Dense matrices over the rational field¶
EXAMPLES:
We create a 3x3 matrix with rational entries and do some operations with it.
sage: a = matrix(QQ, 3,3, [1,2/3, -4/5, 1,1,1, 8,2, -3/19]); a
[ 1 2/3 -4/5]
[ 1 1 1]
[ 8 2 -3/19]
sage: a.det()
2303/285
sage: a.charpoly()
x^3 - 35/19*x^2 + 1259/285*x - 2303/285
sage: b = a^(-1); b
[ -615/2303 -426/2303 418/2303]
[ 2325/2303 1779/2303 -513/2303]
[-1710/2303 950/2303 95/2303]
sage: b.det()
285/2303
sage: a == b
False
sage: a < b
False
sage: b < a
True
sage: a > b
True
sage: a*b
[1 0 0]
[0 1 0]
[0 0 1]
>>> from sage.all import *
>>> a = matrix(QQ, Integer(3),Integer(3), [Integer(1),Integer(2)/Integer(3), -Integer(4)/Integer(5), Integer(1),Integer(1),Integer(1), Integer(8),Integer(2), -Integer(3)/Integer(19)]); a
[ 1 2/3 -4/5]
[ 1 1 1]
[ 8 2 -3/19]
>>> a.det()
2303/285
>>> a.charpoly()
x^3 - 35/19*x^2 + 1259/285*x - 2303/285
>>> b = a**(-Integer(1)); b
[ -615/2303 -426/2303 418/2303]
[ 2325/2303 1779/2303 -513/2303]
[-1710/2303 950/2303 95/2303]
>>> b.det()
285/2303
>>> a == b
False
>>> a < b
False
>>> b < a
True
>>> a > b
True
>>> a*b
[1 0 0]
[0 1 0]
[0 0 1]
- class sage.matrix.matrix_rational_dense.MatrixWindow¶
Bases:
object
- class sage.matrix.matrix_rational_dense.Matrix_rational_dense[source]¶
Bases:
Matrix_dense
INPUT:
parent
– a matrix space overQQ
entries
– seematrix()
copy
– ignored (for backwards compatibility)coerce
– ifFalse
, assume without checking that the entries are of typeRational
- BKZ(*args, **kwargs)[source]¶
Return the result of running Block Korkin-Zolotarev reduction on
self
interpreted as a lattice.The arguments
*args
and**kwargs
are passed ontosage.matrix.matrix_integer_dense.Matrix_integer_dense.BKZ()
, see there for more details.EXAMPLES:
sage: A = Matrix(QQ, 3, 3, [1/n for n in range(1, 10)]) sage: A.BKZ() [ 1/28 -1/40 -1/18] [ 1/28 -1/40 1/18] [-1/14 -1/40 0] sage: A = random_matrix(QQ, 10, 10) sage: d = lcm(a.denom() for a in A.list()) sage: A.BKZ() == (A * d).change_ring(ZZ).BKZ() / d True
>>> from sage.all import * >>> A = Matrix(QQ, Integer(3), Integer(3), [Integer(1)/n for n in range(Integer(1), Integer(10))]) >>> A.BKZ() [ 1/28 -1/40 -1/18] [ 1/28 -1/40 1/18] [-1/14 -1/40 0] >>> A = random_matrix(QQ, Integer(10), Integer(10)) >>> d = lcm(a.denom() for a in A.list()) >>> A.BKZ() == (A * d).change_ring(ZZ).BKZ() / d True
- LLL(*args, **kwargs)[source]¶
Return an LLL reduced or approximated LLL reduced lattice for
self
interpreted as a lattice.The arguments
*args
and**kwargs
are passed ontosage.matrix.matrix_integer_dense.Matrix_integer_dense.LLL()
, see there for more details.EXAMPLES:
sage: A = Matrix(QQ, 3, 3, [1/n for n in range(1, 10)]) sage: A.LLL() [ 1/28 -1/40 -1/18] [ 1/28 -1/40 1/18] [ 0 -3/40 0] sage: L, U = A.LLL(transformation=True) sage: U * A == L True sage: A = random_matrix(QQ, 10, 10) sage: d = lcm(a.denom() for a in A.list()) sage: A.LLL() == (A * d).change_ring(ZZ).LLL() / d True
>>> from sage.all import * >>> A = Matrix(QQ, Integer(3), Integer(3), [Integer(1)/n for n in range(Integer(1), Integer(10))]) >>> A.LLL() [ 1/28 -1/40 -1/18] [ 1/28 -1/40 1/18] [ 0 -3/40 0] >>> L, U = A.LLL(transformation=True) >>> U * A == L True >>> A = random_matrix(QQ, Integer(10), Integer(10)) >>> d = lcm(a.denom() for a in A.list()) >>> A.LLL() == (A * d).change_ring(ZZ).LLL() / d True
- add_to_entry(i, j, elt)[source]¶
Add
elt
to the entry at position(i,j)
.EXAMPLES:
sage: m = matrix(QQ, 2, 2) sage: m.add_to_entry(0, 0, -1/3) sage: m [-1/3 0] [ 0 0]
>>> from sage.all import * >>> m = matrix(QQ, Integer(2), Integer(2)) >>> m.add_to_entry(Integer(0), Integer(0), -Integer(1)/Integer(3)) >>> m [-1/3 0] [ 0 0]
- antitranspose()[source]¶
Return the antitranspose of
self
, without changingself
.EXAMPLES:
sage: A = matrix(QQ,2,3,range(6)) sage: type(A) <class 'sage.matrix.matrix_rational_dense.Matrix_rational_dense'> sage: A.antitranspose() [5 2] [4 1] [3 0] sage: A [0 1 2] [3 4 5] sage: A.subdivide(1,2); A [0 1|2] [---+-] [3 4|5] sage: A.antitranspose() [5|2] [-+-] [4|1] [3|0]
>>> from sage.all import * >>> A = matrix(QQ,Integer(2),Integer(3),range(Integer(6))) >>> type(A) <class 'sage.matrix.matrix_rational_dense.Matrix_rational_dense'> >>> A.antitranspose() [5 2] [4 1] [3 0] >>> A [0 1 2] [3 4 5] >>> A.subdivide(Integer(1),Integer(2)); A [0 1|2] [---+-] [3 4|5] >>> A.antitranspose() [5|2] [-+-] [4|1] [3|0]
- change_ring(R)[source]¶
Create the matrix over R with entries the entries of
self
coerced into R.EXAMPLES:
sage: a = matrix(QQ,2,[1/2,-1,2,3]) sage: a.change_ring(GF(3)) [2 2] [2 0] sage: a.change_ring(ZZ) Traceback (most recent call last): ... TypeError: matrix has denominators so can...t change to ZZ sage: b = a.change_ring(QQ['x']); b [1/2 -1] [ 2 3] sage: b.parent() Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring in x over Rational Field
>>> from sage.all import * >>> a = matrix(QQ,Integer(2),[Integer(1)/Integer(2),-Integer(1),Integer(2),Integer(3)]) >>> a.change_ring(GF(Integer(3))) [2 2] [2 0] >>> a.change_ring(ZZ) Traceback (most recent call last): ... TypeError: matrix has denominators so can...t change to ZZ >>> b = a.change_ring(QQ['x']); b [1/2 -1] [ 2 3] >>> b.parent() Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring in x over Rational Field
- charpoly(var='x', algorithm=None)[source]¶
Return the characteristic polynomial of this matrix.
Note
The characteristic polynomial is defined as \(\det(xI-A)\).
INPUT:
var
– (optional) name of the variable as a stringalgorithm
– an optional specification of an algorithm. It can be one of:None
: (default) will use flint for small dimensions and linbox otherwise'flint'
: uses flint library'linbox'
: uses linbox library'generic'
: uses Sage generic implementation
OUTPUT: a polynomial over the rational numbers
EXAMPLES:
sage: a = matrix(QQ, 3, [4/3, 2/5, 1/5, 4, -3/2, 0, 0, -2/3, 3/4]) sage: f = a.charpoly(); f x^3 - 7/12*x^2 - 149/40*x + 97/30 sage: f(a) [0 0 0] [0 0 0] [0 0 0]
>>> from sage.all import * >>> a = matrix(QQ, Integer(3), [Integer(4)/Integer(3), Integer(2)/Integer(5), Integer(1)/Integer(5), Integer(4), -Integer(3)/Integer(2), Integer(0), Integer(0), -Integer(2)/Integer(3), Integer(3)/Integer(4)]) >>> f = a.charpoly(); f x^3 - 7/12*x^2 - 149/40*x + 97/30 >>> f(a) [0 0 0] [0 0 0] [0 0 0]
- column(i, from_list=False)[source]¶
Return the \(i\)-th column of this matrix as a dense vector.
INPUT:
i
– integerfrom_list
– ignored
EXAMPLES:
sage: m = matrix(QQ, 3, 2, [1/5,-2/3,3/4,4/9,-1,0]) sage: m.column(1) (-2/3, 4/9, 0) sage: m.column(1,from_list=True) (-2/3, 4/9, 0) sage: m.column(-1) (-2/3, 4/9, 0) sage: m.column(-2) (1/5, 3/4, -1) sage: m.column(2) Traceback (most recent call last): ... IndexError: column index out of range sage: m.column(-3) Traceback (most recent call last): ... IndexError: column index out of range
>>> from sage.all import * >>> m = matrix(QQ, Integer(3), Integer(2), [Integer(1)/Integer(5),-Integer(2)/Integer(3),Integer(3)/Integer(4),Integer(4)/Integer(9),-Integer(1),Integer(0)]) >>> m.column(Integer(1)) (-2/3, 4/9, 0) >>> m.column(Integer(1),from_list=True) (-2/3, 4/9, 0) >>> m.column(-Integer(1)) (-2/3, 4/9, 0) >>> m.column(-Integer(2)) (1/5, 3/4, -1) >>> m.column(Integer(2)) Traceback (most recent call last): ... IndexError: column index out of range >>> m.column(-Integer(3)) Traceback (most recent call last): ... IndexError: column index out of range
- decomposition(is_diagonalizable=False, dual=False, algorithm=None, height_guess=None, proof=None)[source]¶
Return the decomposition of the free module on which this matrix A acts from the right (i.e., the action is x goes to x A), along with whether this matrix acts irreducibly on each factor. The factors are guaranteed to be sorted in the same way as the corresponding factors of the characteristic polynomial.
Let A be the matrix acting from the on the vector space V of column vectors. Assume that A is square. This function computes maximal subspaces W_1, …, W_n corresponding to Galois conjugacy classes of eigenvalues of A. More precisely, let f(X) be the characteristic polynomial of A. This function computes the subspace \(W_i = ker(g_(A)^n)\), where g_i(X) is an irreducible factor of f(X) and g_i(X) exactly divides f(X). If the optional parameter is_diagonalizable is True, then we let W_i = ker(g(A)), since then we know that ker(g(A)) = \(ker(g(A)^n)\).
If dual is True, also returns the corresponding decomposition of V under the action of the transpose of A. The factors are guaranteed to correspond.
INPUT:
is_diagonalizable
– ignoreddual
– whether to also return decompositions for the dualalgorithm
– an optional specification of an algorithmNone
– (default) use default algorithm for computing Echelon forms‘multimodular’: much better if the answers factors have small height
height_guess
– positive integer; only used by the multimodular algorithmproof
– boolean orNone
(default:None
, see proof.linear_algebra or sage.structure.proof); only used by the multimodular algorithm. Note that the Sage global default is proof=True.
Note
IMPORTANT: If you expect that the subspaces in the answer are spanned by vectors with small height coordinates, use algorithm=’multimodular’ and height_guess=1; this is potentially much faster than the default. If you know for a fact the answer will be very small, use algorithm=’multimodular’, height_guess=bound on height, proof=False.
You can get very very fast decomposition with proof=False.
EXAMPLES:
sage: a = matrix(QQ,3,[1..9]) sage: a.decomposition() [ (Vector space of degree 3 and dimension 1 over Rational Field Basis matrix: [ 1 -2 1], True), (Vector space of degree 3 and dimension 2 over Rational Field Basis matrix: [ 1 0 -1] [ 0 1 2], True) ]
>>> from sage.all import * >>> a = matrix(QQ,Integer(3),(ellipsis_range(Integer(1),Ellipsis,Integer(9)))) >>> a.decomposition() [ (Vector space of degree 3 and dimension 1 over Rational Field Basis matrix: [ 1 -2 1], True), (Vector space of degree 3 and dimension 2 over Rational Field Basis matrix: [ 1 0 -1] [ 0 1 2], True) ]
- denominator()[source]¶
Return the denominator of this matrix.
OUTPUT: a Sage Integer
EXAMPLES:
sage: b = matrix(QQ,2,range(6)); b[0,0]=-5007/293; b [-5007/293 1 2] [ 3 4 5] sage: b.denominator() 293 sage: matrix(QQ, 2, [1/2, 1/3, 1/4, 1/5]).denominator() 60
>>> from sage.all import * >>> b = matrix(QQ,Integer(2),range(Integer(6))); b[Integer(0),Integer(0)]=-Integer(5007)/Integer(293); b [-5007/293 1 2] [ 3 4 5] >>> b.denominator() 293 >>> matrix(QQ, Integer(2), [Integer(1)/Integer(2), Integer(1)/Integer(3), Integer(1)/Integer(4), Integer(1)/Integer(5)]).denominator() 60
- determinant(algorithm=None, proof=None)[source]¶
Return the determinant of this matrix.
INPUT:
algorithm
– an optional specification of an algorithm. It can be one ofNone
: (default) uses flint'flint'
: uses flint library'pari'
: uses PARI library'integer'
: removes denominator and call determinant on the correspondinginteger matrix
'generic'
: calls the generic Sage implementation
proof
– boolean orNone
; ifNone
use proof.linear_algebra(); only relevant for the padic algorithm
Note
It would be VERY VERY hard for det to fail even with proof=False.
EXAMPLES:
sage: m = matrix(QQ,3,[1,2/3,4/5, 2,2,2, 5,3,2/5]) sage: m.determinant() -34/15 sage: m.charpoly() x^3 - 17/5*x^2 - 122/15*x + 34/15 sage: m = matrix(QQ, 3, [(1/i)**j for i in range(2,5) for j in range(3)]) sage: m.determinant(algorithm='flint') -1/288 sage: m = matrix(QQ, 4, [(-1)**n/n for n in range(1,17)]) sage: m.determinant(algorithm='pari') 2/70945875 sage: m = matrix(QQ, 5, [1/(i+j+1) for i in range(5) for j in range(5)]) sage: m.determinant(algorithm='integer') 1/266716800000
>>> from sage.all import * >>> m = matrix(QQ,Integer(3),[Integer(1),Integer(2)/Integer(3),Integer(4)/Integer(5), Integer(2),Integer(2),Integer(2), Integer(5),Integer(3),Integer(2)/Integer(5)]) >>> m.determinant() -34/15 >>> m.charpoly() x^3 - 17/5*x^2 - 122/15*x + 34/15 >>> m = matrix(QQ, Integer(3), [(Integer(1)/i)**j for i in range(Integer(2),Integer(5)) for j in range(Integer(3))]) >>> m.determinant(algorithm='flint') -1/288 >>> m = matrix(QQ, Integer(4), [(-Integer(1))**n/n for n in range(Integer(1),Integer(17))]) >>> m.determinant(algorithm='pari') 2/70945875 >>> m = matrix(QQ, Integer(5), [Integer(1)/(i+j+Integer(1)) for i in range(Integer(5)) for j in range(Integer(5))]) >>> m.determinant(algorithm='integer') 1/266716800000
On non-square matrices, the method raises a
ValueError
:sage: matrix(QQ, 2, 3).determinant(algorithm='flint') Traceback (most recent call last): ... ValueError: non square matrix sage: matrix(QQ, 2, 3).determinant(algorithm='pari') Traceback (most recent call last): ... ValueError: non square matrix sage: matrix(QQ, 2, 3).determinant(algorithm='integer') Traceback (most recent call last): ... ValueError: non square matrix sage: matrix(QQ, 2, 3).determinant(algorithm='generic') Traceback (most recent call last): ... ValueError: non square matrix
>>> from sage.all import * >>> matrix(QQ, Integer(2), Integer(3)).determinant(algorithm='flint') Traceback (most recent call last): ... ValueError: non square matrix >>> matrix(QQ, Integer(2), Integer(3)).determinant(algorithm='pari') Traceback (most recent call last): ... ValueError: non square matrix >>> matrix(QQ, Integer(2), Integer(3)).determinant(algorithm='integer') Traceback (most recent call last): ... ValueError: non square matrix >>> matrix(QQ, Integer(2), Integer(3)).determinant(algorithm='generic') Traceback (most recent call last): ... ValueError: non square matrix
- echelon_form(algorithm=None, height_guess=None, proof=None, **kwds)[source]¶
Return the echelon form of this matrix.
The (row) echelon form of a matrix, see Wikipedia article Row_echelon_form, is the matrix obtained by performing Gauss elimination on the rows of the matrix.
INPUT: See
echelonize()
for the options.EXAMPLES:
sage: a = matrix(QQ, 4, range(16)); a[0,0] = 1/19; a[0,1] = 1/5; a [1/19 1/5 2 3] [ 4 5 6 7] [ 8 9 10 11] [ 12 13 14 15] sage: a.echelon_form() [ 1 0 0 -76/157] [ 0 1 0 -5/157] [ 0 0 1 238/157] [ 0 0 0 0] sage: a.echelon_form(algorithm='multimodular') [ 1 0 0 -76/157] [ 0 1 0 -5/157] [ 0 0 1 238/157] [ 0 0 0 0]
>>> from sage.all import * >>> a = matrix(QQ, Integer(4), range(Integer(16))); a[Integer(0),Integer(0)] = Integer(1)/Integer(19); a[Integer(0),Integer(1)] = Integer(1)/Integer(5); a [1/19 1/5 2 3] [ 4 5 6 7] [ 8 9 10 11] [ 12 13 14 15] >>> a.echelon_form() [ 1 0 0 -76/157] [ 0 1 0 -5/157] [ 0 0 1 238/157] [ 0 0 0 0] >>> a.echelon_form(algorithm='multimodular') [ 1 0 0 -76/157] [ 0 1 0 -5/157] [ 0 0 1 238/157] [ 0 0 0 0]
The result is an immutable matrix, so if you want to modify the result then you need to make a copy. This checks that Issue #10543 is fixed.:
sage: A = matrix(QQ, 2, range(6)) sage: E = A.echelon_form() sage: E.is_mutable() False sage: F = copy(E) sage: F[0,0] = 50 sage: F [50 0 -1] [ 0 1 2]
>>> from sage.all import * >>> A = matrix(QQ, Integer(2), range(Integer(6))) >>> E = A.echelon_form() >>> E.is_mutable() False >>> F = copy(E) >>> F[Integer(0),Integer(0)] = Integer(50) >>> F [50 0 -1] [ 0 1 2]
- echelonize(algorithm=None, height_guess=None, proof=None, **kwds)[source]¶
Transform the matrix
self
into reduced row echelon form in place.INPUT:
algorithm
– an optional specification of an algorithm. One ofNone
: (default) uses flint for small dimension and multimodular otherwise'flint'
: use the flint library,'padic'
: an algorithm based on the IML \(p\)-adic solver,'multimodular'
: uses a multimodular algorithm the uses linbox modulo many primes (likely to be faster when coefficients are huge),'classical'
: just clear each column using Gauss elimination.
height_guess
,**kwds
– all passed to the multimodular algorithm; ignored by other algorithmsproof
– boolean orNone
(default: None, see proof.linear_algebra or sage.structure.proof). Passed to the multimodular algorithm. Note that the Sage global default isproof=True
.
EXAMPLES:
sage: a = matrix(QQ, 4, range(16)); a[0,0] = 1/19; a[0,1] = 1/5; a [1/19 1/5 2 3] [ 4 5 6 7] [ 8 9 10 11] [ 12 13 14 15] sage: a.echelonize() sage: a [ 1 0 0 -76/157] [ 0 1 0 -5/157] [ 0 0 1 238/157] [ 0 0 0 0]
>>> from sage.all import * >>> a = matrix(QQ, Integer(4), range(Integer(16))); a[Integer(0),Integer(0)] = Integer(1)/Integer(19); a[Integer(0),Integer(1)] = Integer(1)/Integer(5); a [1/19 1/5 2 3] [ 4 5 6 7] [ 8 9 10 11] [ 12 13 14 15] >>> a.echelonize() >>> a [ 1 0 0 -76/157] [ 0 1 0 -5/157] [ 0 0 1 238/157] [ 0 0 0 0]
sage: a = matrix(QQ, 4, range(16)); a[0,0] = 1/19; a[0,1] = 1/5 sage: a.echelonize(algorithm='multimodular') sage: a [ 1 0 0 -76/157] [ 0 1 0 -5/157] [ 0 0 1 238/157] [ 0 0 0 0]
>>> from sage.all import * >>> a = matrix(QQ, Integer(4), range(Integer(16))); a[Integer(0),Integer(0)] = Integer(1)/Integer(19); a[Integer(0),Integer(1)] = Integer(1)/Integer(5) >>> a.echelonize(algorithm='multimodular') >>> a [ 1 0 0 -76/157] [ 0 1 0 -5/157] [ 0 0 1 238/157] [ 0 0 0 0]
- height()[source]¶
Return the height of this matrix, which is the maximum of the absolute values of all numerators and denominators of entries in this matrix.
OUTPUT: integer
EXAMPLES:
sage: b = matrix(QQ,2,range(6)); b[0,0]=-5007/293; b [-5007/293 1 2] [ 3 4 5] sage: b.height() 5007
>>> from sage.all import * >>> b = matrix(QQ,Integer(2),range(Integer(6))); b[Integer(0),Integer(0)]=-Integer(5007)/Integer(293); b [-5007/293 1 2] [ 3 4 5] >>> b.height() 5007
- inverse(algorithm=None, check_invertible=True)[source]¶
Return the inverse of this matrix.
INPUT:
algorithm
– an optional specification of an algorithm. It can be one ofNone
: (default) uses flint'flint'
: uses flint library'pari'
: uses PARI library'iml'
: uses IML library
check_invertible
– only used whenalgorithm=iml
; whether to check that matrix is invertible
EXAMPLES:
sage: a = matrix(QQ,3,[1,2,5,3,2,1,1,1,1,]) sage: a.inverse() [1/2 3/2 -4] [ -1 -2 7] [1/2 1/2 -2] sage: a = matrix(QQ, 2, [1, 5, 17, 3]) sage: a.inverse(algorithm='flint') [-3/82 5/82] [17/82 -1/82] sage: a.inverse(algorithm='flint') * a [1 0] [0 1] sage: a = matrix(QQ, 2, [-1, 5, 12, -3]) sage: a.inverse(algorithm='iml') [1/19 5/57] [4/19 1/57] sage: a.inverse(algorithm='iml') * a [1 0] [0 1] sage: a = matrix(QQ, 4, primes_first_n(16)) sage: a.inverse(algorithm='pari') [ 3/11 -12/55 -1/5 2/11] [ -5/11 -2/55 3/10 -3/22] [ -13/22 307/440 -1/10 -9/88] [ 15/22 -37/88 0 7/88]
>>> from sage.all import * >>> a = matrix(QQ,Integer(3),[Integer(1),Integer(2),Integer(5),Integer(3),Integer(2),Integer(1),Integer(1),Integer(1),Integer(1),]) >>> a.inverse() [1/2 3/2 -4] [ -1 -2 7] [1/2 1/2 -2] >>> a = matrix(QQ, Integer(2), [Integer(1), Integer(5), Integer(17), Integer(3)]) >>> a.inverse(algorithm='flint') [-3/82 5/82] [17/82 -1/82] >>> a.inverse(algorithm='flint') * a [1 0] [0 1] >>> a = matrix(QQ, Integer(2), [-Integer(1), Integer(5), Integer(12), -Integer(3)]) >>> a.inverse(algorithm='iml') [1/19 5/57] [4/19 1/57] >>> a.inverse(algorithm='iml') * a [1 0] [0 1] >>> a = matrix(QQ, Integer(4), primes_first_n(Integer(16))) >>> a.inverse(algorithm='pari') [ 3/11 -12/55 -1/5 2/11] [ -5/11 -2/55 3/10 -3/22] [ -13/22 307/440 -1/10 -9/88] [ 15/22 -37/88 0 7/88]
On singular matrices this method raises a
ZeroDivisionError
:sage: a = matrix(QQ, 2) sage: a.inverse(algorithm='flint') Traceback (most recent call last): ... ZeroDivisionError: input matrix must be nonsingular sage: a.inverse(algorithm='iml') Traceback (most recent call last): ... ZeroDivisionError: input matrix must be nonsingular sage: a.inverse(algorithm='pari') Traceback (most recent call last): ... ZeroDivisionError: input matrix must be nonsingular
>>> from sage.all import * >>> a = matrix(QQ, Integer(2)) >>> a.inverse(algorithm='flint') Traceback (most recent call last): ... ZeroDivisionError: input matrix must be nonsingular >>> a.inverse(algorithm='iml') Traceback (most recent call last): ... ZeroDivisionError: input matrix must be nonsingular >>> a.inverse(algorithm='pari') Traceback (most recent call last): ... ZeroDivisionError: input matrix must be nonsingular
- is_LLL_reduced(delta=None, eta=None)[source]¶
Return
True
if this lattice is \((\delta, \eta)\)-LLL reduced. For a definition of LLL reduction, seesage.matrix.matrix_integer_dense.Matrix_integer_dense.LLL()
.EXAMPLES:
sage: A = random_matrix(QQ, 10, 10) sage: L = A.LLL() sage: A.is_LLL_reduced() False sage: L.is_LLL_reduced() True
>>> from sage.all import * >>> A = random_matrix(QQ, Integer(10), Integer(10)) >>> L = A.LLL() >>> A.is_LLL_reduced() False >>> L.is_LLL_reduced() True
- matrix_from_columns(columns)[source]¶
Return the matrix constructed from
self
using columns with indices in the columns list.EXAMPLES:
sage: A = matrix(QQ, 3, range(9)) sage: A [0 1 2] [3 4 5] [6 7 8] sage: A.matrix_from_columns([2,1]) [2 1] [5 4] [8 7] sage: A.matrix_from_columns((2,1,0,2)) [2 1 0 2] [5 4 3 5] [8 7 6 8]
>>> from sage.all import * >>> A = matrix(QQ, Integer(3), range(Integer(9))) >>> A [0 1 2] [3 4 5] [6 7 8] >>> A.matrix_from_columns([Integer(2),Integer(1)]) [2 1] [5 4] [8 7] >>> A.matrix_from_columns((Integer(2),Integer(1),Integer(0),Integer(2))) [2 1 0 2] [5 4 3 5] [8 7 6 8]
- minpoly(var='x', algorithm=None)[source]¶
Return the minimal polynomial of this matrix.
INPUT:
var
– (optional) the variable name as a string (default:'x'
)algorithm
– an optional specification of an algorithm. It can be one ofNone
: (default) will use linbox'linbox'
: uses the linbox library'generic'
: uses the generic Sage implementation
OUTPUT: a polynomial over the rationals
EXAMPLES:
sage: a = matrix(QQ, 3, [4/3, 2/5, 1/5, 4, -3/2, 0, 0, -2/3, 3/4]) sage: f = a.minpoly(); f x^3 - 7/12*x^2 - 149/40*x + 97/30 sage: a = Mat(ZZ,4)(range(16)) sage: f = a.minpoly(); f.factor() x * (x^2 - 30*x - 80) sage: f(a) == 0 True
>>> from sage.all import * >>> a = matrix(QQ, Integer(3), [Integer(4)/Integer(3), Integer(2)/Integer(5), Integer(1)/Integer(5), Integer(4), -Integer(3)/Integer(2), Integer(0), Integer(0), -Integer(2)/Integer(3), Integer(3)/Integer(4)]) >>> f = a.minpoly(); f x^3 - 7/12*x^2 - 149/40*x + 97/30 >>> a = Mat(ZZ,Integer(4))(range(Integer(16))) >>> f = a.minpoly(); f.factor() x * (x^2 - 30*x - 80) >>> f(a) == Integer(0) True
sage: a = matrix(QQ, 4, [1..4^2]) sage: factor(a.minpoly()) x * (x^2 - 34*x - 80) sage: factor(a.minpoly('y')) y * (y^2 - 34*y - 80) sage: factor(a.charpoly()) x^2 * (x^2 - 34*x - 80) sage: b = matrix(QQ, 4, [-1, 2, 2, 0, 0, 4, 2, 2, 0, 0, -1, -2, 0, -4, 0, 4]) sage: a = matrix(QQ, 4, [1, 1, 0,0, 0,1,0,0, 0,0,5,0, 0,0,0,5]) sage: c = b^(-1)*a*b sage: factor(c.minpoly()) (x - 5) * (x - 1)^2 sage: factor(c.charpoly()) (x - 5)^2 * (x - 1)^2
>>> from sage.all import * >>> a = matrix(QQ, Integer(4), (ellipsis_range(Integer(1),Ellipsis,Integer(4)**Integer(2)))) >>> factor(a.minpoly()) x * (x^2 - 34*x - 80) >>> factor(a.minpoly('y')) y * (y^2 - 34*y - 80) >>> factor(a.charpoly()) x^2 * (x^2 - 34*x - 80) >>> b = matrix(QQ, Integer(4), [-Integer(1), Integer(2), Integer(2), Integer(0), Integer(0), Integer(4), Integer(2), Integer(2), Integer(0), Integer(0), -Integer(1), -Integer(2), Integer(0), -Integer(4), Integer(0), Integer(4)]) >>> a = matrix(QQ, Integer(4), [Integer(1), Integer(1), Integer(0),Integer(0), Integer(0),Integer(1),Integer(0),Integer(0), Integer(0),Integer(0),Integer(5),Integer(0), Integer(0),Integer(0),Integer(0),Integer(5)]) >>> c = b**(-Integer(1))*a*b >>> factor(c.minpoly()) (x - 5) * (x - 1)^2 >>> factor(c.charpoly()) (x - 5)^2 * (x - 1)^2
Check consistency:
sage: for _ in range(100): ....: dim = randint(0, 10) ....: m = random_matrix(QQ, dim, num_bound=8, den_bound=8) ....: p_linbox = m.charpoly(algorithm='linbox'); m._clear_cache() ....: p_generic = m.charpoly(algorithm='generic') ....: assert p_linbox == p_generic
>>> from sage.all import * >>> for _ in range(Integer(100)): ... dim = randint(Integer(0), Integer(10)) ... m = random_matrix(QQ, dim, num_bound=Integer(8), den_bound=Integer(8)) ... p_linbox = m.charpoly(algorithm='linbox'); m._clear_cache() ... p_generic = m.charpoly(algorithm='generic') ... assert p_linbox == p_generic
- randomize(density=1, num_bound=2, den_bound=2, distribution=None, nonzero=False)[source]¶
Randomize
density
proportion of the entries of this matrix, leaving the rest unchanged.If
x
andy
are given, randomized entries of this matrix have numerators and denominators bounded byx
andy
and have density 1.INPUT:
density
– number between 0 and 1 (default: 1)num_bound
– numerator bound (default: 2)den_bound
– denominator bound (default: 2)distribution
–None
or ‘1/n’ (default:None
); if ‘1/n’ thennum_bound
,den_bound
are ignored and numbers are chosen using the GMP functionmpq_randomize_entry_recip_uniform
OUTPUT: none; the matrix is modified in-space
EXAMPLES:
The default distribution:
sage: from collections import defaultdict sage: total_count = 0 sage: dic = defaultdict(Integer) sage: def add_samples(distribution=None): ....: global dic, total_count ....: for _ in range(100): ....: A = Matrix(QQ, 2, 4, 0) ....: A.randomize(distribution=distribution) ....: for a in A.list(): ....: dic[a] += 1 ....: total_count += 1.0 sage: expected = {-2: 1/9, -1: 3/18, -1/2: 1/18, 0: 3/9, ....: 1/2: 1/18, 1: 3/18, 2: 1/9} sage: add_samples() sage: while not all(abs(dic[a]/total_count - expected[a]) < 0.001 for a in dic): ....: add_samples()
>>> from sage.all import * >>> from collections import defaultdict >>> total_count = Integer(0) >>> dic = defaultdict(Integer) >>> def add_samples(distribution=None): ... global dic, total_count ... for _ in range(Integer(100)): ... A = Matrix(QQ, Integer(2), Integer(4), Integer(0)) ... A.randomize(distribution=distribution) ... for a in A.list(): ... dic[a] += Integer(1) ... total_count += RealNumber('1.0') >>> expected = {-Integer(2): Integer(1)/Integer(9), -Integer(1): Integer(3)/Integer(18), -Integer(1)/Integer(2): Integer(1)/Integer(18), Integer(0): Integer(3)/Integer(9), ... Integer(1)/Integer(2): Integer(1)/Integer(18), Integer(1): Integer(3)/Integer(18), Integer(2): Integer(1)/Integer(9)} >>> add_samples() >>> while not all(abs(dic[a]/total_count - expected[a]) < RealNumber('0.001') for a in dic): ... add_samples()
The distribution
'1/n'
:sage: def mpq_randomize_entry_recip_uniform(): ....: r = 2*random() - 1 ....: if r == 0: r = 1 ....: num = int(4/(5*r)) ....: r = random() ....: if r == 0: r = 1 ....: den = int(1/random()) ....: return Integer(num)/Integer(den) sage: total_count = 0 sage: dic = defaultdict(Integer) sage: dic2 = defaultdict(Integer) sage: add_samples('1/n') sage: for _ in range(8): ....: dic2[mpq_randomize_entry_recip_uniform()] += 1 sage: while not all(abs(dic[a] - dic2[a])/total_count < 0.005 for a in dic): ....: add_samples('1/n') ....: for _ in range(800): ....: dic2[mpq_randomize_entry_recip_uniform()] += 1
>>> from sage.all import * >>> def mpq_randomize_entry_recip_uniform(): ... r = Integer(2)*random() - Integer(1) ... if r == Integer(0): r = Integer(1) ... num = int(Integer(4)/(Integer(5)*r)) ... r = random() ... if r == Integer(0): r = Integer(1) ... den = int(Integer(1)/random()) ... return Integer(num)/Integer(den) >>> total_count = Integer(0) >>> dic = defaultdict(Integer) >>> dic2 = defaultdict(Integer) >>> add_samples('1/n') >>> for _ in range(Integer(8)): ... dic2[mpq_randomize_entry_recip_uniform()] += Integer(1) >>> while not all(abs(dic[a] - dic2[a])/total_count < RealNumber('0.005') for a in dic): ... add_samples('1/n') ... for _ in range(Integer(800)): ... dic2[mpq_randomize_entry_recip_uniform()] += Integer(1)
The default can be used to obtain matrices of different rank:
sage: ranks = [False]*11 sage: while not all(ranks): ....: for dens in (0.05, 0.1, 0.2, 0.5): ....: A = Matrix(QQ, 10, 10, 0) ....: A.randomize(dens) ....: ranks[A.rank()] = True
>>> from sage.all import * >>> ranks = [False]*Integer(11) >>> while not all(ranks): ... for dens in (RealNumber('0.05'), RealNumber('0.1'), RealNumber('0.2'), RealNumber('0.5')): ... A = Matrix(QQ, Integer(10), Integer(10), Integer(0)) ... A.randomize(dens) ... ranks[A.rank()] = True
The default density is \(6/9\):
sage: def add_sample(density, num_rows, num_cols): ....: global density_sum, total_count ....: total_count += 1.0 ....: A = Matrix(QQ, num_rows, num_cols, 0) ....: A.randomize(density) ....: density_sum += float(A.density()) sage: density_sum = 0.0 sage: total_count = 0.0 sage: expected_density = 6/9 sage: add_sample(1.0, 100, 100) sage: while abs(density_sum/total_count - expected_density) > 0.001: ....: add_sample(1.0, 100, 100)
>>> from sage.all import * >>> def add_sample(density, num_rows, num_cols): ... global density_sum, total_count ... total_count += RealNumber('1.0') ... A = Matrix(QQ, num_rows, num_cols, Integer(0)) ... A.randomize(density) ... density_sum += float(A.density()) >>> density_sum = RealNumber('0.0') >>> total_count = RealNumber('0.0') >>> expected_density = Integer(6)/Integer(9) >>> add_sample(RealNumber('1.0'), Integer(100), Integer(100)) >>> while abs(density_sum/total_count - expected_density) > RealNumber('0.001'): ... add_sample(RealNumber('1.0'), Integer(100), Integer(100))
The modified density depends on the number of columns:
sage: density_sum = 0.0 sage: total_count = 0.0 sage: expected_density = 6/9*0.5 sage: add_sample(0.5, 100, 2) sage: while abs(density_sum/total_count - expected_density) > 0.001: ....: add_sample(0.5, 100, 2) sage: density_sum = 0.0 sage: total_count = 0.0 sage: expected_density = 6/9*(1.0 - (99/100)^50) sage: expected_density 0.263... sage: add_sample(0.5, 100, 100) sage: while abs(density_sum/total_count - expected_density) > 0.001: ....: add_sample(0.5, 100, 100)
>>> from sage.all import * >>> density_sum = RealNumber('0.0') >>> total_count = RealNumber('0.0') >>> expected_density = Integer(6)/Integer(9)*RealNumber('0.5') >>> add_sample(RealNumber('0.5'), Integer(100), Integer(2)) >>> while abs(density_sum/total_count - expected_density) > RealNumber('0.001'): ... add_sample(RealNumber('0.5'), Integer(100), Integer(2)) >>> density_sum = RealNumber('0.0') >>> total_count = RealNumber('0.0') >>> expected_density = Integer(6)/Integer(9)*(RealNumber('1.0') - (Integer(99)/Integer(100))**Integer(50)) >>> expected_density 0.263... >>> add_sample(RealNumber('0.5'), Integer(100), Integer(100)) >>> while abs(density_sum/total_count - expected_density) > RealNumber('0.001'): ... add_sample(RealNumber('0.5'), Integer(100), Integer(100))
Modifying the bounds for numerator and denominator:
sage: num_dic = defaultdict(Integer) sage: den_dic = defaultdict(Integer) sage: while not (all(num_dic[i] for i in range(-200, 201)) ....: and all(den_dic[i] for i in range(1, 101))): ....: a = matrix(QQ, 2, 4) ....: a.randomize(num_bound=200, den_bound=100) ....: for q in a.list(): ....: num_dic[q.numerator()] += 1 ....: den_dic[q.denominator()] += 1 sage: len(num_dic) 401 sage: len(den_dic) 100
>>> from sage.all import * >>> num_dic = defaultdict(Integer) >>> den_dic = defaultdict(Integer) >>> while not (all(num_dic[i] for i in range(-Integer(200), Integer(201))) ... and all(den_dic[i] for i in range(Integer(1), Integer(101)))): ... a = matrix(QQ, Integer(2), Integer(4)) ... a.randomize(num_bound=Integer(200), den_bound=Integer(100)) ... for q in a.list(): ... num_dic[q.numerator()] += Integer(1) ... den_dic[q.denominator()] += Integer(1) >>> len(num_dic) 401 >>> len(den_dic) 100
- rank(algorithm=None)[source]¶
Return the rank of this matrix.
INPUT:
algorithm
– an optional specification of an algorithm. One ofNone
– (default) will use flint'flint'
– uses the flint library'pari'
– uses the PARI library'integer'
– eliminate denominators and calls the rank function on the corresponding integer matrix
EXAMPLES:
sage: matrix(QQ,3,[1..9]).rank() 2 sage: matrix(QQ,100,[1..100^2]).rank() 2
>>> from sage.all import * >>> matrix(QQ,Integer(3),(ellipsis_range(Integer(1),Ellipsis,Integer(9)))).rank() 2 >>> matrix(QQ,Integer(100),(ellipsis_range(Integer(1),Ellipsis,Integer(100)**Integer(2)))).rank() 2
- row(i, from_list=False)[source]¶
Return the \(i\)-th row of this matrix as a dense vector.
INPUT:
i
– integerfrom_list
– ignored
EXAMPLES:
sage: m = matrix(QQ, 2, [1/5, -2/3, 3/4, 4/9]) sage: m.row(0) (1/5, -2/3) sage: m.row(1) (3/4, 4/9) sage: m.row(1, from_list=True) (3/4, 4/9) sage: m.row(-2) (1/5, -2/3) sage: m.row(2) Traceback (most recent call last): ... IndexError: row index out of range sage: m.row(-3) Traceback (most recent call last): ... IndexError: row index out of range
>>> from sage.all import * >>> m = matrix(QQ, Integer(2), [Integer(1)/Integer(5), -Integer(2)/Integer(3), Integer(3)/Integer(4), Integer(4)/Integer(9)]) >>> m.row(Integer(0)) (1/5, -2/3) >>> m.row(Integer(1)) (3/4, 4/9) >>> m.row(Integer(1), from_list=True) (3/4, 4/9) >>> m.row(-Integer(2)) (1/5, -2/3) >>> m.row(Integer(2)) Traceback (most recent call last): ... IndexError: row index out of range >>> m.row(-Integer(3)) Traceback (most recent call last): ... IndexError: row index out of range
- set_row_to_multiple_of_row(i, j, s)[source]¶
Set row i equal to s times row j.
EXAMPLES:
sage: a = matrix(QQ,2,3,range(6)); a [0 1 2] [3 4 5] sage: a.set_row_to_multiple_of_row(1,0,-3) sage: a [ 0 1 2] [ 0 -3 -6]
>>> from sage.all import * >>> a = matrix(QQ,Integer(2),Integer(3),range(Integer(6))); a [0 1 2] [3 4 5] >>> a.set_row_to_multiple_of_row(Integer(1),Integer(0),-Integer(3)) >>> a [ 0 1 2] [ 0 -3 -6]
- transpose()[source]¶
Return the transpose of
self
, without changingself
.EXAMPLES:
We create a matrix, compute its transpose, and note that the original matrix is not changed.
sage: A = matrix(QQ, 2, 3, range(6)) sage: type(A) <class 'sage.matrix.matrix_rational_dense.Matrix_rational_dense'> sage: B = A.transpose() sage: print(B) [0 3] [1 4] [2 5] sage: print(A) [0 1 2] [3 4 5]
>>> from sage.all import * >>> A = matrix(QQ, Integer(2), Integer(3), range(Integer(6))) >>> type(A) <class 'sage.matrix.matrix_rational_dense.Matrix_rational_dense'> >>> B = A.transpose() >>> print(B) [0 3] [1 4] [2 5] >>> print(A) [0 1 2] [3 4 5]
.T
is a convenient shortcut for the transpose:sage: print(A.T) [0 3] [1 4] [2 5]
>>> from sage.all import * >>> print(A.T) [0 3] [1 4] [2 5]
sage: A.subdivide(None, 1); A [0|1 2] [3|4 5] sage: A.transpose() [0 3] [---] [1 4] [2 5]
>>> from sage.all import * >>> A.subdivide(None, Integer(1)); A [0|1 2] [3|4 5] >>> A.transpose() [0 3] [---] [1 4] [2 5]