.galois_conjugates(10) [E(5), E(5)^3, E(5)^2, E(5)^4] sage: zeta.galois_conjugates(15) [E(5), E(5)^2, E(5)^4, E(5)^2, E(5)^3, E(5), E(5)^3, E(5)^4] sage: zeta.galois_conjugates(17) Traceback (most recent call last): ... ValueError: n = 17 must be a multiple of the conductor (5)
>>> from sage.all import * >>> E(Integer(6)).galois_conjugates() [-E(3)^2, -E(3)] >>> E(Integer(6)).galois_conjugates() [-E(3)^2, -E(3)] >>> (E(Integer(9),Integer(2)) - E(Integer(9),Integer(4))).galois_conjugates() [E(9)^2 - E(9)^4, E(9)^2 + E(9)^4 + E(9)^5, -E(9)^2 - E(9)^5 - E(9)^7, -E(9)^2 - E(9)^4 - E(9)^7, E(9)^4 + E(9)^5 + E(9)^7, -E(9)^5 + E(9)^7] >>> zeta = E(Integer(5)) >>> zeta.galois_conjugates(Integer(5)) [E(5), E(5)^2, E(5)^3, E(5)^4] >>> zeta.galois_conjugates(Integer(10)) [E(5), E(5)^3, E(5)^2, E(5)^4] >>> zeta.galois_conjugates(Integer(15)) [E(5), E(5)^2, E(5)^4, E(5)^2, E(5)^3, E(5), E(5)^3, E(5)^4] >>> zeta.galois_conjugates(Integer(17)) Traceback (most recent call last): ... ValueError: n = 17 must be a multiple of the conductor (5)
- imag()[source]¶
Return the imaginary part of this element.
EXAMPLES:
sage: E(3).imag() -1/2*E(12)^7 + 1/2*E(12)^11 sage: E(5).imag() 1/2*E(20) - 1/2*E(20)^9 sage: a = E(5) - 2*E(3) sage: AA(a.imag()) == QQbar(a).imag() True
>>> from sage.all import * >>> E(Integer(3)).imag() -1/2*E(12)^7 + 1/2*E(12)^11 >>> E(Integer(5)).imag() 1/2*E(20) - 1/2*E(20)^9 >>> a = E(Integer(5)) - Integer(2)*E(Integer(3)) >>> AA(a.imag()) == QQbar(a).imag() True
- imag_part()[source]¶
Return the imaginary part of this element.
EXAMPLES:
sage: E(3).imag() -1/2*E(12)^7 + 1/2*E(12)^11 sage: E(5).imag() 1/2*E(20) - 1/2*E(20)^9 sage: a = E(5) - 2*E(3) sage: AA(a.imag()) == QQbar(a).imag() True
>>> from sage.all import * >>> E(Integer(3)).imag() -1/2*E(12)^7 + 1/2*E(12)^11 >>> E(Integer(5)).imag() 1/2*E(20) - 1/2*E(20)^9 >>> a = E(Integer(5)) - Integer(2)*E(Integer(3)) >>> AA(a.imag()) == QQbar(a).imag() True
- is_integral()[source]¶
Return whether
self
is an algebraic integer.This just wraps
IsIntegralCyclotomic
from GAP.See also
EXAMPLES:
sage: E(6).is_integral() True sage: (E(4)/2).is_integral() False
>>> from sage.all import * >>> E(Integer(6)).is_integral() True >>> (E(Integer(4))/Integer(2)).is_integral() False
- is_rational()[source]¶
Test whether this element is a rational number.
EXAMPLES:
sage: E(3).is_rational() False sage: (E(3) + E(3,2)).is_rational() True
>>> from sage.all import * >>> E(Integer(3)).is_rational() False >>> (E(Integer(3)) + E(Integer(3),Integer(2))).is_rational() True
- is_real()[source]¶
Test whether this element is real.
EXAMPLES:
sage: E(3).is_real() False sage: (E(3) + E(3,2)).is_real() True sage: a = E(3) - 2*E(7) sage: a.real_part().is_real() True sage: a.imag_part().is_real() True
>>> from sage.all import * >>> E(Integer(3)).is_real() False >>> (E(Integer(3)) + E(Integer(3),Integer(2))).is_real() True >>> a = E(Integer(3)) - Integer(2)*E(Integer(7)) >>> a.real_part().is_real() True >>> a.imag_part().is_real() True
- is_square()[source]¶
EXAMPLES:
sage: UCF = UniversalCyclotomicField() sage: UCF(5/2).is_square() True sage: UCF.zeta(7,3).is_square() True sage: (2 + UCF.zeta(3)).is_square() Traceback (most recent call last): ... NotImplementedError: is_square() not fully implemented for elements of Universal Cyclotomic Field
>>> from sage.all import * >>> UCF = UniversalCyclotomicField() >>> UCF(Integer(5)/Integer(2)).is_square() True >>> UCF.zeta(Integer(7),Integer(3)).is_square() True >>> (Integer(2) + UCF.zeta(Integer(3))).is_square() Traceback (most recent call last): ... NotImplementedError: is_square() not fully implemented for elements of Universal Cyclotomic Field
- minpoly(var='x')[source]¶
The minimal polynomial of
self
element over \(\QQ\).INPUT:
var
– (default:'x'
) the name of the variable to use
EXAMPLES:
sage: UCF.<E> = UniversalCyclotomicField() sage: UCF(4).minpoly() x - 4 sage: UCF(4).minpoly(var='y') y - 4 sage: E(3).minpoly() x^2 + x + 1 sage: E(3).minpoly(var='y') y^2 + y + 1
>>> from sage.all import * >>> UCF = UniversalCyclotomicField(names=('E',)); (E,) = UCF._first_ngens(1) >>> UCF(Integer(4)).minpoly() x - 4 >>> UCF(Integer(4)).minpoly(var='y') y - 4 >>> E(Integer(3)).minpoly() x^2 + x + 1 >>> E(Integer(3)).minpoly(var='y') y^2 + y + 1
Todo
Polynomials with libgap currently does not implement a
.sage()
method (see Issue #18266). It would be faster/safer to not use string to construct the polynomial.
- multiplicative_order()[source]¶
Return the multiplicative order.
EXAMPLES:
sage: E(5).multiplicative_order() 5 sage: (E(5) + E(12)).multiplicative_order() +Infinity sage: UniversalCyclotomicField().zero().multiplicative_order() Traceback (most recent call last): ... GAPError: Error, argument must be nonzero
>>> from sage.all import * >>> E(Integer(5)).multiplicative_order() 5 >>> (E(Integer(5)) + E(Integer(12))).multiplicative_order() +Infinity >>> UniversalCyclotomicField().zero().multiplicative_order() Traceback (most recent call last): ... GAPError: Error, argument must be nonzero
- norm_of_galois_extension()[source]¶
Return the norm as a Galois extension of \(\QQ\), which is given by the product of all galois_conjugates.
EXAMPLES:
sage: E(3).norm_of_galois_extension() 1 sage: E(6).norm_of_galois_extension() 1 sage: (E(2) + E(3)).norm_of_galois_extension() 3 sage: parent(_) Integer Ring
>>> from sage.all import * >>> E(Integer(3)).norm_of_galois_extension() 1 >>> E(Integer(6)).norm_of_galois_extension() 1 >>> (E(Integer(2)) + E(Integer(3))).norm_of_galois_extension() 3 >>> parent(_) Integer Ring
- real()[source]¶
Return the real part of this element.
EXAMPLES:
sage: E(3).real() -1/2 sage: E(5).real() 1/2*E(5) + 1/2*E(5)^4 sage: a = E(5) - 2*E(3) sage: AA(a.real()) == QQbar(a).real() True
>>> from sage.all import * >>> E(Integer(3)).real() -1/2 >>> E(Integer(5)).real() 1/2*E(5) + 1/2*E(5)^4 >>> a = E(Integer(5)) - Integer(2)*E(Integer(3)) >>> AA(a.real()) == QQbar(a).real() True
- real_part()[source]¶
Return the real part of this element.
EXAMPLES:
sage: E(3).real() -1/2 sage: E(5).real() 1/2*E(5) + 1/2*E(5)^4 sage: a = E(5) - 2*E(3) sage: AA(a.real()) == QQbar(a).real() True
>>> from sage.all import * >>> E(Integer(3)).real() -1/2 >>> E(Integer(5)).real() 1/2*E(5) + 1/2*E(5)^4 >>> a = E(Integer(5)) - Integer(2)*E(Integer(3)) >>> AA(a.real()) == QQbar(a).real() True
- sqrt(extend=True, all=False)[source]¶
Return a square root of
self
.With default options, the output is an element of the universal cyclotomic field when this element is expressed via a single root of unity (including rational numbers). Otherwise, return an algebraic number.
INPUT:
extend
– boolean (default:True
); ifTrue
, might return a square root in the algebraic closure of the rationals. IfFalse
, return a square root in the universal cyclotomic field or raises an error.all
– boolean (default:False
); ifTrue
, return a list of all square roots
EXAMPLES:
sage: UCF = UniversalCyclotomicField() sage: UCF(3).sqrt() E(12)^7 - E(12)^11 sage: (UCF(3).sqrt())**2 3 sage: r = UCF(-1400 / 143).sqrt() sage: r**2 -1400/143 sage: E(33).sqrt() -E(33)^17 sage: E(33).sqrt() ** 2 E(33) sage: (3 * E(5)).sqrt() -E(60)^11 + E(60)^31 sage: (3 * E(5)).sqrt() ** 2 3*E(5)
>>> from sage.all import * >>> UCF = UniversalCyclotomicField() >>> UCF(Integer(3)).sqrt() E(12)^7 - E(12)^11 >>> (UCF(Integer(3)).sqrt())**Integer(2) 3 >>> r = UCF(-Integer(1400) / Integer(143)).sqrt() >>> r**Integer(2) -1400/143 >>> E(Integer(33)).sqrt() -E(33)^17 >>> E(Integer(33)).sqrt() ** Integer(2) E(33) >>> (Integer(3) * E(Integer(5))).sqrt() -E(60)^11 + E(60)^31 >>> (Integer(3) * E(Integer(5))).sqrt() ** Integer(2) 3*E(5)
Setting
all=True
you obtain the two square roots in a list:sage: UCF(3).sqrt(all=True) [E(12)^7 - E(12)^11, -E(12)^7 + E(12)^11] sage: (1 + UCF.zeta(5)).sqrt(all=True) [1.209762576525833? + 0.3930756888787117?*I, -1.209762576525833? - 0.3930756888787117?*I]
>>> from sage.all import * >>> UCF(Integer(3)).sqrt(all=True) [E(12)^7 - E(12)^11, -E(12)^7 + E(12)^11] >>> (Integer(1) + UCF.zeta(Integer(5))).sqrt(all=True) [1.209762576525833? + 0.3930756888787117?*I, -1.209762576525833? - 0.3930756888787117?*I]
In the following situation, Sage is not (yet) able to compute a square root within the universal cyclotomic field:
sage: (E(5) + E(5, 2)).sqrt() 0.7476743906106103? + 1.029085513635746?*I sage: (E(5) + E(5, 2)).sqrt(extend=False) Traceback (most recent call last): ... NotImplementedError: sqrt() not fully implemented for elements of Universal Cyclotomic Field
>>> from sage.all import * >>> (E(Integer(5)) + E(Integer(5), Integer(2))).sqrt() 0.7476743906106103? + 1.029085513635746?*I >>> (E(Integer(5)) + E(Integer(5), Integer(2))).sqrt(extend=False) Traceback (most recent call last): ... NotImplementedError: sqrt() not fully implemented for elements of Universal Cyclotomic Field
- to_cyclotomic_field(R=None)[source]¶
Return this element as an element of a cyclotomic field.
EXAMPLES:
sage: UCF = UniversalCyclotomicField() sage: UCF.gen(3).to_cyclotomic_field() zeta3 sage: UCF.gen(3,2).to_cyclotomic_field() -zeta3 - 1 sage: CF = CyclotomicField(5) sage: CF(E(5)) # indirect doctest zeta5 sage: CF = CyclotomicField(7) sage: CF(E(5)) # indirect doctest Traceback (most recent call last): ... TypeError: cannot coerce zeta5 into Cyclotomic Field of order 7 and degree 6 sage: CF = CyclotomicField(10) sage: CF(E(5)) # indirect doctest zeta10^2
>>> from sage.all import * >>> UCF = UniversalCyclotomicField() >>> UCF.gen(Integer(3)).to_cyclotomic_field() zeta3 >>> UCF.gen(Integer(3),Integer(2)).to_cyclotomic_field() -zeta3 - 1 >>> CF = CyclotomicField(Integer(5)) >>> CF(E(Integer(5))) # indirect doctest zeta5 >>> CF = CyclotomicField(Integer(7)) >>> CF(E(Integer(5))) # indirect doctest Traceback (most recent call last): ... TypeError: cannot coerce zeta5 into Cyclotomic Field of order 7 and degree 6 >>> CF = CyclotomicField(Integer(10)) >>> CF(E(Integer(5))) # indirect doctest zeta10^2
Matrices are correctly dealt with:
sage: M = Matrix(UCF,2,[E(3),E(4),E(5),E(6)]); M [ E(3) E(4)] [ E(5) -E(3)^2] sage: Matrix(CyclotomicField(60),M) # indirect doctest [zeta60^10 - 1 zeta60^15] [ zeta60^12 zeta60^10]
>>> from sage.all import * >>> M = Matrix(UCF,Integer(2),[E(Integer(3)),E(Integer(4)),E(Integer(5)),E(Integer(6))]); M [ E(3) E(4)] [ E(5) -E(3)^2] >>> Matrix(CyclotomicField(Integer(60)),M) # indirect doctest [zeta60^10 - 1 zeta60^15] [ zeta60^12 zeta60^10]
Using a non-standard embedding:
sage: # needs sage.symbolic sage: CF = CyclotomicField(5, embedding=CC(exp(4*pi*i/5))) sage: x = E(5) sage: CC(x) 0.309016994374947 + 0.951056516295154*I sage: CC(CF(x)) 0.309016994374947 + 0.951056516295154*I
>>> from sage.all import * >>> # needs sage.symbolic >>> CF = CyclotomicField(Integer(5), embedding=CC(exp(Integer(4)*pi*i/Integer(5)))) >>> x = E(Integer(5)) >>> CC(x) 0.309016994374947 + 0.951056516295154*I >>> CC(CF(x)) 0.309016994374947 + 0.951056516295154*I
Test that the bug reported in Issue #19912 has been fixed:
sage: a = 1+E(4); a 1 + E(4) sage: a.to_cyclotomic_field() zeta4 + 1
>>> from sage.all import * >>> a = Integer(1)+E(Integer(4)); a 1 + E(4) >>> a.to_cyclotomic_field() zeta4 + 1
- sage.rings.universal_cyclotomic_field.late_import()[source]¶
This function avoids importing libgap on startup. It is called once through the constructor of
UniversalCyclotomicField
.EXAMPLES:
sage: import sage.rings.universal_cyclotomic_field as ucf sage: _ = UniversalCyclotomicField() # indirect doctest sage: ucf.libgap is None # indirect doctest False
>>> from sage.all import * >>> import sage.rings.universal_cyclotomic_field as ucf >>> _ = UniversalCyclotomicField() # indirect doctest >>> ucf.libgap is None # indirect doctest False