Coordinate Charts¶

The class Chart implements coordinate charts on a topological manifold over a topological field $$K$$. The subclass RealChart is devoted to the case $$K=\RR$$, for which the concept of coordinate range is meaningful. Moreover, RealChart is endowed with some plotting capabilities (cf. method plot()).

Transition maps between charts are implemented via the class CoordChange.

AUTHORS:

• Eric Gourgoulhon, Michal Bejger (2013-2015) : initial version
• Travis Scrimshaw (2015): review tweaks

REFERENCES:

class sage.manifolds.chart.Chart(domain, coordinates='', names=None, calc_method=None)

Chart on a topological manifold.

Given a topological manifold $$M$$ of dimension $$n$$ over a topological field $$K$$, a chart on $$M$$ is a pair $$(U, \varphi)$$, where $$U$$ is an open subset of $$M$$ and $$\varphi : U \rightarrow V \subset K^n$$ is a homeomorphism from $$U$$ to an open subset $$V$$ of $$K^n$$.

The components $$(x^1, \ldots, x^n)$$ of $$\varphi$$, defined by $$\varphi(p) = (x^1(p), \ldots, x^n(p)) \in K^n$$ for any point $$p \in U$$, are called the coordinates of the chart $$(U, \varphi)$$.

INPUT:

• domain – open subset $$U$$ on which the chart is defined (must be an instance of TopologicalManifold)
• coordinates – (default: '' (empty string)) the string defining the coordinate symbols, see below
• names – (default: None) unused argument, except if coordinates is not provided; it must then be a tuple containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used)
• calc_method – (default: None) string defining the calculus method for computations involving coordinates of the chart; must be one of
• 'SR': Sage’s default symbolic engine (Symbolic Ring)
• 'sympy': SymPy
• None: the default of CalculusMethod will be used

The string coordinates has the space ' ' as a separator and each item has at most two fields, separated by a colon (:):

1. the coordinate symbol (a letter or a few letters);
2. (optional) the LaTeX spelling of the coordinate, if not provided the coordinate symbol given in the first field will be used.

If it contains any LaTeX expression, the string coordinates must be declared with the prefix ‘r’ (for “raw”) to allow for a proper treatment of LaTeX’s backslash character (see examples below). If no LaTeX spelling is to be set for any coordinate, the argument coordinates can be omitted when the shortcut operator <,> is used via Sage preparser (see examples below).

EXAMPLES:

A chart on a complex 2-dimensional topological manifold:

sage: M = Manifold(2, 'M', field='complex', structure='topological')
sage: X = M.chart('x y'); X
Chart (M, (x, y))
sage: latex(X)
\left(M,(x, y)\right)
sage: type(X)
<class 'sage.manifolds.chart.Chart'>


To manipulate the coordinates $$(x,y)$$ as global variables, one has to set:

sage: x,y = X[:]


However, a shortcut is to use the declarator <x,y> in the left-hand side of the chart declaration (there is then no need to pass the string 'x y' to chart()):

sage: M = Manifold(2, 'M', field='complex', structure='topological')
sage: X.<x,y> = M.chart(); X
Chart (M, (x, y))


The coordinates are then immediately accessible:

sage: y
y
sage: x is X and y is X
True


Note that x and y declared in <x,y> are mere Python variable names and do not have to coincide with the coordinate symbols; for instance, one may write:

sage: M = Manifold(2, 'M', field='complex', structure='topological')
sage: X.<x1,y1> = M.chart('x y'); X
Chart (M, (x, y))


Then y is not known as a global Python variable and the coordinate $$y$$ is accessible only through the global variable y1:

sage: y1
y
sage: latex(y1)
y
sage: y1 is X
True


However, having the name of the Python variable coincide with the coordinate symbol is quite convenient; so it is recommended to declare:

sage: M = Manifold(2, 'M', field='complex', structure='topological')
sage: X.<x,y> = M.chart()


In the above example, the chart X covers entirely the manifold M:

sage: X.domain()
Complex 2-dimensional topological manifold M


Of course, one may declare a chart only on an open subset of M:

sage: U = M.open_subset('U')
sage: Y.<z1, z2> = U.chart(r'z1:\zeta_1 z2:\zeta_2'); Y
Chart (U, (z1, z2))
sage: Y.domain()
Open subset U of the Complex 2-dimensional topological manifold M


In the above declaration, we have also specified some LaTeX writing of the coordinates different from the text one:

sage: latex(z1)
{\zeta_1}


Note the prefix r in front of the string r'z1:\zeta_1 z2:\zeta_2'; it makes sure that the backslash character is treated as an ordinary character, to be passed to the LaTeX interpreter.

Coordinates are Sage symbolic variables (see sage.symbolic.expression):

sage: type(z1)
<type 'sage.symbolic.expression.Expression'>


In addition to the Python variable name provided in the operator <.,.>, the coordinates are accessible by their indices:

sage: Y, Y
(z1, z2)


The index range is that declared during the creation of the manifold. By default, it starts at 0, but this can be changed via the parameter start_index:

sage: M1 = Manifold(2, 'M_1', field='complex', structure='topological',
....:               start_index=1)
sage: Z.<u,v> = M1.chart()
sage: Z, Z
(u, v)


The full set of coordinates is obtained by means of the slice operator [:]:

sage: Y[:]
(z1, z2)


Some partial sets of coordinates:

sage: Y[:1]
(z1,)
sage: Y[1:]
(z2,)


Each constructed chart is automatically added to the manifold’s user atlas:

sage: M.atlas()
[Chart (M, (x, y)), Chart (U, (z1, z2))]


and to the atlas of the chart’s domain:

sage: U.atlas()
[Chart (U, (z1, z2))]


Manifold subsets have a default chart, which, unless changed via the method set_default_chart(), is the first defined chart on the subset (or on a open subset of it):

sage: M.default_chart()
Chart (M, (x, y))
sage: U.default_chart()
Chart (U, (z1, z2))


The default charts are not privileged charts on the manifold, but rather charts whose name can be skipped in the argument list of functions having an optional chart= argument.

The chart map $$\varphi$$ acting on a point is obtained by passing it as an input to the map:

sage: p = M.point((1+i, 2), chart=X); p
Point on the Complex 2-dimensional topological manifold M
sage: X(p)
(I + 1, 2)
sage: X(p) == p.coord(X)
True


sage.manifolds.chart.RealChart for charts on topological manifolds over $$\RR$$.

add_restrictions(restrictions)

Add some restrictions on the coordinates.

INPUT:

• restrictions – list of restrictions on the coordinates, in addition to the ranges declared by the intervals specified in the chart constructor

A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2 + y^2 != 0. The items of the list restrictions are combined with the and operator; if some restrictions are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the list restrictions. For example:

restrictions = [x > y, (x != 0, y != 0), z^2 < x]


means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list restrictions contains only one item, this item can be passed as such, i.e. writing x > y instead of the single element list [x > y].

EXAMPLES:

sage: M = Manifold(2, 'M', field='complex', structure='topological')
sage: X.<x,y> = M.chart()
sage: X.valid_coordinates(2+i, 1)
True
sage: X.valid_coordinates(i, 1)
False

domain()

Return the open subset on which the chart is defined.

EXAMPLES:

sage: M = Manifold(2, 'M', structure='topological')
sage: X.<x,y> = M.chart()
sage: X.domain()
2-dimensional topological manifold M
sage: U = M.open_subset('U')
sage: Y.<u,v> = U.chart()
sage: Y.domain()
Open subset U of the 2-dimensional topological manifold M

function(expression, calc_method=None)

Define a coordinate function to the base field.

If the current chart belongs to the atlas of a $$n$$-dimensional manifold over a topological field $$K$$, a coordinate function is a map

$\begin{split}\begin{array}{cccc} f:& V\subset K^n & \longrightarrow & K \\ & (x^1,\ldots, x^n) & \longmapsto & f(x^1,\ldots, x^n), \end{array}\end{split}$

where $$V$$ is the chart codomain and $$(x^1, \ldots, x^n)$$ are the chart coordinates.

See ChartFunction for a complete documentation.

INPUT:

• expression – a symbolic expression involving the chart coordinates, to represent $$f(x^1,\ldots, x^n)$$
• calc_method – string (default: None): the calculus method with respect to which the internal expression of the function must be initialized from expression; one of
• 'SR': Sage’s default symbolic engine (Symbolic Ring)
• 'sympy': SymPy
• None: the chart current calculus method is assumed

OUTPUT:

EXAMPLES:

A symbolic coordinate function:

sage: M = Manifold(2, 'M', structure='topological')
sage: X.<x,y> = M.chart()
sage: f = X.function(sin(x*y))
sage: f
sin(x*y)
sage: type(f)
<class 'sage.manifolds.chart_func.ChartFunctionRing_with_category.element_class'>
sage: f.display()
(x, y) |--> sin(x*y)
sage: f(2,3)
sin(6)


Using SymPy for the internal representation of the function (dictionary _express):

sage: g = X.function(x^2 + x*cos(y), calc_method='sympy')
sage: g._express
{'sympy': x**2 + x*cos(y)}


On the contrary, for f, only the SR part has been initialized:

sage: f._express
{'SR': sin(x*y)}

function_ring()

Return the ring of coordinate functions on self.

EXAMPLES:

sage: M = Manifold(2, 'M', structure='topological')
sage: X.<x,y> = M.chart()
sage: X.function_ring()
Ring of chart functions on Chart (M, (x, y))

manifold()

Return the manifold on which the chart is defined.

EXAMPLES:

sage: M = Manifold(2, 'M', structure='topological')
sage: U = M.open_subset('U')
sage: X.<x,y> = U.chart()
sage: X.manifold()
2-dimensional topological manifold M
sage: X.domain()
Open subset U of the 2-dimensional topological manifold M

multifunction(*expressions)

Define a coordinate function to some Cartesian power of the base field.

If $$n$$ and $$m$$ are two positive integers and $$(U, \varphi)$$ is a chart on a topological manifold $$M$$ of dimension $$n$$ over a topological field $$K$$, a multi-coordinate function associated to $$(U,\varphi)$$ is a map

$\begin{split}\begin{array}{llcl} f:& V \subset K^n & \longrightarrow & K^m \\ & (x^1, \ldots, x^n) & \longmapsto & (f_1(x^1, \ldots, x^n), \ldots, f_m(x^1, \ldots, x^n)), \end{array}\end{split}$

where $$V$$ is the codomain of $$\varphi$$. In other words, $$f$$ is a $$K^m$$-valued function of the coordinates associated to the chart $$(U, \varphi)$$.

See MultiCoordFunction for a complete documentation.

INPUT:

• expressions – list (or tuple) of $$m$$ elements to construct the coordinate functions $$f_i$$ ($$1\leq i \leq m$$); for symbolic coordinate functions, this must be symbolic expressions involving the chart coordinates, while for numerical coordinate functions, this must be data file names

OUTPUT:

EXAMPLES:

Function of two coordinates with values in $$\RR^3$$:

sage: M = Manifold(2, 'M', structure='topological')
sage: X.<x,y> = M.chart()
sage: f = X.multifunction(x+y, sin(x*y), x^2 + 3*y); f
Coordinate functions (x + y, sin(x*y), x^2 + 3*y) on the Chart (M, (x, y))
sage: f(2,3)
(5, sin(6), 13)

one_function()

Return the constant function of the coordinates equal to one.

If the current chart belongs to the atlas of a $$n$$-dimensional manifold over a topological field $$K$$, the “one” coordinate function is the map

$\begin{split}\begin{array}{cccc} f:& V\subset K^n & \longrightarrow & K \\ & (x^1,\ldots, x^n) & \longmapsto & 1, \end{array}\end{split}$

where $$V$$ is the chart codomain.

See class ChartFunction for a complete documentation.

OUTPUT:

EXAMPLES:

sage: M = Manifold(2, 'M', structure='topological')
sage: X.<x,y> = M.chart()
sage: X.one_function()
1
sage: X.one_function().display()
(x, y) |--> 1
sage: type(X.one_function())
<class 'sage.manifolds.chart_func.ChartFunctionRing_with_category.element_class'>


The result is cached:

sage: X.one_function() is X.one_function()
True


One function on a p-adic manifold:

sage: M = Manifold(2, 'M', structure='topological', field=Qp(5)); M
2-dimensional topological manifold M over the 5-adic Field with
capped relative precision 20
sage: X.<x,y> = M.chart()
sage: X.one_function()
1 + O(5^20)
sage: X.one_function().display()
(x, y) |--> 1 + O(5^20)

restrict(subset, restrictions=None)

Return the restriction of self to some open subset of its domain.

If the current chart is $$(U,\varphi)$$, a restriction (or subchart) is a chart $$(V,\psi)$$ such that $$V\subset U$$ and $$\psi = \varphi |_V$$.

If such subchart has not been defined yet, it is constructed here.

The coordinates of the subchart bare the same names as the coordinates of the current chart.

INPUT:

• subset – open subset $$V$$ of the chart domain $$U$$ (must be an instance of TopologicalManifold)
• restrictions – (default: None) list of coordinate restrictions defining the subset $$V$$

A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2 + y^2 != 0. The items of the list restrictions are combined with the and operator; if some restrictions are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the list restrictions. For example:

restrictions = [x > y, (x != 0, y != 0), z^2 < x]


means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list restrictions contains only one item, this item can be passed as such, i.e. writing x > y instead of the single element list [x > y].

OUTPUT:

EXAMPLES:

Coordinates on the unit open ball of $$\CC^2$$ as a subchart of the global coordinates of $$\CC^2$$:

sage: M = Manifold(2, 'C^2', field='complex', structure='topological')
sage: X.<z1, z2> = M.chart()
sage: B = M.open_subset('B')
sage: X_B = X.restrict(B, abs(z1)^2 + abs(z2)^2 < 1); X_B
Chart (B, (z1, z2))

set_calculus_method(method)

Set the calculus method for computations involving coordinates of this chart.

INPUT:

• method – string; one of
• 'SR': Sage’s default symbolic engine (Symbolic Ring)
• 'sympy': SymPy

EXAMPLES:

The default calculus method relies on Sage’s Symbolic Ring:

sage: M = Manifold(3, 'M', structure='topological')
sage: X.<x,y,z> = M.chart()
sage: f = X.function(sin(x)*cos(y) + z^2)
sage: f.expr()
z^2 + cos(y)*sin(x)
sage: type(f.expr())
<type 'sage.symbolic.expression.Expression'>
sage: parent(f.expr())
Symbolic Ring
sage: f.display()
(x, y, z) |--> z^2 + cos(y)*sin(x)


Changing to SymPy:

sage: X.set_calculus_method('sympy')
sage: f.expr()
z**2 + sin(x)*cos(y)
sage: type(f.expr())
sage: parent(f.expr())
sage: f.display()
(x, y, z) |--> z**2 + sin(x)*cos(y)


Changing back to the Symbolic Ring:

sage: X.set_calculus_method('SR')
sage: f.display()
(x, y, z) |--> z^2 + cos(y)*sin(x)

transition_map(other, transformations, intersection_name=None, restrictions1=None, restrictions2=None)

Construct the transition map between the current chart, $$(U, \varphi)$$ say, and another one, $$(V, \psi)$$ say.

If $$n$$ is the manifold’s dimension, the transition map is the map

$\psi\circ\varphi^{-1}: \varphi(U\cap V) \subset K^n \rightarrow \psi(U\cap V) \subset K^n,$

where $$K$$ is the manifold’s base field. In other words, the transition map expresses the coordinates $$(y^1, \ldots, y^n)$$ of $$(V, \psi)$$ in terms of the coordinates $$(x^1, \ldots, x^n)$$ of $$(U, \varphi)$$ on the open subset where the two charts intersect, i.e. on $$U \cap V$$.

INPUT:

• other – the chart $$(V, \psi)$$
• transformations – tuple (or list) $$(Y_1, \ldots, Y_n)$$, where $$Y_i$$ is the symbolic expression of the coordinate $$y^i$$ in terms of the coordinates $$(x^1, \ldots, x^n)$$
• intersection_name – (default: None) name to be given to the subset $$U \cap V$$ if the latter differs from $$U$$ or $$V$$
• restrictions1 – (default: None) list of conditions on the coordinates of the current chart that define $$U \cap V$$ if the latter differs from $$U$$
• restrictions2 – (default: None) list of conditions on the coordinates of the chart $$(V,\psi)$$ that define $$U \cap V$$ if the latter differs from $$V$$

A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2 + y^2 != 0. The items of the list restrictions are combined with the and operator; if some restrictions are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the list restrictions. For example:

restrictions = [x > y, (x != 0, y != 0), z^2 < x]


means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list restrictions contains only one item, this item can be passed as such, i.e. writing x > y instead of the single element list [x > y].

OUTPUT:

EXAMPLES:

Transition map between two stereographic charts on the circle $$S^1$$:

sage: M = Manifold(1, 'S^1', structure='topological')
sage: U = M.open_subset('U') # Complement of the North pole
sage: cU.<x> = U.chart() # Stereographic chart from the North pole
sage: V = M.open_subset('V') # Complement of the South pole
sage: cV.<y> = V.chart() # Stereographic chart from the South pole
sage: M.declare_union(U,V)   # S^1 is the union of U and V
sage: trans = cU.transition_map(cV, 1/x, intersection_name='W',
....:                           restrictions1= x!=0, restrictions2 = y!=0)
sage: trans
Change of coordinates from Chart (W, (x,)) to Chart (W, (y,))
sage: trans.display()
y = 1/x


The subset $$W$$, intersection of $$U$$ and $$V$$, has been created by transition_map():

sage: M.list_of_subsets()
[1-dimensional topological manifold S^1,
Open subset U of the 1-dimensional topological manifold S^1,
Open subset V of the 1-dimensional topological manifold S^1,
Open subset W of the 1-dimensional topological manifold S^1]
sage: W = M.list_of_subsets()
sage: W is U.intersection(V)
True
sage: M.atlas()
[Chart (U, (x,)), Chart (V, (y,)), Chart (W, (x,)), Chart (W, (y,))]


Transition map between the spherical chart and the Cartesian one on $$\RR^2$$:

sage: M = Manifold(2, 'R^2', structure='topological')
sage: c_cart.<x,y> = M.chart()
sage: U = M.open_subset('U') # the complement of the half line {y=0, x >= 0}
sage: c_spher.<r,phi> = U.chart(r'r:(0,+oo) phi:(0,2*pi):\phi')
sage: trans = c_spher.transition_map(c_cart, (r*cos(phi), r*sin(phi)),
....:                                restrictions2=(y!=0, x<0))
sage: trans
Change of coordinates from Chart (U, (r, phi)) to Chart (U, (x, y))
sage: trans.display()
x = r*cos(phi)
y = r*sin(phi)


In this case, no new subset has been created since $$U \cap M = U$$:

sage: M.list_of_subsets()
[2-dimensional topological manifold R^2,
Open subset U of the 2-dimensional topological manifold R^2]


but a new chart has been created: $$(U, (x, y))$$:

sage: M.atlas()
[Chart (R^2, (x, y)), Chart (U, (r, phi)), Chart (U, (x, y))]

valid_coordinates(*coordinates, **kwds)

Check whether a tuple of coordinates can be the coordinates of a point in the chart domain.

INPUT:

• *coordinates – coordinate values
• **kwds – options:
• parameters=None, dictionary to set numerical values to some parameters (see example below)

OUTPUT:

• True if the coordinate values are admissible in the chart image, False otherwise

EXAMPLES:

sage: M = Manifold(2, 'M', field='complex', structure='topological')
sage: X.<x,y> = M.chart()
sage: X.valid_coordinates(0, i)
True
sage: X.valid_coordinates(i, 1)
False
sage: X.valid_coordinates(i/2, 1)
True
sage: X.valid_coordinates(i/2, 0)
False
sage: X.valid_coordinates(2, 0)
False


Example of use with the keyword parameters to set a specific value to a parameter appearing in the coordinate restrictions:

sage: var('a')  # the parameter is a symbolic variable
a
sage: Y.<u,v> = M.chart()
sage: Y.valid_coordinates(1, i, parameters={a: 2})  # setting a=2
True
sage: Y.valid_coordinates(1, 2*i, parameters={a: 2})
False

zero_function()

Return the zero function of the coordinates.

If the current chart belongs to the atlas of a $$n$$-dimensional manifold over a topological field $$K$$, the zero coordinate function is the map

$\begin{split}\begin{array}{cccc} f:& V\subset K^n & \longrightarrow & K \\ & (x^1,\ldots, x^n) & \longmapsto & 0, \end{array}\end{split}$

where $$V$$ is the chart codomain.

See class ChartFunction for a complete documentation.

OUTPUT:

EXAMPLES:

sage: M = Manifold(2, 'M', structure='topological')
sage: X.<x,y> = M.chart()
sage: X.zero_function()
0
sage: X.zero_function().display()
(x, y) |--> 0
sage: type(X.zero_function())
<class 'sage.manifolds.chart_func.ChartFunctionRing_with_category.element_class'>


The result is cached:

sage: X.zero_function() is X.zero_function()
True


Zero function on a p-adic manifold:

sage: M = Manifold(2, 'M', structure='topological', field=Qp(5)); M
2-dimensional topological manifold M over the 5-adic Field with
capped relative precision 20
sage: X.<x,y> = M.chart()
sage: X.zero_function()
0
sage: X.zero_function().display()
(x, y) |--> 0

class sage.manifolds.chart.CoordChange(chart1, chart2, *transformations)

Transition map between two charts of a topological manifold.

Giving two coordinate charts $$(U, \varphi)$$ and $$(V, \psi)$$ on a topological manifold $$M$$ of dimension $$n$$ over a topological field $$K$$, the transition map from $$(U, \varphi)$$ to $$(V, \psi)$$ is the map

$\psi\circ\varphi^{-1}: \varphi(U\cap V) \subset K^n \rightarrow \psi(U\cap V) \subset K^n.$

In other words, the transition map $$\psi \circ \varphi^{-1}$$ expresses the coordinates $$(y^1, \ldots, y^n)$$ of $$(V, \psi)$$ in terms of the coordinates $$(x^1, \ldots, x^n)$$ of $$(U, \varphi)$$ on the open subset where the two charts intersect, i.e. on $$U \cap V$$.

INPUT:

• chart1 – chart $$(U, \varphi)$$
• chart2 – chart $$(V, \psi)$$
• transformations – tuple (or list) $$(Y_1, \ldots, Y_2)$$, where $$Y_i$$ is the symbolic expression of the coordinate $$y^i$$ in terms of the coordinates $$(x^1, \ldots, x^n)$$

EXAMPLES:

Transition map on a 2-dimensional topological manifold:

sage: M = Manifold(2, 'M', structure='topological')
sage: X.<x,y> = M.chart()
sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])
sage: X_to_Y
Change of coordinates from Chart (M, (x, y)) to Chart (M, (u, v))
sage: type(X_to_Y)
<class 'sage.manifolds.chart.CoordChange'>
sage: X_to_Y.display()
u = x + y
v = x - y

disp()

Display of the coordinate transformation.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

EXAMPLES:

From spherical coordinates to Cartesian ones in the plane:

sage: M = Manifold(2, 'R^2', structure='topological')
sage: U = M.open_subset('U') # the complement of the half line {y=0, x>= 0}
sage: c_cart.<x,y> = U.chart()
sage: c_spher.<r,ph> = U.chart(r'r:(0,+oo) ph:(0,2*pi):\phi')
sage: spher_to_cart = c_spher.transition_map(c_cart, [r*cos(ph), r*sin(ph)])
sage: spher_to_cart.display()
x = r*cos(ph)
y = r*sin(ph)
sage: latex(spher_to_cart.display())
\left\{\begin{array}{lcl} x & = & r \cos\left({\phi}\right) \\
y & = & r \sin\left({\phi}\right) \end{array}\right.


A shortcut is disp():

sage: spher_to_cart.disp()
x = r*cos(ph)
y = r*sin(ph)

display()

Display of the coordinate transformation.

The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).

EXAMPLES:

From spherical coordinates to Cartesian ones in the plane:

sage: M = Manifold(2, 'R^2', structure='topological')
sage: U = M.open_subset('U') # the complement of the half line {y=0, x>= 0}
sage: c_cart.<x,y> = U.chart()
sage: c_spher.<r,ph> = U.chart(r'r:(0,+oo) ph:(0,2*pi):\phi')
sage: spher_to_cart = c_spher.transition_map(c_cart, [r*cos(ph), r*sin(ph)])
sage: spher_to_cart.display()
x = r*cos(ph)
y = r*sin(ph)
sage: latex(spher_to_cart.display())
\left\{\begin{array}{lcl} x & = & r \cos\left({\phi}\right) \\
y & = & r \sin\left({\phi}\right) \end{array}\right.


A shortcut is disp():

sage: spher_to_cart.disp()
x = r*cos(ph)
y = r*sin(ph)

inverse()

Compute the inverse coordinate transformation.

OUTPUT:

EXAMPLES:

Inverse of a coordinate transformation corresponding to a rotation in the Cartesian plane:

sage: M = Manifold(2, 'M', structure='topological')
sage: c_xy.<x,y> = M.chart()
sage: c_uv.<u,v> = M.chart()
sage: phi = var('phi', domain='real')
sage: xy_to_uv = c_xy.transition_map(c_uv,
....:                                [cos(phi)*x + sin(phi)*y,
....:                                 -sin(phi)*x + cos(phi)*y])
sage: M.coord_changes()
{(Chart (M, (x, y)),
Chart (M, (u, v))): Change of coordinates from Chart (M, (x, y)) to Chart (M, (u, v))}
sage: uv_to_xy = xy_to_uv.inverse(); uv_to_xy
Change of coordinates from Chart (M, (u, v)) to Chart (M, (x, y))
sage: uv_to_xy.display()
x = u*cos(phi) - v*sin(phi)
y = v*cos(phi) + u*sin(phi)
sage: M.coord_changes()  # random (dictionary output)
{(Chart (M, (u, v)),
Chart (M, (x, y))): Change of coordinates from Chart (M, (u, v)) to Chart (M, (x, y)),
(Chart (M, (x, y)),
Chart (M, (u, v))): Change of coordinates from Chart (M, (x, y)) to Chart (M, (u, v))}

restrict(dom1, dom2=None)

Restriction to subsets.

INPUT:

• dom1 – open subset of the domain of chart1
• dom2 – (default: None) open subset of the domain of chart2; if None, dom1 is assumed

OUTPUT:

• the transition map between the charts restricted to the specified subsets

EXAMPLES:

sage: M = Manifold(2, 'M', structure='topological')
sage: X.<x,y> = M.chart()
sage: Y.<u,v> = M.chart()
sage: X_to_Y = X.transition_map(Y, [x+y, x-y])
sage: U = M.open_subset('U', coord_def={X: x>0, Y: u+v>0})
sage: X_to_Y_U = X_to_Y.restrict(U); X_to_Y_U
Change of coordinates from Chart (U, (x, y)) to Chart (U, (u, v))
sage: X_to_Y_U.display()
u = x + y
v = x - y


The result is cached:

sage: X_to_Y.restrict(U) is X_to_Y_U
True

set_inverse(*transformations, **kwds)

Sets the inverse of the coordinate transformation.

This is useful when the automatic computation via inverse() fails.

INPUT:

• transformations – the inverse transformations expressed as a list of the expressions of the “old” coordinates in terms of the “new” ones
• kwds – keyword arguments: only verbose=True or verbose=False (default) are meaningful; it determines whether the provided transformations are checked to be indeed the inverse coordinate transformations

EXAMPLES:

From spherical coordinates to Cartesian ones in the plane:

sage: M = Manifold(2, 'R^2', structure='topological')
sage: U = M.open_subset('U') # the complement of the half line {y=0, x>= 0}
sage: c_cart.<x,y> = U.chart()
sage: c_spher.<r,ph> = U.chart(r'r:(0,+oo) ph:(0,2*pi):\phi')
sage: spher_to_cart = c_spher.transition_map(c_cart, [r*cos(ph), r*sin(ph)])
sage: spher_to_cart.set_inverse(sqrt(x^2+y^2), atan2(y,x))
sage: spher_to_cart.inverse()
Change of coordinates from Chart (U, (x, y)) to Chart (U, (r, ph))
sage: spher_to_cart.inverse().display()
r = sqrt(x^2 + y^2)
ph = arctan2(y, x)
sage: M.coord_changes()  # random (dictionary output)
{(Chart (U, (r, ph)),
Chart (U, (x, y))): Change of coordinates from Chart (U, (r, ph)) to Chart (U, (x, y)),
(Chart (U, (x, y)),
Chart (U, (r, ph))): Change of coordinates from Chart (U, (x, y)) to Chart (U, (r, ph))}


Introducing a wrong inverse transformation (note the x^3 typo) is revealed by setting verbose to True:

sage: spher_to_cart.set_inverse(sqrt(x^3+y^2), atan2(y,x), verbose=True)
Check of the inverse coordinate transformation:
r == sqrt(r*cos(ph)^3 + sin(ph)^2)*r
ph == arctan2(r*sin(ph), r*cos(ph))
x == sqrt(x^3 + y^2)*x/sqrt(x^2 + y^2)
y == sqrt(x^3 + y^2)*y/sqrt(x^2 + y^2)

class sage.manifolds.chart.RealChart(domain, coordinates='', names=None, calc_method=None)

Chart on a topological manifold over $$\RR$$.

Given a topological manifold $$M$$ of dimension $$n$$ over $$\RR$$, a chart on $$M$$ is a pair $$(U,\varphi)$$, where $$U$$ is an open subset of $$M$$ and $$\varphi : U \to V \subset \RR^n$$ is a homeomorphism from $$U$$ to an open subset $$V$$ of $$\RR^n$$.

The components $$(x^1, \ldots, x^n)$$ of $$\varphi$$, defined by $$\varphi(p) = (x^1(p), \ldots, x^n(p))\in \RR^n$$ for any point $$p \in U$$, are called the coordinates of the chart $$(U, \varphi)$$.

INPUT:

• domain – open subset $$U$$ on which the chart is defined
• coordinates – (default: '' (empty string)) string defining the coordinate symbols and ranges, see below
• names – (default: None) unused argument, except if coordinates is not provided; it must then be a tuple containing the coordinate symbols (this is guaranteed if the shortcut operator <,> is used)
• calc_method – (default: None) string defining the calculus method for computations involving coordinates of the chart; must be one of
• 'SR': Sage’s default symbolic engine (Symbolic Ring)
• 'sympy': SymPy
• None: the default of CalculusMethod will be used

The string coordinates has the space ' ' as a separator and each item has at most three fields, separated by a colon (:):

1. The coordinate symbol (a letter or a few letters).
2. (optional) The interval $$I$$ defining the coordinate range: if not provided, the coordinate is assumed to span all $$\RR$$; otherwise $$I$$ must be provided in the form (a,b) (or equivalently ]a,b[). The bounds a and b can be +/-Infinity, Inf, infinity, inf or oo. For singular coordinates, non-open intervals such as [a,b] and (a,b] (or equivalently ]a,b]) are allowed. Note that the interval declaration must not contain any whitespace.
3. (optional) The LaTeX spelling of the coordinate; if not provided the coordinate symbol given in the first field will be used.

The order of the fields 2 and 3 does not matter and each of them can be omitted. If it contains any LaTeX expression, the string coordinates must be declared with the prefix ‘r’ (for “raw”) to allow for a proper treatment of LaTeX backslash characters (see examples below). If no interval range and no LaTeX spelling is to be set for any coordinate, the argument coordinates can be omitted when the shortcut operator <,> is used via Sage preparser (see examples below).

EXAMPLES:

Cartesian coordinates on $$\RR^3$$:

sage: M = Manifold(3, 'R^3', r'\RR^3', structure='topological',
....:              start_index=1)
sage: c_cart = M.chart('x y z'); c_cart
Chart (R^3, (x, y, z))
sage: type(c_cart)
<class 'sage.manifolds.chart.RealChart'>


To have the coordinates accessible as global variables, one has to set:

sage: (x,y,z) = c_cart[:]


However, a shortcut is to use the declarator <x,y,z> in the left-hand side of the chart declaration (there is then no need to pass the string 'x y z' to chart()):

sage: M = Manifold(3, 'R^3', r'\RR^3', structure='topological',
....:              start_index=1)
sage: c_cart.<x,y,z> = M.chart(); c_cart
Chart (R^3, (x, y, z))


The coordinates are then immediately accessible:

sage: y
y
sage: y is c_cart
True


Note that x, y, z declared in <x,y,z> are mere Python variable names and do not have to coincide with the coordinate symbols; for instance, one may write:

sage: M = Manifold(3, 'R^3', r'\RR^3', structure='topological', start_index=1)
sage: c_cart.<x1,y1,z1> = M.chart('x y z'); c_cart
Chart (R^3, (x, y, z))


Then y is not known as a global variable and the coordinate $$y$$ is accessible only through the global variable y1:

sage: y1
y
sage: y1 is c_cart
True


However, having the name of the Python variable coincide with the coordinate symbol is quite convenient; so it is recommended to declare:

sage: forget()   # for doctests only
sage: M = Manifold(3, 'R^3', r'\RR^3', structure='topological', start_index=1)
sage: c_cart.<x,y,z> = M.chart()


Spherical coordinates on the subset $$U$$ of $$\RR^3$$ that is the complement of the half-plane $$\{y=0, x \geq 0\}$$:

sage: U = M.open_subset('U')
sage: c_spher.<r,th,ph> = U.chart(r'r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi')
sage: c_spher
Chart (U, (r, th, ph))


Note the prefix ‘r’ for the string defining the coordinates in the arguments of chart.

Coordinates are Sage symbolic variables (see sage.symbolic.expression):

sage: type(th)
<type 'sage.symbolic.expression.Expression'>
sage: latex(th)
{\theta}
sage: assumptions(th)
[th is real, th > 0, th < pi]


Coordinate are also accessible by their indices:

sage: x1 = c_spher; x2 = c_spher; x3 = c_spher
sage: [x1, x2, x3]
[r, th, ph]
sage: (x1, x2, x3) == (r, th, ph)
True


The full set of coordinates is obtained by means of the slice [:]:

sage: c_cart[:]
(x, y, z)
sage: c_spher[:]
(r, th, ph)


Let us check that the declared coordinate ranges have been taken into account:

sage: c_cart.coord_range()
x: (-oo, +oo); y: (-oo, +oo); z: (-oo, +oo)
sage: c_spher.coord_range()
r: (0, +oo); th: (0, pi); ph: (0, 2*pi)
sage: bool(th>0 and th<pi)
True
sage: assumptions()  # list all current symbolic assumptions
[x is real, y is real, z is real, r is real, r > 0, th is real,
th > 0, th < pi, ph is real, ph > 0, ph < 2*pi]


The coordinate ranges are used for simplifications:

sage: simplify(abs(r)) # r has been declared to lie in the interval (0,+oo)
r
sage: simplify(abs(x)) # no positive range has been declared for x
abs(x)


Each constructed chart is automatically added to the manifold’s user atlas:

sage: M.atlas()
[Chart (R^3, (x, y, z)), Chart (U, (r, th, ph))]


and to the atlas of its domain:

sage: U.atlas()
[Chart (U, (r, th, ph))]


Manifold subsets have a default chart, which, unless changed via the method set_default_chart(), is the first defined chart on the subset (or on a open subset of it):

sage: M.default_chart()
Chart (R^3, (x, y, z))
sage: U.default_chart()
Chart (U, (r, th, ph))


The default charts are not privileged charts on the manifold, but rather charts whose name can be skipped in the argument list of functions having an optional chart= argument.

The chart map $$\varphi$$ acting on a point is obtained by means of the call operator, i.e. the operator ():

sage: p = M.point((1,0,-2)); p
Point on the 3-dimensional topological manifold R^3
sage: c_cart(p)
(1, 0, -2)
sage: c_cart(p) == p.coord(c_cart)
True
sage: q = M.point((2,pi/2,pi/3), chart=c_spher) # point defined by its spherical coordinates
sage: c_spher(q)
(2, 1/2*pi, 1/3*pi)
sage: c_spher(q) == q.coord(c_spher)
True
sage: a = U.point((1,pi/2,pi)) # the default coordinates on U are the spherical ones
sage: c_spher(a)
(1, 1/2*pi, pi)
sage: c_spher(a) == a.coord(c_spher)
True


Cartesian coordinates on $$U$$ as an example of chart construction with coordinate restrictions: since $$U$$ is the complement of the half-plane $$\{y = 0, x \geq 0\}$$, we must have $$y \neq 0$$ or $$x < 0$$ on U. Accordingly, we set:

sage: c_cartU.<x,y,z> = U.chart()
sage: U.atlas()
[Chart (U, (r, th, ph)), Chart (U, (x, y, z))]
sage: M.atlas()
[Chart (R^3, (x, y, z)), Chart (U, (r, th, ph)), Chart (U, (x, y, z))]
sage: c_cartU.valid_coordinates(-1,0,2)
True
sage: c_cartU.valid_coordinates(1,0,2)
False
sage: c_cart.valid_coordinates(1,0,2)
True


Note that, as an example, the following would have meant $$y \neq 0$$ and $$x < 0$$:

c_cartU.add_restrictions([y!=0, x<0])


Chart grids can be drawn in 2D or 3D graphics thanks to the method plot().

add_restrictions(restrictions)

Add some restrictions on the coordinates.

INPUT:

• restrictions – list of restrictions on the coordinates, in addition to the ranges declared by the intervals specified in the chart constructor

A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2 + y^2 != 0. The items of the list restrictions are combined with the and operator; if some restrictions are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the list restrictions. For example:

restrictions = [x > y, (x != 0, y != 0), z^2 < x]


means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list restrictions contains only one item, this item can be passed as such, i.e. writing x > y instead of the single element list [x > y].

EXAMPLES:

Cartesian coordinates on the open unit disc in $$\RR^2$$:

sage: M = Manifold(2, 'M', structure='topological') # the open unit disc
sage: X.<x,y> = M.chart()
sage: X.valid_coordinates(0,2)
False
sage: X.valid_coordinates(0,1/3)
True


The restrictions are transmitted to subcharts:

sage: A = M.open_subset('A') # annulus 1/2 < r < 1
sage: X_A = X.restrict(A, x^2+y^2 > 1/4)
sage: X_A._restrictions
[x^2 + y^2 < 1, x^2 + y^2 > (1/4)]
sage: X_A.valid_coordinates(0,1/3)
False
sage: X_A.valid_coordinates(2/3,1/3)
True


If appropriate, the restrictions are transformed into bounds on the coordinate ranges:

sage: U = M.open_subset('U')
sage: X_U = X.restrict(U)
sage: X_U.coord_range()
x: (-oo, +oo); y: (-oo, +oo)
sage: X_U.coord_range()
x: (-oo, 0); y: (1/2, +oo)

coord_bounds(i=None)

Return the lower and upper bounds of the range of a coordinate.

For a nicely formatted output, use coord_range() instead.

INPUT:

• i – (default: None) index of the coordinate; if None, the bounds of all the coordinates are returned

OUTPUT:

• the coordinate bounds as the tuple ((xmin, min_included), (xmax, max_included)) where
• xmin is the coordinate lower bound
• min_included is a boolean, indicating whether the coordinate can take the value xmin, i.e. xmin is a strict lower bound iff min_included is False
• xmin is the coordinate upper bound
• max_included is a boolean, indicating whether the coordinate can take the value xmax, i.e. xmax is a strict upper bound iff max_included is False

EXAMPLES:

Some coordinate bounds on a 2-dimensional manifold:

sage: forget()  # for doctests only
sage: M = Manifold(2, 'M', structure='topological')
sage: c_xy.<x,y> = M.chart('x y:[0,1)')
sage: c_xy.coord_bounds(0)  # x in (-oo,+oo) (the default)
((-Infinity, False), (+Infinity, False))
sage: c_xy.coord_bounds(1)  # y in [0,1)
((0, True), (1, False))
sage: c_xy.coord_bounds()
(((-Infinity, False), (+Infinity, False)), ((0, True), (1, False)))
sage: c_xy.coord_bounds() == (c_xy.coord_bounds(0), c_xy.coord_bounds(1))
True


The coordinate bounds can also be recovered via the method coord_range():

sage: c_xy.coord_range()
x: (-oo, +oo); y: [0, 1)
sage: c_xy.coord_range(y)
y: [0, 1)


or via Sage’s function sage.symbolic.assumptions.assumptions():

sage: assumptions(x)
[x is real]
sage: assumptions(y)
[y is real, y >= 0, y < 1]

coord_range(xx=None)

Display the range of a coordinate (or all coordinates), as an interval.

INPUT:

• xx – (default: None) symbolic expression corresponding to a coordinate of the current chart; if None, the ranges of all coordinates are displayed

EXAMPLES:

Ranges of coordinates on a 2-dimensional manifold:

sage: M = Manifold(2, 'M', structure='topological')
sage: X.<x,y> = M.chart()
sage: X.coord_range()
x: (-oo, +oo); y: (-oo, +oo)
sage: X.coord_range(x)
x: (-oo, +oo)
sage: U = M.open_subset('U', coord_def={X: [x>1, y<pi]})
sage: XU = X.restrict(U)  # restriction of chart X to U
sage: XU.coord_range()
x: (1, +oo); y: (-oo, pi)
sage: XU.coord_range(x)
x: (1, +oo)
sage: XU.coord_range(y)
y: (-oo, pi)


The output is LaTeX-formatted for the notebook:

sage: latex(XU.coord_range(y))
y :\ \left( -\infty, \pi \right)

plot(chart=None, ambient_coords=None, mapping=None, fixed_coords=None, ranges=None, number_values=None, steps=None, parameters=None, max_range=8, style='-', label_axes=True, color='red', plot_points=75, thickness=1, **kwds)

Plot self as a grid in a Cartesian graph based on the coordinates of some ambient chart.

The grid is formed by curves along which a chart coordinate varies, the other coordinates being kept fixed. It is drawn in terms of two (2D graphics) or three (3D graphics) coordinates of another chart, called hereafter the ambient chart.

The ambient chart is related to the current chart either by a transition map if both charts are defined on the same manifold, or by the coordinate expression of some continuous map (typically an immersion). In the latter case, the two charts may be defined on two different manifolds.

INPUT:

• chart – (default: None) the ambient chart (see above); if None, the ambient chart is set to the current chart
• ambient_coords – (default: None) tuple containing the 2 or 3 coordinates of the ambient chart in terms of which the plot is performed; if None, all the coordinates of the ambient chart are considered
• mapping – (default: None) ContinuousMap; continuous manifold map providing the link between the current chart and the ambient chart (cf. above); if None, both charts are supposed to be defined on the same manifold and related by some transition map (see transition_map())
• fixed_coords – (default: None) dictionary with keys the chart coordinates that are not drawn and with values the fixed value of these coordinates; if None, all the coordinates of the current chart are drawn
• ranges – (default: None) dictionary with keys the coordinates to be drawn and values tuples (x_min, x_max) specifying the coordinate range for the plot; if None, the entire coordinate range declared during the chart construction is considered (with -Infinity replaced by -max_range and +Infinity by max_range)
• number_values – (default: None) either an integer or a dictionary with keys the coordinates to be drawn and values the number of constant values of the coordinate to be considered; if number_values is a single integer, it represents the number of constant values for all coordinates; if number_values is None, it is set to 9 for a 2D plot and to 5 for a 3D plot
• steps – (default: None) dictionary with keys the coordinates to be drawn and values the step between each constant value of the coordinate; if None, the step is computed from the coordinate range (specified in ranges) and number_values. On the contrary if the step is provided for some coordinate, the corresponding number of constant values is deduced from it and the coordinate range.
• parameters – (default: None) dictionary giving the numerical values of the parameters that may appear in the relation between the two coordinate systems
• max_range – (default: 8) numerical value substituted to +Infinity if the latter is the upper bound of the range of a coordinate for which the plot is performed over the entire coordinate range (i.e. for which no specific plot range has been set in ranges); similarly -max_range is the numerical valued substituted for -Infinity
• color – (default: 'red') either a single color or a dictionary of colors, with keys the coordinates to be drawn, representing the colors of the lines along which the coordinate varies, the other being kept constant; if color is a single color, it is used for all coordinate lines
• style – (default: '-') either a single line style or a dictionary of line styles, with keys the coordinates to be drawn, representing the style of the lines along which the coordinate varies, the other being kept constant; if style is a single style, it is used for all coordinate lines; NB: style is effective only for 2D plots
• thickness – (default: 1) either a single line thickness or a dictionary of line thicknesses, with keys the coordinates to be drawn, representing the thickness of the lines along which the coordinate varies, the other being kept constant; if thickness is a single value, it is used for all coordinate lines
• plot_points – (default: 75) either a single number of points or a dictionary of integers, with keys the coordinates to be drawn, representing the number of points to plot the lines along which the coordinate varies, the other being kept constant; if plot_points is a single integer, it is used for all coordinate lines
• label_axes – (default: True) boolean determining whether the labels of the ambient coordinate axes shall be added to the graph; can be set to False if the graph is 3D and must be superposed with another graph

OUTPUT:

EXAMPLES:

A 2-dimensional chart plotted in terms of itself results in a rectangular grid:

sage: R2 = Manifold(2, 'R^2', structure='topological') # the Euclidean plane
sage: c_cart.<x,y> = R2.chart() # Cartesian coordinates
sage: g = c_cart.plot()  # equivalent to c_cart.plot(c_cart)
sage: g
Graphics object consisting of 18 graphics primitives Grid of polar coordinates in terms of Cartesian coordinates in the Euclidean plane:

sage: U = R2.open_subset('U', coord_def={c_cart: (y!=0, x<0)}) # the complement of the segment y=0 and x>0
sage: c_pol.<r,ph> = U.chart(r'r:(0,+oo) ph:(0,2*pi):\phi') # polar coordinates on U
sage: pol_to_cart = c_pol.transition_map(c_cart, [r*cos(ph), r*sin(ph)])
sage: g = c_pol.plot(c_cart)
sage: g
Graphics object consisting of 18 graphics primitives Call with non-default values:

sage: g = c_pol.plot(c_cart, ranges={ph:(pi/4,pi)},
....:                number_values={r:7, ph:17},
....:                color={r:'red', ph:'green'},
....:                style={r:'-', ph:'--'}) A single coordinate line can be drawn:

sage: g = c_pol.plot(c_cart, fixed_coords={r: 2}) # draw a circle of radius r=2 sage: g = c_pol.plot(c_cart, fixed_coords={ph: pi/4}) # draw a segment at phi=pi/4 An example with the ambient chart lying in an another manifold (the plot is then performed via some manifold map passed as the argument mapping): 3D plot of the stereographic charts on the 2-sphere:

sage: S2 = Manifold(2, 'S^2', structure='topological') # the 2-sphere
sage: U = S2.open_subset('U') ; V = S2.open_subset('V') # complement of the North and South pole, respectively
sage: S2.declare_union(U,V)
sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
....:                 intersection_name='W', restrictions1= x^2+y^2!=0,
....:                 restrictions2= u^2+v^2!=0)
sage: uv_to_xy = xy_to_uv.inverse()
sage: R3 = Manifold(3, 'R^3', structure='topological') # the Euclidean space R^3
sage: c_cart.<X,Y,Z> = R3.chart()  # Cartesian coordinates on R^3
sage: Phi = S2.continuous_map(R3, {(c_xy, c_cart): [2*x/(1+x^2+y^2),
....:                          2*y/(1+x^2+y^2), (x^2+y^2-1)/(1+x^2+y^2)],
....:                          (c_uv, c_cart): [2*u/(1+u^2+v^2),
....:                          2*v/(1+u^2+v^2), (1-u^2-v^2)/(1+u^2+v^2)]},
....:                         name='Phi', latex_name=r'\Phi') # Embedding of S^2 in R^3
sage: g = c_xy.plot(c_cart, mapping=Phi)
sage: g
Graphics3d Object NB: to get a better coverage of the whole sphere, one should increase the coordinate sampling via the argument number_values or the argument steps (only the default value, number_values = 5, is used here, which is pretty low).

The same plot without the (X,Y,Z) axes labels:

sage: g = c_xy.plot(c_cart, mapping=Phi, label_axes=False)


The North and South stereographic charts on the same plot:

sage: g2 = c_uv.plot(c_cart, mapping=Phi, color='green')
sage: g + g2
Graphics3d Object South stereographic chart drawned in terms of the North one (we split the plot in four parts to avoid the singularity at $$(u,v)=(0,0)$$):

sage: W = U.intersection(V) # the subset common to both charts
sage: c_uvW = c_uv.restrict(W) # chart (W,(u,v))
sage: gSN1 = c_uvW.plot(c_xy, ranges={u:[-6.,-0.02], v:[-6.,-0.02]})  # long time
sage: gSN2 = c_uvW.plot(c_xy, ranges={u:[-6.,-0.02], v:[0.02,6.]})  # long time
sage: gSN3 = c_uvW.plot(c_xy, ranges={u:[0.02,6.], v:[-6.,-0.02]})  # long time
sage: gSN4 = c_uvW.plot(c_xy, ranges={u:[0.02,6.], v:[0.02,6.]})  # long time
sage: show(gSN1+gSN2+gSN3+gSN4, xmin=-1.5, xmax=1.5, ymin=-1.5, ymax=1.5)  # long time The coordinate line $$u = 1$$ (red) and the coordinate line $$v = 1$$ (green) on the same plot:

sage: gu1 = c_uvW.plot(c_xy, fixed_coords={u: 1}, max_range=20, plot_points=300)  # long time
sage: gv1 = c_uvW.plot(c_xy, fixed_coords={v: 1}, max_range=20, plot_points=300, color='green')  # long time
sage: gu1 + gv1  # long time
Graphics object consisting of 2 graphics primitives Note that we have set max_range=20 to have a wider range for the coordinates $$u$$ and $$v$$, i.e. to have $$[-20, 20]$$ instead of the default $$[-8, 8]$$.

A 3-dimensional chart plotted in terms of itself results in a 3D rectangular grid:

sage: g = c_cart.plot() # equivalent to c_cart.plot(c_cart)  # long time
sage: g  # long time
Graphics3d Object A 4-dimensional chart plotted in terms of itself (the plot is performed for at most 3 coordinates, which must be specified via the argument ambient_coords):

sage: M = Manifold(4, 'M', structure='topological')
sage: X.<t,x,y,z> = M.chart()
sage: g = X.plot(ambient_coords=(t,x,y)) # the coordinate z is not depicted  # long time
sage: g  # long time
Graphics3d Object sage: g = X.plot(ambient_coords=(t,y)) # the coordinates x and z are not depicted
sage: g
Graphics object consisting of 18 graphics primitives Note that the default values of some arguments of the method plot are stored in the dictionary plot.options:

sage: X.plot.options  # random (dictionary output)
{'color': 'red', 'label_axes': True, 'max_range': 8,
'plot_points': 75, 'style': '-', 'thickness': 1}


so that they can be adjusted by the user:

sage: X.plot.options['color'] = 'blue'


From now on, all chart plots will use blue as the default color. To restore the original default options, it suffices to type:

sage: X.plot.reset()

restrict(subset, restrictions=None)

Return the restriction of the chart to some open subset of its domain.

If the current chart is $$(U, \varphi)$$, a restriction (or subchart) is a chart $$(V, \psi)$$ such that $$V \subset U$$ and $$\psi = \varphi|_V$$.

If such subchart has not been defined yet, it is constructed here.

The coordinates of the subchart bare the same names as the coordinates of the current chart.

INPUT:

• subset – open subset $$V$$ of the chart domain $$U$$ (must be an instance of TopologicalManifold)
• restrictions – (default: None) list of coordinate restrictions defining the subset $$V$$

A restriction can be any symbolic equality or inequality involving the coordinates, such as x > y or x^2 + y^2 != 0. The items of the list restrictions are combined with the and operator; if some restrictions are to be combined with the or operator instead, they have to be passed as a tuple in some single item of the list restrictions. For example:

restrictions = [x > y, (x != 0, y != 0), z^2 < x]


means (x > y) and ((x != 0) or (y != 0)) and (z^2 < x). If the list restrictions contains only one item, this item can be passed as such, i.e. writing x > y instead of the single element list [x > y].

OUTPUT:

EXAMPLES:

Cartesian coordinates on the unit open disc in $$\RR^2$$ as a subchart of the global Cartesian coordinates:

sage: M = Manifold(2, 'R^2', structure='topological')
sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
sage: D = M.open_subset('D') # the unit open disc
sage: c_cart_D = c_cart.restrict(D, x^2+y^2<1)
sage: p = M.point((1/2, 0))
sage: p in D
True
sage: q = M.point((1, 2))
sage: q in D
False


Cartesian coordinates on the annulus $$1 < \sqrt{x^2 + y^2} < 2$$:

sage: A = M.open_subset('A')
sage: c_cart_A = c_cart.restrict(A, [x^2+y^2>1, x^2+y^2<4])
sage: p in A, q in A
(False, False)
sage: a = M.point((3/2,0))
sage: a in A
True

valid_coordinates(*coordinates, **kwds)

Check whether a tuple of coordinates can be the coordinates of a point in the chart domain.

INPUT:

• *coordinates – coordinate values
• **kwds – options:
• tolerance=0, to set the absolute tolerance in the test of coordinate ranges
• parameters=None, to set some numerical values to parameters

OUTPUT:

• True if the coordinate values are admissible in the chart range and False otherwise

EXAMPLES:

Cartesian coordinates on a square interior:

sage: forget()  # for doctest only
sage: M = Manifold(2, 'M', structure='topological')  # the square interior
sage: X.<x,y> = M.chart('x:(-2,2) y:(-2,2)')
sage: X.valid_coordinates(0,1)
True
sage: X.valid_coordinates(-3/2,5/4)
True
sage: X.valid_coordinates(0,3)
False


The unit open disk inside the square:

sage: D = M.open_subset('D', coord_def={X: x^2+y^2<1})
sage: XD = X.restrict(D)
sage: XD.valid_coordinates(0,1)
False
sage: XD.valid_coordinates(-3/2,5/4)
False
sage: XD.valid_coordinates(-1/2,1/2)
True
sage: XD.valid_coordinates(0,0)
True


Another open subset of the square, defined by $$x^2+y^2<1$$ or ($$x>0$$ and $$|y|<1$$):

sage: B = M.open_subset('B',
....:                   coord_def={X: (x^2+y^2<1,
....:                                  [x>0, abs(y)<1])})
sage: XB = X.restrict(B)
sage: XB.valid_coordinates(-1/2, 0)
True
sage: XB.valid_coordinates(-1/2, 3/2)
False
sage: XB.valid_coordinates(3/2, 1/2)
True

valid_coordinates_numerical(*coordinates)

Check whether a tuple of float coordinates can be the coordinates of a point in the chart domain.

This version is optimized for float numbers, and cannot accept parameters nor tolerance. The chart restriction must also be specified in CNF (i.e. a list of tuples).

INPUT:

• *coordinates – coordinate values

OUTPUT:

• True if the coordinate values are admissible in the chart range and False otherwise

EXAMPLES:

Cartesian coordinates on a square interior:

sage: forget()  # for doctest only
sage: M = Manifold(2, 'M', structure='topological')  # the square interior
sage: X.<x,y> = M.chart('x:(-2,2) y:(-2,2)')
sage: X.valid_coordinates_numerical(0,1)
True
sage: X.valid_coordinates_numerical(-3/2,5/4)
True
sage: X.valid_coordinates_numerical(0,3)
False


The unit open disk inside the square:

sage: D = M.open_subset('D', coord_def={X: x^2+y^2<1})
sage: XD = X.restrict(D)
sage: XD.valid_coordinates_numerical(0,1)
False
sage: XD.valid_coordinates_numerical(-3/2,5/4)
False
sage: XD.valid_coordinates_numerical(-1/2,1/2)
True
sage: XD.valid_coordinates_numerical(0,0)
True


Another open subset of the square, defined by $$x^2 + y^2 < 1$$ or ($$x > 0$$ and $$|y| < 1$$):

sage: B = M.open_subset('B',coord_def={X: [(x^2+y^2<1, x>0),
....:                   (x^2+y^2<1,  abs(y)<1)]})
sage: XB = X.restrict(B)
sage: XB.valid_coordinates_numerical(-1/2, 0)
True
sage: XB.valid_coordinates_numerical(-1/2, 3/2)
False
sage: XB.valid_coordinates_numerical(3/2, 1/2)
True