Generic Asymptotically Fast Strassen Algorithms¶
This implements asymptotically fast echelon form and matrix multiplication algorithms.
- class sage.matrix.strassen.int_range(indices=None, range=None)[source]¶
Bases:
object
Represent a list of integers as a list of integer intervals.
Note
Repetitions are not considered.
Useful class for dealing with pivots in the Strassen echelon, could have much more general application
INPUT:
It can be one of the following:
indices
– integer; start of the unique intervalrange
– integer; length of the unique interval
OR
indices
– list of integers, the integers to wrap into intervals
OR
indices
–None
(default), shortcut for an empty list
OUTPUT:
An instance of
int_range
, i.e. a list of pairs(start, length)
.EXAMPLES:
From a pair of integers:
sage: from sage.matrix.strassen import int_range sage: int_range(2, 4) [(2, 4)]
>>> from sage.all import * >>> from sage.matrix.strassen import int_range >>> int_range(Integer(2), Integer(4)) [(2, 4)]
Default:
sage: int_range() []
>>> from sage.all import * >>> int_range() []
From a list of integers:
sage: int_range([1,2,3,4]) [(1, 4)] sage: int_range([1,2,3,4,6,7,8]) [(1, 4), (6, 3)] sage: int_range([1,2,3,4,100,101,102]) [(1, 4), (100, 3)] sage: int_range([1,1000,2,101,3,4,100,102]) [(1, 4), (100, 3), (1000, 1)]
>>> from sage.all import * >>> int_range([Integer(1),Integer(2),Integer(3),Integer(4)]) [(1, 4)] >>> int_range([Integer(1),Integer(2),Integer(3),Integer(4),Integer(6),Integer(7),Integer(8)]) [(1, 4), (6, 3)] >>> int_range([Integer(1),Integer(2),Integer(3),Integer(4),Integer(100),Integer(101),Integer(102)]) [(1, 4), (100, 3)] >>> int_range([Integer(1),Integer(1000),Integer(2),Integer(101),Integer(3),Integer(4),Integer(100),Integer(102)]) [(1, 4), (100, 3), (1000, 1)]
Repetitions are not considered:
sage: int_range([1,2,3]) [(1, 3)] sage: int_range([1,1,1,1,2,2,2,3]) [(1, 3)]
>>> from sage.all import * >>> int_range([Integer(1),Integer(2),Integer(3)]) [(1, 3)] >>> int_range([Integer(1),Integer(1),Integer(1),Integer(1),Integer(2),Integer(2),Integer(2),Integer(3)]) [(1, 3)]
AUTHORS:
Robert Bradshaw
- intervals()[source]¶
Return the list of intervals.
OUTPUT: list of pairs of integers
EXAMPLES:
sage: from sage.matrix.strassen import int_range sage: I = int_range([4,5,6,20,21,22,23]) sage: I.intervals() [(4, 3), (20, 4)] sage: type(I.intervals()) <... 'list'>
>>> from sage.all import * >>> from sage.matrix.strassen import int_range >>> I = int_range([Integer(4),Integer(5),Integer(6),Integer(20),Integer(21),Integer(22),Integer(23)]) >>> I.intervals() [(4, 3), (20, 4)] >>> type(I.intervals()) <... 'list'>
- to_list()[source]¶
Return the (sorted) list of integers represented by this object.
OUTPUT: list of integers
EXAMPLES:
sage: from sage.matrix.strassen import int_range sage: I = int_range([6,20,21,4,5,22,23]) sage: I.to_list() [4, 5, 6, 20, 21, 22, 23]
>>> from sage.all import * >>> from sage.matrix.strassen import int_range >>> I = int_range([Integer(6),Integer(20),Integer(21),Integer(4),Integer(5),Integer(22),Integer(23)]) >>> I.to_list() [4, 5, 6, 20, 21, 22, 23]
sage: I = int_range(34, 9) sage: I.to_list() [34, 35, 36, 37, 38, 39, 40, 41, 42]
>>> from sage.all import * >>> I = int_range(Integer(34), Integer(9)) >>> I.to_list() [34, 35, 36, 37, 38, 39, 40, 41, 42]
Repetitions are not considered:
sage: I = int_range([1,1,1,1,2,2,2,3]) sage: I.to_list() [1, 2, 3]
>>> from sage.all import * >>> I = int_range([Integer(1),Integer(1),Integer(1),Integer(1),Integer(2),Integer(2),Integer(2),Integer(3)]) >>> I.to_list() [1, 2, 3]
- sage.matrix.strassen.strassen_echelon(A, cutoff)[source]¶
Compute echelon form, in place. Internal function, call with M.echelonize(algorithm=’strassen’)
Based on work of Robert Bradshaw and David Harvey at MSRI workshop in 2006.
INPUT:
A
– matrix windowcutoff
– size at which algorithm reverts to naive Gaussian elimination and multiplication must be at least 1
OUTPUT: the list of pivot columns
EXAMPLES:
sage: A = matrix(QQ, 7, [5, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 3, 1, 0, -1, 0, 0, -1, 0, 1, 2, -1, 1, 0, -1, 0, 1, 3, -1, 1, 0, 0, -2, 0, 2, 0, 1, 0, 0, -1, 0, 1, 0, 1]) sage: B = A.__copy__(); B._echelon_strassen(1); B [ 1 0 0 0 0 0 0] [ 0 1 0 -1 0 1 0] [ 0 0 1 0 0 0 0] [ 0 0 0 0 1 0 0] [ 0 0 0 0 0 0 1] [ 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0] sage: C = A.__copy__(); C._echelon_strassen(2); C == B True sage: C = A.__copy__(); C._echelon_strassen(4); C == B True
>>> from sage.all import * >>> A = matrix(QQ, Integer(7), [Integer(5), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), -Integer(1), Integer(0), Integer(0), Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), -Integer(1), Integer(3), Integer(1), Integer(0), -Integer(1), Integer(0), Integer(0), -Integer(1), Integer(0), Integer(1), Integer(2), -Integer(1), Integer(1), Integer(0), -Integer(1), Integer(0), Integer(1), Integer(3), -Integer(1), Integer(1), Integer(0), Integer(0), -Integer(2), Integer(0), Integer(2), Integer(0), Integer(1), Integer(0), Integer(0), -Integer(1), Integer(0), Integer(1), Integer(0), Integer(1)]) >>> B = A.__copy__(); B._echelon_strassen(Integer(1)); B [ 1 0 0 0 0 0 0] [ 0 1 0 -1 0 1 0] [ 0 0 1 0 0 0 0] [ 0 0 0 0 1 0 0] [ 0 0 0 0 0 0 1] [ 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0] >>> C = A.__copy__(); C._echelon_strassen(Integer(2)); C == B True >>> C = A.__copy__(); C._echelon_strassen(Integer(4)); C == B True
sage: n = 32; A = matrix(Integers(389),n,range(n^2)) sage: B = A.__copy__(); B._echelon_in_place_classical() sage: C = A.__copy__(); C._echelon_strassen(2) sage: B == C True
>>> from sage.all import * >>> n = Integer(32); A = matrix(Integers(Integer(389)),n,range(n**Integer(2))) >>> B = A.__copy__(); B._echelon_in_place_classical() >>> C = A.__copy__(); C._echelon_strassen(Integer(2)) >>> B == C True
AUTHORS:
Robert Bradshaw
- sage.matrix.strassen.strassen_window_multiply(C, A, B, cutoff)[source]¶
Multiply the submatrices specified by A and B, places result in C. Assumes that A and B have compatible dimensions to be multiplied, and that C is the correct size to receive the product, and that they are all defined over the same ring.
Uses Strassen multiplication at high levels and then uses MatrixWindow methods at low levels.
EXAMPLES: The following matrix dimensions are chosen especially to exercise the eight possible parity combinations that could occur while subdividing the matrix in the Strassen recursion. The base case in both cases will be a (4x5) matrix times a (5x6) matrix.
sage: A = MatrixSpace(Integers(2^65), 64, 83).random_element() sage: B = MatrixSpace(Integers(2^65), 83, 101).random_element() sage: A._multiply_classical(B) == A._multiply_strassen(B, 3) #indirect doctest True
>>> from sage.all import * >>> A = MatrixSpace(Integers(Integer(2)**Integer(65)), Integer(64), Integer(83)).random_element() >>> B = MatrixSpace(Integers(Integer(2)**Integer(65)), Integer(83), Integer(101)).random_element() >>> A._multiply_classical(B) == A._multiply_strassen(B, Integer(3)) #indirect doctest True
AUTHORS:
David Harvey
Simon King (2011-07): Improve memory efficiency; Issue #11610
- sage.matrix.strassen.test(n, m, R, c=2)[source]¶
Test code for the Strassen algorithm.
INPUT:
n
– integerm
– integerR
– ringc
– integer (default: 2)
EXAMPLES:
sage: from sage.matrix.strassen import test sage: for n in range(5): ....: print("{} {}".format(n, test(2*n,n,Frac(QQ['x']),2))) 0 True 1 True 2 True 3 True 4 True
>>> from sage.all import * >>> from sage.matrix.strassen import test >>> for n in range(Integer(5)): ... print("{} {}".format(n, test(Integer(2)*n,n,Frac(QQ['x']),Integer(2)))) 0 True 1 True 2 True 3 True 4 True