Dense matrices over \(\ZZ/n\ZZ\) for \(n < 94906266\) using LinBox’s Modular<double>
¶
AUTHORS:
Burcin Erocal
Martin Albrecht
- class sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_double[source]¶
Bases:
Matrix_modn_dense_template
Dense matrices over \(\ZZ/n\ZZ\) for \(n < 94906266\) using LinBox’s
Modular<double>
.These are matrices with integer entries mod
n
represented as floating-point numbers in a 64-bit word for use with LinBox routines. This allows forn
up to \(94906266\). By default, the analogousMatrix_modn_dense_float
class is used for smaller moduli, specifically forn
up to \(2^{8}\).Routines here are for the most basic access, see the
matrix_modn_dense_template.pxi
file for higher-level routines.
- class sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_template[source]¶
Bases:
Matrix_dense
Create a new matrix.
INPUT:
parent
– a matrix spaceentries
– seematrix()
copy
– ignored (for backwards compatibility)coerce
– perform modular reduction first?
EXAMPLES:
sage: A = random_matrix(GF(3),1000,1000) sage: type(A) <class 'sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float'> sage: A = random_matrix(Integers(10),1000,1000) sage: type(A) <class 'sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float'> sage: A = random_matrix(Integers(2^16),1000,1000) sage: type(A) <class 'sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_double'>
>>> from sage.all import * >>> A = random_matrix(GF(Integer(3)),Integer(1000),Integer(1000)) >>> type(A) <class 'sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float'> >>> A = random_matrix(Integers(Integer(10)),Integer(1000),Integer(1000)) >>> type(A) <class 'sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float'> >>> A = random_matrix(Integers(Integer(2)**Integer(16)),Integer(1000),Integer(1000)) >>> type(A) <class 'sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_double'>
- charpoly(var='x', algorithm='linbox')[source]¶
Return the characteristic polynomial of
self
.INPUT:
var
– a variable namealgorithm
– ‘generic’, ‘linbox’ or ‘all’ (default: linbox)
EXAMPLES:
sage: A = random_matrix(GF(19), 10, 10) sage: B = copy(A) sage: char_p = A.characteristic_polynomial() sage: char_p(A) == 0 True sage: B == A # A is not modified True sage: min_p = A.minimal_polynomial(proof=True) sage: min_p.divides(char_p) True
>>> from sage.all import * >>> A = random_matrix(GF(Integer(19)), Integer(10), Integer(10)) >>> B = copy(A) >>> char_p = A.characteristic_polynomial() >>> char_p(A) == Integer(0) True >>> B == A # A is not modified True >>> min_p = A.minimal_polynomial(proof=True) >>> min_p.divides(char_p) True
sage: A = random_matrix(GF(2916337), 7, 7) # needs sage.rings.finite_rings sage: B = copy(A) sage: char_p = A.characteristic_polynomial() sage: char_p(A) == 0 True sage: B == A # A is not modified True sage: min_p = A.minimal_polynomial(proof=True) sage: min_p.divides(char_p) True sage: A = Mat(Integers(6),3,3)(range(9)) sage: A.charpoly() x^3
>>> from sage.all import * >>> A = random_matrix(GF(Integer(2916337)), Integer(7), Integer(7)) # needs sage.rings.finite_rings >>> B = copy(A) >>> char_p = A.characteristic_polynomial() >>> char_p(A) == Integer(0) True >>> B == A # A is not modified True >>> min_p = A.minimal_polynomial(proof=True) >>> min_p.divides(char_p) True >>> A = Mat(Integers(Integer(6)),Integer(3),Integer(3))(range(Integer(9))) >>> A.charpoly() x^3
ALGORITHM: Uses LinBox if
self.base_ring()
is a field, otherwise use Hessenberg form algorithm.
- determinant()[source]¶
Return the determinant of this matrix.
EXAMPLES:
sage: s = set() sage: while s != set(GF(7)): ....: A = random_matrix(GF(7), 10, 10) ....: s.add(A.determinant())
>>> from sage.all import * >>> s = set() >>> while s != set(GF(Integer(7))): ... A = random_matrix(GF(Integer(7)), Integer(10), Integer(10)) ... s.add(A.determinant())
sage: A = random_matrix(GF(7), 100, 100) sage: A.determinant() == A.transpose().determinant() True sage: B = random_matrix(GF(7), 100, 100) sage: (A*B).determinant() == A.determinant() * B.determinant() True
>>> from sage.all import * >>> A = random_matrix(GF(Integer(7)), Integer(100), Integer(100)) >>> A.determinant() == A.transpose().determinant() True >>> B = random_matrix(GF(Integer(7)), Integer(100), Integer(100)) >>> (A*B).determinant() == A.determinant() * B.determinant() True
sage: # needs sage.rings.finite_rings sage: A = random_matrix(GF(16007), 10, 10) sage: A.determinant().parent() is GF(16007) True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> A = random_matrix(GF(Integer(16007)), Integer(10), Integer(10)) >>> A.determinant().parent() is GF(Integer(16007)) True
sage: # needs sage.rings.finite_rings sage: A = random_matrix(GF(16007), 100, 100) sage: A.determinant().parent() is GF(16007) True sage: A.determinant() == A.transpose().determinant() True sage: B = random_matrix(GF(16007), 100, 100) sage: (A*B).determinant() == A.determinant() * B.determinant() True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> A = random_matrix(GF(Integer(16007)), Integer(100), Integer(100)) >>> A.determinant().parent() is GF(Integer(16007)) True >>> A.determinant() == A.transpose().determinant() True >>> B = random_matrix(GF(Integer(16007)), Integer(100), Integer(100)) >>> (A*B).determinant() == A.determinant() * B.determinant() True
Parallel computation:
sage: # needs sage.rings.finite_rings sage: A = random_matrix(GF(65521),200) sage: B = copy(A) sage: Parallelism().set('linbox', nproc=2) sage: d = A.determinant() sage: Parallelism().set('linbox', nproc=1) # switch off parallelization sage: e = B.determinant() sage: d==e True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> A = random_matrix(GF(Integer(65521)),Integer(200)) >>> B = copy(A) >>> Parallelism().set('linbox', nproc=Integer(2)) >>> d = A.determinant() >>> Parallelism().set('linbox', nproc=Integer(1)) # switch off parallelization >>> e = B.determinant() >>> d==e True
- echelonize(algorithm='linbox_noefd', **kwds)[source]¶
Put
self
in reduced row echelon form.INPUT:
self
– a mutable matrixalgorithm
linbox
– uses the LinBox library (wrapping fflas-ffpack)linbox_noefd
– uses the FFPACK directly, less memory and faster (default)gauss
– uses a custom slower \(O(n^3)\) Gauss elimination implemented in Sageall
– compute using both algorithms and verify that the results are the same
**kwds
– these are all ignored
OUTPUT:
self
is put in reduced row echelon formthe rank of
self
is computed and cachedthe pivot columns of
self
are computed and cachedthe fact that
self
is now in echelon form is recorded and cached so future calls to echelonize return immediately
EXAMPLES:
sage: A = random_matrix(GF(7), 10, 20) sage: E = A.echelon_form() sage: A.row_space() == E.row_space() True sage: all(r[r.nonzero_positions()[0]] == 1 for r in E.rows() if r) True
>>> from sage.all import * >>> A = random_matrix(GF(Integer(7)), Integer(10), Integer(20)) >>> E = A.echelon_form() >>> A.row_space() == E.row_space() True >>> all(r[r.nonzero_positions()[Integer(0)]] == Integer(1) for r in E.rows() if r) True
sage: A = random_matrix(GF(13), 10, 10) sage: while A.rank() != 10: ....: A = random_matrix(GF(13), 10, 10) sage: MS = parent(A) sage: B = A.augment(MS(1)) sage: B.echelonize() sage: A.rank() 10 sage: C = B.submatrix(0,10,10,10) sage: ~A == C True
>>> from sage.all import * >>> A = random_matrix(GF(Integer(13)), Integer(10), Integer(10)) >>> while A.rank() != Integer(10): ... A = random_matrix(GF(Integer(13)), Integer(10), Integer(10)) >>> MS = parent(A) >>> B = A.augment(MS(Integer(1))) >>> B.echelonize() >>> A.rank() 10 >>> C = B.submatrix(Integer(0),Integer(10),Integer(10),Integer(10)) >>> ~A == C True
sage: A = random_matrix(Integers(10), 10, 20) sage: A.echelon_form() Traceback (most recent call last): ... NotImplementedError: Echelon form not implemented over 'Ring of integers modulo 10'.
>>> from sage.all import * >>> A = random_matrix(Integers(Integer(10)), Integer(10), Integer(20)) >>> A.echelon_form() Traceback (most recent call last): ... NotImplementedError: Echelon form not implemented over 'Ring of integers modulo 10'.
sage: # needs sage.rings.finite_rings sage: A = random_matrix(GF(16007), 10, 20) sage: E = A.echelon_form() sage: A.row_space() == E.row_space() True sage: all(r[r.nonzero_positions()[0]] == 1 for r in E.rows() if r) True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> A = random_matrix(GF(Integer(16007)), Integer(10), Integer(20)) >>> E = A.echelon_form() >>> A.row_space() == E.row_space() True >>> all(r[r.nonzero_positions()[Integer(0)]] == Integer(1) for r in E.rows() if r) True
sage: A = random_matrix(Integers(10000), 10, 20) sage: A.echelon_form() Traceback (most recent call last): ... NotImplementedError: Echelon form not implemented over 'Ring of integers modulo 10000'.
>>> from sage.all import * >>> A = random_matrix(Integers(Integer(10000)), Integer(10), Integer(20)) >>> A.echelon_form() Traceback (most recent call last): ... NotImplementedError: Echelon form not implemented over 'Ring of integers modulo 10000'.
Parallel computation:
sage: # needs sage.rings.finite_rings sage: A = random_matrix(GF(65521),100,200) sage: Parallelism().set('linbox', nproc=2) sage: E = A.echelon_form() sage: Parallelism().set('linbox', nproc=1) # switch off parallelization sage: F = A.echelon_form() sage: E==F True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> A = random_matrix(GF(Integer(65521)),Integer(100),Integer(200)) >>> Parallelism().set('linbox', nproc=Integer(2)) >>> E = A.echelon_form() >>> Parallelism().set('linbox', nproc=Integer(1)) # switch off parallelization >>> F = A.echelon_form() >>> E==F True
- hessenbergize()[source]¶
Transform
self
in place to its Hessenberg form.EXAMPLES:
sage: A = random_matrix(GF(17), 10, 10, density=0.1) sage: B = copy(A) sage: A.hessenbergize() sage: all(A[i,j] == 0 for j in range(10) for i in range(j+2, 10)) True sage: A.charpoly() == B.charpoly() True
>>> from sage.all import * >>> A = random_matrix(GF(Integer(17)), Integer(10), Integer(10), density=RealNumber('0.1')) >>> B = copy(A) >>> A.hessenbergize() >>> all(A[i,j] == Integer(0) for j in range(Integer(10)) for i in range(j+Integer(2), Integer(10))) True >>> A.charpoly() == B.charpoly() True
- lift()[source]¶
Return the lift of this matrix to the integers.
EXAMPLES:
sage: A = matrix(GF(7),2,3,[1..6]) sage: A.lift() [1 2 3] [4 5 6] sage: A.lift().parent() Full MatrixSpace of 2 by 3 dense matrices over Integer Ring sage: # needs sage.rings.finite_rings sage: A = matrix(GF(16007),2,3,[1..6]) sage: A.lift() [1 2 3] [4 5 6] sage: A.lift().parent() Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
>>> from sage.all import * >>> A = matrix(GF(Integer(7)),Integer(2),Integer(3),(ellipsis_range(Integer(1),Ellipsis,Integer(6)))) >>> A.lift() [1 2 3] [4 5 6] >>> A.lift().parent() Full MatrixSpace of 2 by 3 dense matrices over Integer Ring >>> # needs sage.rings.finite_rings >>> A = matrix(GF(Integer(16007)),Integer(2),Integer(3),(ellipsis_range(Integer(1),Ellipsis,Integer(6)))) >>> A.lift() [1 2 3] [4 5 6] >>> A.lift().parent() Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
Subdivisions are preserved when lifting:
sage: A.subdivide([], [1,1]); A [1||2 3] [4||5 6] sage: A.lift() [1||2 3] [4||5 6]
>>> from sage.all import * >>> A.subdivide([], [Integer(1),Integer(1)]); A [1||2 3] [4||5 6] >>> A.lift() [1||2 3] [4||5 6]
- matrix_from_columns(columns)[source]¶
Return the matrix constructed from
self
using columns with indices in the columns list.EXAMPLES:
sage: M = MatrixSpace(Integers(8),3,3) sage: A = M(range(9)); A [0 1 2] [3 4 5] [6 7 0] sage: A.matrix_from_columns([2,1]) [2 1] [5 4] [0 7]
>>> from sage.all import * >>> M = MatrixSpace(Integers(Integer(8)),Integer(3),Integer(3)) >>> A = M(range(Integer(9))); A [0 1 2] [3 4 5] [6 7 0] >>> A.matrix_from_columns([Integer(2),Integer(1)]) [2 1] [5 4] [0 7]
- matrix_from_rows(rows)[source]¶
Return the matrix constructed from
self
using rows with indices in the rows list.EXAMPLES:
sage: M = MatrixSpace(Integers(8),3,3) sage: A = M(range(9)); A [0 1 2] [3 4 5] [6 7 0] sage: A.matrix_from_rows([2,1]) [6 7 0] [3 4 5]
>>> from sage.all import * >>> M = MatrixSpace(Integers(Integer(8)),Integer(3),Integer(3)) >>> A = M(range(Integer(9))); A [0 1 2] [3 4 5] [6 7 0] >>> A.matrix_from_rows([Integer(2),Integer(1)]) [6 7 0] [3 4 5]
- matrix_from_rows_and_columns(rows, columns)[source]¶
Return the matrix constructed from
self
from the given rows and columns.EXAMPLES:
sage: M = MatrixSpace(Integers(8),3,3) sage: A = M(range(9)); A [0 1 2] [3 4 5] [6 7 0] sage: A.matrix_from_rows_and_columns([1], [0,2]) [3 5] sage: A.matrix_from_rows_and_columns([1,2], [1,2]) [4 5] [7 0]
>>> from sage.all import * >>> M = MatrixSpace(Integers(Integer(8)),Integer(3),Integer(3)) >>> A = M(range(Integer(9))); A [0 1 2] [3 4 5] [6 7 0] >>> A.matrix_from_rows_and_columns([Integer(1)], [Integer(0),Integer(2)]) [3 5] >>> A.matrix_from_rows_and_columns([Integer(1),Integer(2)], [Integer(1),Integer(2)]) [4 5] [7 0]
Note that row and column indices can be reordered or repeated:
sage: A.matrix_from_rows_and_columns([2,1], [2,1]) [0 7] [5 4]
>>> from sage.all import * >>> A.matrix_from_rows_and_columns([Integer(2),Integer(1)], [Integer(2),Integer(1)]) [0 7] [5 4]
For example here we take from row 1 columns 2 then 0 twice, and do this 3 times:
sage: A.matrix_from_rows_and_columns([1,1,1],[2,0,0]) [5 3 3] [5 3 3] [5 3 3]
>>> from sage.all import * >>> A.matrix_from_rows_and_columns([Integer(1),Integer(1),Integer(1)],[Integer(2),Integer(0),Integer(0)]) [5 3 3] [5 3 3] [5 3 3]
AUTHORS:
Jaap Spies (2006-02-18)
Didier Deshommes: some Pyrex speedups implemented
- minpoly(var='x', algorithm='linbox', proof=None)[source]¶
Return the minimal polynomial of
self
.INPUT:
var
– a variable namealgorithm
–generic
orlinbox
(default:linbox
)proof
– (default:True
) whether to provably return the true minimal polynomial; ifFalse
, we only guarantee to return a divisor of the minimal polynomial. There are also certainly cases where the computed results is frequently not exactly equal to the minimal polynomial (but is instead merely a divisor of it).
Warning
If
proof=True
, minpoly is insanely slow compared toproof=False
. This matters since proof=True is the default, unless you first typeproof.linear_algebra(False)
.EXAMPLES:
sage: A = random_matrix(GF(17), 10, 10) sage: B = copy(A) sage: min_p = A.minimal_polynomial(proof=True) sage: min_p(A) == 0 True sage: B == A True sage: char_p = A.characteristic_polynomial() sage: min_p.divides(char_p) True
>>> from sage.all import * >>> A = random_matrix(GF(Integer(17)), Integer(10), Integer(10)) >>> B = copy(A) >>> min_p = A.minimal_polynomial(proof=True) >>> min_p(A) == Integer(0) True >>> B == A True >>> char_p = A.characteristic_polynomial() >>> min_p.divides(char_p) True
sage: A = random_matrix(GF(1214471), 10, 10) # needs sage.rings.finite_rings sage: B = copy(A) sage: min_p = A.minimal_polynomial(proof=True) sage: min_p(A) == 0 True sage: B == A True sage: char_p = A.characteristic_polynomial() sage: min_p.divides(char_p) True
>>> from sage.all import * >>> A = random_matrix(GF(Integer(1214471)), Integer(10), Integer(10)) # needs sage.rings.finite_rings >>> B = copy(A) >>> min_p = A.minimal_polynomial(proof=True) >>> min_p(A) == Integer(0) True >>> B == A True >>> char_p = A.characteristic_polynomial() >>> min_p.divides(char_p) True
EXAMPLES:
sage: R.<x>=GF(3)[] sage: A = matrix(GF(3),2,[0,0,1,2]) sage: A.minpoly() x^2 + x sage: A.minpoly(proof=False) in [x, x+1, x^2+x] True
>>> from sage.all import * >>> R = GF(Integer(3))['x']; (x,) = R._first_ngens(1) >>> A = matrix(GF(Integer(3)),Integer(2),[Integer(0),Integer(0),Integer(1),Integer(2)]) >>> A.minpoly() x^2 + x >>> A.minpoly(proof=False) in [x, x+Integer(1), x**Integer(2)+x] True
- randomize(density=1, nonzero=False)[source]¶
Randomize
density
proportion of the entries of this matrix, leaving the rest unchanged.INPUT:
density
– integer; proportion (roughly) to be considered for changesnonzero
– boolean (default:False
); whether the new entries are forced to be nonzero
OUTPUT: none, the matrix is modified in-space
EXAMPLES:
sage: A = matrix(GF(5), 5, 5, 0) sage: total_count = 0 sage: from collections import defaultdict sage: dic = defaultdict(Integer) sage: def add_samples(density): ....: global dic, total_count ....: for _ in range(100): ....: A = Matrix(GF(5), 5, 5, 0) ....: A.randomize(density) ....: for a in A.list(): ....: dic[a] += 1 ....: total_count += 1.0 sage: add_samples(1.0) sage: while not all(abs(dic[a]/total_count - 1/5) < 0.01 for a in dic): ....: add_samples(1.0) sage: def add_sample(density): ....: global density_sum, total_count ....: total_count += 1.0 ....: density_sum += random_matrix(GF(5), 1000, 1000, density=density).density() sage: density_sum = 0.0 sage: total_count = 0.0 sage: add_sample(0.5) sage: expected_density = 1.0 - (999/1000)^500 sage: expected_density 0.3936... sage: while abs(density_sum/total_count - expected_density) > 0.001: ....: add_sample(0.5)
>>> from sage.all import * >>> A = matrix(GF(Integer(5)), Integer(5), Integer(5), Integer(0)) >>> total_count = Integer(0) >>> from collections import defaultdict >>> dic = defaultdict(Integer) >>> def add_samples(density): ... global dic, total_count ... for _ in range(Integer(100)): ... A = Matrix(GF(Integer(5)), Integer(5), Integer(5), Integer(0)) ... A.randomize(density) ... for a in A.list(): ... dic[a] += Integer(1) ... total_count += RealNumber('1.0') >>> add_samples(RealNumber('1.0')) >>> while not all(abs(dic[a]/total_count - Integer(1)/Integer(5)) < RealNumber('0.01') for a in dic): ... add_samples(RealNumber('1.0')) >>> def add_sample(density): ... global density_sum, total_count ... total_count += RealNumber('1.0') ... density_sum += random_matrix(GF(Integer(5)), Integer(1000), Integer(1000), density=density).density() >>> density_sum = RealNumber('0.0') >>> total_count = RealNumber('0.0') >>> add_sample(RealNumber('0.5')) >>> expected_density = RealNumber('1.0') - (Integer(999)/Integer(1000))**Integer(500) >>> expected_density 0.3936... >>> while abs(density_sum/total_count - expected_density) > RealNumber('0.001'): ... add_sample(RealNumber('0.5'))
The matrix is updated instead of overwritten:
sage: def add_sample(density): ....: global density_sum, total_count ....: total_count += 1.0 ....: A = random_matrix(GF(5), 1000, 1000, density=density) ....: A.randomize(density=density, nonzero=True) ....: density_sum += A.density() sage: density_sum = 0.0 sage: total_count = 0.0 sage: add_sample(0.5) sage: expected_density = 1.0 - (999/1000)^1000 sage: expected_density 0.6323... sage: while abs(density_sum/total_count - expected_density) > 0.001: ....: add_sample(0.5) sage: density_sum = 0.0 sage: total_count = 0.0 sage: add_sample(0.1) sage: expected_density = 1.0 - (999/1000)^200 sage: expected_density 0.1813... sage: while abs(density_sum/total_count - expected_density) > 0.001: ....: add_sample(0.1)
>>> from sage.all import * >>> def add_sample(density): ... global density_sum, total_count ... total_count += RealNumber('1.0') ... A = random_matrix(GF(Integer(5)), Integer(1000), Integer(1000), density=density) ... A.randomize(density=density, nonzero=True) ... density_sum += A.density() >>> density_sum = RealNumber('0.0') >>> total_count = RealNumber('0.0') >>> add_sample(RealNumber('0.5')) >>> expected_density = RealNumber('1.0') - (Integer(999)/Integer(1000))**Integer(1000) >>> expected_density 0.6323... >>> while abs(density_sum/total_count - expected_density) > RealNumber('0.001'): ... add_sample(RealNumber('0.5')) >>> density_sum = RealNumber('0.0') >>> total_count = RealNumber('0.0') >>> add_sample(RealNumber('0.1')) >>> expected_density = RealNumber('1.0') - (Integer(999)/Integer(1000))**Integer(200) >>> expected_density 0.1813... >>> while abs(density_sum/total_count - expected_density) > RealNumber('0.001'): ... add_sample(RealNumber('0.1'))
- rank()[source]¶
Return the rank of this matrix.
EXAMPLES:
sage: A = random_matrix(GF(3), 100, 100) sage: B = copy(A) sage: _ = A.rank() sage: B == A True sage: A = random_matrix(GF(3), 100, 100, density=0.01) sage: A.transpose().rank() == A.rank() True sage: A = matrix(GF(3), 100, 100) sage: A.rank() 0
>>> from sage.all import * >>> A = random_matrix(GF(Integer(3)), Integer(100), Integer(100)) >>> B = copy(A) >>> _ = A.rank() >>> B == A True >>> A = random_matrix(GF(Integer(3)), Integer(100), Integer(100), density=RealNumber('0.01')) >>> A.transpose().rank() == A.rank() True >>> A = matrix(GF(Integer(3)), Integer(100), Integer(100)) >>> A.rank() 0
Rank is not implemented over the integers modulo a composite yet.:
sage: M = matrix(Integers(4), 2, [2,2,2,2]) sage: M.rank() Traceback (most recent call last): ... NotImplementedError: Echelon form not implemented over 'Ring of integers modulo 4'.
>>> from sage.all import * >>> M = matrix(Integers(Integer(4)), Integer(2), [Integer(2),Integer(2),Integer(2),Integer(2)]) >>> M.rank() Traceback (most recent call last): ... NotImplementedError: Echelon form not implemented over 'Ring of integers modulo 4'.
sage: # needs sage.rings.finite_rings sage: A = random_matrix(GF(16007), 100, 100) sage: B = copy(A) sage: A.rank() 100 sage: B == A True sage: MS = A.parent() sage: MS(1) == ~A*A True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> A = random_matrix(GF(Integer(16007)), Integer(100), Integer(100)) >>> B = copy(A) >>> A.rank() 100 >>> B == A True >>> MS = A.parent() >>> MS(Integer(1)) == ~A*A True
- right_kernel_matrix(algorithm='linbox', basis='echelon')[source]¶
Return a matrix whose rows form a basis for the right kernel of
self
.If the base ring is the ring of integers modulo a composite, the keyword arguments are ignored and the computation is delegated to
Matrix_dense.right_kernel_matrix()
.INPUT:
algorithm
– (default:'linbox'
) a parameter that is passed on toself.echelon_form
, if computation of an echelon form is required; see that routine for allowable valuesbasis
– (default:'echelon'
) a keyword that describes the format of the basis returned, allowable values are:'echelon'
: the basis matrix is in echelon form'pivot'
: the basis matrix is such that the submatrix obtainedby taking the columns that in
self
contain no pivots, is the identity matrix
'computed'
: no work is done to transform the basis; inthe current implementation the result is the negative of that returned by
'pivot'
OUTPUT:
A matrix
X
whose rows are a basis for the right kernel ofself
. This means thatself * X.transpose()
is a zero matrix.The result is not cached, but the routine benefits when
self
is known to be in echelon form already.EXAMPLES:
sage: M = matrix(GF(5),6,6,range(36)) sage: M.right_kernel_matrix(basis='computed') [4 2 4 0 0 0] [3 3 0 4 0 0] [2 4 0 0 4 0] [1 0 0 0 0 4] sage: M.right_kernel_matrix(basis='pivot') [1 3 1 0 0 0] [2 2 0 1 0 0] [3 1 0 0 1 0] [4 0 0 0 0 1] sage: M.right_kernel_matrix() [1 0 0 0 0 4] [0 1 0 0 1 3] [0 0 1 0 2 2] [0 0 0 1 3 1] sage: M * M.right_kernel_matrix().transpose() [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0]
>>> from sage.all import * >>> M = matrix(GF(Integer(5)),Integer(6),Integer(6),range(Integer(36))) >>> M.right_kernel_matrix(basis='computed') [4 2 4 0 0 0] [3 3 0 4 0 0] [2 4 0 0 4 0] [1 0 0 0 0 4] >>> M.right_kernel_matrix(basis='pivot') [1 3 1 0 0 0] [2 2 0 1 0 0] [3 1 0 0 1 0] [4 0 0 0 0 1] >>> M.right_kernel_matrix() [1 0 0 0 0 4] [0 1 0 0 1 3] [0 0 1 0 2 2] [0 0 0 1 3 1] >>> M * M.right_kernel_matrix().transpose() [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0]
- submatrix(row=0, col=0, nrows=-1, ncols=-1)[source]¶
Return the matrix constructed from
self
using the specified range of rows and columns.INPUT:
row
,col
– index of the starting row and column; indices start at zeronrows
,ncols
– (optional) number of rows and columns to take; if not provided, take all rows below and all columns to the right of the starting entry
See also
The functions
matrix_from_rows()
,matrix_from_columns()
, andmatrix_from_rows_and_columns()
allow one to select arbitrary subsets of rows and/or columns.EXAMPLES:
Take the \(3 \times 3\) submatrix starting from entry \((1,1)\) in a \(4 \times 4\) matrix:
sage: m = matrix(GF(17),4, [1..16]) sage: m.submatrix(1, 1) [ 6 7 8] [10 11 12] [14 15 16]
>>> from sage.all import * >>> m = matrix(GF(Integer(17)),Integer(4), (ellipsis_range(Integer(1),Ellipsis,Integer(16)))) >>> m.submatrix(Integer(1), Integer(1)) [ 6 7 8] [10 11 12] [14 15 16]
Same thing, except take only two rows:
sage: m.submatrix(1, 1, 2) [ 6 7 8] [10 11 12]
>>> from sage.all import * >>> m.submatrix(Integer(1), Integer(1), Integer(2)) [ 6 7 8] [10 11 12]
And now take only one column:
sage: m.submatrix(1, 1, 2, 1) [ 6] [10]
>>> from sage.all import * >>> m.submatrix(Integer(1), Integer(1), Integer(2), Integer(1)) [ 6] [10]
You can take zero rows or columns if you want:
sage: m.submatrix(0, 0, 0) [] sage: parent(m.submatrix(0, 0, 0)) Full MatrixSpace of 0 by 4 dense matrices over Finite Field of size 17
>>> from sage.all import * >>> m.submatrix(Integer(0), Integer(0), Integer(0)) [] >>> parent(m.submatrix(Integer(0), Integer(0), Integer(0))) Full MatrixSpace of 0 by 4 dense matrices over Finite Field of size 17
- transpose()[source]¶
Return the transpose of
self
, without changingself
.EXAMPLES:
We create a matrix, compute its transpose, and note that the original matrix is not changed.
sage: M = MatrixSpace(GF(41), 2) sage: A = M([1,2,3,4]) sage: B = A.transpose() sage: B [1 3] [2 4] sage: A [1 2] [3 4]
>>> from sage.all import * >>> M = MatrixSpace(GF(Integer(41)), Integer(2)) >>> A = M([Integer(1),Integer(2),Integer(3),Integer(4)]) >>> B = A.transpose() >>> B [1 3] [2 4] >>> A [1 2] [3 4]
.T
is a convenient shortcut for the transpose:sage: A.T [1 3] [2 4]
>>> from sage.all import * >>> A.T [1 3] [2 4]
sage: A.subdivide(None, 1); A [1|2] [3|4] sage: A.transpose() [1 3] [---] [2 4]
>>> from sage.all import * >>> A.subdivide(None, Integer(1)); A [1|2] [3|4] >>> A.transpose() [1 3] [---] [2 4]