Solving quadratic equations#
Interface to the PARI/GP quadratic forms code of Denis Simon.
AUTHORS:
Denis Simon (GP code)
Nick Alexander (Sage interface)
Jeroen Demeyer (2014-09-23): use PARI instead of GP scripts, return vectors instead of tuples (github issue #16997).
Tyler Gaona (2015-11-14): added the \(solve\) method
- sage.quadratic_forms.qfsolve.qfparam(G, sol)#
Parametrize the conic defined by the matrix \(G\).
INPUT:
G
– a \(3 \times 3\)-matrix over \(\QQ\)sol
– a triple of rational numbers providing a solution to \(x\cdot G\cdot x^t = 0\)
OUTPUT:
A triple of polynomials that parametrizes all solutions of \(x\cdot G\cdot x^t = 0\) up to scaling.
ALGORITHM:
Uses PARI/GP function pari:qfparam.
EXAMPLES:
sage: from sage.quadratic_forms.qfsolve import qfsolve, qfparam sage: M = Matrix(QQ, [[0, 0, -12], [0, -12, 0], [-12, 0, -1]]); M [ 0 0 -12] [ 0 -12 0] [-12 0 -1] sage: sol = qfsolve(M) sage: ret = qfparam(M, sol); ret (-12*t^2 - 1, 24*t, 24) sage: ret.parent() Ambient free module of rank 3 over the principal ideal domain Univariate Polynomial Ring in t over Rational Field
- sage.quadratic_forms.qfsolve.qfsolve(G)#
Find a solution \(x = (x_0,...,x_n)\) to \(x G x^t = 0\) for an \(n \times n\)-matrix
G
over \(\QQ\).OUTPUT:
If a solution exists, return a vector of rational numbers \(x\). Otherwise, returns \(-1\) if no solution exists over the reals or a prime \(p\) if no solution exists over the \(p\)-adic field \(\QQ_p\).
ALGORITHM:
Uses PARI/GP function pari:qfsolve.
EXAMPLES:
sage: from sage.quadratic_forms.qfsolve import qfsolve sage: M = Matrix(QQ, [[0, 0, -12], [0, -12, 0], [-12, 0, -1]]); M [ 0 0 -12] [ 0 -12 0] [-12 0 -1] sage: sol = qfsolve(M); sol (1, 0, 0) sage: sol.parent() Vector space of dimension 3 over Rational Field sage: M = Matrix(QQ, [[1, 0, 0], [0, 1, 0], [0, 0, 1]]) sage: ret = qfsolve(M); ret -1 sage: ret.parent() Integer Ring sage: M = Matrix(QQ, [[1, 0, 0], [0, 1, 0], [0, 0, -7]]) sage: qfsolve(M) 7 sage: M = Matrix(QQ, [[3, 0, 0, 0], [0, 5, 0, 0], [0, 0, -7, 0], [0, 0, 0, -11]]) sage: qfsolve(M) (3, 4, -3, -2)
- sage.quadratic_forms.qfsolve.solve(self, c=0)#
Return a vector \(x\) such that
self(x) == c
.INPUT:
c
– (default: 0) a rational number
OUTPUT: A non-zero vector \(x\) satisfying
self(x) == c
.ALGORITHM:
Uses PARI’s pari:qfsolve. Algorithm described by Jeroen Demeyer; see comments on github issue #19112
EXAMPLES:
sage: F = DiagonalQuadraticForm(QQ, [1, -1]); F Quadratic form in 2 variables over Rational Field with coefficients: [ 1 0 ] [ * -1 ] sage: F.solve() (1, 1) sage: F.solve(1) (1, 0) sage: F.solve(2) (3/2, -1/2) sage: F.solve(3) (2, -1)
sage: F = DiagonalQuadraticForm(QQ, [1, 1, 1, 1]) sage: F.solve(7) (1, 2, -1, -1) sage: F.solve() Traceback (most recent call last): ... ArithmeticError: no solution found (local obstruction at -1)
sage: Q = QuadraticForm(QQ, 2, [17, 94, 130]) sage: x = Q.solve(5); x (17, -6) sage: Q(x) 5 sage: Q.solve(6) Traceback (most recent call last): ... ArithmeticError: no solution found (local obstruction at 3) sage: G = DiagonalQuadraticForm(QQ, [5, -3, -2]) sage: x = G.solve(10); x (3/2, -1/2, 1/2) sage: G(x) 10 sage: F = DiagonalQuadraticForm(QQ, [1, -4]) sage: x = F.solve(); x (2, 1) sage: F(x) 0
sage: F = QuadraticForm(QQ, 4, [0, 0, 1, 0, 0, 0, 1, 0, 0, 0]); F Quadratic form in 4 variables over Rational Field with coefficients: [ 0 0 1 0 ] [ * 0 0 1 ] [ * * 0 0 ] [ * * * 0 ] sage: F.solve(23) (23, 0, 1, 0)
Other fields besides the rationals are currently not supported:
sage: F = DiagonalQuadraticForm(GF(11), [1, 1]) sage: F.solve() Traceback (most recent call last): ... TypeError: solving quadratic forms is only implemented over QQ