# Elements of finitely generated free graded left modules#

For an overview, see the free graded modules documentation.

AUTHORS:

• Robert R. Bruner, Michael J. Catanzaro (2012): Initial version.

• Sverre Lunoee–Nielsen and Koen van Woerden (2019-11-29): Updated the original software to Sage version 8.9.

• Sverre Lunoee–Nielsen (2020-07-01): Refactored the code and added new documentation and tests.

class sage.modules.fp_graded.free_element.FreeGradedModuleElement#

Create a module element of a finitely generated free graded left module over a connected graded algebra.

EXAMPLES:

sage: from sage.modules.fp_graded.free_module import FreeGradedModule
sage: M = FreeGradedModule(SteenrodAlgebra(2), (0, 1))

sage: M([0, 0])
0

sage: M([1, 0])
g[0]

sage: M([0, 1])
g[1]

sage: M([Sq(1), 1])
Sq(1)*g[0] + g[1]

degree()#

The degree of self.

OUTPUT:

The integer degree of this element, or raise an error if this is the zero element.

EXAMPLES:

sage: from sage.modules.fp_graded.free_module import *
sage: A = SteenrodAlgebra(2)
sage: M = FreeGradedModule(A, (0,1))
sage: x = M.an_element(7); x
Sq(0,0,1)*g[0] + Sq(3,1)*g[1]
sage: x.degree()
7


The zero element has no degree:

sage: (x-x).degree()
Traceback (most recent call last):
...
ValueError: the zero element does not have a well-defined degree


Neither do non-homogeneous elements:

sage: y = M.an_element(4)
sage: (x+y).degree()
Traceback (most recent call last):
...
ValueError: this is a nonhomogeneous element, no well-defined degree

dense_coefficient_list(order=None)#

Return a list of all coefficients of self.

INPUT:

• order – (optional) an ordering of the basis indexing set

Note that this includes all of the coefficients, not just the nonzero ones. By default they appear in the same order as the module generators.

EXAMPLES:

sage: from sage.modules.fp_graded.free_module import FreeGradedModule
sage: A = SteenrodAlgebra()
sage: M.<Y,Z> = FreeGradedModule(SteenrodAlgebra(2), (0, 1))
sage: x = M.an_element(7); x
Sq(0,0,1)*Y + Sq(3,1)*Z
sage: x.dense_coefficient_list()
[Sq(0,0,1), Sq(3,1)]

lift_to_free()#

Return self.

It is provided for compatibility with the method of the same name for sage.modules.fp_graded.module.FPModule.

EXAMPLES:

sage: from sage.modules.fp_graded.free_module import FreeGradedModule
sage: A = SteenrodAlgebra(2)
sage: M = FreeGradedModule(A, (0,1))
sage: x = M.an_element()
sage: x.lift_to_free() == x
True
sage: x.lift_to_free() is x
True

vector_presentation()#

A coordinate vector representing self when it is a non-zero homogeneous element.

These are coordinates with respect to the basis chosen by basis_elements(). When the element is zero, it has no well defined degree, and this function returns None.

OUTPUT:

A vector of elements in the ground ring of the algebra for this module when this element is non-zero. Otherwise, the value None.

EXAMPLES:

sage: A2 = SteenrodAlgebra(2, profile=(3,2,1))
sage: M = A2.free_graded_module((0,1))
sage: x = M.an_element(7)
sage: v = x.vector_presentation(); v
(1, 0, 0, 0, 0, 1, 0)
sage: type(v)
<class 'sage.modules.vector_mod2_dense.Vector_mod2_dense'>
sage: M.gen(0).vector_presentation()
(1)
sage: M.gen(1).vector_presentation()
(0, 1)

sage: V = M.vector_presentation(7)
sage: v in V
True

sage: M.element_from_coordinates(v, 7) == x
True


We can use the basis for the module elements in the degree of $$x$$, together with the coefficients $$v$$ to recreate the element $$x$$:

sage: basis = M.basis_elements(7)
sage: x_ = sum( [c*b for (c,b) in zip(v, basis)] ); x_
Sq(0,0,1)*g[0] + Sq(3,1)*g[1]
sage: x__ = M.linear_combination(zip(basis, v)); x__
Sq(0,0,1)*g[0] + Sq(3,1)*g[1]
sage: x == x_ == x__
True


This is not defined for elements that are not homogeneous:

sage: sum(M.basis()).vector_presentation()
Traceback (most recent call last):
...
ValueError: this is a nonhomogeneous element, no well-defined degree