Dense complex double vectors using a NumPy backend.

EXAMPLES:

sage: v = vector(CDF,[(1,-1), (2,pi), (3,5)])
sage: v
(1.0 - 1.0*I, 2.0 + 3.141592653589793*I, 3.0 + 5.0*I)
sage: type(v)
<type 'sage.modules.vector_complex_double_dense.Vector_complex_double_dense'>
sage: parent(v)
Vector space of dimension 3 over Complex Double Field
sage: v[0] = 5
sage: v
(5.0, 2.0 + 3.141592653589793*I, 3.0 + 5.0*I)
sage: loads(dumps(v)) == v
True

AUTHORS:

– Jason Grout, Oct 2008: switch to NumPy backend, factored out
Vector_double_dense class
class sage.modules.vector_complex_double_dense.Vector_complex_double_dense

Bases: sage.modules.vector_double_dense.Vector_double_dense

Vectors over the Complex Double Field. These are supposed to be fast vector operations using C doubles. Most operations are implemented using numpy which will call the underlying BLAS, if needed, on the system.

EXAMPLES:

sage: v = vector(CDF,[(1,-1), (2,pi), (3,5)])
sage: v
(1.0 - 1.0*I, 2.0 + 3.141592653589793*I, 3.0 + 5.0*I)
sage: v*v  # rel tol 1e-15
-21.86960440108936 + 40.56637061435917*I
sage.modules.vector_complex_double_dense.unpickle_v0(parent, entries, degree)

Create a complex double vector containing the entries.

EXAMPLES:

sage: v = vector(CDF, [1,2,3])
sage: w = sage.modules.vector_complex_double_dense.unpickle_v0(v.parent(), list(v), v.degree())
sage: v == w
True
sage.modules.vector_complex_double_dense.unpickle_v1(parent, entries, degree, is_mutable=None)

Create a complex double vector with the given parent, entries, degree, and mutability.

EXAMPLES:

sage: v = vector(CDF, [1,2,3])
sage: w = sage.modules.vector_complex_double_dense.unpickle_v1(v.parent(), list(v), v.degree(), v.is_mutable())
sage: v == w
True