Projective curves#

Projective curves in Sage are curves in a projective space or a projective plane.

EXAMPLES:

We can construct curves in either a projective plane:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([y*z^2 - x^3], P); C
Projective Plane Curve over Rational Field defined by -x^3 + y*z^2


or in higher dimensional projective spaces:

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([y*w^3 - x^4, z*w^3 - x^4], P); C
Projective Curve over Rational Field defined by -x^4 + y*w^3, -x^4 + z*w^3


Integral projective curves over finite fields#

If the curve is defined over a finite field and integral, that is reduced and irreducible, its function field is tightly coupled with the curve so that advanced computations based on Sage’s global function field machinery are available.

EXAMPLES:

sage: k = GF(2)                                                                     # optional - sage.rings.finite_rings
sage: P.<x,y,z> = ProjectiveSpace(k, 2)                                             # optional - sage.rings.finite_rings
sage: C = Curve(x^2*z - y^3, P)                                                     # optional - sage.rings.finite_rings
sage: C.genus()                                                                     # optional - sage.rings.finite_rings
0
sage: C.function_field()                                                            # optional - sage.rings.finite_rings
Function field in z defined by z + y^3


Closed points of arbitrary degree can be computed:

sage: C.closed_points()                                                             # optional - sage.rings.finite_rings
[Point (x, y), Point (y, z), Point (x + z, y + z)]
sage: C.closed_points(2)                                                            # optional - sage.rings.finite_rings
[Point (y^2 + y*z + z^2, x + z)]
sage: C.closed_points(3)                                                            # optional - sage.rings.finite_rings
[Point (y^3 + y^2*z + z^3, x + y + z),
Point (x^2 + y*z + z^2, x*y + x*z + y*z, y^2 + x*z + y*z + z^2)]


All singular closed points can be found:

sage: C.singular_closed_points()                                                    # optional - sage.rings.finite_rings
[Point (x, y)]
sage: p = _[0]                                                                      # optional - sage.rings.finite_rings
sage: p.places()  # a unibranch singularity, that is, a cusp                        # optional - sage.rings.finite_rings
[Place (1/y)]
sage: pls = _[0]                                                                    # optional - sage.rings.finite_rings
sage: C.place_to_closed_point(pls)                                                  # optional - sage.rings.finite_rings
Point (x, y)


It is easy to transit to and from the function field of the curve:

sage: fx = C(x/z)                                                                   # optional - sage.rings.finite_rings
sage: fy = C(y/z)                                                                   # optional - sage.rings.finite_rings
sage: fx^2 - fy^3                                                                   # optional - sage.rings.finite_rings
0
sage: fx.divisor()                                                                  # optional - sage.rings.finite_rings
3*Place (1/y)
- 3*Place (y)
sage: p, = fx.poles()                                                               # optional - sage.rings.finite_rings
sage: p                                                                             # optional - sage.rings.finite_rings
Place (y)
sage: C.place_to_closed_point(p)                                                    # optional - sage.rings.finite_rings
Point (y, z)
sage: _.rational_point()                                                            # optional - sage.rings.finite_rings
(1 : 0 : 0)
sage: _.closed_point()                                                              # optional - sage.rings.finite_rings
Point (y, z)
sage: _.place()                                                                     # optional - sage.rings.finite_rings
Place (y)


Integral projective curves over $$\QQ$$#

An integral curve over $$\QQ$$ is also equipped with the function field. Unlike over finite fields, it is not possible to enumerate closed points.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x^2*z^2 - x^4 - y^4, P)
sage: C.singular_closed_points()
[Point (x, y)]
sage: p, = _
sage: p.places()
[Place (1/y, 1/y^2*z - 1), Place (1/y, 1/y^2*z + 1)]
sage: fy = C.function(y/z)
sage: fy.divisor()
Place (1/y, 1/y^2*z - 1)
+ Place (1/y, 1/y^2*z + 1)
+ Place (y, z - 1)
+ Place (y, z + 1)
- Place (y^4 + 1, z)
sage: supp = _.support()
sage: pl = supp[0]
sage: C.place_to_closed_point(pl)
Point (x, y)
sage: pl = supp[1]
sage: C.place_to_closed_point(pl)
Point (x, y)
sage: _.rational_point()
(0 : 0 : 1)
sage: _ in C
True


AUTHORS:

• William Stein (2005-11-13)

• David Joyner (2005-11-13)

• David Kohel (2006-01)

• Moritz Minzlaff (2010-11)

• Grayson Jorgenson (2016-08)

• Kwankyu Lee (2019-05): added integral projective curves

sage.schemes.curves.projective_curve.Hasse_bounds(q, genus=1)#

Return the Hasse-Weil bounds for the cardinality of a nonsingular curve defined over $$\GF{q}$$ of given genus.

INPUT:

• q (int) – a prime power

• genus (int, default 1) – a non-negative integer,

OUTPUT: A tuple. The Hasse bounds (lb,ub) for the cardinality of a curve of genus genus defined over $$\GF{q}$$.

EXAMPLES:

sage: Hasse_bounds(2)
(1, 5)
sage: Hasse_bounds(next_prime(10^30))
(999999999999998000000000000058, 1000000000000002000000000000058)

class sage.schemes.curves.projective_curve.IntegralProjectiveCurve(A, f)#

Integral projective curve.

coordinate_functions(i=None)#

Return the coordinate functions for the i-th affine patch.

If i is None, return the homogeneous coordinate functions.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(GF(4), 2)                                 # optional - sage.rings.finite_rings
sage: C = Curve(x^5 + y^5 + x*y*z^3 + z^5)                                  # optional - sage.rings.finite_rings
sage: C.coordinate_functions(0)                                             # optional - sage.rings.finite_rings
(y, z)
sage: C.coordinate_functions(1)                                             # optional - sage.rings.finite_rings
(1/y, 1/y*z)

function(f)#

Return the function field element coerced from x.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(GF(4), 2)                                 # optional - sage.rings.finite_rings
sage: C = Curve(x^5 + y^5 + x*y*z^3 + z^5)                                  # optional - sage.rings.finite_rings
sage: f = C.function(x/y); f                                                # optional - sage.rings.finite_rings
1/y
sage: f.divisor()                                                           # optional - sage.rings.finite_rings
Place (1/y, 1/y^2*z^2 + z2/y*z + 1)
+ Place (1/y, 1/y^2*z^2 + ((z2 + 1)/y)*z + 1)
+ Place (1/y, 1/y*z + 1)
- Place (y, z^2 + z2*z + 1)
- Place (y, z^2 + (z2 + 1)*z + 1)
- Place (y, z + 1)

function_field()#

Return the function field of this curve.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x^2 + y^2 + z^2, P)
sage: C.function_field()
Function field in z defined by z^2 + y^2 + 1

sage: P.<x,y,z> = ProjectiveSpace(GF(4), 2)                                 # optional - sage.rings.finite_rings
sage: C = Curve(x^5 + y^5 + x*y*z^3 + z^5)                                  # optional - sage.rings.finite_rings
sage: C.function_field()                                                    # optional - sage.rings.finite_rings
Function field in z defined by z^5 + y*z^3 + y^5 + 1

place_to_closed_point(place)#

Return the closed point at the place.

INPUT:

• place – a place of the function field of the curve

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)                                 # optional - sage.rings.finite_rings
sage: C = Curve(y^2*z^7 - x^9 - x*z^8)                                      # optional - sage.rings.finite_rings
sage: pls = C.places()                                                      # optional - sage.rings.finite_rings
sage: C.place_to_closed_point(pls[-1])                                      # optional - sage.rings.finite_rings
Point (x - 2*z, y - 2*z)
sage: pls2 = C.places(2)                                                    # optional - sage.rings.finite_rings
sage: C.place_to_closed_point(pls2[0])                                      # optional - sage.rings.finite_rings
Point (y^2 + y*z + z^2, x + y)

places_on(point)#

Return the places on the closed point.

INPUT:

• point – a closed point of the curve

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x*y*z^4 - x^6 - y^6)
sage: C.singular_closed_points()
[Point (x, y)]
sage: p, = _
sage: C.places_on(p)
[Place (1/y, 1/y^2*z, 1/y^3*z^2, 1/y^4*z^3),
Place (y, y*z, y*z^2, y*z^3)]
sage: pl1, pl2 =_
sage: C.place_to_closed_point(pl1)
Point (x, y)
sage: C.place_to_closed_point(pl2)
Point (x, y)

sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)                                 # optional - sage.rings.finite_rings
sage: C = Curve(x^2*z - y^3)                                                # optional - sage.rings.finite_rings
sage: [C.places_on(p) for p in C.closed_points()]                           # optional - sage.rings.finite_rings
[[Place (1/y)],
[Place (y)],
[Place (y + 1)],
[Place (y + 2)],
[Place (y + 3)],
[Place (y + 4)]]

singular_closed_points()#

Return the singular closed points of the curve.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(y^2*z - x^3, P)
sage: C.singular_closed_points()
[Point (x, y)]

sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)                                 # optional - sage.rings.finite_rings
sage: C = Curve(y^2*z^7 - x^9 - x*z^8)                                      # optional - sage.rings.finite_rings
sage: C.singular_closed_points()                                            # optional - sage.rings.finite_rings
[Point (x, z)]

class sage.schemes.curves.projective_curve.IntegralProjectiveCurve_finite_field(A, f)#

Integral projective curve over a finite field.

INPUT:

• A – an ambient projective space

• f – homogeneous polynomials defining the curve

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)                                     # optional - sage.rings.finite_rings
sage: C = Curve(y^2*z^7 - x^9 - x*z^8)                                          # optional - sage.rings.finite_rings
sage: C.function_field()                                                        # optional - sage.rings.finite_rings
Function field in z defined by z^8 + 4*y^2*z^7 + 1
sage: C.closed_points()                                                         # optional - sage.rings.finite_rings
[Point (x, z),
Point (x, y),
Point (x - 2*z, y + 2*z),
Point (x + 2*z, y + z),
Point (x + 2*z, y - z),
Point (x - 2*z, y - 2*z)]

L_polynomial(name='t')#

Return the L-polynomial of this possibly singular curve.

INPUT:

• name – (default: t) name of the variable of the polynomial

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(3), 2)                                       # optional - sage.rings.finite_rings
sage: C = Curve(y^2 - x^5 - x^4 - 2*x^3 - 2*x - 2)                          # optional - sage.rings.finite_rings
sage: Cbar = C.projective_closure()                                         # optional - sage.rings.finite_rings
sage: Cbar.L_polynomial()                                                   # optional - sage.rings.finite_rings
9*t^4 - 3*t^3 + t^2 - t + 1

closed_points(degree=1)#

Return a list of closed points of degree of the curve.

INPUT:

• degree – a positive integer

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(9),2)                                        # optional - sage.rings.finite_rings
sage: C = Curve(y^2 - x^5 - x^4 - 2*x^3 - 2*x-2)                            # optional - sage.rings.finite_rings
sage: Cp = C.projective_closure()                                           # optional - sage.rings.finite_rings
sage: Cp.closed_points()                                                    # optional - sage.rings.finite_rings
[Point (x0, x1),
Point (x0 + (-z2 - 1)*x2, x1),
Point (x0 + (z2 + 1)*x2, x1),
Point (x0 + z2*x2, x1 + (z2 - 1)*x2),
Point (x0 + (-z2)*x2, x1 + (-z2 + 1)*x2),
Point (x0 + (-z2 - 1)*x2, x1 + (-z2 - 1)*x2),
Point (x0 + (z2 + 1)*x2, x1 + (z2 + 1)*x2),
Point (x0 + (z2 - 1)*x2, x1 + z2*x2),
Point (x0 + (-z2 + 1)*x2, x1 + (-z2)*x2),
Point (x0 + x2, x1 - x2),
Point (x0 - x2, x1 + x2)]

number_of_rational_points(r=1)#

Return the number of rational points of the curve with constant field extended by degree r.

INPUT:

• r – positive integer (default: $$1$$)

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(3), 2)                                       # optional - sage.rings.finite_rings
sage: C = Curve(y^2 - x^5 - x^4 - 2*x^3 - 2*x - 2)                          # optional - sage.rings.finite_rings
sage: Cbar = C.projective_closure()                                         # optional - sage.rings.finite_rings
sage: Cbar.number_of_rational_points(3)                                     # optional - sage.rings.finite_rings
21
sage: D = Cbar.change_ring(Cbar.base_ring().extension(3))                   # optional - sage.rings.finite_rings
sage: D.base_ring()                                                         # optional - sage.rings.finite_rings
Finite Field in z3 of size 3^3
sage: len(D.closed_points())                                                # optional - sage.rings.finite_rings
21

places(degree=1)#

Return all places on the curve of the degree.

INPUT:

• degree – positive integer

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)                                 # optional - sage.rings.finite_rings
sage: C = Curve(x^2*z - y^3)                                                # optional - sage.rings.finite_rings
sage: C.places()                                                            # optional - sage.rings.finite_rings
[Place (1/y),
Place (y),
Place (y + 1),
Place (y + 2),
Place (y + 3),
Place (y + 4)]
sage: C.places(2)                                                           # optional - sage.rings.finite_rings
[Place (y^2 + 2),
Place (y^2 + 3),
Place (y^2 + y + 1),
Place (y^2 + y + 2),
Place (y^2 + 2*y + 3),
Place (y^2 + 2*y + 4),
Place (y^2 + 3*y + 3),
Place (y^2 + 3*y + 4),
Place (y^2 + 4*y + 1),
Place (y^2 + 4*y + 2)]

class sage.schemes.curves.projective_curve.IntegralProjectivePlaneCurve(A, f)#
class sage.schemes.curves.projective_curve.IntegralProjectivePlaneCurve_finite_field(A, f)#

Integral projective plane curve over a finite field.

INPUT:

• A – ambient projective plane

• f – a homogeneous equation that defines the curve

EXAMPLES:

sage: A.<x,y> = AffineSpace(GF(9), 2)                                           # optional - sage.rings.finite_rings
sage: C = Curve(y^2 - x^5 - x^4 - 2*x^3 - 2*x - 2)                              # optional - sage.rings.finite_rings
sage: Cb = C.projective_closure()                                               # optional - sage.rings.finite_rings
sage: Cb.singular_closed_points()                                               # optional - sage.rings.finite_rings
[Point (x0, x1)]
sage: Cb.function_field()                                                       # optional - sage.rings.finite_rings
Function field in y defined by y^2 + 2*x^5 + 2*x^4 + x^3 + x + 1

class sage.schemes.curves.projective_curve.ProjectiveCurve(A, X)#

Curves in projective spaces.

INPUT:

• A – ambient projective space

• X – list of multivariate polynomials; defining equations of the curve

EXAMPLES:

sage: P.<x,y,z,w,u> = ProjectiveSpace(GF(7), 4)                                 # optional - sage.rings.finite_rings
sage: C = Curve([y*u^2 - x^3, z*u^2 - x^3, w*u^2 - x^3, y^3 - x^3], P); C       # optional - sage.rings.finite_rings
Projective Curve over Finite Field of size 7 defined
by -x^3 + y*u^2, -x^3 + z*u^2, -x^3 + w*u^2, -x^3 + y^3

sage: K.<u> = CyclotomicField(11)                                               # optional - sage.rings.number_field
sage: P.<x,y,z,w> = ProjectiveSpace(K, 3)                                       # optional - sage.rings.number_field
sage: C = Curve([y*w - u*z^2 - x^2, x*w - 3*u^2*z*w], P); C                     # optional - sage.rings.number_field
Projective Curve over Cyclotomic Field of order 11 and degree 10 defined
by -x^2 + (-u)*z^2 + y*w, x*w + (-3*u^2)*z*w

affine_patch(i, AA=None)#

Return the $$i$$-th affine patch of this projective curve.

INPUT:

• i – affine coordinate chart of the projective ambient space of this curve to compute affine patch with respect to

• AA – (default: None) ambient affine space, this is constructed if it is not given

OUTPUT: A curve in affine space.

EXAMPLES:

sage: P.<x,y,z,w> = ProjectiveSpace(CC, 3)
sage: C = Curve([y*z - x^2, w^2 - x*y], P)
sage: C.affine_patch(0)
Affine Curve over Complex Field with 53 bits of precision defined
by y*z - 1.00000000000000, w^2 - y

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x^3 - x^2*y + y^3 - x^2*z, P)
sage: C.affine_patch(1)
Affine Plane Curve over Rational Field defined by x^3 - x^2*z - x^2 + 1

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: P.<u,v,w> = ProjectiveSpace(QQ, 2)
sage: C = Curve([u^2 - v^2], P)
sage: C.affine_patch(1, A).ambient_space() == A
True

plane_projection(PP=None)#

Return a projection of this curve into a projective plane.

INPUT:

• PP – (default: None) the projective plane the projected curve will be defined in. This space must be defined over the same base field as this curve, and must have dimension two. This space is constructed if not specified.

OUTPUT: A tuple of

• a scheme morphism from this curve into a projective plane

• the projective curve that is the image of that morphism

EXAMPLES:

sage: P.<x,y,z,w,u,v> = ProjectiveSpace(QQ, 5)
sage: C = P.curve([x*u - z*v, w - y, w*y - x^2, y^3*u*2*z - w^4*w])
sage: L.<a,b,c> = ProjectiveSpace(QQ, 2)
sage: proj1 = C.plane_projection(PP=L)
sage: proj1
(Scheme morphism:
From: Projective Curve over Rational Field
defined by x*u - z*v, -y + w, -x^2 + y*w, -w^5 + 2*y^3*z*u
To:   Projective Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x : y : z : w : u : v) to
(x : -z + u : -z + v),
Projective Plane Curve over Rational Field defined by a^8 + 6*a^7*b +
4*a^5*b^3 - 4*a^7*c - 2*a^6*b*c - 4*a^5*b^2*c + 2*a^6*c^2)
sage: proj1[1].ambient_space() is L
True
sage: proj2 = C.projection()
sage: proj2[1].ambient_space() is L
False

sage: P.<x,y,z,w,u> = ProjectiveSpace(GF(7), 4)                             # optional - sage.rings.finite_rings
sage: C = P.curve([x^2 - 6*y^2, w*z*u - y^3 + 4*y^2*z, u^2 - x^2])          # optional - sage.rings.finite_rings
sage: C.plane_projection()                                                  # optional - sage.rings.finite_rings
(Scheme morphism:
From: Projective Curve over Finite Field of size 7
defined by x^2 + y^2, -y^3 - 3*y^2*z + z*w*u, -x^2 + u^2
To:   Projective Space of dimension 2 over Finite Field of size 7
Defn: Defined on coordinates by sending (x : y : z : w : u) to
(x : z : -y + w),
Projective Plane Curve over Finite Field of size 7
defined by x0^10 + 2*x0^8*x1^2 + 2*x0^6*x1^4 - 3*x0^6*x1^3*x2
+ 2*x0^6*x1^2*x2^2 - 2*x0^4*x1^4*x2^2 + x0^2*x1^4*x2^4)

sage: P.<x,y,z> = ProjectiveSpace(GF(17), 2)                                # optional - sage.rings.finite_rings
sage: C = P.curve(x^2 - y*z - z^2)                                          # optional - sage.rings.finite_rings
sage: C.plane_projection()                                                  # optional - sage.rings.finite_rings
Traceback (most recent call last):
...
TypeError: this curve is already a plane curve

projection(P=None, PS=None)#

Return a projection of this curve into projective space of dimension one less than the dimension of the ambient space of this curve.

This curve must not already be a plane curve. Over finite fields, if this curve contains all points in its ambient space, then an error will be returned.

INPUT:

• P – (default: None) a point not on this curve that will be used to define the projection map; this is constructed if not specified.

• PS – (default: None) the projective space the projected curve will be defined in. This space must be defined over the same base ring as this curve, and must have dimension one less than that of the ambient space of this curve. This space will be constructed if not specified.

OUTPUT: A tuple of

• a scheme morphism from this curve into a projective space of dimension one less than that of the ambient space of this curve

• the projective curve that is the image of that morphism

EXAMPLES:

sage: K.<a> = CyclotomicField(3)                                            # optional - sage.rings.number_field
sage: P.<x,y,z,w> = ProjectiveSpace(K, 3)                                   # optional - sage.rings.number_field
sage: C = Curve([y*w - x^2, z*w^2 - a*x^3], P)                              # optional - sage.rings.number_field
sage: L.<a,b,c> = ProjectiveSpace(K, 2)                                     # optional - sage.rings.number_field
sage: proj1 = C.projection(PS=L)                                            # optional - sage.rings.number_field
sage: proj1                                                                 # optional - sage.rings.number_field
(Scheme morphism:
From: Projective Curve over Cyclotomic Field of order 3 and degree 2
defined by -x^2 + y*w, (-a)*x^3 + z*w^2
To:   Projective Space of dimension 2
over Cyclotomic Field of order 3 and degree 2
Defn: Defined on coordinates by sending (x : y : z : w) to
(x : y : -z + w),
Projective Plane Curve over Cyclotomic Field of order 3 and degree 2
defined by a^6 + (-a)*a^3*b^3 - a^4*b*c)
sage: proj1[1].ambient_space() is L
True
sage: proj2 = C.projection()
sage: proj2[1].ambient_space() is L
False

sage: P.<x,y,z,w,a,b,c> = ProjectiveSpace(QQ, 6)
sage: C = Curve([y - x, z - a - b, w^2 - c^2, z - x - a, x^2 - w*z], P)
sage: C.projection()
(Scheme morphism:
From: Projective Curve over Rational Field
defined by -x + y, z - a - b, w^2 - c^2, -x + z - a, x^2 - z*w
To:   Projective Space of dimension 5 over Rational Field
Defn: Defined on coordinates by sending (x : y : z : w : a : b : c)
to (x : y : -z + w : a : b : c),
Projective Curve over Rational Field defined by x1 - x4, x0 - x4, x2*x3
+ x3^2 + x2*x4 + 2*x3*x4, x2^2 - x3^2 - 2*x3*x4 + x4^2 - x5^2, x2*x4^2 +
x3*x4^2 + x4^3 - x3*x5^2 - x4*x5^2, x4^4 - x3^2*x5^2 - 2*x3*x4*x5^2 -
x4^2*x5^2)

sage: P.<x,y,z,w> = ProjectiveSpace(GF(2), 3)                               # optional - sage.rings.finite_rings
sage: C = P.curve([(x - y)*(x - z)*(x - w)*(y - z)*(y - w),                 # optional - sage.rings.finite_rings
....:              x*y*z*w*(x + y + z + w)])
sage: C.projection()                                                        # optional - sage.rings.finite_rings
Traceback (most recent call last):
...
NotImplementedError: this curve contains all points of its ambient space

sage: P.<x,y,z,w,u> = ProjectiveSpace(GF(7), 4)                             # optional - sage.rings.finite_rings
sage: C = P.curve([x^3 - y*z*u, w^2 - u^2 + 2*x*z, 3*x*w - y^2])            # optional - sage.rings.finite_rings
sage: L.<a,b,c,d> = ProjectiveSpace(GF(7), 3)                               # optional - sage.rings.finite_rings
sage: C.projection(PS=L)                                                    # optional - sage.rings.finite_rings
(Scheme morphism:
From: Projective Curve over Finite Field of size 7
defined by x^3 - y*z*u, 2*x*z + w^2 - u^2, -y^2 + 3*x*w
To:   Projective Space of dimension 3 over Finite Field of size 7
Defn: Defined on coordinates by sending (x : y : z : w : u) to
(x : y : z : w),
Projective Curve over Finite Field of size 7 defined by b^2 - 3*a*d,
a^5*b + a*b*c^3*d - 3*b*c^2*d^3, a^6 + a^2*c^3*d - 3*a*c^2*d^3)
sage: Q.<a,b,c> = ProjectiveSpace(GF(7), 2)                                 # optional - sage.rings.finite_rings
sage: C.projection(PS=Q)                                                    # optional - sage.rings.finite_rings
Traceback (most recent call last):
...
TypeError: (=Projective Space of dimension 2 over Finite Field of
size 7) must have dimension (=3)

sage: PP.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = PP.curve([x^3 - z^2*y, w^2 - z*x])
sage: Q = PP([1,0,1,1])
sage: C.projection(P=Q)
(Scheme morphism:
From: Projective Curve over Rational Field
defined by x^3 - y*z^2, -x*z + w^2
To:   Projective Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x : y : z : w) to
(y : -x + z : -x + w),
Projective Plane Curve over Rational Field defined by x0*x1^5 -
6*x0*x1^4*x2 + 14*x0*x1^3*x2^2 - 16*x0*x1^2*x2^3 + 9*x0*x1*x2^4 -
2*x0*x2^5 - x2^6)
sage: LL.<a,b,c> = ProjectiveSpace(QQ, 2)
sage: Q = PP([0,0,0,1])
sage: C.projection(PS=LL, P=Q)
(Scheme morphism:
From: Projective Curve over Rational Field
defined by x^3 - y*z^2, -x*z + w^2
To:   Projective Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x : y : z : w) to
(x : y : z),
Projective Plane Curve over Rational Field defined by a^3 - b*c^2)
sage: Q = PP([0,0,1,0])
sage: C.projection(P=Q)
Traceback (most recent call last):
...
TypeError: (=(0 : 0 : 1 : 0)) must be a point not on this curve

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = P.curve(y^2 - x^2 + z^2)
sage: C.projection()
Traceback (most recent call last):
...
TypeError: this curve is already a plane curve

class sage.schemes.curves.projective_curve.ProjectiveCurve_field(A, X)#

Projective curves over fields.

arithmetic_genus()#

Return the arithmetic genus of this projective curve.

This is the arithmetic genus $$g_a(C)$$ as defined in [Har1977]. If $$P$$ is the Hilbert polynomial of the defining ideal of this curve, then the arithmetic genus of this curve is $$1 - P(0)$$. This curve must be irreducible.

EXAMPLES:

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = P.curve([w*z - x^2, w^2 + y^2 + z^2])
sage: C.arithmetic_genus()
1

sage: P.<x,y,z,w,t> = ProjectiveSpace(GF(7), 4)                             # optional - sage.rings.finite_rings
sage: C = P.curve([t^3 - x*y*w, x^3 + y^3 + z^3, z - w])                    # optional - sage.rings.finite_rings
sage: C.arithmetic_genus()                                                  # optional - sage.rings.finite_rings
10

is_complete_intersection()#

Return whether this projective curve is a complete intersection.

EXAMPLES:

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([x*y - z*w, x^2 - y*w, y^2*w - x*z*w], P)
sage: C.is_complete_intersection()
False

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([y*w - x^2, z*w^2 - x^3], P)
sage: C.is_complete_intersection()
True

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([z^2 - y*w, y*z - x*w, y^2 - x*z], P)
sage: C.is_complete_intersection()
False

tangent_line(p)#

Return the tangent line at the point p.

INPUT:

• p – a rational point of the curve

EXAMPLES:

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: C = Curve([x*y - z*w, x^2 - y*w, y^2*w - x*z*w], P)
sage: p = C(1,1,1,1)
sage: C.tangent_line(p)
Projective Curve over Rational Field
defined by -2*x + y + w, -3*x + z + 2*w

class sage.schemes.curves.projective_curve.ProjectivePlaneCurve(A, f)#

Curves in projective planes.

INPUT:

• A – projective plane

• f – homogeneous polynomial in the homogeneous coordinate ring of the plane

EXAMPLES:

A projective plane curve defined over an algebraic closure of $$\QQ$$:

sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2)                                     # optional - sage.rings.number_field
sage: set_verbose(-1)  # suppress warnings for slow computation                 # optional - sage.rings.number_field
sage: C = Curve([y*z - x^2 - QQbar.gen()*z^2], P); C                            # optional - sage.rings.number_field
Projective Plane Curve over Algebraic Field
defined by -x^2 + y*z + (-I)*z^2


A projective plane curve defined over a finite field:

sage: P.<x,y,z> = ProjectiveSpace(GF(5^2, 'v'), 2)                              # optional - sage.rings.finite_rings
sage: C = Curve([y^2*z - x*z^2 - z^3], P); C                                    # optional - sage.rings.finite_rings
Projective Plane Curve over Finite Field in v of size 5^2
defined by y^2*z - x*z^2 - z^3

degree()#

Return the degree of this projective curve.

For a plane curve, this is just the degree of its defining polynomial.

OUTPUT: An integer.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = P.curve([y^7 - x^2*z^5 + 7*z^7])
sage: C.degree()
7

divisor_of_function(r)#

Return the divisor of a function on a curve.

INPUT: r is a rational function on X

OUTPUT: A list. The divisor of r represented as a list of coefficients and points. (TODO: This will change to a more structural output in the future.)

EXAMPLES:

sage: FF = FiniteField(5)                                                   # optional - sage.rings.finite_rings
sage: P2 = ProjectiveSpace(2, FF, names=['x','y','z'])                      # optional - sage.rings.finite_rings
sage: R = P2.coordinate_ring()                                              # optional - sage.rings.finite_rings
sage: x, y, z = R.gens()                                                    # optional - sage.rings.finite_rings
sage: f = y^2*z^7 - x^9 - x*z^8                                             # optional - sage.rings.finite_rings
sage: C = Curve(f)                                                          # optional - sage.rings.finite_rings
sage: K = FractionField(R)                                                  # optional - sage.rings.finite_rings
sage: r = 1/x                                                               # optional - sage.rings.finite_rings
sage: C.divisor_of_function(r)     # todo: not implemented  !!!!            # optional - sage.rings.finite_rings
[[-1, (0, 0, 1)]]
sage: r = 1/x^3                                                             # optional - sage.rings.finite_rings
sage: C.divisor_of_function(r)     # todo: not implemented  !!!!            # optional - sage.rings.finite_rings
[[-3, (0, 0, 1)]]

excellent_position(Q)#

Return a transformation of this curve into one in excellent position with respect to the point Q.

Here excellent position is defined as in [Ful1989]. A curve $$C$$ of degree $$d$$ containing the point $$(0 : 0 : 1)$$ with multiplicity $$r$$ is said to be in excellent position if none of the coordinate lines are tangent to $$C$$ at any of the fundamental points $$(1 : 0 : 0)$$, $$(0 : 1 : 0)$$, and $$(0 : 0 : 1)$$, and if the two coordinate lines containing $$(0 : 0 : 1)$$ intersect $$C$$ transversally in $$d - r$$ distinct non-fundamental points, and if the other coordinate line intersects $$C$$ transversally at $$d$$ distinct, non-fundamental points.

INPUT:

• Q – a point on this curve.

OUTPUT:

• a scheme morphism from this curve to a curve in excellent position that is a restriction of a change of coordinates map of the projective plane.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([x*y - z^2], P)
sage: Q = P([1,1,1])
sage: C.excellent_position(Q)
Scheme morphism:
From: Projective Plane Curve over Rational Field defined by x*y - z^2
To:   Projective Plane Curve over Rational Field
defined by -x^2 - 3*x*y - 4*y^2 - x*z - 3*y*z
Defn: Defined on coordinates by sending (x : y : z) to
(-x + 1/2*y + 1/2*z : -1/2*y + 1/2*z : x + 1/2*y - 1/2*z)

sage: R.<a> = QQ[]
sage: K.<b> = NumberField(a^2 - 3)                                          # optional - sage.rings.number_field
sage: P.<x,y,z> = ProjectiveSpace(K, 2)                                     # optional - sage.rings.number_field
sage: C = P.curve([z^2*y^3*x^4 - y^6*x^3 - 4*z^2*y^4*x^3 - 4*z^4*y^2*x^3    # optional - sage.rings.number_field
....:              + 3*y^7*x^2 + 10*z^2*y^5*x^2 + 9*z^4*y^3*x^2
....:              + 5*z^6*y*x^2 - 3*y^8*x - 9*z^2*y^6*x - 11*z^4*y^4*x
....:              - 7*z^6*y^2*x - 2*z^8*x + y^9 + 2*z^2*y^7 + 3*z^4*y^5
....:              + 4*z^6*y^3 + 2*z^8*y])
sage: Q = P([1,0,0])                                                        # optional - sage.rings.number_field
sage: C.excellent_position(Q)                                               # optional - sage.rings.number_field
Scheme morphism:
From: Projective Plane Curve over Number Field in b
with defining polynomial a^2 - 3
defined by -x^3*y^6 + 3*x^2*y^7 - 3*x*y^8 + y^9 + x^4*y^3*z^2
- 4*x^3*y^4*z^2 + 10*x^2*y^5*z^2 - 9*x*y^6*z^2
+ 2*y^7*z^2 - 4*x^3*y^2*z^4 + 9*x^2*y^3*z^4
- 11*x*y^4*z^4 + 3*y^5*z^4 + 5*x^2*y*z^6
- 7*x*y^2*z^6 + 4*y^3*z^6 - 2*x*z^8 + 2*y*z^8
To:   Projective Plane Curve over Number Field in b
with defining polynomial a^2 - 3
defined by 900*x^9 - 7410*x^8*y + 29282*x^7*y^2 - 69710*x^6*y^3
+ 110818*x^5*y^4 - 123178*x^4*y^5 + 96550*x^3*y^6
- 52570*x^2*y^7 + 18194*x*y^8 - 3388*y^9 - 1550*x^8*z
+ 9892*x^7*y*z - 30756*x^6*y^2*z + 58692*x^5*y^3*z
- 75600*x^4*y^4*z + 67916*x^3*y^5*z - 42364*x^2*y^6*z
+ 16844*x*y^7*z - 3586*y^8*z + 786*x^7*z^2
- 3958*x^6*y*z^2 + 9746*x^5*y^2*z^2 - 14694*x^4*y^3*z^2
+ 15174*x^3*y^4*z^2 - 10802*x^2*y^5*z^2
+ 5014*x*y^6*z^2 - 1266*y^7*z^2 - 144*x^6*z^3
+ 512*x^5*y*z^3 - 912*x^4*y^2*z^3 + 1024*x^3*y^3*z^3
- 816*x^2*y^4*z^3 + 512*x*y^5*z^3 - 176*y^6*z^3
+ 8*x^5*z^4 - 8*x^4*y*z^4 - 16*x^3*y^2*z^4
+ 16*x^2*y^3*z^4 + 8*x*y^4*z^4 - 8*y^5*z^4
Defn: Defined on coordinates by sending (x : y : z) to
(1/4*y + 1/2*z : -1/4*y + 1/2*z : x + 1/4*y - 1/2*z)

sage: set_verbose(-1)
sage: a = QQbar(sqrt(2))                                                    # optional - sage.rings.number_field
sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2)                                 # optional - sage.rings.number_field
sage: C = Curve([(-1/4*a)*x^3 + (-3/4*a)*x^2*y                              # optional - sage.rings.number_field
....:            + (-3/4*a)*x*y^2 + (-1/4*a)*y^3 - 2*x*y*z], P)
sage: Q = P([0,0,1])                                                        # optional - sage.rings.number_field
sage: C.excellent_position(Q)                                               # optional - sage.rings.number_field
Scheme morphism:
From: Projective Plane Curve over Algebraic Field defined
by (-0.3535533905932738?)*x^3 + (-1.060660171779822?)*x^2*y
+ (-1.060660171779822?)*x*y^2 + (-0.3535533905932738?)*y^3
+ (-2)*x*y*z
To:   Projective Plane Curve over Algebraic Field defined
by (-2.828427124746190?)*x^3 + (-2)*x^2*y + 2*y^3
+ (-2)*x^2*z + 2*y^2*z
Defn: Defined on coordinates by sending (x : y : z) to
(1/2*x + 1/2*y : (-1/2)*x + 1/2*y : 1/2*x + (-1/2)*y + z)

is_ordinary_singularity(P)#

Return whether the singular point P of this projective plane curve is an ordinary singularity.

The point P is an ordinary singularity of this curve if it is a singular point, and if the tangents of this curve at P are distinct.

INPUT:

• P – a point on this curve.

OUTPUT:

• Boolean. True or False depending on whether P is or is not an ordinary singularity of this curve, respectively. An error is raised if P is not a singular point of this curve.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([y^2*z^3 - x^5], P)
sage: Q = P([0,0,1])
sage: C.is_ordinary_singularity(Q)
False

sage: R.<a> = QQ[]
sage: K.<b> = NumberField(a^2 - 3)                                          # optional - sage.rings.number_field
sage: P.<x,y,z> = ProjectiveSpace(K, 2)                                     # optional - sage.rings.number_field
sage: C = P.curve([x^2*y^3*z^4 - y^6*z^3 - 4*x^2*y^4*z^3 - 4*x^4*y^2*z^3    # optional - sage.rings.number_field
....:              + 3*y^7*z^2 + 10*x^2*y^5*z^2 + 9*x^4*y^3*z^2
....:              + 5*x^6*y*z^2 - 3*y^8*z - 9*x^2*y^6*z - 11*x^4*y^4*z
....:              - 7*x^6*y^2*z - 2*x^8*z + y^9 + 2*x^2*y^7 + 3*x^4*y^5
....:              + 4*x^6*y^3 + 2*x^8*y])
sage: Q = P([0,1,1])                                                        # optional - sage.rings.number_field
sage: C.is_ordinary_singularity(Q)                                          # optional - sage.rings.number_field
True

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = P.curve([z^5 - y^5 + x^5 + x*y^2*z^2])
sage: Q = P([0,1,1])
sage: C.is_ordinary_singularity(Q)
Traceback (most recent call last):
...
TypeError: (=(0 : 1 : 1)) is not a singular point of (=Projective Plane
Curve over Rational Field defined by x^5 - y^5 + x*y^2*z^2 + z^5)

is_singular(P=None)#

Return whether this curve is singular or not, or if a point P is provided, whether P is a singular point of this curve.

INPUT:

• P – (default: None) a point on this curve

OUTPUT:

If no point P is provided, return True or False depending on whether this curve is singular or not. If a point P is provided, return True or False depending on whether P is or is not a singular point of this curve.

EXAMPLES:

Over $$\QQ$$:

sage: F = QQ
sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)
sage: C = Curve(X^3 - Y^2*Z)
sage: C.is_singular()
True


Over a finite field:

sage: F = GF(19)                                                            # optional - sage.rings.finite_rings
sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)                                    # optional - sage.rings.finite_rings
sage: C = Curve(X^3 + Y^3 + Z^3)                                            # optional - sage.rings.finite_rings
sage: C.is_singular()                                                       # optional - sage.rings.finite_rings
False
sage: D = Curve(X^4 - X*Z^3)                                                # optional - sage.rings.finite_rings
sage: D.is_singular()                                                       # optional - sage.rings.finite_rings
True
sage: E = Curve(X^5 + 19*Y^5 + Z^5)                                         # optional - sage.rings.finite_rings
sage: E.is_singular()                                                       # optional - sage.rings.finite_rings
True
sage: E = Curve(X^5 + 9*Y^5 + Z^5)                                          # optional - sage.rings.finite_rings
sage: E.is_singular()                                                       # optional - sage.rings.finite_rings
False


Over $$\CC$$:

sage: F = CC
sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)
sage: C = Curve(X)
sage: C.is_singular()
False
sage: D = Curve(Y^2*Z - X^3)
sage: D.is_singular()
True
sage: E = Curve(Y^2*Z - X^3 + Z^3)
sage: E.is_singular()
False


Showing that github issue #12187 is fixed:

sage: F.<X,Y,Z> = GF(2)[]                                                   # optional - sage.rings.finite_rings
sage: G = Curve(X^2 + Y*Z)                                                  # optional - sage.rings.finite_rings
sage: G.is_singular()                                                       # optional - sage.rings.finite_rings
False

sage: P.<x,y,z> = ProjectiveSpace(CC, 2)
sage: C = Curve([y^4 - x^3*z], P)
sage: Q = P([0,0,1])
sage: C.is_singular()
True

is_transverse(C, P)#

Return whether the intersection of this curve with the curve C at the point P is transverse.

The intersection at P is transverse if P is a nonsingular point of both curves, and if the tangents of the curves at P are distinct.

INPUT:

• C – a curve in the ambient space of this curve.

• P – a point in the intersection of both curves.

OUTPUT: A boolean.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([x^2 - y^2], P)
sage: D = Curve([x - y], P)
sage: Q = P([1,1,0])
sage: C.is_transverse(D, Q)
False

sage: K = QuadraticField(-1)                                                # optional - sage.rings.number_field
sage: P.<x,y,z> = ProjectiveSpace(K, 2)                                     # optional - sage.rings.number_field
sage: C = Curve([y^2*z - K.0*x^3], P)                                       # optional - sage.rings.number_field
sage: D = Curve([z*x + y^2], P)                                             # optional - sage.rings.number_field
sage: Q = P([0,0,1])                                                        # optional - sage.rings.number_field
sage: C.is_transverse(D, Q)                                                 # optional - sage.rings.number_field
False

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([x^2 - 2*y^2 - 2*z^2], P)
sage: D = Curve([y - z], P)
sage: Q = P([2,1,1])
sage: C.is_transverse(D, Q)
True

local_coordinates(pt, n)#

Return local coordinates to precision n at the given point.

Behaviour is flaky - some choices of $$n$$ are worse than others.

INPUT:

• pt – a rational point on X which is not a point of ramification

for the projection $$(x,y) \to x$$.

• n– the number of terms desired

OUTPUT: $$x = x0 + t$$, $$y = y0$$ + power series in $$t$$

EXAMPLES:

sage: FF = FiniteField(5)                                                   # optional - sage.rings.finite_rings
sage: P2 = ProjectiveSpace(2, FF, names=['x','y','z'])                      # optional - sage.rings.finite_rings
sage: x, y, z = P2.coordinate_ring().gens()                                 # optional - sage.rings.finite_rings
sage: C = Curve(y^2*z^7 - x^9 - x*z^8)                                      # optional - sage.rings.finite_rings
sage: pt = C([2,3,1])                                                       # optional - sage.rings.finite_rings
sage: C.local_coordinates(pt,9)     # todo: not implemented  !!!!           # optional - sage.rings.finite_rings
[2 + t,
3 + 3*t^2 + t^3 + 3*t^4 + 3*t^6 + 3*t^7 + t^8 + 2*t^9 + 3*t^11 + 3*t^12]

ordinary_model()#

Return a birational map from this curve to a plane curve with only ordinary singularities.

Currently only implemented over number fields. If not all of the coordinates of the non-ordinary singularities of this curve are contained in its base field, then the domain and codomain of the map returned will be defined over an extension. This curve must be irreducible.

OUTPUT:

• a scheme morphism from this curve to a curve with only ordinary singularities that defines a birational map between the two curves.

EXAMPLES:

sage: set_verbose(-1)
sage: K = QuadraticField(3)                                                 # optional - sage.rings.number_field
sage: P.<x,y,z> = ProjectiveSpace(K, 2)                                     # optional - sage.rings.number_field
sage: C = Curve([x^5 - K.0*y*z^4], P)                                       # optional - sage.rings.number_field
sage: C.ordinary_model()                                                    # optional - sage.rings.number_field
Scheme morphism:
From: Projective Plane Curve over Number Field in a
with defining polynomial x^2 - 3 with a = 1.732050807568878?
defined by x^5 + (-a)*y*z^4
To:   Projective Plane Curve over Number Field in a
with defining polynomial x^2 - 3 with a = 1.732050807568878?
defined by (-a)*x^5*y + (-4*a)*x^4*y^2 + (-6*a)*x^3*y^3
+ (-4*a)*x^2*y^4 + (-a)*x*y^5 + (-a - 1)*x^5*z
+ (-4*a + 5)*x^4*y*z + (-6*a - 10)*x^3*y^2*z
+ (-4*a + 10)*x^2*y^3*z + (-a - 5)*x*y^4*z + y^5*z
Defn: Defined on coordinates by sending (x : y : z) to
(-1/4*x^2 - 1/2*x*y + 1/2*x*z + 1/2*y*z - 1/4*z^2 :
1/4*x^2 + 1/2*x*y + 1/2*y*z - 1/4*z^2 :
-1/4*x^2 + 1/4*z^2)

sage: set_verbose(-1)
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([y^2*z^2 - x^4 - x^3*z], P)
sage: D = C.ordinary_model(); D  # long time (2 seconds)
Scheme morphism:
From: Projective Plane Curve over Rational Field defined
by -x^4 - x^3*z + y^2*z^2
To:   Projective Plane Curve over Rational Field defined
by 4*x^6*y^3 - 24*x^5*y^4 + 36*x^4*y^5 + 8*x^6*y^2*z
- 40*x^5*y^3*z + 24*x^4*y^4*z + 72*x^3*y^5*z - 4*x^6*y*z^2
+ 8*x^5*y^2*z^2 - 56*x^4*y^3*z^2 + 104*x^3*y^4*z^2
+ 44*x^2*y^5*z^2 + 8*x^6*z^3 - 16*x^5*y*z^3
- 24*x^4*y^2*z^3 + 40*x^3*y^3*z^3 + 48*x^2*y^4*z^3
+ 8*x*y^5*z^3 - 8*x^5*z^4 + 36*x^4*y*z^4 - 56*x^3*y^2*z^4
+ 20*x^2*y^3*z^4 + 40*x*y^4*z^4 - 16*y^5*z^4
Defn: Defined on coordinates by sending (x : y : z) to
(-3/64*x^4 + 9/64*x^2*y^2 - 3/32*x*y^3 - 1/16*x^3*z
- 1/8*x^2*y*z + 1/4*x*y^2*z - 1/16*y^3*z - 1/8*x*y*z^2
+ 1/16*y^2*z^2 :
-1/64*x^4 + 3/64*x^2*y^2 - 1/32*x*y^3 + 1/16*x*y^2*z
- 1/16*y^3*z + 1/16*y^2*z^2 :
3/64*x^4 - 3/32*x^3*y + 3/64*x^2*y^2 + 1/16*x^3*z
- 3/16*x^2*y*z + 1/8*x*y^2*z - 1/8*x*y*z^2 + 1/16*y^2*z^2)
sage: all(D.codomain().is_ordinary_singularity(Q)  # long time
....:     for Q in D.codomain().singular_points())
True

sage: set_verbose(-1)
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([(x^2 + y^2 - y*z - 2*z^2)*(y*z - x^2 + 2*z^2)*z + y^5], P)
sage: C.ordinary_model() # long time (5 seconds)
Scheme morphism:
From: Projective Plane Curve over Number Field in a
with defining polynomial y^2 - 2 defined
by y^5 - x^4*z - x^2*y^2*z + 2*x^2*y*z^2 + y^3*z^2
+ 4*x^2*z^3 + y^2*z^3 - 4*y*z^4 - 4*z^5
To:   Projective Plane Curve over Number Field in a
with defining polynomial y^2 - 2 defined
by (-29*a + 1)*x^8*y^6 + (10*a + 158)*x^7*y^7
+ (-109*a - 31)*x^6*y^8 + (-80*a - 198)*x^8*y^5*z
+ (531*a + 272)*x^7*y^6*z + (170*a - 718)*x^6*y^7*z
+ (19*a - 636)*x^5*y^8*z + (-200*a - 628)*x^8*y^4*z^2
+ (1557*a - 114)*x^7*y^5*z^2 + (2197*a - 2449)*x^6*y^6*z^2
+ (1223*a - 3800)*x^5*y^7*z^2 + (343*a - 1329)*x^4*y^8*z^2
+ (-323*a - 809)*x^8*y^3*z^3 + (1630*a - 631)*x^7*y^4*z^3
+ (4190*a - 3126)*x^6*y^5*z^3 + (3904*a - 7110)*x^5*y^6*z^3
+ (1789*a - 5161)*x^4*y^7*z^3 + (330*a - 1083)*x^3*y^8*z^3
+ (-259*a - 524)*x^8*y^2*z^4 + (720*a - 605)*x^7*y^3*z^4
+ (3082*a - 2011)*x^6*y^4*z^4 + (4548*a - 5462)*x^5*y^5*z^4
+ (2958*a - 6611)*x^4*y^6*z^4 + (994*a - 2931)*x^3*y^7*z^4
+ (117*a - 416)*x^2*y^8*z^4 + (-108*a - 184)*x^8*y*z^5
+ (169*a - 168)*x^7*y^2*z^5 + (831*a - 835)*x^6*y^3*z^5
+ (2225*a - 1725)*x^5*y^4*z^5 + (1970*a - 3316)*x^4*y^5*z^5
+ (952*a - 2442)*x^3*y^6*z^5 + (217*a - 725)*x^2*y^7*z^5
+ (16*a - 77)*x*y^8*z^5 + (-23*a - 35)*x^8*z^6
+ (43*a + 24)*x^7*y*z^6 + (21*a - 198)*x^6*y^2*z^6
+ (377*a - 179)*x^5*y^3*z^6 + (458*a - 537)*x^4*y^4*z^6
+ (288*a - 624)*x^3*y^5*z^6 + (100*a - 299)*x^2*y^6*z^6
+ (16*a - 67)*x*y^7*z^6 - 5*y^8*z^6
Defn: Defined on coordinates by sending (x : y : z) to
((-5/128*a - 5/128)*x^4 + (-5/32*a + 5/32)*x^3*y
+ (-1/16*a + 3/32)*x^2*y^2 + (1/16*a - 1/16)*x*y^3
+ (1/32*a - 1/32)*y^4 - 1/32*x^3*z + (3/16*a - 5/8)*x^2*y*z
+ (1/8*a - 5/16)*x*y^2*z + (1/8*a + 5/32)*x^2*z^2
+ (-3/16*a + 5/16)*x*y*z^2 + (-3/16*a - 1/16)*y^2*z^2
+ 1/16*x*z^3 + (1/4*a + 1/4)*y*z^3 + (-3/32*a - 5/32)*z^4 :
(-5/128*a - 5/128)*x^4 + (5/32*a)*x^3*y
+ (3/32*a + 3/32)*x^2*y^2 + (-1/16*a)*x*y^3
+ (-1/32*a - 1/32)*y^4 - 1/32*x^3*z + (-11/32*a)*x^2*y*z
+ (1/8*a + 5/16)*x*y^2*z + (3/16*a + 1/4)*y^3*z
+ (1/8*a + 5/32)*x^2*z^2 + (-1/16*a - 3/8)*x*y*z^2
+ (-3/8*a - 9/16)*y^2*z^2 + 1/16*x*z^3 + (5/16*a + 1/2)*y*z^3
+ (-3/32*a - 5/32)*z^4 :
(1/64*a + 3/128)*x^4 + (-1/32*a - 1/32)*x^3*y
+ (3/32*a - 9/32)*x^2*y^2 + (1/16*a - 3/16)*x*y^3 - 1/32*y^4
+ (3/32*a + 1/8)*x^2*y*z + (-1/8*a + 1/8)*x*y^2*z
+ (-1/16*a)*y^3*z + (-1/16*a - 3/32)*x^2*z^2
+ (1/16*a + 1/16)*x*y*z^2 + (3/16*a + 3/16)*y^2*z^2
+ (-3/16*a - 1/4)*y*z^3 + (1/16*a + 3/32)*z^4)

plot(*args, **kwds)#

Plot the real points of an affine patch of this projective plane curve.

INPUT:

• self - an affine plane curve

• patch - (optional) the affine patch to be plotted; if not specified, the patch corresponding to the last projective coordinate being nonzero

• *args - optional tuples (variable, minimum, maximum) for plotting dimensions

• **kwds - optional keyword arguments passed on to implicit_plot

EXAMPLES:

A cuspidal curve:

sage: R.<x, y, z> = QQ[]
sage: C = Curve(x^3 - y^2*z)
sage: C.plot()                                                              # optional - sage.plot
Graphics object consisting of 1 graphics primitive


The other affine patches of the same curve:

sage: C.plot(patch=0)                                                       # optional - sage.plot
Graphics object consisting of 1 graphics primitive
sage: C.plot(patch=1)                                                       # optional - sage.plot
Graphics object consisting of 1 graphics primitive


An elliptic curve:

sage: E = EllipticCurve('101a')
sage: C = Curve(E)
sage: C.plot()                                                              # optional - sage.plot
Graphics object consisting of 1 graphics primitive
sage: C.plot(patch=0)                                                       # optional - sage.plot
Graphics object consisting of 1 graphics primitive
sage: C.plot(patch=1)                                                       # optional - sage.plot
Graphics object consisting of 1 graphics primitive


A hyperelliptic curve:

sage: P.<x> = QQ[]
sage: f = 4*x^5 - 30*x^3 + 45*x - 22
sage: C = HyperellipticCurve(f)
sage: C.plot()                                                              # optional - sage.plot
Graphics object consisting of 1 graphics primitive
sage: C.plot(patch=0)                                                       # optional - sage.plot
Graphics object consisting of 1 graphics primitive
sage: C.plot(patch=1)                                                       # optional - sage.plot
Graphics object consisting of 1 graphics primitive


Return a birational map from this curve to the proper transform of this curve with respect to the standard Cremona transformation.

The standard Cremona transformation is the birational automorphism of $$\mathbb{P}^{2}$$ defined $$(x : y : z)\mapsto (yz : xz : xy)$$.

OUTPUT:

• a scheme morphism representing the restriction of the standard Cremona transformation from this curve to the proper transform.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve(x^3*y - z^4 - z^2*x^2, P)
Scheme morphism:
From: Projective Plane Curve over Rational Field
defined by x^3*y - x^2*z^2 - z^4
To:   Projective Plane Curve over Rational Field
defined by -x^3*y - x*y*z^2 + z^4
Defn: Defined on coordinates by sending (x : y : z) to
(y*z : x*z : x*y)

sage: P.<x,y,z> = ProjectiveSpace(GF(17), 2)                                # optional - sage.rings.finite_rings
sage: C = P.curve([y^7*z^2 - 16*x^9 + x*y*z^7 + 2*z^9])                     # optional - sage.rings.finite_rings
sage: C.quadratic_transform()                                               # optional - sage.rings.finite_rings
Scheme morphism:
From: Projective Plane Curve over Finite Field of size 17
defined by x^9 + y^7*z^2 + x*y*z^7 + 2*z^9
To:   Projective Plane Curve over Finite Field of size 17
defined by 2*x^9*y^7 + x^8*y^6*z^2 + x^9*z^7 + y^7*z^9
Defn: Defined on coordinates by sending (x : y : z) to
(y*z : x*z : x*y)

tangents(P, factor=True)#

Return the tangents of this projective plane curve at the point P.

These are found by homogenizing the tangents of an affine patch of this curve containing P. The point P must be a point on this curve.

INPUT:

• P – a point on this curve.

• factor – (default: True) whether to attempt computing the polynomials of the individual tangent lines over the base field of this curve, or to just return the polynomial corresponding to the union of the tangent lines (which requires fewer computations).

OUTPUT:

A list of polynomials in the coordinate ring of the ambient space of this curve.

EXAMPLES:

sage: set_verbose(-1)
sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2)                                 # optional - sage.rings.number_field
sage: C = Curve([x^3*y + 2*x^2*y^2 + x*y^3 + x^3*z                          # optional - sage.rings.number_field
....:            + 7*x^2*y*z + 14*x*y^2*z + 9*y^3*z], P)
sage: Q = P([0,0,1])                                                        # optional - sage.rings.number_field
sage: C.tangents(Q)                                                         # optional - sage.rings.number_field
[x + 4.147899035704788?*y,
x + (1.426050482147607? + 0.3689894074818041?*I)*y,
x + (1.426050482147607? - 0.3689894074818041?*I)*y]
sage: C.tangents(Q, factor=False)                                           # optional - sage.rings.number_field
[6*x^3 + 42*x^2*y + 84*x*y^2 + 54*y^3]

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = P.curve([x^2*y^3*z^4 - y^6*z^3 - 4*x^2*y^4*z^3 - 4*x^4*y^2*z^3
....:              + 3*y^7*z^2 + 10*x^2*y^5*z^2 + 9*x^4*y^3*z^2 + 5*x^6*y*z^2
....:              - 3*y^8*z - 9*x^2*y^6*z - 11*x^4*y^4*z - 7*x^6*y^2*z
....:              - 2*x^8*z + y^9 + 2*x^2*y^7 + 3*x^4*y^5 + 4*x^6*y^3 + 2*x^8*y])
sage: Q = P([0,1,1])
sage: C.tangents(Q)
[-y + z, 3*x^2 - y^2 + 2*y*z - z^2]

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = P.curve([z^3*x + y^4 - x^2*z^2])
sage: Q = P([1,1,1])
sage: C.tangents(Q)
Traceback (most recent call last):
...
TypeError: (=(1 : 1 : 1)) is not a point on (=Projective Plane Curve
over Rational Field defined by y^4 - x^2*z^2 + x*z^3)

class sage.schemes.curves.projective_curve.ProjectivePlaneCurve_field(A, f)#

Projective plane curves over fields.

arithmetic_genus()#

Return the arithmetic genus of this projective curve.

This is the arithmetic genus $$g_a(C)$$ as defined in [Har1977]. For a projective plane curve of degree $$d$$, this is simply $$(d-1)(d-2)/2$$. It need not equal the geometric genus (the genus of the normalization of the curve). This curve must be irreducible.

EXAMPLES:

sage: x,y,z = PolynomialRing(GF(5), 3, 'xyz').gens()                        # optional - sage.rings.finite_rings
sage: C = Curve(y^2*z^7 - x^9 - x*z^8); C                                   # optional - sage.rings.finite_rings
Projective Plane Curve over Finite Field of size 5
defined by -x^9 + y^2*z^7 - x*z^8
sage: C.arithmetic_genus()                                                  # optional - sage.rings.finite_rings
28
sage: C.genus()                                                             # optional - sage.rings.finite_rings
4

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([y^3*x - x^2*y*z - 7*z^4])
sage: C.arithmetic_genus()
3

fundamental_group()#

Return a presentation of the fundamental group of the complement of self.

Note

The curve must be defined over the rationals or a number field with an embedding over $$\QQbar$$.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = P.curve(x^2*z - y^3)
sage: C.fundamental_group()                         # optional - sirocco
Finitely presented group < x0 | x0^3 >


In the case of number fields, they need to have an embedding into the algebraic field:

sage: a = QQ[x](x^2 + 5).roots(QQbar)[0][0]                                 # optional - sage.rings.number_field
sage: a                                                                     # optional - sage.rings.number_field
-2.236067977499790?*I
sage: F = NumberField(a.minpoly(), 'a', embedding=a)                        # optional - sage.rings.number_field
sage: P.<x,y,z> = ProjectiveSpace(F, 2)                                     # optional - sage.rings.number_field
sage: F.inject_variables()                                                  # optional - sage.rings.number_field
Defining a
sage: C = P.curve(x^2 + a * y^2)                                            # optional - sage.rings.number_field
sage: C.fundamental_group()                         # optional - sirocco    # optional - sage.rings.number_field
Finitely presented group < x0 |  >


Warning

This functionality requires the sirocco package to be installed.

rational_parameterization()#

Return a rational parameterization of this curve.

This curve must have rational coefficients and be absolutely irreducible (i.e. irreducible over the algebraic closure of the rational field). The curve must also be rational (have geometric genus zero).

The rational parameterization may have coefficients in a quadratic extension of the rational field.

OUTPUT:

• a birational map between $$\mathbb{P}^{1}$$ and this curve, given as a scheme morphism.

EXAMPLES:

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([y^2*z - x^3], P)
sage: C.rational_parameterization()
Scheme morphism:
From: Projective Space of dimension 1 over Rational Field
To:   Projective Plane Curve over Rational Field
defined by -x^3 + y^2*z
Defn: Defined on coordinates by sending (s : t) to
(s^2*t : s^3 : t^3)

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([x^3 - 4*y*z^2 + x*z^2 - x*y*z], P)
sage: C.rational_parameterization()
Scheme morphism:
From: Projective Space of dimension 1 over Rational Field
To:   Projective Plane Curve over Rational Field
defined by x^3 - x*y*z + x*z^2 - 4*y*z^2
Defn: Defined on coordinates by sending (s : t) to
(4*s^2*t + s*t^2 : s^2*t + t^3 : 4*s^3 + s^2*t)

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: C = Curve([x^2 + y^2 + z^2], P)
sage: C.rational_parameterization()                                         # optional - sage.rings.number_field
Scheme morphism:
From: Projective Space of dimension 1 over Number Field in a
with defining polynomial a^2 + 1
To:   Projective Plane Curve over Number Field in a
with defining polynomial a^2 + 1 defined by x^2 + y^2 + z^2
Defn: Defined on coordinates by sending (s : t) to
((-a)*s^2 + (-a)*t^2 : s^2 - t^2 : 2*s*t)

riemann_surface(**kwargs)#

Return the complex Riemann surface determined by this curve

OUTPUT: A RiemannSurface object.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: C = Curve(x^3 + 3*y^3 + 5*z^3)
sage: C.riemann_surface()
Riemann surface defined by polynomial f = x^3 + 3*y^3 + 5 = 0,
with 53 bits of precision

class sage.schemes.curves.projective_curve.ProjectivePlaneCurve_finite_field(A, f)#

Projective plane curves over finite fields

rational_points(algorithm='enum', sort=True)#

Return the rational points on this curve.

INPUT:

• algorithm – one of

• 'enum' – straightforward enumeration

• 'bn' – via Singular’s brnoeth package.

• sort – boolean (default: True); whether the output points should be sorted. If False, the order of the output is non-deterministic.

OUTPUT: A list of all the rational points on the curve, possibly sorted.

Note

The Brill-Noether package does not always work (i.e., the ‘bn’ algorithm. When it fails a RuntimeError exception is raised.

EXAMPLES:

sage: x, y, z = PolynomialRing(GF(5), 3, 'xyz').gens()                      # optional - sage.rings.finite_rings
sage: f = y^2*z^7 - x^9 - x*z^8                                             # optional - sage.rings.finite_rings
sage: C = Curve(f); C                                                       # optional - sage.rings.finite_rings
Projective Plane Curve over Finite Field of size 5
defined by -x^9 + y^2*z^7 - x*z^8
sage: C.rational_points()                                                   # optional - sage.rings.finite_rings
[(0 : 0 : 1), (0 : 1 : 0), (2 : 2 : 1), (2 : 3 : 1),
(3 : 1 : 1), (3 : 4 : 1)]
sage: C = Curve(x - y + z)                                                  # optional - sage.rings.finite_rings
sage: C.rational_points()                                                   # optional - sage.rings.finite_rings
[(0 : 1 : 1), (1 : 1 : 0), (1 : 2 : 1), (2 : 3 : 1),
(3 : 4 : 1), (4 : 0 : 1)]
sage: C = Curve(x*z + z^2)                                                  # optional - sage.rings.finite_rings
sage: C.rational_points('all')                                              # optional - sage.rings.finite_rings
[(0 : 1 : 0), (1 : 0 : 0), (1 : 1 : 0), (2 : 1 : 0),
(3 : 1 : 0), (4 : 0 : 1), (4 : 1 : 0), (4 : 1 : 1),
(4 : 2 : 1), (4 : 3 : 1), (4 : 4 : 1)]

sage: F = GF(7)                                                             # optional - sage.rings.finite_rings
sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)                                    # optional - sage.rings.finite_rings
sage: C = Curve(X^3 + Y^3 - Z^3)                                            # optional - sage.rings.finite_rings
sage: C.rational_points()                                                   # optional - sage.rings.finite_rings
[(0 : 1 : 1), (0 : 2 : 1), (0 : 4 : 1), (1 : 0 : 1), (2 : 0 : 1),
(3 : 1 : 0), (4 : 0 : 1), (5 : 1 : 0), (6 : 1 : 0)]

sage: F = GF(1237)                                                          # optional - sage.rings.finite_rings
sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)                                    # optional - sage.rings.finite_rings
sage: C = Curve(X^7 + 7*Y^6*Z + Z^4*X^2*Y*89)                               # optional - sage.rings.finite_rings
sage: len(C.rational_points())                                              # optional - sage.rings.finite_rings
1237

sage: F = GF(2^6,'a')                                                       # optional - sage.rings.finite_rings
sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)                                    # optional - sage.rings.finite_rings
sage: C = Curve(X^5 + 11*X*Y*Z^3 + X^2*Y^3 - 13*Y^2*Z^3)                    # optional - sage.rings.finite_rings
sage: len(C.rational_points())                                              # optional - sage.rings.finite_rings
104

sage: R.<x,y,z> = GF(2)[]                                                   # optional - sage.rings.finite_rings
sage: f = x^3*y + y^3*z + x*z^3                                             # optional - sage.rings.finite_rings
sage: C = Curve(f); pts = C.rational_points()                               # optional - sage.rings.finite_rings
sage: pts                                                                   # optional - sage.rings.finite_rings
[(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0)]

rational_points_iterator()#

Return a generator object for the rational points on this curve.

INPUT:

• self – a projective curve

OUTPUT:

A generator of all the rational points on the curve defined over its base field.

EXAMPLES:

sage: F = GF(37)                                                            # optional - sage.rings.finite_rings
sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)                                    # optional - sage.rings.finite_rings
sage: C = Curve(X^7 + Y*X*Z^5*55 + Y^7*12)                                  # optional - sage.rings.finite_rings
sage: len(list(C.rational_points_iterator()))                               # optional - sage.rings.finite_rings
37

sage: F = GF(2)                                                             # optional - sage.rings.finite_rings
sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)                                    # optional - sage.rings.finite_rings
sage: C = Curve(X*Y*Z)                                                      # optional - sage.rings.finite_rings
sage: a = C.rational_points_iterator()                                      # optional - sage.rings.finite_rings
sage: next(a)                                                               # optional - sage.rings.finite_rings
(1 : 0 : 0)
sage: next(a)                                                               # optional - sage.rings.finite_rings
(0 : 1 : 0)
sage: next(a)                                                               # optional - sage.rings.finite_rings
(1 : 1 : 0)
sage: next(a)                                                               # optional - sage.rings.finite_rings
(0 : 0 : 1)
sage: next(a)                                                               # optional - sage.rings.finite_rings
(1 : 0 : 1)
sage: next(a)                                                               # optional - sage.rings.finite_rings
(0 : 1 : 1)
sage: next(a)                                                               # optional - sage.rings.finite_rings
Traceback (most recent call last):
...
StopIteration

sage: F = GF(3^2,'a')                                                       # optional - sage.rings.finite_rings
sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)                                    # optional - sage.rings.finite_rings
sage: C = Curve(X^3 + 5*Y^2*Z - 33*X*Y*X)                                   # optional - sage.rings.finite_rings
sage: b = C.rational_points_iterator()                                      # optional - sage.rings.finite_rings
sage: next(b)                                                               # optional - sage.rings.finite_rings
(0 : 1 : 0)
sage: next(b)                                                               # optional - sage.rings.finite_rings
(0 : 0 : 1)
sage: next(b)                                                               # optional - sage.rings.finite_rings
(2*a + 2 : a : 1)
sage: next(b)                                                               # optional - sage.rings.finite_rings
(2 : a + 1 : 1)
sage: next(b)                                                               # optional - sage.rings.finite_rings
(a + 1 : 2*a + 1 : 1)
sage: next(b)                                                               # optional - sage.rings.finite_rings
(1 : 2 : 1)
sage: next(b)                                                               # optional - sage.rings.finite_rings
(2*a + 2 : 2*a : 1)
sage: next(b)                                                               # optional - sage.rings.finite_rings
(2 : 2*a + 2 : 1)
sage: next(b)                                                               # optional - sage.rings.finite_rings
(a + 1 : a + 2 : 1)
sage: next(b)                                                               # optional - sage.rings.finite_rings
(1 : 1 : 1)
sage: next(b)                                                               # optional - sage.rings.finite_rings
Traceback (most recent call last):
...
StopIteration

riemann_roch_basis(D)#

Return a basis for the Riemann-Roch space corresponding to $$D$$.

This uses Singular’s Brill-Noether implementation.

INPUT:

• D - a divisor

OUTPUT: A list of function field elements that form a basis of the Riemann-Roch space.

EXAMPLES:

sage: R.<x,y,z> = GF(2)[]                                                   # optional - sage.rings.finite_rings
sage: f = x^3*y + y^3*z + x*z^3                                             # optional - sage.rings.finite_rings
sage: C = Curve(f); pts = C.rational_points()                               # optional - sage.rings.finite_rings
sage: D = C.divisor([ (4, pts[0]), (4, pts[2]) ])                           # optional - sage.rings.finite_rings
sage: C.riemann_roch_basis(D)                                               # optional - sage.rings.finite_rings
[x/y, 1, z/y, z^2/y^2, z/x, z^2/(x*y)]

sage: R.<x,y,z> = GF(5)[]                                                   # optional - sage.rings.finite_rings
sage: f = x^7 + y^7 + z^7                                                   # optional - sage.rings.finite_rings
sage: C = Curve(f); pts = C.rational_points()                               # optional - sage.rings.finite_rings
sage: D = C.divisor([ (3, pts[0]), (-1,pts[1]), (10, pts[5]) ])             # optional - sage.rings.finite_rings
sage: C.riemann_roch_basis(D)                                               # optional - sage.rings.finite_rings
[(-2*x + y)/(x + y), (-x + z)/(x + y)]


Note

Currently this only works over prime field and divisors supported on rational points.