Morphisms between number fields¶
This module provides classes to represent ring homomorphisms between number fields (i.e. field embeddings).
- class sage.rings.number_field.morphism.NumberFieldHomomorphism_im_gens[source]¶
Bases:
RingHomomorphism_im_gens
- preimage(y)[source]¶
Compute a preimage of \(y\) in the domain, provided one exists. Raises a
ValueError
if \(y\) has no preimage.INPUT:
y
– an element of the codomain ofself
OUTPUT:
Returns the preimage of \(y\) in the domain, if one exists. Raises a
ValueError
if \(y\) has no preimage.EXAMPLES:
sage: x = polygen(ZZ, 'x') sage: K.<a> = NumberField(x^2 - 7) sage: L.<b> = NumberField(x^4 - 7) sage: f = K.embeddings(L)[0] sage: f.preimage(3*b^2 - 12/7) 3*a - 12/7 sage: f.preimage(b) Traceback (most recent call last): ... ValueError: Element 'b' is not in the image of this homomorphism.
>>> from sage.all import * >>> x = polygen(ZZ, 'x') >>> K = NumberField(x**Integer(2) - Integer(7), names=('a',)); (a,) = K._first_ngens(1) >>> L = NumberField(x**Integer(4) - Integer(7), names=('b',)); (b,) = L._first_ngens(1) >>> f = K.embeddings(L)[Integer(0)] >>> f.preimage(Integer(3)*b**Integer(2) - Integer(12)/Integer(7)) 3*a - 12/7 >>> f.preimage(b) Traceback (most recent call last): ... ValueError: Element 'b' is not in the image of this homomorphism.
sage: # needs sage.libs.linbox sage: F.<b> = QuadraticField(23) sage: G.<a> = F.extension(x^3 + 5) sage: f = F.embeddings(G)[0] sage: f.preimage(a^3 + 2*b + 3) 2*b - 2
>>> from sage.all import * >>> # needs sage.libs.linbox >>> F = QuadraticField(Integer(23), names=('b',)); (b,) = F._first_ngens(1) >>> G = F.extension(x**Integer(3) + Integer(5), names=('a',)); (a,) = G._first_ngens(1) >>> f = F.embeddings(G)[Integer(0)] >>> f.preimage(a**Integer(3) + Integer(2)*b + Integer(3)) 2*b - 2
- class sage.rings.number_field.morphism.RelativeNumberFieldHomomorphism_from_abs(parent, abs_hom)[source]¶
Bases:
RingHomomorphism
A homomorphism from a relative number field to some other ring, stored as a homomorphism from the corresponding absolute field.
- abs_hom()[source]¶
Return the corresponding homomorphism from the absolute number field.
EXAMPLES:
sage: x = polygen(ZZ, 'x') sage: K.<a, b> = NumberField([x^3 + 2, x^2 + x + 1]) sage: K.hom(a, K).abs_hom() Ring morphism: From: Number Field in a with defining polynomial x^6 - 3*x^5 + 6*x^4 - 3*x^3 - 9*x + 9 To: Number Field in a with defining polynomial x^3 + 2 over its base field Defn: a |--> a - b
>>> from sage.all import * >>> x = polygen(ZZ, 'x') >>> K = NumberField([x**Integer(3) + Integer(2), x**Integer(2) + x + Integer(1)], names=('a', 'b',)); (a, b,) = K._first_ngens(2) >>> K.hom(a, K).abs_hom() Ring morphism: From: Number Field in a with defining polynomial x^6 - 3*x^5 + 6*x^4 - 3*x^3 - 9*x + 9 To: Number Field in a with defining polynomial x^3 + 2 over its base field Defn: a |--> a - b
- im_gens()[source]¶
Return the images of the generators under this map.
EXAMPLES:
sage: x = polygen(ZZ, 'x') sage: K.<a, b> = NumberField([x^3 + 2, x^2 + x + 1]) sage: K.hom(a, K).im_gens() [a, b]
>>> from sage.all import * >>> x = polygen(ZZ, 'x') >>> K = NumberField([x**Integer(3) + Integer(2), x**Integer(2) + x + Integer(1)], names=('a', 'b',)); (a, b,) = K._first_ngens(2) >>> K.hom(a, K).im_gens() [a, b]