Binary quadratic forms with integer coefficients¶
This module provides a specialized class for working with a binary quadratic form \(a x^2 + b x y + c y^2\), stored as a triple of integers \((a, b, c)\).
EXAMPLES:
sage: Q = BinaryQF([1, 2, 3])
sage: Q
x^2 + 2*x*y + 3*y^2
sage: Q.discriminant()
-8
sage: Q.reduced_form() # needs sage.libs.pari
x^2 + 2*y^2
sage: Q(1, 1)
6
>>> from sage.all import *
>>> Q = BinaryQF([Integer(1), Integer(2), Integer(3)])
>>> Q
x^2 + 2*x*y + 3*y^2
>>> Q.discriminant()
-8
>>> Q.reduced_form() # needs sage.libs.pari
x^2 + 2*y^2
>>> Q(Integer(1), Integer(1))
6
AUTHORS:
Jon Hanke (2006-08-08):
Appended to add the methods
BinaryQF_reduced_representatives()
,is_reduced()
, and__add__
on 8-3-2006 for Coding Sprint #2.Added Documentation and
complex_point()
method on 8-8-2006.
Nick Alexander: add doctests and clean code for Doc Days 2
William Stein (2009-08-05): composition; some ReSTification.
William Stein (2009-09-18): make immutable.
Justin C. Walker (2011-02-06): Add support for indefinite forms.
- class sage.quadratic_forms.binary_qf.BinaryQF(a, b=None, c=None)[source]¶
Bases:
SageObject
A binary quadratic form over \(\ZZ\).
INPUT:
One of the following:
a
– either a 3-tuple of integers, or a quadratic homogeneous polynomial in two variables with integer coefficientsa
,b
,c
– three integers
OUTPUT: the binary quadratic form \(a x^2 + b xy + c y^2\)
EXAMPLES:
sage: b = BinaryQF([1, 2, 3]) sage: b.discriminant() -8 sage: b1 = BinaryQF(1, 2, 3) sage: b1 == b True sage: R.<x, y> = ZZ[] sage: BinaryQF(x^2 + 2*x*y + 3*y^2) == b True sage: BinaryQF(1, 0, 1) x^2 + y^2
>>> from sage.all import * >>> b = BinaryQF([Integer(1), Integer(2), Integer(3)]) >>> b.discriminant() -8 >>> b1 = BinaryQF(Integer(1), Integer(2), Integer(3)) >>> b1 == b True >>> R = ZZ['x, y']; (x, y,) = R._first_ngens(2) >>> BinaryQF(x**Integer(2) + Integer(2)*x*y + Integer(3)*y**Integer(2)) == b True >>> BinaryQF(Integer(1), Integer(0), Integer(1)) x^2 + y^2
- complex_point()[source]¶
Return the point in the complex upper half-plane associated to
self
.This form, \(ax^2 + b xy + cy^2\), must be definite with negative discriminant \(b^2 - 4 a c < 0\).
OUTPUT:
the unique complex root of \(a x^2 + b x + c\) with positive imaginary part
EXAMPLES:
sage: Q = BinaryQF([1, 0, 1]) sage: Q.complex_point() # needs sage.libs.pari 1.00000000000000*I
>>> from sage.all import * >>> Q = BinaryQF([Integer(1), Integer(0), Integer(1)]) >>> Q.complex_point() # needs sage.libs.pari 1.00000000000000*I
- content()[source]¶
Return the content of the form, i.e., the \(\gcd\) of the coefficients.
EXAMPLES:
sage: Q = BinaryQF(22, 14, 10) sage: Q.content() 2 sage: Q = BinaryQF(4, 4, -15) sage: Q.content() 1
>>> from sage.all import * >>> Q = BinaryQF(Integer(22), Integer(14), Integer(10)) >>> Q.content() 2 >>> Q = BinaryQF(Integer(4), Integer(4), -Integer(15)) >>> Q.content() 1
- cycle(proper=False)[source]¶
Return the cycle of reduced forms to which
self
belongs.This is based on Algorithm 6.1 of [BUVO2007].
INPUT:
self
– reduced, indefinite form of non-square discriminantproper
– boolean (default:False
); ifTrue
, return the proper cycle
The proper cycle of a form \(f\) consists of all reduced forms that are properly equivalent to \(f\). This is useful when testing for proper equivalence (or equivalence) between indefinite forms.
The cycle of \(f\) is a technical tool that is used when computing the proper cycle. Our definition of the cycle is slightly different from the one in [BUVO2007]. In our definition, the cycle consists of all reduced forms \(g\), such that the \(a\)-coefficient of \(g\) has the same sign as the \(a\)-coefficient of \(f\), and \(g\) can be obtained from \(f\) by performing a change of variables, and then multiplying by the determinant of the change-of-variables matrix. It is important to note that \(g\) might not be equivalent to \(f\) (because of multiplying by the determinant). However, either \(g\) or \(-g\) must be equivalent to \(f\). Also note that the cycle does contain \(f\). (Under the definition in [BUVO2007], the cycle might not contain \(f\), because all forms in the cycle are required to have positive \(a\)-coefficient, even if the \(a\)-coefficient of \(f\) is negative.)
EXAMPLES:
sage: Q = BinaryQF(14, 17, -2) sage: Q.cycle() [14*x^2 + 17*x*y - 2*y^2, 2*x^2 + 19*x*y - 5*y^2, 5*x^2 + 11*x*y - 14*y^2] sage: Q.cycle(proper=True) [14*x^2 + 17*x*y - 2*y^2, -2*x^2 + 19*x*y + 5*y^2, 5*x^2 + 11*x*y - 14*y^2, -14*x^2 + 17*x*y + 2*y^2, 2*x^2 + 19*x*y - 5*y^2, -5*x^2 + 11*x*y + 14*y^2] sage: Q = BinaryQF(1, 8, -3) sage: Q.cycle() [x^2 + 8*x*y - 3*y^2, 3*x^2 + 4*x*y - 5*y^2, 5*x^2 + 6*x*y - 2*y^2, 2*x^2 + 6*x*y - 5*y^2, 5*x^2 + 4*x*y - 3*y^2, 3*x^2 + 8*x*y - y^2] sage: Q.cycle(proper=True) [x^2 + 8*x*y - 3*y^2, -3*x^2 + 4*x*y + 5*y^2, 5*x^2 + 6*x*y - 2*y^2, -2*x^2 + 6*x*y + 5*y^2, 5*x^2 + 4*x*y - 3*y^2, -3*x^2 + 8*x*y + y^2] sage: Q = BinaryQF(1, 7, -6) sage: Q.cycle() [x^2 + 7*x*y - 6*y^2, 6*x^2 + 5*x*y - 2*y^2, 2*x^2 + 7*x*y - 3*y^2, 3*x^2 + 5*x*y - 4*y^2, 4*x^2 + 3*x*y - 4*y^2, 4*x^2 + 5*x*y - 3*y^2, 3*x^2 + 7*x*y - 2*y^2, 2*x^2 + 5*x*y - 6*y^2, 6*x^2 + 7*x*y - y^2]
>>> from sage.all import * >>> Q = BinaryQF(Integer(14), Integer(17), -Integer(2)) >>> Q.cycle() [14*x^2 + 17*x*y - 2*y^2, 2*x^2 + 19*x*y - 5*y^2, 5*x^2 + 11*x*y - 14*y^2] >>> Q.cycle(proper=True) [14*x^2 + 17*x*y - 2*y^2, -2*x^2 + 19*x*y + 5*y^2, 5*x^2 + 11*x*y - 14*y^2, -14*x^2 + 17*x*y + 2*y^2, 2*x^2 + 19*x*y - 5*y^2, -5*x^2 + 11*x*y + 14*y^2] >>> Q = BinaryQF(Integer(1), Integer(8), -Integer(3)) >>> Q.cycle() [x^2 + 8*x*y - 3*y^2, 3*x^2 + 4*x*y - 5*y^2, 5*x^2 + 6*x*y - 2*y^2, 2*x^2 + 6*x*y - 5*y^2, 5*x^2 + 4*x*y - 3*y^2, 3*x^2 + 8*x*y - y^2] >>> Q.cycle(proper=True) [x^2 + 8*x*y - 3*y^2, -3*x^2 + 4*x*y + 5*y^2, 5*x^2 + 6*x*y - 2*y^2, -2*x^2 + 6*x*y + 5*y^2, 5*x^2 + 4*x*y - 3*y^2, -3*x^2 + 8*x*y + y^2] >>> Q = BinaryQF(Integer(1), Integer(7), -Integer(6)) >>> Q.cycle() [x^2 + 7*x*y - 6*y^2, 6*x^2 + 5*x*y - 2*y^2, 2*x^2 + 7*x*y - 3*y^2, 3*x^2 + 5*x*y - 4*y^2, 4*x^2 + 3*x*y - 4*y^2, 4*x^2 + 5*x*y - 3*y^2, 3*x^2 + 7*x*y - 2*y^2, 2*x^2 + 5*x*y - 6*y^2, 6*x^2 + 7*x*y - y^2]
- det()[source]¶
Return the determinant of the matrix associated to
self
.The determinant is used by Gauss and by Conway-Sloane, for whom an integral quadratic form has coefficients \((a, 2b, c)\) with \(a\), \(b\), \(c\) integers.
OUTPUT: the determinant of the matrix:
[ a b/2] [b/2 c]
as a rational.
REMARK:
This is just \(-D/4\) where \(D\) is the discriminant. The return type is rational even if \(b\) (and hence \(D\)) is even.
EXAMPLES:
sage: q = BinaryQF(1, -1, 67) sage: q.determinant() 267/4
>>> from sage.all import * >>> q = BinaryQF(Integer(1), -Integer(1), Integer(67)) >>> q.determinant() 267/4
- determinant()[source]¶
Return the determinant of the matrix associated to
self
.The determinant is used by Gauss and by Conway-Sloane, for whom an integral quadratic form has coefficients \((a, 2b, c)\) with \(a\), \(b\), \(c\) integers.
OUTPUT: the determinant of the matrix:
[ a b/2] [b/2 c]
as a rational.
REMARK:
This is just \(-D/4\) where \(D\) is the discriminant. The return type is rational even if \(b\) (and hence \(D\)) is even.
EXAMPLES:
sage: q = BinaryQF(1, -1, 67) sage: q.determinant() 267/4
>>> from sage.all import * >>> q = BinaryQF(Integer(1), -Integer(1), Integer(67)) >>> q.determinant() 267/4
- discriminant()[source]¶
Return the discriminant of
self
.Given a form \(ax^2 + bxy + cy^2\), this returns \(b^2 - 4ac\).
EXAMPLES:
sage: Q = BinaryQF([1, 2, 3]) sage: Q.discriminant() -8
>>> from sage.all import * >>> Q = BinaryQF([Integer(1), Integer(2), Integer(3)]) >>> Q.discriminant() -8
- form_class()[source]¶
Return the class of this form modulo equivalence.
EXAMPLES:
sage: F = BinaryQF([3, -16, 161]) sage: cl = F.form_class(); cl Class of 3*x^2 + 2*x*y + 140*y^2 sage: cl.parent() Form Class Group of Discriminant -1676 sage: cl.parent() is BQFClassGroup(-4*419) True
>>> from sage.all import * >>> F = BinaryQF([Integer(3), -Integer(16), Integer(161)]) >>> cl = F.form_class(); cl Class of 3*x^2 + 2*x*y + 140*y^2 >>> cl.parent() Form Class Group of Discriminant -1676 >>> cl.parent() is BQFClassGroup(-Integer(4)*Integer(419)) True
- static from_polynomial(poly)[source]¶
Construct a
BinaryQF
from a bivariate polynomial with integer coefficients. Inverse ofpolynomial()
.EXAMPLES:
sage: R.<u,v> = ZZ[] sage: f = u^2 + 419*v^2 sage: Q = BinaryQF.from_polynomial(f); Q x^2 + 419*y^2 sage: Q.polynomial() x^2 + 419*y^2 sage: Q.polynomial()(R.gens()) == f True
>>> from sage.all import * >>> R = ZZ['u, v']; (u, v,) = R._first_ngens(2) >>> f = u**Integer(2) + Integer(419)*v**Integer(2) >>> Q = BinaryQF.from_polynomial(f); Q x^2 + 419*y^2 >>> Q.polynomial() x^2 + 419*y^2 >>> Q.polynomial()(R.gens()) == f True
The method fails if the given polynomial is not a quadratic form:
sage: BinaryQF.from_polynomial(u^3 - 5*v) Traceback (most recent call last): ... ValueError: polynomial has monomials of degree != 2
>>> from sage.all import * >>> BinaryQF.from_polynomial(u**Integer(3) - Integer(5)*v) Traceback (most recent call last): ... ValueError: polynomial has monomials of degree != 2
…or if the coefficients aren’t integers:
sage: BinaryQF.from_polynomial(u^2/7 + v^2) Traceback (most recent call last): ... TypeError: no conversion of this rational to integer
>>> from sage.all import * >>> BinaryQF.from_polynomial(u**Integer(2)/Integer(7) + v**Integer(2)) Traceback (most recent call last): ... TypeError: no conversion of this rational to integer
- has_fundamental_discriminant()[source]¶
Return whether the discriminant \(D\) of this form is a fundamental discriminant (i.e. \(D\) is the smallest element of its squareclass with \(D = 0\) or \(1\) modulo \(4\)).
EXAMPLES:
sage: Q = BinaryQF([1, 0, 1]) sage: Q.discriminant() -4 sage: Q.has_fundamental_discriminant() # needs sage.libs.pari True sage: Q = BinaryQF([2, 0, 2]) sage: Q.discriminant() -16 sage: Q.has_fundamental_discriminant() # needs sage.libs.pari False
>>> from sage.all import * >>> Q = BinaryQF([Integer(1), Integer(0), Integer(1)]) >>> Q.discriminant() -4 >>> Q.has_fundamental_discriminant() # needs sage.libs.pari True >>> Q = BinaryQF([Integer(2), Integer(0), Integer(2)]) >>> Q.discriminant() -16 >>> Q.has_fundamental_discriminant() # needs sage.libs.pari False
- is_equivalent(other, proper=True)[source]¶
Return whether
self
is equivalent toother
.INPUT:
proper
– boolean (default:True
); ifTrue
use proper equivalenceother
– a binary quadratic form
EXAMPLES:
sage: # needs sage.libs.pari sage: Q3 = BinaryQF(4, 4, 15) sage: Q2 = BinaryQF(4, -4, 15) sage: Q2.is_equivalent(Q3) True sage: a = BinaryQF([33, 11, 5]) sage: b = a.reduced_form(); b 5*x^2 - x*y + 27*y^2 sage: a.is_equivalent(b) True sage: a.is_equivalent(BinaryQF((3, 4, 5))) False
>>> from sage.all import * >>> # needs sage.libs.pari >>> Q3 = BinaryQF(Integer(4), Integer(4), Integer(15)) >>> Q2 = BinaryQF(Integer(4), -Integer(4), Integer(15)) >>> Q2.is_equivalent(Q3) True >>> a = BinaryQF([Integer(33), Integer(11), Integer(5)]) >>> b = a.reduced_form(); b 5*x^2 - x*y + 27*y^2 >>> a.is_equivalent(b) True >>> a.is_equivalent(BinaryQF((Integer(3), Integer(4), Integer(5)))) False
Some indefinite examples:
sage: Q1 = BinaryQF(9, 8, -7) sage: Q2 = BinaryQF(9, -8, -7) sage: Q1.is_equivalent(Q2, proper=True) # needs sage.libs.pari False sage: Q1.is_equivalent(Q2, proper=False) # needs sage.libs.pari True
>>> from sage.all import * >>> Q1 = BinaryQF(Integer(9), Integer(8), -Integer(7)) >>> Q2 = BinaryQF(Integer(9), -Integer(8), -Integer(7)) >>> Q1.is_equivalent(Q2, proper=True) # needs sage.libs.pari False >>> Q1.is_equivalent(Q2, proper=False) # needs sage.libs.pari True
- is_indef()[source]¶
Return whether
self
is indefinite, i.e., has positive discriminant.EXAMPLES:
sage: Q = BinaryQF(1, 3, -5) sage: Q.is_indef() True
>>> from sage.all import * >>> Q = BinaryQF(Integer(1), Integer(3), -Integer(5)) >>> Q.is_indef() True
- is_indefinite()[source]¶
Return whether
self
is indefinite, i.e., has positive discriminant.EXAMPLES:
sage: Q = BinaryQF(1, 3, -5) sage: Q.is_indef() True
>>> from sage.all import * >>> Q = BinaryQF(Integer(1), Integer(3), -Integer(5)) >>> Q.is_indef() True
- is_negative_definite()[source]¶
Return
True
ifself
is negative definite, i.e., has negative discriminant with \(a < 0\).EXAMPLES:
sage: Q = BinaryQF(-1, 3, -5) sage: Q.is_positive_definite() False sage: Q.is_negative_definite() True
>>> from sage.all import * >>> Q = BinaryQF(-Integer(1), Integer(3), -Integer(5)) >>> Q.is_positive_definite() False >>> Q.is_negative_definite() True
- is_negdef()[source]¶
Return
True
ifself
is negative definite, i.e., has negative discriminant with \(a < 0\).EXAMPLES:
sage: Q = BinaryQF(-1, 3, -5) sage: Q.is_positive_definite() False sage: Q.is_negative_definite() True
>>> from sage.all import * >>> Q = BinaryQF(-Integer(1), Integer(3), -Integer(5)) >>> Q.is_positive_definite() False >>> Q.is_negative_definite() True
- is_nonsingular()[source]¶
Return whether this form is nonsingular, i.e., has nonzero discriminant.
EXAMPLES:
sage: Q = BinaryQF(1, 3, -5) sage: Q.is_nonsingular() True sage: Q = BinaryQF(1, 2, 1) sage: Q.is_nonsingular() False
>>> from sage.all import * >>> Q = BinaryQF(Integer(1), Integer(3), -Integer(5)) >>> Q.is_nonsingular() True >>> Q = BinaryQF(Integer(1), Integer(2), Integer(1)) >>> Q.is_nonsingular() False
- is_posdef()[source]¶
Return
True
ifself
is positive definite, i.e., has negative discriminant with \(a > 0\).EXAMPLES:
sage: Q = BinaryQF(195751, 37615, 1807) sage: Q.is_positive_definite() True sage: Q = BinaryQF(195751, 1212121, -1876411) sage: Q.is_positive_definite() False
>>> from sage.all import * >>> Q = BinaryQF(Integer(195751), Integer(37615), Integer(1807)) >>> Q.is_positive_definite() True >>> Q = BinaryQF(Integer(195751), Integer(1212121), -Integer(1876411)) >>> Q.is_positive_definite() False
- is_positive_definite()[source]¶
Return
True
ifself
is positive definite, i.e., has negative discriminant with \(a > 0\).EXAMPLES:
sage: Q = BinaryQF(195751, 37615, 1807) sage: Q.is_positive_definite() True sage: Q = BinaryQF(195751, 1212121, -1876411) sage: Q.is_positive_definite() False
>>> from sage.all import * >>> Q = BinaryQF(Integer(195751), Integer(37615), Integer(1807)) >>> Q.is_positive_definite() True >>> Q = BinaryQF(Integer(195751), Integer(1212121), -Integer(1876411)) >>> Q.is_positive_definite() False
- is_primitive()[source]¶
Return whether the form \(ax^2 + bxy + cy^2\) satisfies \(\gcd(a, b, c) = 1\), i.e., is primitive.
EXAMPLES:
sage: Q = BinaryQF([6, 3, 9]) sage: Q.is_primitive() False sage: Q = BinaryQF([1, 1, 1]) sage: Q.is_primitive() True sage: Q = BinaryQF([2, 2, 2]) sage: Q.is_primitive() False sage: rqf = BinaryQF_reduced_representatives(-23*9, primitive_only=False) sage: [qf.is_primitive() for qf in rqf] [True, True, True, False, True, True, False, False, True] sage: rqf [x^2 + x*y + 52*y^2, 2*x^2 - x*y + 26*y^2, 2*x^2 + x*y + 26*y^2, 3*x^2 + 3*x*y + 18*y^2, 4*x^2 - x*y + 13*y^2, 4*x^2 + x*y + 13*y^2, 6*x^2 - 3*x*y + 9*y^2, 6*x^2 + 3*x*y + 9*y^2, 8*x^2 + 7*x*y + 8*y^2] sage: [qf for qf in rqf if qf.is_primitive()] [x^2 + x*y + 52*y^2, 2*x^2 - x*y + 26*y^2, 2*x^2 + x*y + 26*y^2, 4*x^2 - x*y + 13*y^2, 4*x^2 + x*y + 13*y^2, 8*x^2 + 7*x*y + 8*y^2]
>>> from sage.all import * >>> Q = BinaryQF([Integer(6), Integer(3), Integer(9)]) >>> Q.is_primitive() False >>> Q = BinaryQF([Integer(1), Integer(1), Integer(1)]) >>> Q.is_primitive() True >>> Q = BinaryQF([Integer(2), Integer(2), Integer(2)]) >>> Q.is_primitive() False >>> rqf = BinaryQF_reduced_representatives(-Integer(23)*Integer(9), primitive_only=False) >>> [qf.is_primitive() for qf in rqf] [True, True, True, False, True, True, False, False, True] >>> rqf [x^2 + x*y + 52*y^2, 2*x^2 - x*y + 26*y^2, 2*x^2 + x*y + 26*y^2, 3*x^2 + 3*x*y + 18*y^2, 4*x^2 - x*y + 13*y^2, 4*x^2 + x*y + 13*y^2, 6*x^2 - 3*x*y + 9*y^2, 6*x^2 + 3*x*y + 9*y^2, 8*x^2 + 7*x*y + 8*y^2] >>> [qf for qf in rqf if qf.is_primitive()] [x^2 + x*y + 52*y^2, 2*x^2 - x*y + 26*y^2, 2*x^2 + x*y + 26*y^2, 4*x^2 - x*y + 13*y^2, 4*x^2 + x*y + 13*y^2, 8*x^2 + 7*x*y + 8*y^2]
See also
- is_reduced()[source]¶
Return whether
self
is reduced.Let \(f = a x^2 + b xy + c y^2\) be a binary quadratic form of discriminant \(D\).
If \(f\) is positive definite (\(D < 0\) and \(a > 0\)), then \(f\) is reduced if and only if \(|b|\leq a \leq c\), and \(b\geq 0\) if either \(a = b\) or \(a = c\).
If \(f\) is negative definite (\(D < 0\) and \(a < 0\)), then \(f\) is reduced if and only if the positive definite form with coefficients \((-a, b, -c)\) is reduced.
If \(f\) is indefinite (\(D > 0\)), then \(f\) is reduced if and only if [\(b > 0\), \(ac < 0\) and \((a-c)^2 < D\)] (equivalently if \(|\sqrt{D} - 2|a|| < b < \sqrt{D}\)) or [\(a = 0\) and \(-b < 2c \leq b\)] or [\(c = 0\) and \(-b < 2a \leq b\)].
EXAMPLES:
sage: Q = BinaryQF([1, 2, 3]) sage: Q.is_reduced() False sage: Q = BinaryQF([2, 1, 3]) sage: Q.is_reduced() True sage: Q = BinaryQF([1, -1, 1]) sage: Q.is_reduced() False sage: Q = BinaryQF([1, 1, 1]) sage: Q.is_reduced() True
>>> from sage.all import * >>> Q = BinaryQF([Integer(1), Integer(2), Integer(3)]) >>> Q.is_reduced() False >>> Q = BinaryQF([Integer(2), Integer(1), Integer(3)]) >>> Q.is_reduced() True >>> Q = BinaryQF([Integer(1), -Integer(1), Integer(1)]) >>> Q.is_reduced() False >>> Q = BinaryQF([Integer(1), Integer(1), Integer(1)]) >>> Q.is_reduced() True
Examples using indefinite forms:
sage: f = BinaryQF(-1, 2, 2) sage: f.is_reduced() True sage: BinaryQF(1, 9, 4).is_reduced() False sage: BinaryQF(1, 5, -1).is_reduced() True
>>> from sage.all import * >>> f = BinaryQF(-Integer(1), Integer(2), Integer(2)) >>> f.is_reduced() True >>> BinaryQF(Integer(1), Integer(9), Integer(4)).is_reduced() False >>> BinaryQF(Integer(1), Integer(5), -Integer(1)).is_reduced() True
- is_reducible()[source]¶
Return whether this form is reducible and cache the result.
A binary form \(q\) is called reducible if it is the product of two linear forms \(q = (a x + b y) (c x + d y)\), or equivalently if its discriminant is a square.
EXAMPLES:
sage: q = BinaryQF([1, 0, -1]) sage: q.is_reducible() True
>>> from sage.all import * >>> q = BinaryQF([Integer(1), Integer(0), -Integer(1)]) >>> q.is_reducible() True
Warning
Despite the similar name, this method is unrelated to reduction of binary quadratic forms as implemented by
reduced_form()
andis_reduced()
.
- is_singular()[source]¶
Return whether
self
is singular, i.e., has zero discriminant.EXAMPLES:
sage: Q = BinaryQF(1, 3, -5) sage: Q.is_singular() False sage: Q = BinaryQF(1, 2, 1) sage: Q.is_singular() True
>>> from sage.all import * >>> Q = BinaryQF(Integer(1), Integer(3), -Integer(5)) >>> Q.is_singular() False >>> Q = BinaryQF(Integer(1), Integer(2), Integer(1)) >>> Q.is_singular() True
- is_weakly_reduced()[source]¶
Check if the form \(ax^2 + bxy + cy^2\) satisfies \(|b| \leq a \leq c\), i.e., is weakly reduced.
EXAMPLES:
sage: Q = BinaryQF([1, 2, 3]) sage: Q.is_weakly_reduced() False sage: Q = BinaryQF([2, 1, 3]) sage: Q.is_weakly_reduced() True sage: Q = BinaryQF([1, -1, 1]) sage: Q.is_weakly_reduced() True
>>> from sage.all import * >>> Q = BinaryQF([Integer(1), Integer(2), Integer(3)]) >>> Q.is_weakly_reduced() False >>> Q = BinaryQF([Integer(2), Integer(1), Integer(3)]) >>> Q.is_weakly_reduced() True >>> Q = BinaryQF([Integer(1), -Integer(1), Integer(1)]) >>> Q.is_weakly_reduced() True
- is_zero()[source]¶
Return whether
self
is identically zero.EXAMPLES:
sage: Q = BinaryQF(195751, 37615, 1807) sage: Q.is_zero() False sage: Q = BinaryQF(0, 0, 0) sage: Q.is_zero() True
>>> from sage.all import * >>> Q = BinaryQF(Integer(195751), Integer(37615), Integer(1807)) >>> Q.is_zero() False >>> Q = BinaryQF(Integer(0), Integer(0), Integer(0)) >>> Q.is_zero() True
- matrix_action_left(M)[source]¶
Return the binary quadratic form resulting from the left action of the 2-by-2 matrix \(M\) on
self
.Here the action of the matrix \(M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\) on the form \(Q(x, y)\) produces the form \(Q(ax+cy, bx+dy)\).
EXAMPLES:
sage: Q = BinaryQF([2, 1, 3]); Q 2*x^2 + x*y + 3*y^2 sage: M = matrix(ZZ, [[1, 2], [3, 5]]) sage: Q.matrix_action_left(M) 16*x^2 + 83*x*y + 108*y^2
>>> from sage.all import * >>> Q = BinaryQF([Integer(2), Integer(1), Integer(3)]); Q 2*x^2 + x*y + 3*y^2 >>> M = matrix(ZZ, [[Integer(1), Integer(2)], [Integer(3), Integer(5)]]) >>> Q.matrix_action_left(M) 16*x^2 + 83*x*y + 108*y^2
- matrix_action_right(M)[source]¶
Return the binary quadratic form resulting from the right action of the 2-by-2 matrix \(M\) on
self
.Here the action of the matrix \(M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\) on the form \(Q(x, y)\) produces the form \(Q(ax+by, cx+dy)\).
EXAMPLES:
sage: Q = BinaryQF([2, 1, 3]); Q 2*x^2 + x*y + 3*y^2 sage: M = matrix(ZZ, [[1, 2], [3, 5]]) sage: Q.matrix_action_right(M) 32*x^2 + 109*x*y + 93*y^2
>>> from sage.all import * >>> Q = BinaryQF([Integer(2), Integer(1), Integer(3)]); Q 2*x^2 + x*y + 3*y^2 >>> M = matrix(ZZ, [[Integer(1), Integer(2)], [Integer(3), Integer(5)]]) >>> Q.matrix_action_right(M) 32*x^2 + 109*x*y + 93*y^2
- polynomial()[source]¶
Return
self
as a homogeneous 2-variable polynomial.EXAMPLES:
sage: Q = BinaryQF([1, 2, 3]) sage: Q.polynomial() x^2 + 2*x*y + 3*y^2 sage: Q = BinaryQF([-1, -2, 3]) sage: Q.polynomial() -x^2 - 2*x*y + 3*y^2 sage: Q = BinaryQF([0, 0, 0]) sage: Q.polynomial() 0
>>> from sage.all import * >>> Q = BinaryQF([Integer(1), Integer(2), Integer(3)]) >>> Q.polynomial() x^2 + 2*x*y + 3*y^2 >>> Q = BinaryQF([-Integer(1), -Integer(2), Integer(3)]) >>> Q.polynomial() -x^2 - 2*x*y + 3*y^2 >>> Q = BinaryQF([Integer(0), Integer(0), Integer(0)]) >>> Q.polynomial() 0
- static principal(D)[source]¶
Return the principal binary quadratic form of the given discriminant.
EXAMPLES:
sage: BinaryQF.principal(8) x^2 - 2*y^2 sage: BinaryQF.principal(5) x^2 + x*y - y^2 sage: BinaryQF.principal(4) x^2 - y^2 sage: BinaryQF.principal(1) x^2 + x*y sage: BinaryQF.principal(-3) x^2 + x*y + y^2 sage: BinaryQF.principal(-4) x^2 + y^2 sage: BinaryQF.principal(-7) x^2 + x*y + 2*y^2 sage: BinaryQF.principal(-8) x^2 + 2*y^2
>>> from sage.all import * >>> BinaryQF.principal(Integer(8)) x^2 - 2*y^2 >>> BinaryQF.principal(Integer(5)) x^2 + x*y - y^2 >>> BinaryQF.principal(Integer(4)) x^2 - y^2 >>> BinaryQF.principal(Integer(1)) x^2 + x*y >>> BinaryQF.principal(-Integer(3)) x^2 + x*y + y^2 >>> BinaryQF.principal(-Integer(4)) x^2 + y^2 >>> BinaryQF.principal(-Integer(7)) x^2 + x*y + 2*y^2 >>> BinaryQF.principal(-Integer(8)) x^2 + 2*y^2
- reduced_form(transformation=False, algorithm='default')[source]¶
Return a reduced form equivalent to
self
.INPUT:
self
– binary quadratic form of non-square discriminanttransformation
– boolean (default:False
); ifTrue
, return both the reduced form and a matrix whosematrix_action_right()
transformsself
into the reduced formalgorithm
– string; the algorithm to use. Valid options are:'default'
– let Sage pick an algorithm (default)'pari'
– use PARI (pari:qfbred or pari:qfbredsl2)'sage'
– use Sage
See also
EXAMPLES:
sage: a = BinaryQF([33, 11, 5]) sage: a.is_reduced() False sage: b = a.reduced_form(); b # needs sage.libs.pari 5*x^2 - x*y + 27*y^2 sage: b.is_reduced() # needs sage.libs.pari True sage: a = BinaryQF([15, 0, 15]) sage: a.is_reduced() True sage: b = a.reduced_form(); b # needs sage.libs.pari 15*x^2 + 15*y^2 sage: b.is_reduced() # needs sage.libs.pari True
>>> from sage.all import * >>> a = BinaryQF([Integer(33), Integer(11), Integer(5)]) >>> a.is_reduced() False >>> b = a.reduced_form(); b # needs sage.libs.pari 5*x^2 - x*y + 27*y^2 >>> b.is_reduced() # needs sage.libs.pari True >>> a = BinaryQF([Integer(15), Integer(0), Integer(15)]) >>> a.is_reduced() True >>> b = a.reduced_form(); b # needs sage.libs.pari 15*x^2 + 15*y^2 >>> b.is_reduced() # needs sage.libs.pari True
Examples of reducing indefinite forms:
sage: f = BinaryQF(1, 0, -3) sage: f.is_reduced() False sage: g = f.reduced_form(); g # needs sage.libs.pari x^2 + 2*x*y - 2*y^2 sage: g.is_reduced() # needs sage.libs.pari True sage: q = BinaryQF(1, 0, -1) sage: q.reduced_form() # needs sage.libs.pari x^2 + 2*x*y sage: BinaryQF(1, 9, 4).reduced_form(transformation=True) # needs sage.libs.pari ( [ 0 -1] 4*x^2 + 7*x*y - y^2, [ 1 2] ) sage: BinaryQF(3, 7, -2).reduced_form(transformation=True) # needs sage.libs.pari ( [1 0] 3*x^2 + 7*x*y - 2*y^2, [0 1] ) sage: BinaryQF(-6, 6, -1).reduced_form(transformation=True) # needs sage.libs.pari ( [ 0 -1] -x^2 + 2*x*y + 2*y^2, [ 1 -4] )
>>> from sage.all import * >>> f = BinaryQF(Integer(1), Integer(0), -Integer(3)) >>> f.is_reduced() False >>> g = f.reduced_form(); g # needs sage.libs.pari x^2 + 2*x*y - 2*y^2 >>> g.is_reduced() # needs sage.libs.pari True >>> q = BinaryQF(Integer(1), Integer(0), -Integer(1)) >>> q.reduced_form() # needs sage.libs.pari x^2 + 2*x*y >>> BinaryQF(Integer(1), Integer(9), Integer(4)).reduced_form(transformation=True) # needs sage.libs.pari ( [ 0 -1] 4*x^2 + 7*x*y - y^2, [ 1 2] ) >>> BinaryQF(Integer(3), Integer(7), -Integer(2)).reduced_form(transformation=True) # needs sage.libs.pari ( [1 0] 3*x^2 + 7*x*y - 2*y^2, [0 1] ) >>> BinaryQF(-Integer(6), Integer(6), -Integer(1)).reduced_form(transformation=True) # needs sage.libs.pari ( [ 0 -1] -x^2 + 2*x*y + 2*y^2, [ 1 -4] )
- small_prime_value(Bmax=1000)[source]¶
Return a prime represented by this (primitive positive definite) binary form.
INPUT:
Bmax
– a positive bound on the representing integers
OUTPUT: a prime number represented by the form
Note
This is a very elementary implementation which just substitutes values until a prime is found.
EXAMPLES:
sage: [Q.small_prime_value() # needs sage.libs.pari ....: for Q in BinaryQF_reduced_representatives(-23, primitive_only=True)] [23, 2, 2] sage: [Q.small_prime_value() # needs sage.libs.pari ....: for Q in BinaryQF_reduced_representatives(-47, primitive_only=True)] [47, 2, 2, 3, 3]
>>> from sage.all import * >>> [Q.small_prime_value() # needs sage.libs.pari ... for Q in BinaryQF_reduced_representatives(-Integer(23), primitive_only=True)] [23, 2, 2] >>> [Q.small_prime_value() # needs sage.libs.pari ... for Q in BinaryQF_reduced_representatives(-Integer(47), primitive_only=True)] [47, 2, 2, 3, 3]
- solve_integer(n, algorithm, _flag)[source]¶
Solve \(Q(x, y) = n\) in integers \(x\) and \(y\) where \(Q\) is this quadratic form.
INPUT:
n
– positive integer or a \(:sage:`~sage.structure.factorization.Factorization\) objectalgorithm
–'general'
(default) or'cornacchia'
_flag
–1
,2
(default) or3
; passed onto the pari function``qfbsolve``. For internal use only.
To use the Cornacchia algorithm, the quadratic form must have \(a=1\) and \(b=0\) and \(c>0\), and
n
must be a prime or four times a prime (but this is not checked).OUTPUT:
A tuple \((x, y)\) of integers satisfying \(Q(x, y) = n\), or
None
if no solution exists.ALGORITHM: pari:qfbsolve or pari:qfbcornacchia
TODO:: Replace \(_flag\) with human-readable parameters c.f. Issue #37119
EXAMPLES:
sage: Q = BinaryQF([1, 0, 419]) sage: Q.solve_integer(773187972) # needs sage.libs.pari (4919, 1337)
>>> from sage.all import * >>> Q = BinaryQF([Integer(1), Integer(0), Integer(419)]) >>> Q.solve_integer(Integer(773187972)) # needs sage.libs.pari (4919, 1337)
If \(Q\) is of the form \([1,0,c]\) as above and \(n\) is a prime (or four times a prime whenever \(c \equiv 3 \pmod 4\)), then Cornacchia’s algorithm can be used, which is typically much faster than the general method:
sage: Q = BinaryQF([1, 0, 12345]) sage: n = 2^99 + 5273 sage: Q.solve_integer(n) # needs sage.libs.pari (-67446480057659, 7139620553488) sage: Q.solve_integer(n, algorithm='cornacchia') # needs sage.libs.pari (67446480057659, 7139620553488) sage: timeit('Q.solve_integer(n)') # not tested 125 loops, best of 3: 3.13 ms per loop sage: timeit('Q.solve_integer(n, algorithm="cornacchia")') # not tested 625 loops, best of 3: 18.6 μs per loop
>>> from sage.all import * >>> Q = BinaryQF([Integer(1), Integer(0), Integer(12345)]) >>> n = Integer(2)**Integer(99) + Integer(5273) >>> Q.solve_integer(n) # needs sage.libs.pari (-67446480057659, 7139620553488) >>> Q.solve_integer(n, algorithm='cornacchia') # needs sage.libs.pari (67446480057659, 7139620553488) >>> timeit('Q.solve_integer(n)') # not tested 125 loops, best of 3: 3.13 ms per loop >>> timeit('Q.solve_integer(n, algorithm="cornacchia")') # not tested 625 loops, best of 3: 18.6 μs per loop
sage: # needs sage.libs.pari sage: Qs = BinaryQF_reduced_representatives(-23, primitive_only=True) sage: Qs [x^2 + x*y + 6*y^2, 2*x^2 - x*y + 3*y^2, 2*x^2 + x*y + 3*y^2] sage: [Q.solve_integer(3) for Q in Qs] [None, (0, -1), (0, -1)] sage: [Q.solve_integer(5) for Q in Qs] [None, None, None] sage: [Q.solve_integer(6) for Q in Qs] [(1, -1), (1, -1), (-1, -1)]
>>> from sage.all import * >>> # needs sage.libs.pari >>> Qs = BinaryQF_reduced_representatives(-Integer(23), primitive_only=True) >>> Qs [x^2 + x*y + 6*y^2, 2*x^2 - x*y + 3*y^2, 2*x^2 + x*y + 3*y^2] >>> [Q.solve_integer(Integer(3)) for Q in Qs] [None, (0, -1), (0, -1)] >>> [Q.solve_integer(Integer(5)) for Q in Qs] [None, None, None] >>> [Q.solve_integer(Integer(6)) for Q in Qs] [(1, -1), (1, -1), (-1, -1)]
sage: # needs sage.libs.pari sage: n = factor(126) sage: Q = BinaryQF([1, 0, 5]) sage: Q.solve_integer(n) (11, -1)
>>> from sage.all import * >>> # needs sage.libs.pari >>> n = factor(Integer(126)) >>> Q = BinaryQF([Integer(1), Integer(0), Integer(5)]) >>> Q.solve_integer(n) (11, -1)
- sage.quadratic_forms.binary_qf.BinaryQF_reduced_representatives(D, primitive_only=False, proper=True)[source]¶
Return representatives for the classes of binary quadratic forms of discriminant \(D\).
INPUT:
D
– integer; a discriminantprimitive_only
– boolean (default:True
); ifTrue
, only return primitive formsproper
– boolean (default:True
)
OUTPUT:
(list) A lexicographically-ordered list of inequivalent reduced representatives for the (im)proper equivalence classes of binary quadratic forms of discriminant \(D\). If
primitive_only
isTrue
then imprimitive forms (which only exist when \(D\) is not fundamental) are omitted; otherwise they are included.EXAMPLES:
sage: BinaryQF_reduced_representatives(-4) [x^2 + y^2] sage: BinaryQF_reduced_representatives(-163) [x^2 + x*y + 41*y^2] sage: BinaryQF_reduced_representatives(-12) [x^2 + 3*y^2, 2*x^2 + 2*x*y + 2*y^2] sage: BinaryQF_reduced_representatives(-16) [x^2 + 4*y^2, 2*x^2 + 2*y^2] sage: BinaryQF_reduced_representatives(-63) [x^2 + x*y + 16*y^2, 2*x^2 - x*y + 8*y^2, 2*x^2 + x*y + 8*y^2, 3*x^2 + 3*x*y + 6*y^2, 4*x^2 + x*y + 4*y^2]
>>> from sage.all import * >>> BinaryQF_reduced_representatives(-Integer(4)) [x^2 + y^2] >>> BinaryQF_reduced_representatives(-Integer(163)) [x^2 + x*y + 41*y^2] >>> BinaryQF_reduced_representatives(-Integer(12)) [x^2 + 3*y^2, 2*x^2 + 2*x*y + 2*y^2] >>> BinaryQF_reduced_representatives(-Integer(16)) [x^2 + 4*y^2, 2*x^2 + 2*y^2] >>> BinaryQF_reduced_representatives(-Integer(63)) [x^2 + x*y + 16*y^2, 2*x^2 - x*y + 8*y^2, 2*x^2 + x*y + 8*y^2, 3*x^2 + 3*x*y + 6*y^2, 4*x^2 + x*y + 4*y^2]
The number of inequivalent reduced binary forms with a fixed negative fundamental discriminant \(D\) is the class number of the quadratic field \(\QQ(\sqrt{D})\):
sage: len(BinaryQF_reduced_representatives(-13*4)) 2 sage: QuadraticField(-13*4, 'a').class_number() # needs sage.rings.number_field 2 sage: # needs sage.libs.pari sage: p = next_prime(2^20); p 1048583 sage: len(BinaryQF_reduced_representatives(-p)) 689 sage: QuadraticField(-p, 'a').class_number() # needs sage.rings.number_field 689 sage: BinaryQF_reduced_representatives(-23*9) [x^2 + x*y + 52*y^2, 2*x^2 - x*y + 26*y^2, 2*x^2 + x*y + 26*y^2, 3*x^2 + 3*x*y + 18*y^2, 4*x^2 - x*y + 13*y^2, 4*x^2 + x*y + 13*y^2, 6*x^2 - 3*x*y + 9*y^2, 6*x^2 + 3*x*y + 9*y^2, 8*x^2 + 7*x*y + 8*y^2] sage: BinaryQF_reduced_representatives(-23*9, primitive_only=True) [x^2 + x*y + 52*y^2, 2*x^2 - x*y + 26*y^2, 2*x^2 + x*y + 26*y^2, 4*x^2 - x*y + 13*y^2, 4*x^2 + x*y + 13*y^2, 8*x^2 + 7*x*y + 8*y^2]
>>> from sage.all import * >>> len(BinaryQF_reduced_representatives(-Integer(13)*Integer(4))) 2 >>> QuadraticField(-Integer(13)*Integer(4), 'a').class_number() # needs sage.rings.number_field 2 >>> # needs sage.libs.pari >>> p = next_prime(Integer(2)**Integer(20)); p 1048583 >>> len(BinaryQF_reduced_representatives(-p)) 689 >>> QuadraticField(-p, 'a').class_number() # needs sage.rings.number_field 689 >>> BinaryQF_reduced_representatives(-Integer(23)*Integer(9)) [x^2 + x*y + 52*y^2, 2*x^2 - x*y + 26*y^2, 2*x^2 + x*y + 26*y^2, 3*x^2 + 3*x*y + 18*y^2, 4*x^2 - x*y + 13*y^2, 4*x^2 + x*y + 13*y^2, 6*x^2 - 3*x*y + 9*y^2, 6*x^2 + 3*x*y + 9*y^2, 8*x^2 + 7*x*y + 8*y^2] >>> BinaryQF_reduced_representatives(-Integer(23)*Integer(9), primitive_only=True) [x^2 + x*y + 52*y^2, 2*x^2 - x*y + 26*y^2, 2*x^2 + x*y + 26*y^2, 4*x^2 - x*y + 13*y^2, 4*x^2 + x*y + 13*y^2, 8*x^2 + 7*x*y + 8*y^2]