Projective plane conics over a number field#
AUTHORS:
Marco Streng (2010-07-20)
- class sage.schemes.plane_conics.con_number_field.ProjectiveConic_number_field(A, f)[source]#
Bases:
ProjectiveConic_field
Create a projective plane conic curve over a number field. See
Conic
for full documentation.EXAMPLES:
sage: K.<a> = NumberField(x^3 - 2, 'a') sage: P.<X, Y, Z> = K[] sage: Conic(X^2 + Y^2 - a*Z^2) Projective Conic Curve over Number Field in a with defining polynomial x^3 - 2 defined by X^2 + Y^2 + (-a)*Z^2
>>> from sage.all import * >>> K = NumberField(x**Integer(3) - Integer(2), 'a', names=('a',)); (a,) = K._first_ngens(1) >>> P = K['X, Y, Z']; (X, Y, Z,) = P._first_ngens(3) >>> Conic(X**Integer(2) + Y**Integer(2) - a*Z**Integer(2)) Projective Conic Curve over Number Field in a with defining polynomial x^3 - 2 defined by X^2 + Y^2 + (-a)*Z^2
- has_rational_point(point=False, obstruction=False, algorithm='default', read_cache=True)[source]#
Return
True
if and only ifself
has a point defined over its base field \(B\).If
point
andobstruction
are both False (default), then the output is a booleanout
saying whetherself
has a rational point.If
point
orobstruction
is True, then the output is a pair(out, S)
, whereout
is as above and:if
point
is True andself
has a rational point, thenS
is a rational point,if
obstruction
is True,self
has no rational point, thenS
is a prime or infinite place of \(B\) such that no rational point exists over the completion atS
.
Points and obstructions are cached whenever they are found. Cached information is used for the output if available, but only if
read_cache
is True.ALGORITHM:
The parameter
algorithm
specifies the algorithm to be used:'rnfisnorm'
– Use PARI’srnfisnorm
(cannot be combined withobstruction = True
)'local'
– Check if a local solution exists for all primes and infinite places of \(B\) and apply the Hasse principle. (Cannot be combined withpoint = True
.)'default'
– Use algorithm'rnfisnorm'
first. Then, if no point exists and obstructions are requested, use algorithm'local'
to find an obstruction.'magma'
(requires Magma to be installed) – delegates the task to the Magma computer algebra system.
EXAMPLES:
An example over \(\QQ\)
sage: C = Conic(QQ, [1, 113922743, -310146482690273725409]) sage: C.has_rational_point(point=True) (True, (-76842858034579/5424 : -5316144401/5424 : 1)) sage: C.has_rational_point(algorithm='local', read_cache=False) True
>>> from sage.all import * >>> C = Conic(QQ, [Integer(1), Integer(113922743), -Integer(310146482690273725409)]) >>> C.has_rational_point(point=True) (True, (-76842858034579/5424 : -5316144401/5424 : 1)) >>> C.has_rational_point(algorithm='local', read_cache=False) True
Examples over number fields:
sage: K.<i> = QuadraticField(-1) sage: C = Conic(K, [1, 3, -5]) sage: C.has_rational_point(point=True, obstruction=True) (False, Fractional ideal (-i - 2)) sage: C.has_rational_point(algorithm="rnfisnorm") False sage: C.has_rational_point(algorithm="rnfisnorm", obstruction=True, ....: read_cache=False) Traceback (most recent call last): ... ValueError: Algorithm rnfisnorm cannot be combined with obstruction = True in has_rational_point sage: P.<x> = QQ[] sage: L.<b> = NumberField(x^3 - 5) sage: C = Conic(L, [1, 2, -3]) sage: C.has_rational_point(point=True, algorithm='rnfisnorm') (True, (5/3 : -1/3 : 1)) sage: K.<a> = NumberField(x^4+2) sage: Conic(QQ, [4,5,6]).has_rational_point() False sage: Conic(K, [4,5,6]).has_rational_point() True sage: Conic(K, [4,5,6]).has_rational_point(algorithm='magma', # optional - magma ....: read_cache=False) True sage: P.<a> = QuadraticField(2) sage: C = Conic(P, [1,1,1]) sage: C.has_rational_point() False sage: C.has_rational_point(point=True) (False, None) sage: C.has_rational_point(obstruction=True) (False, Ring morphism: From: Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095? To: Algebraic Real Field Defn: a |--> -1.414213562373095?) sage: C.has_rational_point(point=True, obstruction=True) (False, Ring morphism: From: Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095? To: Algebraic Real Field Defn: a |--> -1.414213562373095?)
>>> from sage.all import * >>> K = QuadraticField(-Integer(1), names=('i',)); (i,) = K._first_ngens(1) >>> C = Conic(K, [Integer(1), Integer(3), -Integer(5)]) >>> C.has_rational_point(point=True, obstruction=True) (False, Fractional ideal (-i - 2)) >>> C.has_rational_point(algorithm="rnfisnorm") False >>> C.has_rational_point(algorithm="rnfisnorm", obstruction=True, ... read_cache=False) Traceback (most recent call last): ... ValueError: Algorithm rnfisnorm cannot be combined with obstruction = True in has_rational_point >>> P = QQ['x']; (x,) = P._first_ngens(1) >>> L = NumberField(x**Integer(3) - Integer(5), names=('b',)); (b,) = L._first_ngens(1) >>> C = Conic(L, [Integer(1), Integer(2), -Integer(3)]) >>> C.has_rational_point(point=True, algorithm='rnfisnorm') (True, (5/3 : -1/3 : 1)) >>> K = NumberField(x**Integer(4)+Integer(2), names=('a',)); (a,) = K._first_ngens(1) >>> Conic(QQ, [Integer(4),Integer(5),Integer(6)]).has_rational_point() False >>> Conic(K, [Integer(4),Integer(5),Integer(6)]).has_rational_point() True >>> Conic(K, [Integer(4),Integer(5),Integer(6)]).has_rational_point(algorithm='magma', # optional - magma ... read_cache=False) True >>> P = QuadraticField(Integer(2), names=('a',)); (a,) = P._first_ngens(1) >>> C = Conic(P, [Integer(1),Integer(1),Integer(1)]) >>> C.has_rational_point() False >>> C.has_rational_point(point=True) (False, None) >>> C.has_rational_point(obstruction=True) (False, Ring morphism: From: Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095? To: Algebraic Real Field Defn: a |--> -1.414213562373095?) >>> C.has_rational_point(point=True, obstruction=True) (False, Ring morphism: From: Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095? To: Algebraic Real Field Defn: a |--> -1.414213562373095?)
- is_locally_solvable(p)[source]#
Return
True
if and only ifself
has a solution over the completion of the base field \(B\) ofself
atp
. Herep
is a finite prime or infinite place of \(B\).EXAMPLES:
sage: P.<x> = QQ[] sage: K.<a> = NumberField(x^3 + 5) sage: C = Conic(K, [1, 2, 3 - a]) sage: [p1, p2] = K.places() sage: C.is_locally_solvable(p1) False sage: C.is_locally_solvable(p2) True sage: f = (2*K).factor() sage: C.is_locally_solvable(f[0][0]) True sage: C.is_locally_solvable(f[1][0]) False
>>> from sage.all import * >>> P = QQ['x']; (x,) = P._first_ngens(1) >>> K = NumberField(x**Integer(3) + Integer(5), names=('a',)); (a,) = K._first_ngens(1) >>> C = Conic(K, [Integer(1), Integer(2), Integer(3) - a]) >>> [p1, p2] = K.places() >>> C.is_locally_solvable(p1) False >>> C.is_locally_solvable(p2) True >>> f = (Integer(2)*K).factor() >>> C.is_locally_solvable(f[Integer(0)][Integer(0)]) True >>> C.is_locally_solvable(f[Integer(1)][Integer(0)]) False
- local_obstructions(finite=True, infinite=True, read_cache=True)[source]#
Return the sequence of finite primes and/or infinite places such that
self
is locally solvable at those primes and places.If the base field is \(\QQ\), then the infinite place is denoted \(-1\).
The parameters
finite
andinfinite
(both True by default) are used to specify whether to look at finite and/or infinite places. Note thatfinite = True
involves factorization of the determinant ofself
, hence may be slow.Local obstructions are cached. The parameter
read_cache
specifies whether to look at the cache before computing anything.EXAMPLES:
sage: K.<i> = QuadraticField(-1) sage: Conic(K, [1, 2, 3]).local_obstructions() [] sage: L.<a> = QuadraticField(5) sage: Conic(L, [1, 2, 3]).local_obstructions() [Ring morphism: From: Number Field in a with defining polynomial x^2 - 5 with a = 2.236067977499790? To: Algebraic Real Field Defn: a |--> -2.236067977499790?, Ring morphism: From: Number Field in a with defining polynomial x^2 - 5 with a = 2.236067977499790? To: Algebraic Real Field Defn: a |--> 2.236067977499790?]
>>> from sage.all import * >>> K = QuadraticField(-Integer(1), names=('i',)); (i,) = K._first_ngens(1) >>> Conic(K, [Integer(1), Integer(2), Integer(3)]).local_obstructions() [] >>> L = QuadraticField(Integer(5), names=('a',)); (a,) = L._first_ngens(1) >>> Conic(L, [Integer(1), Integer(2), Integer(3)]).local_obstructions() [Ring morphism: From: Number Field in a with defining polynomial x^2 - 5 with a = 2.236067977499790? To: Algebraic Real Field Defn: a |--> -2.236067977499790?, Ring morphism: From: Number Field in a with defining polynomial x^2 - 5 with a = 2.236067977499790? To: Algebraic Real Field Defn: a |--> 2.236067977499790?]